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Quantum fields responding to “moving mirrors” have been predicted to give rise to thermodynamic para-
doxes. | show here that the assumption in such work that the mirror can be treated as an external field is
invalid, and the exotic energy-transfer effects necessary to the paradoxes are well below the scales at which the
model is credible. A model with a first-quantized point-particle mirror is considered; for this it appears that
exotic energy transfers are lost in the quantum uncertainty in the mirror's state. Examining the physics giving
rise to these limitations shows that an accurate accounting of these energies will require a model which
recognizes the mirror’s finite reflectivity and almost certainly a model which allows for the excitation of
internal mirror modes, that is, a second-quantized model.
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[. INTRODUCTION negligible energetic input, is one not violating the second
law? Even setting aside possible difficulties associated with
Almost 25 years ago, Davies and Fullif 2], following ~ managing or absorbing the negative-energy packets, could
a suggestion of DeWit{3] (see also[4]), introduced the one not drive perpetual-motion machines by simply keeping
“moving mirror” models: massless scalar quantum fields inthe positive energies produced by the mirror's motion, leav-
two-dimensional Minkowski space responding to perfectlying the negative-energy packets to go their ways?
reflecting boundaries. Such models have been of inestimable The aim of the present paper is to resolve this point. |

value in clarifying conceptual issues raised by more complispa|| show that the approximation that has been made, that
cated theories; most notably, there are connections betwegRe mirror's trajectory can be treated classically, is invalid

moang mirror models andfthhe Hawking process. s whi hfor the purpose of computing the necessary energy transfers.
There are still aspects of the moving-mirror models whichry,q jimitations of validity of the classical model are reached

are not satisfactorily under_stood. The most important Ofbefore effects of energy exchange between it and the quan-
these are the thermO(_jynamlc paradoxes, which seem to tfﬁm field can be computed. Thus, insofar as the mirror can be
consequences of basic features of the models, and so u

avoidable in them. Consider for simplicity the case of a rmn_{]rt_s:ated classically, there is no violation of the second law.
Going beyond this classical model, | shall consider a

relativistic mirror with positionq(t). Then, assuming the : T . . ;
field was initially in the vacuum stat@nd that in the far past model with a non-relativistic, first-quantized mirror moving
in an external potential. At least where the potential is qua-

the mirror was stationajythe expected energy on the right

(respectively, left of the mirror is dratic, it will be shown that the measurement of the energy
’ packets is always accompanied by a much larger spread in
(Erionty = 7 (1277)~L(%/c)q+ O(1/c?) (1) the mirror’s energy. This means that attempts to measure the

left :

vacuum field energies cause quantum fluctuations in the mir-
ror's state, fluctuations that cannot be ignored for the pur-
poses of understanding the energy transfers between the field
and the mirror.
(Ejeti+ Eqighy =0+ 0(1/c?), 2 It should be emphasized that the present work indicates
that any “semiclassical” attempt to model the quantum back

so(to lowest orderno energy is required to move the mirror. reaction on the mirror is invalid for the purposes of modeling
This is extraordinaryThe leading effect of the mirror's mo- the energy transfers that would occur in attempts to measure
tion is to split the vacuum into packets of positive and negathe vacuum field energy density. This is because semiclassi-
tive expected energy, at no energetic cdisthese expecta- cal approximations(which give the back reaction of the
tion values can be regarded as classical energies, then weiantum field on the mirror in terms of expectatiprse
have a direct violation of the second law of thermodynamicsprecisely those which assume that fluctuations in the mirror’s
One can easily construct paradoxes based on this, and in fastiate are negligible, and this is just what fails here.
Davies described a perpetual-motion machine which turns The present results fit well with those of a related inves-
around this ided5]. (See alsd6].) tigation, by Parentani10]. He introduced a model with a

One might raise some objections to specific elements ofecond-quantized mirror in a linear external potential. He
Davies’s proposal, and indeed various workers have done swas able to shoviwith certain approximationghat the for-
(mainly concentrating on the problems of absorbing theward quanta would decohere. This is because their states
negative energy packefg—9]; see also the earlier papé]).  become correlated with that of the mirror. The general lesson
Still, it seems hard to avoid the central point: if one can splitto be drawn from the models, then, is that the entanglement
the vacuum into positive- and negative-energy parts, withof the mirror's state with that of the field can be a dominant

Now we come to the key point. It follows immediately that
the total expected energy in the field is
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effect, and the entanglement can involve fluctuations in theomputations will be given; the emphasis will be on the
mirror’s energy larger than the field’s energy. physical assumptions and consequences.

One can view the present work as estimating the magni-
tudes of the effects of quantum fluctuations in the mirror's
state on the energy transfers in the system; the effects are ] ] ] ) )
large enough to invalidate the external-field approximation. Let (t,x) be coordinates on two-dimensional Minkowski
However, to go beyond this negative conclusion, and analyz&Pace with metricds’=dt*—dx*. We introduce retarded
in detailwhat doeshappen in the energy transfers, is anotherand advanced null coordinates by=t—x andv=t+Xx, as
issue. | shall argue below that even this model is probablysual, and vectors*=d,, n®=g,. It is convenient to re-
inadequate for a satisfactory understanding of these issuegard the trajectory of the mirror as given by=V(u) or u
and it will be necessary to pass to a theory where the internaf U(v). We assume that the trajectory is timelike and is
degrees of freedom of the mirréand the scattering of vir- asymoptotically stationary in the past.
tual field quanta from thegare accounted for. This is sur-  We consider a massless scalar field. Any solution to the
prising and perhaps disconcerting: one would have thougHield equation can be written locally ag(u,v)=f(u)
that a quantum field responding to a slow, heavy mirrortg(v). The mirror is considered to enforce the boundary
could be analyzed without needing to account for the mircondition ¢(u,V(u))=0. Thus we must havef(u)
ror's structure as a system of quantum fields. But if one=—g(V(u)). We shall write
wants to understand the vacuum energies, such an analysis
seems necessary. d=f(u)—f(U(v)), v<V(u) (3

Although such a sophisticated model will ultimately be )
necessary, there are good reasons for considering the noffo the left of the mirroy, and
relativistic first-quantized point-particle model, at least ini-
tially. The most important one is that there is little ambiguity $=9(v)—g(V(u)), v>V(u) (4)
in defining it, whereas to go beyond it requires many
choices[The more sophisticated models require one to makéto the righy. Thus the symbot will only be used for fields
assumptions amounting to a choice of dispersive susceptibiPn the left andg only for fields on the right. Then the func-
ity x(»), and there is functional freedom in doing s®he  tionsf andg can be considered dataat for the field. We
non-relativistic mirror, by contrast, can be a first-quantizedmay also interpret these equations at the operator level; then
point particle, and there is little ambiguity in how to proceed.f andg are the “in” operators.

Thus the point-particle results, while more limited, are at The stress-energy operator is
least clearly model independent.

Another reason for starting with the first—quantiz_ed point- -‘rab: :-‘rab:+ <-‘|—;ebn>, (5)
particle model is that the quantum measurement issues can

be analyzed at a fairly elementary level. Finally, the model is

perhaps of some interest beyond the present paper. The veY*gwre the colons stand for normal ordering &ii¢f;) is the
fact that it is of limited validity can be turned to advantage rénormalized vacuum expectation value. This last is defined

because higher relativistic corrections can be ignored and & Pint splitting. One starts with the formal expression
great deal of its structure can be worked out explicitly. ol R R

In Sec. II, the Davies-Fulling models are reviewed. This ~ Tay =[5 (1/29apd” 1V p &l (u, 0 Va®l (0.0, »
section may be read rapidly, but should not be skipped. No (6)
details of the calculations are given, but the physical basis of
fche renormalization apd some Qf the limitations on _thg vqlidand considers the limit asu§,v,)—(u;,v4). The expecta-
ity of the modgl are discussed in Sec. II B. _These Ilmltanons[ion value(0|?§’gma'|0) contains two terms: a divergent one
figure essentially in later arguments. Section IlI briefly de-

. the first tized mi del. Section IV gi h which is independent of position and a finite term. It is the
rives the first-quanitized mirror modet. Section 'v gives e’?nite term which is(T'S". The divergent term, present even

A. Basic formalism and results

main analysis of the measurement of field vacuum energ n Minkowski space, is the “unrenormalized stress energy of
and its limitations. The last section summarizes the mai pace, 9y

he Minkowski vacuum.” The result is

conclusions.

In most places, particularly in estimates of the magnitudes NIRRT
of energies, factors af and# are given explicitly. However, <-’|‘—re =(12m) " %|> _) — =y @
factors ofc have been omitted in a few placexlvanced and ab 4\V' 2V’ ]2

retarded coordinates, etcwhere they would make the ap-
pearance of the equations unnecessarily complicated. on the right.(On the left, one has an expression of the same
form, with U replacingV andn, replacingl,.) In the limit

of non-relativistic motion, with the trajectory given by
II. CLASSICAL MOVING MIRROR =q(t), we have

In this section, | shall review the standard treatment of a _ .
massless field influenced by a moving mirror in two- (T, =—(1217)*1(ﬁ/02)[(1+q)&fq+3q2q]lalb+-~-.
dimensional Minkowski spacg?]. No details of standard (8
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(We have given as many terms as we shall need Jat&is  turb these cancellations. This would lead to terms which
is to be evaluated at the tinté such thatt—t’,x—q(t’)) is  were formally divergent as one approached the mited+
null future pointing. though the theory itself would break down as one ap-

From these formulas, one can derive expressions for thgroached within a distance of the order of the skin depth of
expected renormalized energy in the field to the left and théhe mirrop. Cf. Refs.[11-13.

right of the mirror: A related point is that we have ignored whatever internal
. physics the mirror has which causes it to reflect. For an ac-

(Esight) = _(1277)—1(;1/(;2)[ (g§q+3d2m dx (9) tual (electromagneticmirror, there are ions and conduction
q(t) electrons whose contributions to the electromagnetic stress

. energy outside the mirror might not be ignorable.
_ _(1277)71(mc)f ('?t3q+3q2(1) dt’ (10) (c_) Con_S|der for the mome_nt.replacmg the perfectly re-
—w flecting mirror by a more realistic model, where one has a
mirror with a dispersive susceptibility tending rapidly to zero
=—(12m) Y #hlc)q+ - - -. (11 beyond some cutoff frequenay,,. The effect of this would
be to introduce a frequency-dependent potential term into the
(An integration by parts can be used to justify discarding theequation of motion or, equivalently, in coordinate space, a

se_cond termhwhen passing to the last hir@n the left of the convolution of¢ with the Fourier transform of that potential.
mirror, one has This term would act like a perfect reflector on field modes of
frequenciesn<w,, but the structure of the potential would
become important at scales~ wp,.

Thus, to lowest order, no total expected energy is produced, !N such a model, the mirror will act like a classical reflec-
but the mirror's motion effects a division of the vacuum tor of low-frequency modes only as long as the time scale
energy into positive and negative terms. The leading nondefined by its acceleration is significantly larger thawl/
trivial contribution to the total expected energy in the field isIf the acceleration is greater, we must take into account the
of orderx (that is,v/c) smaller; it is mixing of low-frequency and high-frequency modes due to
the mirror’s motion.

What this means for the present paper is that the compu-

tation of (T®" is only credible as long as the inverse time
scales over whicly changes are much less that the plasma
_ (14)  frequencyw, of the mirror. In particular, we must haveg|

Swpltﬂ or we are not justified in using the standard formula,
qu. (7), and its consequences, E4R)—(14).

(d) The usual procedure is to take the points ;) and
(u,,v,) separated by a smaiimaginary timelike interval.
This has the effect of introducing an ultraviolet cutoff. This
is attractive, because one can then argue that the justification

While all of the foregoing is standard, one must remembebf the procedure is that real experiments only probe an object
that we do not at present have a first-principles understandip to a finite frequency. Also this procedure ascribes to
ing of the infinite vacuum energy density afttierefore of  Minkowski space-time gdivergen} positive expected en-
its renormalization. While the standard computatiom%gf@ ergy density, whereas real-separated points give rise to nega-
will be accepted heréwithin a regime of applicability to be tive energy densities.
discussed shortly since the interpretation of this quantity is ~ However, this procedure requires one to consider the
critical to the physics of the mirror, it is appropriate to dis- world line V(u+idu) at complex points as well, and it is
cuss what has been done carefully. These points are impohard to give a physical interpretation of this Mfis analytic,

Eer=+ (127) " Y(Alc)g+ - - -. (12

t :
Etota= —(677)_1(ﬁ/C2)f draqdt’ 13

=—(6m7) " Y(nlc?)

o t .-
qq—fﬁ@(q)zdt’

Thus the total energy put into the field must be positive, i
the motion is asymptotically inertial.

B. Renormalization

tant: of course, one has a clear candidate definition ¥gu
(@ The “operator part” of T, — that is, the operator +idu). However, even in this cad§u+iéu) depends non-
modulo the addition ot-number terms likg T — is de- locally on the real trajectory/(u). It is in particular hard to

termined by the equation of motion for the fields, and so is>€€ how to reconcile one’s notions of causglifging able to
unambiguously defined irrespective of the renormalizationchangev(u) freely in the future ou=u,, irrespective of its

In other words, different choices of renormalization can onlyPehavior in the pagwith the requirement of analyticity.
affect thec-number terms. In practice, this point is usually ignored, aM{u+i éu)

(b) It is not trivial that the theory is renormalizable. The SIMply represented by a Taylor series whose convergence is

idealized perfect-reflector nature of the boundary causes B0t que:stioned. We remark thatVf(u) is not analytic but
great deal of cancellation of ultraviolet contributions to theCauchy’s formula is used to provide a candidate definition

stress energy in the neighborhood of the mirror. In a mordor V(u+iéu), thec-number term{ TS becomes divergent;
realistic model, one would expect dispersive effects to disthe theory is not renormalizable.
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We shall not pursue this question of how or whether the | . ) ) . )
standard renormalization is justified. Still, it is a point which 1Hright==J . L9 (=x) 17+ [V (=x)g" (V(=x))]%: dx,
is not really satisfactorily understood. a(0) (16)

1. FIRST-QUANTIZED MIRROR with :H e : given by a similar expression. We now re-write
In order to estimate the effects of quantum fluctuations ifin€ contribution from the second term in two steps. We have

the state of the mirror on the energy exchanges between it .
and the field, we must quantize the mirror. We shall consider f
a simple model, in which the mirror is considered to be ~d(®
heavy and its motion non-relativistic. Then the mirror may 17
be treated as a first-quantized particle. Let us begin by anginceV’
ticipating the limitations of this model.

(a) If the mirror's mass isn, then the model will only be
valid for field modes of frequenciesmc®/#. The mass pro-
vides an effective ultraviolet cutoff.

(b) The model can accurately predict dynamics only fora 4 _ o _
finite time. This is because eventually relativistic corrections J’ 9’ (v)% (V' —1) dvzzf :g'[t+q(t)]%:q(t) dt.
to phases become significant. Correspondingly, there will be -

TV (=x)g’ (V(—x))]% dx= fqio):g'(v)z:v' dv.

is a perturbation of unity, we split off a term where
V' is replaced by unity, and combine it with the first term in

:Hright: to give the Hamiltonian of a free fielin the pres-
ence of a fixed mirrgrplus a perturbation, which is

—o0

a limit to the accuracy of the energy levels predicted by the (18)
model. _ _ _ Thus we have

(c) It will be most important to recall that a first-quantized
model is only valid at length scales greater than the Compton 1|:|rigm3 —- ﬂright ixedt ﬂright ert (19)

wavelengthzi/(mc). At smaller length scales, attempts to
measure the position of the particle require localized energieshere
large enough that pair creatighere, of quanta of the “mir-

ror” field) becomes non-negligible, and this precisely means B J"” 19’ (%)% dx (20)
that the first-quantized model breaks down. This means that ~Mright, fixed- = | -9 '

the position operatog of the mirror only has a well-defined

correspondence with physical reality on greater length scaleand

(d) Even on the one-particle Hilbert space, relativistic cor- 0
rections make the inner prodp¢'¢| &)y non-local with a Flrigne, pert:zzf 19’ [t+q()]% g(t) dt. (21)
length scale of ordefi/(mc). This means that, as far as the —
one-particle model makes sense, the quantum obsergable .
always has a spread of at least the order of the Comptohhis term is already of ordes/c. Thus we may compute
wavelength. q(t) and g(t)=p(t)/m to the required accuracy from the

The general strategy will be to first consider the mirror asmirror’'s Hamiltonian
classical and moving in a specified external potentid), R
and then promote the mirror’s positiorand momentunp to H mirror= P2/ (2mM) + V. (22
guantum operators. The Hamiltonian of the mirror is just . ) ) » )
p2/(2m)+(q), so the main work involved is to compute psmg th!s, choosmg a Hermitian factor ordering, anq ab_us-
the Hamiltonian of the field(For related work, sef14].) ing notat|o_n by keeping the.same symbol for the Hamiltonian

In fact, for the purposes of the present paper, it is onlyVith quantizedp andq, we find
really necessary to computg the contributions to the vacuum A o . A
energy part of t_he Ham|lton|_an: the normal-ordered terms are Hiight, pert: = mflf e'Hmirot{:g'[t+q(0)]% p(0)
not needed. Still, we shall give these terms for the purpose of -
making clear just what the model is. The dynamical conse- A, 20 il
quences of the terms will be investigated elsewhere. +p(0):g'[t+q(0)]7je” mmer dt.  (23)

We begin by working out the contributions to the field
Hamiltonian at=0 from the left and the right of the mirror.
(The choicet=0 is of course conventional; other choices of
time slice will be related by unitary transformation¥Ve
have

This is the final expression for the normal-ordered part of the
correction to the free-field Hamiltonian in the model with
first-quantized mirror. As mentioned above, we do not really
need this explicit form in what follows, but present it for the
purposes of defining the model.
Before analyzing how passage to this model affects the
|:|r|ight=:|:|right: T(12m) " 1q. (15  paradoxes of the classical mirror, a few comments about the
eft left , . .
model’s structure are in order. One can regard this model as
) a perturbation of a stationary classical mirror, the perturba-
Using the mirror's equation of motion, we will replageby  tion parameter beingi~ . Adopting this point of view, one
—(1/m)V’. For the normal-ordered terms, we have can ask how the eigenstates of the classical mirror are af-
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fected by taking into account its finite mass. The integralds misguided. It is not of itself wrong, but it is a correction
over the half-line in Eq.(23) will contain creation far below the scale at which any classical treatment of the
®creation and annihilatiahannihilation operators, and mirror is valid.

these will result in a “dressing” of the states. In particular,

the vacuum state will be dressed with two-particle contribu- B. First-quantized model

tions. The mirror, too, will be affected by the operatprand

g; the dressing will contribute states which in the unper- In trle previous subsection, we. Saw that gnerg|es of the
turbed theory would be excited. scale(H,gyy were far below contributions which could be

meaningfully treated by a classical model of the mirror. This
of course suggests that we must pass to a quantized mirror to
understand the energy transfers between it and the field. |

We now take up the question of how well the vacuumshall do so here using the first—quantized model, but | shall
energy on either side of the mirror can be measured and tgot attempt a full analysis of the problem. This is partly
what extent those measurements are compatible with thecause of technical difficulties in the first-quantized model
treatment of the mirror as a classical object. (as | shall explaip but there is a deeper reason.

Throughout this section, we consider the measurement of We saw in the previous subsection that the mirror's

" ; ; : ompton wavelength entered in limiting the validity of the
Hrigni. This means a measurement is made of the field energgass?cal model Tghis length is the scgle at whicr): a first-

on the entire half-space to the right of the mirr@f course, ed breaks d h
this is for many purposes an idealization. In many cases, on@Uantized treatment breaks down, so we may expect that

would consider the energy content over a fixed region ofVen the first-quantizeq modgl will be inadequate. This is
space, and restrict the mirror to be on one side of that. Howi"deed the case, as will be discussed below. However, the
ever, such analyses are cumbersome and will not be aﬁ”a'YS'S of the_ f|rst-quant|ze_d mirror will uncover a new
tempted herg We also assume that the field is initially in the PhYsical effectin the energetics, and so we take it up here.
vacuum state. We have(H gn) = (12rm) =1V’ (q). This means a mea-
surement of the vacuum energy is essentially a measurement
of g. (A strictly linear potentialy=constx q is excluded for
several reasons. The most important of these is that the cor-
In this subsection, we shall assume that the mirror is in gesponding classical trajectories would not obey the bound-
state which can be well modeled by a classical trajectoryary conditions necessary for the derivation of the formulas

Thus we may assume that at any titnée mi_rror’s positio_n for ﬁ;e@_) A measurement af is always made with a quan-
and momentum may be measured to classical accuragies uncertainty, and insofar as the first-quantized model is

andAp which are larger than the spreads in the correspondyjiq the spread in the quantum observable must be larger
ing quantum observables. Then there is a classical limit Q4 the Compton wavelength:

the accuracy to which the mirror's energy is known:

IV. MEASUREMENT OF THE VACUUM ENERGY

A. Classical model

Ag=#h/(mc). (27)

P '
AH mirror= EAerV (@)Aq. (24 Note that while the symbol used\() is the same as in the
previous subsection, the meaning here is different. Hate

In particular, the limit of the accuracy in the energy due torepresents not just a lack of knowledge or of measurement

the classical uncertainty in position must satisfy resolution, but the spread of the components of the wave
function with respect to the spectral resolution of the opera-
|AHmirror| 2|V,AQ|- (25) tor .

The spread in the mirror's potential energy is
However, note that\q must be far larger than the mirror's ) )
Compton wavelength for the mirror to be in a classical state. AV=V'Aq=V' (#/(mc)), (28)

Thus we have L .
us W v that is, is far larger than the vacuum energy. This suggests

~ the relation
|AHmirror|><Hright>- (26)

In other words, to the extent that the classical model of the ABmirror= (Hiighy’ 9
mirror's trajecto_ry is credible, the lack of accuracy in knowl- that is, the spread in the mirror’s energy must be larger than
edge of the mirror's energy must be far larger than thehe vacuum energy in the field. This would mean that the
vacuum energy in the field. This means that while the miry3cuum energy could not be usefully separated from the mir-
ror's motion splits the vacuum into energy packets of oppoyor's own energy, and indeed the vacuum energy would have
site signs, the uncertainty in the energetic cost of this sepap pe considered as part of the constitutive energy of the
ration is far larger than the magnitude of the separation itselfmirror.
Thus there is no detectable violation of the second law. Of course, relation29) has not been established rigor-
_Note too that this means an attempt to consider a term likgysly, because we have neglected possible cancellations be-
(Hiigny as a semiclassical contribution to the mirror’s energytween the spreads of the mirror’s kinetic energy and its po-
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tential energy. A careful argument would seem to be C. Limitation of the first-quantized model
technically very difficult, especially as we have made essen- g treatment of the mirror as a first-quantized particle is

tially ho restriction on the potgntlal. preyer, the physmalomy accurate within certain regimes. An important limitation
conclusion — that the spread in the mirror's energy is larg§s that a real mirror does not reflect all frequencies perfectly,
cr:)mpta_red tot';]heh\_/lactjum_energy — Seems sug%elsttlve enougllt hecomes transparent to sufficiently high modes.
that it is worthwhile to raise as a generic possibility. ; “ " :

We can establish relatior{29) ingthe casg of a qa/adratic in To understand this, lab, be a “plasma” frequency, giv-

: 5 ) - ing a scale beyond which the mirror becomes essentially
potential Y=kg™/2. In this case, the vacuum energy is yransparent. Associated with this is a “skin deptt/w, to
(12wm)~“kq, so a measurement of this is precisely @ meay,hich modes penetrate before being reflected. The mirror's
surement ofy. A reliable measurement of this energy there-pogition, as a reflecting surface, is not defined more accu-
fore requires a measurement with nominal valgeand  rately than this skin depth. This means that the model is only
spreadAq related byAq/q<1. This means in particular that credible insofar as it depends on spatial resolutegw, .
the mirror is known to be on one side or the othercpf Now for a realistic mirror we must have
=0. Using for the moment only this last fact, there must be
a minimal spread in the mirror's energy compatible with this h“’p<m02; (39
restriction. This minimal spread must be at least of the orde

of the level spacing of the harmonic oscillator, {hat is, the plasma energy should be less than the rest energy

or, equivalently, the skin depth should be much larger than
the Compton wavelength. However, the vacuum energy on

AEmirror= (kIm) Y. (30 one side of the field is
(There is a subtlety here; see the following paragraiiow -1 ,i - -1 i .
let us turn to the condition that the mirror be non-relativistic; (12m) =7y mc (12m)~"V a+ mc V)| (36)

this implies in particular thakg?<mc?, and thus thatq|

<(m/k)Y%c. We thus have and is a measurement of the difference of potential energies
over the Compton wavelength/(mc)<c/w,. Thus this en-
ergy difference is well below the ambiguity in the mirror's

[(E)|= 127-rmc|q| (31) Hamiltonian
. p?
K H mirror:ﬁ +W. (37)
=< 127_rmc(m/k)1’zc (32
We see that the first-quantized model is not accurate
enough to determine whether there are exchanges of energy
h 2 between the mirror and the field of the same scale as the
- E(k/m) (33 vacuum energy. The limitation is in the treatment of the mir-
ror as perfectly reflecting, and the neglect of whatever inter-
nal physics of the mirror gives rise to that refelection. Pre-
=(127) "*AEmiror- (39 sumably, an accurate model will require passing beyond this.
Thus the quantum spread in the mirror's energy does indeed V. SUMMARY AND IMPLICATIONS

dominate the field's vacuum energy.

There is a technical subtlety in the previous paragraph
which deserves comment. As is common, we have written of | have re-examined the “moving mirror” models of
the “spread” in an operator, meanir(@s is commohsome  Davies and Fulling, giving attention to their limits of validity
measure of the size of the spectrum covered by projecting thia computing energy transfers between the mirror and the
physical state onto the eigenstates of that operator. Exactlyacuum energy of the field. Insofar as the mirror can be
what measure of this sizeoot mean square, full width at modeled by a classical point particle, we find that the lack of
half maximum, etg. has not been specified. In the presentaccuracy in its energy far exceeds the vacuum energy. This
physical context, we do not think the precise measure used isieans that, while the motion of the mirror splits the vacuum
important. into positive and negative energy packets, the magnitudes of

Bound up with this is our assertiohE, o= (k/m)*?: those energies are far below the uncertainty in the mirror's
for a particle restricted to a half-line in the quadratic poten-energy. Thus no violation of the second law arises.
tial well. In general, depending on the measure of the spread Moving beyond the classical model to the first-quantized
used, one would havAE o= a(k/m)¥%, wherea is a  mirror, we were able to show, at least in the case of a qua-
numerical factor. We are assuming thatwill be of order  dratic external potential, that the quantum spread in the mir-
unity or larger for any reasonable measure adopted. Semier's energy must be greater than the field’s vacuum energy.
analytic investigation of the root-mean-square spread give$his would mean that a measurement of the field energy
a~.9. would necessarily drive the mirror into a superposition of

A. Summary
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energy states, with width greater than the vacuum energya satisfactory understanding of the transfers of energy be-
For more general potentials, we gave suggestive but not digween it and the field.
positive arguments for the same conclusion. These requirements to pass to a very deep model of the
These conclusions are consonant with the results ofirror in order to reliably study the energetics of the system
Parentanf10]. With a different, although related purpose, he must be considered a surprise, because for a long time it has
investigated a second-quantized mirror model with certairfPeen assumed that at least for sufficiently heavy mirrors a
approximations, and found correlations between the mirroflassical model should be valid. However, we see that not
state and those of forward-scattered quanta. Taken togeth&@?ly does this fail, but even a first-quantized mirror model is
the two models show th&&) when vacuum field energies are not sufficiently refined to make positive predictions.
measured, the entanglement of the mirror’s state with that of

the field may be a dominant effect, aflg) the entanglement B. Implications
may involve fluctuations in the mirror energy grater than the  These results have serious implications for attempts to
field’'s vacuum energy. understand the back reaction of the quantum field on the

Even the model of the mirror by first-quantized point par-mirror. Even the first conclusion, that such back-reaction ef-
ticle turned out to be insufficiently accurate for quantitativefects are below the range of applicability of the classical
analysis of the energy transfers between the mirror and thmodel, is important. It shows that any attempt to treat these
field. We found that in order to reliably compute mirror en- back-reaction effects semiclassically is misguided, because
ergies to a resolution of the order of the vacuum energy, onthe back reactions are far smaller than the scales at which the
will need to take into account the finite reflectivity of the classical model can be trusted anyway.
mirror, and its structure on scales of the order of its skin The second resulthat the spread in the mirror's energy
depth. must be greater than the vacuum enérghows that the

We found too evidence for another limitation on energysemiclassical model is not merely insufficiently refined: its
measurements, deeper than that set by the finite reflectivityrasic assumption is wholly misdirected. A semiclassical ap-
At every point where we used the skin depth to restrict thegproximation precisely assumes that the quantum fluctuations
limits of measurability of energies, we also used the Compin the mirror's state are negligible: but the opposite is the
ton wavelengthi/(mc)<c/w, of the mirror. The Compton case.
wavelength is the scale at which the first-quantized, non- It is hoped that the features uncovered in this simple
relativistic model of a particléhere, the mirrorbreaks down model will be guides to the analysis of more complicated and
(irrespective of its reflective propertlesThe appearance of realistic field theories. In particular, a main motivation for
this scale seems to indicate that in a deep way we mushis work was as a warm-up for an analysis of similar issues
confront the infinitely many degrees of freedom of the mirrorin the Hawking process, where a wholly convincing under-
as a second-quantized object, before we will be able to havstanding of the back reaction has yet to be reached.
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