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Out of equilibrium thermal field theories: Finite time after switching on the interaction
and Wigner transforms of projected functions
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We study out of equilibrium thermal field theories with switching on the interaction occurring at finite time
using the Wigner transforms of two-point functions. For two-point functions we define the concept of a
projected function: it is zero if any of the times refers to the time before switching on the interaction; otherwise
it depends only on the relative coordinates. This definition includes bare propagators, one-loop self-energies,
etc. For the infinite-average-time limit of the Wigner transforms of projected functions we define the analyt-
icity assumptions(1) The function of energy is analytic aboyeelow) the real axis(2) The function goes to
zero as the absolute value of energy approaches infinity in the (jgvezr) semiplane. Without use of the
gradient expansion, we obtain the convolution product of projected functions. We sum the Schwinger-Dyson
series in closed form. In the calculation of the Keldysh compoiileoth resummed and single self-energy
insertion approximationcontributions appear which are not the Fourier transforms of projected functions,
signaling the limitations of the method. In the Feynman diagrams there is no explicit energy conservation at
vertices; there is an overall energy-smearing factor taking care of the uncertainty relations. The relation
between the theories with the Keldysh time path and with the finite time path enables one to rederive the
results, such as the cancellation of pinching, collinear, and infrared singularities, hard thermal loop resumma-
tion, etc.
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[. INTRODUCTION pers, problems with a finite switching-on tirh@], especially
those related to the inflatory phase of the Univesse Ref.
Out of equilibrium thermal field theord,2] has recently [41] for further referencegs have been studied by Wigner
attracted considerable interd8—15]. In many applications transforming in relative distance and studying the depen-
one considers the properties of the Green functions of almostence on relative time direct[¢2]. In such an approach, one
equilibrated systems, at infinite time after switching on therelies heavily on differential equations and numerical meth-
interaction. A recent approach based on first principles hagds.
been successful in demonstrating the cancellation of collin- In an attempt to remove the weak points in both cases, we
ear[16,17] and pinching singularitiel 8—23, the extension suggest the application of the method of Wigner transform
of the hard thermal loogHTL) approximation[24—26 to  (but now also in relative timeto the case of switching on the
out of equilibrium[27,28), and applications to heavy-ion col- interaction at finite time.The time-integration path (§ee
lisions[29—31]. A weak point of the approach was that most Fig. 1) is now closing the part of the real axis betweefthe
of these results were obtained under the assumption that tisvitching-on time andt; (the switching-off time; in the rest
variation of slow Wigner variables could be ignored or, inof the paper the switching-off time is pushed to infinity. If
other words, that these results were valid only in the lowestve push the switching-on time to minus infinity, the connec-
order of the gradient expansi¢82—-34]. tion to the Keldysh integration path is established. It turns
For some problems, e.g., heavy-ion collisions, both limi-out that this connection is highly nontrivial.
tations are undesired. One would like to consider large de- To understand the limitations coming from the finite
viations from equilibrium. One cannot wait infinitely long as switching-on time, we start with a generic two-point function
these systems go apart after a very short time, probably withs(x,y). The quantitiex andy are four-vector variables with
out reaching the stage of equilibrium. In nuclear collisions,the time components in the range<xy, yo<<« (heret; is
short-time-scale features have been studied in a number tiie time at which we switch on the interaction; it is usually
paperg 35-4Q. set to —o, but we set it tot;=0). We define the Wigner
In the theories with switching on the interaction infinitely variabless (relative space-time, relative variablend X (av-
long before the time of interest, one tries to get some inforerage space-time, slow variaples usual:
mation by extrapolation to early times. However, in doing

so, this information is either deformed or lost. Indeed, relax- X= Xty S=x—y

ation phenomena include many processes that are expected 2 '

to terminate as one goes sufficiently far from the (1.1
switching-on time of the interaction. Thus one can expect S S

that the full theory also describes early times. In many pa- G(x,y)=G| X+ E'X_ 2]

The lower limit onxg, Yo implies the following conditions
*Email address: dadic@faust.irb.hr on X andsy: 0<Xy, —2Xg<sy<2X,. To define the pro-
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FIG. 1. Finite switching-on time integration path.

jected function(truncated, “mutilated function’{43], PF in
further texj, we add two additional properties: the function

does not change witlk (homogeneity assumptionit is a

function of (sy,S) within the interval— 2X,<s,<2X, and
is identical to zero outside the interval:

s
F x+2 X— ) 0O(Xg)O(2Xy— so)®(2x0+so)F(so s),
1.2
_ s
F(sg,s )_X“TocF X+2 X_E
0

Analogously, the Wigner transform of the projected func-

tion (WTPF) is obtained from the Wigner transform of the
function defined on the infinite carrier gf, (— o <sy<®)
with the help of the projection operatopPs , which are the

Fourier transforms of the above givé¥s:
FrPo )= | PPy (o, PIF(PS.)

1 sin 2Xq(po—
Pxo(pmpo):;@(xo) 00—
0~ Po

Po)]

lim Py (Po.Po) = 3(Po—Po), 1.3
X0—>:)o
where the subscript<,” as it appears irF., in (1.3) and in
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This general expression should be contrasted with our result
valid for A andB being projected functiontsee Sec. ¥

Poit poz)
2

Cxo(vaﬁ):f dpo.d poszo< Po:
1 je XolPo1~Poztie)

Poi— Poxtie

X
21

X A (Po1,P)Be(Po2;:P)- (1.6
The analytic properties of the WTPF in thg— o limit
as a function of complex energy are very important for fur-

ther analysis. We define the following properti€4) the
function of py is analytic abovébelow) the real axis(2) the
function goes to zero dp,| approaches infinity in the upper
(lower) semiplane. The choice abou®elow) and upper
(lower) refers toR (A) componentgnote here that we do not
require such properties for the Keldysh compongritsis
easy to recognize that the properti@$ and(2) are just the
definition of the retardetadvancegifunction. However, it is
nontrivial, and not always true, that the functions with e
(A) index satisfy them.

Under the assumption thétor B satisfies(1) and(2) (A
as advanced oB as retardedEqg. (1.6) can be integrated
even further. We obtain

Cx(PosB)= | 0P4Px,(Po.PY)A(D B (0. 5).
@

The convolution product of two two-point functions which
are WTPF’s and satisfyl) and (2) is also a WTPF. This
product is then expressed through the projection operator
acting on a simple product of two WTPF’s given )iﬁ
=XB=. In theXo— limit the convolution product of two
WTPF’s which satisfy(1) and(2) is equal to the lowest-order
contribution in the gradient expansion. The result makes
sense since moving,— « is equivalent ta;— — at fixed
X, in the standard approach.

We find that some quantities, obtained at low orders in the
perturbative expansion, e.g., bare propagators, one-loop self-

other expressions of this paper, is the short notation for the€nergies, belong to WTPF's. This enables us to sum the

“lim Xg—e - Asan illustration, the Wigner transform of the
convolutlon product of two-point functions
C=A* B@C(x,y)=f dzA(x,z)B(z,y) (1.4

is given by the gradient expansidnote that we have as-

Schwinger-Dyson series with the propagators and self-
energies as both these quantities are WTPF. Under the con-
ditions (1) and (2), the retarded, advanced, and Keldysh
components at finiteX, are obtained by a simple action
(smearing of the projection operator onto the corresponding
guantities obtained afy=<0, and the convolution product is

a simple multiplication:

sumed the homogeneity in space coordinates, which ex-

cludes any dependence &

Cx,(Po.P)=€""% Ay (Po,P)Bx,(Po.P),

— A B
<> - E(axoapo_apoaxo). (1.5)

Grx,(Po; p)= J dPo1Px,(Po,Po1) Gre(Po1, p),

GRr,«(Po1; 5)
1—i3g(Po1.P)Gr(Po1.P)

ORr,(Po1, 5) =
(1.8
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and similarly for the advanced component. The calculatiorreplaced by delta functions. Section VIl is a summary of the
of the Keldysh component requires a more elaborate treatesults and ideas described in the paper.

ment: one reduces the multiplication to a doufaesingle in

some cas@sconvolution product; the result contains terms Il. OUT OF EQUILIBRIUM SETUP

: (2.1

, 2.3

that are non-WTPF terms. Also, the one-loop contribution to _
the Keldysh component is corrected by non-WTPF terms. e start by assuming that the system has been prepared at

NOW, it is Gr...(Dg 5) as given in Eq(1.8 (and similar some initial timet;=0 (to avoid inessential corr]pllgatlons,
express'ions for the ;idvanced and Keldysh components avg assume that the zero-temperature rgnormah;aﬂon has al-

. : i T t ady been performedAt t; the interaction is switched on

the S'F‘g'e self.-energy Insertion approxmanpng,qA,K)_,x) .and at timet; it is switched off(we shall take the limit;
to which previous results on the cancellation of pmchmg_}w). Fort,<t,,t,<t, the system evolves under the evo-
singularitieg18,19,21,28and the HTL resummatioi27,28 | tion operéton{B,] '
(and also on the cancellation of collindd6,17] and infrared
singularities if the propertied) and(2) hold at the two-loop
level) apply. U(ty,ty) =T, exr{ifd“x’ﬁl(x’))

From our study one can deduce a general rearrangement ¢
of the perturbation expansion at the non-Keldysh integration h is the int i ; tibgandt. in th
path: the contributions look like the zeroth order of the gra_\(lzvori;)elgftimi ISI:r?erzaalr?ﬁrI] ﬁgﬂﬁ;;gﬁgﬁcgr (:?e??ng Zog]era(taor
dient expansion with the slow coordinatXy) pushed to . i ¢ i . :
+ o, but the use of the PF manifests itself as the appearanc}’ce\)/r?gfr:g\;ffgec Z\gtr?toir; ﬁxgt:\?ezrcz)gzty' for all times not be-
of the (2do; +ie) ~* factor ms'teaq Of_wa.(zjqoi) at eaph The Heisenberg field operatdr(xj is obtained from the
vertex, and as an overall projectiésmearing operator in- free field () in the interaction picture as
stead of the exact conservation of energy. n

Our study suggests that the results obtained by using the —1it A .
Keldysh integration patht(— —) could be related to the PO=U D nOULL), 22
results of our approach;(finite). This relation is possible at
low orders of the perturbation expansion, i.e., as long as the  ¢(x)=T, ¢m(x)exp( if d*x’ £,(x")
expressions involved are the projected functions not breaking c
assumptiongl) and(2). Technically, the amplitudes are re- . . _ _ _ _
lated by (1.3), where “Fy " is the contribution in our ap- where all f|eld§ on the rlght-.hand side are in the interaction
proach § nfe)and °F 1 subtiute by the correspand P, BN 1s th itegraton contou o Fig, it the
ing lowest-order contribution in the gradient expansion in theHeisenberg picture, the average valuésf of the.operators are
theories witht;— — o, obtained as '

Finally, we note that our method is helpful in problems
related to the time evolution of the system. Additional prob- (O(1))=Tr pO(1), 2.4
lems related to the gradient expansion in space components,

appearing together with space inhomogeneity, will not benypere ; is the density operator admitting the Wick decom-

efit from our method. _ position. Especially, we define the two-point Green function
The paper is organized as follows. In Sec. Il we give agq

general setup of out of equilibrium thermal field theory. In

Sec. lll we define finite-time Wigner transforms, define the GOX,x") = —i(Tedh(X) p(x")). (2.5
projection operators, and introduce the notion of projected

functions. We define analyticity assumptiofis and (2). In - \wjth the help of(2.1) it can be written as

Sec. IV we define a few important examples of projected

functions, namely, bare propagators and one-loop self-

energies, and find that they satisfy the analyticity assump- GO(x,x")= —i<Tc(ex+f d*x” L, (x")
tions (1) and(2). In Sec. V we analyze the properties of the ¢

product of two andh two-point functions. In Sec. VI these

properties are used to study the product of two pole contri- X ¢in(x)¢m(x’)) > (2.6)
butions, and to discuss the reduction of the inverse bare

propagator to the space of projected functions and the equa-

tions of motion. We sum the Schwinger-Dyson series for In Eq. (2.6) it is implicitly assumed that the interaction
retarded, advanced, and Keldysh components of the prop&agdrangian does not depend on time explicitly. Indeed, di-
gator. We discuss the appearance of pinching singularities ifect time dependence through time-dependent perturbation,
our scheme. Section VIl is devoted to the modifications ofor through the background field which depends directly on
Feynman rules in coordinate and momentum space. It is inime, ¥(Xx,t)=¢(t) + #(x,t), would break our scheme
dicated that, in the absence of breakdown of assumptibns through the appearance of two-point functions which are not
and(2), all energy denominators appearing at vertices can berojected functions.

025011-3



. DADIC PHYSICAL REVIEW D 63 025011

We assume the single-particle density operator to be stawhich we switch on the interaction; it is usually set+toe,
tionary with respect to the free Hamiltoniady,==;H; (for ~ but we set it tot;=0). We define the Wigner variables as

an alternative choice of the initial density, see Ré#]): usual:
1 X+
P:§n: |‘//n>pn<'/’n|zzexl{_§j: IBiHj>1 2.7 X:Ty, S=X—Y,
where the “temperature” functiof9] g; (the “tempera- s s
ture” of the jth degree of freedojris adopted to obtain the G(X,y)=G| X+ =, X~ _)_ (3.2
given initial-state particle distribution. Now, one has 2 2

4 2 2 o 4 The lower limit on xg, Yo implies 0<Xg, —2Xy<Sy
; 'BJHJZJ d"pB(Po)Po® (Po) (po— P — M )a, ay, <2X,. The values of the functiofs for the (X,s) not satis-
(2.9 fying these conditions are physically irrelevant. Our defini-
ton of time ordering operatdsee Sec. )Isets them to zero,
and obtains the distribution functiof{py) as a function of so that we can rewrite E¢3.1) as

B(Po),

— S S
_ 1 _ 1 G(X,y):®(XO)(2X0_So)(2XO+So)G X+ E,X_ E)
fa(Po) = s Trpop= ex0B(Po)Po= 1’ 2.9 a2

or the inverse relation Note here that the functioB defined by Eq(3.2) in general

1 depends orXy. At the points K,s) which do not belong to

|09( f(Po) * 1) the carrier of projection operator, the values®fare arbi-
Bi(pg)=——. (2.10  trary. This freedom is used to define projected functions. The
Po two-point function can be expressed in terms of the Wigner

The free fields are expanded in creation and annihilation opfansform(i.e., Fourier transform with respect 8g,s;):
erators as

d3p _ , G| X+ ;,X— ;) :(277)741 d*pe 1 (Poso PG (py, p:X).
d’(x):f m(ape"px+a3 e, (21D 55
with po:wp=(52+m2)1/2; Here
<a;ap’>:(277)32wpf(wp)5(5_5,)1 G(po,ﬁ;X)=f2:i dsof T X+;X_ 2)
—en0

(apay)=(2m)3 20,1+ f(wp)d(p—p'), (212

_ | 35d(Poso— P9 @
wheref(w)p) is the given initial distribution. ffoof dsof dse o 0 (Xo)

For completeness, in Eq$2.8—(2.12 we include free

fermions(lower casgin addition to free boson@ipper case X O (2Xo—50) O (2Xo+Sp)

In the case of spin-1/2, spin-1, or higher-spin particles, addi- S S

tional spinor or tensor indices must appear. For simplicity, XG| X+ = X— _). (3.9
we do not show them explicitly. 2 2

The noninteracting contour Green function is given as o . o
We adopt a simplifying assumption of the homogeneity in

GO (x,x") = —1(Tcdin(X) hin(X)). (2.13  space coordinates. This assumption excludes any dependence
_ _ ) on X and we drop it as an argument of the function.
Depending on whether the timeg and X, belong to the The product of® functions is a projection operator with a

upper(*“1” ) or lower (2" ) part of the pattC, the function simple Fourier transform
G{P(x,x") splits into the components,, , in(x,X'), w,v

=1,2. For the timexy,<0 or x,<0, the Green function is , 1 2Xg iso(po—pl)
equal to zero owing to our definition df. . Pxo(Po.Po) = EMXO) f_zxodsoe oo
I1l. PROJECTED FUNCTIONS 1 sin 2Xo(po— pé)]
. . . =—0(Xo) p , (39
Let us start with the two-point functioi&(x,y). The ™ Po— Po

guantitiesx andy are four-vector variables with time com-
ponents in the rangg<xy, yo<o (heret; is the time at and
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e_isop6®(xo)®(2xo+SO)G)(ZXO—SO) IV. EXAMPLES OF PROJECTED FUNCTIONS

A. Poles in the energy plane

If dpoe™"*0PPy (Po.Py)- (3.9 We start with the simplest projected functions: simple
poles in the energy plane. The pole contribution to the Green
It is important to note that function is
a
. , 1 sin2Xo(po—Po)] , G pole(Po) = —=. 4.9
lim Py (Po,Pg)= lim — ; = 8(Po—Po)- Po~Po
xoﬂoc XO—WO po_ pO

(3.7 For Impy<0, it satisfies assumptiond) and (2) as a re-
tarded component, but not as an advanced compdiaik
There is a hierarchy of thBX0 projectors: for |mEO>o, just the opposite
It can be projected to finitX,:

PXO,M(pO’pg): f dpépxo( po,pé) th’)( pé,pg s l_e*ZiXO(pofaO)Sgr“mEO)

gXO,poIe(pO):a — (4-2)
Po—Po

Xom=min(Xo,Xg)- (3.9 . . . —
' For any finiteX,, the functlongxolpo,e(po) is regular atpg.
In this paper, the projected function is a very special two-FO" 1arge Xo, Eq. (4.2) exhibits the exponential decay
point function F(x,y)=F(X+s/2X—s/2): it does not de- € 2*/'™Pol independently of the sign of |iDy.
pend onX, it is a function of &y,s) within the interval It can be transformed back to the variable, (so):
—2Xg<5p<2X, and identical to zero outside:

S S — _
Gpole| Xot EO,XO— 30 =iae™'Po%(@(sysgn(impy))
S S - .
F| X+ 5, X= 5 [=0(Xq)0O(2Xy—S0) O (2Xy+Sg)F(Sg,S). —
5 2) (X0)©(2Xo—50) O (2Xo+S0)F(S0.,5) (s sgHImPL)—2X).
(3.9
4.3
FunctionF is related to the limitXy— o: Evidently, this contribution is a projected function. For
Im pe<<O0, it is different from zero only at €sy<2Xy; i.e.,
S s\ — . it i m it
lim F| X+~ X— _) —F(s0,9). (3.10 itis a retarded function, and for Ipy>0, it is an advanced
Xgo 2 2 function.
An important property of the projected function is that the B. Propagator
whole X, dependence is introduced by the projection opera- We start with Eqs(2.11), (2.12, and(2.13. The transi-
tor tion to theR/A basis is straightforward. Careful calculation

gives for the retarded component<Q,, 0<y,)

FXO(pOaﬁ):[PXOFw](pOaﬁ) i

— _ — 4 000000
- ’ . Gr(X,y)==G11+ Gy fd ppz—m2+2iep0
=fodpono(po,po)Fx(po,p)- (3.1 (4.9

and for the Keldysh component
Important examples of projected functions are retarded, ad-
vanced, and Keldysh components of free propagators. Fur- Gg(X,y)=G1,+ G5,
ther examples will emerge in the next sections.

e IPOy),

For further analysis, the analytic properties of tkg :f d*p2m8(p2—m?) (1+2f(w,))e PV,
—oo limit of the WTPF as a function of complex energy are P
very important. We define the following propertig¢4) the (4.5

function of p, is analytic abovébelow) the real axis(2) the

function goes to zero dp,| approaches infinity in the upper As our Gg and G depend only ors=x—y and vanish at

(lower) semiplane. The choice abougelow) and upper times before switching on the interaction, they are projected

(lower) refers toR (A) components. functions. The Wigner transform over the infinkg—y, in-
One should note that the properties of the projected functerval gives as usu@#,12,19 [note, however, that we avoid

tions are tightly related to the abrupt cutoff gt Any  [23] using the nonanalytic functioa(py) in the expression

smoothing of the cutoff would also change these propertiesfor Gy .. ]
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—j Similarly, for a vector particléfor simplicity, we choose the
Gr=(P)= DT 2 epy’ Feynman gauge
1 _ 0
Gy (P) = —[1 2f(wp) ) [ PoGr-(P) — PoGn () . Currixo( )= 01 Crxy(P)- 12
(4.6 We note here that the explicit expressiqdsd)—(4.12) will
The e parameter, which regulates these expressions, shoul#Pt be necessary for further discussion.

be kept uniformly finite during the calculations, and the limit

€—0 should be taken last of dIB]. This especially means C. One-loop self-energy
that “”‘f(oﬂ:feXp(_XOE):Q ?”d the terms containing this fac- 14 giscuss the amputated one-loop self-energy, we start
tor vanish in theXo—ce limit. with (the underlying theory includes bosons and fermions
The finite Wigner transform [xy>0,yo>0Xy=(Xg with three-point vertices, but spin and internal symmetry in-
+Y)/2] is obtained by smearing dices are suppressed for simplicity of presentation
Grxy(P)=[Px,Gr=1(P)=—G* o x,(P), 2(%,Y)*g*S(X,y)D(x,y)
“.7 2| 44 s [ >
Grx,(P)=[Px G 1(p). <07 [ a*pa'p’e PPy (bo,04)S.(P5.P)

It is easy to verify that neither the spinor nor the tensor factor e d)ias ) -
changes our conclusid@.7). One can even integrate expres- Xf d*qd’q’e Py (do,d0)D(dp. ).
sion (4.7). For a scalar particle, one obtains

(4.13
—i . . .
G%,xo(p)= 7 2 2. l—(cos Aowp The Wigner transfornfwith respect tes=x—y) is
pPo— P —m°+2iepg
R 2X,
2 dsy | dpod®pd
—i%SinZXowp)GZ‘xo(poﬂe) *xg(Po1 P19 j—zxo Sof Poc P
’ ><e*KDo*Qo)So@(ZXO_SO)@(2XO+SO)
. Po .
— 0 - _ . Po i S
=Gpr(p)|1 (cos%owp pr sin 2Xowp) X S,.(ph,P)D(qh.P1—P)
X e#XolPorial, (4.9 *g? f dpgd°pdapPy,(Por,Po-+ )
It is important to observe that, at any fini¥,, the above X S.(P).P)D(0h.P1—P), (4.19

expression is not singular gh=* w, .

Evidently, for X,—o, the first term inGg x (p) gives where as an intermediary step we have used the representa-
1 7 " 0

. . ., tion of the bare propagatofg.7) and the representation of
GRr.», While the other two “oscillate out.” For the Keldysh the projectorg3.5) and(3.6). Finally, one reads Ed4.14) in

Component' one needs the R/TA basis[ER(A)= _(21’14'22'1(1’29, EK221,1+22,i|:
as
(PoGR)x (IO)=I00G0,OC(IO)[1—(COS AKow
"o " P S R (P) = [Px SR~ 1(P), Sk, (P)=[Px Sk1(P)-
o _ _ (4.15
—i—sin Koy, |€2XolPoti | (4.9 _
Po To calculateX .. and3. .. we start with Eqs(2.23—(2.25
) in [23]. After taking into account that the product of the
Then one can use the analogy(#6): retarded with the advanced function, with the same time
_ variables, vanishes, one obtains
G x,(P) =~ [1=2f(wp) o, [(PoGRIx,(P)
o ig2 [ d%
— (PoGx(P)]- @410 Se.@=3 J (Ko, (o~ Ko, )]
For a spinor particle, one obtains X DR (K)Sg »(q—K)F, (4.16

2

Gg,zxo(p) _ iGg’m(p)‘)’OGZiXO(pO“E)( wp— Z—Z) sin 2X0wp

where D and S are bare scalar propagatorB(ky,wy)
= —kowy [1=2f(wp)], and the  factor F

o =F(ko.|K|,00.]al.kq, . ..) includes the information about
+GR’Xo(p)(7’Mp#+m)‘ 413 spin and internal degrees of freedofm=1 if all particles
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are scalars Now, to verify that the one-loop self-energy The momenta should be equai=p;=p,) and one obtains
2R satisfies assumptior{4) and(2), one observes that the (note that the dependence &'s is reduced to the depen-
vacuum contribution satisfies theffor exceptions, see, e.9., dence orXy's; further in the text it is indicated as an index
Refs.[33,45), while the contributions t& .. from various
ko points are linear and additive in distribution functions. . 1 2Xg
For finite e, this contribution possesses singularities onlyCx,(Po.P)= WJ dSoJ dzof dpoJ dpo2
0

.. . —2X
below the real axis in the compley, plane, and vanishes as

|qo| — < in the upper semiplane. quever, Fhere is no guar- Xei(posofpmsorpostQ)AXOl(pOL5)BX02(p02'5)'
antee that the imaginary part Bf; .. is negative.
Using the same method one calculates the Keldysh com- (5.9

ponent. Although assumptiori4) and (2) are not imposed
on 3y, one can decompose this component into two piece§0r energy integrals, we proceed in a somewhat different
SKk=—3kRTIKA" way. We shrink our choice of the functions(x,z) and
B(z,y) to the projected functions. Then we can use the con-
ig? [ d% nection to the Wigner transforms on the infinite carrier:
2 kRA),=(Q)= 17] (27)4[1+ h(ko, @) h(dq

R 1 2Xp
C ,p)= d d d d
~ Ko, @q 10 1D reay = (K) Sreay (A= K)F, X Po:P) (Zﬂ)zf—zxo SOJ ZOf p°1J Poz

(4.17

Xei(posoipmsorpozswf dpy:Px,,(Po1:Por)
where X ra) Satisfies assumptiond) and (2) in the way o

the retardedadvancegfunction does. General analytic prop- R R
erties of the expressions of the typ.16) and (4.17) are XAw(pélvp)J dPo2Px,(Poz2: Po2) B (P2, P).
well known: there is a discontinuiticut) along the real axis,

starting at thresholds for real processes and extending to (5.9
+ oo

The integrationd py;dpy. is easily performed with the help

of Eq. (3.6) and one obtains
V. CONVOLUTION PRODUCT OF TWO TWO-POINT

FUNCTIONS R 1 2Xg
o= o[ 7 s [ 620 [
Let us now consider the convolution product of two xo(po P) (2m)? -2X, % % Poy Po2

Green functions: X ¢! (PoSo™ Porso1~PozS02 @ (2X g, + Sgy)

X O (2X01~S01) O (2X2F Sp2) O (2X g2~ Sp2)
X A..(Po1,P)B(Po2.P). (5.6)

The product of ® functions is transformed int® (2X,
+509) O (2Xy—50)O(zy). Then

C=A* B@C(x,y)zf dzAx,2)B(z,y). (5.2

In terms of Wigner transforms

N J‘ZXO 3 4 é(p s ’5§) 1
C(pg,p;X)= dsofdsfdz 0S50~
(pO p ) 2%, (277)4

o 1 Cxo(vaF;):f fdp01dp025(povp01yp02)
Xf d*pse ! (Poror PisUA(poy Py Xe) g

(2m)* X A.(Po1,P)B.(Po2,P)- (5.7

xf d4p2e*i(Poﬁoz*ﬁzgz)B(poz,52;Xz), Here

1 [2x .
_ _ 8(Po,Po1.Pod = 52 f ds, f dzge!(Pofo™ Porfor™ Poz<od
S$1=X—2, S,=2z—Y. (2m)°) —2x, 0

(5.2

Sz S1
X1:X+E, X2=X—§,
2Xo

1 o0
=5z f ds f dzy
. L L (2m)°) —2x, 0
The assumed translational invariance helps us easily inte-
grate the space components of momenta and coordinates. To X ei[So(Po~ Po1t P02/ 2) + (2= X0) (Po1~ Pozti€)]

do so, we substitute®sd3z by ds,d°s, (JacobianJ=1)

_p (p Po1t Po2| 1 i
R %P0 2 2w poy—poatie
S=S,+Sy, Z:T+X. (53) Xe_iXO(pOI_pOZ'He), (58)
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where we have used

% . i
iza
jo dz,€e Tie (5.9
We can write the final expression as
- Po1t Po2
Cxo(po,p):f dpo1d PoaPx, Po, =%
1 ie—iXO(p01—p02+ie)
X ————————————
27 Po1—Poztie
X A(Po1,P)Bu:(Poz: P).- (5.10
Expression(5.10 is the key for finite-time thermal field

theory.

If A'is an operator satisfying assumptiofis and(2) for
advanced components, we can integrate expres&di0
even further. After closing thpy; integration contour in the
lower semiplane, one obtaif# B is an operator satisfying

(1) and (2) for retarded components, one can achieve th

same result by closing the,, integration contour in the up-
per semiplang

CxPo.B)= | 0PoiPs(Po Do A Por, BB (Pos ).
(5.11

This is an extraordinary result: the convolution product of

two WTPF's is a WTPF under conditior{g) and(2).
As expected, in the&Xy=c limit, Eq. (5.11) becomes a
simple product

lim Cx,(Po.P)=Ax(Po.P)B(Po,p).  (5.12

X0~>oc

At finite X, Eq. (5.11) exhibits a smearing of energgas

much as it is necessary to preserve the uncertainty relations

Convolution product of n projected functions

The product ofn two-point functions is obtained by re-
peating the above procedure:

n-1
Cxo(po,ﬁ):f jl:[l (dPo;)dpPonPx,(Po.(Po 1+ Pon)/2)

n—1 1 i
X 11:[1 (Aj,oc(po,j P)5— Po,—Pojiatie
% @~ XolPo,1~ po’n+i(n—1)e]An'w( Pon D).
(5.13
For the intermediate products in E¢.13 to hold we must

require that at leash—1 of the functions in the product
satisfy assumption$l) and (2). Furthermore, the order of

PHYSICAL REVIEW D 63 025011

neither advanced nor retarded in the middle. However, this is
not the order in which the components appear in the
Schwinger-Dyson equation.

If the above requirement is fulfilled, one obtaifisdex R
for the retarded component, a similar expression for the ad-
vanced component

- 1 i
|j(po,j—1,po,j+1,P)=f dpo,jzm
A 21 i
X AR j =(Poj ,D)E m

.1
:AR,j,x(po,j—lap)E

Poj-1—Poj+1tie’

(5.19

él'hen one finds

n
Cxo(poiﬁ):f dp0|lpxo(p01p0,l)]1;[1 A} =(Po1.P).
(5.19

VI. EXAMPLES OF CONVOLUTION PRODUCTS
A. Convolution products of pole contributions

We assume two pole contributions as shown in @dl):
A polei=ai/(Po— Poj), i=1,2. The producC=A;*A, is
simple in the cases in which both contributions are retarded
functions, or both are advanced, &y is an advanced andl,
a retarded function. Then one can simply use &qll) to
obtain

ai a,

Po—Po,1 Po _E),zl

(6.2

Cxo(po):f dPo1Px,(Po.Po)

The case in whichA; is a retarded and\, an advanced
function (i.e., Impy;<0, Impy>0) requires additional
care. After substituting them into E¢6.10, we choose new
variablesP o= (pg1t Po2)/2 andAy=pg1— Po2, @nd integrate
over A, to obtain

a a

Cx (po):f dPoPx (Po.Po) —
0 0 Po—Po,1 Po—Po,2

+f dPyPy. (po,Po)——222
0P x,(Po,FPo)=—=
0 Po1t Po2—2Pg

e~ 1Xol2(Po—pog) i€l

2(Po—Poo) +i€

( eI Xol2(Po—po) —i€]

— —+
2(Po—po) —ie

these functions is important: the retarded functions should be

on the right, the advanced on the left, and the function that is (6.2

025011-8
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The first term is formally identical to Eq6.1). The second left by the functionC, which vanishes rapidly gi,—« and

term consists of two non-WTPF pieces. satisfies assumptiond) and (2) in the way an advanced
As we shall see in the subsection discussing pinching sinfunction does.

gularities(Sec. VI D, non-WTPF contributions appear also

in the convolution product of the typ8x=¢* G or, more C. Resummed Schwinger-Dyson series

generally, in the convolution products containing retarded ) ) ) )

components positioned on the left from the advanced com- We write the Schwinger-Dyson equations in the form

ponents(...*Ag* ...*Ba* ...). The non-WTPF terms _ : _ .

depend directly oiXy; they are carrying the nontrivial infor- Gr=CrHiGr*2r*Gr,  On=CatiGa*2a*Ga ’(6 7

mation about the time evolutiofi.e., about the dependence . . . '

on Xg). However, the non-WTPF terms cannotpbe convo- Gk =Gk +iGr* Zic* GaT1Gk* 2ax Gat+iGr* ¥ G

luted further using Eqs5.10 or (5.11). This fact indicates

the natural limits of the applicability of the methods devel- "€ formal solution(where all products are convolution
oped in this paper. products and the operators are kept in the proper piger

_ i -1 _ i -1

B. Inverse propagator and the equations of motion Gr=Cr*(1~-i2r*Gr)""  Ga=Ga*(1-i2p*Gp) (6'8)
To define the inverse propagator, we use the results of

Sec.(IV B). We define the restriction 0B on the sub- G =Gr* (h(po,wp)(Ggl—GngiEK)* Ga. (6.9

space of projected functions as

To use the formal solution of the Schwinger-Dyson series,
vaio(po’f’):f dpoPx,(Po.P)Cr =(P6.P), we assume that the functio@a) , Gra), andZg(a) satisfy
requirementgl) and (2) for the retarded components in the
P (6.3 upper and for the advanced in the lower semiplane.
GRr»(Po,P)=i(p°—m+2iepg). This assumption deserves a few comments: For the re-
o ) tarded(advanceglbare propagators, our assumption is valid.
This integral does not converge in the ?bsolute sense, tySihe retarded component is real between the cuts on the part
we cannot calculate the dependenceGef” on Xo. Never-  of the real axis, the Schwartz theorem tells us that assump-
theless, we can apply it from the left to some class of functions (1) and(2) valid in the upper semiplane are also valid
tions. For example, we can apply it formally 8rx:  in the lower semiplane of the first Riemann sheet.
Gg'*Gg=1, or written out more explicitly At equilibrium, perturbation theory yields the full propa-
gator as a set of Fourier coefficients. The analytic continua-
, AN y o tion in the energy plane is not unique. This freedom is used
f dPoPx,(Po.Po)i (P”— M +2ipoe) Gr (Po.P) = 1. to choose an analytic continuation that satisfies requirements
(6.4 (1) and(2) defined in Sec. Ill. The positivity property of the
spectral density then implies that the propagator has neither
This equality is obtained using a simple integration oygy  zeros nor poles off the real axi8]. A further implication is
in the expression of Ehf typ.10. We cannot verify the  ihat the exact self-enerdgys(po,p) at equilibrium also sat-
second identityGgxGg"=1 directly owing to the diver- jsfies the propertie¢l) and (2). This is not guaranteed for
gence of the integrals, but we can apply it to the projeCteCépproximate expressions for self-energy.
functionC In the formal solution of the retarded propagator, the fac-
1, tors Gk and2 i alternate regularly. This fact can improve the
GrrGr*C=C, (6.9 convergence properties of some integrals.

. Now it is easy to write down the resummed Schwinger-
under the only requirement th@.(po,p) should satisfy as- Dyson series for the retarde@dvanceli propagator(with
sumptions(1) and (2) in the way a retarded function does any exact self-energy obtained by the perturbation expansion
and vanish rapidly enough @,—c to make the integral that satisfies our assumptionin terms of the corresponding
over Gg % (po)C..(po) convergent. propagator calculated at,=

Equation(6.4) is the equation of motion foGg. In the
Xo—oe limit, it reduces to the well-known equation f@r. R .
For the Keldysh component of the propagator, the equation QR(A),XO(DO'D)=f dPo:Px,(Po.Po1) Gra),=(Po1:P),
of motion is given by (6.10
Ggr '*Gx=Ggr—1*(hGr—hGA) =0, 6.6 \where
where we have ignored the terri¥ ). Owing to the pres- -
ence of the produdB, ** hG,, this equation cannot be veri- G (Do, P) = GRrea),=(Po1,P)
fied directly (the integrals diverge Instead(analogously to RO 1 i3 ey o (Po1,P) Greay (Po1sD)
the case of the produ@g* Ggl), one multiplies it from the (6.11)
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Starting from Eq.(6.11) one obtains the HTL-resummed gradient expansiofunder largeX, assumptionone obtains
[27,28 retarded(advanceyl component of the propagator familiar equations of motion for the Green functions of in-
without use of the gradient expansion. teracting fields[2,3,5,34. However, the advantage of the
Some more work is necessary to calculate the Keldyslpresented calculus will be observed in the properties of col-
component. Now, in addition to individual terms, the sumlision integrals, where one can expect considerable simplifi-

Gr »(Po.p) should also satisfy1) and (2), i.e., the imagi- cations and the possibility of evaluating contributions of

nary part of2 .. should be negative.

more complex diagrams. A more complete discussion of col-

However, there is a possibility that [By, is positive in  lision integrals is out of the scope of the present paper, and
some kinematical region. Then the resummed Schwingei/€ hope to publish it elsewhere.

Dyson equation for a retarded component can create the pole
in the upper semiplane. However, this case is very question-
able: one sums infinitely many retarded functigns., the
functions which vanish at<t') and obtains the function
which is not retardedi.e., nonzero at<t'). Such cases are
usually classified as pathology5,33. At this point one
should cautiously consider the use of the “physical” gauge
[46], in order to prevent eventual gauge artifacts.

Some indication that, in some caséﬁ,w(po,ﬁ) does sat-

D. Pinching singularities

The pinchlike contribution to the Keldysh component of
the resummed propagator is expressefl8s (we treat only
the scalar cage

GKp:iGR*(_E_fK,R+§K,A)*GA1 (6.13

isfy assumptiong1) and(2) comes from the HTL limit. In-  where we have introduced the short nOtatié—h(,R(A)

deed, at equilibrium, the HTL limit 0Gg ..(po,p) must = N(Po,®p)Zra) 2k rea) - o
satisfy(1) and(2), as it is easy to verify. As the properties of Similarly as in the. case of resummed contributions, we
density functions enter only through the thermal mass an§an perform convolution between alike componerR$R(or
the position of isolated poles, the same must be true of an§A)- Then one can integrate the terms containkyg and

distribution allowing the HTL approximation.

k,rR With respect topy,, and the terms containing, and

Owing to the fact that the Keldysh component of self- >«,a With respect tapg,. The result is intriguing:

energy does not satisfy the analyticity assumpti@sand
(2), we can only try to integrate expressiogh9 using ap-
proximate and numerical methods.

However, it is possible that i can be decomposed into
two pieces satisfying assumptiofly and(2) as retarded and
as advanced functions, respectiveli=—2x gt a-

For example, this happens in the case of one-loop self-
energy. Then Eq(6.9) becomes

Gk=0r*[N(po,wp) G +iZk Al* Ga—iGr*[N(po, wp) GR*
+iSk rI*Ga- (6.12

Owing to the fact that the functiongg; and G, are not sin-
gular in the pointpy=* w,, the terms containin@y* and
G, ' cancel mutually. As one of the remaining convolutions
includes factors of the same typ&R or AA), we are left
with a single convolution multiplication. This convolution
contains neither the advanced first factor nor the retarded
second factor; thus, in general, it cannot be worked out in a
simple way, and it will contain non-WTPF contributions.
However, it may be performed at least numerically.

The appearance of the non-WTPF contributions signals

R 1 :
GKp,XO(vap):_f dpoiPx,(Po.Pod) 5>
0

p 1~ (1)F2)+ 2| EpOl
1 1 &

NS ———
Kpgl—wS—Ziepm 2wp =1

X

j g e21X0(Po—Pod) — @~ 2iXg(Po—Awp)
P -
O im(2po—Por—Awp)

1

XE—:K,R(p01+i615)—.
Poi— w,23+ 21 €Poy

g e~ 21Xo(Po—Por) — @2iXo(Po—Awp)
+ -
f Poy i7(2Pg— Por— A wp)

- 1

XE—:K,A(DOl_ievp)—. .
Poi— w,23_2|€p01

(6.19

stepping out of the space of projected functions. Indeed, th&he first term in Eq(6.14) is a projected functiofWTPF)
calculation of the more complex diagrams, containing subthat becomes the usual pinchlike term in ¥g— oo limit. It
diagrams resummed intGyx , will not enjoy advantages of s this contribution to which the conclusiofig3] about the

the presented calculus.

cancellation of pinching singularities apply. However, the

Finally, we note here that the calculation starting with other terms are of non-WTPF nature; contrary to the case of
Egs.(6.7) and ending with Eqs(6.10—(6.12 cannot be per- the product of simple pole terms, the discontinuity along the
formed with the true(i.e., calculated, in some miraculous real axis appearing in the functiolzn) and =g r(a) NOW
way, to all orders %y, 2, andX,. Indeed, we have an- prevents the vanishing of these terms.
ticipated that the tru&y, %, and> , contain non-WTPF A full discussion on pinching singularities in the finite-
terms, and thus one cannot use instea@gt andG,* their  time-after-switching formulation requires more efforts and
restrictions to the subspace of projected functions. Using theve hope to publish it elsewhere.
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VII. MODIFICATIONS OF THE FEYNMAN RULES sume, for a moment, that at least one of the unspecified
propagatorsD, G, andS) related to the chosen vertex, say

theory with bosons and fermions, we discuss the changes gf”’ Is a retarded funct_lorDR. !n this case, one can inte-

Feynman rules that are due to the “finite time” assumption.gratii 0(();/ e.rﬂof’) close_ the integration _path from abo@”'”g

We further analyze the diagrams with respect to the questioh0 el clpsmg from beloyv IS Ol.JF of questignand

of energy nonconservation. Indeed, we find that this featur _oIIect t.h.e contributions from S|ngula_1r.|t|es. If there are no

appears together with the non-WTPF contributions. smgulannes[and we know that qond|t|on(;l) and (2) are
The calculations performed so far already contain all ofvaIId for bare propagatofsone just obtains the energy-

the modifications of the Feynman rules required by the finite CONSErvation conditiod(2;p;). The same is achieved with
he outgoing momenta and advanced components of the

t; assumption. In coordinate space, the only modification i§

that the bare propagatdrggs.(4.4) and(4.5)] are limited b bropagator With closing the inte_gration path from below._
0<x. and Ogyp tghug tﬂey( ar)e prc(Jje?t}ad functionsyln Now we are going to show that, indeed, one of these possi-
0 o " bilities is realized at each vertex.

energy-momentum space, the above change reflects in the L . -1 .
change of propagators, vertices, and the overall factor. Eaph individual denomma_torﬁ_{, Poi—ie) © (the lines are
Il oriented out can be easily integrated. To demonstrate

To transform o energy-momentum space, we choos is, we have to sum over the indices of the correspondin
some vertey, arrange the orientation so that all linebe- ’ AR . P 9
rtex. We rename the basis,j), i,j=1,2 into [ux,v],

come outgoing, and use the propagators represented by E(Y . _ Y =
(4.4), (4.5), and(4.6) (the p; momentum is joined to the line W 1Er€ &, V= 1 correspond td,j=2, andu,»=1 corre-

. : o : spond toi,j=1. Then we find the relations of the typee
Ih)e'|§)$0£§ r(lgeg)s attached tq are easily integrated with the assume a three-field vertex, but the proof extends easily to

any number of fields

In this section, in the framework of the generic field

ijwdx_efixj(zipiiie) = (7 1)
2 0 ] ' D[

o

1
E(DK_/J'DR_VDA)- (7.3

277<—Ei pi+ie

The sum over the indices in the chosen vert& D, G

After performing this integration, instead of the bare propagators of the outgoing lines; the factoffor the nega-
propagators we obtain the,— limits [Eq. (4.6)], which  tive coupling of the vertex to which the index-2 ends of the
are the familiar propagators of the usugl-¢ —«) theory.  propagators are attacheid
At the vertices thel usual energy-gonserviﬁ?@ipm) is sub- L
stituted byi(27)  “(—Zipoitie) . _

Under the momentum integrals there is a leftover factor at% 30 M P11 Gl = 7 [SRPRGRT (ScFASA)
the verticeg 5 (by subscriptA we indicate thaf 5 are verti-

ces with amputated legs X(Dk+pDa)Grt(Sk+ASp)
- X Dr(Gk+vGp)+ Sg(Dy + pD

e i X, (> NP, 7.2 R(Gk+vGp)+ Sr(Dk+pDa)

o X(Gy+ vGp)]- (7.4

where\ =+ depends on whether the corresponding momengypression(7.4) contains only terms including at least one
tum is outgoing of or incoming to the vertgx, andij, is  retarded propagatoBg, or Dg, or Gg. Thus one can inte-
running through the nonamputated lines. grate the terms separately and find that the factmpg;

The overall factor in the case of two-point functions is —ie) ! is effectively replaced bym8(Zpo;).
treated in a simple way: introduce a slow Wigner variable as As there is nothing special at this vertéthe indices
the average over the times of boundary vertices, and thg,p,» remain unspecified one may conclude that this is a
relative time[Eq. (3.1)]. Finally, one can Fourier transform general feature. Nevertheless, one should do it very cau-
over the relative time. There emerges an overall energytiously, step by step, while problems may appear at some
smearing factorPy (po,pg) for two-point functions and degree of complexity. Then, as seen in E¢5.10 and
similarly for n-point functions. In the case of-point func-  (5.13, we find a new element in addition to the energy de-
tions, the choice of variables is large and might not benominator (- po;+ poj+1—i€)*. One obtains the extra fac-
unique; namely, depending on the diagram calculated, ontor e~ Xo(Poj~Poj+177€) Wjith the help of this factor, even the
chooses the most appropriate set of variables. The overatontributions from the poles of the retarded component in the
factor takes care of uncertainty relations: the larger theupper semiplane will decay exponentially with the tidig
elapsed “time” X,, the smaller the energy smearing. However, the diagrams with resummed self-energy sub-

In the vertex factor the energy is not explicitly conserved.diagrams are particularly sensitive. In this case, one is
This energy nonconservation is, through the uncertainty restrongly advised to undertake an intermediate step: to Fou-
lations, related to the finiteness X§. In the limit of infinite  rier transform the two-point function with respect to the rela-
Xo, €nergy conservation is recovered. Here we want to argugve time, to investigate the analytic structure, and then to
that for some choice of propagators entering the vertex, thperform the multiplication of two-point functions. Owing to
energy is conserved explicitly. To see this conservation, ashe cuts inGg(a) and to the non-WTPF contributions @ ,
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it is likely that this is just the point after which we have to of the perturbation expansipiof the theory with switching

live without the advantages of projected functions. on the interaction in the remote past and the theory with
finite switching-on time, enables one to rederive the results
VIII. SUMMARY such as cancellation of pinching singularities, cancellation of

) o ) ) _collinear and infrared singularities, HTL resummation, etc.

We consider out of equilibrium thermal field theories with Previously, these results were considered applicable only to
switching on the interaction occurring at finite timg<0).  |owest-order contributions in the gradient expansion.
We study Wigner transform@lso in the relative time,) of The question arises whether higher-order contributions
two-point functions. To develop a calculation scheme baseg|so remain within the space of projected functions satisfying
on first principles, we define a very useful concept of pro-assumptiongl) and(2). The answer depends on the eventual
jected functions: a two-point function with the property that positivity of ImS 5, explicitly time-dependent perturbation,
itis zero forx,<t; and foryo<t;; for tj<xo andtj<yo,the  and the appearance of the one-loop approximated or re-
function depends only or,—y,. We find that many impor-  symmed Keldysh component. The positiveXm can create
tant functions are of this type: bare propagators, one-looghe pole in the upper semiplane in the resummed Schwinger-
self-energies, resummed Schwinger-Dyson series with ongyyson series. However, this case is very questionable: one
loop self-energies for the case of retarded and advancegims infinitely many retarded function§.e., functions
components of the propagator, etc. The properties of thgnich vanish fort<t’) and obtains the function which is not
Wigner transforms in thio—c limit are particularly simple  retarded(.e., nonzero at<t’). Such cases are usually clas-
if they_satisfy these analyticity assumptiofis) The function  gjfied as patholog}33,45. The way of breaking the scheme
of p is analytic above the real axifor a retarded compo- explicitly is to introduce direct time dependence through
nent, but below it for an advanced compone(®) The func-  time-dependent perturbation, or through the background field
tion goes to zero afp,| approaches infinity in the upper which depends directly on timas(x,t)= ¢(t) + #{x.t). In
(lowen) semiplane. We find that these assumptions are Very;q .y “one obtains the two-point functions which are not
natural at low orders of the perturbation expansion. The Conbrojecteél functions. A natural step out of the space of pro-
volution product of projected functions is remarkably simple, i .t functions occurs in the calculation of the resummed

much s!mpler than what one would expect from the gradien eldysh component of the propagator. The appearance of the
exg_a;lnsus)nh . D . ith b N on-WTPT contributions signals that the calculation of the
€ SChwinger-Lyson Series, wi are propagators ang, , .o complex diagrams containing subdiagrams resummed

self-energies being projected functions satisfying assump; ; .
! . : . nto Gx will not enjoy advantages of the presented calculus.
tions (1) and (2), is resummed in closed form without the Gk 10y 9 P

need for the gradient expansion. The calculation of the re-
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