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Features of phase ordering in„2¿1…-dimensional O„3… models
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~Received 20 September 2000; published 29 December 2000!

Numerical simulations of phase ordering under dissipative dynamics in a (211)-dimensional 3-vector
model with O(3) symmetry are reported. The energy functional includes terms which stabilize the size of
extended topological defects. They emerge at the end of the coarsening process as particle- or antiparticle-like
structures floating in the globally aligned vacuum. Approximate power-law growth of disoriented domains
~with an exponent near 0.4! is found to be rather insensitive to the size of the defects. An optional filter for
conservation of winding number allows us to study phase ordering in a high defect-density environment which
leads to large clusters of particles surrounded by the aligned field.
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I. INTRODUCTION

Effective field theories for order-parameterN-vector fields
can be powerful tools for the study of the dynamical beh
ior of complex microscopic many-body systems. Stand
examples are the local magnetization 3-vector fieldF de-
fined over (211)-dimensional space-time for the descripti
of pseudo-2-dimensional spin systems in solid state phy
@1#; similarly, 4-vector fields defined ove
(311)-dimensional space-time model low-energy QCD
chiral effective field theories for the dynamics of pions a
their interactions with gauge fields@2#. Extending these mod
els to finite temperaturesT may allow to investigate feature
of ordering transitions in spin systems or, for the hadro
case, in the cooling phase of the early universe or imme
ately after a heavy-ion collision.

It is expected that during such a cooling process the s
tem undergoes a transition from a hot state in which
global symmetry of the effective action is manifest into
cold state with spontaneously broken symmetry, i.e., w
global alignment of the ordering vector field in a random
chosen direction. The randomly oriented aligned doma
which characterize transient intermediate stages of this
dering transition have recently found increased attention
the case of the chiral meson field, because it was sugge
that they might cause anomalies in the multiplicities of em
ted pions which could serve as a signature for the ph
transition itself@3#. Similarly, the density of topological de
fects in the field configurations has been related to prod
tion rates of extended particle and antiparticle structures
bedded in the aligning field@4#.

This latter aspect is based on the particularly interes
topological properties of (211)DO(3) and (311)DO(4)
models. For appropriate boundary conditions the field c
figurations fall into separate classes which can be chara
ized by integer topological winding numberB. For T50 the
classical ground state configuration~the ‘‘vacuum’’! and the
structure of the particlelike excitations~the ‘‘solitons’’ or
‘‘baryons’’! are obtained through minimization of the corr
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sponding static energy functionalE@F#. The vacuum con-
sists of a globally aligned field with constant lengthF5 f 0
andB50. In case of exactO(N) symmetry different global
orientations are degenerate. Explicitly symmetry-break
terms or boundary conditions select a specific orientation
the true vacuum. Static topological defects are local mini
of E@F# in sectors withBÞ0. They represent ordered con
figurations with large gradients in directionF̂ and lengthF
of the field vector. Large deviations ofF from the vacuum
value f 0 are denoted as ‘‘bags.’’ Stabilizing terms present
E@F# determine soliton and bag size, shape and spatial
file of isolated defects.

Such localized extended configurations have been ide
fied with particlelike structures, low-lying excitations wit
smoothly varying magnetization in quantum Hall ferroma
nets @5#, or baryons embedded in and interacting with t
chiral mesonic field@6#. In these cases the correspondi
local winding density has been interpreted as local elec
charge density, or baryon density, respectively.

Topologically nontrivial configurations can unwind a
space-time points where the lengthF of the field vector van-
ishes. So configurations~with suitable boundary conditions!
can be specified by a definite winding numberB only if there
is no point at which F50. Representing local energ
minima, staticBÞ0 configurations are separated from glob
vacuum by barriers; they may be destabilized by symme
breakers which reduce these barriers. In time-depend
~nonequilibrium! processes even for exactO(N) symmetryB
might change through fluctuations or evolutions whereF
passes through zero at some point. To study the dynam
behavior of field configurations at nonzero temperature
given average soliton density and fluctuatingB therefore
would require the inclusion of a chemical potential and t
construction of a large grandcanonical ensemble with num
ous individual events in order to allow for a well-define
averageB-number. Alternatively, however, if differentB sec-
tors are separated by barriers, we can put a constraint oB.
This is very naturally implemented in lattice simulations if
a time evolution the updates with occasional jumps inB are
rejected. Such aB-filter then allows to investigate phase o
dering in high defect-density environment without the ne
for a grandcanonical ensemble.
©2000 The American Physical Society21-1
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The time evolution of classical fields on a lattice is co
sidered as the evolution of low-frequency modes subjec
the noise of eliminated high frequency fluctuations. In ad
tion to stochastic forces this provides a dissipative~first-
order! time-derivative term which removes energy from t
field configurations and drives the system to the therm
equilibrium at the temperature set by the noise term. T
temperature itself may change in time as a consequenc
the spatial evolution of the system, or as externally impo
quench. Numerical simulations then may follow individu
‘‘events’’ with fixed winding numberB which start out from
an initial random configuration~which would represent a
member of an ensemble of high temperature! with correla-
tion length less than the lattice constant. In such initial c
figurations the field vectors vary randomly from one latti
point to the next, therefore these configurations are cha
terized by large local gradients, i.e. large~positive and nega-
tive! local winding density, and large total energy.

Ordering proceeds through growth of domains wh
comprise in their interior increasing numbers of lattice v
tices with aligned field vectors. In the absence of any expl
symmetry breaking the relative orientation of the align
field for different domains is random. Therefore large fie
gradients then are confined to the boundaries of these ‘‘
oriented’’ domains. The soliton stabilizing terms inE@F#
then lead to a dynamical interplay between the growth
disoriented domains and the formation of energetically
vorable localized extended structures. Finally, we expec
few well-developed solitons to remain embedded in an o
erwise fully aligned vacuum, each soliton with its own~ap-
proximately integer! winding numberBi which add up to the
conserved total integer winding numberB. Residual interac-
tions and~at finite temperatures! remaining field fluctuations
cause slow motion of the localized structures such that
very long time scales some of them may meet and comb
or annihilate to form larger or smallerBi1Bj structures.

Evidently, the whole evolution of one individual configu
ration is an extremely complex process, and after all, o
statistical statements averaged over many events will b
interest. However, for a sufficiently large lattice which
nally still contains a large number of individual solitons, la
tice averages for individual events will already provide go
approximations to ensemble averages. In the present w
we shall exclusively deal with the (211)DO(3) model
where lattice sizes of the order of 1023102 are computation-
ally easy to handle and yet sufficiently large to observe
sential features of the ordering process.

Because the presence of topological textures implies
existence of additional scales relevant for the time evolut
it is expected that phase ordering in such systems viol
dynamical scaling. This has been demonstrated in prev
simulations for 2DO(3) nonlinear@7# and linear@8# sigma
models. In two spatial dimensions the two-derivative~sigma
model! term *¹F¹Fd2x is invariant with respect to the
spatial scale, therefore in these minimal models the size
the defects is not fixed by the static energy functional.
fact, it was observed in@7,8# that the corresponding lengt
scales change with time and interfere with the correlat
length scale that characterizes the aligning process.
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It appears desirable to include in the energy functio
additional terms which stabilize the defects at a fixed fin
size. Due to the scale invariance of the two-derivative te
this requires at least two more terms which balance e
other in the stable static configuration. The effect of a fo
derivative term~which tends to increase the size of sta
structures! in the nonlinear~hard-spin! version of the model
can be compensated by a~zero-derivative! Zeeman term
which by itself tries to shrink local inhomogenities. Phys
cally motivated by external magnetic fields coupled to t
order field vector this term, however, explicitly breaks t
O(3) symmetry and therefore prevents spontaneous al
ment in random directions. It is only in the easy plane wh
the formation of disoriented domains can be observed
long as the field still has components in that plane. Simu
tions of phase ordering in such models have therefore ma
been concerned with the dependence of the resulting de
densities on the defect size@9#.

In the linear~soft spin! version of the model, however
where the lengthF of the order-parameter field is not con
strained, the~zero-derivative! potentialV(F) can serve in-
stead to set the length scale without breaking theO(3) sym-
metry. With the familiar (F22 f 0

2)2 ansatz forV we arrive at
a most simple model which allows for all features of spo
taneous symmetry breaking, combined with the possibility
bag formation and the existence of localized structures w
definite size embedded in the aligning field. Inclusion o
four-derivative term is necessary to prevent the collapse
these localized structures to zero size with subsequent
winding.

It is the aim of this work to investigate phase ordering
connection with the simultaneous formation of isolated top
logically nontrivial structures stabilized by the energy fun
tional. They appear as transient structures in every orde
process, but here they finally persist as stable ‘‘particle
and ‘‘antiparticles’’ with well-defined structure. We shall ad
ditionally consider the option that their net number is chos
as conserved observable. In Sec. II the effective Lagrang
is specified which comprises the minimal number of ter
necessary to establish these features if we exclude all ex
itly symmetry-breaking terms. In Sec. III we briefly discu
the stable static solutions of the corresponding energy fu
tional which ~in that model! only exist if the relevant cou-
pling constant is below a critical value. Finally, in Sec. I
we perform numerical simulations of individual ‘‘events
which follow the ordering process in real time through
Langevin-type overdamped dynamics. For the explorat
purpose of this work we only consider the sudden que
scenario where a random initial configuration with corre
tion length less than the lattice constant is exposed to a l
temperature effective potential and a correspondingly sm
low-temperature stochastic force.

II. THE 2D O„3… MODEL WITH FOURTH-ORDER
STABILIZATION

We consider theO(3)-symmetric Lagrangian density i
211 dimensions in terms of the dimensionless 3-compon
field
1-2
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L5F2S 1

2
]mF]mF2

l4

4
~F22 f 0

2!22c4rmrmD . ~1!

Apart from the usual sigma-model term this Lagrangian c
tains the standard potentialV(F) for the modulus fieldF to
monitor the spontaneous symmetry breaking, and a fo
derivative ~‘‘Skyrme’’ ! current-current couplingrmrm for
the conserved topological current

rm5
1

8p
emnrF̂•~]nF̂3]rF̂!, ~2!

which satisfies]mrm50.
If we write the independent strengthsl4 of the

F4-coupling andc4 of the Skyrme coupling in terms of on
common dimensionless parameterl and a lengthl

l45l/ l 2, c45l l 2 ~3!

then l may be absorbed into the space-time coordinates.
for l fixed, l sets the size of localized static solutions, and
continuous coordinates their total energy is independentl.
The overall energy scale is set by the parameterF2. Of
course, we are free to insert additional powers of the mo
lus field F into the Skyrme term, the above choice bei
motivated to minimize interference with theF4 spontaneous
symmetry-breaking mechanism.

Having fixed theF dependence of the Lagrangian
given in Eqs.~1! and ~2! we conveniently redefine the fiel
and the parameters by

F̃5F f 0
21, F̃25F2f 0

2, l̃ 5 l f 0
21. ~4!

This shows that for fixedl as f 0 goes to zero~e.g., with
increasing temperature! the typical sizel̃ of static defects
grows like 1/f 0 . This may be physically not unreasonab
~cf., e.g., the discussion in the 3-dimensional case in@10#!.
We omit the tildes in the following and absorb thel’s into
the length scale of space-time. Then we finally have for
static energy

E5F2E S 1

2
] iF] iF1

l

4
~F221!21lr0r0Dd2x. ~5!

For the following we will put the energy scaleF2 to unity.
Note that the Lagrangian~1! contains no symmetry-breakin
term and in this sense is the close analogue to the mas
chiral 3D O(4) model.

In the lattice implementation, we impose periodic boun
ary conditions for the field vectors which implies compac
fication of coordinate space to a torusS13S1. A stronger
condition would be to require thatF is the same for all
points on the lattice boundary, which would imply compa
tification of coordinate space to the two-sphereS2. In both
cases the winding densityr0 satisfies*r0d2x5B with inte-
ger winding numberB.
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III. STATIC SOLITON SOLUTIONS

Let us at first give a simple argument how forl less than
a critical value the formation of localized bags will lead
field configurations with winding numberB which are ener-
getically more favorable than the standard Belavin-Polyak
~BP! soliton solution@11# of the O(3) nonlinear s model
whereF is confined to the 2-sphereF2[1 everywhere. For
that purpose we consider idealized square-well bags,
configurations with fixed total winding numberB whereF is
close to zero inside an areaA and equals unity elsewhere
with all nonvanishing angular gradients confined to the
side of that area. For such configurations the winding den
is r5B/A and the first term in Eq.~5! does not contribute,
therefore the bag energy~5! is minimal for A52B and is
obtained as

Ebag5lB. ~6!

For l.4p this exceeds the energyEB
(BP)54pB of the stan-

dard BP solution, where the second term in Eq.~5! does not
contribute. In that case the contribution of the Skyrme te
can be scaled away by unlimited increase of the spatial sc
Therefore, forl.4p idealized bags will not be stable bu
melt away into infinitely large BP solitons. On the oth
hand, for l,4p we may expect well defined stable ba
structures with their spatial extent fixed by the choice ol,
for any chosen value ofB. The above argument for idealize
square-well bags, involving only bulk energies, is indepe
dent of the shape of the idealized bag. For real bags du
the surface energy given by the first term in Eq.~5!, the
degeneracy ofEbag with respect to the shape will be lifted
With increasing values ofB these surface effects will be les
and less important. This is shown in Fig. 1, where the ene
E(l) is plotted forB51 andB510. As expected, the cor
responding energy curvesE(l) lie slightly higher than the
linear result~6! derived above for idealized square-well bag
and approach that result with increasing values ofB.

In numerical simulations on a discreteN3N lattice the
lattice constanta defines an additional scale so we can exp
independence of the energy from the scalel only as long as

FIG. 1. Dependence of the total energy on the coupling stren
l for different values ofB.
1-3
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N@ l /a5(c4 /l4)1/4@1. Then the energyE(l4 ,c4) resulting
from the static part of Eq.~1! will scale asE(l) in Eq. ~5! of
the single argumentl5Al4c4, only.

As l /a approaches 1 from above scaling violations set
This is illustrated in Fig. 2 whereEB51(l51) obtained on a
square lattice witha51 is plotted for different values ofl.
Figure 2 shows that scaling holds with good accuracy fol
.4.

In the angular representation of the field 3-vectorF

5FF̂ the lengthF is the ‘‘bag’’ field, and it is convenient

FIG. 2. Thel-dependence of the energyEB51 for fixed coupling
constantl51.
02502
.

to parametrize the angular partF̂ in terms of the profile
function Q(x,y) and the azimuthal anglef(x,y) with re-
spect to some arbitrarily chosen Cartesian basis

~F1 ,F2 ,F3!5F~cosf sinQ,sinf sinQ,cosQ!. ~7!

For l 510, i.e., well within the scaling region, the ba
F(x,y), the profile functionQ(x,y), and the winding den-
sity r(x,y) of the resultingB51-configuration are plotted in
Fig. 3. One may recognize how the winding density is co
centrated within the well-developed bag. The ‘‘profile’
function Q drops from the value ofp in the center to zero
outside the bag and the angular fieldf(x,y) coincides with
the BP-hedgehog formf5arctan(y/x). So, although the an
gular configuration resembles closely the BP soliton the
ergy EB51 is ~for l51! only 3.70 as compared toEB51

(BP)

54p.
The effects of the finite lattice constant on the field co

figurations can be studied asl approaches 1 from above: th
bagfieldF develops a sharp dip by taking on a value ve
close toF50 only at one single lattice point while being
smooth extended function otherwise. The corresponding d
sity r for a configuration withB51 then assumes the value
of r50.25 within each of the four adjacent lattice cells wi
r[0 everywhere else. Then, while the bagfield still is ab
to scale with l as F l(x)5F(x/ l ), the densityr0 can no
longer scale asr l(x)5r(x/ l )/ l 2. This then causes the sca
ing violations in the energyEB51 as shown in Fig. 2. Ifl is
FIG. 3. Profile functionQ(x,y), bagF(x,y), and the winding densityr(x,y) of the B51 configuration (l51).
1-4
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FEATURES OF PHASE ORDERING IN (211)- . . . PHYSICAL REVIEW D 63 025021
chosen still smaller, likel 50.1, the density takes the valu
of 0.5 on two adjacent lattice cells while the bag zero dis
pears somewhere between the lattice points, such tha
field F'1 on all lattice vertices. In that case the latti
simulation produces a configuration which even looks a
the constraintF2[1 had been imposed. In that case lar
bags carrying multiple charges break up into individualB
51 structures. In order to avoid such effects of the fin
lattice constant we consider in the following scalesl which
are sufficiently large to be safely in the scaling region b
still small enough for the resulting configurations to be w
contained in a reasonably sized lattice~like N5100– 150!.

We finally proceed to the dependence of stable bag c
figurations and their energies on the coupling strengthl. For
B54 different contributions to the total energy and the de
of the bag profile are shown in Fig. 4, and in Fig. 5 densit
and bag profiles forB510 andl51,4,10 are compared. Re
ferring to Fig. 4, one may still recognize nonvanishing ba
for l.4p as a consequence of the limitation of the latti
size: The size of the BP soliton is restricted by the border
the lattice, so that the contribution of the Skyrme term can

FIG. 4. Total energy E5Es1Ebag , surface energyEs

51/2*] iF] iF d2x, bag energy Ebag5l*„1/4(F221)2

1r0r0…d
2x, and the minimum of the ‘‘bag’’-fieldFmin , as func-

tions of the coupling constantl, for B54.
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really be scaled away forl.4p. According to Hobart-
Derrick’s theorem the second and the third term in Eq.~5!
must contribute the same amount to the total energy, res
ing in very flat but still nonvanishing bags forl.4p.

Figure 5 show that forB510 the bags already resemb
the idealized bags discussed above quite closely, with a
interior in which the similarly flat density is localized. The
radius is almost independent of the coupling constantl and
fixed by the choice ofl. The surface thickness depends onl
but not in a dramatic way. Mainly the outermost tails of t
bag profile are sensitive tol. However, increasing surfac
thickness squeezes the winding density towards the cent
the bag such that the central value of the local density can
quite sensitive tol, especially for small values ofl.

IV. RELAXATION AFTER SUDDEN QUENCH

Overdamped relaxation of initially random configuratio
leads to the formation of domains in which the field vecto
are aligned in spontaneously chosen random directions.
and orientation of these~dis!oriented domains change wit
progressing time, some of them growing on cost of othe
such that altogether long-range order is increasing. Bou
aries and edges of such domains are characterized by
angular field gradients. Energetically, large angular gradie
favor formation of bags where the length of the field vecto
deviates strongly from the vacuum valuef 0 . Therefore the
ordering process is accompanied by spontaneous forma
of bags with winding density accumulated inside the ba
With progressing time these bags assume the spatial ex
and profile dictated by the energy functional, while the are
of aligned field in which they are embedded finally grow a
coalesce into a uniformly oriented vacuum.

In order to follow this ordering process as it proceeds
real time we consider the equations of motion as obtai
from Eq. ~1!, suppressing, however, all second-order tim
derivatives in comparison to a first-order time-derivative d
sipative term:

1

t
Ḟ5DF2

l

l 2 ~F221!F2l l 2]~r0
2!/]F1

1

l 2 j. ~8!
FIG. 5. Density and bag profiles forB510 and three different values ofl51,4,10 (l 510).
1-5
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G. HOLZWARTH AND J. KLOMFASS PHYSICAL REVIEW D63 025021
As long as we disregard second-order time derivatives

damping constant 1/t which multiplies theḞ term can be
chosen as unity, i.e., we identify the time unit with the r
laxation timet. In Eq. ~8! we also have added a fluctuation
field j(x,t) to represent Gaussian white noise; in principle
presence and strength is dictated by the dissipat
fluctuation theorem. Independent from this stochastic di
pation other damping mechanisms could be present, like
rapid cooling due to the Bjorken expansion of a hot hadro
fireball @12#. So, depending on the specific physical situat
the damping rate and other parameters in Eq.~8! may be
subject to an appropriate time~or temperature! dependence
Here, however, for definiteness, we will keep them fix
during each individual evolution. This corresponds to a s
den quench where the initially~at t50! hot configuration is
exposed fort.0 to the low-temperature (T50) effective
action. Consequently, we also generally will omit the no
term j. Average results are not sensitive to it, anyway; o
the accidental features of late-time configurations reache
individual evolution events are affected by the noise term

Initial configurations are chosen such that at each lat
vertex~i,j! ( i , j 50, . . . ,N) the field vectorsF point in some
random direction i.e. at each point of the lattice the an
f( i , j ) is selected randomly from the interval@0,2p#, the
angleu( i , j ) from the interval@0,p#. Through this choice the
finite lattice constant acquires physical meaning as provid
a measure for the magnitude of the initial correlation leng
The moduliF( i , j ) of the field vectorsF are chosen as ab
solute values of a Gaussian deviate around the symm
centerF50. Again, late-time average features of the resu
ing configurations do not depend significantly on the me
square deviation of this initial Gaussian distribution. In fa
similar results are obtained even if the initial configuration
constrained to the 2-sphereF25 f 0

2. The reason for this is
that the system reacts to the initially large local angular g
dients by reducing the length of the field vectors almost
erywhere to values which are small as compared tof 0 . This
happens early during the first few time steps, accompan
by some next-neighbor alignment. Therefore the init
length distribution is almost instantly forgotten.

At the borders of the lattice periodic boundary conditio
are enforced. If we divide each elementary lattice cell w
lower left corner~i,j! into two triangles~e.g., by the same
diagonal in all cells!, then the mapF̂( i , j ) maps each triangle
onto a spherical triangle on the sphereF251 cut out of the
surface of this sphere by the~shortest! geodesics which con
nect the image points of the corners of each triangle. T
local winding densityr( i , j ) then is defined as the sum of th
~oriented! areas~divided by 4p! of the two spherical tri-
angles which form the images of the lattice cell with low
left corner~i,j!. Because the area of each spherical triangl
less than 2p each square lattice cell can contain at most o
unit of total winding number. The periodic boundary cond
tions guarantee that the total winding number

B5 (
i , j 50

N21

r~ i , j ! ~9!
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summed over the whole lattice is integer, so that initial co
figurations can be selected with some desired integer v
of B. We also define the ‘‘number of defects’’

D5 (
i , j 50

N21

ur~ i , j !u ~10!

by summing up the absolute values of the local windi
densities. Of course, for random or slowly varying smoo
configurationsD generally is not an integer, but if a configu
ration describes a distribution of localized defects~and an-
tidefects! which are sufficiently well separated from eac
other, thenD is close to an integer and counts the number
these defects~plus antidefects!. In that case we can define th
numbersN1 ,N2 of ‘‘particles’’ and ‘‘antiparticles’’ through

B5N12N2 , D5N11N2 . ~11!

We shall, however, in the following~sloppily! call D the
‘‘particle number’’ ~even if it is not integer!. @Alternatively,
D could be defined as the sum of the absolute values of
areas of all spherical triangles considered above. For a
dom configurations this would result in an average value
^D&5N2/4 ~Kibble limit @13#!. Our definition~10! for ran-
dom configurations leads tôD&50.73N2/4 which implies a
slightly different definition of the initial correlation length.#

The total winding numberB always is integer and occa
sionally will undergo discrete jumps in the update swee
For well-developed localized structures this corresponds
unwinding defects or antidefects independently, such thaB
decreases or increases by one or more units. ThisB-violating
propagation is characteristic for the trivial topology of th
linear O(3) model. However, with the evaluation ofB for
each instantaneous configuration we may in the lattice si
lation implement an~optional! B filter which in each time
step rejects configurations that violateB conservation. This
eliminates all independent unwinding processes. Only sim
taneous annihilation of defect and antidefect in the same t
step remains possible, and, as the update proceeds loca
each lattice vertex it can happen only if defect and antide
overlap. ThisB-conserving evolution is characteristic for th
nontrivial topology of the nonlinearO(3) model. Of course,
we expect that severe differences between both types of
lutions appear only ifD is comparable toB.

In order to produce configurations with well-develop
stable bags we choose for the following quench simulati
values for the coupling constant between 0.5,l,5. This is
well below the critical value ofl54p.

For most of the results presented below the scalel is
chosen asl 5A10; this is small enough to allow for the for
mation of numerous bags on a reasonably sized lattice~like
1503150!, but is still close to the onset of the scaling regio
~cf. Fig. 2! to suppress effects of the finite lattice constan

To obtain a more quantitative measure for the size
ordered domains we consider the correlation function

C~R!5 (
i , j 50

N

(
k,l 50

N

F̂~ i , j !•F̂~k,l !Y (
i , j 50

N

(
k,l 50

N

1,

~12!
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where thek, l sum is restricted such that the distancer
5A(k2 i )21( l 2 j )2 between lattice vertices~i,j! and ~k,l!
lies inside bins of unit size around fixed positive integersR.
The typical shapes of these correlation functions are sh
in Fig. 6 for an evolution withB-conservation on a 150
3150 mesh, for increasing time. For the initial configurati
C(R) vanishes for allR>1 which reflects our choice of th
initial correlation length. In the very early part of the rela
ation process (t,1) these correlation functions approa
zero within less than 5 lattice units and stay close to zero
larger distances. Fort.10 they drop to small values abov
10 lattice units, but stay positive with small oscillations~with
wavelengths of more than 20 lattice units, increasing witht!.
For t.200 these oscillations no longer fit into the 15
3150 lattice, the correlation functions show a monotono
decrease~for R,N/2!. Their minima~nearR5N/2! increase
towards unity, which indicates that finally the extension
the ordered domains reaches the size of the lattice.

Comparing with typical field configurations during the r
laxation, the half-maximum distance, i.e., the distanceR
whereC(R) drops below 0.5 apparently provides an app
priate measure for the ‘‘radius’’RD of ordered domains. O
course, this is a rather arbitrary and not very precise conv
tion, but it captures the essentials of the ordering proces
view of the fact that the boundaries of the ordered doma
are not sharply defined. A typical feature of these correlat
functions is the appearance of a shoulder for small distan
(R,5) for late times. This reflects the formation of the o
dered textures, i.e., spatially extended angular twists wh
locally prevent alignment of the field vectors over distanc
of the order ofl. Naturally, this effect gets especially prom
nent for evolutions which proceed in configurations co
strained to a large total winding numberB ~see below!.

For a series ofB-conserving evolutions which start o
from different randomly chosen initial configurations, s
lected however for winding numberB50, Fig. 7 shows the
time dependence of the ‘‘radius’’RD of ordered domains, the
total energyE, the ‘‘particle number’’D and the lengtĥF&
of the field vector averaged over the whole lattice.

FIG. 6. Time evolution of the correlation function forB50 and
l55. The time is given in units of the relaxation timet.
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Figures 8 show the typical features of the field in an
370 section of a 1503150 lattice during different stages o
such an evolution aftert51, t510, andt51000 relaxation
time units.

Figure 9 shows the growth of the sizeRD for different
values of the coupling constantl (l50.5,1,2,5) for
B50-conserving evolutions which start off from identic
initial configurations.

One can distinguish three phases of the ordering proc
~i! During an initial ‘‘relaxation’’ period which takes a

few ~relaxation-! time units, the lengthsF of the field vectors
initially rapidly decrease and then vary around small valu
of about 0.1f 0 , the number of defectsD drops from its start-
ing value~which is of the order of 0.73N2/4! by about one
order of magnitude, accompanied by a corresponding los
total energy. During this period the growth ofRD closely
follows a power law

RD5ata, with a'0.460.01. ~13!

This exponent is with good accuracy independent of the c
pling constantl, of the initial configuration, and of the lat
tice sizeN ~as long asN@1!. It is also independent of the
scale parameterl. By the end of this period ordered domain
extend over several lattice units (RD;5).

~ii ! The second phase~10,t,100, depending onl andl!
could be termed the ‘‘roll-down’’ phase. It is characterize
by the increase of the~spatial-! average lengtĥF& of the
field vectors towards the vacuum valuef 0 . Actually, this
roll-down process is rather slow; it takes of the order
;100 relaxation time units for the space-averaged^F& to
approachf 0 . Locally, this increase ofF happens only in the
interior of ordered domains, which results in the formation
numerous dense and initially often connected bag struct
located around the boundaries of these domains. So, du
this phase it is evidently theF4 potential which drives the
evolution. Therefore the onset of this second phase depe
on the scale parameterl and on the coupling strengthl.

FIG. 7. Total energyE, ‘‘particle number’’ D, ‘‘radius’’ RD of
ordered domains, and the length^F& of the field vector averaged
over the whole lattice, for a fewB50-conserving evolutions~for
l51, l 5A10, on a 1203120 lattice!. The time is in units of the
relaxation timet.
1-7
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FIG. 8. Typical features of the field during different stages of an evolution~for l55, with B conserved atB50!. In the left column the
lengthsF are plotted over the spatialx-y plane which provides a 3D view of the momentous bag structures. The right column presen
projection of theF-vectors at each lattice site on theF1-F2 plane.
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FEATURES OF PHASE ORDERING IN (211)- . . . PHYSICAL REVIEW D 63 025021
Large values ofl prevent the onset of this bag forming pr
cess for a long time, so the angular alignment proceeds
ther while ^F& is still small. This results in much smalle
total particle numbers when the bags finally are form
Similarly, this second phase starts earlier for larger value
l.

Interestingly, the growth rate of the size of the order
domains remains basically unaffected by this roll-down
F: the increase of the correlation functions proceeds m
notonously through this phase. There is, however, an ef
on RD from the shoulder which appears inC(R) for 5,R
,10 due to the developing localized extended winding str
tures. If this shoulder passes through the half-maxim
which is used to defineRD it leads to a deviation from the
power law ~13! which is especially pronounced if the ba
formation sets in late,~i.e., for small values ofl or largel!,
when the size of the domains in whichF approachesf 0 is
larger. When the bags are fully developed the order
domain size has increased by about a factor of two, so
bags then are embedded in a patchwork of ordered dom
~with F' f 0! which extend over 10–20 lattice units.

FIG. 9. Growth of the sizeRD for different values of the cou-
pling constantl (l50.5,1,2,5) forB50-conserving evolutions on
a 1203120 lattice.
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~iii ! The further development proceeds by the bags slo
moving around, eating up smaller ones or uniting with oth
they meet on their way, or, annihilating with others of opp
site winding number. They assume sizes which correspon
the chosen scalel and reflect the partial winding numbe
contained in their interior. So, naturally, the evolution duri
this late period depends more on accidental features of
individual configurations as they have developed up to t
point. However, it is interesting to note that, on the avera
the growth of the ordered domains~now with F5 f 0! again
approximately follows the power law~13! with a around 0.4
~see Fig. 9!. Finally, if RD has reached values near or grea
thanN/4 the finite size of the lattice~with its periodic bound-
ary conditions! affects the long-range part of the correlatio
functions resulting in a rapid artificial increase ofRD .

The optional filter on the total winding numberB allows
to compare evolutions withB conserved at some initial valu
with others whereB may jump freely during the course o
the relaxation. As long as the actual values whichB takes on
are small as compared toD there is almost no difference
betweenB-violating and B-conserving evolutions. For the
major part of the evolution the local particle-plus-antipartic
density is so high that the evolution is dominated by ann
lation processes, and occasional unwinding jumps inB by
one or two units play no significant role. Only at late tim
(t.500) whenD has dropped below a few percent ofN2 the
possibility of spontaneous unwinding makes a noticeable
ference and it is accompanied by a correspondingly m
rapid increase of the sizeRD of ordered domains.

On the other hand, by choosing a large initial value forB,
the B-conserving relaxation allows to study the formation
ordered domains in a ‘‘baryon-rich’’ environment. W
present a series of such events in Fig. 10 withB.100 on an
N5120 lattice~for l51!. In the early stages as long asD
@B there is almost no difference as compared to theB50
case. However, fort.10 D approaches the value ofB fixed
at B.100. At these times the value ofF is still much
smaller thanf 0 at most lattice points and the constraint o
winding number presents a severe obstacle for the growt
many aligned domains, i.e., it causes a strong deviation f
h’’
FIG. 10. Time evolution of the correlation functionC(R), and a series of evolutions as in Fig. 7, however in a ‘‘baryon-ric
environment whereB is selected and conserved at valuesB.100.
1-9
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FIG. 11. Typical example of the field in a baryon-rich environment~for l51, with B.100! after t51000 relaxation time units.
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the power law~13!. In fact, the ordering proceeds in such
way that only very few oriented domains start growing w
F approachingf 0 in their interior. These few aligning do
mains squeeze the regions with nonvanishing winding~and
very smallF! into coherent large bags, such that the wh
space becomes separated into large aligned areas and
bags. This structure is reflected in the correlation functio
as a very pronounced shoulder in the range around 5,R
,10 which rises with increasing time due to the further
crease of long range correlations~cf. Fig. 10!. Evidently,
neart;100 this leads to an almost instantaneous strong
crease inRD , which thus appears more as a consequenc
the definition of RD as the half-maximum distance rath
than an actual abrupt increase of the size of aligned ar
The further development then is characterized by the for
tion of one large bag which comprises almost all of the win
ing number~cf. Fig. 11!, while alignment in the surrounding
‘‘vacuum’’ in most cases progresses slowly according to E
~13! with a;0.4 before finite-lattice-size effects set in fo
t;500.

Apart from fixing the spatial extent of the finally forme
bags the scale parameterl affects during the early stages o
the evolution the duration of the first period where the ba
are not yet fully developed. Thus it allows to monitor th
total particle number present at the time of bag formati
This is an interesting aspect for evolutions where one d
not consider a sudden quench but allowsf 0 to change with
the temperature of the system. According to Eq.~4! this
transforms into changingl with time.

V. CONCLUSION

We have presented here numerical simulations of ph
ordering for a 3-vector field through spontaneous symme
breaking in two spatial dimensions, with specific attention
the interplay between the aligning process and the forma
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of stable extended topological structures. For that purp
the effective action is chosen in such a way that the locali
topological defects which necessarily accompany the form
tion of randomly oriented aligned domains are stabiliz
with a definite size as ordered localized structures embed
in the aligning field. The stabilizing terms do not break t
O(3) symmetry explicitly. For definiteness we have on
considered the sudden quench scenario and assumed
damped dynamics. Apart from the interesting features of
coarsening transition such processes may serve as mode
the spontaneous creation of extended particles and ant
ticles or clusters of those out of a hot random field ensem

Three aspects are of peculiar interest: The growth rate
the size of aligned domains follows a power law with
exponent of approximately 0.4, which persists through
early relaxation phase and the subsequent roll-down ph
and is apparently quite independent of the stabilizing ter
in the action. This exponent is in agreement with previo
results found in models without~or with only one of the!
stabilizing terms for the average defect-defect separation@8#
and the spin-spin correlation@7#. The formation of stable
defects is most prominently reflected in the shape of
equal-time angular correlation functions. During these ear
phases the ordering process is dominated by def
antidefect annihilation which reduce the initial particle num
ber by up to two orders of magnitude before the remain
defects slowly take on their stable conformation. By th
time ~which is of the order of several hundred relaxati
times! the final alignment of the remaining few large diso
ented domains depends sensitively on the accidental sp
configuration of the few surviving extended particle cluste

The scale parameterl which determines the size of th
resulting defects does not affect the early relaxation per
but it has a pronounced influence on the subsequent ev
tion: larger values ofl suppress the increase ofF towards its
vacuum valuef 0 over larger spatial areas and thus delay
1-10
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onset of the roll-down phase. This leads to a reduction of
final density of particles plus antiparticles when the ba
finally emerge. Through Eq.~4! l is directly related tof 0

which implies sensitivity of the final total particle number
the quench velocity.

The third interesting feature concernsB-conserving evo-
lutions in an environment with large values ofB. Similar to
the case of largel the onset of the roll-down is delayed un
most of the possible annihilations have taken place, i.e., u
the total particle number approaches the fixed winding nu
.

gs
D,

02502
e
s

til
-

ber. The subsequent growth of only a few aligned doma
squeezes regions with nonvanishing winding density i
large coherent particle clusters which fill the interior of lar
bags.

Extending the present considerations to the 3DO(4)
model appears as a challenging task in view of the ongo
discussion of the chiral phase transition, the formation
disoriented chiral domains, and baryon-antibaryon prod
tion in the cooling of hot hadronic plasma. It may help
establish further links between assumed quench scena
and signatures to be expected from emitted particles.
yi,
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