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Out of equilibrium thermal field theories: Finite time after switching on the interaction
and Wigner transforms of projected functions

I. Dadić*
Ruder Bosˇković Institute, Zagreb, Croatia

and Fakultät für Physik, Universita¨t Bielefeld, Bielefeld, Germany
~Received 11 February 2000; published 21 December 2000!

We study out of equilibrium thermal field theories with switching on the interaction occurring at finite time
using the Wigner transforms of two-point functions. For two-point functions we define the concept of a
projected function: it is zero if any of the times refers to the time before switching on the interaction; otherwise
it depends only on the relative coordinates. This definition includes bare propagators, one-loop self-energies,
etc. For the infinite-average-time limit of the Wigner transforms of projected functions we define the analyt-
icity assumptions:~1! The function of energy is analytic above~below! the real axis.~2! The function goes to
zero as the absolute value of energy approaches infinity in the upper~lower! semiplane. Without use of the
gradient expansion, we obtain the convolution product of projected functions. We sum the Schwinger-Dyson
series in closed form. In the calculation of the Keldysh component~both resummed and single self-energy
insertion approximation! contributions appear which are not the Fourier transforms of projected functions,
signaling the limitations of the method. In the Feynman diagrams there is no explicit energy conservation at
vertices; there is an overall energy-smearing factor taking care of the uncertainty relations. The relation
between the theories with the Keldysh time path and with the finite time path enables one to rederive the
results, such as the cancellation of pinching, collinear, and infrared singularities, hard thermal loop resumma-
tion, etc.

DOI: 10.1103/PhysRevD.63.025011 PACS number~s!: 11.10.Wx, 05.70.Ln, 11.15.Bt, 12.38.Mh
o
h
ha
llin

l-
s
t t
in
e

i
d
s
it

ns
r

ly
o
ng
ax
c

he
ec
pa

r
en-
e
th-

we
rm

e

If
c-
ns

te
n

lly
I. INTRODUCTION

Out of equilibrium thermal field theory@1,2# has recently
attracted considerable interest@3–15#. In many applications
one considers the properties of the Green functions of alm
equilibrated systems, at infinite time after switching on t
interaction. A recent approach based on first principles
been successful in demonstrating the cancellation of co
ear@16,17# and pinching singularities@18–23#, the extension
of the hard thermal loop~HTL! approximation@24–26# to
out of equilibrium@27,28#, and applications to heavy-ion co
lisions @29–31#. A weak point of the approach was that mo
of these results were obtained under the assumption tha
variation of slow Wigner variables could be ignored or,
other words, that these results were valid only in the low
order of the gradient expansion@32–34#.

For some problems, e.g., heavy-ion collisions, both lim
tations are undesired. One would like to consider large
viations from equilibrium. One cannot wait infinitely long a
these systems go apart after a very short time, probably w
out reaching the stage of equilibrium. In nuclear collisio
short-time-scale features have been studied in a numbe
papers@35– 40#.

In the theories with switching on the interaction infinite
long before the time of interest, one tries to get some inf
mation by extrapolation to early times. However, in doi
so, this information is either deformed or lost. Indeed, rel
ation phenomena include many processes that are expe
to terminate as one goes sufficiently far from t
switching-on time of the interaction. Thus one can exp
that the full theory also describes early times. In many
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pers, problems with a finite switching-on time@9#, especially
those related to the inflatory phase of the Universe~see Ref.
@41# for further references!, have been studied by Wigne
transforming in relative distance and studying the dep
dence on relative time directly@42#. In such an approach, on
relies heavily on differential equations and numerical me
ods.

In an attempt to remove the weak points in both cases,
suggest the application of the method of Wigner transfo
~but now also in relative time! to the case of switching on th
interaction at finite time.The time-integration path C~see
Fig. 1! is now closing the part of the real axis betweent i ~the
switching-on time! andt f ~the switching-off time!; in the rest
of the paper the switching-off time is pushed to infinity.
we push the switching-on time to minus infinity, the conne
tion to the Keldysh integration path is established. It tur
out that this connection is highly nontrivial.

To understand the limitations coming from the fini
switching-on time, we start with a generic two-point functio
G(x,y). The quantitiesx andy are four-vector variables with
the time components in the ranget i,x0 , y0,` ~heret i is
the time at which we switch on the interaction; it is usua
set to 2`, but we set it tot i50). We define the Wigner
variabless ~relative space-time, relative variable! andX ~av-
erage space-time, slow variable! as usual:

X5
x1y

2
, s5x2y,

~1.1!

G~x,y!5GS X1
s

2
,X2

s

2D .

The lower limit onx0 , y0 implies the following conditions
on X0 ands0 : 0,X0 , 22X0,s0,2X0. To define the pro-
©2000 The American Physical Society11-1
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I. DADIĆ PHYSICAL REVIEW D 63 025011
jected function~truncated, ‘‘mutilated function’’@43#, PF in
further text!, we add two additional properties: the functio
does not change withXW ~homogeneity assumption!, it is a
function of (s0 ,sW) within the interval22X0,s0,2X0 and
is identical to zero outside the interval:

FS X1
s

2
,X2

s

2D5Q~X0!Q~2X02s0!Q~2X01s0!F̄~s0 ,sW !,

~1.2!

F̄~s0 ,sW !5 lim
X0→`

FS X1
s

2
,X2

s

2D .

Analogously, the Wigner transform of the projected fun
tion ~WTPF! is obtained from the Wigner transform of th
function defined on the infinite carrier ofs0 (2`,s0,`)
with the help of the projection operatorsPX0

, which are the

Fourier transforms of the above givenQ ’s:

FX0
~p0 ,pW !5E

2`

`

dp08PX0
~p0 ,p08!F`~p08 ,pW !,

PX0
~p0 ,p08!5

1

p
Q~X0!

sin@2X0~p02p08!#

p02p08
,

lim
X0→`

PX0
~p0 ,p08!5d~p02p08!, ~1.3!

where the subscript ‘‘̀ ,’’ as it appears inF` in ~1.3! and in
other expressions of this paper, is the short notation for
‘‘lim X0→` . ’’ As an illustration, the Wigner transform of th
convolution product of two-point functions

C5A* B⇔C~x,y!5E dzA~x,z!B~z,y! ~1.4!

is given by the gradient expansion~note that we have as
sumed the homogeneity in space coordinates, which
cludes any dependence onXW !:

CX0
~p0 ,pW !5e2 iLAX0

~p0 ,pW !BX0
~p0 ,pW !,

L5
1

2
~]X0

A ]p0

B 2]p0

A ]X0

B !. ~1.5!

FIG. 1. Finite switching-on time integration path.
02501
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This general expression should be contrasted with our re
valid for A andB being projected functions~see Sec. V!:

CX0
~p0 ,pW !5E dp01dp02PX0S p0 ,

p011p02

2 D
3

1

2p

ie2 iX0(p012p021 i e)

p012p021 i e

3A`~p01,pW !B`~p02,pW !. ~1.6!

The analytic properties of the WTPF in theX0→` limit
as a function of complex energy are very important for fu
ther analysis. We define the following properties:~1! the
function ofp0 is analytic above~below! the real axis,~2! the
function goes to zero asup0u approaches infinity in the uppe
~lower! semiplane. The choice above~below! and upper
~lower! refers toR ~A! components~note here that we do no
require such properties for the Keldysh components!. It is
easy to recognize that the properties~1! and ~2! are just the
definition of the retarded~advanced! function. However, it is
nontrivial, and not always true, that the functions with theR
~A! index satisfy them.

Under the assumption thatA or B satisfies~1! and~2! (A
as advanced orB as retarded! Eq. ~1.6! can be integrated
even further. We obtain

CX0
~p0 ,pW !5E dp08PX0

~p0 ,p08!A`~p08 ,pW !B`~p08 ,pW !.

~1.7!

The convolution product of two two-point functions whic
are WTPF’s and satisfy~1! and ~2! is also a WTPF. This
product is then expressed through the projection oper
acting on a simple product of two WTPF’s given atX0

A

5X0
B5`. In theX0→` limit the convolution product of two

WTPF’s which satisfy~1! and~2! is equal to the lowest-orde
contribution in the gradient expansion. The result mak
sense since movingX0→` is equivalent tot i→2` at fixed
X0 in the standard approach.

We find that some quantities, obtained at low orders in
perturbative expansion, e.g., bare propagators, one-loop
energies, belong to WTPF’s. This enables us to sum
Schwinger-Dyson series with the propagators and s
energies as both these quantities are WTPF. Under the
ditions ~1! and ~2!, the retarded, advanced, and Keldy
components at finiteX0 are obtained by a simple actio
~smearing! of the projection operator onto the correspondi
quantities obtained atX05`, and the convolution product is
a simple multiplication:

GR,X0
~p0 ,pW !5E dp01PX0

~p0 ,p01!GR`~p01,pW !,

GR,`~p01,pW !5
GR,`~p01,pW !

12 iSR,`~p01,pW !GR,`~p01,pW !
,

~1.8!
1-2
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OUT OF EQUILIBRIUM THERMAL FIELD THEORIES: . . . PHYSICAL REVIEW D 63 025011
and similarly for the advanced component. The calculat
of the Keldysh component requires a more elaborate tr
ment: one reduces the multiplication to a double~a single in
some cases! convolution product; the result contains term
that are non-WTPF terms. Also, the one-loop contribution
the Keldysh component is corrected by non-WTPF terms

Now, it is GR,`(p0 ,pW ) as given in Eq.~1.8! ~and similar
expressions for the advanced and Keldysh components
the single self-energy insertion approximation toGR(A,K),`)
to which previous results on the cancellation of pinchi
singularities@18,19,21,23# and the HTL resummation@27,28#
~and also on the cancellation of collinear@16,17# and infrared
singularities if the properties~1! and~2! hold at the two-loop
level! apply.

From our study one can deduce a general rearrangem
of the perturbation expansion at the non-Keldysh integra
path: the contributions look like the zeroth order of the g
dient expansion with the slow coordinate (X0) pushed to
1`, but the use of the PF manifests itself as the appeara
of the (( jq0 j1 i e)21 factor instead of2pd(( jq0 j ) at each
vertex, and as an overall projection~smearing! operator in-
stead of the exact conservation of energy.

Our study suggests that the results obtained by using
Keldysh integration path (t i→2`) could be related to the
results of our approach (t i finite!. This relation is possible a
low orders of the perturbation expansion, i.e., as long as
expressions involved are the projected functions not brea
assumptions~1! and ~2!. Technically, the amplitudes are re
lated by ~1.3!, where ‘‘FX0

’’ is the contribution in our ap-

proach (t i finite! and ‘‘F`’’ is substituted by the correspond
ing lowest-order contribution in the gradient expansion in
theories witht i→2`.

Finally, we note that our method is helpful in problem
related to the time evolution of the system. Additional pro
lems related to the gradient expansion in space compon
appearing together with space inhomogeneity, will not b
efit from our method.

The paper is organized as follows. In Sec. II we give
general setup of out of equilibrium thermal field theory.
Sec. III we define finite-time Wigner transforms, define t
projection operators, and introduce the notion of projec
functions. We define analyticity assumptions~1! and ~2!. In
Sec. IV we define a few important examples of projec
functions, namely, bare propagators and one-loop s
energies, and find that they satisfy the analyticity assum
tions ~1! and~2!. In Sec. V we analyze the properties of th
product of two andn two-point functions. In Sec. VI thes
properties are used to study the product of two pole con
butions, and to discuss the reduction of the inverse b
propagator to the space of projected functions and the e
tions of motion. We sum the Schwinger-Dyson series
retarded, advanced, and Keldysh components of the pr
gator. We discuss the appearance of pinching singularitie
our scheme. Section VII is devoted to the modifications
Feynman rules in coordinate and momentum space. It is
dicated that, in the absence of breakdown of assumptions~1!
and~2!, all energy denominators appearing at vertices can
02501
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replaced by delta functions. Section VIII is a summary of t
results and ideas described in the paper.

II. OUT OF EQUILIBRIUM SETUP

We start by assuming that the system has been prepar
some initial timet i50 ~to avoid inessential complications
we assume that the zero-temperature renormalization ha
ready been performed!. At t i the interaction is switched on
and at timet f it is switched off ~we shall take the limitt f
→`). For t i,t1 ,t2,t f , the system evolves under the ev
lution operator@8#

U~ t2 ,t1!5TcFexpS i E
c
d4x8LI~x8! D G , ~2.1!

wherec is the integration contour connectingt1 andt2 in the
complex time plane andTc is the contour ordering operato
We provideTc with an extra property: for all times not be
longing to the contour it gives zero.

The Heisenberg field operatorf(x) is obtained from the
free fieldf in(x) in the interaction picture as

f~x!5U~ t i ,t !f in~x!U~ t,t i !, ~2.2!

f~x!5TCFf in~x!expS i E
C
d4x8LI~x8! D G , ~2.3!

where all fields on the right-hand side are in the interact
picture, andC is the integration contour of Fig. 1~with the
switching-off time pushed to infinity,t f→1`). In the
Heisenberg picture, the average values of the operators
obtained as

^O~ t !&5Tr rO~ t !, ~2.4!

wherer is the density operator admitting the Wick decom
position. Especially, we define the two-point Green functi
as

G(C)~x,x8!52 i ^TCf~x!f~x8!&. ~2.5!

With the help of~2.1! it can be written as

G(C)~x,x8!52 i K TCS expF i E
C
d4x9LI~x9!G

3f in~x!f in~x8! D L . ~2.6!

In Eq. ~2.6! it is implicitly assumed that the interactio
Lagrangian does not depend on time explicitly. Indeed,
rect time dependence through time-dependent perturba
or through the background field which depends directly
time, c(x,t)5f(t)1c̄(x,t), would break our scheme
through the appearance of two-point functions which are
projected functions.
1-3
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I. DADIĆ PHYSICAL REVIEW D 63 025011
We assume the single-particle density operator to be
tionary with respect to the free HamiltonianH05( jH j ~for
an alternative choice of the initial density, see Ref.@44#!:

r5(
n

ucn&pn^cnu5
1

Z
expS 2(

j
b jH j D , ~2.7!

where the ‘‘temperature’’ function@9# b j ~the ‘‘tempera-
ture’’ of the j th degree of freedom! is adopted to obtain the
given initial-state particle distribution. Now, one has

(
j

b jH j5E d4pb~p0!p0Q~p0!d~p0
22pW 22m2!ap

1ap ,

~2.8!

and obtains the distribution functionf (p0) as a function of
b(p0),

f b~p0!5
1

p0
Tr p0r5

1

expb~p0!p071
, ~2.9!

or the inverse relation

b f~p0!5

logS 1

f ~p0!
61D

p0
. ~2.10!

The free fields are expanded in creation and annihilation
erators as

f~x!5E d3p

~2p!32vp
~ape2 ipx1ap

1eipx!, ~2.11!

with p05vp5(pW 21m2)1/2:

^ap
1ap8&5~2p!32vpf ~vp!d~pW 2pW 8!,

^apap8
1 &5~2p!32vp„16 f ~vp!…d~pW 2pW 8!, ~2.12!

where f (vp) is the given initial distribution.
For completeness, in Eqs.~2.8!–~2.12! we include free

fermions~lower case! in addition to free bosons~upper case!.
In the case of spin-1/2, spin-1, or higher-spin particles, ad
tional spinor or tensor indices must appear. For simplic
we do not show them explicitly.

The noninteracting contour Green function is given as

Gin
(C)~x,x8!52 i ^TCf in~x!f in~x8!&. ~2.13!

Depending on whether the timesx0 and x08 belong to the
upper~‘‘1’’ ! or lower ~‘‘2’’ ! part of the pathC, the function
Gin

(C)(x,x8) splits into the componentsGm,n,in(x,x8), m,n
51,2. For the timesx0,0 or x08,0, the Green function is
equal to zero owing to our definition ofTC .

III. PROJECTED FUNCTIONS

Let us start with the two-point functionG(x,y). The
quantitiesx and y are four-vector variables with time com
ponents in the ranget i,x0 , y0,` ~here t i is the time at
02501
a-

p-

i-
,

which we switch on the interaction; it is usually set to2`,
but we set it tot i50). We define the Wigner variables a
usual:

X5
x1y

2
, s5x2y,

G~x,y!5GS X1
s

2
,X2

s

2D . ~3.1!

The lower limit on x0 , y0 implies 0,X0 , 22X0,s0
,2X0. The values of the functionG for the (X,s) not satis-
fying these conditions are physically irrelevant. Our defi
ton of time ordering operator~see Sec. II! sets them to zero
so that we can rewrite Eq.~3.1! as

G~x,y!5Q~X0!Q~2X02s0!Q~2X01s0!ḠS X1
s

2
,X2

s

2D .

~3.2!

Note here that the functionḠ defined by Eq.~3.2! in general
depends onX0. At the points (X,s) which do not belong to
the carrier of projection operator, the values ofḠ are arbi-
trary. This freedom is used to define projected functions. T
two-point function can be expressed in terms of the Wig
transform~i.e., Fourier transform with respect tos0 ,si):

GS X1
s

2
,X2

s

2D5~2p!24E d4pe2 i (p0s02pW sW)G~p0 ,pW ;X!.

~3.3!

Here

G~p0 ,pW ;X!5E
22X0

2X0
ds0E d3sei (p0s02pW sW)GS X1

s

2
,X2

s

2D
5E

2`

` E ds0E d3sei (p0s02pW sW)Q~X0!

3Q~2X02s0!Q~2X01s0!

3ḠS X1
s

2
,X2

s

2D . ~3.4!

We adopt a simplifying assumption of the homogeneity
space coordinates. This assumption excludes any depend
on XW and we drop it as an argument of the function.

The product ofQ functions is a projection operator with
simple Fourier transform

PX0
~p0 ,p08!5

1

2p
Q~X0!E

22X0

2X0
ds0eis0(p02p08)

5
1

p
Q~X0!

sin@2X0~p02p08!#

p02p08
, ~3.5!

and
1-4
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e2 is0p08Q~X0!Q~2X01s0!Q~2X02s0!

5E dp0e2 is0p0PX0
~p0 ,p08!. ~3.6!

It is important to note that

lim
X0→`

PX0
~p0 ,p08!5 lim

X0→`

1

p

sin@2X0~p02p08!#

p02p08
5d~p02p08!.

~3.7!

There is a hierarchy of thePX0
projectors:

PX0,M
~p0 ,p09!5E dp08PX0

~p0 ,p08!PX
08
~p08 ,p09!,

X0,M5min~X0 ,X08!. ~3.8!

In this paper, the projected function is a very special tw
point function F(x,y)5F(X1s/2,X2s/2): it does not de-
pend onXW , it is a function of (s0 ,sW) within the interval
22X0,s0,2X0 and identical to zero outside:

FS X1
s

2
,X2

s

2D5Q~X0!Q~2X02s0!Q~2X01s0!F̄~s0 ,sW !.

~3.9!

FunctionF̄ is related to the limitX0→`:

lim
X0→`

FS X1
s

2
,X2

s

2D5F̄~s0 ,sW !. ~3.10!

An important property of the projected function is that t
whole X0 dependence is introduced by the projection ope
tor

FX0
~p0 ,pW !5@PX0

F`#~p0 ,pW !

5E
2`

`

dp08PX0
~p0 ,p08!F`~p08 ,pW !. ~3.11!

Important examples of projected functions are retarded,
vanced, and Keldysh components of free propagators.
ther examples will emerge in the next sections.

For further analysis, the analytic properties of theX0
→` limit of the WTPF as a function of complex energy a
very important. We define the following properties:~1! the
function ofp0 is analytic above~below! the real axis,~2! the
function goes to zero asupou approaches infinity in the uppe
~lower! semiplane. The choice above~below! and upper
~lower! refers toR ~A! components.

One should note that the properties of the projected fu
tions are tightly related to the abrupt cutoff att i . Any
smoothing of the cutoff would also change these propert
02501
-

-

d-
r-

c-

s.

IV. EXAMPLES OF PROJECTED FUNCTIONS

A. Poles in the energy plane

We start with the simplest projected functions: simp
poles in the energy plane. The pole contribution to the Gr
function is

G`,pole~p0!5
a

p02 p̄0

. ~4.1!

For Im p̄0,0, it satisfies assumptions~1! and ~2! as a re-
tarded component, but not as an advanced component~and
for Im p̄0.0, just the opposite!.

It can be projected to finiteX0:

GX0 ,pole~p0!5a
12e22iX0(p02 p̄0)sgn(Im p̄0)

p02 p̄0

. ~4.2!

For any finiteX0, the functionGX0 ,pole(p0) is regular atp̄0.

For large X0, Eq. ~4.2! exhibits the exponential deca
e22X0uIm p̄0u independently of the sign of Imp̄0.

It can be transformed back to the variables (X0 ,s0):

GpoleS X01
s0

2
,X02

s0

2 D5 iae2 i p̄0s0
„Q~s0 sgn~ Im p̄0!!

2Q~2s0 sgn~ Im p̄0!22X0!….

~4.3!

Evidently, this contribution is a projected function. F
Im p̄0,0, it is different from zero only at 0,s0,2X0; i.e.,
it is a retarded function, and for Imp̄0.0, it is an advanced
function.

B. Propagator

We start with Eqs.~2.11!, ~2.12!, and ~2.13!. The transi-
tion to theR/A basis is straightforward. Careful calculatio
gives for the retarded component (0,x0 , 0,y0)

GR~x,y!52G1,11G1,25E d4p
2 i

p22m212i ep0
e2 ip(x2y),

~4.4!

and for the Keldysh component

GK~x,y!5G1,11G2,2

5E d4p2pd~p22m2!„162 f ~vp!…e2 ip(x2y).

~4.5!

As our GR and GK depend only ons5x2y and vanish at
times before switching on the interaction, they are projec
functions. The Wigner transform over the infinitex02y0 in-
terval gives as usual@4,12,15# @note, however, that we avoid
@23# using the nonanalytic functione(p0) in the expression
for GK,`#
1-5
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I. DADIĆ PHYSICAL REVIEW D 63 025011
GR,`~p!5
2 i

p22m212i ep0
,

GK,`~p!52@162 f ~vp!#vp
21@p0GR,`~p!2p0GA,`~p!#.

~4.6!

The e parameter, which regulates these expressions, sh
be kept uniformly finite during the calculations, and the lim
e→0 should be taken last of all@8#. This especially means
that limX0→`exp(2X0e)50 and the terms containing this fac

tor vanish in theX0→` limit.
The finite Wigner transform @x0.0,y0.0,X05(x0

1y0)/2# is obtained by smearing

GR,X0
~p!5@PX0

GR,`#~p!52G* A,X0
~p!,

~4.7!
GK,X0

~p!5@PX0
GK,`#~p!.

It is easy to verify that neither the spinor nor the tensor fac
changes our conclusion~4.7!. One can even integrate expre
sion ~4.7!. For a scalar particle, one obtains

GR,X0

0 ~p!5
2 i

p0
22pW 22m212i ep0

F12S cos 2X0vp

2 i
p0

vp
sin 2X0vpDe2iX0(p01 i e)G

5GR,`
0 ~p!F12S cos 2X0vp2 i

p0

vp
sin 2X0vpD

3e2iX0(p01 i e)G . ~4.8!

It is important to observe that, at any finiteX0, the above
expression is not singular atp056vp .

Evidently, for X0→`, the first term inGR,X0
(p) gives

GR,` , while the other two ‘‘oscillate out.’’ For the Keldysh
component, one needs

~p0GR
0 !X0

~p!5p0GR,`
0 ~p!F12S cos 2X0vp

2 i
vp

p0
sin 2X0vpDe2iX0(p01 i e)G . ~4.9!

Then one can use the analogy to~4.6!:

GK,X0

0 ~p!52@162 f ~vp!#vp
21@~p0GR

0 !X0
~p!

2~p0GA
0 !X0

~p!#. ~4.10!

For a spinor particle, one obtains

GR,X0

1/2 ~p!5 iGR,`
0 ~p!g0e2iX0(p01 i e)S vp2

p0
2

vp
D sin 2X0vp

1GR,X0

o ~p!~gmpm1m!. ~4.11!
02501
ld

r

Similarly, for a vector particle~for simplicity, we choose the
Feynman gauge!:

Gm,n,R,X0

1 ~p!5gm,nGR,X0

0 ~p!. ~4.12!

We note here that the explicit expressions~4.8!–~4.12! will
not be necessary for further discussion.

C. One-loop self-energy

To discuss the amputated one-loop self-energy, we s
with ~the underlying theory includes bosons and fermio
with three-point vertices, but spin and internal symmetry
dices are suppressed for simplicity of presentation!

S~x,y!}g2S~x,y!D~x,y!

}g2E d4pd4p8e2 ipsPX0
~p0 ,p08!S`~p08 ,pW !

3E d4qd4q8e2 iqsPX0
~q0 ,q08!D`~q08 ,qW !.

~4.13!

The Wigner transform~with respect tos5x2y! is

SX0
~p01,pW 1!}g2E

22X0

2X0
ds0E dp0d3pdq0

3e2 i (p01q0)s0Q~2X02s0!Q~2X01s0!

3S`~p08 ,pW !D`~q08 ,pW 12pW !

}g2E dp08d
3pdq08PX0

~p01,p081q08!

3S`~p08 ,pW !D`~q08 ,pW 12pW !, ~4.14!

where as an intermediary step we have used the repres
tion of the bare propagators~4.7! and the representation o
the projectors~3.5! and~3.6!. Finally, one reads Eq.~4.14! in
the R/A basis@SR(A)52(S1,11S2,1(1,2)), SK5S1,11S2,2],
as

SR(A),X0
~p!5@PX0

SR(A),`#~p!, SK,X0
~p!5@PX0

SK,`#~p!.
~4.15!

To calculateSR,` andSK,` we start with Eqs.~2.23!–~2.25!
in @23#. After taking into account that the product of th
retarded with the advanced function, with the same ti
variables, vanishes, one obtains

SR,`~q!5
ig2

2 E d4k

~2p!4@h~k0 ,vk!1h~q02k0 ,vq2k!#

3DR,`~k!SR,`~q2k!F, ~4.16!

where D and S are bare scalar propagators,h(k0 ,vk)
52k0vk

21@162 f (vp)#, and the factor F

5F(k0 ,ukW u,q0 ,uqW u,kWqW , . . . ) includes the information abou
spin and internal degrees of freedom (F51 if all particles
1-6
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are scalars!. Now, to verify that the one-loop self-energ
SR,` satisfies assumptions~1! and~2!, one observes that th
vacuum contribution satisfies them~for exceptions, see, e.g
Refs.@33,45#!, while the contributions toSR,` from various
k0 points are linear and additive in distribution functions.

For finite e, this contribution possesses singularities on
below the real axis in the complexq0 plane, and vanishes a
uq0u→` in the upper semiplane. However, there is no gu
antee that the imaginary part ofSR,` is negative.

Using the same method one calculates the Keldysh c
ponent. Although assumptions~1! and ~2! are not imposed
on SK , one can decompose this component into two pie
SK52SK,R1SK.A :

SK,R(A),`~q!57
ig2

2 E d4k

~2p!4@11h~k0 ,vk!h~q0

2k0 ,vq2k!#DR(A),`~k!SR(A),`~q2k!F,

~4.17!

whereSK,R(A) satisfies assumptions~1! and ~2! in the way
the retarded~advanced! function does. General analytic prop
erties of the expressions of the type~4.16! and ~4.17! are
well known: there is a discontinuity~cut! along the real axis,
starting at thresholds for real processes and extendin
6`.

V. CONVOLUTION PRODUCT OF TWO TWO-POINT
FUNCTIONS

Let us now consider the convolution product of tw
Green functions:

C5A* B⇔C~x,y!5E dzA~x,z!B~z,y!. ~5.1!

In terms of Wigner transforms

C~p0 ,pW ;X!5E
22X0

2X0
ds0E d3sE d4zei (p0s02pW sW)

1

~2p!4

3E d4p1e2 i (p01s012pW 1sW1)A~p01,pW 1 ;X1!
1

~2p!4

3E d4p2e2 i (p02s022pW 2sW2)B~p02,pW 2 ;X2!,

X15X1
s2

2
, X25X2

s1

2
, s15x2z, s25z2y.

~5.2!

The assumed translational invariance helps us easily i
grate the space components of momenta and coordinate
do so, we substituted3sWd3zW by d3sW1d3sW2 ~JacobianJ51)

sW5sW11sW2 , zW5
2sW11sW2

2
1XW . ~5.3!
02501
-

-

s

to

e-
To

The momenta should be equal (pW 5pW 15pW 2) and one obtains
~note that the dependence onX’s is reduced to the depen
dence onX0’s; further in the text it is indicated as an index!,

CX0
~p0 ,pW !5

1

~2p!2E
22X0

2X0
ds0E dz0E dp01E dp02

3ei (p0s02p01s012p02s02)AX01
~p01,pW !BX02

~p02,pW !.

~5.4!

For energy integrals, we proceed in a somewhat differ
way. We shrink our choice of the functionsA(x,z) and
B(z,y) to the projected functions. Then we can use the c
nection to the Wigner transforms on the infinite carrier:

CX0
~p0 ,pW !5

1

~2p!2E
22X0

2X0
ds0E dz0E dp01E dp02

3ei (p0s02p01s012p02s02)E dp018 PX01
~p018 ,p01!

3A`~p018 ,pW !E dp028 PX02
~p028 ,p02!B`~p028 ,pW !.

~5.5!

The integrationdp01dp02 is easily performed with the help
of Eq. ~3.6! and one obtains

CX0
~p0 ,pW !5

1

~2p!2E
22X0

2X0
ds0E dz0E dp01E dp02

3ei (p0s02p01s012p02s02)Q~2X011s01!

3Q~2X012s01!Q~2X021s02!Q~2X022s02!

3A`~p01,pW !B`~p02,pW !. ~5.6!

The product ofQ functions is transformed intoQ(2X0
1s0)Q(2X02s0)Q(z0). Then

CX0
~p0 ,pW !5E E dp01dp02d~p0 ,p01,p02!

3A`~p01,pW !B`~p02,pW !. ~5.7!

Here

d~p0 ,p01,p02!5
1

~2p!2E
22X0

2X0
ds0E

0

`

dz0ei (p0s02p01s012p02s02)

5
1

~2p!2E
22X0

2X0
ds0E

0

`

dz0

3ei [s0(p02 p011p02/2)1(z02X0)(p012p021 i e)]

5PX0S p0 ,
p011p02

2 D 1

2p

i

p012p021 i e

3e2 iX0(p012p021 i e), ~5.8!
1-7
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where we have used

E
0

`

dz0eiza5
i

a1 i e
. ~5.9!

We can write the final expression as

CX0
~p0 ,pW !5E dp01dp02PX0S p0 ,

p011p02

2 D
3

1

2p

ie2 iX0(p012p021 i e)

p012p021 i e

3A`~p01,pW !B`~p02,pW !. ~5.10!

Expression~5.10! is the key for finite-time thermal field
theory.

If A is an operator satisfying assumptions~1! and ~2! for
advanced components, we can integrate expression~5.10!
even further. After closing thep01 integration contour in the
lower semiplane, one obtains@if B is an operator satisfying
~1! and ~2! for retarded components, one can achieve
same result by closing thep02 integration contour in the up
per semiplane#

CX0
~p0 ,pW !5E dp01PX0

~p0 ,p01!A`~p01,pW !B`~p01,pW !.

~5.11!

This is an extraordinary result: the convolution product
two WTPF’s is a WTPF under conditions~1! and ~2!.

As expected, in theX05` limit, Eq. ~5.11! becomes a
simple product

lim
X0→`

CX0
~p0 ,pW !5A`~p0 ,pW !B`~p0 ,pW !. ~5.12!

At finite X0, Eq. ~5.11! exhibits a smearing of energy~as
much as it is necessary to preserve the uncertainty relatio!.

Convolution product of n projected functions

The product ofn two-point functions is obtained by re
peating the above procedure:

CX0
~p0 ,pW !5E )

j 51

n21

~dp0,j !dp0,nPX0
„p0 ,~p0,11p0,n!/2…

3 )
j 51

n21 S Aj ,`~p0,j ,pW !
1

2p

i

p0,j2p0,j 111 i e D
3e2 iX0†p0,12p0,n1 i (n21)e‡An,`~p0,n ,pW !.

~5.13!

For the intermediate products in Eq.~5.13! to hold we must
require that at leastn21 of the functions in the produc
satisfy assumptions~1! and ~2!. Furthermore, the order o
these functions is important: the retarded functions should
on the right, the advanced on the left, and the function tha
02501
e

f

s

e
is

neither advanced nor retarded in the middle. However, thi
not the order in which the components appear in
Schwinger-Dyson equation.

If the above requirement is fulfilled, one obtains~indexR
for the retarded component, a similar expression for the
vanced component!

I j~p0,j 21 ,p0,j 11 ,pW !5E dp0,j

1

2p

i

p0,j 212p0,j1 i e

3AR, j ,`~p0,j ,pW !
1

2p

i

p0,j2p0,j 111 i e

5AR, j ,`~p0,j 21 ,pW !
1

2p

3
i

p0,j 212p0,j 111 i e
. ~5.14!

Then one finds

CX0
~p0 ,pW !5E dp0,1PX0

~p0 ,p0,1!)
j 51

n

Aj ,`~p0,1,pW !.

~5.15!

VI. EXAMPLES OF CONVOLUTION PRODUCTS

A. Convolution products of pole contributions

We assume two pole contributions as shown in Eq.~4.1!:
A`,pole,i5ai /(p02 p̄0,i), i 51,2. The productC5A1* A2 is
simple in the cases in which both contributions are retar
functions, or both are advanced, orA1 is an advanced andA2
a retarded function. Then one can simply use Eq.~5.11! to
obtain

CX0
~p0!5E dp01PX0

~p0 ,p01!
a1

p02 p̄0,1

a2

p02 p̄0,2

.

~6.1!

The case in whichA1 is a retarded andA2 an advanced
function ~i.e., Imp̄01,0, Im p̄02.0) requires additional
care. After substituting them into Eq.~5.10!, we choose new
variablesP05(p011p02)/2 andD05p012p02, and integrate
over D0 to obtain

CX0
~p0!5E dP0PX0

~p0 ,P0!
a1

P02 p̄0,1

a2

P02 p̄0,2

1E dP0PX0
~p0 ,P0!

2a1a2

p̄011 p̄0222P0

3S eiX0[2(P02 p̄01)2 i e]

2~P02 p̄01!2 i e
1

e2 iX0[2(P02 p̄02)1 i e]

2~P02 p̄02!1 i e
D .

~6.2!
1-8
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The first term is formally identical to Eq.~6.1!. The second
term consists of two non-WTPF pieces.

As we shall see in the subsection discussing pinching
gularities~Sec. VI D!, non-WTPF contributions appear als
in the convolution product of the typeGR* SK* GA or, more
generally, in the convolution products containing retard
components positioned on the left from the advanced c
ponents ( . . . *AR* . . . *BA* . . . ). The non-WTPF terms
depend directly onX0; they are carrying the nontrivial infor
mation about the time evolution~i.e., about the dependenc
on X0). However, the non-WTPF terms cannot be conv
luted further using Eqs.~5.10! or ~5.11!. This fact indicates
the natural limits of the applicability of the methods dev
oped in this paper.

B. Inverse propagator and the equations of motion

To define the inverse propagator, we use the results
Sec. ~IV B !. We define the restriction ofGR

21 on the sub-
space of projected functions as

GR,X0

21 ~p0 ,pW !5E dp08PX0
~p0 ,p08!GR,`

21 ~p08 ,pW !,

~6.3!
GR,`

21 ~p08 ,pW !5 i ~p22m212i ep0!.

This integral does not converge in the absolute sense,
we cannot calculate the dependence ofGR

21 on X0. Never-
theless, we can apply it from the left to some class of fu
tions. For example, we can apply it formally toGR,X0

:

GR
21

* GR51, or written out more explicitly

E dp08PX0
~p0 ,p08!i ~p22m212ip0e!GR,`~p08 ,pW !51.

~6.4!

This equality is obtained using a simple integration overp02
in the expression of the type~5.10!. We cannot verify the
second identityGR* GR

2151 directly owing to the diver-
gence of the integrals, but we can apply it to the projec
function C

GR* GR
21* C5C, ~6.5!

under the only requirement thatC`(p0 ,pW ) should satisfy as-
sumptions~1! and ~2! in the way a retarded function doe
and vanish rapidly enough atp0→` to make the integra
over GR,`

21 (p0)C`(p0) convergent.
Equation~6.4! is the equation of motion forGR . In the

X0→` limit, it reduces to the well-known equation forGR .
For the Keldysh component of the propagator, the equa
of motion is given by

GR
21

* GK5GR21* ~hGR2hGA!50, ~6.6!

where we have ignored the termsO(e). Owing to the pres-
ence of the productGR

21* hGA , this equation cannot be ver
fied directly ~the integrals diverge!. Instead~analogously to
the case of the productGR* GR

21!, one multiplies it from the
02501
n-

d
-

-

of

us

-

d

n

left by the functionC, which vanishes rapidly atpo→` and
satisfies assumptions~1! and ~2! in the way an advanced
function does.

C. Resummed Schwinger-Dyson series

We write the Schwinger-Dyson equations in the form

GR5GR1 iGR* SR* GR , GA5GA1 iGA* SA* GA ,
~6.7!

GK5GK1 iGR* SK* GA1 iGK* SA* GA1 iGR* SR* GK .

The formal solution~where all products are convolutio
products and the operators are kept in the proper order! is

GR5GR* ~12 iSR* GR!21, GA5GA* ~12 iSA* GA!21,
~6.8!

GK5GR* „h~p0 ,vp!~GA
212GR

21!1 iSK…* GA . ~6.9!

To use the formal solution of the Schwinger-Dyson seri
we assume that the functionsGR(A) , GR(A) , andSR(A) satisfy
requirements~1! and ~2! for the retarded components in th
upper and for the advanced in the lower semiplane.

This assumption deserves a few comments: For the
tarded~advanced! bare propagators, our assumption is val
If the retarded component is real between the cuts on the
of the real axis, the Schwartz theorem tells us that assu
tions ~1! and ~2! valid in the upper semiplane are also val
in the lower semiplane of the first Riemann sheet.

At equilibrium, perturbation theory yields the full propa
gator as a set of Fourier coefficients. The analytic contin
tion in the energy plane is not unique. This freedom is us
to choose an analytic continuation that satisfies requirem
~1! and~2! defined in Sec. III. The positivity property of th
spectral density then implies that the propagator has nei
zeros nor poles off the real axis@8#. A further implication is
that the exact self-energySR(p0 ,pW ) at equilibrium also sat-
isfies the properties~1! and ~2!. This is not guaranteed fo
approximate expressions for self-energy.

In the formal solution of the retarded propagator, the fa
torsGR andSR alternate regularly. This fact can improve th
convergence properties of some integrals.

Now it is easy to write down the resummed Schwing
Dyson series for the retarded~advanced! propagator~with
any exact self-energy obtained by the perturbation expan
that satisfies our assumptions!. In terms of the corresponding
propagator calculated atX05`

GR(A),X0
~p0 ,pW !5E dp01PX0

~p0 ,p01!GR(A),`~p01,pW !,

~6.10!

where

GR(A),`~p01,pW !5
GR(A),`~p01,pW !

12 iSR(A),`~p01,pW !GR(A),`~p01,pW !
.

~6.11!
1-9
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Starting from Eq.~6.11! one obtains the HTL-resumme
@27,28# retarded~advanced! component of the propagato
without use of the gradient expansion.

Some more work is necessary to calculate the Keld
component. Now, in addition to individual terms, the su
GR,`(p0 ,pW ) should also satisfy~1! and ~2!, i.e., the imagi-
nary part ofSR,` should be negative.

However, there is a possibility that ImSR is positive in
some kinematical region. Then the resummed Schwing
Dyson equation for a retarded component can create the
in the upper semiplane. However, this case is very quest
able: one sums infinitely many retarded functions~i.e., the
functions which vanish att,t8) and obtains the function
which is not retarded~i.e., nonzero att,t8). Such cases are
usually classified as pathology@45,33#. At this point one
should cautiously consider the use of the ‘‘physical’’ gau
@46#, in order to prevent eventual gauge artifacts.

Some indication that, in some cases,GR,`(p0 ,pW ) does sat-
isfy assumptions~1! and ~2! comes from the HTL limit. In-
deed, at equilibrium, the HTL limit ofGR,`(p01,pW ) must
satisfy~1! and~2!, as it is easy to verify. As the properties
density functions enter only through the thermal mass
the position of isolated poles, the same must be true of
distribution allowing the HTL approximation.

Owing to the fact that the Keldysh component of se
energy does not satisfy the analyticity assumptions~1! and
~2!, we can only try to integrate expression~6.9! using ap-
proximate and numerical methods.

However, it is possible thatSK can be decomposed int
two pieces satisfying assumptions~1! and~2! as retarded and
as advanced functions, respectively:SK52SK,R1SK,A .
For example, this happens in the case of one-loop s
energy. Then Eq.~6.9! becomes

GK5GR* †h~p0 ,vp!GA
211 iSK,A‡* GA2 iGR* †h~p0 ,vp!GR

21

1 iSK,R‡* GA . ~6.12!

Owing to the fact that the functionsGR andGA are not sin-
gular in the pointp056vp , the terms containingGR

21 and
GA

21 cancel mutually. As one of the remaining convolutio
includes factors of the same type (RR or AA), we are left
with a single convolution multiplication. This convolutio
contains neither the advanced first factor nor the retar
second factor; thus, in general, it cannot be worked out
simple way, and it will contain non-WTPF contribution
However, it may be performed at least numerically.

The appearance of the non-WTPF contributions sign
stepping out of the space of projected functions. Indeed,
calculation of the more complex diagrams, containing s
diagrams resummed intoGK , will not enjoy advantages o
the presented calculus.

Finally, we note here that the calculation starting w
Eqs.~6.7! and ending with Eqs.~6.10!–~6.12! cannot be per-
formed with the true~i.e., calculated, in some miraculou
way, to all orders! SK , SR , andSA . Indeed, we have an
ticipated that the trueSK , SR , andSA contain non-WTPF
terms, and thus one cannot use instead ofGR

21 andGA
21 their

restrictions to the subspace of projected functions. Using
02501
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gradient expansion~under large-X0 assumption! one obtains
familiar equations of motion for the Green functions of i
teracting fields@2,3,5,34#. However, the advantage of th
presented calculus will be observed in the properties of c
lision integrals, where one can expect considerable simp
cations and the possibility of evaluating contributions
more complex diagrams. A more complete discussion of c
lision integrals is out of the scope of the present paper,
we hope to publish it elsewhere.

D. Pinching singularities

The pinchlike contribution to the Keldysh component
the resummed propagator is expressed as@23# ~we treat only
the scalar case!

GKp5 iGR* ~2S̄K,R1S̄K,A!* GA , ~6.13!

where we have introduced the short notationS̄K,R(A)
5h(p0 ,vp)SR(A)1SK,R(A) .

Similarly as in the case of resummed contributions,
can perform convolution between alike components (RR or
AA). Then one can integrate the terms containingSR and
SK,R with respect top02, and the terms containingSA and
SK,A with respect top01. The result is intriguing:

GKp,X0
~p0 ,pW !52E dp01PX0

~p0 ,p01!
1

p01
2 2vp

212i ep01

i

3S̄K

1

p01
2 2vp

222i ep01

2
1

2vp
(

l521

1

l

3S E dp01

e2iX0(p02p01)2e22iX0(p02lvp)

ip~2p02p012lvp!

3S̄K,R~p011 i e,pW !
1

p01
2 2vp

212i ep01

1E dp01

e22iX0(p02p01)2e2iX0(p02lvp)

ip~2p02p012lvp!

3S̄K,A~p012 i e,pW !
1

p01
2 2vp

222i ep01
D .

~6.14!

The first term in Eq.~6.14! is a projected function~WTPF!
that becomes the usual pinchlike term in theX0→` limit. It
is this contribution to which the conclusions@23# about the
cancellation of pinching singularities apply. However, t
other terms are of non-WTPF nature; contrary to the cas
the product of simple pole terms, the discontinuity along
real axis appearing in the functionsSR(A) and SK,R(A) now
prevents the vanishing of these terms.

A full discussion on pinching singularities in the finite
time-after-switching formulation requires more efforts a
we hope to publish it elsewhere.
1-10
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VII. MODIFICATIONS OF THE FEYNMAN RULES

In this section, in the framework of the generic fie
theory with bosons and fermions, we discuss the change
Feynman rules that are due to the ‘‘finite time’’ assumptio
We further analyze the diagrams with respect to the ques
of energy nonconservation. Indeed, we find that this fea
appears together with the non-WTPF contributions.

The calculations performed so far already contain all
the modifications of the Feynman rules required by the fin
t i assumption. In coordinate space, the only modification
that the bare propagators@Eqs.~4.4! and~4.5!# are limited by
0,x0 and 0,y0; thus they are projected functions. I
energy-momentum space, the above change reflects in
change of propagators, vertices, and the overall factor.

To transform to energy-momentum space, we cho
some vertexj, arrange the orientation so that all linesi be-
come outgoing, and use the propagators represented by
~4.4!, ~4.5!, and~4.6! ~the pi momentum is joined to the line
i ). Exponentials attached toxj are easily integrated with th
help of Eq.~5.9!:

1

2pE0

`

dxje
2 ix j (( i pi2 i e)5

i

2pS 2(
i

pi1 i e D . ~7.1!

After performing this integration, instead of the ba
propagators we obtain theirX0→` limits @Eq. ~4.6!#, which
are the familiar propagators of the usual (t i→2`) theory.
At the vertices the usual energy-conservingd(( i p0i) is sub-
stituted byi (2p)21(2( i p0i1 i e)21.

Under the momentum integrals there is a leftover facto
the verticesj A ~by subscriptA we indicate thatj A are verti-
ces with amputated legs!:

e2 i(
j A

xj A
((

i j A

l i j A
pi j A

), ~7.2!

wherel56 depends on whether the corresponding mom
tum is outgoing of or incoming to the vertexj A , and i j A

is
running through the nonamputated lines.

The overall factor in the case of two-point functions
treated in a simple way: introduce a slow Wigner variable
the average over the times of boundary vertices, and
relative time@Eq. ~3.1!#. Finally, one can Fourier transform
over the relative time. There emerges an overall ener
smearing factorPX0

(p0 ,p08) for two-point functions and
similarly for n-point functions. In the case ofn-point func-
tions, the choice of variables is large and might not
unique; namely, depending on the diagram calculated,
chooses the most appropriate set of variables. The ov
factor takes care of uncertainty relations: the larger
elapsed ‘‘time’’ X0, the smaller the energy smearing.

In the vertex factor the energy is not explicitly conserve
This energy nonconservation is, through the uncertainty
lations, related to the finiteness ofX0. In the limit of infinite
X0, energy conservation is recovered. Here we want to ar
that for some choice of propagators entering the vertex,
energy is conserved explicitly. To see this conservation,
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sume, for a moment, that at least one of the unspeci
propagators (D, G, andS) related to the chosen vertex, sa
D` , is a retarded function,DR . In this case, one can inte
grate overq0, close the integration path from above~owing
to eiX0(po, j 1 i e), closing from below is out of question!, and
collect the contributions from singularities. If there are
singularities@and we know that conditions~1! and ~2! are
valid for bare propagators#, one just obtains the energy
conservation conditiond(( i p0i). The same is achieved with
the outgoing momenta and advanced components of
propagator with closing the integration path from belo
Now we are going to show that, indeed, one of these po
bilities is realized at each vertex.

Each individual denominator (( i p0i2 i e)21 ~the lines are
all oriented out! can be easily integrated. To demonstra
this, we have to sum over the indices of the correspond
vertex. We rename the basis (i , j ), i , j 51,2 into @m,n#,
where m,n521 correspond toi , j 52, andm,n51 corre-
spond toi , j 51. Then we find the relations of the type~we
assume a three-field vertex, but the proof extends easil
any number of fields!

D [m,n]5
1

2
~DK2mDR2nDA!. ~7.3!

The sum over the indices in the chosen vertex (S, D, G
propagators of the outgoing lines; the factorm for the nega-
tive coupling of the vertex to which the index-2 ends of t
propagators are attached! is

(
m

mS[m,l]D [m,r]G[m,n]5
1

4
@SRDRGR1~SK1lSA!

3~DK1rDA!GR1~SK1lSA!

3DR~GK1nGA!1SR~DK1rDA!

3~GK1nGA!#. ~7.4!

Expression~7.4! contains only terms including at least on
retarded propagator:SR , or DR , or GR . Thus one can inte-
grate the terms separately and find that the factor (( i p0i
2 i e)21 is effectively replaced byipd(( i p0i).

As there is nothing special at this vertex~the indices
l,r,n remain unspecified!, one may conclude that this is
general feature. Nevertheless, one should do it very c
tiously, step by step, while problems may appear at so
degree of complexity. Then, as seen in Eqs.~5.10! and
~5.13!, we find a new element in addition to the energy d
nominator (2p0 j1p0 j 112 i e)21. One obtains the extra fac
tor e2 iX0(p0 j 2p0 j 112 i e). With the help of this factor, even th
contributions from the poles of the retarded component in
upper semiplane will decay exponentially with the timeX0.

However, the diagrams with resummed self-energy s
diagrams are particularly sensitive. In this case, one
strongly advised to undertake an intermediate step: to F
rier transform the two-point function with respect to the re
tive time, to investigate the analytic structure, and then
perform the multiplication of two-point functions. Owing t
the cuts inGR(A) and to the non-WTPF contributions toGK ,
1-11
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it is likely that this is just the point after which we have
live without the advantages of projected functions.

VIII. SUMMARY

We consider out of equilibrium thermal field theories wi
switching on the interaction occurring at finite time (t i50).
We study Wigner transforms~also in the relative times0! of
two-point functions. To develop a calculation scheme ba
on first principles, we define a very useful concept of p
jected functions: a two-point function with the property th
it is zero forxo,t i and fory0,t i ; for t i,x0 andt i,y0, the
function depends only onx02y0. We find that many impor-
tant functions are of this type: bare propagators, one-l
self-energies, resummed Schwinger-Dyson series with o
loop self-energies for the case of retarded and advan
components of the propagator, etc. The properties of
Wigner transforms in theX0→` limit are particularly simple
if they satisfy these analyticity assumptions:~1! The function
of p0 is analytic above the real axis~for a retarded compo
nent, but below it for an advanced component!. ~2! The func-
tion goes to zero asup0u approaches infinity in the uppe
~lower! semiplane. We find that these assumptions are v
natural at low orders of the perturbation expansion. The c
volution product of projected functions is remarkably simp
much simpler than what one would expect from the gradi
expansion.

The Schwinger-Dyson series, with bare propagators
self-energies being projected functions satisfying assu
tions ~1! and ~2!, is resummed in closed form without th
need for the gradient expansion. The calculation of the
summed Keldysh component is simplified to a double~and
under a certain analyticity assumption, to a single! convolu-
tion product. This contribution signals the stepping out of
comfortable space of projected functions.

The Feynman diagram technique is reformulated: ther
no explicit energy conservation at vertices, there is an ove
energy-smearing factor taking care of the finite elapsed t
(X0) and the uncertainty relations.

The relation between the amplitudes~valid at low orders
s
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of the perturbation expansion! of the theory with switching
on the interaction in the remote past and the theory w
finite switching-on time, enables one to rederive the res
such as cancellation of pinching singularities, cancellation
collinear and infrared singularities, HTL resummation, e
Previously, these results were considered applicable onl
lowest-order contributions in the gradient expansion.

The question arises whether higher-order contributio
also remain within the space of projected functions satisfy
assumptions~1! and~2!. The answer depends on the eventu
positivity of ImSR , explicitly time-dependent perturbation
and the appearance of the one-loop approximated or
summed Keldysh component. The positive ImSR can create
the pole in the upper semiplane in the resummed Schwin
Dyson series. However, this case is very questionable:
sums infinitely many retarded functions~i.e., functions
which vanish fort,t8) and obtains the function which is no
retarded~i.e., nonzero att,t8). Such cases are usually cla
sified as pathology@33,45#. The way of breaking the schem
explicitly is to introduce direct time dependence throu
time-dependent perturbation, or through the background fi
which depends directly on time:c(x,t)5f(t)1c̄(x,t). In
this way, one obtains the two-point functions which are n
projected functions. A natural step out of the space of p
jected functions occurs in the calculation of the resumm
Keldysh component of the propagator. The appearance o
non-WTPT contributions signals that the calculation of t
more complex diagrams containing subdiagrams resum
into GK will not enjoy advantages of the presented calcul
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