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Geodesic deviation in Kaluza-Klein theories
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We study in detail the equations of the geodesic deviation in multidimensional theories of Kaluza-Klein
type. We show that their 4-dimensional space-time projections are identical with the equations obtained by
direct variation of the usual geodesic equation in the presence of the Lorentz force, provided that the fifth
component of the deviation vector satisfies an extra constraint derived here.
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Itis well known that the equati-on gatisfied -by a vyorld-liqe d2xH dx” dx dx® dx# ax
x*(7) of a massive charged particle in a 4-dimensional Rie- >+ f,jxd— o d—+ " s ka‘d—zo,
mannian space-time in the presence of an electromagnetic ds S oS S S S
field is given by

d [dx® A dx# 0 3
d?x* dx” dx* g _ dx AT
Y23

_— I ———+—=F*—-—=0, v,...=0,...,3.
d2  Mdrodr om* odr # The second equation, teling us that the quantify
(1) =dx%ds+A,(dx“/ds) is constant along the 5-dimensional
geodesics parametrized Isy reflects the fact that the back-
In this expressionm and ¢ are the mass and the charge, grounds have been chosen such tkatis a cyclic co-
respectively, of a test particle,is the 4-dimensional proper ordinate. Since we have the following relation between the
time and the electromagnetic field,, is defined byF,,  squares of the intervals in 5 and 4 dimensions:
=dJ,A,—d,A, Where A, (x) is the vector potential. The
I'“ are the 4-dimensional Christoffel symbols. The second ~ ds*=(g,,+A,A,) dx*dx”+2 A ,dx*dx>+ (dx®)?
term of the above equation represents the inertial force A’ x| | o dx”
whereas the last term is the Lorentz force. —d2+ | =—=—4A _) A
The study of geodesics in multidimensional theories of ds ~#ds/\ds ~"ds
Kaluza-Klein type has been performed by many authors . ) )
[1-5] in quite an exhaustive manner. It has been knowdVhich amounts to sf(1-Q*=d7* we see that the
since the very beginnin,7] that, in the simplest version of 4-dimensional equatioitl) is recovered provided that we
the theory(without scalar fielyi the geodesic equation in 5 Make the following identification:
dimensions coincides with the geodesic equation in 4 dimen-
sions with an extra term which can be identified with the Q =0= q/m
1-Q? V1+(g/m)?’

Lorentz force. Indeed, in 5 dimensions, the geodesic equa-
This means that we suppose ti@t<1, so that d is time-

tion is given by
d2xA A ) dxB dxC like whenever d is timelike, and vice versa. A more general
FJF[BC’E EZO’ AB,...=1,...,5 (2) situation is discussed in detail [8]. The non-Abelian gen-

o eralization has been considered i and[2]. Since the mul-
tidimensional theories of Kaluza-Klein type are constructed
wheresis the 5-dimensional interval length, and the bracketsas copies of Einstein’s general relativity theory in more than
{8c} are the 5-dimensional Christoffel symbols. Projecting4 dimensions, all the usual mathematical corollaries remain
this equation under the assumption that all the quantities argalid. For example, it is possible to cancel the Christoffel
independent of the fifth coordinaté;=0, it is easy to es- symbols along a given geodesic curve by an appropriate
tablish, using the formulas displayed in the Appendix, thatchoice of coordinates, which amounts to the annulation of
one obtains forces acting on a test particle moving along that geodesic

line. In 4 dimensions, the cancellation along the worldline of
the 5-dimensional Christoffel symbols may be interpreted as

ds?, (4)

®

q
m
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not necessarily along all its neighbors. This fact becomes 5-dgeodesics — - 4d geodesics
obvious when one looks at tlieodesic deviatioequation

DA(OX) _ym B, .
D2  PMdrodr T ©
) o ) o 5—-d geodesic 4—d geodesic
where 8x* is an infinitesimal “geodesic deviation” vector, deviation T deviation
and D/Dr denotes the pull-back of covariant derivatives . . . o
along the time-like geodesics. For a massinel charged test FIG. 1. Kaluza-Klein reduction of geodesic deviations.

particle in the presence of both gravitational and electromag-
netic fields R,,,#0 andF,,#0), it is not difficult to  of those fields, which by their energy density must influence
derive the generalized world-line deviation equation by tak+the trajectories of chargeless massive particles, too, provok-

ing direct variation of the world-line equatid): ing tidal effects which should deform the initially parallel
5 , geodesic lines.
D7(ox*) _4pp % di A Hence the question arises whether calculation of the geo-
D+ P dr dr desic deviation after reduction to 4 dimensions yields the

, , same result as projecting the 5-dimensional geodesic devia-
a9 w X DOOXT) tions to 4 dimensions, rendering the diagram of Fig. 1 com-
+—| (V,F*)— = oxP+F*, . X o , ) ) )
m dr mutative. This is of course an important issue since any dif-

N he Ri licit King i ference could be used to discriminate a purely 4-dimensional
ere the Riemann tensor appears explicitly, making it a“tofheory from a Kaluza-Klein approach.

matically impossible to cancel its influence by any local or The purpose of this Brief Report is to address this ques-

global coordinate or gauge '_[ran_sforma_ti(_)ns. T_his Is Why.thefion To our knowledge, the analysis of this problem cannot
study of the geodesic deviation in multidimensional theonesbe found in the existing,g literature. and we believe that the

hich reads : : . o .
wh present study will close this gap, and in addition, will shed
D2( 5xP) dxB dxC some new light on the interplay between the gauge fields and
- E itati ; i i in-
> ~Recege OX=, (8) gravitation, and on the interpretation of the equivalence prin
Ds s oS ciple in multidimensional theories as well.

is of particular interest. Indeed, when explicited in the form We consider here the version of the 5-dimensional

that splits up the 4-dimensional space-time and théaluza-Klein theory ir! which Fhe scalar field i§ put equa_l

D-dimensional internal spaca, priori, new terms show up, to 1 from the beginning, which makes the field equations
containing quadratic expressions of the tf#6,F ,, appear- arising from the variational principle in 5 dimensions strictly
ing in the 5-dimensional Riemann tengof. Appgndi&, that €dquivalent to the Einstein-Maxwell system. We shall per-

cannot be foreseen or derived from a purely 4-dimensionaerm all the calculations in a holonomous coordinate system
point of view, even if one tries to introduce the interaction of in order to make the interpretation of the geodesic equations

charges with gauge and scalar fields. It will fix in a canonical@nd the affine parameters as straightforward as possible. The
way the terms describing the purely gravitational influencespace-time components obey the equation

D?(x*) . 3|:/«L . dx” dx? s Q U E e veE dx? s 1 NP dx? dx”
DSZ - vpK 4 Pl vkl ds ds 2[ k' p pK] ds 2( K )( p V) ds ds
Q? Q e s dx”
— AR O+ (A O FHF . 9

Equation(9) still is not explicit enough to be solved as function of the space-time variables. The derivatives with respect to
5-dimensional interval sishould be replaced by the derivatives with respect to the 4-dimensional properstinnext, the
second-order covariant derivative appearing on the right-hand side and containing the 5-dimensional connection coefficients
and their partial derivatives, has to be expressed in terms of ordinary derivatives and 4-dimensional Christoffel symbols along
with the gauge-invariant quantities containing the Faraday tefagpr The relation between the covariant derivations with
respect to the parameters ¢he 5-dimensional line elemenrand dr (particle’s proper time in 4 space-time dimensipiss

quite complicated when it comes to the second-order covariant derivatives. This is why we omit all the intermediary calcu-
lations, giving here the final result. The second covariant derivatives are related as follows for the 4-dimensional components
of a given 5-dimensional vectar*:
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dSZDzu“_Dzu“+1 Q WL sy s, QD

a7l pe b2 2o T et T 2 ATV g g B
+ Q2 KLEV, P Q A U+ SF#FdeP 3F - dX)\ dx”® )
sa-qpy M T A MR g T e g 6
F“X}\dA"SF e 10
R G g (AU U) TR U (10

Combining Eqgs(9) and(10) and using homogeneous Maxwell's equatioigk~+V F,*+ V#F , =0 and the identification
of the physical charge-to-mass rati), one obtains

K

o OxP 11
KPF . ( )

e dx
Mdr

dx? dx”
iV
m

D?( 5x*)
dr dr

D72

D(ox")
Dt

d
— (A, SX+ ox°)+F
dr

V)2 s s
(V, V)E .

_4
=R,

This equation would coincide with the usual 4-dimensional
deviation Eq.(7) if it were not for the last term, which con-
tains the standard Lorentz force multiplied by the expression
in square brackets, linear in the infinitesimal deviation vec-
tor. However, it is easily recognized that the last term justRequiring thatsQ=0 is the condition which must be im-
represents the deviation of the 5th component of the.momerbosed if we want to maintain a one-to-one correspondence
:gg ?v,itnvrt]rl\iahc%yari;%(tsgrsu;?]néig'ed’ and which we identi- between the geodesic deviation equation in 5-dimensional
' Kaluza-Klein space and the usual deviation equation in pres-

ence of the electromagnetic field in 4 dimensions.

Now, returning to Eq(11), we get the final result that can
be stated very simply as follows:

The space-time projection of the five-dimensional Kaluza-

It is noteworthy that the same result can be obtained by usinf§/éin geodesic deviation equation yields for fixed Q the

the simpler, but non-covariant form of the geodesic deviatior#Sual four-dimensional world-line deviation equation in the
presence of both gravitational and electromagnetic fields, for

d(6x5)
ds

d \ dx” \
(0)=0Q—| g5 (A\OX") +Fy, =X |(0).
(19

6Q= d SXO+A, XM +F dxpc%()‘ 12
Q=5 VXD TPy 5e : (12

equation(8): > ) oo >
particles of the same/en; geodesic deviations between five-
0 A 5 c B wc dimensional world lines with different values of Q describe
d"(ox™) A di d(ox )+((9 A )deL(SXD the four-dimensional deviation of world-lines for particles
ds? BC| ds ds PlBC|/ ds ds with different values of fm.
The only influence of the electromagnetic fields on
=0, (13)  chargeless particles comes through the term linear in the

4-dimensional Riemann tensor, which is a solution of the
which makes the calculations much less tedious. The fifttfoupled Einstein-Maxwell equatiorisee Ref[11]).
Component Of the previous equation |eads to Although the ﬁnal answer to the problem Of the pI’OjeCtion
of the geodesic deviation equation from the 5-dimensional
Kaluza-Klein metric space onto its 4-dimensional space-time
basis is very simple and does not bring any surprise, it is
worth checkingthe above calculations have never been pub-
lished elsewhere, at least to our knowleggend does not
which means thatQ is indeed a constant. From a purely seem to be totally trivial. It can be interpreted as a strong
mathematical point of view, this constant can take on anyequivalence principlegeneralized to the 5-dimensional
real value, depending on the arbitrary choicedrofial con-  theory incorporating electromagnetism into geometry.
ditions which include the initial values ofen variables, Our result can be easily generalized to the non-Abelian
Sx*(0) and[d(6xB)/ds](0), as it is thecase for any system case[1,2,9,10, where the conservation of char@eis re-
of five ordinary differential equations of second order. Theplaced by a condition on the rotation of the charge isovector
fact that5Q is a constant means that not all the initial datain the Lie algebra space in which it takes its value. There is
can be independent. As a matter of fact, the first derivative oho guarantee that the higher-order deviation equations, ob-
the fifth component of the deviatiofig(6x°)/ds](0), is an  tained with a similar technique of new independent variation
imposed function of the four-dimensional initial deviations, of Einstein-Maxwell equations do also project properly, al-
namely though such a statement seems very plausible.

=0, (14

djd SO+ A, XM +F dxpﬁx*
EE( +A)\ ™)+ " gs
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However, the introduction of théilaton field i.e. suppos- A A A E
ing that the radius of the compactified 5-th dimension de- RABCDzaC{ DB] _aD[CB + CE] k DB]
pends on the space-time positigty, may bring new effects
leading to certain anomalies in the deviation equation and its A E
projection onto the usual space-time. One can apply a similar - [ DE] { CB) , (A4)

technique of probing the deviations to the equations of mo-

tions of the p-branes embedded in multi-dimensional . . - .
. A and after some calculus, using also the Bianchi identities
spaces, which represent a natural generalization of geodesic . .
satisfied by the tensd¥ ,,, we get

curves in Kaluza-Klein theories. wy?
These developments should become the object of another , _(@)pp N ) ) ,
independent study. RO\ =""Rut 3 (FF\—F Ry 2FF L)
For J.W.v.H. this work is part of the research program of —32A,V”? Fut z (AV,F\"=AV,F\")
the Foundation for Fundamental Research of Maf&M).
+ I AFL (AR =AF), (A5)

APPENDIX

5 — 4 1
The 5-dimensional metric tensor of the theory reads R MW\_—( )Rp;m Aot 2 VuFo
(AB,...=1.2,...,5) . L
+ i FS(AFL—AF -2 AAVF,
9utAA, A,

A 1

L

YAB—

) ’ W|th d82: YAB dXAdXB, + % Ap(AvV)\FMp_A)\VVF/f)
(AD) +1AATF, (AF, —AF,")
whereg,,,=g,,(x*) andA,=A (x), which means that we

1
consider that bottg,,, andA, do not depend on the fifth + 3 AP F Lt PRt 2F,FG), (A6)
coordinatex®. Here are the Christoffel symbols of the metric
(A1): R’s,,=— 3 VPF,,+31F, (AF,7—AF,7),
(A7)
m 1
:F¢A+§(A)\FVM+AVF )\M)! . . .
VA RpMSV:_ §VVF:+ZA;LFUPFV ’ (AB)
>|_1 Lo R%,,= 3 F,,A’(F PA,—F PA )+ 3 A V°F
wv - E(VILLAV+VVA/.L)_ EA (AVF/LP+A/LFVp)7 Suv™— 41 po Mmoo vip 2% M (Ag)
(A2)
5 _ 1 1 1 A o
M M 1F “ 5 5 1AK|: R u5v— ZFILLPFVP+EAPVVFMP_ ZA,uA F, Fa')u(AlO)
5v| |w5] 2 7V 5u| |u5] 2 pie
M 5 RPsys=— 7 F,/F\7, (Al11)
=0, =0 A3
55 55 ( ) 5 1 P a
Rs5xs5= 7 A,F,/F\7. (A12)
With this in mind, we can proceed with the computation of
the components of 5-dimensional Riemann tensor in a hoHere the Greek indiceg,v, ... areraised and lowered by
lonomous system. Using the convention means of the 4-dimensional metric tensgtd and Orp-
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