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Features of phase ordering in(2+1)-dimensional O(3) models
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Numerical simulations of phase ordering under dissipative dynamics in+alalimensional 3-vector
model with O(3) symmetry are reported. The energy functional includes terms which stabilize the size of
extended topological defects. They emerge at the end of the coarsening process as particle- or antiparticle-like
structures floating in the globally aligned vacuum. Approximate power-law growth of disoriented domains
(with an exponent near 0.4s found to be rather insensitive to the size of the defects. An optional filter for
conservation of winding number allows us to study phase ordering in a high defect-density environment which
leads to large clusters of particles surrounded by the aligned field.
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. INTRODUCTION sponding static energy function&[ ®]. The vacuum con-
sists of a globally aligned field with constant length= f,
Effective field theories for order-parametéivector fields andB=0. In case of exadD(N) symmetry different global
can be powerful tools for the study of the dynamical behav-orientations are degenerate. Explicitly symmetry-breaking
ior of complex microscopic many-body systems. Standarderms or boundary conditions select a specific orientation as
examples are the local magnetization 3-vector fidde-  the true vacuum. Static topological defects are local minima
fined over (2+ 1)-dimensional space-time for the description of E[®] in sectors withB# 0. They represent ordered con-
of pseudo-2-dimensional spin systems in solid state physicligurations with large gradients in directish and lengthd
[1];  similarly,  4-vector fields  defined over of the field vector. Large deviations df from the vacuum
(3+1)-dimensional space-time model low-energy QCD invaluef, are denoted as “bags.” Stabilizing terms present in
chiral effective field theories for the dynamics of pions andg[ ®] determine soliton and bag size, shape and spatial pro-
their interactions with gauge field&]. Extending these mod- file of isolated defects.
els to finite temperatureb may allow to investigate features Such localized extended configurations have been identi-
of ordering transitions in spin systems or, for the hadronidied with particlelike structures, low-lying excitations with
case, in the cooling phase of the early universe or immedismoothly varying magnetization in quantum Hall ferromag-
ately after a heavy-ion collision. nets[5], or baryons embedded in and interacting with the
It is expected that during such a cooling process the syschiral mesonic field6]. In these cases the corresponding
tem undergoes a transition from a hot state in which thdocal winding density has been interpreted as local electric
global symmetry of the effective action is manifest into acharge density, or baryon density, respectively.
cold state with spontaneously broken symmetry, i.e., with Topologically nontrivial configurations can unwind at
global alignment of the ordering vector field in a randomly space-time points where the lengbhof the field vector van-
chosen direction. The randomly oriented aligned domainsshes. So configurationsvith suitable boundary conditiohs
which characterize transient intermediate stages of this olean be specified by a definite winding numBeonly if there
dering transition have recently found increased attention fols no point at which®=0. Representing local energy
the case of the chiral meson field, because it was suggesteginima, statid3+ 0 configurations are separated from global
that they might cause anomalies in the multiplicities of emit-vacuum by barriers; they may be destabilized by symmetry
ted pions which could serve as a signature for the phasgreakers which reduce these barriers. In time-dependent
transition itself{3]. Similarly, the density of topological de- (nonequilibrium) processes even for exa@(N) symmetryB
fects in the field configurations has been related to producmight change through fluctuations or evolutions whdre
tion rates of extended particle and antiparticle structures enpasses through zero at some point. To study the dynamical
bedded in the aligning fielp4]. behavior of field configurations at nonzero temperature for
This latter aspect is based on the particularly interestingjiven average soliton density and fluctuatiBgtherefore
topological properties of (21)DO(3) and (3+1)DO(4)  would require the inclusion of a chemical potential and the
models. For appropriate boundary conditions the field conconstruction of a large grandcanonical ensemble with numer-
figurations fall into separate classes which can be charactesus individual events in order to allow for a well-defined
ized by integer topological winding numbBr For T=0 the  averageB-number. Alternatively, however, if differe® sec-
classical ground state configurati¢the “vacuum”) and the  tors are separated by barriers, we can put a constraif on
structure of the particlelike excitationghe “solitons” or  This is very naturally implemented in lattice simulations if in
“baryons”) are obtained through minimization of the corre- a time evolution the updates with occasional jump8iare
rejected. Such 8-filter then allows to investigate phase or-
dering in high defect-density environment without the need
*Email address: holzwarth@physik.uni-siegen.de for a grandcanonical ensemble.
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The time evolution of classical fields on a lattice is con- It appears desirable to include in the energy functional
sidered as the evolution of low-frequency modes subject t@dditional terms which stabilize the defects at a fixed finite
the noise of eliminated high frequency fluctuations. In addi-size. Due to the scale invariance of the two-derivative term
tion to stochastic forces this provides a dissipatifiest-  this requires at least two more terms which balance each
orden time-derivative term which removes energy from the other in the stable static configuration. The effect of a four-
field configurations and drives the system to the thermaferivative term(which tends to increase the size of static
equilibrium at the temperature set by the noise term. Thigtructuregin the nonlineaithard-spin version of the model
temperature itself may change in time as a consequence 6N be compensated by (@ero-derivativg Zeeman term
the spatial evolution of the system, or as externally imposedvhich by itself tries to shrink local inhomogenities. Physi-
quench. Numerical simulations then may follow individual cally motivated by external magnetic fields coupled to the
“events” with fixed winding numbeB which start out from order field vector this term, however, explicitly breaks the
an initial random configuratiofwhich would represent a O(3) symmetry and therefore prevents spontaneous align-
member of an ensemble of high temperatusith correla- ~Mentin random directions. It is only in the easy plane where
tion length less than the lattice constant. In such initial conthe formation of disoriented domains can be observed as
figurations the field vectors vary randomly from one latticelong as the field still has components in that plane. Simula-
point to the next, therefore these configurations are charadions of phase ordering in such models have therefore mainly
terized by large local gradients, i.e. largmsitive and nega- been concerned with the dependence of the resulting defect
tive) local winding density, and large total energy. densities on the defect si{@].

Ordering proceeds through growth of domains which In the linear(soft spin version of the model, however,
comprise in their interior increasing numbers of lattice ver-where the lengthb of the order-parameter field is not con-
tices with aligned field vectors. In the absence of any explicitrained, the(zero-derivativg potential V(®) can serve in-
symmetry breaking the relative orientation of the alignedstead to set the length scale without breaking@(8) sym-
field for different domains is random. Therefore large fieldmetry. With the familiar 02— f%)? ansatz folV we arrive at
gradients then are confined to the boundaries of these “disa most simple model which allows for all features of spon-
oriented” domains. The soliton stabilizing terms Ej®]  taneous symmetry breaking, combined with the possibility of
then lead to a dynamical interplay between the growth obag formation and the existence of localized structures with
disoriented domains and the formation of energetically fa-definite size embedded in the aligning field. Inclusion of a
vorable localized extended structures. Finally, we expect &ur-derivative term is necessary to prevent the collapse of
few well-developed solitons to remain embedded in an oththese localized structures to zero size with subsequent un-
erwise fully aligned vacuum, each soliton with its oap-  winding.
proximately integerwinding numbeiB; which add up to the It is the aim of this work to investigate phase ordering in
conserved total integer winding numbBr Residual interac- connection with the simultaneous formation of isolated topo-
tions and(at finite temperatur¢semaining field fluctuations logically nontrivial structures stabilized by the energy func-
cause slow motion of the localized structures such that otional. They appear as transient structures in every ordering
very long time scales some of them may meet and combingrocess, but here they finally persist as stable “particles”
or annihilate to form larger or small&; + B; structures. and “antiparticles” with well-defined structure. We shall ad-

Evidently, the whole evolution of one individual configu- ditionally consider the option that their net number is chosen
ration is an extremely complex process, and after all, onlyas conserved observable. In Sec. Il the effective Lagrangian
statistical statements averaged over many events will be d$ specified which comprises the minimal number of terms
interest. However, for a sufficiently large lattice which fi- necessary to establish these features if we exclude all explic-
nally still contains a large number of individual solitons, lat- itly symmetry-breaking terms. In Sec. IIl we briefly discuss
tice averages for individual events will already provide goodthe stable static solutions of the corresponding energy func-
approximations to ensemble averages. In the present wotkonal which (in that mode) only exist if the relevant cou-
we shall exclusively deal with the (21)DO(3) model Ppling constant is below a critical value. Finally, in Sec. IV
where lattice sizes of the order of2010? are computation- We perform numerical simulations of individual “events”
ally easy to handle and yet sufficiently large to observe eswhich follow the ordering process in real time through a
sential features of the ordering process. Langevin-type overdamped dynamics. For the exploratory

Because the presence of topological textures implies theurpose of this work we only consider the sudden quench
existence of additional scales relevant for the time evolutiorscenario where a random initial configuration with correla-
it is expected that phase ordering in such systems violateléon length less than the lattice constant is exposed to a low-
dynamical scaling. This has been demonstrated in previougmperature effective potential and a correspondingly small
simulations for 2DO(3) nonlinear{7] and linear{8] sigma  low-temperature stochastic force.
models. In two spatial dimensions the two-derivatisgma
mod_eb term fV(I)V(I)dZX_ is invaria_nt_ with respect to t_he IIl. THE 2D O(3) MODEL WITH FOURTH-ORDER
spatial scale_, therefpre in these mmlmal models th.e size of STABILIZATION
the defects is not fixed by the static energy functional. In
fact, it was observed if7,8] that the corresponding length We consider theéD(3)-symmetric Lagrangian density in
scales change with time and interfere with the correlatior2+1 dimensions in terms of the dimensionless 3-component
length scale that characterizes the aligning process. field
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If we write the independent strengths, of the
®*-coupling andc, of the Skyrme coupling in terms of one FIG. 1. Dependence of the total energy on the coupling strength
common dimensionless parameleand a lengtH A for different values oB.

)\4:)\”2, C4=)\|2 3 IIl. STATIC SOLITON SOLUTIONS

Let us at first give a simple argument how fotess than
thenl may be absorbed into the space-time coordinates. S@, critical value the formation of localized bags will lead to
for \ fixed, | sets the size of localized static solutions, and forfield configurations with winding numbe which are ener-
continuous coordinates their total energy is independeht of getically more favorable than the standard Belavin-Polyakov
The overall energy scale is set by the paramétér Of  (BP) soliton solution[11] of the O(3) nonlinear o model
course, we are free to insert additional powers of the moduwhere® is confined to the 2-sphe®?=1 everywhere. For
lus field @ into the Skyrme term, the above choice beingthat purpose we consider idealized square-well bags, i.e.,
motivated to minimize interference with tiie* spontaneous  configurations with fixed total winding numbBrwhere® is
symmetry-breaking mechanism. close to zero inside an aréaand equals unity elsewhere,

Having fixed the® dependence of the Lagrangian aswith all nonvanishing angular gradients confined to the in-
given in Egs.(1) and(2) we conveniently redefine the field side of that area. For such configurations the winding density

and the parameters by is p=B/A and the first term in Eq(5) does not contribute,
therefore the bag energip) is minimal for A=2B and is
d=df,t, F2=F262, T=If,% (4) ~ obtained as
This shows that for fixed as f, goes to zerole.g., with Epag=AB. 6)

increasing temperaturahe typical sizel of static defects

grows like 1fy. This may be physically not unreasonable ; X
(cf., e.g., the discussion in the 3-dimensional caskLD). dard BP solution, where the second term in Exj.does not
We omit the tildes in the following and absorb thg into contribute. In that case the contribution of the Skyrme term

the length scale of space-time. Then we finally have for théan be scaled away by unl_imited incregse of the spatial scale.
static energy Therefore, f'or)\>.47r'|deallzed bags WI!| not be stable but
melt away into infinitely large BP solitons. On the other
1 N hand, forA<4# we may expect well defined stable bag
E=sz <_(9i¢5i¢+ —(®2-1)2+Apopo|d?x. (5)  Structures with their spatial extent fixed by the choicd,of
2 4 for any chosen value d@. The above argument for idealized
square-well bags, involving only bulk energies, is indepen-
For the following we will put the energy scal€? to unity.  dent of the shape of the idealized bag. For real bags due to
Note that the Lagrangiafi) contains no symmetry-breaking the surface energy given by the first term in E§), the
term and in this sense is the close analogue to the massledegeneracy oE,,q With respect to the shape will be lifted.
chiral 3D O(4) model. With increasing values d8 these surface effects will be less
In the lattice implementation, we impose periodic bound-and less important. This is shown in Fig. 1, where the energy
ary conditions for the field vectors which implies compacti- E(\) is plotted forB=1 andB=10. As expected, the cor-
fication of coordinate space to a tor@xS!. A stronger responding energy curvel(\) lie slightly higher than the
condition would be to require thab is the same for all linear result6) derived above for idealized square-well bags,
points on the lattice boundary, which would imply compac-and approach that result with increasing value8.of

For \ >4 this exceeds the enerds{"™ = 47B of the stan-

tification of coordinate space to the two-sph&e In both In numerical simulations on a discredX N lattice the
cases the winding densipy, satisfiesf pod?x=B with inte- lattice constana defines an additional scale so we can expect
ger winding numbeB. independence of the energy from the sdatmly as long as
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Frea 020 to parametrize the angular padt in terms of the profile

38 function ®(x,y) and the azimuthal anglé(x,y) with re-

36 T spect to some arbitrarily chosen Cartesian basis

34 / (D1,D,,P3)=PD(cos¢ sin®,sing sin®,cosO). (7)

32

, / For =10, i.e., well within the scaling region, the bag

/ ®d(x,y), the profile function® (x,y), and the winding den-

28 / sity p(x,y) of the resultingB= 1-configuration are plotted in

26 Fig. 3. One may recognize how the winding density is con-

2 | centrated within the well-developed bag. The “profile”-
/ function ® drops from the value ofr in the center to zero

2y outside the bag and the angular fietdx,y) coincides with

2 . the BP-hedgehog formp=arctany/x). So, although the an-

S gular configuration resembles closely the BP soliton the en-

FIG. 2. Thel-dependence of the energy_, for fixed coupling  ergy Eg_; is (for A=1) only 3.70 as compared t&&")

constant\ =1. =417
_ The effects of the finite lattice constant on the field con-

N>1/a=(c4/\4)"*>1. Then the energ#(\4,c,) resulting  figurations can be studied aspproaches 1 from above: the
from the static part of Eq1) will scale asE(A) in Eq.(5) of  pagfieldd develops a sharp dip by taking on a value very
the single argument =y 4¢4, oOnly. close to®=0 only at one single lattice point while being a

As |/a approaches 1 from above scaling violations set insmooth extended function otherwise. The corresponding den-
This is illustrated in Fig. 2 wherBg_;(A=1) obtained on a sity p for a configuration witlB=1 then assumes the values
square lattice witta=1 is plotted for different values df  of p=0.25 within each of the four adjacent lattice cells with
Figure 2 shows that scaling holds with good accuracyl for =0 everywhere else. Then, while the bagfield still is able
>4. to scale withl as ®(x)=®(x/l), the densityp® can no

In the angular representation of the field 3-vectbr |onger scale ag,(x)=p(x/1)/1?. This then causes the scal-
=Pd the lengthd is the “bag” field, and it is convenient ing violations in the energ¥g_; as shown in Fig. 2. If is

oxy)

profile function

pY)

winding density

0.012

0.01
0.008
0.006
0.004
0.002

FIG. 3. Profile function®(x,y), bag®(x,y), and the winding densitp(x,y) of the B=1 configuration £ =1).
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BT, Do really be scaled away fok>47. According to Hobart-
12 Derrick’s theorem the second and the third term in E5).
11 must contribute the same amount to the total energy, result-
1 et 8.5 ing in very flat but still nonvanishing bags far>4.
09 ot f"' Figure 5 show that foB=10 the bags already resemble
08 sort. S the idealized bags discussed above quite closely, with a flat
07 e e interior in which the similarly flat density is localized. Their
06 ,,-/“/ radius is almost independent of the coupling consiaand
0s e ot fixed by the choice of. The surface thickness dependsion
; ™ : : . .
04 I e but not in a dramatic way. Mainly the outermost tails of the
0 f—p % : ds’f“‘g_g__ bag profile are sensitive th. However, increasing surface
o b e \ o thickness squeezes the winding density towards the center of
N e O e w0 N\ the bag such that the central value of the local density can be
. = D A quite sensitive to\, especially for small values of.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
FIG. 4. Total energyE=E,+Ep,,, surface energyE, IV. RELAXATION AFTER SUDDEN QUENCH
=12 ®5 P d’x, bag energy Ep,g=\J(1/4(®2-1)? _ o _ _
+popo)d?x, and the minimum of the “bag”-fieldP ,;,, as func- Overdamped relaxation of initially random configurations
tions of the coupling constant, for B=4. leads to the formation of domains in which the field vectors

are aligned in spontaneously chosen random directions. Size
chosen still smaller, liké=0.1, the density takes the value nd orientation of thesedisjoriented domains change with

of 0.5 on two adjacent lattice cells while the bag zero disapPr0gressing time, some of them growing on cost of others,

pears somewhere between the lattice points, such that trgiCh that altogether long-range order is increasing. Bound-
field d~1 on all lattice vertices. In that case the lattice &/€S and edges of such domains are characterized by large

simulation produces a configuration which even looks as i2h9ular field gradients. Energetically, large angular gradients
the constraintb?=1 had been imposed. In that case Iargefavor formation of bags where the length of the field vectors
bags carrying multiple charges break up into individgal deviates strongly from the vacuum valag. Therefore ihe
—1 structures. In order to avoid such effects of the finite®’d€rng Process IS accompamed by spontaneous formation
lattice constant we consider in the following scaleshich of.bags with vylndlng density accumulated inside th.e bags.
are sufficiently large to be safely in the scaling region putVith progressing time these bags assume the ;patlal extent
still small enough for the resulting configurations to be wel|2nd _proflle .d'CtE?‘ted py the energy functlonal,_whlle the areas
contained in a reasonably sized lattitike N=100—150 of aligned field in which they are embedded finally grow and

We finally proceed to the dependence of stable bag Conc_o?lescg m:o ? ;IJn'fotrrle Oé'e'?ted vacuum. i ds i
figurations and their energies on the coupling strengthor h order 1o follow thiS ordering process as It proceeds in

B=4 different contributions to the total energy and the deptljeal tllrEne Vile consider .the ehquatlons Olfl motlondasdobt?ned
of the bag profile are shown in Fig. 4, and in Fig. 5 densitie rom Eq. (1), suppressing, however, all second-order time

and bag profiles foB=10 and\ =1,4,10 are compared. Re- derivatives in comparison to a first-order time-derivative dis-

ferring to Fig. 4, one may still recognize nonvanishing bagss'patlve term:
for A\>4 as a consequence of the limitation of the lattice 1 \ 1
size: The size of the BP soliton is restricted by the borders of : 2 2. 2

. I —P=AP— 5 (P*~1)D— + =&
the lattice, so that the contribution of the Skyrme term cannot F P=ACT R (OT=L)@=M(pg) 0P+ 7 6 ®

@ (x) p(x)
1 0.009
1 -~ L1735 XS PR SO ST S A R L
0.9 < \ 0.007
0.8 i 0.006
R e
07 :
i 0.005
06 i
0.004
05
0.003
0.4
0.002
03 j i i
02 i ot [l R oot i ik
\ i A=4 i \“
ot ¢ FIRE A=10 - 0 i '
0 ik 1 1 1 1 0.001
0 10 2 30 40 50 6 70 8 9 100 110 120 130 140 150 0 10 20 30 40 50 6 70 8 90 100 110 120 130 140 150

FIG. 5. Density and bag profiles f@&= 10 and three different values af=1,4,10 (=10).
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As long as we disregard second-order time derivatives theummed over the whole lattice is integer, so that initial con-
damping constant /which multiplies thed term can be figurations can bg selected with some desired integer value
chosen as unity, i.e., we identify the time unit with the re-©f B. We also define the “number of defects”
laxation timer. In Eq. (8) we also have added a fluctuational N—1
field &(x,t) to represent Gaussian white noise; in principle its D= 2 1p(i,D)] (10)
presence and strength is dictated by the dissipation- ij=0 '
fluctuation theorem. Independent from this stochastic dissi-
pation other damping mechanisms could be present, like they summing up the absolute values of the local winding
rapid cooling due to the Bjorken expansion of a hot hadroni¢lensities. Of course, for random or slowly varying smooth
fireball[12]. So, depending on the specific physical situationconfigurationsD generally is not an integer, but if a configu-
the damping rate and other parameters in &).may be ration describes a distribution of localized defe@sad an-
subject to an appropriate tin{er temperaturedependence. tidefects which are sufficiently well separated from each
Here, however, for definiteness, we will keep them fixedother, therD is close to an integer and counts the number of
during each individual evolution. This corresponds to a sudthese defectélus antidefects In that case we can define the
den quench where the initialiat t=0) hot configuration is humbersN, ,N_ of “particles” and “antiparticles” through
exposed fort>0 to the low-temperatureT(=0) effective
action. Consequently, we also generally will omit the noise
e el o 1 e Lo e, e shal, however in the olawngsiopy cal D te
individual evolution events are affected by the noise term ‘particle numbgr” (even if it is not integer [Alternatively,
Initial configurations are chosen such that at each Iatti.(:é3 could be def|neq as t_he sum of the absolute values of the
S ) o areas of all spherical triangles considered above. For a ran-
vertex(i,j) (i,j=0, ...,N) the field vectorspb point in some

AR ! : m configurations this would result in an aver val f
random direction i.e. at each point of the lattice the angledo configurations this would resu an average value o

S . D)=N?/4 (Kibble limit [13]). Our definition(10) for ran-
¢(i,]) is selected randomly from the intervfD,27], the { . : _ 2 R
angled(i,j) from the interval0,7]. Through this choice the dom configurations leads (D) =0.73N"/4 which implies a

- . : . : . _slightly different definition of the initial correlation length.
finite lattice constant acquires physical meaning as providing The total winding numbeB always is integer and occa-
a measure for the magnitude of the initial correlation length, Y

The modulid(i,|) of the field vectorsb are chosen as ab- sionally will undergo discrete jumps in the update sweeps.

; ) For well-devel localiz r r hi rr n
solute values of a Gaussian deviate around the symmetr or well-developed localized structures this corresponds to

centerd = 0. Again. late-time average features of the result Q(nwinding defects or antidefects independently, such Bhat
— 9. Agan, U verag ures SUqecreases or increases by one or more units. Bhislating

L S ; R ropagation is characteristic for the trivial topology of the
square deviation of this initial Gaussian distribution. In fact,r}i)nezr%(:g) model. However with the evalua[t)ion gé for
Slm"?r r_eSléltts atrr? ogtalnhed@ezv_e:c\;f t_pﬁ initial conff 'gutrh"’?“o_” 'Seach instantaneous configuration we may in the lattice simu-
constrained fo the 2-sphem==Tg. 1he reason 1or tiS 1S a¢i5n jmplement an(optiona) B filter which in each time
that the system reacts to the initially large local angular grage, rejects configurations that violaeconservation. This
dients by reducing the length of the field vectors almost eveiminates all independent unwinding processes. Only simul-
erywhere to values which are small as comparetytoThis 3n66us annihilation of defect and antidefect in the same time
happens early dur_lng the f'r.St few time steps, accompani€gyan remains possible, and, as the update proceeds locally at
by some next-neighbor alignment. Therefore the initialgach |attice vertex it can happen only if defect and antidefect
length distribution is almost instantly forgotten. . overlap. ThisB-conserving evolution is characteristic for the
At the borders of the lattice periodic boundary Cond't'onsnontrivial topology of the nonlinea®(3) model. Of course,

are enforced. If we divide each elementary lattice cell with e exnect that severe differences between both types of evo-
lower left corner(i,j) into two triangles(e.g., by the same lutions appear only iD is comparable tc.

diagonal in all cells, then the mai(i,j) maps each triangle  In order to produce configurations with well-developed
onto a spherical triangle on the spharé=1 cut out of the  stable bags we choose for the following quench simulations
surface of this sphere by thishortesk geodesics which con- values for the coupling constant between<0)5<5. This is
nect the image points of the corners of each triangle. Theyell below the critical value of = 41r.

local winding density (i, }) then is defined as the sum of the  For most of the results presented below the sdaie
(oriented areas(divided by 4) of the two spherical tri-  chosen a$=/10; this is small enough to allow for the for-
angles which form the images of the lattice cell with lower mation of numerous bags on a reasonably sized lattiice

left corner(i,j). Because the area of each spherical triangle ig50x 150), but is still close to the onset of the scaling region
less than zr each square lattice cell can contain at most ongcf, Fig. 2) to suppress effects of the finite lattice constant.
tions guarantee that the total winding number ordered domains we consider the correlation function

B=N.,-N_, D=N,+N_. (12)

NN NN
Ngfl CR)= 2 > <i><i,j)~<i><k,|>/§_: S
B= OP(i,j) (9) i.j=0 kI=0 i
ij=
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FIG. 7. Total energy, “particle number” D, “radius” Ry of
ordered domains, and the lengif®) of the field vector averaged
over the whole lattice, for a fe=0-conserving evolutiongfor
A=1,1=4/10, on a 126 120 latticd. The time is in units of the
where thek, | sum is restricted such that the distarce relaxation timer.
=\(k—i)?+(I1—})? between lattice vertice§,j) and (k)
lies inside bins of unit size around fixed positive integrs Figures 8 show the typical features of the field in an 70
The typical shapes of these correlation functions are showx 70 section of a 158 150 lattice during different stages of
in Fig. 6 for an evolution withB-conservation on a 150 such an evolution after=1, t=10, andt=1000 relaxation
X 150 mesh, for increasing time. For the initial configurationtime units.

C(R) vanishes for alR=1 which reflects our choice of the Figure 9 shows the growth of the siRy, for different
initial correlation length. In the very early part of the relax- values of the coupling constank (A=0.5,1,2,5) for
ation process t(< 1) these correlation functions approach B=0-conserving evolutions which start off from identical
zero within less than 5 lattice units and stay close to zero folhitial configurations. _

larger distances. Fdr>10 they drop to small values above ~ One can distinguish three phases of the ordering process.
10 lattice units, but stay positive with small oscillatigmath (i) During an initial “relaxation” period which takes a

wavelengths of more than 20 lattice units, increasing with €W (rélaxation) time units, the length® of the field vectors
For t>200 these oscillations no longer fit into the 150 initially rapidly decrease and then vary around small values

X 150 lattice, the correlation functions show a monotonousOf about 0.1, the number of defect® drops from its start-

L . ing value (which is of the order of 0.78%/4) by about one
decreaséfor R<N/2). Their minima(nearR=N/2) increase . . : .
towards unity, which indicates that finally the extension Oforder of magnitude, accompanied by a corresponding loss in

the ordered domains reaches the size of the lattice. total energy. During this period the growth &, closely

. , : . . . . follows a power law
Comparing with typical field configurations during the re-
laxation, the half-maximum distance, i.e., t'he distarite Rp=at’, with a~0.4+0.01. (13)
whereC(R) drops below 0.5 apparently provides an appro-

priate measure for the “radiusR,, of ordered domains. Of ' g exponent is with good accuracy independent of the cou-
course, this is a rather arbitrary and not very precise converyjing constant\, of the initial configuration, and of the lat-
tion, but it captures the essentials of the ordering process ifice sizeN (as long asN>1). It is also independent of the
view of the fact that the boundaries of the ordered domaingca|e parametdr By the end of this period ordered domains
are not sharply defined. A typical feature of these correlatiorextend over several lattice unitR§~5).
functions is the appearance of a shoulder for small distances (ji) The second phagd0<t< 100, depending ok andl)
(R<5) for late times. This reflects the formation of the or- could be termed the “roll-down” phase. It is characterized
dered textures, i.e., spatially extended angular twists whichy the increase of théspatialy average lengti®) of the
locally prevent alignment of the field vectors over distancedield vectors towards the vacuum valdig. Actually, this
of the order ofl. Naturally, this effect gets especially promi- roll-down process is rather slow; it takes of the order of
nent for evolutions which proceed in configurations con-~100 relaxation time units for the space-averagéy to
strained to a large total winding numbBr(see below. approachf. Locally, this increase ob happens only in the
For a series oB-conserving evolutions which start off interior of ordered domains, which results in the formation of
from different randomly chosen initial configurations, se-numerous dense and initially often connected bag structures
lected however for winding numb&=0, Fig. 7 shows the located around the boundaries of these domains. So, during
time dependence of the “radiusR, of ordered domains, the this phase it is evidently thé* potential which drives the
total energyE, the “particle number”D and the lengti®)  evolution. Therefore the onset of this second phase depends
of the field vector averaged over the whole lattice. on the scale parametérand on the coupling strength.

FIG. 6. Time evolution of the correlation function fBr=0 and
A=5. The time is given in units of the relaxation time
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Ro® (iii ) The further development proceeds by the bags slowly
10 moving around, eating up smaller ones or uniting with others
they meet on their way, or, annihilating with others of oppo-
site winding number. They assume sizes which correspond to
the chosen scalé and reflect the partial winding number
contained in their interior. So, naturally, the evolution during
this late period depends more on accidental features of the
individual configurations as they have developed up to that
point. However, it is interesting to note that, on the average,
the growth of the ordered domaifisow with = f,) again
approximately follows the power layl3) with « around 0.4
(see Fig. 9. Finally, if Ry has reached values near or greater
thanN/4 the finite size of the latticawith its periodic bound-

oL . " s proes ary conditiong affects the long-range part of the correlation
functions resulting in a rapid artificial increase R, .
FIG. 9. Growth of the siz&} for different values of the cou- The optional filter on the total winding numb8rallows
pling constant (A=0.5,1,2,5) forB=0-conserving evolutions on - o compare evolutions witB conserved at some initial value
a 120120 lattice. with others whereB may jump freely during the course of

the relaxation. As long as the actual values wtiictakes on

Large values of prevent the onset of this bag forming pro- are small as compared @ there is almost no difference
cess for a long time, so the angular alignment proceeds fubetweenB-violating and B-conserving evolutions. For the
ther while (®) is still small. This results in much smaller major part of the evolution the local particle-plus-antiparticle
total particle numbers when the bags finally are formeddensity is so high that the evolution is dominated by annihi-
Similarly, this second phase starts earlier for larger values dation processes, and occasional unwinding jump$ iby
\. one or two units play no significant role. Only at late times

Interestingly, the growth rate of the size of the ordered(t>500) whenD has dropped below a few percent\f the
domains remains basically unaffected by this roll-down ofpossibility of spontaneous unwinding makes a noticeable dif-
®: the increase of the correlation functions proceeds moference and it is accompanied by a correspondingly more
notonously through this phase. There is, however, an effeatpid increase of the siZ@, of ordered domains.
on Rp from the shoulder which appears @(R) for 5<R On the other hand, by choosing a large initial valueBor
<10 due to the developing localized extended winding structhe B-conserving relaxation allows to study the formation of
tures. If this shoulder passes through the half-maximunordered domains in a “baryon-rich” environment. We
which is used to defin®, it leads to a deviation from the present a series of such events in Fig. 10 itk 100 on an
power law (13) which is especially pronounced if the bag N=120 lattice(for A=1). In the early stages as long Bs
formation sets in lateg(i.e., for small values ok or largel), >B there is almost no difference as compared to Bre0
when the size of the domains in which approached, is  case. However, for>10 D approaches the value 8ffixed
larger. When the bags are fully developed the orderedat B>100. At these times the value @b is still much
domain size has increased by about a factor of two, so themaller thanf, at most lattice points and the constraint on
bags then are embedded in a patchwork of ordered domainginding number presents a severe obstacle for the growth of

(with d~f,) which extend over 10—20 lattice units. many aligned domains, i.e., it causes a strong deviation from
CR) E@®), D(t), Rp(®), <>()
10000 ~
\."%.
1000 \‘*--. o

3 0.01
0 5 10 15 20 25 30 35 40 0.1 1 10 100 1000

FIG. 10. Time evolution of the correlation functio(R), and a series of evolutions as in Fig. 7, however in a “baryon-rich”
environment wherd® is selected and conserved at valiges 100.
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FIG. 11. Typical example of the field in a baryon-rich environmgot \ =1, with B>100) aftert=1000 relaxation time units.

the power law(13). In fact, the ordering proceeds in such a of stable extended topological structures. For that purpose
way that only very few oriented domains start growing with the effective action is chosen in such a way that the localized
® approachingf in their interior. These few aligning do- topological defects which necessarily accompany the forma-
mains squeeze the regions with nonvanishing windewgd  tion of randomly oriented aligned domains are stabilized
very small®) into coherent large bags, such that the wholewith a definite size as ordered localized structures embedded
space becomes separated into large aligned areas and laigehe aligning field. The stabilizing terms do not break the
bags. This structure is reflected in the correlation function@(3) symmetry explicitly. For definiteness we have only
as a very pronounced shoulder in the range aroustRS  considered the sudden quench scenario and assumed over-
<10 which rises with increasing time due to the further in-4amped dynamics. Apart from the interesting features of the
crease of long range correlatioef. Fig. 10. Evidently,  qarqening transition such processes may serve as models for
neart~ 100 this leads to an almost instantaneous strong ing, spontaneous creation of extended particles and antipar-

crease iRp , which thus appears more as a consequence Qlcles or clusters of those out of a hot random field ensemble.

:Egndgzngclz?galo;i?u atsir:r(;(raegsg_cr)?atﬁ;n:ir;ed(;?tglrimge:jaz]ree; Three aspects are of peculiar interest: The growth rate of
P 9 fhie size of aligned domains follows a power law with an

The further development then is characterized by the formaé onent of aporoximately 0.4 which persists through the
tion of one large bag which comprises almost all of the wind- xp pproxi y 0.4, which persi ug

g rumbercr i, 13, e sgnment n e suroundng <91, S0 ase e T subeedent o oun prace
“vacuum” in most cases progresses slowly according to Eq;. iy ya pent 1zing 1€

. - . . : in the action. This exponent is in agreement with previous
(13) with a~0.4 before finite-lattice-size effects set in for . . ?
t~500. results found in models withour with only one of the

Apart from fixing the spatial extent of the finally formed stabilizing terms for the average defect-defect separg8pn

b . and the spin-spin correlatiof7]. The formation of stable
ags the scale parameleaffects during the early stages of defects is most prominently reflected in the shape of the
the evolution the duration of the first period where the bags P y P

are not yet fully developed. Thus it allows to monitor the equal-time angular correlation functions. During these earlier

total particle number present at the time of bag formation.phases the ordering process is dominated by defect-

o . . . antidefect annihilation which reduce the initial particle num-
This is an interesting aspect for evolutions where one doeBer bv Up 10 two orders of maanitude before the remainin
not consider a sudden quench but allofysto change with y up 9 9

the temperature of the system. According to Ed). this Qefects ;Iowjy take on their stable conformation. By t.hat
. . . time (which is of the order of several hundred relaxation
transforms into changingwith time.

times the final alignment of the remaining few large disori-
ented domains depends sensitively on the accidental spatial
V. CONCLUSION configuration of the few surviving extended particle clusters.
The scale parametdrwhich determines the size of the
We have presented here numerical simulations of phaseesulting defects does not affect the early relaxation period
ordering for a 3-vector field through spontaneous symmetnput it has a pronounced influence on the subsequent evolu-
breaking in two spatial dimensions, with specific attention totion: larger values of suppress the increase @ftowards its
the interplay between the aligning process and the formatiomacuum valuefy over larger spatial areas and thus delay the

025021-10
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onset of the roll-down phase. This leads to a reduction of théer. The subsequent growth of onI_y a fgw jclligned d_om{:lins
final density of particles plus antiparticles when the bagsqueezes regions with nonvanishing winding density into
finally emerge. Through Eq4) | is directly related tof, large coherent particle clusters which fill the interior of large

l/;/]r;|cé]hug2glk|]e5;§;ts;|V|ty of the final total particle number to Extending the present considerations to the GID4)

o . . model appears as a challenging task in view of the ongoing
The third interesting feature concerBsconserving evo-  giscyssion of the chiral phase transition, the formation of

lutions in an environment with large values Bf Similar to gjsoriented chiral domains, and baryon-antibaryon produc-
the case of Iargéthe onset of the roll-down is delayed until tion in the Coo“ng of hot hadronic p|asma_ It may he|p to
most of the possible annihilations have taken place, i.e., untiéstablish further links between assumed quench scenarios
the total particle number approaches the fixed winding numand signatures to be expected from emitted particles.

[1] C. P. Burgess, Phys. Rep30, 193(2000. [5] S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi,
[2] S. Weinberg, Physica /6, 327 (1979; J. Gasser and H. Phys. Rev. B47, 16419(1993.

Leutwyler, Ann. Phys(N.Y.) 158, 142 (1984. [6] T. H. R. Skyrme, Proc. R. Soc. Lond@80, 127 (1961); E.
[3] A. A. Anselm, Phys. Lett. B217, 169 (1988; A. A. Anselm Witten, Nucl. PhysB223 422 (1983; B223 433(1983.

[7] M. Zapotocky and W. J. Zakrzewski, Phys. Rev5E R5189

and M. G. Ryskinjbid. 266, 482(1991); J. P. Blaizot and A. :
(1999; A. D. Rutenberg, W. J. Zakrzewski, and M.

;'rzywmkl, Phys. Rev. D46, 246(1992; 50, .442 (1994; J. D. Zapotocky, Europhys. LetB9, 49 (1997,
jorken, Int. J. Mod. Phys. A, 4189(1992; Acta Phys. Pol. g1 o "5 “Rutenberg, Phys. Rev. B1, R2715 (1995; G. J.
B 23, 561(1992; Disoriented chiral condensate, Proceedings Stephens, Phys. Rev. 61, 085002(2000.
of the Workshop on Continuous Advances in QCD, [g]G. Holzwarth, Phys. Rev. 59, 105022(1999.
Minneapolis, 1994, and SLAC-PUB-6488994); S. Gavin, [10] H. Walliser, Phys. Rev. 36, 3866(1997.
Nucl. Phys.A590, 163c(1995. [11] A. A. Belavin and A. M. Polyakov, Pis’'ma Zh. Eksp. Teor.
[4] T. A. DeGrand, Phys. Rev. B0, 2001(1984; J. Ellis and H. Fiz. 22, 503 (1975 [JETP Lett.22, 245(1975].
Kowalski, Phys. Lett. B214, 161 (1988, J. Ellis, U. Heinz,  [12] J. D. Bjorken, Phys. Rev. @7, 140(1983.
and H. Kowalski,ibid. 233 223(1989; J. Ellis, M. Karliner, ~ [13] T. W. B. Kibble, J. Phys. A9, 1387(1976; N. H. Christ, R.
and H. Kowalski,ibid. 235 341(1990. Friedberg, and T. D. Lee, Nucl. PhyB202, 89 (1982.

025021-11



