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We consider warped type |IB supergravity solutions with three-form flux/srdl supersymmetry, which
arise as the supergravity duals of confining gauge theories. We first work in a perturbation expansion around
AdS;x S°, as in the work of Polchinski and Strassler, and fromAfe1 conditions and the Bianchi identities
recover their first-order solution generalized to an arbitt&fiy 1 superpotential. We find the second order
dilaton and axion by the same means. We also find a simple family of exact solutions, which can be obtained
from solutions found by Becker and Becker, and which includes the recent Klebanov-Strassler solution.
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I. INTRODUCTION nonsingulaf21]. Somewhat surprisingly, explicit branes are
not involved; rather, the distinctive feature of the nonsingular
The duality proposed by Maldacefil] between type 1B~ solution is a reduce@spontaneously brokgsymmetry.
string theory in Ad$xS® and A’'=4 Yang-Mills theory in In this paper we explore warped type IIB supergravity
four dimensions has been an arena for amazing theoretic&P!utions with unbrokenV=1 supersymmetry. Our initial
advances in the past few years. This duality applies to goal is to unders_tand the supersymmetry of the PS solution.
conformal four dimensional theory, and so as it stands il "€ V’=1 mass in the gauge theory is dual to a three-form
cannot shed light on confining gauge theories such as QcpUX [N the supergravity solution; we work in the same ap-
However, from it one can deduce dualities involving systemdroXimation as in PS, treat this flux as a perturbation.
with less supersymmetry, including confining gauge theories. In Sec. Il we review the type IIB supergravity fields and
In addition to their relation to gauge theories, deforma_supersymmetry variations, and the zeroth order type I1B so-

i f Ad ith reduced t fint tf lution that corresponds to the Coulomb branch of Me 4
lons o S with reduced supersymmetry are of interest for auge theory. In Sec. Ill we first solve the conditions for

their connection to the proposal of Randall and Sundrun,\provenn=1 supersymmetry at first order around a gen-
[2,3]. These authors suggested that the hierarchy problerga| coulomb branch solution. We then impose the Bianchi
could be solved in a higher dimensional space with a larg¢gentities and find that the general solution is characterized
warp factor. Such warped spaces can be realized in Stringy one holomorphic functioss and one harmonic function

theory in various ways, most directly by bringing together ; \we verify that this general solution to the supersymmetry
D3-branes on a Calabi-Yau manifold to produce a region thagng Bjanchi conditions also satisfies the equations of motion.
is locally AdS X S” [4]. In the simplest case therel6=4  The holomorphic function corresponds to an arbitravy

supersymmetry, but one is ultimately interested in at most 1 gyperpotential, while the harmonic function corresponds

N=1. . _ a higher dimension perturbation.
~ One means of reducing the supersymmetry is by perturb- The ks solution also involves a three-form flux, but this
ing the Hamiltonian, which corresponds to perturbing the,

- 5 ; cannot be regarded as a perturbation. In Sec. IV we note a
boundary conditions on AdX S” [5,6]. The breaking ofV'  gimple class of exact solutions, which includes the KS solu-

=4 to N'=1 by mass terms has been studied from variougjon and its\’=2 version[22]. This class is actually a spe-

points of view[7-12. The supergravity dual to this per- ¢ia| case of a class of M/F theory solutions found by Becker
turbed theory appears to contain a naked singularity, but in gnq Beckef23-29.

recent papef13], Polchinski and StrassléPS showed that In Sec. V we make concluding remarks. An appendix
this singularity is actually replaced by an expanded branggntains various extensions of the work in Sec. lll: the sec-
source, so the theory is tractable. _ond order solutions for the dilaton and axiGmhich can be

The supersymmetry can also be be reduced by placingpiained easily because they decouple from the other second
D3-branes at a singular point, such as an orbifold or conifold,qer perturbationsa simple particular solution; and, a veri-
point[14-17, rather than a regular point. To break the con-fication that the solution obtained here agrees with that found

formal invariance it is necessary in addition to introducejy ps(in particular, that the normalizable solution is deter-
fractional braneqd18,19. Again the supergravity dual ap- mined in terms of the warp factor
pears at first to be singuld®0], but recent work by Kle-

banov and Strassl€KS) has shown that the true solution is II. REVIEW OF TYPE IIB SUPERGRAVITY

A. Fields and variations

*Email address: mariana@physics.ucsb.edu The massless bosonic fields of the type IIB superstring
"Email address: joep@itp.ucsb.edu theory consist of the dilatod, the metric tensog,,y and
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the antisymmetric 2-tens@y in the NS-NS sector, and the with 7 constant ands3)=0. ForN D3-branes ak™=0,

axion C, the 2-form potentialCy,y and the four-form field

Cumnpg With self-dual five-form field strength in the R-R R 4 2

sector. Their fermionic superpartners are a complex Weyl Z= e R'=4mgNa’?, (2.9

gravitino ¢y (Y= — ) and a complex Weyl dilatino

N (¥"\=\). The theory has\V=2 supersymmetry gener- where r2=x™x™: the spacetime is then AdSS°.X More

ated by two supercharges of the same chirality. The tw@yenerally,Z is any function of thex™, and

scalars can be combined into a complex fieldC+ie™ ¢

that parametrizes th&L(2,R)/U(1) coset space. — ImdmZ(X™ = (27)*a'?gpa(x™), (2.10
We want to find background that preserve some super-

symmetry. Assuming that the background Fermi fields vanwhere ps(x™) is the density of D3-branes in the transverse

ish, we have to find a combination of the bosonic fields suctfPace.

that the supersymmetry variation of the fermionic fields is For this background the dilatino equati¢®.1) is auto-

zero. The equations for the variation of the dilatino and gravinatically satisfied. The gravitino variation®.2) in this

itino have been found ifi26], whose conventions we use. Packground are

We use subindice$/,N, ...=0,...,9; «,»=0,1,2,3 and

_ 1
mn,...=4,....9 KO, =d,e =g Y Ya(1=T e, (2.11
i i
5)\:;7MPM8*_EYMNPGMNP81 (2.1 1 1
K&ﬂm:&ms-l—gswm—g'yw'ym(l—FA)s, (2.12
i
51//M——<DM 51Qm e 4807M1 Ms where I'*=iy%123 is the four-dimensional chirality and we

have defined
Wn=0mInZ, yu=7"Wpn,. (2.13

+ — (Y RGpor— 97" Gupo)e*. (2.2 The spin connection has been calculated for tangent space

axes M parallel to the Cartesian coordinate aXds The

Here Poincaresupersymmetries are independenixéfand so the
vanishing oféy,, implies that

Pu=f2duB, =f2lm(BgyB*), (2.3
M M Qm (BamB*) [te—s. (2.14
1+i7 . o
=1 f2=1—-BB*. (2.4 The vanishing of6¢, then implies that
e=2"18y (2.15

The supersymmetry parameteris a complex Weyl spinor
(y*e=—¢), andD,, is the covariant derivative with respect where 7 is any constant spinor such thBf 7= 7. We can
to the metricgyn . The field strengths are decompose

Gs)=f(F3—BF(3), FE=dAy), (2.9 n={Qx (2.19

K where({ is any four-dimensional anticommuting spinor with

Fiy=dAu)— glm(A(z)/\Ff3)), (2.6)  positive I"-chirality and y is any six-dimensional commut-
ing spinor with negativd ®-chirality. There are two such

and four suchy, giving eight complex or 16 real supersym-

with A2y=C(2)+iB2) complex andA 4 real. metries.

B. Black 3-brane background Ill. PERTURBATIVE SOLUTIONS

For any distribution of D3-branes aligned along the »
u-~directions, the background is A. Supersymmetry conditions
i o The PS solutiorf13] was obtained in a perturbation ex-
ds’=Z"Y2p, dx*dx"+ZHadx"dx™, (27 pansion in powers ofG (3, around the D3-brane solution
(2.7),(2.8). This expansion was justified in PS because it was
found, in large regions of parameter space, that the D3-brane

F density dominated the density of the 5-branes that appeared

[N €lumpIm s

2

1
F =—— SZ, 2.8
mnpar AkZ €mnpqre (2.8 INote thatx andg are related, 2%=(2)"a’*g.
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in the resolution of the naked singularity. We can expand th&Ve have defined
supersymmetry parameter in the same way:

=y vw=2" YA wy,. (3.19)
8:80+81+"', (31)
The first order term indy,,=0 becomes
where, as above,
1
go=2 V=2 y. (3.2 Imé— EZ_llzG'ymn*=0, (3.12

We are looking for solutions witb=4, N'=1 supersym-
metry so only one choice of the spingris kept? .

It is convenient to adopt complex coordinatgsfor the
6-dimensional part of the metric:

whereé=7"%2572,, G7*. We have used the identity

Y Gpor— 97" Gupo= —2Gyn— ymG. (3.13

LT XX i For m=1, the property(3.5 immediately gives
TR TR TR 9 JE=0 (3.14
In these coordinates, the six-dimensional part of the metrigo that¢ is a spinor holomorphic in thg' and
e e G =2V, E(2). (3.19
9i,=2776;,- (3.9

] The final,m=i equation then becomes
By an SQ(6) rotation we can choosg such that

_ Gy n* =22%29,¢(2). (3.1
Yigo="7v'€0=0. (3.5

) ) This can also be written with—m, as thel_components
We now expand the supersymmetry equations in powerg)q trivially.

of G(.3). In th_e PS solution, the_ dilaton, met.ric, and five_—fo.rm We now wish to expand Eq3.15,(3.16 in terms of the
receive no first order correction so the first order d'lat'nocomponents 06. The most general holomorphic spindof
equation is just the correct chirality is

Geo=0 (3.6 .
(D=an*+5B77"/ 7", (3.17
where G=Gypnpy"NP=Gnnpy™"P. Expanding in complex ¢ TRy
coordinates and using the prope(8:5), this is
wherea(z) and

0= Gijk ’)’ijk80+ 3G|_jk’yljk80: Gijk’yijk80+ 6ijk’yk80 .

- B2=2""8; (3.18
The spinors in the two terms are independent, so are holomorphic. The factor &2 arises because it is the
_ ™, with tangent space index, that are matrices with constant
Gijk=Gjx=0. 3.8 coefficients, whereas
The first order term iS¢y, =0 is y”‘=Z‘1’4yﬁ“ (3.19

1 1 .
~ 8. yﬂyw(l—l““)sﬁ %7’#@83 =0. (3.9 are position-dependent. Also,

* _— —n S K % — )
From the structure of the equations we can assumeethat Con* =Gy +3G iy

(like 3:a’g) has th'e opposit_e chirality te,, namelyI'*e,= :Gu'k,}/ljkn*+6GTle,yTn*, (3.20
—&4,” and so this determines

and
= .Gl (3.10 s i
1T page TE0 ' Gyim* =3G 1YY “yin* +3G iy yin*
=6Gi; Y “n* —6G iy Mt +12G;) p*.

2IIB backgrounds withA/=1 supersymmetry were studied in (3.21
Refs.[27,28, but with the assumption that the transverse dimen-
sions are compact and without brane or other sources. Expanding the conditiofi3.16 in components, we have

3A term of the same chirality would have to be proportionak o )
and so can be absorbed in the latter. da=6Z"1G; =0, (3.22
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where we have made use of the earlier condit®®). Thus,
a is constant(which the Bianchi identities will require to
vanish. For 8, we have

Z3,B,¢=6(Gi, i+ G uii)- (3.23

In order to analyze this condition it is useful to define

(Z)— & " “Brd2),

1.— 1.
Gi|:§€|JkGiJ_ka G||—25| ke (3.29

Here € is the numericale-symbol, with constant values 0,

+1 regardless of index positions. Then the conditi8r23
becomes

Z(?if|:3(Gi| +G|i)' (325)
From the symmetry in and| it follows that
f2=a62), Br2=2" ad(z) (326

in terms of a general holomorphic functiab(z). Then the
full content of condition(3.16) is

ﬁia(Z)ZO, GiI+GIi:§ﬁial¢(Z)' (327)

Similarly expanding the final conditiof8.15, we find

1.
=€ k2o ¢,

G = 5

1 —
G“ - G“ = EZ_llz(aﬂj_Ze]” + 4(9[| ¢&|]Z) (32&

In summary, the conditions fok'=1 supersymmetry are

conveniently written by separatir@; andG,; into symmet-
ric and antisymmetric parts,

Gi=Si+A, G =STt+AT. (3.29
Then S, is completely undetermined, while Eq$3.8),
(3.27),(3.28 fix the rest in terms of one constantand one
holomorphic functiong:

Gijk:AlAZO,
Z
Si=gdiad,
1 1/2 j 1
A”:—l—zaZ TZG 0[,¢><9|]Z
1.
G k= z € k012, 9. (3.30

6
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B. Bianchi identities and equations of motion

We now impose the Bianchi identitdG3)=0 on the
background. Expressed in terms of the fiel@29, these
take the form

& ¥15,G=65,G;, (3.3
J—k_ O'IJ—GW E kGC'_a GbC! (332
é9Gj=60,G, (3.33

(We usea,b,c as well asi,j,k,| for holomorphic indices.
Equation(3.31) reduces to

(3.39

Thus the Bianchi identity3.31) holds except at the locations
(2.10 of the D3-branes, where it should break down because
these carry 5-brane charges as well in the PS solution.

Equations(3.32,(3.33 constrain the remaining compo-
nentsGj

G =G = — 246¥Z A Ww— e J €W W)
- Eeam C Oy pIadeZ, 3.3
6 k€ 1y bPIa (3.39
3,G—=0. (3.36
J

Taking ¢; of identity (3.35 and using identity3.36) gives

1
2cu?[Z (ekaJWN\F e—mWﬁ]

2~—
#Gr=-1

1.
- —E kGCFO—)bO-’ (}507 & V4

3 (3.39

(note thatd?=24,4;). Symmetry injk now implies that

a=0. (3.39
Inverting Eq.(3.37) gives
G—=—i CFaM)aaz (3.39
7k 3(926 e .

To be precise, this final component is not completely deter-
mined, because Ed3.37) allows us to add any harmonic
tensor, subject to the earlier conditiods; = J;G;=0.
The general solution is then

1. b=
G=-— ﬁea K€ b0, p3ad Z+ 3T

(3.40
for « any harmonic function.

In summary, the full solution to the supersymmetry con-
ditions and Bianchi identities is given in Eq&.30 (with
a=0) and(3.40 in terms of one holomorphic functiog
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and one harmonic functiort. In the Appendix we give the where(in the notation of PSthe nonzero components of
explicit form for G, in the special case where the crossare
derivatives of the holomorphic functio#h are zero.

Now we will verify that all such solutions satisfy the Tix= mEiJ—k, (3.4
equations of motion as well. To the order we are working, _ o
the only nontrivial equation of motion is that f@s): arr;d V(3)/3 is T(3) projecting out components orthogonal to
x™.
d*G(3)+4iKG(3)/\F(5):O. (3.41) The PS solutions also have a normalizable part; with its

inclusion the solution must still be supersymmetric. The so-

In the 3-brane background, for transve@@), this becomes lutions we have found here have no independent normaliz-
able part; in particular, we will see that corresponds to

d[Z‘16(+3)]=0, G@)EG@)HEGQ) (3.42 higher dimensional operators. Rather, the normalizable part
is already determined in terms @f and Z. With expanded

where * means the dual in the six-dimensional space withb-branesZ has terms subleading inr}/and through the so-
respect to the flat metri,,,,. lution (3.30,(3.40 these generate the normalizable part of

Defining for G 3, the tensorsG;; G, and their sym- G3): In the Appendix we verify that the componeB;c
! obtained here is in agreement with PS.

mt?;r:;a]:cr)lgéptls%r:rf?r?érslcﬂ?:trts, in parallel to the earlier defi The harmonic functionys produces solutions with the
ON sameSQ(6) quantum numbers as and with dimension\’
greater by 4. This follows from E(3.40, where the two
terms have the same net number of derivatives but the first
has an extra factor of ~% asymptotically fromZ. Both
Gi_}—kZZGijka AILJ: 27, S+_:23j _ branches appear in Tab_le 2 of REQ] (see also Ref.30]).
(3.43 Just as the superpotential perturb_at|ons_ correspond to opera-
tors of the form\'\!3;9; ¢, the solutions given by have the
The only nontrivial component is then dimensions and5O(6) quantum numbers of the operators

Fzﬁﬁ(ﬁéﬂb. We have not fully understood from the field

+

Gle:

Ai=si0.

A theory side why the latter are parametrized by a harmonic
Si :§‘9iaj¢' (344 rather than holomorphic function.
and the nontrivial equations of motion IV. A CLASS OF EXACT SOLUTIONS

In this section we note an interesting class of exact solu-
tions with Gz flux. We begin with a Calabi-Yau back-
ground,

oz 1S =0z 1S;)=0 (345

are immediately seen to be satisfied.

In Appendix A1 we carry this to second order for the o v
dilaton and axion, and in Appendix A2 we find the explicit ds’ 70X dX +a;’
form of G for special.

(4.1)

with E is a Ricci-flat metric on the transverse sp#cehe
_ _ dilaton-axion field is constant,
C. Discussion

On the gauge theory side, the perturbation studied in PS _ i+ !
is, in N=1 notation, a mass term for the three chiral super- ™ 2x g’
fields. More generally, anjv=1 superpotential would pre-
serve one supersymmetry, and so it is natural to identify th@nd the other IIB supergravity fields vanish,
holomorphic function¢ with the superpotential. Let us
check that the dimensions are correct, first for the case of F3=H@=F)=0. (4.3
pure AdS space whe2=R*/r%. Let ¢ be homogeneous of
degreek, corresponding to a perturbation of dimensiAn
=k+1. In this case all terms iknv60Iving5 in the solution
(3.30,(3.40 for G,,np Scale asr*®, and all terms in the ~ =~
inertial frameG iy asrk 3= 9u&=Dme=0. 44

4.2

The dilatino variation vanishes trivially, while the gravitino
variation vanishes for

A=4 This is the correct scal- "
ing for the nonnormalizable solution dual to an operator o
dimensionA [5,6], confirming the interpretation ab as dual

to a superpotential perturbation. We have verified that th
supergravity solution folp=m2z' reproduces the nonnor-
malizable solution

Ga=r 4T3~ 4V(3)3) (3.4 ds’=2Z""%y,, dx“dx"+Z"dsg (4.5

fThus there are tw® =4 supersymmetrie§rom the real and
imaginary parts ot) for each covariantly constant spinor on

Now introduce a warp factag(x™),

026001-5
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and a five-form flux(2.8), 1 . N
Gmqunpq* :3_6Empqrs anqUUWGrStGqu
1

P 1 2 3
X4—4szx Adx*Adxe/A\dxe,

Fs=dxs+*dxa, 1
(4.6) = §gmnGrstGrSt* - anqupq*’ (4.14
with constant dilaton-axion and vanishing three-form fluxes.gng so

The dilatino variation is zero, while

1
1 G(m\qu|n)pq*:_gmnquerqr*- (4.13
Kéwﬂzaﬂs—gyﬂyw(l—r“)s, 6

The field equation is then satisfied for

~ 1 1
Ka‘/’m:Dm8+ggwm_§7w7m(1_r4)8- (4.7 =5 ) K2 —~
-V?2z=(2m)*a’ gpg(xm)-i-l—szqupqr*. (4.19

There is then an unbroken supersymméiry]
Note that it is the original, tilded, metric ok that appears

e=7 Y& (4.9 here. The Bianchi identity,

— _Ai *
for each covariantly constant spinor of chiralifyfe =¢. dF(s)= ~4ikG(3)/\Gfy), (4.17

This is the familiar multi-three-brane metric: it is a source-
less solution to the equations of motion fdra harmonic

function of the transverse coordinates, and more generally ic?o
a solution with D3-brane sources

is satisfied under the same conditigh16).

Not all these solutions are supersymmetric, but they be-
me so if we impose the additional condition that (B¢3)
piece ofw s vanish,

—V 2z=(2m)%a'2gps(x™). (4.9 0(03=0. (4.18

Now we construct a solution with nonze®3). We need  To see this, note first that the self-duality conditigh11)
onK a 3-formw(sy which is both closed and divergenceless,implies in the notation of Eq(3.43 thatw™ =0 or

dwz)=d§ wz)=0. (4.10 wjj= o, ;=0ij=0, (4.19

A harmonic 3-form on a compact manifold, or with suffi- whereo anda are the symmetric and antisymmetric parts of
ciently rapid falloff on a noncompact manifold, will have @ defined by analogy to the earlimndA. Equation(4.19
this property. By forming linear combinatiortand taking a  allows a(0,3) term w7, a(1,2) term of the forma;; =0,

complex conjugate if needesve may assume that and a(2,1) term of the formo7;. The (0,3 piece has been
set to zero by conditiof4.18. The (1,2) part must vanish,
*o@E)=iogas). (411  elsea;je’ would be a harmoni¢0,1) form, which does not

exist on a Calabi-Yau manifold. It follows that the only non-
ThenG 3,=Cuw s solves the equations of motion, where thetrivial component ofw ) is the (2,1) term o77;. Now we
metric, dilaton-axion, and 5-form are still of black 3-brane must consider the supersymmetry conditions, treadirgx-
form. TheG 3, equation of motior(3.42) is trivial. The field  actly. We claim that the fermionic fields remain invariant for

equation for the metric, at constantis the same spino(4.9) as in the absence @). The terms
that do not involveG s in the variations2.1),(2.2) already
K? PORS vanish, so those that involv@ sy must vanish separately. By
Run— EFMPQRSFN a calculation directly parallel to that which led to Eg§.30),
) ) one sees that the nonzero componerits do not appear in
_K pox K PORx the variations, which therefore vanish.
T4 GmipeCin 489MNGPQRG ' Note the structure of this solution, with its strong resem-

blance to the D3-brane Higgs branch solution. The flux

(412 G,/\G};, behaves like an additional D3-brane density, but
without the moduli of D3-branes—perhaps one can think of
this flux as a sort of frozen density of D3-branes. In fact, this
freezing seems to be a manifestation of confinement: taking

V27 (4.13 K to be the deformed conifold, this is precisely the recent KS

For the black 3-brane ansatz, the left-hand side is

L L52 | 9
v 7],1;,1/422 ) mn Imn

4z solution[21]. For the conifold itself, we obtain the solution
of Klebanov and Tseytlifi20], which is singular because the
On the right-hand side, the conditiga.11) implies that integrated D3-brane density diverges; the resolved conifold

026001-6
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would lead to a similar singular solution. FRF X R*/Z, one — P pr _

obtains anN'=2 analog of the KS solutiof22]. Py'n* = -GG =2—4670,-¢y' 7*.  (A2)
The solution found in this section resembles the solution 24'S

found by Becker and Becker for M theory on a Calabi-Yau

four-fold [23]. In fact, it is a special case, if one takes the

ExpandingB =B+ 5B, this is

four-fold to be a three-fold time3?, and then takes the K2
T-dual onT? as in Refs[24,25 to obtain a type II1B solution. f39,0B= ZGU&J» ®, (A3)
V. CONCLUSIONS which is integrable by Eq3.35:
We have verified the supersymmetry of the PS solution to 2
first order in the perturbation, and of its generalization to an oB=—— —G;0idjb. (A4)
arbitrary N=1 superpotential, and we have shown that this 12f5 9

condition together with the Bianchi identity determines the
solution. TheN=1 conditions may be a useful method to
find the exact solution, and so describe physics that is outsi
the approximation used in PS.

We have also found an interesting exact solution, which
includes the KS solution but not the PS solution—the three- f d?0F (D)W, We. (A5)
form flux in the latter case is not of the formyG s,
=iG3), and the dilaton is not constant. It would be useful to
find a generalization which includes both solutidaad also 2. Particular solution

the recent solutiorf31]), and so obtain a more universal |, Egs. (3.40 and (A4) we have given the solutions in

understanding of the supergravity duals of confining theoierms of the Green functiod— 2. Here we note that foZ
ries. The more general Becker-Becker solutig28—25 =R*r* and ¢ of the form

may be useful herélt is a further useful direction to incor-
porate these noncompact solutions as local regions in a com- 3 _

pactified spacéas in[4]), and so produce Randall-Sundrum qSIE fi(2") (AB)
type compactifications with large warp factors and four- =1
dimensional gravity.

The condition(A3) allows an arbitrary holomorphic piece
dI(:a(z) in 8B. This corresponds to an addition®k 1 interac-
tion

(which includes the mass terdmZz' as a special caseve
can give a closed form for each. Specifically,
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(and the same permuted for the other diagonal tgand
APPENDIX

. . 2RY . 93¢
1. Second order dilaton and axion (_;E:_GzlzZ_3 + 9107 (A8)
At second order in the expansion there is a nonconstant 3r z
dilaton and axion and a correction to the metric dhg,.
These have recently been obtained directly from the equ
tions of motion by Freedman and Minahf33], who also

considered the finite temperature case. Here we will simply

and permutations for the off-diagonal terms. For the second
%rder dilaton and axion, we obtain

2p4
verify that the supersymmetry equations determine the sec- SB=— KR (502893 + 7272 193¢
ond order(zero temperatujedilaton and axion. The second 1444‘Sr4 2’7 Pl
order dilatino variation involves only these second order cor- 5
- e 01D D K
rections, + PP ) +o IR, (A9)
i M * i MNP i 0
=Y Pueo =577 Gunper=0. (A1)

whereH is any holomorphic function.

Inserting the first order solution, this becomes 3. Comparison to PS

In this appendix we compare our solution to that of PS, in
particular to verify that the normalizable part arises as argued
“The relevance of these solutions to Randall-Sundrum compactin Sec. IllC. We focus on the solution with a single D5-
fication has recently been discussed in RE3g]. sphere. The PS solution was

026001-7
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G3)=*edw(z)tidwp)+dn), (A10)

where 7,y is the background field, while the,, terms are
from the brane source.
The potentials are

A 2rgw 2rgw
B A B/

a' o
WN=— ——F€;; W'dWJ/\de(—In——i-
(2) 4W3 ijk

!

a A
=T x“/\dxp( —WW ,In=+2(w+r
72) 2\/§mvv3 mnpd milg ( o)

XW2W,mK+§ Jrzwzyy,m/’iﬁE , (A11)
wherer o= m7a’'mN and
yi:ﬂ Wi:izi;?
V2 V2
A=y2+(W+rg)?, B=y2+(w—rp)? (A12)
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corresponding to the potentiaG(z)=dA 7))
1"i
A= 5€ kL. (A14)

For the 23 componenty gdw,=idw, and so the PS solu-
tion takes the form

Gi=d(n+2iw)13. (A15)
For the solution(A11) we find
) mNa’Z\/E i
(np+2i w)szTz €. (A16)

We should note the translation between Schwarz’s con-
ventions, used here, and the conventions in PS:

4k
PS_""F

_ S s K _.s
Fe=g Fer Cm=g%am- (A17)

This does indeed agree with the result in Sec. Ill. Con-

sider for example the compone@t,3, for which the earlier
result was

1
Giza=g iiZii®, (A13)

(The general normalization fcrr5(33) beyond linear order is
more complicated; also we have assumed for convenience
that =0.) Noting also thatZ=R* AB, the presen{A14)

and PS(A16) results agree fo=32(g/x)mZZz', which is
indeed the superpotential up to a numerical constant.
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