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and other fine-tuning problems

A. B. Kaganovich
Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
(Received 17 July 2000; published 29 December 2000

A field theory is developed based on the idea that the effective action of a yet unknown fundamental theory,
at an energy scale below the Planck mbks, has the form of expansion in two measurgs: [d*x[ DL,
++/=gL,], where the new measur® is defined using the antisymmetric tensor fi@aﬂ“x:a[aABya]dx“
AdxPAdx?/A\dx?. A shift L;—L,+const does not affect the equations of motion, whereas a similar shift
when implementing withL, causes a change which in standard GR would be equivalent to that of the
cosmological constarfCC) term. The next basic conjecture is that the Lagrangian densitiesdL, do not
depend oM ,,, . The new measure degrees of freedom result in the scalarfiel®//—g alone. A con-
straint appears that determingsin terms of matter fields. After the conformal transformation to the new
variables(Einstein framg, all equations of motion take the canonical GR form of the equations for gravity and
matter fields and, therefore, the models we study are free of the well-known defects that distinguish the
Brans-Dicke type theories from Einstein’'s GR. All novelty is revealed only in an unusual structure of the
effective potentials and interactions which turn over our intuitive ideas based on our experience in field theory.
For example, the greatér we admit inL,, the smaller magnitude of the effective inflaton poteritlétp) will
there be in the Einstein picture. Field theory models are suggested with explicitly broken global continuous
symmetry, which in the Einstein frame has the fo#in> ¢+ const. The symmetry restoration occurs@s
—o, A few models are presented where the effective potebtfal) is produced with the following shape: for
¢=—M,, U(¢) has the form typical for inflation model, e.¢)=\ ¢* with A\~10"4 for p=—M,, U(¢)
has mainly the exponential fortd ~e~2¢Mp with variablea; a= 14 for —Mp=¢=M,, which gives the
possibility for nucleosynthesis and large-scale structure formationaar@ for ¢=M,, which implies the
quintessence era. There is no need for any fine-tuning to prevent the appearance of the CC term or any other
terms that could violate the flatness d{¢) at p>M. A~10" s obtained without fine-tuning as well.
Quantized matter field models, including spontaneously broken gauge theories, can be incorporated without
altering the results mentioned above. Direct coupling of fermions to the inflaton resembles Wetterich’s model,
but there is a possibility to avoid any observable effect at the late universe. SSB does not raise any problems
with the CC in the late universe.
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I. INTRODUCTION (2) All known quintessence models are based on the
choice of some specific form for the potentldl¢). The
Recent high-redshift and cosmic microwave backgroundyeneral feature of the potentials needed to realize quintes-
data[1] suggests that a small effective cosmological constangence is thatt) (¢») must be flat enough, as is large enough,
gives a dominant contribution to the energy density of then order to provide conditions for the slow-roll approxima-
present universe. Among the attempts to describe this piGion However, it is not clear what happens with other pos-
ture, the idea to profit by the properties of a slow-rolling gipje terms in the potential, including quantum corrections
scalar field(quintessence modegl2—8] seems to be the most (see Kolda and Lyth[11]). In fact, the potential may, for

attractive and sgcce_ssful.NIT Ofli?rg; a\r%?]ppr?agh,_th_f frgs%gtance, contain terms that constitute a structure of polyno-
vacuum energy densigy,ac ev-has tobe imitated ials in ¢ (and ¢" In ¢), and they are not negligible asis

by the energy density of a slowly-rolling scalar field down its large, unless an extreme fine tuning is assumed for the mass

potential U(¢), which presumably approaches zero &s . . - )
“,e. However, all known quintessence models contain twoand self-couplings. For example, the restriction of the flat

fundamental problen_]s. o ness Sggoditior;s gn the quartic self-interactiogp? [11] is
(1) The cosmological constant probl€i®,10] remains in A<10 ] (Mp/¢)*. ]

the quintessence models as well. Particle physics and cos- I this paper, | present a field theory model that resolves

mology must give a distinct mechanism that enforces théhe above _f|ne tuning problems and besides that_, this model

effective cosmological constant to decay from an extremelys able to give a broad range of tools for constructive answers

large value in the very early universe to an extremely smalfor & few more important questions.

present value without a fine-tuning of parameters and initial (3) In the framework of a model where the potential

conditions. U(¢) of the exponential or inverse power Ider their com-
binationg8]) form plays the role of a quintessential potential
as ¢ is large enough, the question arises as to what is the

*Email address: alexk@bgumail.bgu.ac.il cosmological role ofJ(¢) as¢ is close to zero or negative?
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If some other scalar field is responsible for an inflation of the (5) Since the mass of excitations of tkfefield has to be
early universe, then a field theory has to explain why theextremely small in the present-day universeng&sH,
potential U(¢) of the scalar fieldy is negligible as¢ is  ~10 33 eV), possible direct couplings @b to the standard
close to zero or negative. However, if the same quintessenaaatter fields should give rise to very long-range forces which
field ¢ also plays the role of the inflatdi2,13 (in the early  do not obey the equivalence princigled]. To prevent such
universg, then a field theory again has to explditd] an  undesirable effects, the very strong upper limits on the cou-
origin of the relevant effective potential. Of course, this is apling constants of the quintessence field to the standard mat-
nontrivial problem. For example, Peebles and Vilenkil] ter fields have to be accepted without any known reason. An
have presented an interesting model of a single scalar fieldttempt to construct a model where an unbroken symmetry
that drives the inflation of the early universe and ends up asould support zero mass éf excitationg20] inevitably runs

quintessence. They adopt the monotonic potential against the necessity to start from a trivial potenfibd];
without knowledge of a mechanism for the breaking of this
U(d)=Am[1+(p/m)*] for ¢<O, symmetry, such small coupling constants may be introduced
into a theory only by hand.
Am? It will be shown in this paper that one can answer all the
=———  for ¢=0, (1) above questions in the framework of the field theory model
1+(p/m)” based on the hypothesis that the effective action of the fun-

damental theory at the energy scales below the Planck mass
wherea=const>0 (for example, 4 or Band the parameters can be represented in a general form including two measures
A=10* and m=8x10°> GeV were adjusted if13] to  and, respectively, two Lagrangian densities
achieve a satisfactory agreement with the main observational
constraints. It is well knowrj15] that such an extremely _ 4
small value of\ is dictated in thex ¢* theory of the chaotic S_J [Ly+=gLold.
inflation scenario by the necessity to obtain a density pertur-
bation p/p~ 1075 in the observable part of the universe. In ~ Here, =g is the standard measure of integration in the
other words, the potential of this quintessential inflationaction principle of both Einstein’s general relativitGR)
model includes both the fine tuning required by the inflationand other gravitational theories making use of general coor-
of the early universe and the fine-tuning dictated by the quindinate invariance. The measuteis defined using the anti-
tessence model of the late universe. As it is pointed out irsymmetric tensor field\,,, ,
Ref. [13], it seems also to be an unnatural feature of this
model that a small masa=8x 10° GeV<M, must appear

n th_e potent|_al of the inflaton fiele mteractlng only with and Eq.(3) is also invariant under general coordinate trans-
gravity. And finally, one should apparently believe that SUChforma’[ions. Notice that the measude is a total derivative

a quintessential inflation potential must be generated b%md therefore. a shift.-— L.+ const does not affect the
some field theory without fine tuning. These problems are, "’ ' 1ol

typical for the quintessential inflation type mod@l,13 equations of motion, whereas a similar shift when imple-
(4) It is well known that the coincidence probldihé] can mentingL, causes a change which, in standard GR, would

be avoided in the framework of the quintessence models thattlte equivalent o that of the cosmological constant term. The

. . -~/ hext basic conjecture is that the Lagrangian densitieand
wi?ﬁiisceoﬁfsgracker potentidl8]. The exponential potential L, do not depend or,,, . In this paper, | refer to this

theory as the two measures the@iMT).
The main features of TMT have been studied in series of
paperg21-26.

()

PdX= 9, AgyadXA\dXPADXY/\dX?, (4

U(¢)=Uge 2#Mp, (2)

is a special example of a tracker soluti@}. In spacially flat
models with such potential, the ratio of the scalar fieid
energy density to the total matter energy density rapidly ap- Let us consider a simple model with the scalar figld
proaches a constant value determinedabgnd the matter

equation of stat¢2,3,7] (see also Refl17], where a similar S_f s

Il. SOME GENERAL FEATURES OF TMT

result was achieved in the context of Kaluza-Klein-Casimir
cosmology. However the strong constraint da, dictated

by cosmological nucleosynthesi)(,<0.2) [6,7,18 prede-

termines theg fraction to remain agsubdominant one in the * \/__gVZ(d’)}'
future that apparently contradicts the observable accelerated

expansion. A possible resolution of this problem proposed by The case wher&/,(¢)=const was studied in Ref24],
Wetterich[6] consists of the idea thatin Eq. (2) might be¢ and the general case was studied by Guendelman in Ref.
dependent. In that case, it would again be very attractive t625]. TMT gives desirable results if we proceed in the first
develop a field theory model where the exponential potentialprder formalism(metric g,,, and connectiod’§, are inde-

Eq. (2), with an appropriates-dependeng, is generated in a pendent variables, as well as the antisymmetric tensor field
natural way. A, andR(I',9)=g*"R,,(T), R,.(I") =R}, ('), and

nra

1 1
o] - IRT9)+ 300 ., Va(9)

®
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A a
(M= FMV o R

aoc” uv

(6)

At this stage no specific forms fov,(¢) and V,(¢) are
assumed.

Variation of the action with respect #,,,, results in the
equanne“”“BaﬁLl—O which means that

ILW —(veo0).

1 1
Li= = RI.0)+ 50" .6, ~Va(¢) =sM'=const,
@)

wheresM* is an integration constans==*1, andM is a
constant of the dimension of mass.
Variation with respect t@*” leads to

1
__RMV(F)+E¢v#¢vV_ 2_V2(¢)g,u1):01 (8)
where the scalar fielg is defined by
2 9
X=7=
v—g

The consistency condition of Eqé7) and (8) takes the
form of the constraint

Vi(p)+sM*—

2V,(¢)
s (10

We have definedy and ® to be of the same sign. To
avoid problems which could appear if the measdrebe-
comes singular® =0), in what follows, we must care about
such choices oW, V,, andsM#* that the constraint10)
provides fory to be positive definite. Thetb will be posi-
tive definite as well. If for exampley,(¢) is positive defi-
nite, thenV,(¢) +sM* must be non-negative.

Solution of equations obtained by variation of the action

with respect tol'y’ can be represente@ee[22-24) as a
sum of Christoffel’s connection coefﬁcien{tgv} of the met-

ric g,,, and a non-Riemannian part which is a linear com-

bination ofo, , whereo=In .

The scalar fieldp equation is

dv; 1dV,

(=9 Y%0,(V=99"0,9) 0¥+ G5 =~ G =

11

In the conformal frame defined by the conformal transfor-

mation

gMV(X)Hg;LV(X):Xg,uV(X)’ (ﬁ‘}(ﬁ! A,U,V)\HA/.LV)\’

12

the non-Riemannian contribution into the connection disap-

pearsT,,—T% ,={* } (here,{% } are Christoffel's connec-
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After making use of the solution foy as it follows from the
constraint, Eq(10), the gravitational equation@) and the
scalar field equatiofiLl) in the new conformal frame obtain
the standard form of the Einstein’s GR equations for the
self-consistent system of gravitply) and scalar fieldo
with the TMT effective potentialfor details, se¢24—26|)

v sMH V() (13

1 1
V2(¢>) V(&)

U(g)=

Notice that justU(¢) plays the role of the true potential
that governs the dynamics of the scalar figldwhile V()
andV,(¢) have no sense of the potential energy densities
themselves, but rather, they generate the potential energy
density. This is why we will use the terprepotentialsfor
V1(¢) andV,(¢). Notice that our choice of the sign in front
of the prepotentiaV,(¢) is opposite to the usual one that
would be in the case of the standard GR. Doing this is just
for convenience in what follows.

In order to provide a disappearance of the cosmological
constant, one usually demands that the effective potential be
equal to zero at the minimum, i.e., it is necessary that the
effective potential and its first derivative are equal to zero at
the same point. As a matter of fact, this is the essence of the
cosmological constant problem treated in the old sense, when
there was no need for an explanation of a small but nonzero
cosmological constant. If we want to avoid the necessity to
fulfill this fine tuning, TMT gives us such an opportunity
has been explored in Ref®24—26)). In fact, independently
of the shape of the nontrivial prepotenti&{(#), an infinite
number of initial conditions exists for whict; +sM*=0 at
some valuegp= ¢q. If Vi(4) andV,(¢) are regular atp
= ¢, andV;(¢o) #0 andV,(¢) are positive definite, then
¢= ¢ is the absolute minimum obl(¢4) with the value
U(¢o)=0. We will refer to such a situation ake first class
scenario

In the present paper we will study the models with such a
prepotentialV, that there will be an infinite number of initial
conditions for whichV; + sM*#0 at any value o5 (we will
refer to such a situation dke second class scenayiarhen
the stable vacuum may, for instance, be realized asymptoti-
cally as¢p— o0, which is actually the idea used in the quin-
tessence models.

The assumption that,(¢) is positive definite will be our
choice in what follows.

Ill. EXTREMELY BROAD CLASS OF TMT MODELS DO
NOT REQUIRE FINE-TUNING TO PROVIDE
QUINTESSENCE

A. General idea: The inverse power low quintessential
potential as a simple example

In contrast to standard gravitational theories where the

tion coefficients of the Riemannian space-time with the metquintessential potential must be a slowly decreasing function

ric gw) TensorsRMW(F) andR,,(T') transform into the
R|emananW(gaﬁ) and Ricci RW(g(’,B) tensors, respec-

tively, in the Riemannian space-time with the metgi,’gv.

as ¢—, in TMT we have an absolutely new option: the
quintessential behavior of the TMT effective potentiHl¢)
for large enoughp may be achieved with increasing prepo-
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tentialsV,(¢) andV,(¢). This circumstance enables us to  a. The caser= 8. This case corresponds to a sort of the
avoid both the cosmological constant problem and the probscale invariant theory studied by Guendelnjas]. In fact,
lem of the flatness of the quintessential potential. in this case the theory, Ed5), is invariant under global
For illustration of these statements, let us notice that starttransformations

ing from the positive power low prepotentialg andV, , ,
_ _ g,uv_>e g,uvr A;w)\—>e A,uv)u (18)
V= m(l4 nl)d’nl, V= 4; m(24 2n2)¢)2n2, (14)

whereas the scalar fieldd undergoes the shift
with n,>n;, we obtain the TMT effective potential, which

i M
for large enoughp, has the inverse power low form b Fpe' (19
m2(47n1) 1
U~ — (15) In such a model, the TMT effective potential has the form
m;(zfnz) d,z(”z*”i)
8 4 2
. . 1 Si( M —BIM
and does not depend on the integration constant. Another U(¢)=E 1+3 m;) © P (20)
2

interesting case i¥,=0 (remind that adding a constant to
V, is equivalent just to a redefinition of the integration con-
stant sM%) and, for example,V,=\¢* Then U(¢)
=M?8/\ ¢*.

Although there exists a possibility for generation of a
negative power low potential in the models with dynamical
supersymmetry breakingee, for examplg29]), such poten- . . _ ; i .
tial still looks to be exotic in the context of the standard field'nﬂ.at'onarv scenario m|g_h_t be realized assuming that the
theory. As we see in TMT, such quintessential forms of thelniverse starts at a sufficiently large value 6f Another

effective potential are obtained very easily and in a naturapcenario discussed by Guendelman in fRe8] is based on a

way. possibility form?/m‘z1 to be very small. This approach has the
Besides, adding any subleadifas ¢— =) terms to Egs. aim to construct a scenario for the very late universe. In this
(14) does not alter the above results since their relative conS¢enario, there could be a long lived stage with almost con-
tributions toU(¢) will be suppressed as is large enough. Stant energy densityn;/m, that will eventually disappear
In particular, adding the teriv{®fy—gd*x, V{¥=const when the universe achieves its true vacuum state with zero
which in GR would have the sense of the cosmological conf0Smological constants. This occurs when the expression in
stant term, does not affett(¢) asé is large enough. Thus, Parenthesis in Ec(20) becomes zero and, therefore, no fine-
starting from the polynomial form of the prepotentiatg  (UNing is needed. It tums odsee Refs[25,26) that in the
andV, with an appropriate choice of the powers andn, presence of a matter, which is introduced in a way respecting
of the leading terms, one can in fact provide a generation of€ 9lobal symmetry Eqg18),(19), the change of the con-
the inverse power low quintessential potential in such a waytraint(10) leads to a correlation betwee#(4) (close but
that neither the cosmological constant problem nor the th&0t equal to zerpand the matter energy density.

problem of the flatness of the quintessential potential appears N the casex= g, the TMT effective potential, E¢(20),
at all is not a constant due to the appearance of a nonzero integra-

tion constaniM, that is actually due to a spontaneous break-

ing of the global continuous symmetry, E@$8),(19). Guen-

delman noticed25] that in terms of the dynamical variables
A simple way to realize an exponential asymptotic formused in the Einstein frame, that &5, and ¢, the symmetry

of the TMT effective potential (¢), Eq. (13), is to define  transformations, Eqs(18),(19), are reduced to shift§19)

and the observation th&t(¢) has an infinite flat region as
¢$— and approaches a nonzero consmﬁutm‘z‘, has been
used in Ref.[25] for discussion of possible cosmological
applications with the choics; /s=—1. The first possibility
is related to the very early universe: a slow rollifgew

B. The exponential form of the TMT effective potential U (¢)

the prepotentialy/; andV, as follows: alone [g;w is invariant under transformations, Egs.
My 4 284M (18),(19)]. Thus in terms of the dynamical variables of the
Vi=sim;e®® e, V=7 mye P. (16)  Einstein frame, the spontaneous symmetry breaking is just

that of the global continuous symmetgy— ¢—(M,/B) 6.
Heres;==*1 and we assume that and 8 are positive It is important that, as it was mentioned in RE25], this
constants. The restrictions formulated after Ekf) have to  global continuous symmetry is restored ¢s».
be taken into account. The effective TMT potential corre- b. The casgd>a>0. This is the most interesting case

sponding to the prepotentia{$6) from the viewpoint of the quintessence. F8»>M,, the
TMT effective potential, Eq(17), behaves as a decaying
1 exponent:
U=E(slm‘l‘e*("f*”‘)‘/’”‘"p+sM"’e*W’”‘"p)2 (17)
2 8
Uzﬂze‘z(ﬁ‘“)‘b"‘"p as Bop>M,. (21)
contains two particular cases of special interest. m;
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If we want to achieve the quintessential form of the TMT would want to achieve a nontrivial, quintessential potential
effective potential(21) for not too large a value ofh and (passed also across a fine-tuning purgat@y a result of
with not too big a difference in the orders i, andM (this  some mechanism for symmetry breaking. Such a picture
point will be explained in the next sectiprihen we need the |ooks even more problematic than the fine-tuning problem
condition itself. In addition, in the framework of such a general idea

about a breaking of the symmetg#y/— ¢+ const, it is impos-
0<p-a<p. (22 sible to point out the parameters of the theory which could
produce, after a symmetry breaking, the small coupling con-
tantsf; .
In contrast to GR, in TMT one can suppose that in a yet
éj_nknown more fundamental theory, the global continuous
symmetry, Eqs(18),(19) is an exact one, and that= 3. At

And of course, the most evident argument in favor of this
condition consists in the demand to provide the flatness of
the ¢ potential at the latep-dominated universe, where it
has to imitate the present cosmological constant. This is po

sible only if 8—« is less than or of order one, while there ) ) )
are no reasons fo8 not to be large in general energies below the Plank mass, the symmetry is breaking

Comparing this condition for and 8 with that of the and it is assumed that the effective action describing the

model of Ref[25] discussed just above, one can observe thafelévant physics has the form of TMT, E) (inclusion of

the model under consideration can be interpreted as that witiie usual matter will be studied in Sec.)Vivith the non-

a small explicit violation of the global symmetry, Eq. trivial prepotentials, Eq(16). The only thing we need from a
(18),(19). Notice that the expression fa#($) as Sp>M, mechanism for symmetry breaking consists of a small rela-
does not include the integration constahaind the exponent tive shift of the magnitudes of and 8 satisfying the condi-

is proportional to3—a. This reflects the fact that such tion (22). If the symmetry breaking generates couplings of
asymptotic behavior of) (¢) results from the explicit viola- the scalar fields to the usual matter fields, then the corre-

tion of the global continuous symmetry, E¢48),(19). sponding dimensionless coupling constarfts must be
It is very interesting that although the discussgidbal  proportionat to some positive power ofd— a)/8.
continuous symmetrl18),(19) is broken in this model ex- Notice that an unbounded increase of the prepotentials as

plicitly, the equations of motion show that the symmesy ¢—o does not produce problems, at least on the classical
also restored asp— <, just as in the case= 3 with only  level, since as was already mentioned in Sec. Il, the prepo-
spontaneous symmetry breaking. Therefore, in terms of théentials have no sense of a potential energy density. The real
dynamical variables used in the Einstein frame, thagfs, ~ potential is the TMT effective potential, E(L3), that in the
and ¢, in the model where the conditiof22) holds, the model under consideration, approaches zero according to Eq.
approximate global symmetp— ¢—(M,/B) 0 is restored  (21) as p—<. o _
as¢p— . An evident generalization of the prepotentidls) that
This observation opens an unexpected chance to solve ttigaintains the behavior d§(¢) asg¢>M,, Eq.(21), con-
problem discussed by Carr¢ll9] (problem five in the list of ~ Sists of adding to them the terms with a lower degree of
problems in the Introductionwhich consists of the follow- growth. They may be, for example, polynomialsgras was
ing. There are no reasons to ignore a possibility that théhe case in the previous subseclioRelative contributions
scalar fieldg interacts directly with usual matter fields. Sup- of all adding terms into the TMT effective potentiall(¢)
pose that such interactions have the form of the coupijng Will be exponentially suppressed for large If these addi-
-(¢/m)L;, where£; is any gauge invariant dimension-four tional terms appear as a result of breaking of the symmetry,
operator,m is a mass scale, anid is a dimensionless cou- Eds.(18),(19) (remind thata= g in the case of the exact
pling constant. The flatness of the quintessential potential ofymmetry, then coefficients in front of them have to be pro-
the field » means that excitations @ are almost massless. portional to some positive power of the small paramefer (
Therefore, in the presence of direct interactions ofdtfield ~ —«)/B. The latter will be used in the next section. For the
to the usual matter fields, one has to expect the appearance$#me reasons as it was before, the symmérg),(19) is
the very long-range forces which do not obey the equivarestored agp— .
lence principle. Observational restrictions on such fifth Simple reasoning adduced here, as well as in the previous
forces impose small upper limits on the coupling constant$ubsection, does not look like a trivial one if we recall that in
fi. GR, adding any constant and/or increasing ¢— =) term
To explain the smallness 6f's, Carroll proposed that the t0 the potential destined to be a quintessential one causes a
theory possesses an approximate global continuous symme@tastic violation of its desirable features; an arbitrary cosmo-
try of the form ¢— ¢+ const (the idea similar to what is logical constant appears and/or the flatness conditions are
used in pseudo-Goldstone boson models of quintesg&ice destroyed if no extreme fine-tunings are made. The basis for
where, however, an explicit breaking of the continuous chiral
symmetry reduces it to a discrete symmgtiy the frame-
work of Einstein’s GR, such exact continuous symmetry is INotice that the exponents in the prepotentials, @6), actually
incompatible with a nontrivial potential of the scalar fiedd  contain the dimensional factoesM, * and M, *. Therefore, the
This means that if we were working in Einstein’s GR, anddimensionless parameter that could characterize the symmetry
then started from the model with the exact symmeffy breaking has to be of the formIBMgl—aMgl)/'BMglz(ﬂ
—¢+const and therefore with a constant potential, we—«)/g.
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the resolution of these problems in TMT consists in a possistandard theory in order to achieve the standard matter field
bility to achieve a quintessence form of the effective potentheory in a backgroundpseudo-Riemannianspace-time.
tial as ¢ is large enough, starting from prepotentials increasThis appears to be possible to do, after the so-called TMT
ing as¢—c. As a matter of fact, this is the main advantagegravitational background is defined in Sec. V. Then the mat-
of the studied TMT models over the quintessence modelser fields quantization in the TMT gravitational background
formulated in the framework of the standard GR. reduces to the standard procedure of the matter fields quan-
In conclusion, it is worthwhile to notice for the following tjzation in curved space-timg27,28. Fortunately, it turns
discussion that in all cases considered in this secor,as oyt that the choice of the initial cosmological conditions and
the solution of the constraitil.0) asymptotically approaches prepotentials needed to provide such successful construction

Zero as¢p—=. of the matter field theory in the context of TMT, corresponds
to the class of models where the TMT effective potential
IV. PROBE MODELS: TOWARDS EFFECTIVE TMT allows to solve all five problems mentioned in Introduction.
POTENTIAL OF THE QUINTESSENTIAL
INFLATION TYPE B. Models based on the hypothesis that the theory possesses

A. Some clarifications to the rest of the paper the explicitly broken global symmetry

The prepotentials of the forr(il6) with additional (sub-
eading asp— ) terms provide the possibility to generate
he TMT effective potential (¢) with an asymptotic quin-
essence behavior that mimics the current effective cosmo-
logical constant. For this to be done there is no need for any
sort of fine-tuning, and the satisfactory condition for this is

<B—a<pin Eq. (16). If, however, one wants to extend

e range of applicability of the TMT effective potential of
5he same single scalar fiel@l to satisfy constraints of the

provide an adequate description of the cosmological evolu[eaIiStiC cosmology .from inflation of the early un_iverse up to_
the present-day universe, then we have too big of an arbi-

tion from slightly after Planck time up to now and answer all |~ . . o
demands of the realistic cosmology. But | do want to exhibitrarness in the choice of the additional terms to Eif). |

) . restrict myself by models based on the idea that the action,
the fact that the field theory models based on T™MT prow_d{ﬁzq. (5), is the effective one of a more fundamental theory at

belief that such a potential can be generated without finet—he energy scales below the Planck mass. It seems, then, to

; ; s ; ; be natural to suppose that transition from the fundamental
tuning. More precisely, in this section | am going to demon- . ) , .
g P y going ; Hweory to the effective one is accompanied by the breaking of

some fundamental symmetries. | will assume that one of
such symmetries is the global one, E¢8),(19).2 Such an
approach to the choice of prepotentials enables us to narrow
Pwe amount of suitable versions. In particular, for models
eading to the asymptoti¢as ¢— ) inverse power low

The previous sections served a preparatory role in th
formulation and solution of the main problems of this paper.
In Sec. lll, our attention was concentrated on the possibilitie%
of TMT to generate without fine-tuning the scalar fiefd
potential which, for large enougf provides a quintessence.
It turns out, however, that some of such TMT effective po-
tentials can also be well defined as driving the early univers
evolution. In this paper, | do not aim to look for a precise
value for all parameters of the potential that could be able t

make one sure that TMT is able to gener@téhout any sort

of fine-tuning the effective potential of such a form that

could answer basic demands of the realistic cosmology.
Such a qualitative examination is enough for the purpose

of this paper, which consists mainly in studying of some . ) ) /
basic field-theoretic problems of TMT that turn out to be in TMT effectlve potentialgdiscussed in Sec. Il A one can-
pot point out a range where the symmet{®g),(19) is re-

very close interrelation with some fundamental features o d. This is why | bliged . If d
the cosmological scenario. The essence of the matter is theﬁt,ore - This s why | am obliged to restrict myself to study-

generally speaking, the price for the success of TMT in thd"9 mo?elf of tzel typﬁ d|s;:kl]Jssed ollr: Sec. ;”E Iznd’ more
resolution of the cosmological constant problem is seriou?reg'sle y, 1o m'cIJI fes Wletreth € con ('j'clm Eﬁ ) (t)h S- difi
enough. In fact, in order to incorporate the matter fields into elow we will formulate three models wnere the modifi-

the simplifying picture reviewed in Sec. Il in such a way thatcati(.)nS of the prepotentials, E.mﬁ)’ will pe realized by
the TMT effective equations of motion of all fields in the adding the simplest terms explicitly breaking the symmetry

Einstein frame would have the form of the equations of mo—(18)'(19)' The Planck m_aSMP_'S chosen as the typlca_l scale
tion of the standard field theory based on GRRef. [24]), flor.parameters of the dimension of mass corresponding to the
we were forced to start from the very nonlingarthe matter IMit where the global symmetr§i8),(19) is unbroken. Then
fields) original TMT action. This circumstance together with (€ appearance of the mass parameters smalleMhais a
the non-Riemannian nature of the original action makes thénanlfest.atlon of a symmetry breaking by the appropriate
quantization of TMT practically an inaccessible problem!®™Ms since those parameters can be represented/as
even on a semiclassical level. Moreover, it was unclear how ®)/8)"Mp, n>0. In the framework of such an approach,
one can approach a question of matter fields quantization igne can maintain that the model is free of ﬂne-tgnmg if or-
the background curved space-time. We will see below that'®'s of all such mass parameters are not too different from
for the second-class cosmological scenafgee the end of

Sec. I, with an appropriate choice of the prepotentials, it is

enough to start from the original TMT action with exactly 20f course, without knowledge of the fundamental theory, one
the same degree of nonlinearity in matter fields as in the&annot discuss a mechanism for the symmetry breaking.
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M, [in this connection, see also discussions after Eqs.le*ZMp, B=7, anda=6, and with the integration con-

(21),(22), and footnote 1

1. Model 1
Vi(d)=mie ™o, Vy(¢)= § (4VE)+mie?b¢My).
(23

With the choice of the parametem,=M,, 4V(20)
=(103Mp)*, m;=102M,, =7, anda=6, and with the
integration constanM*=(3qx 10 *M,)*%, 0<g=<1 (s=
+1), the TMT effective potential(¢), Eqg. (13), is a

monotonically decreasing function with a shape that is con-
venient to describe in a piecewise form with the following

four typical regions:

U(p)~a®Mj for ¢p<—2.2M,,
M aam<geLav
1 0z, O T2 AMp=d=m 1My,

~10 2Mge Mo for —1.8M,<¢$<0.6M,,

~10 **Mpe 24Mp for ¢>1.2M,. (24)
2. Model 2
Vi(¢)= 7 uig?+mier?Mr,
Va( )= 7 (4VY)+myes¢/Me). (25
With the choice of the parametems,=M,, 4V(2°)

=(3Mp)* u=10"*M,, m;=103M,, B=7, anda=6
and with the integration constaM*=(1/{/310 2M )%, (s
=+1), the TMT effective potential(¢), Eq. (13), is a

stant M*=(1/1/310 2M )%, (s=+1), the TMT effective
potential, Eq.(13), is a monotonically decreasing function
with a shape that one can describe in a piecewise form with
the following three typical regions:

U~3im?¢? m=10 °M, for ¢<—0.7M,,
1 ¢ 212
~10" 164 1071+ 2| =
10 1M 107+ 5 Mp”

Xe MMy for —0.6<¢p<1.5M,,

~10 #*Mie 2™ for ¢>1.7M,, (28)

where in the interval—0.6M ,<¢$<1.5M,, the factor in
front of the exponential function varies very slowly.

C. Some general features of the models-13

As it was already noted, the exact fitting of all parameters
to satisfy the requirements of the realistic cosmology is over
and above the plan of this paper. Our aim here is, rather, a
demonstration of the extremely broad spectrum of tools
given by TMT to solve some fundamental problems of the
realistic cosmology.

(1) In each of the models 1-3 with the acti®h), the
global continuous symmeti(1.8),(19) is violated by all terms
of V,; andV, except for the last term of ,. The symmetry is
restored at the limith— . All mass parameteréncluding

monotonically decreasing function with a shape that one camass parameters corresponding/Aoterms in each of the
describe in a piecewise form with the following three typical modelg have orders equal or slightly less than the Planck

regions:
~ilNg? AN=10"" for ¢<—3M,,
1 ¢ 212
~10-1604 1012 2
10" "My 10 +2 MpH

Xe MMy for 0<p<1.IM,,
~6X10 BMge 2Ms for ¢>1.4M,, (26)

where in the interval & ¢<1.1M, the factor in front of the
exponential function varies very slowly.

3. Model 3
Vi($)= 3 uid?+mieMr,
Va( @)= 5 (4VE)+ 3 uig?+mze?f¥Me). (27)

0
AR
m1=1073|\/|p, M2

With the choice of the parametem,=M
=(107'Mp)*,  wy=107"M,,

mass [but not less than the grand unified theai@UT)
scald.

(2) One can see that the TMT effective potentiHl¢) of
each of the models 1-3 has a region that can be responsible
for an inflation of the early universe. Let us refer to this
region ofU(¢) as the inflationary region df.

In model 1, the inflationary region df) is the infinite
interval —o<¢$<—1.8M, with a practically constant value
U(¢)~q8Mg that smoothly passes on a slowly decreasing
region. Such an inflationary region ofmight be responsible
for an initial stage of a new inflationary scenafR0].

In models 2 and 3, the inflationary regionsldthave the

form of the power low potentialsix ¢* and3m?¢?, respec-
tively) driving the chaotic inflatior{15]. Parameters of the
prepotentials are chosen in such a way that the inflationary
region ofU satisfies the requirements of the realistic cosmol-
ogy. It is very important to stress that this can be done with-
out strong tuning of the parameters, in contrast with the GR
approach to the chaotic inflation models, where the strong
enough tuning is needed. The choice®fand o does not
practically affect the inflationary region &f(¢).
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(3) The TMT effective potentialU(¢) of each of the symmetry breaking, should not be large in order to provide

models 1-3 behaves as the flatness of the TMT effective potential in the quintessen-
tial region.
1 o (6) It turns out that in models 2 and 3, the shapédJgtp)
U(¢)~ i® 270N as ¢>¢p=wMy, (29 in the buffer range between the inflationary and intermediate

p regions can be very sensitive to variations of the parameters
entering intoV, andV,. By means of a suitable change of
the parameters one can achiéwgthout altering the qualita-
as the quintessential region since it can serve for the quinlt-'ve properties of the d|spussgd above regipfr instance
essential model of the present universe. | should make ad" a!most flat shgpe dd in this l:_)uffer range or even suc-
important remark here. The quintessential regionJohas cessive local minimum and maximum immediately after the
the form (29) where the value of 8— a)/8<1 determines inflationary region. This feature of the models may be very

the strenath of the svmmetrv breakina. The choice8efa important |f for example_, one wants to realize a scenario
-1 and,Bg=7 in mod()alls 1—3};1asjust e?n iIIustrativeqzim andyvhere the instant preheatif§l] occurs before entry into the

. . : intermediate region.
it is not a problem to adjust the value Bf- « to satisfy the X . .
observable value of) , at present. The final remarks concern the terminology. Since the sca-

(4) Between the inflationary and quintessential regionsIar field , in the context (.)f models .1_3.’ dominates both the
there exists an intermediate region of great interest. Th(¥ery early and the late universe, acting in such a way that the

TMT effective potentiald (¢) in the intermediate region can #g;ge;;’ﬁo%ﬁan?hse\’\{['é?n?i%%il)erat'g n, Fl)eetelésl’ecsalgr': dth\?”'gﬂ%t:n
be represented in the general form 9 9y by

[13].

8

where the constant factes of order one is very sensitive to
the choice of parameters. Let us refer to this regiot 6)

U(¢)=Tf($)Me 2P, (30
V. GRAVITATIONAL BACKGROUND AND INFLATON

wheref(¢) is a very slowly varying function compared to FIELD ¢
the exponential factor. There is a remarkable property of the , ,
intermediate region of) that provides possibilities for reso- _ 1 he complicated structure of TMT revealed in Rl -
lution of some of the fundamental problems of the realistic24] tUrns a quantization procedure into a very serious issue.
cosmology: by an appropriate choice®f one can achieve a This concerns the problem of a quantlzgnon of all TMT de_—
very rapid decreasing df/(#) after an inflationary epoch grees of freedom. But even thg r_natter fields quantization in
that provides conditions for transition to the radiation and] M1 Seéms to be a very nontrivial problem. Some reasons
matter dominated era. For instance, in model 3, the TMTOr this were discussed briefly in Sec. IV A.
effective potentialU(¢) at the end of the intermediate re- Let us Co_”s'def here the simple mpdel of Sec. Il, where
gion (¢~1.5M,) is roughly 168 times less than at the be- the s<_:alar fieldg is the only matter field. Thg system of
ginning of the intermediate regiongt=—0.6Mp). This equations of the stan_dard GR f_orm for_ gravity and scalar
property of the intermediate region bf may be very useful field ¢ Wlth the potential Eq(13)_ in the Einstein frame has
in the resolution of problems of cosmological nucleosynthe-bee,n obtained for the selfconsistent TMT problem, &j.
sis constraints and large-scale structure formaen,18,9. At first glance, one can follow a standard procedure when
The exact shape of the intermediate regiorlofsteepness 19n0ring the reactlon of the quaptum field fluctuatlons on the
and the range of definitiordictated by the realistic cosmol- 9ravity, regarding the scalar field equation as one in the

ogy can be adjusted by the choice of the magnitudes, ¢, gravitational background that consists of the megi;gy
and the dimensional parametéfike M, u;, etc). treated as an external fielor a short time, | will refer to

(5) Combining the intermediate and quintessential re_t.his as the _formal gravitational backgroyndhen the scalar
gions, one can see that the post-inflation region of the TMTi€ld quantization in such a background would be a well
effective potential can be represented approximately in th&tudied problem.

exponential form described by E€@) with ¢-dependent pa- To_ _elucidate the_sit_uation, it is useful to look at a possible
rametera (see Ref[6]) definition of a gravitational background in TMT before con-
formal transformations(12), i.e., in the original frame.
a=a(¢$)=28 as <oy, Namely, let us try to define a gravitational background in the
same simple model of TMT starting from the original action,
=2(B—a) as ¢>doy, (31  Eq.(5. We are dealing now with two measures; defined

by Eq. (4), and V—g. Besides, TMT is formulated in the
where ¢, [see Eq.(29)] is a boundary value o between first-order formalism. Therefore, to determitlee gravita-
the intermediate and quintessential regions Wf¢®). It  tional background in the original frameve have to fix the
seems to be very attractive for this result to be obtained in anetricg,,,, the measure, by means of the antisymmetric
natural way in the framework of the field theory model with- tensor fieldA ,,, and the connection. All geometrical objects
out any assumptions specially intended for this. The onlythat constitute the physically admissible gravitational back-
things that have been assumed is that the model possesggsund have to be self-consistent as the geometrical sector of
the approximate global continuous symmetry, EG8),(19), the complete self-consistent gravity matter system. This
and the value of3— a<, depending on a strength of the means that the solution mentioned in Sec. Il for connection
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Iy, in terms ofg,, ando ,=(Iny) , has to hold® Hence, 2B—a 8
. . . . ) formodel 1, O<f(¢)< =—
the gravitational background in the original frame is defined M, M
by two fields: the metrig,,, and the scalar fielgy. We will
refer to this asthe TMT gravitational backgroundh the 8 2(B—3) 2(B+1) 16
original frame. The fact that the scalar fiejd has to be for model 2, ©—=—r—<f(¢)<—p— =1
: S " p P P
regarded as a fixed external field is the origin of problems
with the construction of the TMT gravitational background. )
Let us discuss the reasons for this. formodel 3, O<f(¢)<—.
The constraint, Eq(10), does not include the Newton P
constant or some other very small constant and, therefore, in' These numerical results mean that the influence of small
contrast to GR, it describes the very strong correlation bey fluctuations ony fields has a typical scalép/M . Thus
tween the scalar field (inflaton field and y (geometrical we conclude that for the models of Sec. IVB, the TMT
objecd. So, in the self-consistent problem, small local spacegravitational background is the well-defined object. Notice
time fluctuationsd¢(x) of the ¢ field generate fluctuations that in the variables of the Einstein frame, the TMT gravita-
dx(x) of the x field which, in general, should not be negli- tional background is described by external fiegs and x.
gible; that is, condition

VI. INCLUSION OF USUAL MATTER FIELDS
A. Outline of the approach to the problem

~ <1 (32 Inclusion of the ordinary matter field§ke vector bosons,

X fermions, etg.in TMT is a very nontrivial problem. In the
framework of the first class cosmological scenarios, it was
shown in Ref[24] that the field theory model exists where,

is not always true. In such a case, tpdield could not be in the conformal Einstein frame, the classical equations of
regarded as the background object and, therefore, it is imposgnotion of the gauge unified theories as well as the GR equa-
sible to determine the TMT gravitational background ap-tions are exactly reproduced. The merit of this model is that
proximation. the spontaneous symmetry break{&sB does not generate
One can single out a broad class of situations when théhe cosmological constant term. However, a serious defect of
TMT gravitational background approximation has no sensethis model consists in the necessity to use the artificial form
In the linear approximation in small fluctuation®p, the of how the gauge field kinetic terms and fermion self-
constraint, Eq(10), results in interactions enter into the original action. This creates a situ-
ation where it is absolutely unclear as to how one can ap-
proach the matter fields quantization.
Sx V! v/ The origin of the_: problem is pr_acti_cally re_o!uce_d to the
— =f(¢)5¢, where f(d,)E_z_—l_ (33)  role of the constraint, Eq(10), which is modified in the
X Vo v +sm? presence of usual matter fields. In fact, matter fields in gen-
eral contribute to the constraint, and then thield becomes
dependent upon the matter fields. Therefore, when starting
Recall that for the first-class scenarios, the true vacuunwith Lagrangiand.; andL,, including the matter fields in a
state with a zero effective cosmological constant is realizedorm similar to the canonical one, the resulting matter fields
at ¢p= by, wWhereV,(¢o)+sM*=0. Then it follows from €equation of motion in the Einstein pictu(ebtained with the
Eg. (33) that small fluctuations o in the neighborhood of Uuse of the conformal transformations, Efj2), or their gen-
such vacuum states produces very strong fluctuationg. of eralization in the presence of fermigrzan appear, in gen-
This means that the conception of the TMT gravitational€@l, to be very nonlinear. _ .
background has no sense in the context of the first class Inclusion of the usual matter fields in the context of the

cosmological scenarios and, therefore, the problem of th odel_s of Sec_. IV B permits us to avoid this pmb'_em- In fact,
scalar field¢ quantization remains without answer. ollowing the idea that the only mass scale typical for the

It is not the case for the second-class cosmological sce'[]flatorl physics in the limit where the symmet48),(19) is

narios whereV,(4)+sM* does not equal to zero at any exact is the Planck mass, and terms that explicitly break this

L ) symmetry contain mass parameters only a few orders of
finite value of¢. The models of Sec. IV B correspond just to magnitude less thaM,, we provide a situation wheréhe

the second-class cosmological scenarios. It is remarkable thg 5| matter field contributions to the constraint appear to
the condition, Eq(32), is satisfied for models of Sec. IVB g pegiigible in comparison with the inflaton contributions
with extremely high accuracy for all values ¢t throughout the history of the universat the late universe,
the unbounded increase of the prepotentiatsp— ) rein-
forces this effect. As a result of this, the scalar figlavith
30n this stage, | restrict myself to models where the matter fielddigh accuracy is determined by the same constraint(Hjy,
do not contribute to the connectigeee Sec. VI ¢ as it was in the absence of the usual matter fields. This al-
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lows one, starting from the Lagrangians similar to the usual The transformations of the continuous global symmetry,
ones, to keep the desirable basic features of the usual mattégs. (18),(19), are generalized now to the forfa6]
fields sector after the transition to the Einstein frame. To-
gether with the basic idea about the broken continuous global V4 —e™ "’ZV’;, gw—>eegw, AW)\—>e"AWA ,
symmetry, Eqs(18),(19), modified to the case of the pres-
ence of fermions, this approach provides possibilities for o
constructing gauge models in the context of TMT and, at the p—d— 79, §&—8& AL—AL,
same time, to solve problems 1-5 of the Introduction.
— 6l — 6/
B. Action of a gauge Abelian model and continuous Ve M, W—e (38)

global symmetry The term[ P(|&])e*?Mrdd*x breaks the symmetr(38)

In the framework of the formulated above general ideaspy the same manner as the prepotential¢). For the
let us consider a toy model that possesses gauge Abeliarukawa coupling type term
symmetry and conta\i/gs the following matter fields: a com-
plex scalar fieldc=1/{2(&,+i&,), an Abelian gauge vector —
field A,, and a fermion¥. Generalization to non-Abelian Svu= _hf Ww|¢gler?Mey—gd'x
gauge theories can be performed straightforward.

In the presence of fermions, the vierbein-spin-connectiorio be invariant under transformatio38), the parametery
formalism [32,33 has to be used instead of the first ordermust bey=3B. The value ofy preferable from the dynami-
formalism of Sec. Il. The action of the model has the generatal point of view will be discussed later, and we will see that

(39

form as in Eq.(3), with v<2p. All other terms describing the usual matter fields are
1 1 invariant under transformation&8). If y#3, then the
L= — “Rlw.V)+=qg"" _v symmetry is explicitly broken only by the Yukawa coupling
1= (R +50%¢,., 1(1€) type term and the prepotential§ (¢, |£]) andV,(#). Thus,

similar to the models of Sec. IV B, in the model with the
Lagrangian densitie$34) and (35), the global continuous
symmetry(38) is restored agh— .
w;dacd—ieAM) It is interesting that the form of the dependence of the
Yukawa type term dictated by the symmet§8) is very
_ similar to a motivated by string theories nucleon-scalar cou-
- ( P _w;do'cd+ieAM> VaVéf]‘I', (34)  pling discussed by Wetteridl®] in the context of a quintes-
sence type model with exponential potential.
Note finally that for pedagogical reasons we have started
=V,(p)— L g*BgHF, JFg _h@wgley(/mp_ from the simplified model where the Yukawa type term ap-
! (35) pears only with the measur¢g—g. We will see later(see
Sec. VIH) that an additional Yukawa type term in E@4),
) o that is, with the measur®, is needed to provide the possi-

+9*"(d,—ieA, )&, tieA,)E

i — .01
+ E\I’ yavg( (9#+ E

N[ -~

R(w,V)=Va'“VbVRMVab(w), C. Connection, equations of motion, and constraint

Variation of the action with respect toib leads to the

equation a solution of which is represented in the foh|

R,uvab(w):(gp,wvab+ wiawvcb_(MHV)a (36)
02= w2 (V)+K3(0) + K2V, ¥, ), (40)
whereVa“= 23V{ 73 s the diagonal &4 matrix with
elements (1 1 1,— 1) on the diagonaly? are the vier- where o ®(V) is the Riemannian part of the connection
beins, andw3’=—w>?* (a,0=0,1,2,3) is the spin connec- 32,33, and
tion.
Prepotential\(z(¢) is the same as in the models of Sec. bi(a): EU a(vavba_vzvaa% o=Iny, (41
IV B. PrepotentialV,(¢,|&|) is chosen in the form ’
— K — .
Vi( €D =Va( ) + P(| €} e, (37 KAV, W) =5 7Va,e W yoy V. (42)

whereV;(¢) is the same as in the models of Sec. IV B; that For brevity, we omit here equations obtained by varia-
is, e**Mp is the common factor in front ofn}+P(|£]) in  tions of vierbeinsA,, ) , as well as of the matter fields, &,
Eq. (37). A, , ¥, and¥. Combining equations obtained by variation
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of vierbeins andA ,,, , and using equations of motion fdr Vaﬂ(x)ﬁvéﬂ(x):X1/2(X)VaM(x),
and ¥, one can eliminatR(w,V), and the result is the
constraint 90(X) =0, (X) = X(X) g 4,(X),

SM4+V1( ¢)+ P(¢)ea¢/Mp lI’(X)_"‘I”(X):)(71/4()()\1,()()1

2 3 V(x)— W' (x)=x~ Y4x)¥(x),
— o dIM
< Va()— \/Eh\lf\lfcpe‘/ ol (43

d)_)d)a A,U,V)\_)A,U,V)\V

which is a direct generalization of the constraih0) to the o=@, A,—A,, (44)
model we study here.

One of the aims of this toy model consists in a demon-wherey is determined by the constraitt3).
stration of the possibility to construct realistic gauge unified In fact, after the transition to the new variables defined by
theories(such as electroweak and GYUin the context of the transformation$44), the o contribution, Eq.(41), to the
cosmological scenarios dictated by models of Sec. IV B. Inspin connection is canceled, and the transformed spin con-
troducing the scalar field is intended for the realization of nection takes the forrf24]
the Higgs phenomenon. Siné¥ ¢) and m‘l‘ appear in the
combinationm‘l“r P((p),4the con;taht part oP(¢) can be ' = wcd(vr)+£77civé gabcdg Y5y W', (45)
always absorbed byni. Then it is natural to assurhe " K 8 K
that|P(¢)|<mj. Later, turning to quantum effective poten-
tial, we will discuss a concrete model wher@(y) which coincides with the well-known solution for the spin
connection in the context of the first order formalism ap-
rperoach to the Einstein-Cartan theof$2], where a Dirac
spinor field is the only source of a non-riemannian part of the
connection. Hence, the curvature tensor, &), expressed

=(f/4!)cp4, and then the idea explained in Sec. VIA will
become clearer. The choice of the mass parameters in t
models of Sec. IV B allows us to provide a situation where

the contribution of the Higgs fielg to the constraint43) is i, tarms of the new connection, E5), becomes the cur-
negligible with respect to the inflaton fielg-contribution | 5t/ re tensor of such an Einstein-Cartan théory.
and, hence, it can give only extremely small corrections t0 At the same time, in the fermionic field equation, all terms

abnormally large, it is natural to expect that the same conframe, and tﬁe result is

clusion is true for fermionic contributions to the constraint
(43) as well. So, they field determined by the constraint
(43), in practically interesting cases, coincides with the
field determined by the constrai(it0), which holds in the
model free of the usual matter. For brevity, in what follows, h o eréMp
when neglecting the usual matter fields contribution to the - —0
constraint, we will use the terd approximation. This notion V2
will be very useful in the next subsection, where we are
going to represent equations of motion in the Einstein framewhereC_? is the trace of the Ricci rotation coefficieria2]
in the new variables, and the unitary gauge is used. After a
shift, we define

i
Vil y3(3,—ieA) + yChp+ 7, eapcay® YV

i 7%

7 ‘P,:O, (46)

D. Equations of motion for the self-consistent problem in the
Einstein frame

1 1 ~
&= E(pE E(v-i— ¢(X)), wv=const. (47)
In the presence of fermions, the transition to the Einstein

frame (a more suitable term for this case would be the

Einstein-Cartan frameis carried out by the transformations 1he equation fot’ has a similar structure. The only differ-
to the new variablef24] ence between these fermionic equations and the standard

Dirac equations in the Einstein-Cartan the@8?] is related
to an unusual Yukawa type term, and it will be discussed

“4Recall thatm, appears in the definition of the prepotential ¢)
in the models of Sec. IV B. The values of, are chosen such that  ®Notice that in the original frame, the terms including, (recall
mj=(10"2M,)* in model one, ananj= (10 *M)* in models two  that o=In x) originate a nonmetricity and, therefore, TMT in the
and three. original variables has no form of an Einstein-Cartan theory.
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later. Notice that for purposes of realistic particle physics one 1 1
can neglect the second term in E45) that leads to a spin- T.= ¢'#¢,V—§g;v¢'a¢’ﬁg’“ﬂ+ —2V2(¢)g/’”
spin contact interactiof32] with coupling constanM 2 X
For brevity, in what follows, when neglecting this interac- o o
tion, we will use the ternB approximation. + gD,MQD,V—EgLV@,aQD,/sg'“ﬁ
Other equations of motion in the Einstein-Cartan frame

have the following form: 1, o ' B
+ Zg,u,VFaBFrpg g P— F,uaFV,Bg

1
1 2 ~\2 ’ 1aB
9 ( /_grg/,uv(?vd)) +e (U+ qD) A,U«AV_Eg,U«VAaAﬁg
_g’ ~r
[ _
_|_E %_E%_;_ip((p)ea(ﬁ/Mp +§[\P 7ava(MVV)\P _(V(M\P )Yavv)aq, 1,
x[d¢ x d¢ M,
(52)
hy — ev#Mp
— "y — ’_ 1 rcd ; ' 7/
\/EMpq, Ve N (48) WherE’ Vf\lflcgi(,ywt 5(1'); Uc_d’_IeA/L)\P and V,¥
=9,V —30, VotieA V'
wdIM Notice again that they field entering into Egs.
Lfy (V=g'g’*"3 ';D)Jre P dP(¢) (46),(48),(49), and(52) is determined by the constraift3)
NEr . v de which in theA approximation gives
h_  er¥Mo 1 M*+Vv
o A A= - W (49 T_M Vi) 53
V2 b% X 2Vy(9)
In what follows, all discussions will be performed in the
) framework of theA andB approximations.
€ It is worthwhile to notice that the transformations of the
- | _ ' may! VB 2Ny
\/__g,a#( 9'9""g" " Fap)+ 2¢9 HA, global continuous symmetry, E(8), expressed in terms of
the variables of the Einstein frame, are just reduced to shifts
=—eW AV "', (500 of ¢: p——(Mp/B)0.

E. Effective classical action for usual matter fields in the

It is very important to stress that in ttheand B approxi- background

mations, all matter fields equatior(g6),(48)—(50), have the To studv th tter field ¢ f th ¢ fE
canonical structure of the corresponding matter fields equ 16 0 553u y ehmat e(rj :f S sector of 1 te sbys Em 0 dqls.
tions in a Riemannian space-time. The only specific featur(%e)_i/ ), og_e asdot e('jr_‘; an ?ppro_p[rlf_l € Iag glioun .dn
of these equations are concentrated in the unusual forms C. vV we discused two diiferent gravitational backgrounds
the effective potentials and some of the interactions. In the model where the usgal matter was abs.ent. and the in-
After some algebraic manipulations with equations result-flaton field ¢ was the qnly field of the r_longrawtatlonal sec
ing from variation of the vierbeins, transition to the new [Of- One can see that if we proceed with the formal gravita-

variables by means of E¢44), and making use of both the tional background, then it will be impossible to write down
S an effective classical action in the curved background giving

fermionic equation(46) and a similar equation fow’, we rise to the system of Eqs46),(48)—(50). For example, to
obtain canonical gravitational equations of the Einstein, J i10 the appearance of th’e last term of &) and 'Ehe
Cartan theory. F|_nally, if one writes down th(_ase equauon; "fight-hand sides of Eq¢48) and(49), such an effective clas-

the B approximation, we come to the canonical GR gravita-gjoo| action in the curved background has to include the

tional equation Yukawa coupling type term

h — er¥/Mp

K Lyuw=—F7ZV'¥'e

/.LVZET/.LV ’ (51) \/E
Working in the formal gravitational background, we have to

_ _ _ . _ insert the expression foy, Eq. (53), into Ly But then
whereG,, is the Einstein tensor of the Riemannian space-variation of the inflaton fields leads not only to the appear-
time with metricg;w, and the energy-momentum tensor hasance of the needed terms, but the unwanted terms, coming
a canonical GR structure7] from the variation ofy(¢), will appear as well. It is not the

G XS/Z '
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case in the framework of the TMT gravitational backgroundmalizability that requires a nonminimal couplingR|¢|?),
since in that case the scalar figldis the background one. let us attract attention to a quantum effective potential when

If, however, we want to construct the quantum theory ofchoosing P(¢)=(No/4!)¢* \o=const. This means that
the usual matter fields, then it seems to be natural to staignoring the fermion fiels we are dealing with massless
from the approximation where in addition to the gravitationalscalar electrodynamics in curved space-time, where the clas-

background, the inflaton fielg is also regarded as the back- sjcal potentialithe tree approximationis given by
ground one. This can be done since in the course of its evo-
No( @) o

lution, the classical inflaton fielgp remains practically con-

stant during a typical time of quantum fluctuations of the 41

matter fields. In such a case, the above mentioned difference

between two definitions of the gravitational background dis-

appears: the background fiejdis determined by the back- and\q(¢) depends on the background figtd
ground field¢ via the constraint, Eq53).

So, let us study some features of the particle physics
model in the background that, in terms of variables of the
Einstein picture, consists of two external fields;, and ¢.

For brevity, | will refer to this issue as the particle physics

Vele:é)= (57)

_ M*4V
No(@P)=Nok(¢), k(d)= T;()@e“‘f”“ﬂp- (58)

model in the cosmological background.

The effective classical action for the particle physics

model corresponding to the system of E¢46),(49), and

(50), in the cosmological background, can be written down

in the following form (in the unitary gauge

Sbackground:
class

1
\ _g,[zglﬂv(toa,u@!v_vcl(@;d))

2

e 2 v 1 rafy! mv
+§‘P A,uAvg " _Zg g # Fa,uFBV

+Lin(W WA+ Ly (P 0 9) |,

(59

whereV(¢; ¢) is the classical TMT effective potential for
the matter(Higgs) scalar fielde in the presence of the back-
ground inflaton fielde,

M4+ V
V(i @)=P(p) 1) g,

2Vo(b) - 69

Liin(W',¥',A)) is the standard kinetic term for the fermion
field in a Riemannian space-time with metggv, also in-
cluding the gauge coupling to the vector fiedd,. And fi-
nally, the TMT effective Yukawa coupling type term

Lyud PV’ ¢; ) is
e'}’(l’/Mp

312
X

h‘l_f’\l”
> ()

%

h\l_f’\lf’
Z (2

Lyud V'’ ¢; ) =

non
2
(56)

F. Massless scalar electrodynamics model in the cosmological
background and SSB

Up to now the functionP(¢) was unspecified. Ignoring
the technical question@n particular, the question of renor-

Numerical estimations d€( ¢) in the models of Sec. IVB
give the following results: & k(¢)<3.5 for model one; 0
<k(¢$)<1.2x1078 for model two; and 6ck(¢)<3
X 10~ 7 for model three. In all modelk(¢) asymptotically
approaches zero ag— *t . Thus, in all cases\q(¢) is of

the same order or less thag.

The computation technics of the effective potential for the
massless scalar electrodynamics in the one-loop approxima-
tion is a well-known issu¢34]. However, the problem we
study here is not quite usual: the quartic coupling constant
depends actually on the cosmic time via the inflaton figld
Taking into account that in the course of its evolution, the
classical field$ remains practically constant during a typical
time of quantum matter fields fluctuations, it is natural to
consider the problem in the adiabatic approximation. There-
fore, computing the effective potential we can regagde)
as a constant. Then the computation becomes quite standard.
The only additional issue we have to clear up is a possible
physical effect that the adiabatically changing(¢) might
be on theg-effective potential.

One can check that the first point where we encounter
necessity to decide this problem is the renormalization pro-
cedure. In fact, performing calculations with the bare cou-
pling constant3, we have no need to think about its adia-
batic ¢ dependence. But when we turn to the use of the
renormalized(finite) parameter\ defined by\g=\+ S\,
whered\ is the counterterngwhich, as one knows, is diver-
gent in perturbation theoyywe have to take into account a
possible¢ dependence of the effective

The vector boson loops contribution to the effective po-
tential in the one-loop approximation has the ordeebéind
does not depend ofh [see Eq(54)]. Therefore, just as in the
standard scalar electrodynamics, one can assert that in spite
of the possibility forhy(#) to be very small, the effective
N(¢) cannot be too small. On the other hand, it is also im-
portant that\ (¢) cannot be large: sincg dependence of

acts in the decreasing direction in comparison wigh there
are no reasons for a possilfedependence of to act in the
opposite direction.

The scalar loops contribution has the ordendf There-
fore, in the same way as in the standard scalar electrodynam-
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ics, in the one-loop approximation, one can neglect the SC&HIEZ/Z)(,DZAMA,,Q”“V in Eq. (54) does not depend on the infla-
loops contribution with respect to the vector boson loopson field ¢. Thus, the SSB and Higgs phenomenon occur in

contribution. a standard way.
The one-loop effective potential for the scalar field
evaluated at the fixed value of the background inflaton field G. Yukawa coupling type term and fermion mass

= n written in the form .
¢= ¢, can be writte the fo As a result of SSB, the Yukawa coupling type term, Eq.

(56) [see also Eq46)], produces the TMT effective fermion

A1) 3¢’ ¢? 25 massm; depending on the inflaton field:
Verlgid)= g ¢!l n5 ), r depending ¢
: (8m) M 4 32
(59 m.=m (¢)=Ev M+—Vl(¢) eYd/Mp (62)
COTTTAT vy(¢) '
where For ¢>M, (the region corresponding to the late uni-
iy verseg, the fermion mass becomes
_ eff
)\((ﬁl)——d(p4 . (60) mglate):mgo)efﬁ(ﬂf%a)fy]WMp’
6
Let us assume thap, is the value of the background m{¥=2hv ﬂ) . as ¢>M,. (63)
inflaton field wherex (¢) has a maximal possible magnitude 2 .

(but it is still smal). Suppose also that the renormalization
massu is chosen such that(¢;)~e*. This can always be
done, as is well known from the renormalization group
analysis[34]. The final form of the effective potential

We see that in the late universe, the fermion mass ap-
proaches the nonzero constan’ if

'y=3<,8— %) (64)

4 2
o alwf_ =
VEff(@'¢1)_(8w)2¢ (In 2 2) G Notice that if y indeed satisfies the relatio{4), then
with the choice as in Sec. I\i.e., «=6 and 8=7), we
is determined in terms of two free parameters: the renormal(-)btaln y=12, which is close to the valge éf'g.zlo'S dic-
ized gauge coupling constaetand VEV ()= v. tated6by t_he symmetry38) [see the d_|scuSS|on aﬁer Eq.
To verify whether the change of the value of the baCk_(39)]. So, in the framework of our working hypothesis about
ground inflaton field¢ has some physical consequences, letapproxmate s_ymmetr3(38)3 one can ensure successful_
Us suppose that we want to repeat the same computation myass generatlon fo_r fermions in the present cosmological
the one-loop effective potential at another fixed value of thegg%%h t'i?n: Vg% t(_\:/;r:cile:;or ttﬂg zfra;gaéguml?r?m%t g}e
background inflaton fieldp= ¢,, where the order of the o eep ' piing, &),
magnitude of\(¢,) is less thane® if we take the same fermionic matter to the inflaton fieldcompare this with Wet-
9 o 2 i terich’s model[6]).
renormalization mass.. According to the results of the

renormalization group analysi84], one can mova.(g,) to One has to notice that a formal generalization of the toy
L 2 H - H r
the magnitude of the order @& by a change in the renor- (Abeliar) model we study here, to a non-Abelian mofidte

malization mass that does not change the order of magnitu U(2)xU(1) or SU(5)] can beperformed straightforward.

X . n we have to worr t I f th rticle m
of e. This can always be done N(¢,) is small. Then the en we have to worry about scales of the particle mass

tati f th | ffocti tential . generated as a result of SSB. In this connection it would be
computation of the one-loop effective potential¢at: ¢, in interesting to estimate the order of magnitude of the fermion

the same approximation leads to the same effective potentiﬂl]ass in the present universe that one could expect on the

?S dit W?St'hat"ﬁf: b1, Eq'(th)’ Vgth the same (?r(iljer ?; ma?ni- basis of Eqs(63) and (64). With the mass parameters,;
ude ot the free paramete Lne can concude, nerefore, o, m, of the models of Sec. IV Bthat impliesm;/m,

Lhoat Ihn ;?Cealusﬁgc?pprommatlon, the dependence ok has  _14-2 o model one andn,; /m,=10"2 for models two
PRy o — - . and threg and withv~10° GeV, estimates give too small
In this stage of the investigation, | will ignore the fermion : ] (0)
loop contribution into the¢ effective potential. The non- values for fermion mass at the late universe;”~h
X10°! eV in model one anth{”’~hx10"7 eV in models

minimal coupling of the Higgs fieldr to curvature, which o .
appears in the quantum effective action in curved space-timi//0 and three. This is becau%e of the presence, i@, of
e very small factorrf,/m,)°.

[35], might have some interesting but, most likely, weak! . .
enough effect, and this question exceeds the limits of the Masses of the vector bosons, as it was explained at the

present paper. end of the previous subsection, do not depend on the inflaton
So, for the usual form of the functidd(¢), we obtain, in

a cosmological background, the effective quantum potential

for the scalar(Higgs) field ¢ typical for gauge theories with  6The valuey=12 is as close t¢3=10.5 asB=7 is close toa

dynamical symmetry breaking. Notice again that the term=6.
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field ¢, and their values are defined as in the standard gaudeq. (39) are present in the original TMT action, both with the
unified models. For the mass generation of fermions we havmeasureb and with the measuré—g. In such a model the
more freedom than in the standard models. According to theonstant fermion mass is also achiey26€]. Having this idea
basic ideas of the model developed in the present paper, the mind, let us modify our model, Eq$34),(35), with the
general structure of Eq62) for masses of fermions is the explicit breaking of the symmetr{38), by including an ad-
same for field theory models with different symmetry ditional Yukawa coupling type term which enters into the
groups. The only free parameters, besides the inflaton fielection with the measur®,
¢, are the VEVv of the appropriate scalar boson apd If
the values of they’s are determined by Eq(64), then
masses of all fermions in the present universe are constants.
If, however, the parametey corresponding to some of the ) ) ) )
fermions is such that 3— a)— y is very small but non- For this te~rm to be |Dvar|ant under transformatloﬁlis), the
zero, thenm; becomes slowp dependent according to Eq. parametery must bey=3B8<a. The magnitude ofy pref-
(63) even at the late universe. Namely, since in the quinteserable from the dynamical point of view will be discussed
sence model with exponential potential, E29), the inflaton ~ below.
field ¢ changeg6] in cosmic time aspx(M,/(B8— a))Int, One can check that in this modified model, the fermion
we obtain thatm¢(¢(t)) will change in such a case as mass at the late universe becomes
t- B2~ |f |3(B—3a)—y|<B—a (in the 2
1

SyuE —Ef T | £|e7Mod dx. (66)

m; |4
my

models of Sec. IVB, this mean42— y|<1), the rate of miate [T
change ofm; might be very small in the present universe. f.modified™ *| m,
Depending on the sign of - 3a)— v, which should not
be the same for all fermiongy; could be either increasing or +he (B %afym/mp
decreasing. Notice that the caseB3{3a)— y<0 corre-
sponds in some sense to the model studied by Wettéich
Concerning the very early universe, that is, fér
—M,,, one can see that the model predicts the TMT effective
fermion mass, Eq(62), to be extremely smalin;—0 as¢ y=B—~a (68)
— —oo, For example, in model three of Sec. IV By, 2
=hv10 2e "14Mp as p<—M,. At the same time, the
gauge coupling of?’’ to A, [see Eq.(46)] is the standard
ons and, in particular, it does not depend on the inflaton fiel

¢.

1
o [3(B- 3 )~ 1¢/M,

.

as ¢>M,. (67

The constancy amg',?ntg{,medis achieved now if the condition

holds together with Eq(64). For 8=7 anda=6, the con-
O?tancy of the fermion mass at the late universe implies that

y=4, which is as close tg=18=3.5 asa is close top.
With the conditions for constancy of the fermion mass at
the late universe, Eq$64) and (68), the modified effective

) ) ] ~ Yukawa coupling of the inflaton to fermionic matter now
The right-hand side of Eq48) describes a model with tgkes the form

direct coupling of the inflaton to fermionic matter. For all
models of Sec. IV B at the present universe, i.e., in the quint- . v (my)? 1

X | A . L(Yukmodmeo):__ — ,8——a’
essential regioisee Sec. IV C, item threethe effective La- eff,present M, m, 2
grangian of this coupling takes the form P

H. The long-range force problem

my

my

4
m(late)_ X +F]

Y. (65)

6h

W' o, 69
LOYuR ¢. (69
eff,present Y M

P
We see that in the modified model there exists a possibil-

Assuming the conditiof64) for constancy ofm{’®'®, and ity to prevent the appearance of such dangerous interaction.
with the choiceB=7, a=6, we get that the coupling con- To realize this opportunity we have to require
stant of the present day effective Yukawa coupling of infla-
ton to fermion is 1&{®/M . Existence of such a coupling h my
would produce too strong a scalar long-range force. Fortu- h— _6<_ (70)
nately, TMT gives us additional tools that allow to solve this
problem. This is actually strong enough tuning since, for instance, in
In the model[26] with only spontaneous breaking of the the context of models two and three of Sec. IV B, it implies
global continuous symmetr{38), Guendelman studied the F/h|~10*12. If we recall thath andh are the Yukawa type
case where the direct fermion-inflaton couplings similar tocoupling constants of the Higgs scalar to the fermion, it ap-
pears surprising that their ratio has to be of the order of
magnitude that shows the degree of the hierarchy problem in
"This can be an interesting example of the mdaé] of massless GUT: my,/my~10"12
spinor electrodynamics realized as the limit of a massive theory as With conditions(64),(68), and(70), the fermion mass at
p— —. the late universe becomes
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2 Vi($o)+sM*=0. As we have seen in Sec. V, in such a
as ¢>M,. (71)  vacuum the usual conception of the gravitational background
becomes invalid, and small fluctuations dfcause infinitely
A possible relation of the discussed question to the hierlarge fluctuations of. For the true vacuum state this feature
archy problem in GUT, as well as other problems that appeds unacceptable.
in the attempts to generate a realistic unified gauge theory in For this reason, in this paper we studied cosmological

2. [m
| _ 1
mg.?r:g)dified_ §hv< _m2

the context of TMT, will be studied elsewhere. scenarios of the second clagee Sec. )| where the true
vacuum state is realized asymptotically¢s-oo. This natu-
VII. DISCUSSION AND CONCLUSION rally leads to a need to apply a quintessence model of the late

o . _ _ universe. However, in contrast to quintessence models stud-

Before summarizing and discussing the main results ofed in the framework of GR or Brans-Dicke type models, in
this paper, | would like to stress again that the first impresTMT we have a new option: one can choose the prepoten-
sion that the studied models belong to a sort of scalar-tensajals V, andV, as increasing at the late univerdbat is, as
theory, is wrong. The ratio of two measures, that is, the SCag>M,). If \/i/\/2 approaches zero as—, then the TMT
lar field x, Eq.(9), is the only object entering into the equa- effective potential13) asymptotically approaches zero at the
tions of motion and carrying information about the measurqate universe. One can adjust degrees of growti,odndV,
) degregs qf fregdom. If we restrict ourselves to modelsn such a way that the TMT effective potentidl(¢) will
whereL, is linear in the scalar curvatufsee Eqs(3),(5),  have a desirable flat shape @és-c. Unbounded growth of
and(34)] andL, does not contain curvature, then in the first V, as ¢—c allows adding toV, any constani/ without
order formalism, a constraint appears which determp@s  jtering U () for large enoughp (remind that the appear-
terms of matter fieldfsee Eq(10) or (43)]. This means that  4nce of an additive constant W, does not affect equations
in such models, the scalar fiejddoes not carry an indepen- o motion at al). This is actually what we have seen in Sec.

dent degree of freedom. All deviations from the Einstein or; | ihe appearance of the appropriate tefM‘z’\/—_gd“x in
Einstein-Cartan theory existing in the original variables ar&ne action is a result of quantum vacuum fluctuations, then

caused byb?erlvaguvgs gfiln )r(] and ';hey dllsappefar n t_he we can conclude that in the framework of the described ap-
new variables obtained by the conformal trans Orrn"’monsproach to constructing a quintessence model of the late uni-

Eq. (12) or (44). By an appropriate choice @f; andL; one  yarse TMT solves the cosmological constant problem.

can provide that all equations of motion in the new variables However, the impression that the described technical de-
have canonical GR forms of equations for gravity and mattegaji of the approach to the resolution of the cosmological

fields. All novelty is revealed only in an unusual structure Ofconstant problem in TMT settles a question is premature.
the effective potentials and interactions. And Jl.JSt this noveltyOne should remind that the last statement about resolution of
enables us to solve a number of problefmsestions 1-5 of o cosmological constant problem implies validity of one

the I.ntr(?.ductioﬂ.l, most of which in the framework of GR 46 pasic conjecture formulated in the Introductjaiter
require fine-tuning. . . Eq. (4)], and used in all models of the present paper:
(a) Towards a resolution of the cosmologlpal ConStantLagrangiansLl andL, in the original action, Eq(3), do not
problem.Let us return, for the moment, to the simple r.nOdEIdepend on the measuf degrees of freedom. In the cases
of Slgc. I f 025 takes[2d4]|Vz_(r?)E—A=|const,l which \yhen this conjecture is invalid, the cosmological constant
‘/'\VO_U corr(ra]spo toa m?\ € \r']‘”t a co;mo oglcg c_:onshtant problem in TMT can turn into a very nontrivial issue. In fact,
|n"GRht en weﬁ;see_t at the _grlead | we a E“t’_ the il the fundamental theory remains unknown, one cannot be
smaller the TMT effective potential, EGL3), we obtain in e that the postulated general structure of TMT survives
the Einstein picture. This is a direct result of the existence o fter quantum corrections are taken into account. If it will

t.WO measures and two Lagrangians in the or.igin.a.l TMT 8C%urn out that the quantum effective action corresponding to

tion, Eq.(5). We see that TMT turns over our intuitive ideas the original theory, Eq.(3), contains the term

based on our experience in field th_eory. . —[®xAgd*x, then in the Einstein frame the latter will
The resolyno_n of the cosmological constant problem 'ngenerate the real cosmological constAnt;. This possibil-

'T‘Ode's studied in Re_f$23—26 was based on the assump- ity was studied in Ref[24] (see Sec. VI therejn where a

tion that a cosmological scenario belongs to the.flrst clas ay to prevent the appearance of such a dangerous term was

(see Sec. )L In the_context_of SUCh. types_c_Jf scenarios, thoseaIso discussed. The idea, briefly, is the following: If instead

TMT models predict that iV,(¢) is positive definite, the of the antisymmetric tensor field,,,, the measureb is

stable vacuum with zero energy density is realized Withouﬁefined by means of four scalar measure fields,(a
any sort of fine tuning at a finite value @f= ¢y, where =1,2,3,4) '

(DE8a1a2a3a48lw)\g(ay@al)(ay@az)(a)\‘Pa3)(ag(Pa4)v
8Taking into account our definition &f,(¢), Eq.(5), one should (72
notice that the positive/g corresponds to a negative cosmological
constantA = — V9 in GR if the termf V,($) V— gd*x would appear  then the action, Eq(3), with ¢, independent.; andL,, is
in the GR action. For constructing models 1-3 of Sec. IV B, theinvariant up to an integral of a total divergence under trans-
positive definiteness o¥/,(¢) (and therefore, the conditiokS  formationse,— ¢,+ f,(L;1) wheref,(L,) are arbitrary dif-
>0) was one of the basic assumptions. ferentiable functions oL;. An appearance of the danger

025022-16



FIELD THEORY MODEL GIVING RISE TO . .. PHYSICAL REVIEW D63 025022

term — [® yA.d*x in the action would break this local The second basic idea is that in the limg+{ «)/—0
e

symmetry. Thus, this additional, local symmetry can preventwhich leads us to the fundamental theprthe only mass
a generation of the real cosmological constant by quanturparameter of the theory is the Planck maés. This means
corrections to TMT if no anomaly appears. _ _that the dimensional coupling constants of the symmetry

(b) Resolution of the flatness problem of the qumtessentlaéreaking terms have to be powers of the mass parameters
potential. The mechanism for the resolution of the flathessgf the form m=[(8—a)/B]"M,, n>0.
problem of the quintessence potential in TM@uestion In the probe models studied in Sec. IV, we have chosen,
number two of the Introductignis actually the same as the just for illustration, B=7, a=6, and hence, f— a)/j
one used for the resolution of the cosmological constant 4,7 Proceeding in the way described above, we reveal a
problem. Smcfe the TMT effectlv?] potebntlhlgcﬁ)d takesha . remarkable feature of TMT: it is possible to achieve quite
qumtesspnce orm a—e due to t. e unbounded growth o satisfactory quintessential inflation type modé&dee models
the leading terms of Fhe prepptentl{m andV;, the appear- 1-3 of Sec. I where, for the adjustment of the parameters,
ance of any subleading termmcluding terms generated by it is enough to use only mass parameters of a few orders less

guantum correctionsn V; andV, cannot alter the shape of . .
U(¢) as ¢ is large enough. There is no need for any of thethanMp. We interpret this fact as the absence of a need for

coupling constants and mass parameters of the subleadiltni e—tuning. . ) . .
tern?s tg be very small. This is pin fact. the TMT answer to 8Be3|des the generation of the well-defined inflationary
the question raised by Kolda and Ly[tlhi] and quintessential regions of the TMT effective potential

(c) Quintessential inflation type potential (also satisfyingY(#), one more remarkable result consists in the fact that
the cosmological nucleosynthesis constraint) obtained withth€® Post-inflationary region obl(¢) has the exponential
out fine-tuning Two basic ideas have been used in this papefor™m *€xp(—a¢/M,) with variablea, Eq.(31). This allows
to demonstrate that TMT enables us to answer questionsS 10 Single out aregion dd(#), where a familiar approach
three and four of the Introduction. The fundamental role bel6] t0 @ resolution of the problem with the cosmological
longs to the first idea that, in the limib— o, the effective nucleosynthesis constraint is realized without any additional
theory has to become invariant under shifts> ¢+ const. A~ @ssumptions. . .
basis for this idea is the observation that if we want the (d) Resolution of the problems related to a possible direct

effective theory to describe a quintessencedas«, the coupling of the inflaton field to usual matteks for question
effective potential has to become flat ds-o ' number five of the Introduction, the answer is quite clear: if

As it was shown by Guendelmd@s,26, the role of the the terms of the formf;(¢/m)L;, describing direct cou-

: . : lings of the inflaton field to the usual matisee Ref[19]),
global continuous symmetries— ¢+ const in TMT belongs P .
to transformationg18),(19) in the absence of fermions or, Préak the global continuous symme38), they could ap-

Eq. (38), in the presence of fermions. In terms of the dy- pear in the original TMT action with small coefficienfs

namical variables used in the Einstein frame, these transfoff[(ﬁ__ )/ B1", n>0. _ o .
mations are reduced to shifts gf parametrized as in Eq. A direct coupling of the inflaton to fermionic matter is of
(19). In the models of Ref.25], where the exponential form a special mte_rest. In the modlflgd modgl stgdled in Sec. VIH,
for the prepotentials, Eq.16), with a= 3 being used, the such a coupling enters the original action in the form of two
global symmetry(18)—(19) is spontaneously broken. And al- Yukawa c_oupllng type terms, Eq39) and (66)' The un-
though this symmetry is restored gs—, it is impossible bounded increase df; andV, at the late universe works

in the framework of such a model to realize a quintessenc@galin in the Qesirable direction: the contributions of the
: Yukawa coupling type terms to the constra{dB) are neg-
scenario ap>M,.

We have seen in the present paper that if a small explicﬁIglble compared 19/, andV,. As we have seen, by adJL.jSt'
violation of the global continuous symmetri¢8),(19) is ment of the paramete_rs of the Yukawa couplm.g type mtgr-
present in the TMT original actiofb) with the exponential act|ons_ one can prowde the presence of the direct coupling
form of the prepotentials, Eq16), then the TMT effective of fermlomp matter to mflatpns without observable effects at
potential U(&), Eq. (17), can be a suitable candidate for a the late universe. The fermion mass then app_roaches constant
quintessence model g&¢>M,. The smallness of the ex- and the correspondent long-range force disappears) as

plicit symmetry breaking is formulated as a smallness of the **- . . .
dimensionless parameteg )/ [see Eq.(22)]. It is Worth\_/vhlle to_notlce_here that the form pf the
In the absence of knowledge about the structure of the Ukawa coupling type interactions, E489) and(66), might

fundamental theory, and without any information about a] e gen.eralized withogt altering the results Ot?tf"“”eo' fgr the
mechanism leading to an explicit violation of the global con- ate universe. In fact, if, for example, one modifies the inter-
tinuous symmetry(18),(19), the quantity B— a)/8 is the actions of the formxWWwe?*Mp\/—g and ¥W¥e**Med

only small parameter that can be used in attempts to modifgonsidered in Sec. VIH by adding the direct couplings of the
the action with a simple exponential form of the prepoten-form «W¥¥ ¢\ —g and YW ¢®, respectivelyfwhich does
tials (16), with the aim to give rise to quintessential inflation not respect the global continuous symmetry, EB8)], this
type models. This can be done by adding terms that disagias no effect on the late universe since the relative contribu-
pear as B— «)/B tends to zero. This means that coupling tions of the adding terms are exponentially suppressed as
constants in such additional terms have to be proportional to-M,. At the early universe, for instance, #s<0, modifi-
some positive power of this small parameter. cations like this could lead to observable effects. Such pos-
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sibilities are additional tools given by TMT for adjustment of we obtain the expression described by E5p), the same as
the field theory parameters to cosmological constraints of the the absence of the usual matter. As a result of this, in the
early universe. One should stress that this is a merit of TMTEinstein frame the usual matter field equations in the back-
thatadjustment of the parameters determining the early uni-ground have canonical form, and their quantization becomes
verse evolution can be performed without any direct influ-a standard procedure.
ence on the field theory parameters important for the late (f) SSB without generation of the cosmological constant.
universe Reverting to the cosmological constant problem, it is worth-
(e) Background and matter fields quantizatidimere are  while to notice in the conclusion that if the scal@dtiggs
some specific internal problems of TMT that we were forcedfield ¢ obtains a nonzero VEV, E@47), the appearance of a
to discuss in this paper. Fortunately it turns out that a resoeonstant part irP(¢) just leads to a redefinition ahf [see
lution of those problems is closely related to the cosmologi€q. (43)]. It is very important that in models 1-3 of Sec.
cal problems we were trying to solve here. IVB, m] has the order of (102Mp)4 or (1(T3Mp)4. The
First of all, this is a problem of the definition of the gravi— correction we negk_:.ct in the left-hand side of Eqs)’ when
tational background in TMT discussed in Sec. V and, relateq?mace it by Eq.(53), becomes of the order dp(?p)/m‘{,

to this, a question of the choice between two large classes 0 h . | i (1% _ h ifies th
the cosmological scenarios formulated in Sec. II. It turns outVNereQ is a polynomial ing (¢l <v=m,) that satisfies the

e i - 4

that only the second class of the cosmological scenario§oNditionQ(0)=0. Thus, if|P(v)|<myj, then spontaneous

(quintessential inflation belong just to this classimits a Preaking of a gauge symmetry does not affect the magnitude

satisfactory definition of the TMT gravitational background Of the effective cosmological constagt the late universe

where the quantization of the inflaton fieitl is a standard iMitated by the quintessential potential, £g9). ,

procedure. Another possibility appears if the whole tenmye
The second TMT problem consists in the quantization ofin the prepotentiaV,(¢) is generated by SSB. In such a

usual matter fields. In particular, fermionic fiet#, in the  case the quintessential potential becomes

model of Sec. VI, contributes to the constraint, &), and

aqﬁ/MP

8
h_ence, 1Y obtained by solving Eq(43), will depend on U((/,),NV[P(UJ] e 2(B-a)¢IMy, (73)
V. In such a case, equations of motion in the Einstein M,

frame, Eqs(46),(48), and(49), would become very nonlin-
ear. In Ref[24], we have tried to avoid this sort of problem
by starting from the original action that was very nonlinear
in U,

In the present paper, where the inclusion of the usu
matter is studied in the context of the models of Sec. IV B
and is intended to describe the quintessential-inflation sc
nario without fine-tuning, the problem of nonlinearity in mat-
ter fields does not appear. The reason is just due to a way that
we solve the cosmological constant and other fine-tuning
problems: the parameters of prepotentisig ¢), V,(¢), | am grateful to S. de Alwis, R. Brustein, A. Davidson,
and the integration constad“ are chosen such that the and D. Owen for useful discussions at various stages of the
matter field contributions to the constraint, £43), are neg-  work. | am especially indebted to E. Guendelman for atten-
ligible compared tov,(¢), V,($), andM*. Then, for 14  tion and help during the evolution of this paper.

This is the TMT mechanism which, together with the
shape olU(¢) in the inflationary region predicted by each of
the models 1-3 of Sec. IV B, provides a resolution of one of

he most serious aspect of the cosmological constant problem
10]: the need for an enormous fine-tuning of initial condi-
tions in models with SSB in order to satisfy the dual require-
Ement of largeA in the past and smalk at present.
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