PHYSICAL REVIEW D, VOLUME 63, 025020

Effects of Bose-Einstein condensation on forces among bodies sitting in a boson heat bath
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We explore the consequences of Bose-Einstein condensation on two-scalar-exchange mediated forces among
bodies that sit in a boson gas. We find that below the condensation temperature the range of the forces becomes
infinite, while it is finite at temperatures above condensation.
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van der Waals type forces, where two photons are beingvhere7(q) is the amplitude corresponding to Fig. 1.
exchanged 1], or the extremely feeble forces generated by Taken at face value, the previous integral diverges. It has
the two-neutrino exchande,3] provide examples of forces to be regulated, and the piece which leads to a long-range
among two static bodies in a vacuum produced by the exinteraction extracted. Following3,10], we obtain
change of two quanta in the channel. Spin independent
interactions arising from doublgseud® scalar exchanges o’m
[4-6] [such as axions and/or more bizarre specimens of _
modern completions of the standard mod8M)] provide Vvad 1) = 64773r2M2K1(2mr) )
further examples of these so-called dispersion forcgs
When the objects that feel such forces are placed in a heat ,
bath at a temperaturg the forces get modified. Indeed, in for the potential. _
the case of molecules in the relic photon background, the 3For small ¢ mass, in the range<1/m, Eq. (2) shows a
long-range Casimir-Polder forces among them are strongl}/r behavior. Beyo_nd_ this range, the I;.’:essel _funct|on_g|ves
affected for distances much larger than® [8] and, for the  Tise t(_) the charactenstlc Yl_Jkawa facwr<™'. This behavior
two-neutrino forces, the cosmic neutrino background com¢&oincides with the potential from the.doubl_e exchange of
pletely screens off the interaction at large distanf@k (p.seudc)scalars coupled to matter fermions via Yukawa cou-
(again, large meaning much larger tHant). plings[5,6]. _ ,

In the present paper we shall deal with a gas of scalar Next we m_trpd_uce our system in a heat reservoir made of
bosons carrying an abelian charge and a nonzero chemical ideal relativisticp gas at temperaturg(T>m). We fur-
potential. As mentioned before, their double exchange bether assume that the particles in the gas carry a conserved
tween fermions has been studied in a vacuum. The case oféharge corresponding to a quantum mechanical opegtor
noncharged scalar bath in a classical Boltzmann distributio§Ve may use real time finite temperature field thefdry] to
was briefly discussed if6]. However, we are not aware of calculate the ef_fect of th_e heat ba_th on the potential between
discussions on the effects resulting from placing the interactth® two massive particles, taking, for thie-dependent
ing system in a charged scalar heat bath displaying genuir@é Propagator,
guantum statistical effects such as Bose-Eins(Bif) con-
densation. Because in the previously reported instances, in-
teresting effects did result, we think it is worthwhile to raise  Dp(k,T)= 5——>——
this issue here. Admittedly, light scalar bosons have a much K*—m"+ie
Qiﬁergnt status tha.n photons and neytrinos, and their natyre X[ 0K, (|K%,T)+ 8(—Kn_(|K,T)],
is entirely speculative. Nonetheless, in almost any extension
of the standard model, scalars are present and, furthermore, 3
some have been suggested as candidates for dark matter so
that they might be part of the cosmic relic background. b ¢/

To avoid nonessential complications due to spin, we will e - -
use a simple Lagrangian that mimics the spin-independent- Tt =T
dispersion interactions of matter and light scalar fields. Con- p .
sider the Lagrangiai;,,=g®?¢?, where® is a heavy sca- , '
lar field of massM and ¢ is a light scalar field of mass : .
m(m<M). Let us now put two such heavy particlésin a @ P
vacuum at a distance. Their lowest-order interaction is \
given by the Feynman amplitude in Fig. 1. The potential is ' .
obtained from the nonrelativistitNR) limit of this amplitude . .
via a Fourier transformation. That is,

d? ) =(0,
V(”:if(zw?se"?"ﬂq 199D &

4M? FIG. 1. Diagram giving rise to the long-range force.

—2i 5(k*—m?)
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wheren. (o, T)=[exp((wF x)/T)—1]"* are the BE distri- g2 1 (= KK sin2lkr
bution functions for particles and antiparticles, respectively. Vi(r)=— 33
u is the chemical potential associated to the conserved 6= 1= Jo (k?+m? K|

chargeQ@. T >
The amplitude of Fig. 1 now generalizes to X[n. (Vk*+mo) +n_(Vk+mT]. 6)

dk This equation by itself is not sufficient to determike(r)
T(Q)Zng—4DF(k,T)DF(q—k,T)- (4) because the functions. contain the chemical potential
(2m) u(T), which has to be obtained through

This amplitude generates two distinct contributions to the 0 1

potential. The first one arises from the first piec®inand is pP=y=52 f k2d|k|(n,—n_), @)

the vacuum potential just derived. The other corresponds to .

the situation where one of the scalars in the double exchange, . . ”

process is supplied by the thermal bath. This effect is delhich, by the way, also determines the critical temperature
scribed by the crossed terms in the amplitude involving thel ¢ Via the implicit equatiorf 13]

thermal piece of onep propagator along with the vacuum

piece of the other propagator. This thermal component of the p=p(T=T,,u=m). ®)
Feynman amplitude can be written in the static limit, i.e., a . )

momentum transfeq:(O'Q), where matter is Supposed to SO, Eqs.(6) and(?) give the solution to our problem. We can

be at rest in the frame of the heat reservoir, as use the high-temperature expansion of Ef, derived in
[13], to obtain the chemical potential as a functionTofTo
d3k 1 leading order,u(T)=.m(Tc/T)2, and we introqiuce itin Eq.
TT(qz(O,Q))Zing - (6) to get our potential above the condensation temperature.
(2m)° k24 m? The total contribution to the potential, with the vacuum

1 piece, Eq.(2), added, is finally
X —————(n,+n_), (5

Q?—4k%(Q-k)? Vol g % 1| g-2mni=&
e 64M 272 ¢
i.e., it has been reduced to an integral over the phase space of "
the real particlesand antiparticlesin the heat bath. T aTD
The reservoir is thermodynamically characterized by a +2|<§=:1 e M codrTV2(a—B)|,  (9)
temperaturdl, a volumeV, and a fixed charg® [12]. Then,
the chemical potentigl(T) is det_ermined from the relation i, a25(4kme§/T3)2+(m2(1—§4)/T2+4k2w2)2, B
Q=2k(_n+—_n,). For a Bose-Einstein gas, _the sum overE4k2W2+m2(1_§4)/T2, andé=T,/T.
states in this formula can .be converted to an integral I|kg the  Notice in the first term of Eq(9), the typical Yukawa
one in Eq.(5) as long as its temperature is above a criticaly,mning factor cuts off the interaction at long distances com-
temperaturel ;.. Below that temperature, if one makes the pared to the Compton wavelength ef Furthermore, since
replacement for any k we haveT\2(a+ B)>2m\1—¢&*, all modes in
&K the second term of E@9) are even more suppressed at large
S sy distances.
K (2m)*’ Below T, a macroscopic fraction of the charge carried
by particles in the reservoir piles up in the zero mode state
the result is less tha@ [12]. This is because beloW., a  (the condensaje and the integrals in Eqg6) and (7) no
large macroscopic fraction of the charge resides in the lowedenger correctly describe the physical situation. Indeed, Eq.
energy state, and the density of staid€/272 in the con-  (7) gives the density of the charge in excited staigsi.e.,
tinuous representation of the sum over states gives a zettbe thermal mode$13]. For a relativistic boson gag*
weight to the zero mode. On the contrary, if the gas is above=mT?/3, usingu=m in this temperature regime singe
T. then the charge is thinly distributed over the states and nalways has to be less than or equairicand it monotonically
individual state is populated by a macroscopic fraction of thencreases as the temperature decreases until it reaclas
total charge, so that by passing to the continuum, essentiallyl,. (and stays fixed in the macroscopical sense thergafter
only an infinitesimally small error is incurred. Let us discussBecause the definition of the condensation temperature, Eq.
both cases in turn. First start with the nondegenerate cas€g), implies in this case.;:mTEIS, the charge density in the
i.e., whenT is above the condensation temperatlige In ground state ipy=p(1—(T/T.)?).
this instance, the phase space integrals in the formulas above The Feynman amplitude, E¢5), which also involves a
correctly describe the physics of the problem. Therefore, wasum over states, should be split accordingly in two parts—
can take Eq(5) and plug it into the expression for the po- the zero mode term, on the one hand, and on the other hand,
tential Eqg.(1). After a trivial integration over botl® and the  the integral over thermal modes. The zero momentum mode
polar angle ink space, we get contributes to the amplitude
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ig® 1 |
T; —0= =(N.+n_)|k=0, 10
T(Q)|k 0 WV( + )|k 0 ( ) } ............ 0T,
T . . | T IST,
where the distribution function factor can be rewritten as 12000 - zcs .
1 Q , 1 > - | — 0T,
]_)(n++nf)|k=025(l_(T/Tc) e (1D ke |
. E 8000 B
sinceu=m—0O(T/Q). &
As long as the net charg@ is a macroscopically large =~
number many orders of magnitude larger tiidm, this fac- \?’_
tor essentially coincides with the condensate contribution to_> !
the densitypy. One may gain intuition on how a charge is §> 4000 - ; J ]
distributed among states by making a few numerical exer- i
cises with our formulas. By way of example, we take a fidu- o
cial volume of 10m? filled with 400 units of charge per Vs \\
cubic cm(i.e., numerically equal to the photons in the mi- oL ed LN n
crowave background radiatipnThen, form=10 %eV, 4 10 rT10 10
X 10! particles and 15 antiparticles populate the ground ¢
state, while 4.& 10® particles and 4.2 10° antiparticles fill FIG. 2. Total potential, divided by- g2/128M2a%2, for a rela-

the excited states &=0.01T,=3x10 *eV. Clearly, the istic bose gas made of particles of~10¢eV and having a
statement following Eq(11) is correct, and it allows us to  densityp~ 40 cm 3. Behavior above and beloW is shown. Note

calculateZ(Q) | in terms of the fixed quantity: the Yukawa exponential damping fof>T., starting atr
- ~1m=rT ~10%
T Q0= 2oz (T2~ T2) (12
T k=0 3Q° ¢ ' T>T,, this infinite wavelength mode has zero measure, and

) ) ) ) .. it does not contribute to the potential. However, in the con-
The Fourier transform of this equation gives the contributionyensed phase, the infinite-range potential arises as a collec-

of the condensate to the potential. It is tive phenomenon, essentially because all of the charge piles
2 up in the ground state.
Vo(r)=— 9—2 —(T%—TZ). (13) Whgt we would like to do now is to graphically show the
A8M“mr 1 transition of the potential as we vary the temperature from

T>T.to T<T,, by numerically evaluating the infinite sums
required. Figure 2 displays our results.

Let us briefly summarize our findings. Light scalars are
sic ingredients of many completions of the standard

The thermal contributiofi.e., from the excited statess just
Eq. (6) with the chemical potential held fixed at the constant
value u=m. We find an expression that coincides with Eq. ba

T=T,, and it contains an infinite sum as well. As
E)ge)fc?rte all tiarms in the infinite sum decay faster tear™ model. They may carry a new conserved quantum number. If

f heref f . h h h ordinary matter is neutral with respect to this new charge,
or T>m. Therefore, for dl_stances "_"fc arger than they,op these scalars should couple to ordinary matter in pairs.
Compton wavelength ofe, i.e., r>m~*, and hence,r

e} ) nal total But double (pseud9 scalar exchange generates long range
>Tc ", the main contribution tdvVT=7 comes from EQ.  gpin independent forces among bulk matter, exactly as two-
(13): neutrino exchanges and two-photon exchan@esn der
Waals forcep do. All these dispersion forces are modified

total g c 2 2 when matter is introduced in a heat bath. The present paper
T<TT T 48M2x T[1+O(T2/T°’T/rT°)]' (14 presents an investigation of the effects of a relativistic ideal
Bose gas on potentials generated by a two-scalar exchange.
Inspection of these results immediately leads us to realize ann example for such a heat bath could be provided by hot
important consequence of Bose-Einstein condensatiorark matter(i.e., relativistic at decouplingmade of hypo-
Namely, at low temperatur@.e., belowT,), the force, that thetic relic light scalars. For this purpose we use a very
was finite ranged at high temperatuiiee., aboveT;), be-  simple model for matter-scalar interactions that correctly re-
comes infinite ranged. This comes about because the mediuproduce the large behavior of twotpseudgscalar exchange
absorbs and restores the three-momentum in the scatteripgtentials. We do not want to commit ourselves to any spe-
process, so that the four-momentum squared of the ather cific extension of the SM, and the phenomena produced by
quantum exchanged in thehannel can reach the mass shellBose-Einstein condensation is totally independent of the
in the physical region of the scattering process. Forkhe form of the interaction chosen. What we find is a very dra-
=0 mode in the bath, in particular, the propagator of thematic effect: below the critical temperature, the finite-range
second particl¢see Eq(5)] takes the form of the Coulomb force that we had above this temperature becomes an
propagator, and becomes singular at the edge of thifinite-range force. The phenomenon arises as a combina-
Q-integration region, exactly as in the Coulomb case. Fotion of kinematics(three-momentum exchange of the matter

2 T2
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system with the mediujrand the collective effect of conden- opportunity for experiments searching for forces weaker than
sation of the charge. In the case studied in this paper, gravity [14] since in this case, no exponential decay with

potential of the form~exp(—2mr)/r2 at T>T, converts to a  distance occurs and, furthermore, a milder power law falloff
~1/r potential atT<T.. Should hot relic scalars populate With distance ensues.

our Universe with a present density such that their tempera- This work was partially supported by the CICYT Re-

ture is below the threshold for Bose-Einstein condensationsearch Project AEN99-0766. F.F. acknowledges the CIRIT
then the effect described above would provide an excellenfor financial support.
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