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Field theory model giving rise to ‘‘quintessential inflation’’ without the cosmological constant
and other fine-tuning problems

A. B. Kaganovich*
Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
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A field theory is developed based on the idea that the effective action of a yet unknown fundamental theory,
at an energy scale below the Planck massM p , has the form of expansion in two measures:S5*d4x@FL1

1A2gL2#, where the new measureF is defined using the antisymmetric tensor fieldFd4x5] [aAbgd]dxa

`dxb`dxg`dxd. A shift L1→L11const does not affect the equations of motion, whereas a similar shift
when implementing withL2 causes a change which in standard GR would be equivalent to that of the
cosmological constant~CC! term. The next basic conjecture is that the Lagrangian densitiesL1 andL2 do not
depend onAmnl . The new measure degrees of freedom result in the scalar fieldx5F/A2g alone. A con-
straint appears that determinesx in terms of matter fields. After the conformal transformation to the new
variables~Einstein frame!, all equations of motion take the canonical GR form of the equations for gravity and
matter fields and, therefore, the models we study are free of the well-known defects that distinguish the
Brans-Dicke type theories from Einstein’s GR. All novelty is revealed only in an unusual structure of the
effective potentials and interactions which turn over our intuitive ideas based on our experience in field theory.
For example, the greaterL we admit inL2, the smaller magnitude of the effective inflaton potentialU(f) will
there be in the Einstein picture. Field theory models are suggested with explicitly broken global continuous
symmetry, which in the Einstein frame has the formf→f1const. The symmetry restoration occurs asf
→`. A few models are presented where the effective potentialU(f) is produced with the following shape: for
f&2M p , U(f) has the form typical for inflation model, e.g.,U5lf4 with l;10214; for f*2M p , U(f)
has mainly the exponential formU;e2af/M p with variablea; a514 for 2M p*f&M p , which gives the
possibility for nucleosynthesis and large-scale structure formation; anda52 for f*M p , which implies the
quintessence era. There is no need for any fine-tuning to prevent the appearance of the CC term or any other
terms that could violate the flatness ofU(f) at f@M p . l;10214 is obtained without fine-tuning as well.
Quantized matter field models, including spontaneously broken gauge theories, can be incorporated without
altering the results mentioned above. Direct coupling of fermions to the inflaton resembles Wetterich’s model,
but there is a possibility to avoid any observable effect at the late universe. SSB does not raise any problems
with the CC in the late universe.

DOI: 10.1103/PhysRevD.63.025022 PACS number~s!: 11.15.Ex, 04.90.1e, 12.10.Dm, 98.80.Cq
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I. INTRODUCTION

Recent high-redshift and cosmic microwave backgrou
data@1# suggests that a small effective cosmological cons
gives a dominant contribution to the energy density of
present universe. Among the attempts to describe this
ture, the idea to profit by the properties of a slow-rollin
scalar field~quintessence model! @2–8# seems to be the mos
attractive and successful. In such an approach, the pre
vacuum energy densityrvac;10247 GeV4 has to be imitated
by the energy density of a slowly-rolling scalar field down
potential U(f), which presumably approaches zero asf
→`. However, all known quintessence models contain t
fundamental problems.

~1! The cosmological constant problem@9,10# remains in
the quintessence models as well. Particle physics and
mology must give a distinct mechanism that enforces
effective cosmological constant to decay from an extrem
large value in the very early universe to an extremely sm
present value without a fine-tuning of parameters and in
conditions.
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~2! All known quintessence models are based on
choice of some specific form for the potentialU(f). The
general feature of the potentials needed to realize quin
sence is thatU(f) must be flat enough, asf is large enough,
in order to provide conditions for the slow-roll approxim
tion. However, it is not clear what happens with other po
sible terms in the potential, including quantum correctio
~see Kolda and Lyth,@11#!. In fact, the potential may, for
instance, contain terms that constitute a structure of poly
mials in f ~andfn ln f), and they are not negligible asf is
large, unless an extreme fine tuning is assumed for the m
and self-couplings. For example, the restriction of the fl
ness conditions on the quartic self-interactionlf4 @11# is
l!102120(M p /f)2.

In this paper, I present a field theory model that resolv
the above fine tuning problems and besides that, this mo
is able to give a broad range of tools for constructive answ
for a few more important questions.

~3! In the framework of a model where the potenti
U(f) of the exponential or inverse power low~or their com-
binations@8#! form plays the role of a quintessential potent
as f is large enough, the question arises as to what is
cosmological role ofU(f) asf is close to zero or negative
©2000 The American Physical Society22-1



th
th

n

a

fie
a

s

on

tu
In
on
ion
in

t
hi

c
b

ar

th
l

ap

i

e
at
b

e
tia

ich

ou-
at-

An
etry

is
ced

he
del
un-
ass

ures

he

or-
-

s-

le-
uld
he

of

Ref.
st

eld

A. B. KAGANOVICH PHYSICAL REVIEW D 63 025022
If some other scalar field is responsible for an inflation of
early universe, then a field theory has to explain why
potential U(f) of the scalar fieldf is negligible asf is
close to zero or negative. However, if the same quintesse
field f also plays the role of the inflaton@12,13# ~in the early
universe!, then a field theory again has to explain@14# an
origin of the relevant effective potential. Of course, this is
nontrivial problem. For example, Peebles and Vilenkin@13#
have presented an interesting model of a single scalar
that drives the inflation of the early universe and ends up
quintessence. They adopt the monotonic potential

U~f!5lm4@11~f/m!4# for f,0,

5
lm4

11~f/m!a
for f>0, ~1!

wherea5const.0 ~for example, 4 or 6! and the parameter
l510214 and m583105 GeV were adjusted in@13# to
achieve a satisfactory agreement with the main observati
constraints. It is well known@15# that such an extremely
small value ofl is dictated in thelf4 theory of the chaotic
inflation scenario by the necessity to obtain a density per
bationdr/r;1025 in the observable part of the universe.
other words, the potential of this quintessential inflati
model includes both the fine tuning required by the inflat
of the early universe and the fine-tuning dictated by the qu
tessence model of the late universe. As it is pointed ou
Ref. @13#, it seems also to be an unnatural feature of t
model that a small massm583105 GeV!M p must appear
in the potential of the inflaton fieldf interacting only with
gravity. And finally, one should apparently believe that su
a quintessential inflation potential must be generated
some field theory without fine tuning. These problems
typical for the quintessential inflation type models@12,13# .

~4! It is well known that the coincidence problem@16# can
be avoided in the framework of the quintessence models
make use of tracker potentials@8#. The exponential potentia
with a5const,

U~f!5U0e2af/M p, ~2!

is a special example of a tracker solution@8#. In spacially flat
models with such potential, the ratio of the scalar fieldf
energy density to the total matter energy density rapidly
proaches a constant value determined bya and the matter
equation of state@2,3,7# ~see also Ref.@17#, where a similar
result was achieved in the context of Kaluza-Klein-Casim
cosmology!. However the strong constraint onVf dictated
by cosmological nucleosynthesis (Vf&0.2) @6,7,18# prede-
termines thef fraction to remain a subdominant one in th
future that apparently contradicts the observable acceler
expansion. A possible resolution of this problem proposed
Wetterich@6# consists of the idea thata in Eq. ~2! might bef
dependent. In that case, it would again be very attractiv
develop a field theory model where the exponential poten
Eq. ~2!, with an appropriatef-dependenta, is generated in a
natural way.
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~5! Since the mass of excitations of thef field has to be
extremely small in the present-day universe (mf<H0
;10233 eV), possible direct couplings off to the standard
matter fields should give rise to very long-range forces wh
do not obey the equivalence principle@19#. To prevent such
undesirable effects, the very strong upper limits on the c
pling constants of the quintessence field to the standard m
ter fields have to be accepted without any known reason.
attempt to construct a model where an unbroken symm
could support zero mass off excitations@20# inevitably runs
against the necessity to start from a trivial potential@19#;
without knowledge of a mechanism for the breaking of th
symmetry, such small coupling constants may be introdu
into a theory only by hand.

It will be shown in this paper that one can answer all t
above questions in the framework of the field theory mo
based on the hypothesis that the effective action of the f
damental theory at the energy scales below the Planck m
can be represented in a general form including two meas
and, respectively, two Lagrangian densities

S5E @FL11A2gL2#d4x. ~3!

Here,A2g is the standard measure of integration in t
action principle of both Einstein’s general relativity~GR!
and other gravitational theories making use of general co
dinate invariance. The measureF is defined using the anti
symmetric tensor fieldAmnl ,

Fd4x5] [aAbgd]dxa`dxb`dxg`dxd, ~4!

and Eq.~3! is also invariant under general coordinate tran
formations. Notice that the measureF is a total derivative
and, therefore, a shiftL1→L11const does not affect the
equations of motion, whereas a similar shift when imp
mentingL2 causes a change which, in standard GR, wo
be equivalent to that of the cosmological constant term. T
next basic conjecture is that the Lagrangian densitiesL1 and
L2 do not depend onAmnl . In this paper, I refer to this
theory as the two measures theory~TMT!.

The main features of TMT have been studied in series
papers@21–26#.

II. SOME GENERAL FEATURES OF TMT

Let us consider a simple model with the scalar fieldf:

S5E d4xFFS 2
1

k
R~G,g!1

1

2
gmnf ,mf ,n2V1~f! D

1A2gV2~f!G . ~5!

The case whereV2(f)[const was studied in Ref.@24#,
and the general case was studied by Guendelman in
@25#. TMT gives desirable results if we proceed in the fir
order formalism~metric gmn and connectionGls

m are inde-
pendent variables, as well as the antisymmetric tensor fi
Amnl), andR(G,g)5gmnRmn(G), Rmn(G)5Rmna

a (G), and
2-2
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Rmns
l ~G![Gmn,s

l 1Gas
l Gmn

a 2~n↔s!. ~6!

At this stage no specific forms forV1(f) and V2(f) are
assumed.

Variation of the action with respect toAmnl results in the
equationemnab]bL150, which means that

L152
1

k
R~G,g!1

1

2
gmnf ,mf ,n2V1~f!5sM45const,

~7!

where sM4 is an integration constant,s561, andM is a
constant of the dimension of mass.

Variation with respect togmn leads to

2
1

k
Rmn~G!1

1

2
f ,mf ,n2

1

2x
V2~f!gmn50, ~8!

where the scalar fieldx is defined by

x[
F

A2g
. ~9!

The consistency condition of Eqs.~7! and ~8! takes the
form of the constraint

V1~f!1sM42
2V2~f!

x
50. ~10!

We have definedx and F to be of the same sign. To
avoid problems which could appear if the measureF be-
comes singular (F50), in what follows, we must care abou
such choices ofV1 , V2, and sM4 that the constraint~10!
provides forx to be positive definite. ThenF will be posi-
tive definite as well. If for example,V2(f) is positive defi-
nite, thenV1(f)1sM4 must be non-negative.

Solution of equations obtained by variation of the acti
with respect toGls

m can be represented~see@22–24#! as a
sum of Christoffel’s connection coefficients$mn

l % of the met-
ric gmn , and a non-Riemannian part which is a linear co
bination ofs,m wheres[ ln x.

The scalar fieldf equation is

~2g!21/2]m~A2ggmn]nf!1s,mf ,m1
dV1

df
2

1

x

dV2

df
50.

~11!

In the conformal frame defined by the conformal transf
mation

gmn~x!→gmn8 ~x!5xgmn~x!, f→f, Amnl→Amnl ,
~12!

the non-Riemannian contribution into the connection dis
pears:Gmn

l →Ḡmn
l 5$mn

l % ~here,$mn
l % are Christoffel’s connec-

tion coefficients of the Riemannian space-time with the m
ric gmn8 ). TensorsRmns

l (G) and Rmn(G) transform into the
RiemannRmns

l (gab8 ) and Ricci Rmn(gab8 ) tensors, respec
tively, in the Riemannian space-time with the metricgmn8 .
02502
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After making use of the solution forx as it follows from the
constraint, Eq.~10!, the gravitational equations~8! and the
scalar field equation~11! in the new conformal frame obtain
the standard form of the Einstein’s GR equations for
self-consistent system of gravity (gmn8 ) and scalar fieldf
with the TMT effective potential~for details, see@24–26#!

U~f!5
1

x2
V2~f!5

1

4V2~f!
@sM41V1~f!#2. ~13!

Notice that justU(f) plays the role of the true potentia
that governs the dynamics of the scalar fieldf, while V1(f)
and V2(f) have no sense of the potential energy densi
themselves, but rather, they generate the potential en
density. This is why we will use the termprepotentialsfor
V1(f) andV2(f). Notice that our choice of the sign in fron
of the prepotentialV2(f) is opposite to the usual one tha
would be in the case of the standard GR. Doing this is j
for convenience in what follows.

In order to provide a disappearance of the cosmolog
constant, one usually demands that the effective potentia
equal to zero at the minimum, i.e., it is necessary that
effective potential and its first derivative are equal to zero
the same point. As a matter of fact, this is the essence of
cosmological constant problem treated in the old sense, w
there was no need for an explanation of a small but nonz
cosmological constant. If we want to avoid the necessity
fulfill this fine tuning, TMT gives us such an opportunity~it
has been explored in Refs.@24–26#!. In fact, independently
of the shape of the nontrivial prepotentialV1(f), an infinite
number of initial conditions exists for whichV11sM450 at
some valuef5f0. If V1(f) and V2(f) are regular atf
5f0, andV18(f0)Þ0 andV2(f) are positive definite, then
f5f0 is the absolute minimum ofU(f) with the value
U(f0)50. We will refer to such a situation asthe first class
scenario.

In the present paper we will study the models with suc
prepotentialV1 that there will be an infinite number of initia
conditions for whichV11sM4Þ0 at any value off ~we will
refer to such a situation asthe second class scenario!. Then
the stable vacuum may, for instance, be realized asymp
cally asf→`, which is actually the idea used in the quin
tessence models.

The assumption thatV2(f) is positive definite will be our
choice in what follows.

III. EXTREMELY BROAD CLASS OF TMT MODELS DO
NOT REQUIRE FINE-TUNING TO PROVIDE

QUINTESSENCE

A. General idea: The inverse power low quintessential
potential as a simple example

In contrast to standard gravitational theories where
quintessential potential must be a slowly decreasing func
as f→`, in TMT we have an absolutely new option: th
quintessential behavior of the TMT effective potentialU(f)
for large enoughf may be achieved with increasing prep
2-3
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A. B. KAGANOVICH PHYSICAL REVIEW D 63 025022
tentialsV1(f) andV2(f). This circumstance enables us
avoid both the cosmological constant problem and the pr
lem of the flatness of the quintessential potential.

For illustration of these statements, let us notice that st
ing from the positive power low prepotentialsV1 andV2

V15m1
(42n1)fn1, V25 1

4 m2
(422n2)f2n2, ~14!

with n2.n1, we obtain the TMT effective potential, whic
for large enoughf, has the inverse power low form

U'
m1

2(42n1)

m2
2(22n2)

1

f2(n22n1)
~15!

and does not depend on the integration constant. Ano
interesting case isV1[0 ~remind that adding a constant t
V1 is equivalent just to a redefinition of the integration co
stant sM4) and, for example,V2[lf4. Then U(f)
5M8/lf4.

Although there exists a possibility for generation of
negative power low potential in the models with dynamic
supersymmetry breaking~see, for example@29#!, such poten-
tial still looks to be exotic in the context of the standard fie
theory. As we see in TMT, such quintessential forms of
effective potential are obtained very easily and in a natu
way.

Besides, adding any subleading~asf→`) terms to Eqs.
~14! does not alter the above results since their relative c
tributions toU(f) will be suppressed asf is large enough.
In particular, adding the termV2

(0)*A2gd4x, V2
(0)[const,

which in GR would have the sense of the cosmological c
stant term, does not affectU(f) asf is large enough. Thus
starting from the polynomial form of the prepotentialsV1
andV2 with an appropriate choice of the powersn1 andn2
of the leading terms, one can in fact provide a generation
the inverse power low quintessential potential in such a w
that neither the cosmological constant problem nor the
problem of the flatness of the quintessential potential app
at all.

B. The exponential form of the TMT effective potential U„f…

A simple way to realize an exponential asymptotic fo
of the TMT effective potentialU(f), Eq. ~13!, is to define
the prepotentialsV1 andV2 as follows:

V15s1m1
4eaf/M p, V25 1

4 m2
4e2bf/M p. ~16!

Here s1561 and we assume thata and b are positive
constants. The restrictions formulated after Eq.~10! have to
be taken into account. The effective TMT potential cor
sponding to the prepotentials~16!

U5
1

m2
4 ~s1m1

4e2(b2a)f/M p1sM4e2bf/M p!2 ~17!

contains two particular cases of special interest.
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a. The casea5b. This case corresponds to a sort of t
scale invariant theory studied by Guendelman@25#. In fact,
in this case the theory, Eq.~5!, is invariant under global
transformations

gmn→eugmn , Amnl→euAmnl , ~18!

whereas the scalar fieldf undergoes the shift

f→f2
M p

b
u. ~19!

In such a model, the TMT effective potential has the form

U~f!5
m1

8

m2
4 F11

s1

s S M

m1
D 4

e2bf/M pG2

, ~20!

and the observation thatU(f) has an infinite flat region as
f→` and approaches a nonzero constantm1

8/m2
4, has been

used in Ref.@25# for discussion of possible cosmologic
applications with the choices1 /s521. The first possibility
is related to the very early universe: a slow rolling~new
inflationary! scenario might be realized assuming that t
universe starts at a sufficiently large value off. Another
scenario discussed by Guendelman in Ref.@25# is based on a
possibility form1

8/m2
4 to be very small. This approach has th

aim to construct a scenario for the very late universe. In t
scenario, there could be a long lived stage with almost c
stant energy densitym1

8/m2
4 that will eventually disappea

when the universe achieves its true vacuum state with z
cosmological constants. This occurs when the expressio
parenthesis in Eq.~20! becomes zero and, therefore, no fin
tuning is needed. It turns out~see Refs.@25,26#! that in the
presence of a matter, which is introduced in a way respec
the global symmetry Eqs.~18!,~19!, the change of the con
straint ~10! leads to a correlation betweenU(f) ~close but
not equal to zero! and the matter energy density.

In the casea5b, the TMT effective potential, Eq.~20!,
is not a constant due to the appearance of a nonzero inte
tion constantM, that is actually due to a spontaneous brea
ing of the global continuous symmetry, Eqs.~18!,~19!. Guen-
delman noticed@25# that in terms of the dynamical variable
used in the Einstein frame, that is,gmn8 andf, the symmetry
transformations, Eqs.~18!,~19!, are reduced to shifts~19!
alone @gmn8 is invariant under transformations, Eq
~18!,~19!#. Thus in terms of the dynamical variables of th
Einstein frame, the spontaneous symmetry breaking is
that of the global continuous symmetryf→f2(M p /b)u.
It is important that, as it was mentioned in Ref.@25#, this
global continuous symmetry is restored asf→`.

b. The caseb.a.0. This is the most interesting cas
from the viewpoint of the quintessence. Forbf@M p , the
TMT effective potential, Eq.~17!, behaves as a decayin
exponent:

U.
m1

8

m2
4

e22(b2a)f/M p as bf@M p . ~21!
2-4
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If we want to achieve the quintessential form of the TM
effective potential~21! for not too large a value off and
with not too big a difference in the orders ofm1 andM ~this
point will be explained in the next section!, then we need the
condition

0,b2a!b. ~22!

And of course, the most evident argument in favor of t
condition consists in the demand to provide the flatness
the f potential at the latef-dominated universe, where
has to imitate the present cosmological constant. This is p
sible only if b2a is less than or of order one, while the
are no reasons forb not to be large in general.

Comparing this condition fora and b with that of the
model of Ref.@25# discussed just above, one can observe t
the model under consideration can be interpreted as that
a small explicit violation of the global symmetry, Eq
~18!,~19!. Notice that the expression forU(f) as bf@M p
does not include the integration constantM and the exponen
is proportional tob2a. This reflects the fact that suc
asymptotic behavior ofU(f) results from the explicit viola-
tion of the global continuous symmetry, Eqs.~18!,~19!.

It is very interesting that although the discussedglobal
continuous symmetry~18!,~19! is broken in this model ex-
plicitly, the equations of motion show that the symmetryis
also restored asf→`, just as in the casea5b with only
spontaneous symmetry breaking. Therefore, in terms of
dynamical variables used in the Einstein frame, that is,gmn8
and f, in the model where the condition~22! holds, the
approximate global symmetryf→f2(M p /b)u is restored
asf→`.

This observation opens an unexpected chance to solve
problem discussed by Carroll@19# ~problem five in the list of
problems in the Introduction!, which consists of the follow-
ing. There are no reasons to ignore a possibility that
scalar fieldf interacts directly with usual matter fields. Su
pose that such interactions have the form of the couplinf i
•(f/m)Li , whereLi is any gauge invariant dimension-fou
operator,m is a mass scale, andf i is a dimensionless cou
pling constant. The flatness of the quintessential potentia
the fieldf means that excitations off are almost massless
Therefore, in the presence of direct interactions of thef field
to the usual matter fields, one has to expect the appearan
the very long-range forces which do not obey the equi
lence principle. Observational restrictions on such fi
forces impose small upper limits on the coupling consta
f i .

To explain the smallness off i ’s, Carroll proposed that the
theory possesses an approximate global continuous sym
try of the form f→f1const ~the idea similar to what is
used in pseudo-Goldstone boson models of quintessenc@5#
where, however, an explicit breaking of the continuous ch
symmetry reduces it to a discrete symmetry!. In the frame-
work of Einstein’s GR, such exact continuous symmetry
incompatible with a nontrivial potential of the scalar fieldf.
This means that if we were working in Einstein’s GR, a
then started from the model with the exact symmetryf
→f1const and therefore with a constant potential,
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would want to achieve a nontrivial, quintessential poten
~passed also across a fine-tuning purgatory! as a result of
some mechanism for symmetry breaking. Such a pict
looks even more problematic than the fine-tuning probl
itself. In addition, in the framework of such a general id
about a breaking of the symmetryf→f1const, it is impos-
sible to point out the parameters of the theory which co
produce, after a symmetry breaking, the small coupling c
stantsf i .

In contrast to GR, in TMT one can suppose that in a
unknown more fundamental theory, the global continuo
symmetry, Eqs.~18!,~19! is an exact one, and thata5b. At
energies below the Plank mass, the symmetry is break
and it is assumed that the effective action describing
relevant physics has the form of TMT, Eq.~5! ~inclusion of
the usual matter will be studied in Sec. VI!, with the non-
trivial prepotentials, Eq.~16!. The only thing we need from a
mechanism for symmetry breaking consists of a small re
tive shift of the magnitudes ofa andb satisfying the condi-
tion ~22!. If the symmetry breaking generates couplings
the scalar fieldf to the usual matter fields, then the corr
sponding dimensionless coupling constantsf i must be
proportional1 to some positive power of (b2a)/b.

Notice that an unbounded increase of the prepotential
f→` does not produce problems, at least on the class
level, since as was already mentioned in Sec. II, the pre
tentials have no sense of a potential energy density. The
potential is the TMT effective potential, Eq.~13!, that in the
model under consideration, approaches zero according to
~21! asf→`.

An evident generalization of the prepotentials~16! that
maintains the behavior ofU(f) asbf@M p , Eq. ~21!, con-
sists of adding to them the terms with a lower degree
growth. They may be, for example, polynomials inf ~as was
the case in the previous subsection!. Relative contributions
of all adding terms into the TMT effective potentialU(f)
will be exponentially suppressed for largef. If these addi-
tional terms appear as a result of breaking of the symme
Eqs. ~18!,~19! ~remind thata5b in the case of the exac
symmetry!, then coefficients in front of them have to be pr
portional to some positive power of the small parameterb
2a)/b. The latter will be used in the next section. For t
same reasons as it was before, the symmetry~18!,~19! is
restored asf→`.

Simple reasoning adduced here, as well as in the prev
subsection, does not look like a trivial one if we recall that
GR, adding any constant and/or increasing~asf→`) term
to the potential destined to be a quintessential one caus
drastic violation of its desirable features; an arbitrary cosm
logical constant appears and/or the flatness conditions
destroyed if no extreme fine-tunings are made. The basis

1Notice that the exponents in the prepotentials, Eq.~16!, actually
contain the dimensional factorsaM p

21 andbM p
21 . Therefore, the

dimensionless parameter that could characterize the symm
breaking has to be of the form (bM p

212aM p
21)/bM p

215(b
2a)/b.
2-5
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the resolution of these problems in TMT consists in a po
bility to achieve a quintessence form of the effective pot
tial asf is large enough, starting from prepotentials incre
ing asf→`. As a matter of fact, this is the main advanta
of the studied TMT models over the quintessence mod
formulated in the framework of the standard GR.

In conclusion, it is worthwhile to notice for the following
discussion that in all cases considered in this section,x21 as
the solution of the constraint~10! asymptotically approache
zero asf→`.

IV. PROBE MODELS: TOWARDS EFFECTIVE TMT
POTENTIAL OF THE QUINTESSENTIAL

INFLATION TYPE

A. Some clarifications to the rest of the paper

The previous sections served a preparatory role in
formulation and solution of the main problems of this pap
In Sec. III, our attention was concentrated on the possibili
of TMT to generate without fine-tuning the scalar fieldf
potential which, for large enoughf provides a quintessence
It turns out, however, that some of such TMT effective p
tentials can also be well defined as driving the early unive
evolution. In this paper, I do not aim to look for a preci
value for all parameters of the potential that could be able
provide an adequate description of the cosmological ev
tion from slightly after Planck time up to now and answer
demands of the realistic cosmology. But I do want to exh
the fact that the field theory models based on TMT prov
the existence of a broad spectrum of tools giving us the fi
belief that such a potential can be generated without fi
tuning. More precisely, in this section I am going to demo
strate that exploring the results of the previous section
make one sure that TMT is able to generate~without any sort
of fine-tuning! the effective potential of such a form tha
could answer basic demands of the realistic cosmology.

Such a qualitative examination is enough for the purpo
of this paper, which consists mainly in studying of som
basic field-theoretic problems of TMT that turn out to be
very close interrelation with some fundamental features
the cosmological scenario. The essence of the matter is
generally speaking, the price for the success of TMT in
resolution of the cosmological constant problem is seri
enough. In fact, in order to incorporate the matter fields i
the simplifying picture reviewed in Sec. II in such a way th
the TMT effective equations of motion of all fields in th
Einstein frame would have the form of the equations of m
tion of the standard field theory based on GR in~Ref. @24#!,
we were forced to start from the very nonlinear~in the matter
fields! original TMT action. This circumstance together wi
the non-Riemannian nature of the original action makes
quantization of TMT practically an inaccessible proble
even on a semiclassical level. Moreover, it was unclear h
one can approach a question of matter fields quantizatio
the background curved space-time. We will see below t
for the second-class cosmological scenarios~see the end of
Sec. II!, with an appropriate choice of the prepotentials, it
enough to start from the original TMT action with exact
the same degree of nonlinearity in matter fields as in
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standard theory in order to achieve the standard matter
theory in a background~pseudo-Riemannian! space-time.
This appears to be possible to do, after the so-called T
gravitational background is defined in Sec. V. Then the m
ter fields quantization in the TMT gravitational backgrou
reduces to the standard procedure of the matter fields q
tization in curved space-time@27,28#. Fortunately, it turns
out that the choice of the initial cosmological conditions a
prepotentials needed to provide such successful construc
of the matter field theory in the context of TMT, correspon
to the class of models where the TMT effective potent
allows to solve all five problems mentioned in Introductio

B. Models based on the hypothesis that the theory possesses
the explicitly broken global symmetry

The prepotentials of the form~16! with additional ~sub-
leading asf→`) terms provide the possibility to genera
the TMT effective potentialU(f) with an asymptotic quin-
tessence behavior that mimics the current effective cos
logical constant. For this to be done there is no need for
sort of fine-tuning, and the satisfactory condition for this
0,b2a!b in Eq. ~16!. If, however, one wants to exten
the range of applicability of the TMT effective potential o
the same single scalar fieldf to satisfy constraints of the
realistic cosmology from inflation of the early universe up
the present-day universe, then we have too big of an a
trariness in the choice of the additional terms to Eq.~16!. I
restrict myself by models based on the idea that the act
Eq. ~5!, is the effective one of a more fundamental theory
the energy scales below the Planck mass. It seems, the
be natural to suppose that transition from the fundame
theory to the effective one is accompanied by the breaking
some fundamental symmetries. I will assume that one
such symmetries is the global one, Eqs.~18!,~19!.2 Such an
approach to the choice of prepotentials enables us to na
the amount of suitable versions. In particular, for mod
leading to the asymptotic~as f→`) inverse power low
TMT effective potentials~discussed in Sec. III A!, one can-
not point out a range where the symmetry~18!,~19! is re-
stored. This is why I am obliged to restrict myself to stud
ing models of the type discussed in Sec. III B and, mo
precisely, to models where the condition Eq.~22! holds.

Below we will formulate three models where the modi
cations of the prepotentials, Eq.~16!, will be realized by
adding the simplest terms explicitly breaking the symme
~18!,~19!. The Planck massM p is chosen as the typical sca
for parameters of the dimension of mass corresponding to
limit where the global symmetry~18!,~19! is unbroken. Then
the appearance of the mass parameters smaller thanM p is a
manifestation of a symmetry breaking by the appropri
terms since those parameters can be represented as„(b
2a)/b…nM p , n.0. In the framework of such an approac
one can maintain that the model is free of fine-tuning if o
ders of all such mass parameters are not too different f

2Of course, without knowledge of the fundamental theory, o
cannot discuss a mechanism for the symmetry breaking.
2-6
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M p @in this connection, see also discussions after E
~21!,~22!, and footnote 1#.

1. Model 1

V1~f!5m1
4eaf/M p, V2~f!5 1

4 ~4V2
(0)1m2

4e2bf/M p!.
~23!

With the choice of the parametersm25M p , 4V2
(0)

5(1023M p)4, m151022M p , b57, anda56, and with the
integration constantM45(3q31022M p)4, 0,q&1 (s5
11), the TMT effective potentialU(f), Eq. ~13!, is a
monotonically decreasing function with a shape that is c
venient to describe in a piecewise form with the followin
four typical regions:

U~f!'q8M p
4 for f,22.2M p ,

'
q8M p

4

111012e14f/M p
for 22.2M p,f,21.8M p ,

'10212M p
4e214f/M p for 21.8M p,f,0.6M p ,

'10216M p
4e22f/M p for f.1.2M p . ~24!

2. Model 2

V1~f!5 1
2 m1

2f21m1
4eaf/M p,

V2~f!5 1
4 ~4V2

(0)1m2
4e2bf/M p!. ~25!

With the choice of the parametersm25M p , 4V2
(0)

5( 1
3 M p)4, m151024M p , m151023M p , b57, anda56

and with the integration constantM45(1/A31022M p)4, (s
511), the TMT effective potentialU(f), Eq. ~13!, is a
monotonically decreasing function with a shape that one
describe in a piecewise form with the following three typic
regions:

U' 1
4 lf4, l510214 for f,2 1

3 M p ,

'10216M p
4F10211

1

2 S f

M p
D 2G2

3e214f/M p for 0,f,1.1M p ,

'6310228M p
4e22f/M p for f.1.4M p , ~26!

where in the interval 0,f,1.1M p the factor in front of the
exponential function varies very slowly.

3. Model 3

V1~f!5 1
2 m1

2f21m1
4eaf/M p,

V2~f!5 1
4 ~4V2

(0)1 1
2 m2

2f21m2
4e2bf/M p!. ~27!

With the choice of the parametersm25M p , 4V2
(0)

5(1021M p)4, m151024M p , m151023M p , m2
02502
s.
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n
l

51022M p , b57, anda56, and with the integration con
stant M45(1/A31022M p)4, (s511), the TMT effective
potential, Eq.~13!, is a monotonically decreasing functio
with a shape that one can describe in a piecewise form w
the following three typical regions:

U' 1
2 m2f2, m51026M p for f,20.7M p ,

'10216M p
4F10211

1

2 S f

M p
D 2G2

3e214f/M p for 20.6,f,1.5M p ,

'10224M p
4e22f/M p for f.1.7M p , ~28!

where in the interval20.6M p,f,1.5M p , the factor in
front of the exponential function varies very slowly.

C. Some general features of the models 1–3

As it was already noted, the exact fitting of all paramet
to satisfy the requirements of the realistic cosmology is o
and above the plan of this paper. Our aim here is, rathe
demonstration of the extremely broad spectrum of to
given by TMT to solve some fundamental problems of t
realistic cosmology.

~1! In each of the models 1–3 with the action~5!, the
global continuous symmetry~18!,~19! is violated by all terms
of V1 andV2 except for the last term ofV2. The symmetry is
restored at the limitf→`. All mass parameters~including
mass parameters corresponding toL terms in each of the
models! have orders equal or slightly less than the Plan
mass @but not less than the grand unified theory~GUT!
scale#.

~2! One can see that the TMT effective potentialU(f) of
each of the models 1–3 has a region that can be respon
for an inflation of the early universe. Let us refer to th
region ofU(f) as the inflationary region ofU.

In model 1, the inflationary region ofU is the infinite
interval 2`,f,21.8M p with a practically constant value
U(f)'q8M p

4 that smoothly passes on a slowly decreas
region. Such an inflationary region ofU might be responsible
for an initial stage of a new inflationary scenario@30#.

In models 2 and 3, the inflationary regions ofU have the

form of the power low potentials (1
4 lf4 and 1

2 m2f2, respec-
tively! driving the chaotic inflation@15#. Parameters of the
prepotentials are chosen in such a way that the inflation
region ofU satisfies the requirements of the realistic cosm
ogy. It is very important to stress that this can be done w
out strong tuning of the parameters, in contrast with the
approach to the chaotic inflation models, where the stro
enough tuning is needed. The choice ofb and a does not
practically affect the inflationary region ofU(f).
2-7



o

in

nd

ns
Th
n

o
th
-
ti

nd
M
-
-

he

l-

re
M
th

in
h-
nl
es

e

ide
en-

iate
ters
f

-
he
ry
rio

ca-
he
the

ton
in

ue.
e-
in

ons

ere
f
lar

en
the
the

ell

le
n-

he
n,

c
ts
ck-
or of

ion
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~3! The TMT effective potentialU(f) of each of the
models 1–3 behaves as

U~f!'
m1

8

M p
4

e22(b2a)f/M p as f.fb5ÃM p , ~29!

where the constant factorÃ of order one is very sensitive t
the choice of parameters. Let us refer to this region ofU(f)
as the quintessential region since it can serve for the qu
essential model of the present universe. I should make
important remark here. The quintessential region ofU has
the form ~29! where the value of (b2a)/b!1 determines
the strength of the symmetry breaking. The choice ofb2a
51 andb57 in models 1–3 has just an illustrative aim, a
it is not a problem to adjust the value ofb2a to satisfy the
observable value ofVf at present.

~4! Between the inflationary and quintessential regio
there exists an intermediate region of great interest.
TMT effective potentialU(f) in the intermediate region ca
be represented in the general form

U~f!5 f ~f!M p
4e22bf/M p, ~30!

where f (f) is a very slowly varying function compared t
the exponential factor. There is a remarkable property of
intermediate region ofU that provides possibilities for reso
lution of some of the fundamental problems of the realis
cosmology: by an appropriate choice ofb, one can achieve a
very rapid decreasing ofU(f) after an inflationary epoch
that provides conditions for transition to the radiation a
matter dominated era. For instance, in model 3, the T
effective potentialU(f) at the end of the intermediate re
gion (f'1.5M p) is roughly 1028 times less than at the be
ginning of the intermediate region (f'20.6M p). This
property of the intermediate region ofU may be very useful
in the resolution of problems of cosmological nucleosynt
sis constraints and large-scale structure formation@6,7,18,8#.
The exact shape of the intermediate region ofU ~steepness
and the range of definition! dictated by the realistic cosmo
ogy can be adjusted by the choice of the magnitudes ofa, b,
and the dimensional parameters~like M, m1, etc.!.

~5! Combining the intermediate and quintessential
gions, one can see that the post-inflation region of the T
effective potential can be represented approximately in
exponential form described by Eq.~2! with f-dependent pa-
rametera ~see Ref.@6#!

a5a~f!52b as f,fb ,

52~b2a! as f.fb , ~31!

wherefb @see Eq.~29!# is a boundary value off between
the intermediate and quintessential regions ofU(f). It
seems to be very attractive for this result to be obtained
natural way in the framework of the field theory model wit
out any assumptions specially intended for this. The o
things that have been assumed is that the model poss
the approximate global continuous symmetry, Eqs.~18!,~19!,
and the value ofb2a!b, depending on a strength of th
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symmetry breaking, should not be large in order to prov
the flatness of the TMT effective potential in the quintess
tial region.

~6! It turns out that in models 2 and 3, the shape ofU(f)
in the buffer range between the inflationary and intermed
regions can be very sensitive to variations of the parame
entering intoV1 and V2. By means of a suitable change o
the parameters one can achieve~without altering the qualita-
tive properties of the discussed above regions!, for instance
an almost flat shape ofU in this buffer range or even suc
cessive local minimum and maximum immediately after t
inflationary region. This feature of the models may be ve
important if, for example, one wants to realize a scena
where the instant preheating@31# occurs before entry into the
intermediate region.

The final remarks concern the terminology. Since the s
lar field f, in the context of models 1–3, dominates both t
very early and the late universe, acting in such a way that
universe expands with acceleration, let us call it the infla
field following the terminology by Peebles and Vilenk
@13#.

V. GRAVITATIONAL BACKGROUND AND INFLATON
FIELD f

The complicated structure of TMT revealed in Refs.@21–
24# turns a quantization procedure into a very serious iss
This concerns the problem of a quantization of all TMT d
grees of freedom. But even the matter fields quantization
TMT seems to be a very nontrivial problem. Some reas
for this were discussed briefly in Sec. IV A.

Let us consider here the simple model of Sec. II, wh
the scalar fieldf is the only matter field. The system o
equations of the standard GR form for gravity and sca
field f with the potential Eq.~13! in the Einstein frame has
been obtained for the selfconsistent TMT problem, Eq.~5!.
At first glance, one can follow a standard procedure wh
ignoring the reaction of the quantum field fluctuations on
gravity, regarding the scalar field equation as one in
gravitational background that consists of the metricgmn8
treated as an external field~for a short time, I will refer to
this as the formal gravitational background!. Then the scalar
field quantization in such a background would be a w
studied problem.

To elucidate the situation, it is useful to look at a possib
definition of a gravitational background in TMT before co
formal transformations~12!, i.e., in the original frame.
Namely, let us try to define a gravitational background in t
same simple model of TMT starting from the original actio
Eq. ~5!. We are dealing now with two measures:F, defined
by Eq. ~4!, and A2g. Besides, TMT is formulated in the
first-order formalism. Therefore, to determinethe gravita-
tional background in the original frame, we have to fix the
metric gmn , the measureF, by means of the antisymmetri
tensor fieldAmnl and the connection. All geometrical objec
that constitute the physically admissible gravitational ba
ground have to be self-consistent as the geometrical sect
the complete self-consistent gravity1 matter system. This
means that the solution mentioned in Sec. II for connect
2-8



e

m
d

n
e,
be

ce
s
li-

po
p

th
s

u
ze

f
a

la
th

c
y
to
th

all

T
ce
ta-

as
e,

of
ua-
hat

t of
rm
lf-
itu-
ap-

e

en-

ting

lds

-

he
ct,
he

this
of

to
s

al-
ld
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Gmn
a in terms ofgmn and s ,m[(ln x),m has to hold.3 Hence,

the gravitational background in the original frame is defin
by two fields: the metricgmn and the scalar fieldx. We will
refer to this asthe TMT gravitational backgroundin the
original frame. The fact that the scalar fieldx has to be
regarded as a fixed external field is the origin of proble
with the construction of the TMT gravitational backgroun
Let us discuss the reasons for this.

The constraint, Eq.~10!, does not include the Newto
constant or some other very small constant and, therefor
contrast to GR, it describes the very strong correlation
tween the scalar fieldf ~inflaton field! and x ~geometrical
object!. So, in the self-consistent problem, small local spa
time fluctuationsdf(x) of the f field generate fluctuation
dx(x) of the x field which, in general, should not be neg
gible; that is, condition

dx

x
!1 ~32!

is not always true. In such a case, thex field could not be
regarded as the background object and, therefore, it is im
sible to determine the TMT gravitational background a
proximation.

One can single out a broad class of situations when
TMT gravitational background approximation has no sen
In the linear approximation in small fluctuationsdf, the
constraint, Eq.~10!, results in

dx

x
5 f ~f!df, where f ~f![

V28

V2
2

V18

V11sM4
. ~33!

Recall that for the first-class scenarios, the true vacu
state with a zero effective cosmological constant is reali
at f5f0, whereV1(f0)1sM450. Then it follows from
Eq. ~33! that small fluctuations off in the neighborhood of
such vacuum states produces very strong fluctuations ox.
This means that the conception of the TMT gravitation
background has no sense in the context of the first c
cosmological scenarios and, therefore, the problem of
scalar fieldf quantization remains without answer.

It is not the case for the second-class cosmological s
narios whereV1(f)1sM4 does not equal to zero at an
finite value off. The models of Sec. IV B correspond just
the second-class cosmological scenarios. It is remarkable
the condition, Eq.~32!, is satisfied for models of Sec. IV B
with extremely high accuracy for all values off:

3On this stage, I restrict myself to models where the matter fie
do not contribute to the connection~see Sec. VI C!.
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for model 1, 0, f ~f!,
2b2a

M p
5

8

M p
;

for model 2,
8

M p
5

2~b23!

M p
, f ~f!,

2~b11!

M p
5

16

M p
;

for model 3, 0, f ~f!,
15.1

M p
.

These numerical results mean that the influence of sm
f fluctuations onx fields has a typical scaledf/M p . Thus
we conclude that for the models of Sec. IV B, the TM
gravitational background is the well-defined object. Noti
that in the variables of the Einstein frame, the TMT gravi
tional background is described by external fieldsgmn8 andx.

VI. INCLUSION OF USUAL MATTER FIELDS

A. Outline of the approach to the problem

Inclusion of the ordinary matter fields~like vector bosons,
fermions, etc.! in TMT is a very nontrivial problem. In the
framework of the first class cosmological scenarios, it w
shown in Ref.@24# that the field theory model exists wher
in the conformal Einstein frame, the classical equations
motion of the gauge unified theories as well as the GR eq
tions are exactly reproduced. The merit of this model is t
the spontaneous symmetry breaking~SSB! does not generate
the cosmological constant term. However, a serious defec
this model consists in the necessity to use the artificial fo
of how the gauge field kinetic terms and fermion se
interactions enter into the original action. This creates a s
ation where it is absolutely unclear as to how one can
proach the matter fields quantization.

The origin of the problem is practically reduced to th
role of the constraint, Eq.~10!, which is modified in the
presence of usual matter fields. In fact, matter fields in g
eral contribute to the constraint, and then thex field becomes
dependent upon the matter fields. Therefore, when star
with LagrangiansL1 andL2, including the matter fields in a
form similar to the canonical one, the resulting matter fie
equation of motion in the Einstein picture~obtained with the
use of the conformal transformations, Eq.~12!, or their gen-
eralization in the presence of fermions! can appear, in gen
eral, to be very nonlinear.

Inclusion of the usual matter fields in the context of t
models of Sec. IV B permits us to avoid this problem. In fa
following the idea that the only mass scale typical for t
inflaton physics in the limit where the symmetry~18!,~19! is
exact is the Planck mass, and terms that explicitly break
symmetry contain mass parameters only a few orders
magnitude less thanM p , we provide a situation wherethe
usual matter field contributions to the constraint appear
be negligible in comparison with the inflaton contribution
throughout the history of the universe. At the late universe,
the unbounded increase of the prepotentials~asf→`) rein-
forces this effect. As a result of this, the scalar fieldx with
high accuracy is determined by the same constraint, Eq.~10!,
as it was in the absence of the usual matter fields. This
s

2-9
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lows one, starting from the Lagrangians similar to the us
ones, to keep the desirable basic features of the usual m
fields sector after the transition to the Einstein frame. T
gether with the basic idea about the broken continuous glo
symmetry, Eqs.~18!,~19!, modified to the case of the pres
ence of fermions, this approach provides possibilities
constructing gauge models in the context of TMT and, at
same time, to solve problems 1–5 of the Introduction.

B. Action of a gauge Abelian model and continuous
global symmetry

In the framework of the formulated above general ide
let us consider a toy model that possesses gauge Ab
symmetry and contains the following matter fields: a co
plex scalar fieldj51/A2(j11 i j2), an Abelian gauge vecto
field Am , and a fermionC. Generalization to non-Abelian
gauge theories can be performed straightforward.

In the presence of fermions, the vierbein-spin-connect
formalism @32,33# has to be used instead of the first ord
formalism of Sec. II. The action of the model has the gene
form as in Eq.~3!, with

L152
1

k
R~v,V!1

1

2
gmnf,mf,n2V1~f,uju!

1gmn~]m2 ieAm!j~]n1 ieAn!j*

1
i

2
C̄H gaVa

mS ]Wm1
1

2
vm

cdscd2 ieAmD
2S ]Qm2

1

2
vm

cdscd1 ieAmDgaVa
mJ C, ~34!

L25V2~f!2 1
4 gabgmnFamFbn2hC̄Cujuegf/M p.

~35!

Here, the following definitions are used@32#:

R~v,V!5VamVbnRmnab~v!,

Rmnab~v!5]mvnab1vma
c vncb2~m↔n!, ~36!

whereVam5habVb
m , hab is the diagonal 434 matrix with

elements (1,21,21,21) on the diagonal,Vm
a are the vier-

beins, andvm
ab52vm

ba (a,b50,1,2,3) is the spin connec
tion.

PrepotentialV2(f) is the same as in the models of Se
IV B. PrepotentialV1(f,uju) is chosen in the form

V1~f,uju!5V1~f!1P~ uju!eaf/M p, ~37!

whereV1(f) is the same as in the models of Sec. IV B; th
is, eaf/M p is the common factor in front ofm1

41P(uju) in
Eq. ~37!.
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The transformations of the continuous global symmet
Eqs.~18!,~19!, are generalized now to the form@26#

Va
m→e2u/2Va

m , gmn→eugmn , Amnl→euAmnl ,

f→f2
M p

b
u, j→j, Am→Am ,

C→e2u/4C, C̄→e2u/4C̄. ~38!

The term*P(uju)eaf/M pFd4x breaks the symmetry~38!
by the same manner as the prepotentialV1(f). For the
Yukawa coupling type term

SYuk52hE C̄Cujuegf/M pA2gd4x ~39!

to be invariant under transformations~38!, the parameterg
must beg5 3

2 b. The value ofg preferable from the dynami
cal point of view will be discussed later, and we will see th
g,2b. All other terms describing the usual matter fields a
invariant under transformations~38!. If gÞ 3

2 b, then the
symmetry is explicitly broken only by the Yukawa couplin
type term and the prepotentialsV1(f,uju) andV2(f). Thus,
similar to the models of Sec. IV B, in the model with th
Lagrangian densities~34! and ~35!, the global continuous
symmetry~38! is restored asf→`.

It is interesting that the form of thef dependence of the
Yukawa type term dictated by the symmetry~38! is very
similar to a motivated by string theories nucleon-scalar c
pling discussed by Wetterich@6# in the context of a quintes
sence type model with exponential potential.

Note finally that for pedagogical reasons we have star
from the simplified model where the Yukawa type term a
pears only with the measureA2g. We will see later~see
Sec. VI H! that an additional Yukawa type term in Eq.~34!,
that is, with the measureF, is needed to provide the poss
bility to avoid the long-range force problem.

C. Connection, equations of motion, and constraint

Variation of the action with respect tovm
ab leads to the

equation a solution of which is represented in the form@24#

vm
ab5vm

ab~V!1Km
ab~s!1Km

ab~V,C̄,C!, ~40!

where vm
ab(V) is the Riemannian part of the connectio

@32,33#, and

Km
ab~s!5

1

2
s ,a~Vm

a Vba2Vm
b Vaa!, s[ ln x, ~41!

Km
ab~V,C̄,C!5

k

8
hciVdm«abcdC̄g5g iC. ~42!

For brevity, we omit here equations obtained by var
tions of vierbeins,Amnl , as well as of the matter fieldsf, j,
Am , C, andC̄. Combining equations obtained by variatio
2-10
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of vierbeins andAmnl , and using equations of motion forC

and C̄, one can eliminateR(v,V), and the result is the
constraint

sM41V1~f!1P~w!eaf/M p

5
2

x FV2~f!2
3

4A2
hC̄Cwegf/M pG , ~43!

which is a direct generalization of the constraint~10! to the
model we study here.

One of the aims of this toy model consists in a demo
stration of the possibility to construct realistic gauge unifi
theories~such as electroweak and GUT! in the context of
cosmological scenarios dictated by models of Sec. IV B.
troducing the scalar fieldj is intended for the realization o
the Higgs phenomenon. SinceP(w) and m1

4 appear in the
combinationm1

41P(w), the constant part ofP(w) can be
always absorbed bym1

4. Then it is natural to assume4

that uP(w)u!m1
4. Later, turning to quantum effective poten

tial, we will discuss a concrete model whereP(w)

5(l̄/4!)w4, and then the idea explained in Sec. VI A w
become clearer. The choice of the mass parameters in
models of Sec. IV B allows us to provide a situation whe
the contribution of the Higgs fieldw to the constraint~43! is
negligible with respect to the inflaton fieldf-contribution
and, hence, it can give only extremely small corrections
the main picture. If fluctuations of fermionic fields are n
abnormally large, it is natural to expect that the same c
clusion is true for fermionic contributions to the constra
~43! as well. So, thex field determined by the constrain
~43!, in practically interesting cases, coincides with thex
field determined by the constraint~10!, which holds in the
model free of the usual matter. For brevity, in what follow
when neglecting the usual matter fields contribution to
constraint, we will use the termA approximation. This notion
will be very useful in the next subsection, where we a
going to represent equations of motion in the Einstein fram

D. Equations of motion for the self-consistent problem in the
Einstein frame

In the presence of fermions, the transition to the Einst
frame ~a more suitable term for this case would be t
Einstein-Cartan frame! is carried out by the transformation
to the new variables@24#

4Recall thatm1 appears in the definition of the prepotentialV1(f)
in the models of Sec. IV B. The values ofm1 are chosen such tha
m1

45(1022M p)4 in model one, andm1
45(1023M p)4 in models two

and three.
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Vam~x!→Vam8 ~x!5x1/2~x!Vam~x!,

gmn~x!→gmn8 ~x!5x~x!gmn~x!,

C~x!→C8~x!5x21/4~x!C~x!,

C̄~x!→C̄8~x!5x21/4~x!C̄~x!,

f→f, Amnl→Amnl ,

w→w, Am→Am , ~44!

wherex is determined by the constraint~43!.
In fact, after the transition to the new variables defined

the transformations~44!, thes contribution, Eq.~41!, to the
spin connection is canceled, and the transformed spin c
nection takes the form@24#

vm8
cd5vm

cd~V8!1
k

8
hciVdm8 «abcdC̄8g5g iC8, ~45!

which coincides with the well-known solution for the sp
connection in the context of the first order formalism a
proach to the Einstein-Cartan theory@32#, where a Dirac
spinor field is the only source of a non-riemannian part of
connection. Hence, the curvature tensor, Eq.~36!, expressed
in terms of the new connection, Eq.~45!, becomes the cur-
vature tensor of such an Einstein-Cartan theory.5

At the same time, in the fermionic field equation, all term
containing s ,m also disappear@24# in the Einstein-Cartan
frame, and the result is

H i FVa8
mga~]m2 ieAm!1gaCab8b1

i

4
vm8

cd«abcdg
5gbV8amG

2
h

A2
w

egf/M p

x3/2 J C850, ~46!

whereCab8b is the trace of the Ricci rotation coefficients@32#
in the new variables, and the unitary gauge is used. Afte
shift, we define

j5
1

A2
w[

1

A2
„y1w̃~x!…, y5const. ~47!

The equation forC̄8 has a similar structure. The only differ
ence between these fermionic equations and the stan
Dirac equations in the Einstein-Cartan theory@32# is related
to an unusual Yukawa type term, and it will be discuss

5Notice that in the original frame, the terms includings ,m ~recall
that s[ ln x) originate a nonmetricity and, therefore, TMT in th
original variables has no form of an Einstein-Cartan theory.
2-11
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A. B. KAGANOVICH PHYSICAL REVIEW D 63 025022
later. Notice that for purposes of realistic particle physics o
can neglect the second term in Eq.~45! that leads to a spin
spin contact interaction@32# with coupling constantM p

22 .
For brevity, in what follows, when neglecting this intera
tion, we will use the termB approximation.

Other equations of motion in the Einstein-Cartan fra
have the following form:

1

A2g8
]m~A2g8g8mn]nf!

1
1

x FdV1

df
2

1

x

dV2

df
1

a

M p
P~w!eaf/M pG

52
hg

A2M p

C̄8C8w
egf/M p

x3/2
, ~48!

1

A2g8
]m~A2g8g8mn]nw̃ !1

eaf/M p

x

dP~w!

dw

2e2wg8abAaAb52
h

A2
C̄8C8

egf/M p

x3/2
, ~49!

1

A2g8
]m~A2g8g8mag8nbFab!1

e2

2
w2g8mnAm

52eC̄8gaVa8
nC8. ~50!

It is very important to stress that in theA andB approxi-
mations, all matter fields equations,~46!,~48!–~50!, have the
canonical structure of the corresponding matter fields eq
tions in a Riemannian space-time. The only specific featu
of these equations are concentrated in the unusual form
the effective potentials and some of the interactions.

After some algebraic manipulations with equations res
ing from variation of the vierbeins, transition to the ne
variables by means of Eq.~44!, and making use of both th
fermionic equation~46! and a similar equation forC̄8, we
obtain canonical gravitational equations of the Einste
Cartan theory. Finally, if one writes down these equations
the B approximation, we come to the canonical GR gravi
tional equation

Gmn5
k

2
Tmn , ~51!

whereGmn is the Einstein tensor of the Riemannian spa
time with metricgmn8 , and the energy-momentum tensor h
a canonical GR structure@27#
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Tmn5f ,mf ,n2
1

2
gmn8 f ,af ,bg8ab1

1

x2
V2~f!gmn8

1w̃ ,mw̃ ,n2
1

2
gmn8 w̃ ,aw̃ ,bg8ab

1
1

4
gmn8 FabFtrg8atg8br2FmaFnbg8ab

1e2~y1w̃ !2S AmAn2
1

2
gmn8 AaAbg8abD

1
i

2
@C̄8gaVa(m8 ¹n)C82~¹ (mC̄8!gaVn)a8 C8#,

~52!

where ¹mC85(]m1 1
2 vm8

cdscd2 ieAm)C8 and ¹mC̄8

5]mC̄82 1
2 vm8

cdC̄8scd1 ieAmC̄8.

Notice again that thex field entering into Eqs.
~46!,~48!,~49!, and~52! is determined by the constraint~43!
which in theA approximation gives

1

x
5

M41V1~f!

2V2~f!
. ~53!

In what follows, all discussions will be performed in th
framework of theA andB approximations.

It is worthwhile to notice that the transformations of th
global continuous symmetry, Eq.~38!, expressed in terms o
the variables of the Einstein frame, are just reduced to sh
of f: f→f2(M p /b)u.

E. Effective classical action for usual matter fields in the
background

To study the matter fields sector of the system of E
~46!–~53!, one has to define an appropriate background
Sec. V we discused two different gravitational backgroun
in the model where the usual matter was absent and the
flaton fieldf was the only field of the nongravitational se
tor. One can see that if we proceed with the formal grav
tional background, then it will be impossible to write dow
an effective classical action in the curved background giv
rise to the system of Eqs.~46!,~48!–~50!. For example, to
provide the appearance of the last term of Eq.~46! and the
right-hand sides of Eqs.~48! and~49!, such an effective clas
sical action in the curved background has to include
Yukawa coupling type term

LYuk52
h

A2
C̄8C8w

egf/M p

x3/2
.

Working in the formal gravitational background, we have
insert the expression forx, Eq. ~53!, into LYuk. But then
variation of the inflaton fieldf leads not only to the appear
ance of the needed terms, but the unwanted terms, com
from the variation ofx(f), will appear as well. It is not the
2-12
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case in the framework of the TMT gravitational backgrou
since in that case the scalar fieldx is the background one.

If, however, we want to construct the quantum theory
the usual matter fields, then it seems to be natural to s
from the approximation where in addition to the gravitation
background, the inflaton fieldf is also regarded as the bac
ground one. This can be done since in the course of its e
lution, the classical inflaton fieldf remains practically con-
stant during a typical time of quantum fluctuations of t
matter fields. In such a case, the above mentioned differe
between two definitions of the gravitational background d
appears: the background fieldx is determined by the back
ground fieldf via the constraint, Eq.~53!.

So, let us study some features of the particle phys
model in the background that, in terms of variables of
Einstein picture, consists of two external fields:gmn8 andf.
For brevity, I will refer to this issue as the particle physi
model in the cosmological background.

The effective classical action for the particle phys
model corresponding to the system of Eqs.~46!,~49!, and
~50!, in the cosmological background, can be written do
in the following form ~in the unitary gauge!:

Sclass
background5E A2g8F1

2
g8mnw,mw,n2Vcl~w;f!

1
e2

2
w2AmAng8mn2

1

4
g8abg8mnFamFbn

1Lkin~C̄8,C8,Am!1LYuk~C̄8C8w;f!G ,
~54!

whereVcl(w;f) is the classical TMT effective potential fo
the matter~Higgs! scalar fieldw in the presence of the back
ground inflaton fieldf,

Vcl~f;w!5P~w!
M41V1~f!

2V2~f!
eaf/M p, ~55!

Lkin(C̄8,C8,Am) is the standard kinetic term for the fermio
field in a Riemannian space-time with metricgmn8 , also in-
cluding the gauge coupling to the vector fieldAm . And fi-
nally, the TMT effective Yukawa coupling type term
LYuk(C̄8C8w;f) is

LYuk~C̄8C8w;f!52
h

A2
C̄8C8w

egf/M p

x3/2

52
h

4
C̄8C8wFM41V1~f!

V2~f! G3/2

egf/M p.

~56!

F. Massless scalar electrodynamics model in the cosmological
background and SSB

Up to now the functionP(w) was unspecified. Ignoring
the technical questions~in particular, the question of renor
02502
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malizability that requires a nonminimal couplinghRuwu2),
let us attract attention to a quantum effective potential wh
choosing P(w)5(l̄0 /4!)w4, l̄05const. This means tha
~ignoring the fermion field! we are dealing with massles
scalar electrodynamics in curved space-time, where the c
sical potential~the tree approximation! is given by

Vcl~w;f!5
l0~f!

4!
w4 ~57!

andl0(f) depends on the background fieldf:

l0~f!5l̄0k~f!, k~f![
M41V1~f!

2V2~f!
eaf/M p. ~58!

Numerical estimations ofk(f) in the models of Sec. IV B
give the following results: 0,k(f),3.5 for model one; 0
,k(f),1.231028 for model two; and 0,k(f),3
31027 for model three. In all models,k(f) asymptotically
approaches zero asf→6`. Thus, in all cases,l0(f) is of
the same order or less thanl̄0.

The computation technics of the effective potential for t
massless scalar electrodynamics in the one-loop approx
tion is a well-known issue@34#. However, the problem we
study here is not quite usual: the quartic coupling const
depends actually on the cosmic time via the inflaton fieldf.
Taking into account that in the course of its evolution, t
classical fieldf remains practically constant during a typic
time of quantum matter fields fluctuations, it is natural
consider the problem in the adiabatic approximation. The
fore, computing the effective potential we can regardl0(f)
as a constant. Then the computation becomes quite stan
The only additional issue we have to clear up is a poss
physical effect that the adiabatically changingl0(f) might
be on thew-effective potential.

One can check that the first point where we encoun
necessity to decide this problem is the renormalization p
cedure. In fact, performing calculations with the bare co
pling constantl0, we have no need to think about its adi
batic f dependence. But when we turn to the use of
renormalized~finite! parameterl defined byl05l1dl,
wheredl is the counterterm~which, as one knows, is diver
gent in perturbation theory!, we have to take into account
possiblef dependence of the effectivel.

The vector boson loops contribution to the effective p
tential in the one-loop approximation has the order ofe4 and
does not depend onf @see Eq.~54!#. Therefore, just as in the
standard scalar electrodynamics, one can assert that in
of the possibility forl0(f) to be very small, the effective
l(f) cannot be too small. On the other hand, it is also i
portant thatl(f) cannot be large: sincef dependence ofl0

acts in the decreasing direction in comparison withl̄0, there
are no reasons for a possiblef dependence ofl to act in the
opposite direction.

The scalar loops contribution has the order ofl2. There-
fore, in the same way as in the standard scalar electrodyn
2-13
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A. B. KAGANOVICH PHYSICAL REVIEW D 63 025022
ics, in the one-loop approximation, one can neglect the sc
loops contribution with respect to the vector boson loo
contribution.

The one-loop effective potential for the scalar fieldw
evaluated at the fixed value of the background inflaton fi
f5f1 can be written in the form

Ve f f~w;f1!5
l~f1!

4!
w41

3e4

~8p!2
w4S ln

w2

m2
2

25

6 D ,

~59!

where

l~f1!5
d4Ve f f

dw4 U
w5m

. ~60!

Let us assume thatf1 is the value of the backgroun
inflaton field wherel(f) has a maximal possible magnitud
~but it is still small!. Suppose also that the renormalizati
massm is chosen such thatl(f1);e4. This can always be
done, as is well known from the renormalization gro
analysis@34#. The final form of the effective potential

Ve f f~w;f1!5
3e4

~8p!2
w4S ln

w2

y2
2

1

2D ~61!

is determined in terms of two free parameters: the renorm
ized gauge coupling constante and VEV ^w&5y.

To verify whether the change of the value of the bac
ground inflaton fieldf has some physical consequences,
us suppose that we want to repeat the same computatio
the one-loop effective potential at another fixed value of
background inflaton fieldf5f2, where the order of the
magnitude ofl(f2) is less thane4 if we take the same
renormalization massm. According to the results of the
renormalization group analysis@34#, one can movel(f2) to
the magnitude of the order ofe4 by a change in the renor
malization mass that does not change the order of magni
of e. This can always be done ifl(f2) is small. Then the
computation of the one-loop effective potential atf5f2 in
the same approximation leads to the same effective pote
as it was atf5f1, Eq. ~61!, with the same order of magni
tude of the free parametere. One can conclude, therefore
that in the used approximation, thef dependence ofl has
no physical effect.

In this stage of the investigation, I will ignore the fermio
loop contribution into thef effective potential. The non
minimal coupling of the Higgs fieldw to curvature, which
appears in the quantum effective action in curved space-
@35#, might have some interesting but, most likely, we
enough effect, and this question exceeds the limits of
present paper.

So, for the usual form of the functionP(w), we obtain, in
a cosmological background, the effective quantum poten
for the scalar~Higgs! field w typical for gauge theories with
dynamical symmetry breaking. Notice again that the te
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(e2/2)w2AmAng8mn in Eq. ~54! does not depend on the infla
ton field f. Thus, the SSB and Higgs phenomenon occur
a standard way.

G. Yukawa coupling type term and fermion mass

As a result of SSB, the Yukawa coupling type term, E
~56! @see also Eq.~46!#, produces the TMT effective fermion
massmf depending on the inflaton fieldf:

mf5mf~f!5
h

4
yFM41V1~f!

V2~f! G3/2

egf/M p. ~62!

For f.M p ~the region corresponding to the late un
verse!, the fermion mass becomes

mf
( late).mf

(0)e2[3(b2
1
2 a)2g]f/M p,

mf
(0)52hyS m1

m2
D 6

, as f.M p . ~63!

We see that in the late universe, the fermion mass
proaches the nonzero constantmf

(0) if

g53S b2
a

2 D . ~64!

Notice that if g indeed satisfies the relation~64!, then
with the choice as in Sec. IV~i.e., a56 and b57), we
obtaing512, which is close to the value of3

2 b510.5 dic-
tated by the symmetry~38! @see the discussion after Eq
~39!#.6 So, in the framework of our working hypothesis abo
approximate symmetry~38!, one can ensurea successful
mass generation for fermions in the present cosmolog
epoch in a way typical for the standard modeland, at the
same time, one can keep the direct coupling, Eq.~56!, of
fermionic matter to the inflaton field~compare this with Wet-
terich’s model@6#!.

One has to notice that a formal generalization of the
~Abelian! model we study here, to a non-Abelian model@like
SU(2)3U(1) or SU(5)] can beperformed straightforward
Then we have to worry about scales of the particle m
generated as a result of SSB. In this connection it would
interesting to estimate the order of magnitude of the ferm
mass in the present universe that one could expect on
basis of Eqs.~63! and ~64!. With the mass parametersm1
and m2 of the models of Sec. IV B~that implies m1 /m2
51022 for model one andm1 /m251023 for models two
and three!, and withy;102 GeV, estimates give too sma
values for fermion mass at the late universe:mf

(0);h
31021 eV in model one andmf

(0);h31027 eV in models
two and three. This is because of the presence, in Eq.~63!, of
the very small factor (m1 /m2)6.

Masses of the vector bosons, as it was explained at
end of the previous subsection, do not depend on the infla

6The valueg512 is as close to32 b510.5 asb57 is close toa
56.
2-14
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field f, and their values are defined as in the standard ga
unified models. For the mass generation of fermions we h
more freedom than in the standard models. According to
basic ideas of the model developed in the present paper
general structure of Eq.~62! for masses of fermions is th
same for field theory models with different symmet
groups. The only free parameters, besides the inflaton
f, are the VEVy of the appropriate scalar boson andg. If
the values of theg8s are determined by Eq.~64!, then
masses of all fermions in the present universe are const
If, however, the parameterg corresponding to some of th
fermions is such that 3(b2 1

2 a)2g is very small but non-
zero, thenmf becomes slowf dependent according to Eq
~63! even at the late universe. Namely, since in the quin
sence model with exponential potential, Eq.~29!, the inflaton
field f changes@6# in cosmic time asf}„M p /(b2a)…ln t,
we obtain thatmf„f(t)… will change in such a case a
t2[3(b21/2a)2g]/(b2a). If u3(b2 1

2 a)2gu!b2a ~in the
models of Sec. IV B, this meansu122gu!1), the rate of
change ofmf might be very small in the present univers
Depending on the sign of 3(b2 1

2 a)2g, which should not
be the same for all fermions,mf could be either increasing o
decreasing. Notice that the case 3(b2 1

2 a)2g<0 corre-
sponds in some sense to the model studied by Wetterich@6#.

Concerning the very early universe, that is, forf,
2M p , one can see that the model predicts the TMT effect
fermion mass, Eq.~62!, to be extremely small:mf→0 asf
→2`. For example, in model three of Sec. IV B,mf
.hy1022e2gufu/M p as f,2M p . At the same time, the
gauge coupling ofC8 to Am @see Eq.~46!# is the standard
one and, in particular, it does not depend on the inflaton fi
f.7

H. The long-range force problem

The right-hand side of Eq.~48! describes a model with
direct coupling of the inflaton to fermionic matter. For a
models of Sec. IV B at the present universe, i.e., in the qu
essential region~see Sec. IV C, item three!, the effective La-
grangian of this coupling takes the form

Le f f,present
(Yuk) 52g

mf
( late)

M p
C̄8C8f. ~65!

Assuming the condition~64! for constancy ofmf
( late) , and

with the choiceb57, a56, we get that the coupling con
stant of the present day effective Yukawa coupling of infl
ton to fermion is 12mf

(0)/M p. Existence of such a couplin
would produce too strong a scalar long-range force. Fo
nately, TMT gives us additional tools that allow to solve th
problem.

In the model@26# with only spontaneous breaking of th
global continuous symmetry~38!, Guendelman studied th
case where the direct fermion-inflaton couplings similar

7This can be an interesting example of the model@36# of massless
spinor electrodynamics realized as the limit of a massive theor
f→2`.
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Eq. ~39! are present in the original TMT action, both with th
measureF and with the measureA2g. In such a model the
constant fermion mass is also achieved@26#. Having this idea
in mind, let us modify our model, Eqs.~34!,~35!, with the
explicit breaking of the symmetry~38!, by including an ad-
ditional Yukawa coupling type term which enters into th
action with the measureF,

S̃Yuk52h̃E C̄Cujueg̃f/M pFd4x. ~66!

For this term to be invariant under transformations~38!, the
parameterg̃ must beg̃5 1

2 b,a. The magnitude ofg̃ pref-
erable from the dynamical point of view will be discuss
below.

One can check that in this modified model, the fermi
mass at the late universe becomes

mf ,modi f ied
( late) .yS m1

m2
D 2F2hS m1

m2
D 4

e2[3(b2
1
2 a)2g]f/M p

1h̃e2(b2
1
2 a2g̃)f/M pG as f.M p . ~67!

The constancy ofmf ,modi f ied
( late) is achieved now if the condition

g̃5b2
1

2
a ~68!

holds together with Eq.~64!. For b57 anda56, the con-
stancy of the fermion mass at the late universe implies
g̃54, which is as close tog̃5 1

2 b53.5 asa is close tob.
With the conditions for constancy of the fermion mass

the late universe, Eqs.~64! and ~68!, the modified effective
Yukawa coupling of the inflaton to fermionic matter no
takes the form

Le f f,present
(Yuk,modi f ied)52

y

M p
S m1

m2
D 2S b2

1

2
a D

3F6hS m1

m2
D 4

1h̃GC̄8C8f. ~69!

We see that in the modified model there exists a poss
ity to prevent the appearance of such dangerous interac
To realize this opportunity we have to require

h̃

h
526S m1

m2
D 4

. ~70!

This is actually strong enough tuning since, for instance
the context of models two and three of Sec. IV B, it impli
uh̃/hu;10212. If we recall thath̃ andh are the Yukawa type
coupling constants of the Higgs scalar to the fermion, it a
pears surprising that their ratio has to be of the order
magnitude that shows the degree of the hierarchy problem
GUT: mW /mX;10212.

With conditions~64!,~68!, and ~70!, the fermion mass a
the late universe becomes

as
2-15
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mf ,modi f ied
( late) 5

2

3
h̃yS m1

m2
D 2

as f.M p . ~71!

A possible relation of the discussed question to the h
archy problem in GUT, as well as other problems that app
in the attempts to generate a realistic unified gauge theor
the context of TMT, will be studied elsewhere.

VII. DISCUSSION AND CONCLUSION

Before summarizing and discussing the main results
this paper, I would like to stress again that the first impr
sion that the studied models belong to a sort of scalar-te
theory, is wrong. The ratio of two measures, that is, the s
lar field x, Eq. ~9!, is the only object entering into the equ
tions of motion and carrying information about the meas
F degrees of freedom. If we restrict ourselves to mod
whereL1 is linear in the scalar curvature@see Eqs.~3!,~5!,
and~34!# andL2 does not contain curvature, then in the fir
order formalism, a constraint appears which determinesx in
terms of matter fields@see Eq.~10! or ~43!#. This means that
in such models, the scalar fieldx does not carry an indepen
dent degree of freedom. All deviations from the Einstein
Einstein-Cartan theory existing in the original variables
caused by derivatives ofs[ ln x, and they disappear in th
new variables obtained by the conformal transformatio
Eq. ~12! or ~44!. By an appropriate choice ofL1 andL2 one
can provide that all equations of motion in the new variab
have canonical GR forms of equations for gravity and ma
fields. All novelty is revealed only in an unusual structure
the effective potentials and interactions. And just this nove
enables us to solve a number of problems~questions 1–5 of
the Introduction!, most of which in the framework of GR
require fine-tuning.

(a) Towards a resolution of the cosmological consta
problem.Let us return, for the moment, to the simple mod
of Sec. II. If one takes@24# V2(f)[2L5const, which
would correspond8 to a model with a cosmological consta
L in GR then we see that the greateruLu we admit, the
smaller the TMT effective potential, Eq.~13!, we obtain in
the Einstein picture. This is a direct result of the existence
two measures and two Lagrangians in the original TMT
tion, Eq.~5!. We see that TMT turns over our intuitive idea
based on our experience in field theory.

The resolution of the cosmological constant problem
models studied in Refs.@23–26# was based on the assum
tion that a cosmological scenario belongs to the first cl
~see Sec. II!. In the context of such types of scenarios, tho
TMT models predict that ifV2(f) is positive definite, the
stable vacuum with zero energy density is realized with
any sort of fine tuning at a finite value off5f0, where

8Taking into account our definition ofV2(f), Eq. ~5!, one should
notice that the positiveV2

0 corresponds to a negative cosmologic
constantL52V2

0 in GR if the term*V2(f)A2gd4x would appear
in the GR action. For constructing models 1–3 of Sec. IV B,
positive definiteness ofV2(f) ~and therefore, the conditionV2

0

.0) was one of the basic assumptions.
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V1(f0)1sM450. As we have seen in Sec. V, in such
vacuum the usual conception of the gravitational backgro
becomes invalid, and small fluctuations off cause infinitely
large fluctuations ofx. For the true vacuum state this featu
is unacceptable.

For this reason, in this paper we studied cosmologi
scenarios of the second class~see Sec. II!, where the true
vacuum state is realized asymptotically asf→`. This natu-
rally leads to a need to apply a quintessence model of the
universe. However, in contrast to quintessence models s
ied in the framework of GR or Brans-Dicke type models,
TMT we have a new option: one can choose the prepo
tials V1 andV2 as increasing at the late universe~that is, as
f.M p). If V1

2/V2 approaches zero asf→`, then the TMT
effective potential~13! asymptotically approaches zero at th
late universe. One can adjust degrees of growth ofV1 andV2
in such a way that the TMT effective potentialU(f) will
have a desirable flat shape asf→`. Unbounded growth of
V2 as f→` allows adding toV2 any constantV2

0 without
altering U(f) for large enoughf ~remind that the appear
ance of an additive constant inV1 does not affect equation
of motion at all!. This is actually what we have seen in Se
III. If the appearance of the appropriate term*V2

0A2gd4x in
the action is a result of quantum vacuum fluctuations, th
we can conclude that in the framework of the described
proach to constructing a quintessence model of the late
verse, TMT solves the cosmological constant problem.

However, the impression that the described technical
tails of the approach to the resolution of the cosmologi
constant problem in TMT settles a question is prematu
One should remind that the last statement about resolutio
the cosmological constant problem implies validity of o
more basic conjecture formulated in the Introduction@after
Eq. ~4!#, and used in all models of the present pap
LagrangiansL1 andL2 in the original action, Eq.~3!, do not
depend on the measureF degrees of freedom. In the case
when this conjecture is invalid, the cosmological const
problem in TMT can turn into a very nontrivial issue. In fac
till the fundamental theory remains unknown, one cannot
sure that the postulated general structure of TMT survi
after quantum corrections are taken into account. If it w
turn out that the quantum effective action corresponding
the original theory, Eq. ~3!, contains the term
2*FxLe f fd

4x, then in the Einstein frame the latter wi
generate the real cosmological constantLe f f . This possibil-
ity was studied in Ref.@24# ~see Sec. VI therein!, where a
way to prevent the appearance of such a dangerous term
also discussed. The idea, briefly, is the following: If inste
of the antisymmetric tensor fieldAmnl , the measureF is
defined by means of four scalar measure fieldswa ,(a
51,2,3,4),

F[«a1a2a3a4
«mnls~]mwa1

!~]nwa2
!~]lwa3

!~]swa4
!,

~72!

then the action, Eq.~3!, with wa independentL1 andL2, is
invariant up to an integral of a total divergence under tra
formationswa→wa1 f a(L1) where f a(L1) are arbitrary dif-
ferentiable functions ofL1. An appearance of the dange

l
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term 2*FxLe f fd
4x in the action would break this loca

symmetry. Thus, this additional, local symmetry can prev
a generation of the real cosmological constant by quan
corrections to TMT if no anomaly appears.

(b) Resolution of the flatness problem of the quintessen
potential. The mechanism for the resolution of the flatne
problem of the quintessence potential in TMT~question
number two of the Introduction! is actually the same as th
one used for the resolution of the cosmological const
problem. Since the TMT effective potentialU(f) takes a
quintessence form asf→` due to the unbounded growth o
the leading terms of the prepotentialsV1 andV2, the appear-
ance of any subleading terms~including terms generated b
quantum corrections! in V1 andV2 cannot alter the shape o
U(f) asf is large enough. There is no need for any of t
coupling constants and mass parameters of the sublea
terms to be very small. This is, in fact, the TMT answer
the question raised by Kolda and Lyth@11#.

(c) Quintessential inflation type potential (also satisfyi
the cosmological nucleosynthesis constraint) obtained w
out fine-tuning.Two basic ideas have been used in this pa
to demonstrate that TMT enables us to answer quest
three and four of the Introduction. The fundamental role
longs to the first idea that, in the limitf→`, the effective
theory has to become invariant under shiftsf→f1const. A
basis for this idea is the observation that if we want
effective theory to describe a quintessence asf→`, the
effective potential has to become flat asf→`.

As it was shown by Guendelman@25,26#, the role of the
global continuous symmetriesf→f1const in TMT belongs
to transformations~18!,~19! in the absence of fermions o
Eq. ~38!, in the presence of fermions. In terms of the d
namical variables used in the Einstein frame, these trans
mations are reduced to shifts off parametrized as in Eq
~19!. In the models of Ref.@25#, where the exponential form
for the prepotentials, Eq.~16!, with a5b being used, the
global symmetry~18!–~19! is spontaneously broken. And a
though this symmetry is restored asf→`, it is impossible
in the framework of such a model to realize a quintesse
scenario atf.M p .

We have seen in the present paper that if a small exp
violation of the global continuous symmetries~18!,~19! is
present in the TMT original action~5! with the exponential
form of the prepotentials, Eq.~16!, then the TMT effective
potentialU(f), Eq. ~17!, can be a suitable candidate for
quintessence model asbf@M p . The smallness of the ex
plicit symmetry breaking is formulated as a smallness of
dimensionless parameter (b2a)/b @see Eq.~22!#.

In the absence of knowledge about the structure of
fundamental theory, and without any information abou
mechanism leading to an explicit violation of the global co
tinuous symmetry~18!,~19!, the quantity (b2a)/b is the
only small parameter that can be used in attempts to mo
the action with a simple exponential form of the prepote
tials ~16!, with the aim to give rise to quintessential inflatio
type models. This can be done by adding terms that dis
pear as (b2a)/b tends to zero. This means that couplin
constants in such additional terms have to be proportiona
some positive power of this small parameter.
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The second basic idea is that in the limit (b2a)/b→0
~which leads us to the fundamental theory!, the only mass
parameter of the theory is the Planck massM p . This means
that the dimensional coupling constants of the symme
breaking terms have to be powers of the mass parametem
of the formm5@(b2a)/b#nM p , n.0.

In the probe models studied in Sec. IV, we have chos
just for illustration, b57, a56, and hence, (b2a)/b
51/7. Proceeding in the way described above, we reve
remarkable feature of TMT: it is possible to achieve qu
satisfactory quintessential inflation type models~see models
1–3 of Sec. IV! where, for the adjustment of the paramete
it is enough to use only mass parameters of a few orders
thanM p . We interpret this fact as the absence of a need
fine-tuning.

Besides the generation of the well-defined inflationa
and quintessential regions of the TMT effective potent
U(f), one more remarkable result consists in the fact t
the post-inflationary region ofU(f) has the exponentia
form }exp(2af/M p) with variablea, Eq. ~31!. This allows
us to single out a region ofU(f), where a familiar approach
@6# to a resolution of the problem with the cosmologic
nucleosynthesis constraint is realized without any additio
assumptions.

(d) Resolution of the problems related to a possible dir
coupling of the inflaton field to usual matter.As for question
number five of the Introduction, the answer is quite clear
the terms of the formf i(f/m)Li , describing direct cou-
plings of the inflaton field to the usual matter~see Ref.@19#!,
break the global continuous symmetry~38!, they could ap-
pear in the original TMT action with small coefficientsf i
}@(b2a)/b#n, n.0.

A direct coupling of the inflaton to fermionic matter is o
a special interest. In the modified model studied in Sec. VI
such a coupling enters the original action in the form of tw
Yukawa coupling type terms, Eqs.~39! and ~66!. The un-
bounded increase ofV1 and V2 at the late universe works
again in the desirable direction: the contributions of t
Yukawa coupling type terms to the constraint~43! are neg-
ligible compared toV1 andV2. As we have seen, by adjus
ment of the parameters of the Yukawa coupling type int
actions one can provide the presence of the direct coup
of fermionic matter to inflatons without observable effects
the late universe. The fermion mass then approaches con
and the correspondent long-range force disappears af
→`.

It is worthwhile to notice here that the form of th
Yukawa coupling type interactions, Eqs.~39! and~66!, might
be generalized without altering the results obtained for
late universe. In fact, if, for example, one modifies the int
actions of the form}C̄Cegf/M pA2g and C̄Ceg̃f/M pF
considered in Sec. VI H by adding the direct couplings of t
form }C̄CfA2g and C̄CfF, respectively@which does
not respect the global continuous symmetry, Eq.~38!#, this
has no effect on the late universe since the relative contr
tions of the adding terms are exponentially suppressed af
.M p . At the early universe, for instance, asf,0, modifi-
cations like this could lead to observable effects. Such p
2-17
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sibilities are additional tools given by TMT for adjustment
the field theory parameters to cosmological constraints of
early universe. One should stress that this is a merit of TM
thatadjustment of the parameters determining the early u
verse evolution can be performed without any direct infl
ence on the field theory parameters important for the l
universe.

(e) Background and matter fields quantization.There are
some specific internal problems of TMT that we were forc
to discuss in this paper. Fortunately it turns out that a re
lution of those problems is closely related to the cosmolo
cal problems we were trying to solve here.

First of all, this is a problem of the definition of the grav
tational background in TMT discussed in Sec. V and, rela
to this, a question of the choice between two large classe
the cosmological scenarios formulated in Sec. II. It turns
that only the second class of the cosmological scena
~quintessential inflation belong just to this class! admits a
satisfactory definition of the TMT gravitational backgroun
where the quantization of the inflaton fieldf is a standard
procedure.

The second TMT problem consists in the quantization
usual matter fields. In particular, fermionic fieldC, in the
model of Sec. VI, contributes to the constraint, Eq.~43!, and
hence, 1/x obtained by solving Eq.~43!, will depend on
C̄C. In such a case, equations of motion in the Einst
frame, Eqs.~46!,~48!, and~49!, would become very nonlin-
ear. In Ref.@24#, we have tried to avoid this sort of problem
by starting from the original action that was very nonline
in C̄C.

In the present paper, where the inclusion of the us
matter is studied in the context of the models of Sec. IV
and is intended to describe the quintessential-inflation s
nario without fine-tuning, the problem of nonlinearity in ma
ter fields does not appear. The reason is just due to a way
we solve the cosmological constant and other fine-tun
problems: the parameters of prepotentialsV1(f), V2(f),
and the integration constantM4 are chosen such that th
matter field contributions to the constraint, Eq.~43!, are neg-
ligible compared toV1(f), V2(f), andM4. Then, for 1/x
tte

cl.
,
,
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we obtain the expression described by Eq.~53!, the same as
in the absence of the usual matter. As a result of this, in
Einstein frame the usual matter field equations in the ba
ground have canonical form, and their quantization becom
a standard procedure.

(f) SSB without generation of the cosmological consta
Reverting to the cosmological constant problem, it is wor
while to notice in the conclusion that if the scalar~Higgs!
field w obtains a nonzero VEV, Eq.~47!, the appearance of a
constant part inP(w) just leads to a redefinition ofm1

4 @see
Eq. ~43!#. It is very important that in models 1–3 of Se
IV B, m1

4 has the order of (1022M p)4 or (1023M p)4. The
correction we neglect in the left-hand side of Eq.~43!, when
replace it by Eq.~53!, becomes of the order ofQ(w̃)/m1

4,

whereQ is a polynomial inw̃ (uw̃u!y&m1) that satisfies the
conditionQ(0)50. Thus, if uP(y)u,m1

4, then spontaneous
breaking of a gauge symmetry does not affect the magnit
of the effective cosmological constant~at the late universe!
imitated by the quintessential potential, Eq.~29!.

Another possibility appears if the whole termm1
4eaf/M p

in the prepotentialV1(f) is generated by SSB. In such
case the quintessential potential becomes

U~f!'
@P~y!#8

M p
4

e22(b2a)f/M p. ~73!

This is the TMT mechanism which, together with th
shape ofU(f) in the inflationary region predicted by each
the models 1–3 of Sec. IV B, provides a resolution of one
the most serious aspect of the cosmological constant prob
@10#: the need for an enormous fine-tuning of initial cond
tions in models with SSB in order to satisfy the dual requi
ment of largeL in the past and smallL at present.
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