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Effects of Bose-Einstein condensation on forces among bodies sitting in a boson heat bath
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We explore the consequences of Bose-Einstein condensation on two-scalar-exchange mediated forces among
bodies that sit in a boson gas. We find that below the condensation temperature the range of the forces becomes
infinite, while it is finite at temperatures above condensation.
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van der Waals type forces, where two photons are be
exchanged@1#, or the extremely feeble forces generated
the two-neutrino exchange@2,3# provide examples of force
among two static bodies in a vacuum produced by the
change of two quanta in thet channel. Spin independen
interactions arising from double~pseudo! scalar exchange
@4–6# @such as axions and/or more bizarre specimens
modern completions of the standard model~SM!# provide
further examples of these so-called dispersion forces@7#.
When the objects that feel such forces are placed in a
bath at a temperatureT, the forces get modified. Indeed, i
the case of molecules in the relic photon background,
long-range Casimir-Polder forces among them are stron
affected for distances much larger thanT21 @8# and, for the
two-neutrino forces, the cosmic neutrino background co
pletely screens off the interaction at large distances@9#
~again, large meaning much larger thanT21).

In the present paper we shall deal with a gas of sc
bosons carrying an abelian charge and a nonzero chem
potential. As mentioned before, their double exchange
tween fermions has been studied in a vacuum. The case
noncharged scalar bath in a classical Boltzmann distribu
was briefly discussed in@6#. However, we are not aware o
discussions on the effects resulting from placing the inter
ing system in a charged scalar heat bath displaying gen
quantum statistical effects such as Bose-Einstein~BE! con-
densation. Because in the previously reported instances
teresting effects did result, we think it is worthwhile to rai
this issue here. Admittedly, light scalar bosons have a m
different status than photons and neutrinos, and their na
is entirely speculative. Nonetheless, in almost any exten
of the standard model, scalars are present and, furtherm
some have been suggested as candidates for dark matt
that they might be part of the cosmic relic background.

To avoid nonessential complications due to spin, we w
use a simple Lagrangian that mimics the spin-independ
dispersion interactions of matter and light scalar fields. C
sider the LagrangianLint5gF2w2, whereF is a heavy sca-
lar field of massM and w is a light scalar field of mass
m(m!M ). Let us now put two such heavy particlesF in a
vacuum at a distancer. Their lowest-order interaction is
given by the Feynman amplitude in Fig. 1. The potentia
obtained from the nonrelativistic~NR! limit of this amplitude
via a Fourier transformation. That is,

V~r !5 i E d3Q

~2p!3 eiQ"r
T„q.~0,Q!…

4M2 ~1!
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whereT(q) is the amplitude corresponding to Fig. 1.
Taken at face value, the previous integral diverges. It

to be regulated, and the piece which leads to a long-ra
interaction extracted. Following@3,10#, we obtain

Vvac~r !52
g2m

64p3r 2M2 K1~2mr! ~2!

for the potential.
For smallw mass, in the ranger !1/m, Eq. ~2! shows a

1/r 3 behavior. Beyond this range, the Bessel function giv
rise to the characteristic Yukawa factore22mr. This behavior
coincides with the potential from the double exchange
~pseudo! scalars coupled to matter fermions via Yukawa co
plings @5,6#.

Next we introduce our system in a heat reservoir made
an ideal relativisticw gas at temperatureT(T.m). We fur-
ther assume that the particles in the gas carry a conse
charge corresponding to a quantum mechanical operatoQ.
We may use real time finite temperature field theory@11# to
calculate the effect of the heat bath on the potential betw
the two massive particles, taking, for theT-dependent
w-propagator,

DF~k,T!5
1

k22m21 i e
22p id~k22m2!

3@u~k0!n1~ uk0u,T!1u~2k0!n2~ uk0u,T!#,

~3!

FIG. 1. Diagram giving rise to the long-range force.
©2000 The American Physical Society20-1
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wheren6(v,T)5@exp„(v7m)/T…21#21 are the BE distri-
bution functions for particles and antiparticles, respective
m is the chemical potential associated to the conser
chargeQ.

The amplitude of Fig. 1 now generalizes to

T~q!5g2E d4k

~2p!4 DF~k,T!DF~q2k,T!. ~4!

This amplitude generates two distinct contributions to
potential. The first one arises from the first piece inDF and is
the vacuum potential just derived. The other correspond
the situation where one of the scalars in the double excha
process is supplied by the thermal bath. This effect is
scribed by the crossed terms in the amplitude involving
thermal piece of onew propagator along with the vacuum
piece of the other propagator. This thermal component of
Feynman amplitude can be written in the static limit, i.e.
momentum transferq.(0,Q), where matter is supposed t
be at rest in the frame of the heat reservoir, as

TT„q.~0,Q!…5 ig2E d3k

~2p!3

1

Ak21m2

3
1

Q224k2~Q̂• k̂!2
~n11n2!, ~5!

i.e., it has been reduced to an integral over the phase spa
the real particles~and antiparticles! in the heat bath.

The reservoir is thermodynamically characterized by
temperatureT, a volumeV, and a fixed chargeQ @12#. Then,
the chemical potentialm(T) is determined from the relation
Q5Sk(n12n2). For a Bose-Einstein gas, the sum ov
states in this formula can be converted to an integral like
one in Eq.~5! as long as its temperature is above a criti
temperatureTc . Below that temperature, if one makes t
replacement

(
k

°VE d3k

~2p!3 ,

the result is less thanQ @12#. This is because belowTc , a
large macroscopic fraction of the charge resides in the low
energy state, and the density of statesVk2/2p2 in the con-
tinuous representation of the sum over states gives a
weight to the zero mode. On the contrary, if the gas is ab
Tc then the charge is thinly distributed over the states and
individual state is populated by a macroscopic fraction of
total charge, so that by passing to the continuum, essenti
only an infinitesimally small error is incurred. Let us discu
both cases in turn. First start with the nondegenerate c
i.e., whenT is above the condensation temperatureTc . In
this instance, the phase space integrals in the formulas a
correctly describe the physics of the problem. Therefore,
can take Eq.~5! and plug it into the expression for the po
tential Eq.~1!. After a trivial integration over bothQ and the
polar angle ink space, we get
02502
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VT~r !52
g2

64M2p3

1

r 2 E
0

` k2duku

Ak21m2

sin 2ukur
uku

3@n1~Ak21m2!1n2~Ak21m2!#. ~6!

This equation by itself is not sufficient to determineVT(r )
because the functionsn6 contain the chemical potentia
m(T), which has to be obtained through

r[
Q
V 5

1

2p2 E k2duku~n12n2!, ~7!

which, by the way, also determines the critical temperat
Tc via the implicit equation@13#

r5r~T5Tc,m5m!. ~8!

So, Eqs.~6! and~7! give the solution to our problem. We ca
use the high-temperature expansion of Eq.~7!, derived in
@13#, to obtain the chemical potential as a function ofT. To
leading order,m(T)5m(Tc /T)2, and we introduce it in Eq.
~6! to get our potential above the condensation temperat
The total contribution to the potential, with the vacuu
piece, Eq.~2!, added, is finally

VT>Tc

total 52
g2

64M2p2

1

r 2 TFe22mrA12j4

12(
k51

`

e2rTA2~a1b! cos~rTA2~a2b!G , ~9!

with a2[(4kpmTc
2/T3)21„m2(12j4)/T214k2p2

…

2, b
[4k2p21m2(12j4)/T2, andj[Tc /T.

Notice in the first term of Eq.~9!, the typical Yukawa
damping factor cuts off the interaction at long distances co
pared to the Compton wavelength ofw. Furthermore, since
for any k we haveTA2(a1b).2mA12j4, all modes in
the second term of Eq.~9! are even more suppressed at lar
distances.

Below Tc , a macroscopic fraction of the charge carri
by particles in the reservoir piles up in the zero mode st
~the condensate!, and the integrals in Eqs.~6! and ~7! no
longer correctly describe the physical situation. Indeed,
~7! gives the density of the charge in excited statesr* , i.e.,
the thermal modes@13#. For a relativistic boson gas,r*
5mT2/3, usingm5m in this temperature regime sincem
always has to be less than or equal tom, and it monotonically
increases as the temperature decreases until it reachesm at
Tc ~and stays fixed in the macroscopical sense thereaf!.
Because the definition of the condensation temperature,
~8!, implies in this caser5mTc

2/3, the charge density in the
ground state isr05r„12(T/Tc)

2
….

The Feynman amplitude, Eq.~5!, which also involves a
sum over states, should be split accordingly in two parts
the zero mode term, on the one hand, and on the other h
the integral over thermal modes. The zero momentum m
contributes to the amplitude
0-2
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EFFECTS OF BOSE-EINSTEIN CONDENSATION ON . . . PHYSICAL REVIEW D63 025020
TT~Q!uk505
ig2

mQ2

1

V ~n11n2!uk50 , ~10!

where the distribution function factor can be rewritten as

1

V ~n11n2!uk505
Q

V „12~T/Tc!
2
…1

1

V
2

e2m/T21
~11!

sincem5m2O(T/Q).
As long as the net chargeQ is a macroscopically large

number many orders of magnitude larger thanT/m, this fac-
tor essentially coincides with the condensate contribution
the densityr0 . One may gain intuition on how a charge
distributed among states by making a few numerical ex
cises with our formulas. By way of example, we take a fid
cial volume of 10m3 filled with 400 units of charge pe
cubic cm ~i.e., numerically equal to the photons in the m
crowave background radiation!. Then, for m51026 eV, 4
31011 particles and 15 antiparticles populate the grou
state, while 4.63108 particles and 4.23108 antiparticles fill
the excited states atT50.01 Tc5331024 eV. Clearly, the
statement following Eq.~11! is correct, and it allows us to
calculateT(Q)uk50 in terms of the fixed quantityr:

TT~Q!uk505
ig2

3Q2 ~Tc
22T2!. ~12!

The Fourier transform of this equation gives the contribut
of the condensate to the potential. It is

V0~r !52
g2

48M2p

1

r
~Tc

22T2!. ~13!

The thermal contribution~i.e., from the excited states! is just
Eq. ~6! with the chemical potential held fixed at the consta
valuem5m. We find an expression that coincides with E
~9! at T5Tc , and it contains an infinite sum as well. A
before, all terms in the infinite sum decay faster thane22mr

for T.m. Therefore, for distances much larger than t
Compton wavelength ofw, i.e., r @m21, and hence,r
@Tc

21, the main contribution toVT<Tc

total comes from Eq.

~13!:

VT<Tc

total .2
g2

48M2p

Tc
2

r
@11O~T2/Tc

2,T/rTc
2!#. ~14!

Inspection of these results immediately leads us to realiz
important consequence of Bose-Einstein condensat
Namely, at low temperature~i.e., belowTc), the force, that
was finite ranged at high temperature~i.e., aboveTc), be-
comes infinite ranged. This comes about because the me
absorbs and restores the three-momentum in the scatt
process, so that the four-momentum squared of the othw
quantum exchanged in thet channel can reach the mass sh
in the physical region of the scattering process. For thk
50 mode in the bath, in particular, the propagator of
second particle@see Eq.~5!# takes the form of the Coulomb
propagator, and becomes singular at the edge of
Q-integration region, exactly as in the Coulomb case.
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T.Tc , this infinite wavelength mode has zero measure,
it does not contribute to the potential. However, in the co
densed phase, the infinite-range potential arises as a co
tive phenomenon, essentially because all of the charge p
up in the ground state.

What we would like to do now is to graphically show th
transition of the potential as we vary the temperature fr
T.Tc to T,Tc , by numerically evaluating the infinite sum
required. Figure 2 displays our results.

Let us briefly summarize our findings. Light scalars a
basic ingredients of many completions of the stand
model. They may carry a new conserved quantum numbe
ordinary matter is neutral with respect to this new char
then these scalars should couple to ordinary matter in pa
But double~pseudo! scalar exchange generates long ran
spin independent forces among bulk matter, exactly as t
neutrino exchanges and two-photon exchanges~van der
Waals forces! do. All these dispersion forces are modifie
when matter is introduced in a heat bath. The present pa
presents an investigation of the effects of a relativistic id
Bose gas on potentials generated by a two-scalar excha
An example for such a heat bath could be provided by
dark matter~i.e., relativistic at decoupling! made of hypo-
thetic relic light scalars. For this purpose we use a v
simple model for matter-scalar interactions that correctly
produce the larger behavior of two-~pseudo!scalar exchange
potentials. We do not want to commit ourselves to any s
cific extension of the SM, and the phenomena produced
Bose-Einstein condensation is totally independent of
form of the interaction chosen. What we find is a very d
matic effect: below the critical temperature, the finite-ran
force that we had above this temperature becomes
infinite-range force. The phenomenon arises as a comb
tion of kinematics~three-momentum exchange of the mat

FIG. 2. Total potential, divided by2g2/128M2p3r 3, for a rela-
tivistic bose gas made of particles ofm;1026 eV and having a
densityr;40 cm23. Behavior above and belowTc is shown. Note
the Yukawa exponential damping forT.Tc , starting at r
;1/m⇒rTc;103.
0-3
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system with the medium! and the collective effect of conden
sation of the charge. In the case studied in this pape
potential of the form;exp(22mr)/r2 at T.Tc converts to a
;1/r potential atT,Tc . Should hot relic scalars populat
our Universe with a present density such that their temp
ture is below the threshold for Bose-Einstein condensat
then the effect described above would provide an excel
m.
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opportunity for experiments searching for forces weaker th
gravity @14# since in this case, no exponential decay w
distance occurs and, furthermore, a milder power law fall
with distance ensues.
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