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Geodesic deviation in Kaluza-Klein theories
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We study in detail the equations of the geodesic deviation in multidimensional theories of Kaluza-Klein
type. We show that their 4-dimensional space-time projections are identical with the equations obtained by
direct variation of the usual geodesic equation in the presence of the Lorentz force, provided that the fifth
component of the deviation vector satisfies an extra constraint derived here.
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It is well known that the equation satisfied by a world-lin
xm(t) of a massive charged particle in a 4-dimensional R
mannian space-time in the presence of an electromagn
field is given by

d2xm

dt2
1Gnl

m dxn

dt

dxl

dt
1

q

m
Fl

m
dxl

dt
50, m,n, . . .50, . . . ,3.

~1!

In this expression,m and q are the mass and the charg
respectively, of a test particle,t is the 4-dimensional prope
time and the electromagnetic fieldFmn is defined byFmn

[]mAn2]nAm where Am(xk) is the vector potential. The
Gnl

m are the 4-dimensional Christoffel symbols. The seco
term of the above equation represents the inertial fo
whereas the last term is the Lorentz force.

The study of geodesics in multidimensional theories
Kaluza-Klein type has been performed by many auth
@1–5# in quite an exhaustive manner. It has been kno
since the very beginning@6,7# that, in the simplest version o
the theory~without scalar field!, the geodesic equation in
dimensions coincides with the geodesic equation in 4 dim
sions with an extra term which can be identified with t
Lorentz force. Indeed, in 5 dimensions, the geodesic eq
tion is given by

d2xA

ds2
1H A

BCJ dxB

ds

dxC

ds
50, A,B, . . .51, . . . ,5, ~2!

wheres is the 5-dimensional interval length, and the brack
$BC

A % are the 5-dimensional Christoffel symbols. Projecti
this equation under the assumption that all the quantities
independent of the fifth coordinate,]550, it is easy to es-
tablish, using the formulas displayed in the Appendix, t
one obtains
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d2xm

ds2
1Gnl

m dxn

ds

dxl

ds
1S dx5

ds
1Am

dxm

ds DFl
m

dxl

ds
50,

d

ds S dx5

ds
1Am

dxm

ds D50. ~3!

The second equation, telling us that the quantityQ
[dx5/ds1Am(dxm/ds) is constant along the 5-dimension
geodesics parametrized bys, reflects the fact that the back
grounds have been chosen such thatx5 is a cyclic co-
ordinate. Since we have the following relation between
squares of the intervals in 5 and 4 dimensions:

ds25~gmn1AmAn! dxmdxn12 Amdxmdx51~dx5!2

5dt21S dx5

ds
1Am

dxm

ds D S dx5

ds
1An

dxn

ds D ds2, ~4!

which amounts to ds2(12Q2)5dt2, we see that the
4-dimensional equation~1! is recovered provided that w
make the following identification:

q

m
5

Q

A12Q2
⇔Q5

q/m

A11~q/m!2
. ~5!

This means that we suppose thatQ2,1, so that ds is time-
like whenever dt is timelike, and vice versa. A more gener
situation is discussed in detail in@8#. The non-Abelian gen-
eralization has been considered in@1# and@2#. Since the mul-
tidimensional theories of Kaluza-Klein type are construc
as copies of Einstein’s general relativity theory in more th
4 dimensions, all the usual mathematical corollaries rem
valid. For example, it is possible to cancel the Christof
symbols along a given geodesic curve by an appropr
choice of coordinates, which amounts to the annulation
forces acting on a test particle moving along that geode
line. In 4 dimensions, the cancellation along the worldline
the 5-dimensional Christoffel symbols may be interpreted
the simultaneous compensation of gravitational and the L
entz forces by an appropriate acceleration field.

It is also a well known fact that such cancellation can
performed along only one given geodesic line at once,
©2000 The American Physical Society02-1
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not necessarily along all its neighbors. This fact becom
obvious when one looks at thegeodesic deviationequation

D2~dxm!

Dt2
5 4Rm

rnl

dxr

dt

dxn

dt
dxl. ~6!

wheredxl is an infinitesimal ‘‘geodesic deviation’’ vector
and D/Dt denotes the pull-back of covariant derivativ
along the time-like geodesics. For a massiveandcharged test
particle in the presence of both gravitational and electrom
netic fields (R nlr

m Þ0 and FmnÞ0), it is not difficult to
derive the generalized world-line deviation equation by t
ing direct variation of the world-line equation~1!:

D2~dxm!

Dt2
5 4Rm

rnl

dxr

dt

dxn

dt
dxl

1
q

m F ~¹rF n
m !

dxn

dt
dxr1F n

m D~dxn!

Dt G . ~7!

Here the Riemann tensor appears explicitly, making it au
matically impossible to cancel its influence by any local
global coordinate or gauge transformations. This is why
study of the geodesic deviation in multidimensional theori
which reads

D2~dxA!

Ds2
5RA

BCE

dxB

ds

dxC

ds
dxE, ~8!

is of particular interest. Indeed, when explicited in the fo
that splits up the 4-dimensional space-time and
D-dimensional internal space,a priori, new terms show up
containing quadratic expressions of the typeFm

nFml appear-
ing in the 5-dimensional Riemann tensor~cf. Appendix!, that
cannot be foreseen or derived from a purely 4-dimensio
point of view, even if one tries to introduce the interaction
charges with gauge and scalar fields. It will fix in a canoni
way the terms describing the purely gravitational influen
02750
s

g-

-

-
r
e
,

e

al
f
l
e

of those fields, which by their energy density must influen
the trajectories of chargeless massive particles, too, prov
ing tidal effects which should deform the initially paralle
geodesic lines.

Hence the question arises whether calculation of the g
desic deviation after reduction to 4 dimensions yields
same result as projecting the 5-dimensional geodesic de
tions to 4 dimensions, rendering the diagram of Fig. 1 co
mutative. This is of course an important issue since any
ference could be used to discriminate a purely 4-dimensio
theory from a Kaluza-Klein approach.

The purpose of this Brief Report is to address this qu
tion. To our knowledge, the analysis of this problem can
be found in the existing literature, and we believe that
present study will close this gap, and in addition, will sh
some new light on the interplay between the gauge fields
gravitation, and on the interpretation of the equivalence p
ciple in multidimensional theories as well.

We consider here the version of the 5-dimensio
Kaluza-Klein theory in which the scalar fieldw is put equal
to 1 from the beginning, which makes the field equatio
arising from the variational principle in 5 dimensions strict
equivalent to the Einstein-Maxwell system. We shall p
form all the calculations in a holonomous coordinate syst
in order to make the interpretation of the geodesic equati
and the affine parameters as straightforward as possible.
space-time components obey the equation

FIG. 1. Kaluza-Klein reduction of geodesic deviations.
pect to
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D2~dxm!

Ds2
5F 4Rm

nrk2
3

4
Fm

rFnkGdxn

ds

dxr

ds
dxk2

Q

2
@¹kFr

m1¹mFrk#
dxr

ds
dxk2

1

2
~Akdxk1dx5!~¹rFm

n!
dxr

ds

dxn

ds

2
Q2

4
Fm

lFr
ldxr1

Q

4
~Akdxk1dx5!Fm

lFr
l

dxr

ds
. ~9!

Equation~9! still is not explicit enough to be solved as function of the space-time variables. The derivatives with res
5-dimensional interval ds should be replaced by the derivatives with respect to the 4-dimensional proper time dt. Next, the
second-order covariant derivative appearing on the right-hand side and containing the 5-dimensional connection co
and their partial derivatives, has to be expressed in terms of ordinary derivatives and 4-dimensional Christoffel symbo
with the gauge-invariant quantities containing the Faraday tensorFmn . The relation between the covariant derivations w
respect to the parameters ds ~the 5-dimensional line element! and dt ~particle’s proper time in 4 space-time dimensions! is
quite complicated when it comes to the second-order covariant derivatives. This is why we omit all the intermediary
lations, giving here the final result. The second covariant derivatives are related as follows for the 4-dimensional com
of a given 5-dimensional vectoruA:
2-2
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S ds

dt D 2 D2um
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A12Q2
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m
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Dt

1
1

4

Q2

~12Q2!
Fn

mFr
nur2

1
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A12Q2
~Akuk1u5!Fn

mFr
n

dxr
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2

3

4
F l

m Fkr

dxl

dt

dxk

dt
ur

1Fl
m

dxl

dt F d

dt
~Akuk1u5!1Fkr

dxk

dt
urG . ~10!

Combining Eqs.~9! and~10! and using homogeneous Maxwell’s equations,¹lFn
m1¹nFl

m1¹mFnl50 and the identification
of the physical charge-to-mass ratio~5!, one obtains

D2~dxm!

Dt2
54Rm

rnl

dxr

dt

dxn

dt
dxl1

q

m F ~¹rFm
n!

dxn

dt
dxr1Fm

n

D~dxn!

Dt G1Fm
l

dxl

dt F d

dt
~Akdxk1dx5!1Fkr

dxk

dt
dxrG . ~11!
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This equation would coincide with the usual 4-dimensio
deviation Eq.~7! if it were not for the last term, which con
tains the standard Lorentz force multiplied by the express
in square brackets, linear in the infinitesimal deviation v
tor. However, it is easily recognized that the last term j
represents the deviation of the 5th component of the mom
tum Q, which by Eq.~3! is conserved, and which we ident
fied with the charge through Eq.~5!:

dQ5F d

ds
~dx51Aldxl!1Flr

dxr

ds
dxlG . ~12!

It is noteworthy that the same result can be obtained by u
the simpler, but non-covariant form of the geodesic deviat
equation~8!:

d2~dxA!

ds2
12H A

BCJ dxB

ds

d~dxC!

ds
1S ]DH A

BCJ D dxB

ds

dxC

ds
dxD

50, ~13!

which makes the calculations much less tedious. The fi
component of the previous equation leads to

d

ds F d

ds
~dx51Aldxl!1Flr

dxr

ds
dxlG50, ~14!

which means thatdQ is indeed a constant. From a pure
mathematical point of view, this constant can take on a
real value, depending on the arbitrary choice ofinitial con-
ditions, which include the initial values often variables,
dxA(0) and@d(dxB)/ds#(0), as it is thecase for any system
of five ordinary differential equations of second order. T
fact thatdQ is a constant means that not all the initial da
can be independent. As a matter of fact, the first derivative
the fifth component of the deviation,@d(dx5)/ds#(0), is an
imposed function of the four-dimensional initial deviation
namely
02750
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d~dx5!

ds
~0!5dQ2F d

ds
~Aldxl!1Flr

dxr

ds
dxlG~0!.

~15!

Requiring thatdQ50 is the condition which must be im
posed if we want to maintain a one-to-one corresponde
between the geodesic deviation equation in 5-dimensio
Kaluza-Klein space and the usual deviation equation in p
ence of the electromagnetic field in 4 dimensions.

Now, returning to Eq.~11!, we get the final result that ca
be stated very simply as follows:

The space-time projection of the five-dimensional Kalu
Klein geodesic deviation equation yields for fixed Q t
usual four-dimensional world-line deviation equation in th
presence of both gravitational and electromagnetic fields,
particles of the same q/m; geodesic deviations between fiv
dimensional world lines with different values of Q descri
the four-dimensional deviation of world-lines for particle
with different values of q/m.

The only influence of the electromagnetic fields
chargeless particles comes through the term linear in
4-dimensional Riemann tensor, which is a solution of t
coupled Einstein-Maxwell equations~see Ref.@11#!.

Although the final answer to the problem of the projecti
of the geodesic deviation equation from the 5-dimensio
Kaluza-Klein metric space onto its 4-dimensional space-ti
basis is very simple and does not bring any surprise, i
worth checking~the above calculations have never been p
lished elsewhere, at least to our knowledge!, and does not
seem to be totally trivial. It can be interpreted as a stro
equivalence principlegeneralized to the 5-dimensiona
theory incorporating electromagnetism into geometry.

Our result can be easily generalized to the non-Abel
case@1,2,9,10#, where the conservation of chargeQ is re-
placed by a condition on the rotation of the charge isovec
in the Lie algebra space in which it takes its value. There
no guarantee that the higher-order deviation equations,
tained with a similar technique of new independent variat
of Einstein-Maxwell equations do also project properly,
though such a statement seems very plausible.
2-3
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However, the introduction of thedilaton field, i.e. suppos-
ing that the radius of the compactified 5-th dimension
pends on the space-time positionxm, may bring new effects
leading to certain anomalies in the deviation equation and
projection onto the usual space-time. One can apply a sim
technique of probing the deviations to the equations of m
tions of the p-branes embedded in multi-dimensiona
spaces, which represent a natural generalization of geod
curves in Kaluza-Klein theories.

These developments should become the object of ano
independent study.

For J.W.v.H. this work is part of the research program
the Foundation for Fundamental Research of Matter~FOM!.

APPENDIX

The 5-dimensional metric tensor of the theory rea
(A,B, . . .51,2, . . . ,5)

gAB5S gmn1AmAn An

Am 1 D , with ds25gAB dxAdxB,

~A1!

wheregmn5gmn(xl) andAm5Am(xl), which means that we
consider that bothgmn and Am do not depend on the fifth
coordinatex5. Here are the Christoffel symbols of the metr
~A1!:

H m

nlJ 5Gnl
m 1

1

2
~AlFn

m1AnF l
m!,

H 5

mnJ 5
1

2
~¹m An1¹n Am!2

1

2
Ar~AnFmr1AmFnr!,

~A2!

H m

5nJ 5H m

n5J 5
1

2
Fn

m , H 5

5mJ 5H 5

m5J 52
1

2
Ak Fmk ,

H m

55J 50, H 5

55J 50. ~A3!

With this in mind, we can proceed with the computation
the components of 5-dimensional Riemann tensor in a
lonomous system. Using the convention
02750
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BCD5]CH A

DBJ 2]DH A

CBJ 1H A

CEJ H E

DBJ
2H A

DEJ H E

CBJ , ~A4!

and after some calculus, using also the Bianchi identi
satisfied by the tensorFmn , we get

Rr
lmn5 (4)Rr

lmn1 1
4 ~Fm

rFln2Fn
rFlm12 Fl

rFmn!

2 1
2 Al ¹r Fmn1 1

2 ~An¹mFl
r2Am¹nFl

r!

1 1
4 AlFs

r~AmFn
s2AnFm

s!, ~A5!

R5
mnl52 (4)Rr

mnl Ar1 1
2 ¹mFnl

1 1
4 Fm

r ~AlFrn2AnFrl!2 1
2 AmAr¹rFln

1 1
2 Ar~An¹lFm

r2Al¹nFm
r!

1 1
4 AmAsFrs~AlFn

r2AnFl
r!

1 1
4 Ar~FlrFmn1FnrFlm12FmrFln!, ~A6!

Rr
5mn52 1

2 ¹rFmn1 1
4 Fs

r ~AmFn
s2AnFm

s!,
~A7!

Rr
m5n52 1

2 ¹nFm
r1 1

4 AmFs
rFn

s , ~A8!

R5
5mn5 1

4 FrsAs ~Fm
rAn2Fn

rAm!1 1
2 Ar¹rFmn ,

~A9!

R5
m5n5 1

4 Fm
rFnr1 1

2 Ar¹nFm
r2 1

4 AmAlFn
sFsl ,

~A10!

Rr
5l552 1

4 Fs
rFl

s , ~A11!

R5
5l55 1

4 ArFs
rFl

s . ~A12!

Here the Greek indicesm,n, . . . areraised and lowered by
means of the 4-dimensional metric tensorsgml andglr .
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