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Moving mirrors and thermodynamic paradoxes
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Department of Mathematics, University of Missouri–Columbia, Columbia, Missouri 65211

~Received 3 January 2000; published 22 December 2000!

Quantum fields responding to ‘‘moving mirrors’’ have been predicted to give rise to thermodynamic para-
doxes. I show here that the assumption in such work that the mirror can be treated as an external field is
invalid, and the exotic energy-transfer effects necessary to the paradoxes are well below the scales at which the
model is credible. A model with a first-quantized point-particle mirror is considered; for this it appears that
exotic energy transfers are lost in the quantum uncertainty in the mirror’s state. Examining the physics giving
rise to these limitations shows that an accurate accounting of these energies will require a model which
recognizes the mirror’s finite reflectivity and almost certainly a model which allows for the excitation of
internal mirror modes, that is, a second-quantized model.
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I. INTRODUCTION

Almost 25 years ago, Davies and Fulling@1,2#, following
a suggestion of DeWitt@3# ~see also@4#!, introduced the
‘‘moving mirror’’ models: massless scalar quantum fields
two-dimensional Minkowski space responding to perfec
reflecting boundaries. Such models have been of inestim
value in clarifying conceptual issues raised by more com
cated theories; most notably, there are connections betw
moving mirror models and the Hawking process.

There are still aspects of the moving-mirror models wh
are not satisfactorily understood. The most important
these are the thermodynamic paradoxes, which seem t
consequences of basic features of the models, and so
avoidable in them. Consider for simplicity the case of a no
relativistic mirror with positionq(t). Then, assuming the
field was initially in the vacuum state~and that in the far pas
the mirror was stationary!, the expected energy on the rig
~respectively, left! of the mirror is

^Eright
left &57~12p!21~\/c!q̈1O~1/c2!. ~1!

Now we come to the key point. It follows immediately th
the total expected energy in the field is

^Eleft1Eright&501O~1/c2!, ~2!

so~to lowest order! no energy is required to move the mirro
This is extraordinary.The leading effect of the mirror’s mo
tion is to split the vacuum into packets of positive and ne
tive expected energy, at no energetic cost.If these expecta-
tion values can be regarded as classical energies, then
have a direct violation of the second law of thermodynam
One can easily construct paradoxes based on this, and in
Davies described a perpetual-motion machine which tu
around this idea@5#. ~See also@6#.!

One might raise some objections to specific elements
Davies’s proposal, and indeed various workers have don
~mainly concentrating on the problems of absorbing
negative energy packets@7–9#; see also the earlier paper@6#!.
Still, it seems hard to avoid the central point: if one can s
the vacuum into positive- and negative-energy parts, w
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negligible energetic input, is one not violating the seco
law? Even setting aside possible difficulties associated w
managing or absorbing the negative-energy packets, c
one not drive perpetual-motion machines by simply keep
the positive energies produced by the mirror’s motion, le
ing the negative-energy packets to go their ways?

The aim of the present paper is to resolve this poin
shall show that the approximation that has been made,
the mirror’s trajectory can be treated classically, is inva
for the purpose of computing the necessary energy trans
The limitations of validity of the classical model are reach
before effects of energy exchange between it and the qu
tum field can be computed. Thus, insofar as the mirror can
treated classically, there is no violation of the second law

Going beyond this classical model, I shall consider
model with a non-relativistic, first-quantized mirror movin
in an external potential. At least where the potential is q
dratic, it will be shown that the measurement of the ene
packets is always accompanied by a much larger sprea
the mirror’s energy. This means that attempts to measure
vacuum field energies cause quantum fluctuations in the
ror’s state, fluctuations that cannot be ignored for the p
poses of understanding the energy transfers between the
and the mirror.

It should be emphasized that the present work indica
that any ‘‘semiclassical’’ attempt to model the quantum ba
reaction on the mirror is invalid for the purposes of modeli
the energy transfers that would occur in attempts to mea
the vacuum field energy density. This is because semicla
cal approximations~which give the back reaction of th
quantum field on the mirror in terms of expectations! are
precisely those which assume that fluctuations in the mirro
state are negligible, and this is just what fails here.

The present results fit well with those of a related inve
tigation, by Parentani@10#. He introduced a model with a
second-quantized mirror in a linear external potential.
was able to show~with certain approximations! that the for-
ward quanta would decohere. This is because their st
become correlated with that of the mirror. The general les
to be drawn from the models, then, is that the entanglem
of the mirror’s state with that of the field can be a domina
©2000 The American Physical Society16-1
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ADAM D. HELFER PHYSICAL REVIEW D 63 025016
effect, and the entanglement can involve fluctuations in
mirror’s energy larger than the field’s energy.

One can view the present work as estimating the ma
tudes of the effects of quantum fluctuations in the mirro
state on the energy transfers in the system; the effects
large enough to invalidate the external-field approximati
However, to go beyond this negative conclusion, and ana
in detailwhat doeshappen in the energy transfers, is anoth
issue. I shall argue below that even this model is proba
inadequate for a satisfactory understanding of these iss
and it will be necessary to pass to a theory where the inte
degrees of freedom of the mirror~and the scattering of vir-
tual field quanta from these! are accounted for. This is sur
prising and perhaps disconcerting: one would have thou
that a quantum field responding to a slow, heavy mir
could be analyzed without needing to account for the m
ror’s structure as a system of quantum fields. But if o
wants to understand the vacuum energies, such an ana
seems necessary.

Although such a sophisticated model will ultimately b
necessary, there are good reasons for considering the
relativistic first-quantized point-particle model, at least in
tially. The most important one is that there is little ambigu
in defining it, whereas to go beyond it requires ma
choices.@The more sophisticated models require one to m
assumptions amounting to a choice of dispersive suscep
ity x(v), and there is functional freedom in doing so.# The
non-relativistic mirror, by contrast, can be a first-quantiz
point particle, and there is little ambiguity in how to procee
Thus the point-particle results, while more limited, are
least clearly model independent.

Another reason for starting with the first-quantized poi
particle model is that the quantum measurement issues
be analyzed at a fairly elementary level. Finally, the mode
perhaps of some interest beyond the present paper. The
fact that it is of limited validity can be turned to advantag
because higher relativistic corrections can be ignored an
great deal of its structure can be worked out explicitly.

In Sec. II, the Davies-Fulling models are reviewed. Th
section may be read rapidly, but should not be skipped.
details of the calculations are given, but the physical basi
the renormalization and some of the limitations on the va
ity of the model are discussed in Sec. II B. These limitatio
figure essentially in later arguments. Section III briefly d
rives the first-quantized mirror model. Section IV gives t
main analysis of the measurement of field vacuum ene
and its limitations. The last section summarizes the m
conclusions.

In most places, particularly in estimates of the magnitu
of energies, factors ofc and\ are given explicitly. However,
factors ofc have been omitted in a few places~advanced and
retarded coordinates, etc.!, where they would make the ap
pearance of the equations unnecessarily complicated.

II. CLASSICAL MOVING MIRROR

In this section, I shall review the standard treatment o
massless field influenced by a moving mirror in tw
dimensional Minkowski space@2#. No details of standard
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computations will be given; the emphasis will be on t
physical assumptions and consequences.

A. Basic formalism and results

Let (t,x) be coordinates on two-dimensional Minkows
space with metricds25dt22dx2. We introduce retarded
and advanced null coordinates byu5t2x and v5t1x, as
usual, and vectorsl a5]v , na5]u . It is convenient to re-
gard the trajectory of the mirror as given byv5V(u) or u
5U(v). We assume that the trajectory is timelike and
asymoptotically stationary in the past.

We consider a massless scalar field. Any solution to
field equation can be written locally asf(u,v)5 f (u)
1g(v). The mirror is considered to enforce the bounda
condition f„u,V(u)…50. Thus we must havef (u)
52g„V(u)…. We shall write

f5 f ~u!2 f „U~v !…, v,V~u! ~3!

~to the left of the mirror!, and

f5g~v !2g„V~u!…, v.V~u! ~4!

~to the right!. Thus the symbolf will only be used for fields
on the left andg only for fields on the right. Then the func
tions f andg can be considered data atI 2 for the field. We
may also interpret these equations at the operator level;
f̂ and ĝ are the ‘‘in’’ operators.

The stress-energy operator is

T̂ab5:T̂ab :1^T̂ab
ren&, ~5!

where the colons stand for normal ordering and^T̂ab
ren& is the

renormalized vacuum expectation value. This last is defi
by point splitting. One starts with the formal expression

T̂ab
formal5@da

pdb
q2~1/2!gabg

pq#¹pf̂u(u1 ,v1)¹qf̂u(u2 ,v2) ,
~6!

and considers the limit as (u2 ,v2)→(u1 ,v1). The expecta-
tion value^0uT̂ab

formalu0& contains two terms: a divergent on
which is independent of position and a finite term. It is t
finite term which iŝ T̂ab

ren&. The divergent term, present eve
in Minkowski space, is the ‘‘unrenormalized stress energy
the Minkowski vacuum.’’ The result is

^T̂ab
ren&5~12p!21\F3

4 S V9

V8D
2

2
1

2

V-
V8 G l al b ~7!

on the right.~On the left, one has an expression of the sa
form, with U replacingV andna replacingl a .) In the limit
of non-relativistic motion, with the trajectory given byx
5q(t), we have

^T̂ab
ren&52~12p!21~\/c2!@~11q̇!] t

3q13q̈2q̇# l al b1•••.
~8!
6-2
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MOVING MIRRORS AND THERMODYNAMIC PARADOXES PHYSICAL REVIEW D63 025016
~We have given as many terms as we shall need later.! This
is to be evaluated at the timet8 such that„t2t8,x2q(t8)… is
null future pointing.

From these formulas, one can derive expressions for
expected renormalized energy in the field to the left and
right of the mirror:

^Eright&52~12p!21~\/c2!E
q(t)

`

~] t
3q13q̈2q̇! dx ~9!

52~12p!21~\/c!E
2`

t

~] t
3q13q̈2q̇! dt8 ~10!

52~12p!21~\/c!q̈1•••. ~11!

~An integration by parts can be used to justify discarding
second term when passing to the last line.! On the left of the
mirror, one has

Eleft51~12p!21~\/c!q̈1•••. ~12!

Thus, to lowest order, no total expected energy is produc
but the mirror’s motion effects a division of the vacuu
energy into positive and negative terms. The leading n
trivial contribution to the total expected energy in the field
of order ẋ ~that is,v/c) smaller; it is

Etotal52~6p!21~\/c2!E
2`

t

] t
3qq̇ dt8 ~13!

52~6p!21~\/c2!F q̈q̇2E
2`

t

~ q̈!2dt8G . ~14!

Thus the total energy put into the field must be positive
the motion is asymptotically inertial.

B. Renormalization

While all of the foregoing is standard, one must remem
that we do not at present have a first-principles understa
ing of the infinite vacuum energy density and~therefore! of
its renormalization. While the standard computation of^T̂ab

ren&
will be accepted here~within a regime of applicability to be
discussed shortly!, since the interpretation of this quantity
critical to the physics of the mirror, it is appropriate to di
cuss what has been done carefully. These points are im
tant:

~a! The ‘‘operator part’’ of T̂ab — that is, the operator
modulo the addition ofc-number terms likê T̂ab

ren& — is de-
termined by the equation of motion for the fields, and so
unambiguously defined irrespective of the renormalizati
In other words, different choices of renormalization can o
affect thec-number terms.

~b! It is not trivial that the theory is renormalizable. Th
idealized perfect-reflector nature of the boundary cause
great deal of cancellation of ultraviolet contributions to t
stress energy in the neighborhood of the mirror. In a m
realistic model, one would expect dispersive effects to d
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turb these cancellations. This would lead to terms wh
were formally divergent as one approached the mirror~al-
though the theory itself would break down as one a
proached within a distance of the order of the skin depth
the mirror!. Cf. Refs.@11–13#.

A related point is that we have ignored whatever inter
physics the mirror has which causes it to reflect. For an
tual ~electromagnetic! mirror, there are ions and conductio
electrons whose contributions to the electromagnetic st
energy outside the mirror might not be ignorable.

~c! Consider for the moment replacing the perfectly r
flecting mirror by a more realistic model, where one has
mirror with a dispersive susceptibility tending rapidly to ze
beyond some cutoff frequencyvp . The effect of this would
be to introduce a frequency-dependent potential term into
equation of motion or, equivalently, in coordinate space

convolution off̂ with the Fourier transform of that potentia
This term would act like a perfect reflector on field modes
frequenciesv!vp , but the structure of the potential woul
become important at scalesv;vp .

In such a model, the mirror will act like a classical refle
tor of low-frequency modes only as long as the time sc
defined by its acceleration is significantly larger than 1/vp .
If the acceleration is greater, we must take into account
mixing of low-frequency and high-frequency modes due
the mirror’s motion.

What this means for the present paper is that the com

tation of ^T̂ab
ren& is only credible as long as the inverse tim

scales over whichq̇ changes are much less that the plas

frequencyvp of the mirror. In particular, we must haveuq̈u
&vpuq̇u or we are not justified in using the standard formu
Eq. ~7!, and its consequences, Eqs.~8!–~14!.

~d! The usual procedure is to take the points (u1 ,v1) and
(u2 ,v2) separated by a smallimaginary timelike interval.
This has the effect of introducing an ultraviolet cutoff. Th
is attractive, because one can then argue that the justifica
of the procedure is that real experiments only probe an ob
up to a finite frequency. Also this procedure ascribes
Minkowski space-time a~divergent! positive expected en
ergy density, whereas real-separated points give rise to n
tive energy densities.

However, this procedure requires one to consider
world line V(u1 idu) at complex points as well, and it i
hard to give a physical interpretation of this. IfV is analytic,
of course, one has a clear candidate definition forV(u
1 idu). However, even in this caseV(u1 idu) depends non-
locally on the real trajectoryV(u). It is in particular hard to
see how to reconcile one’s notions of causality@being able to
changeV(u) freely in the future ofu5u0, irrespective of its
behavior in the past# with the requirement of analyticity.

In practice, this point is usually ignored, andV(u1 idu)
simply represented by a Taylor series whose convergenc
not questioned. We remark that ifV(u) is not analytic but
Cauchy’s formula is used to provide a candidate definit
for V(u1 idu), thec-number term̂ T̂ab

ren& becomes divergent
the theory is not renormalizable.
6-3
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ADAM D. HELFER PHYSICAL REVIEW D 63 025016
We shall not pursue this question of how or whether
standard renormalization is justified. Still, it is a point whi
is not really satisfactorily understood.

III. FIRST-QUANTIZED MIRROR

In order to estimate the effects of quantum fluctuations
the state of the mirror on the energy exchanges betwee
and the field, we must quantize the mirror. We shall consi
a simple model, in which the mirror is considered to
heavy and its motion non-relativistic. Then the mirror m
be treated as a first-quantized particle. Let us begin by
ticipating the limitations of this model.

~a! If the mirror’s mass ism, then the model will only be
valid for field modes of frequencies!mc2/\. The mass pro-
vides an effective ultraviolet cutoff.

~b! The model can accurately predict dynamics only fo
finite time. This is because eventually relativistic correctio
to phases become significant. Correspondingly, there wil
a limit to the accuracy of the energy levels predicted by
model.

~c! It will be most important to recall that a first-quantize
model is only valid at length scales greater than the Comp
wavelength\/(mc). At smaller length scales, attempts
measure the position of the particle require localized ener
large enough that pair creation~here, of quanta of the ‘‘mir-
ror’’ field ! becomes non-negligible, and this precisely mea
that the first-quantized model breaks down. This means
the position operatorq of the mirror only has a well-defined
correspondence with physical reality on greater length sca

~d! Even on the one-particle Hilbert space, relativistic c
rections make the inner product^cuc& non-local with a
length scale of order\/(mc). This means that, as far as th
one-particle model makes sense, the quantum observabq
always has a spread of at least the order of the Comp
wavelength.

The general strategy will be to first consider the mirror
classical and moving in a specified external potentialV(q),
and then promote the mirror’s positionq and momentump to
quantum operators. The Hamiltonian of the mirror is ju
p2/(2m)1V(q), so the main work involved is to comput
the Hamiltonian of the field.~For related work, see@14#.!

In fact, for the purposes of the present paper, it is o
really necessary to compute the contributions to the vacu
energy part of the Hamiltonian: the normal-ordered terms
not needed. Still, we shall give these terms for the purpos
making clear just what the model is. The dynamical con
quences of the terms will be investigated elsewhere.

We begin by working out the contributions to the fie
Hamiltonian att50 from the left and the right of the mirror
~The choicet50 is of course conventional; other choices
time slice will be related by unitary transformations.! We
have

Ĥ right
left

5:Ĥ right
left

:7~12p!21q̈. ~15!

Using the mirror’s equation of motion, we will replaceq̈ by
2(1/m)V8. For the normal-ordered terms, we have
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:Ĥ rightªE
q(0)

`

:@ ĝ8~2x!#21@V8~2x!ĝ8„V~2x!…#2: dx,

~16!

with :Ĥ left : given by a similar expression. We now re-wri
the contribution from the second term in two steps. We ha

E
q(0)

`

:@V8~2x!ĝ8„V~2x!…#2: dx5E
2`

q(0)

:ĝ8~v !2:V8 dv.

~17!

SinceV8 is a perturbation of unity, we split off a term wher
V8 is replaced by unity, and combine it with the first term
:Ĥ right : to give the Hamiltonian of a free field~in the pres-
ence of a fixed mirror! plus a perturbation, which is

E
2`

q(0)

:ĝ8~v !2:~V821! dv52E
2`

0

:ĝ8@ t1q~ t !#2:q̇~ t ! dt.

~18!

Thus we have

:Ĥ right :5:Ĥ right, fixed:1:Ĥ right, pert:, ~19!

where

:Ĥ right, fixed:5E
2`

`

:ĝ8~x!2: dx ~20!

and

:Ĥ right, pert:52E
2`

0

:ĝ8@ t1q~ t !#2: q̇~ t ! dt. ~21!

This term is already of orderv/c. Thus we may compute
q(t) and q̇(t)5p(t)/m to the required accuracy from th
mirror’s Hamiltonian

Ĥmirror5p2/~2m!1V. ~22!

Using this, choosing a Hermitian factor ordering, and ab
ing notation by keeping the same symbol for the Hamilton
with quantizedp andq, we find

:Ĥ right, pert:5m21E
2`

0

eiĤ mirrort$:ĝ8@ t1q~0!#2: p~0!

1p~0!:ĝ8@ t1q~0!#2:%e2 iĤ mirrort dt. ~23!

This is the final expression for the normal-ordered part of
correction to the free-field Hamiltonian in the model wi
first-quantized mirror. As mentioned above, we do not rea
need this explicit form in what follows, but present it for th
purposes of defining the model.

Before analyzing how passage to this model affects
paradoxes of the classical mirror, a few comments about
model’s structure are in order. One can regard this mode
a perturbation of a stationary classical mirror, the pertur
tion parameter beingm21. Adopting this point of view, one
can ask how the eigenstates of the classical mirror are
6-4
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MOVING MIRRORS AND THERMODYNAMIC PARADOXES PHYSICAL REVIEW D63 025016
fected by taking into account its finite mass. The integr
over the half-line in Eq. ~23! will contain creation
^ creation and annihilation̂annihilation operators, and
these will result in a ‘‘dressing’’ of the states. In particula
the vacuum state will be dressed with two-particle contrib
tions. The mirror, too, will be affected by the operatorsp and
q; the dressing will contribute states which in the unp
turbed theory would be excited.

IV. MEASUREMENT OF THE VACUUM ENERGY

We now take up the question of how well the vacuu
energy on either side of the mirror can be measured an
what extent those measurements are compatible with
treatment of the mirror as a classical object.

Throughout this section, we consider the measuremen
Ĥ right . This means a measurement is made of the field ene
on the entire half-space to the right of the mirror.~Of course,
this is for many purposes an idealization. In many cases,
would consider the energy content over a fixed region
space, and restrict the mirror to be on one side of that. H
ever, such analyses are cumbersome and will not be
tempted here.! We also assume that the field is initially in th
vacuum state.

A. Classical model

In this subsection, we shall assume that the mirror is i
state which can be well modeled by a classical trajecto
Thus we may assume that at any timet the mirror’s position
and momentum may be measured to classical accuracieDq
andDp which are larger than the spreads in the correspo
ing quantum observables. Then there is a classical limi
the accuracy to which the mirror’s energy is known:

DHmirror.
p

m
Dp1V8~q!Dq. ~24!

In particular, the limit of the accuracy in the energy due
the classical uncertainty in position must satisfy

uDHmirroru*uV8Dqu. ~25!

However, note thatDq must be far larger than the mirror’
Compton wavelength for the mirror to be in a classical sta
Thus we have

uDHmirroru@^Ĥ right&. ~26!

In other words, to the extent that the classical model of
mirror’s trajectory is credible, the lack of accuracy in know
edge of the mirror’s energy must be far larger than
vacuum energy in the field. This means that while the m
ror’s motion splits the vacuum into energy packets of op
site signs, the uncertainty in the energetic cost of this se
ration is far larger than the magnitude of the separation its
Thus there is no detectable violation of the second law.

Note too that this means an attempt to consider a term

^Ĥ right& as a semiclassical contribution to the mirror’s ener
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is misguided. It is not of itself wrong, but it is a correctio
far below the scale at which any classical treatment of
mirror is valid.

B. First-quantized model

In the previous subsection, we saw that energies of
scale^Ĥ right& were far below contributions which could b
meaningfully treated by a classical model of the mirror. Th
of course suggests that we must pass to a quantized mirr
understand the energy transfers between it and the fie
shall do so here using the first-quantized model, but I sh
not attempt a full analysis of the problem. This is par
because of technical difficulties in the first-quantized mo
~as I shall explain!, but there is a deeper reason.

We saw in the previous subsection that the mirro
Compton wavelength entered in limiting the validity of th
classical model. This length is the scale at which a fir
quantized treatment breaks down, so we may expect
even the first-quantized model will be inadequate. This
indeed the case, as will be discussed below. However,
analysis of the first-quantized mirror will uncover a ne
physical effect in the energetics, and so we take it up he

We have^Ĥ right&5(12pm)21V8(q). This means a mea
surement of the vacuum energy is essentially a measurem
of q. ~A strictly linear potentialV5const3q is excluded for
several reasons. The most important of these is that the
responding classical trajectories would not obey the bou
ary conditions necessary for the derivation of the formu
for ^T̂ab

ren&.) A measurement ofq is always made with a quan
tum uncertainty, and insofar as the first-quantized mode
valid the spread in the quantum observable must be la
than the Compton wavelength:

Dq*\/~mc!. ~27!

Note that while the symbol used (Dq) is the same as in the
previous subsection, the meaning here is different. HereDq
represents not just a lack of knowledge or of measurem
resolution, but the spread of the components of the w
function with respect to the spectral resolution of the ope
tor q.

The spread in the mirror’s potential energy is

DV.V8Dq*V8„\/~mc!…, ~28!

that is, is far larger than the vacuum energy. This sugg
the relation

DEmirror*^Ĥ right&; ~29!

that is, the spread in the mirror’s energy must be larger t
the vacuum energy in the field. This would mean that
vacuum energy could not be usefully separated from the m
ror’s own energy, and indeed the vacuum energy would h
to be considered as part of the constitutive energy of
mirror.

Of course, relation~29! has not been established rigo
ously, because we have neglected possible cancellations
tween the spreads of the mirror’s kinetic energy and its
6-5
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tential energy. A careful argument would seem to
technically very difficult, especially as we have made ess
tially no restriction on the potential. However, the physic
conclusion — that the spread in the mirror’s energy is la
compared to the vacuum energy — seems suggestive en
that it is worthwhile to raise as a generic possibility.

We can establish relation~29! in the case of a quadrati
potential V5kq2/2. In this case, the vacuum energy
(12pm)21kq, so a measurement of this is precisely a m
surement ofq. A reliable measurement of this energy ther
fore requires a measurement with nominal valueq̄ and
spreadDq related byDq/q̄,1. This means in particular tha
the mirror is known to be on one side or the other ofq
50. Using for the moment only this last fact, there must
a minimal spread in the mirror’s energy compatible with th
restriction. This minimal spread must be at least of the or
of the level spacing of the harmonic oscillator,

DEmirror*~k/m!1/2\. ~30!

~There is a subtlety here; see the following paragraph.! Now
let us turn to the condition that the mirror be non-relativist
this implies in particular thatkq2&mc2, and thus thatuqu
&(m/k)1/2c. We thus have

u^E&u5
k\

12pmc
uqu ~31!

&
k\

12pmc
~m/k!1/2c ~32!

5
\

12p
~k/m!1/2 ~33!

&~12p!21DEmirror . ~34!

Thus the quantum spread in the mirror’s energy does ind
dominate the field’s vacuum energy.

There is a technical subtlety in the previous paragra
which deserves comment. As is common, we have written
the ‘‘spread’’ in an operator, meaning~as is common! some
measure of the size of the spectrum covered by projecting
physical state onto the eigenstates of that operator. Exa
what measure of this size~root mean square, full width a
half maximum, etc.! has not been specified. In the prese
physical context, we do not think the precise measure use
important.

Bound up with this is our assertionDEmirror*(k/m)1/2\
for a particle restricted to a half-line in the quadratic pote
tial well. In general, depending on the measure of the spr
used, one would haveDEmirror>a(k/m)1/2\, wherea is a
numerical factor. We are assuming thata will be of order
unity or larger for any reasonable measure adopted. Se
analytic investigation of the root-mean-square spread g
a'.9.
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C. Limitation of the first-quantized model

The treatment of the mirror as a first-quantized particle
only accurate within certain regimes. An important limitatio
is that a real mirror does not reflect all frequencies perfec
but becomes transparent to sufficiently high modes.

To understand this, letvp be a ‘‘plasma’’ frequency, giv-
ing a scale beyond which the mirror becomes essenti
transparent. Associated with this is a ‘‘skin depth’’c/vp to
which modes penetrate before being reflected. The mirr
position, as a reflecting surface, is not defined more ac
rately than this skin depth. This means that the model is o
credible insofar as it depends on spatial resolutions*c/vp .
Now for a realistic mirror we must have

\vp!mc2; ~35!

that is, the plasma energy should be less than the rest en
or, equivalently, the skin depth should be much larger th
the Compton wavelength. However, the vacuum energy
one side of the field is

U~12p!21V8
\

mcU'~12p!21UVS q1
\

mcD2V~q!U ~36!

and is a measurement of the difference of potential ener
over the Compton wavelength\/(mc)!c/vp . Thus this en-
ergy difference is well below the ambiguity in the mirror
Hamiltonian

Ĥmirror5
p2

2m
1V. ~37!

We see that the first-quantized model is not accur
enough to determine whether there are exchanges of en
between the mirror and the field of the same scale as
vacuum energy. The limitation is in the treatment of the m
ror as perfectly reflecting, and the neglect of whatever int
nal physics of the mirror gives rise to that refelection. P
sumably, an accurate model will require passing beyond t

V. SUMMARY AND IMPLICATIONS

A. Summary

I have re-examined the ‘‘moving mirror’’ models o
Davies and Fulling, giving attention to their limits of validit
in computing energy transfers between the mirror and
vacuum energy of the field. Insofar as the mirror can
modeled by a classical point particle, we find that the lack
accuracy in its energy far exceeds the vacuum energy. T
means that, while the motion of the mirror splits the vacuu
into positive and negative energy packets, the magnitude
those energies are far below the uncertainty in the mirro
energy. Thus no violation of the second law arises.

Moving beyond the classical model to the first-quantiz
mirror, we were able to show, at least in the case of a q
dratic external potential, that the quantum spread in the m
ror’s energy must be greater than the field’s vacuum ene
This would mean that a measurement of the field ene
would necessarily drive the mirror into a superposition
6-6
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energy states, with width greater than the vacuum ene
For more general potentials, we gave suggestive but not
positive arguments for the same conclusion.

These conclusions are consonant with the results
Parentani@10#. With a different, although related purpose,
investigated a second-quantized mirror model with cert
approximations, and found correlations between the mi
state and those of forward-scattered quanta. Taken toge
the two models show that~a! when vacuum field energies ar
measured, the entanglement of the mirror’s state with tha
the field may be a dominant effect, and~b! the entanglemen
may involve fluctuations in the mirror energy grater than
field’s vacuum energy.

Even the model of the mirror by first-quantized point pa
ticle turned out to be insufficiently accurate for quantitati
analysis of the energy transfers between the mirror and
field. We found that in order to reliably compute mirror e
ergies to a resolution of the order of the vacuum energy,
will need to take into account the finite reflectivity of th
mirror, and its structure on scales of the order of its s
depth.

We found too evidence for another limitation on ener
measurements, deeper than that set by the finite reflecti
At every point where we used the skin depth to restrict
limits of measurability of energies, we also used the Com
ton wavelength\/(mc)!c/vp of the mirror. The Compton
wavelength is the scale at which the first-quantized, n
relativistic model of a particle~here, the mirror! breaks down
~irrespective of its reflective properties!. The appearance o
this scale seems to indicate that in a deep way we m
confront the infinitely many degrees of freedom of the mir
as a second-quantized object, before we will be able to h
on

on
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a satisfactory understanding of the transfers of energy
tween it and the field.

These requirements to pass to a very deep model of
mirror in order to reliably study the energetics of the syst
must be considered a surprise, because for a long time it
been assumed that at least for sufficiently heavy mirror
classical model should be valid. However, we see that
only does this fail, but even a first-quantized mirror mode
not sufficiently refined to make positive predictions.

B. Implications

These results have serious implications for attempts
understand the back reaction of the quantum field on
mirror. Even the first conclusion, that such back-reaction
fects are below the range of applicability of the classi
model, is important. It shows that any attempt to treat th
back-reaction effects semiclassically is misguided, beca
the back reactions are far smaller than the scales at which
classical model can be trusted anyway.

The second result~that the spread in the mirror’s energ
must be greater than the vacuum energy! shows that the
semiclassical model is not merely insufficiently refined:
basic assumption is wholly misdirected. A semiclassical
proximation precisely assumes that the quantum fluctuat
in the mirror’s state are negligible: but the opposite is t
case.

It is hoped that the features uncovered in this sim
model will be guides to the analysis of more complicated a
realistic field theories. In particular, a main motivation f
this work was as a warm-up for an analysis of similar issu
in the Hawking process, where a wholly convincing und
standing of the back reaction has yet to be reached.
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