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Using the acoustic peak to measure cosmological parameters
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Recent measurements of the cosmic microwave background radiation by the Boomerang and Maxima
experiments indicate that the universe is spatially flat. Here some simple back-of-the-envelope calculations are
used to explain the result. The main result is a simple formula for the angular scale of the acoustic peak in
terms of the standard cosmological parametetst93 1+ %(17 Qo) + %(17 h) + %Q,\].
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As we enter the era of precision cosmology, it gets in-depend on several cosmological parameters, but the spatial
creasingly difficult to understand how cosmological param-curvature turns out to be the dominant effect.
eters are extracted from observational data. The cosmic mi- We can measure the angular size subtended by the sound
crowave background radiatiq€MBR) is a prime example. horizon by looking for a special feature in the CMBR angu-
Anisotropies in the CMBR are influenced by a large numbedar power spectrum. The angular power spectrum is obtained
of cosmological parameters, including, but not limited to; theby “Fourier” analyzing the CMBR anisotropy pattern.
Hubble constant; the spatial curvature; the spatial topologySound waves in the photon-baryon fluid with wavelengths
the vacuum energy density; the baryon density; the numbeawoughly twice the size of the sound horizon at last scatter will
of light neutrinos; and the amplitude and spectral index ofhave just reached a maximum density contrast when matter
the primordial density perturbations. Using accurate maps oénd radiation decouple. As we shall see, these waves have
the CMBR, it should be possible to fix all of these param-periods that are long compared to the time taken for matter
eters with great precisionl—3]. However, with so many and radiation to decouple. Thus, the compression-rarefaction
parameters and so many physical effects to keep track of, fattern is snap frozen at decoupling. The enhanced density
is hard to explain how a particular parameter is extracteaontrast that occurs on the scale of the sound horizon leads to
from the datd4]. The aim here is to provide a simple expla- an enhanced temperature anisotropy, as the CMBR photons
nation of how the microwave background radiation can beare redshifted by an amount proportional to the local density.
used to measure the spatial curvature. The test was first pr&y measuring the scale at which the peak in the angular
posed by by Doroshkevich, Zel'dovich, and Sunyfgyand  power spectrum occurs, we are able to establish the angular
has subsequently been developed by many authors. The maste of the sound horizon. Note: The acoustic peaks are den-
comprehensive treatment can be found in the work of Hu angity peaks, not “Doppler peaks.” The fluid is at a turn-
White [6]. around point when maximum density contrast is reached, so

The curvature measurement is based on simple geometrthe velocity of the baryons, and hence the Doppler shift, is at
If you know the physical size of an object and how far awaya minimum.
it is, then by measuring its angular size you can infer the Before proceeding to show how the angle subtended by
curvature of space. Suppose that the object hasfsemed is  the sound horizon is related to the spatial curvature, a little
a distanceB away. In flat space the angle subtended by thenore non-Euclidean geometry is in order. Consider a geode-
object is given by sic triangle drawn in hyperbolic space. The law of cosines

reads

A? )

a=arcc0%l— ﬁ .

(1) coshC/R,) = cosA/R,)coshB/R,)
However, if the space is negatively curved with radius of —sinh(A/R;)sin(B/R;)cosy. 3

curvatureR;, the angle will be given by HereA, B, andC are the side lengths ang B, andy are the

cosiA/R,) — 1 opposite angles. Now suppose tae=B, B>A, and R,
= — . >A. Usi i
a arcco% 1 SN (BIRy) ) (2 A. Using the law of cosines we have
Notice that Eq.(2) recovers that flat space resl) in the a= ;jL ' (4)
limit R.—c0. The expression for a positively curved space R.sinh(B/R.)
can be obtained by replacirig, by iR; in Eq. (2).
To apply the angular size test we need to know the size of"d
a distant object and how far away it is. When the test is
applied to the microwave background radiation, the role of 77 A (5)

- . . . L —
the distant “ruler stick” is played by the size of the sound B 2 2R tanhB/R;)
horizon at last scatter, and the distance to the object is the
radius of the last scattering surface. Both of these quantitieshe sum of the angles in the triangle is given by
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S=a+2B=m—a(CoshB/R,)—1)+:--. (6) last scatter and reheating if we are considering inflationary
models. Thus, the size of the sound horizon is given by
Thus, the angle sum is less than 180° if space is negatively

curved, greater than 180° if space is positively curved, and 1 1 (ags Ha
equal to 180° if space is flat. In our cosmological settifis Xsh= ‘/—3( Nsis™ Mrh) = e Ha? (12)

the size of the sound horizol is the radius of the last
scattering surface, and is the angular scale corresponding thea size of the universe at last scattar
Sy

to the first acoustic peak. Space is flat if the angle sum in Ouf)roportional to the redshift of last scattex,~1100. The

cosmic 'triangle adds to 1800'. . radius of the surface of last scatter is equal to the conformal
Turning now from the spatial geometry to the 'spacetlr'neti e interval between last scatter and today:
geometry, the unperturbed background geometry is descrlbecfn

by the Friedman-Robertson-Walker line element

is inversely

1 da

X|=no—n|2f—z- (13
ds2=—d2+a(t)2(dy?+R2sint(x/R,)d0?).  (7) o ** JoHa
Herea(t) is the scale factor in units wheeg=1 today, and Using the same approximations used to derive @. we
|R.| is the spatial curvature radius today. The time-time com<an relate the angle subtended by the sound horizgp, to
ponent of Einstein’s field equations rea@s units whereG ~ Xsh @ndxsis:
=c=1

) Xsh

fsn= Rcsinh(xsis/Re)

fERT 3 ®

a
a

Let us begin with a simple case. Consider a matter domi-

wherep is the energy density and a dot denotiédt. Solv-  nated universe witlf), =, =0. The integral§12) and(13)
ing for R, we find yield

1

2
Ri=———=, 9 Xsh= (77— —
¢ Hov1l—Qg © ) HO\/Q_O\/?SB

whereHy=(&/a), is the Hubble constant arfdy=py/p. IS o [2Y1-Qg
the total energy density today in units of the critical density Xsis= Re arc&nf(Q—O),
pc=3HS/87-r. Space is negatively curved iy<1, posi-
tively curved if(o>1 and flat if(0 = 1. Using conservation and the angular size of the sound horizon is given by
of energy-momentum, the Friedman equat{8hcan be re-

(15

written in the useful form Q
Ogp= \/320 ~1°0,. (16)
noo[8) e Qe @m (1700 "
a ola* al a’ asttw | The angle sum in the cosmic triangle is given by
(10
Here(Q,, Q.,, andQ,, denote the contributions to the total 3~180°-2° 0 7
energy density from radiatiophotons and light neutrings \/Q_o

nonrelativistic mattetbaryons and cold dark matjeand an
unclustered dark matter component with equation of gtate
=wp wherew= — 1/3. The unclustered dark matter takes the
form of a cosmological constant whew= —1.

Since angles are conformally invariant, we can use th
conformally related static metric

Note that while bothy,, and x5 s depend orH, andQ, the
angles only depend of2y. Thus, in a matter dominated
universe, the position of the first acoustic peak is an excellent
dneasure of the curvature. Since the CMBR experiments re-
port their results in terms of angular power spectra, it is
conventional to convert the angular scale into its fourier
d&=—dn?+dy?+ RZ sint?(x/R;)dO2. (11)  equivalent, the multipole numbés /6. For a matter domi-
nated universe, the first acoustic peak in the angular power
The static(or optica) metric has the property that null geo- spectrum is located dfeq1sp= 1804/Q,.
desics in spacetime correspond to in ordinary geodesics in For more realistic cosmological models, with both radia-
space. The conformal time is related to the cosmological tion and multicomponent dark matter, the integrdl® and
time t by dp=dt/a. Our task now is to calculate the size of (13) cannot be evaluated in terms of simple functions. Ap-
the sound horizon at last scatter, and the radius of the lagtroximate forms can be found as a power series expansions
scattering surface. To leading order, the sound speed in the the quantities(),,/Q,, Qc/Qy,, and zg/zeq, Where
photon-baryon fluid is equal to;=1//3, so the sound hori- Q.=1-, is a measure of the curvature ang=,/(,
zon is roughly 3 times smaller than the conformal time denotes the redshift of matter-radiation equality. To leading
interval between last scatter and the big baogbetween order we have
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2
2 ( Zgs Zsls) ° oQC QC QA 8th -1
B I P L T 3=180°-1.15°~2 | 1— =~ + .
Xsh Ho \/Qm\/32$|s Zeq Zeg ( ) Qm ZQm 14‘Qm 4

(22

and

Neglecting photon self-gravity, sound waves in the photon-

2 10, 1 Qy baryon fluid obey a simple harmonic oscillator equation, and

Xsls™ HoV O, 1-35 Q. 2(1-6w) Q. the position of the first acoustic peak corresponds to the an-
gular size of the sound horizdg,= 7/ 6;,. However, when

The expression for the radius of the last scattering surfacé?hOton self-gravity is included, the oscillator equation gains

Xes, IS good to within 10% for |Q./Q /<2 and @&" anharmonic term that shifts the position of the first few
Sis» C mi—

|Q,,/Q,|<2—see the Appendix for details. The quantity peaks. Taking this into account, and using standard isentro-

2. /7. that appears in Eq18) is well approximated b pic initial conditiqns, and neglecting _SiIk damping, the tem-
sls’%eq PP q18) PP y perature fluctuations vary as a function of scalé¢@ls

Zls_ L (19
Zoq 240,07

1
T~ constant- cog | 65 + Wsin(l Ost) - (23
where h is the Hubble constant in units of 100 sh

kms *Mpc™L. In order to find a simple expansion fat,,
we can choose either or Q,h? as a free parameter and Solving for the position of the first peak, we find
expand the quantity\(1+Zgjs/ Zeq— VZsis/Zeq) @S

aw
1 1+(Bthz—l)_9(80mh2—1)2+m |peak~0.8730—, (24)
V3 4 64 ’ sh
or so that forQ,~1
\ﬁ(l_(l_ﬂm)_(l_h)Jr...)_ 30, O, (1-h)
3 10 5 Ipeak~19 1+ 5 +E+ 5 +ee ]l (25)

The first version works best when,, andh are close to the

currently favored values df),=0.3 andh=0.65. The sec- The recent Maf7], Boomerand8], and Maxima[9] results

ond version works best €),=1 andh=1. Putting every- |ocate the first acoustic peak k200, |=197+6, and|

thing together in Eq(14) we find ~220, respectively. Using the Boomerang results, and al-
lowing h andQ, to vary freely over the range G6s5h=<0.8

1 1Q, 1 Q, and 0=, <0.8, our approximate formul&5) yields a best
Osh= 3Vzar 1- 2 Q_m+ 2(1-6w) Q, fit value of Qo=1.07+0.1. This result is consistent with the
s universe being spatially flat, and agrees with the detailed
(8Q,h2—1) analysis[10] of the Boomerang data. Since the curvature is
+T+'” ) (20 the dominant effect in fixing the location of the acoustic

peak, we are able to get a good fix Qi despite having only
or, specializing to the case=—1 andQ,=1, we find one equation for three unknownsi§,{,€,). In conclu-
sion, simple analytic formulas can be found that give good
qualitative, and decent quantitative, insight into how the
(21) CMBR observations are used to fix the spatial curvature.

V2 30, Q 1-h
(1_ ¢ _A_( )+

o= 3vZee 5 3 5
I would like to thank David Spergel and Wayne Hu for

The above expressions fég, give a good qualitative picture patiently and expertly answering all my questions.
of how the various cosmological parameters affect the loca-
tion of the first acoustic peak. We see that the peak position
is mainly determined by the curvature, and only weakly de- APPENDIX
pendent on the value of the Hubble constant. The peak posi-
tion is largely insensitive to the value of the cosmological We made two major approximations in arriving at Eq.
constant. (20). The first was to treat the sound speed as a constant,

The angle subtended by the sound horizon is smaller in when a more accurate approximation would be to et
negatively curved universe and larger in a positively curved=1/y3(1+ &), where §=3a()/4(), is the baryon-photon
universe. The angles in the triangle formed by the soundnomentum density rati6]. Keeping the next to leading
horizon and the Earth sum to term in &g, the size of the sound horizon is given by
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For reasonable values of the cosmological parameters, we
find &,=<1, so we can neglect the second term in &L).

The second major approximation was to expand the ex-
pression forrgs=R. sinh(ygs/R,) in terms of Q./Q,, and

Qu/Qp:
2 [:Hl()c 1 Q, 1(QC>2
r = —_— _—_ e — | —
T HQ, 2Q, 2(1-6w) Q, 80,
3 Q,\? 3-2w
T B—12wm) | Q. T A(1-2w)(1-6w)

o
A Fot o Rat (A3)

So long asQ),> Q. and Q,,>Q,,, the higher order terms
can safely be neglected. Figure 1 shows the percentage error
in the first order truncation ofgs as compared to a full
numerical evaluation. The fractional error is less than 8%
FIG. 1. The fractional error in the first order approximation to 8Cross a wide portion of parameter space, including the in-
angular size distance to the surface of last scatter. The dashed lint&resting region around.,Q,)=(0,0.7).
mark contours of 8% error. The error is considerably less than 8% Our final task is to show that the period of the wave
across most of parameter space. The missing corner correspondsr@sponsible for the first acoustic peak is large compared to

the portion of parameter space whélg=(Q,—Q,)<0.2. the time taken for matter and radiation to decouple. If this
were not the case, the anisotropy would not be frozen in and
2 the acoustic peak would be washed out. The conformal pe-
Xsh=—F—F—— ( \/ 1+ Lois_ Zils) riod of the wave is given bf =2 x4,/ Cs and the conformal
HoVQmy3zsis Zeq Zeq time interval taken to decouple id 7= 7(zsd) — 7(Zsis

¢ 7 7 7 . +Az), where Az=300 is the redshift interval for decou-
_ is(. [1+ i‘s_zis< N1 S /is))} pling. The ratio ofT to Ay is given by
6 Zgq Zeq

Zeq Zeq
(A1) L=4W(Zis) Zs_ Z_'(HZ_'” Ad)
Assuming that there are three light neutrino species, the Ap Az Zeq Zeq Zeg) |
quantity & can be written as
3 21/ 4\ 43/ Q For reasonable cosmological parameters, we firid 7
Eage=—| 1+ _(_) }(_b) (ﬂ) (A2) =30, which tells us that the acoustic waves are effectively
¥° 4 8111 Qm/\ Zsis snap frozen when matter and radiation decouple.
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