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Superspace gauge-invariant formulation of a massive tridimensional 2-form field
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By dimensional reduction of a massive supersymmedricF theory, a manifestiN=1 supersymmetric
completion of a massive antisymmetric tensor gauge theory is constructetllidiznensions. I'N=1—D
=3 superspace, a new topological term is used to give mass to the Kalb-Ramond field. We introduce a massive
gauge invariant model using the 8kelberg formalism and an Abelian topologically massive theory for the
Kalb-Ramond superfield. An equivalence of both massive models is suggested. Further, a component field
analysis is performed, showing a second supersymmetry in the model.
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I. INTRODUCTION Kalb-Ramond field. The latter is constructed using a term
that we callB¢, obtained from a dimensional reduction of
Antisymmetric tensor fields appear in many field theoriesthe N=1—D =4 BF model.
In particular, the Kalb-Ramon¢KR) gauge field plays an This work is organized as follows. In Sec. Il we construct
important role in strong-weak coupling dualities amongan N=1—D =4 superspace version of th&1) BF model.
string theorie§1] and in axionic cosmic string2]. On the In Sec. Ill, by means of a dimensional reduction procedure,
other hand, a first order formulation of the non-Abelianwe obtain a massive antisymmetric tensor field intda2
Yang-Mills gauge theoryBF YM model) [3,4] makes use —D =3 supersymmetric topological massive gauge invariant
of a two form gauge potentid to contribute to a discussion theory. In contrast to several works &n=3 BF models, we
of the problem of quark confinement in continuum Q). have considered here a topological term which involves a
Another interesting aspect of tH8+ 1)-dimensionalB/\F KB and a pseudoscalar field with derivative coupling. In Sec.
term (F=dA is the field strength of a one form gauge po- IV an alternative model with an explicit mass breaking term
tential A) is its ability to give rise to gauge invariant mass to is constructed itN=1 superspace and a supersymmetric ver-
the gauge field6]. This property has been used to obtain ansion of the Stakelberg transformatiofiL2] is used to restore
axion field topologically massive and an axionic charge on dhe gauge invariance of the model. In Sec. V we have ad-
black hole as well7]. In addition, the existence of the Higgs dressed a&N=1 superspace mechanism to generate mass for
mechanism to the Kalb-Ramond gauge fields was demorKalb-Ramond field without loss of gauge invariance. Actu-
strated by Rey[8] in the context of closed strings. On the ally, this mechanism is a superspace version of the topologi-
other hand, if coupled to open strings, the KR field becomegal massive formulation of Deser, Jackiw, and Templeton
a massive vector field through the 8kelberg mechanism. [13]. Finally, our results are summarized in Sec. VI.
Also, we can mention a topologically massive Kalb-Ramond
field in aD =3 context that was introduced in Réf]. II. THE N=1—D=4 EXTENDED BF MODEL
It is known that massless string excitations may be de-

scribed by a low-energy supergravity theory and that a mass- Let us begin by introducing thsi=1-D=4 supersym-

Ramond fields appears in all known string theories.include mass terms for the Kalb-Ramond field. This mass
However, the spectrum of thB=4 [10] and D=3 [11]  term will be introduced here for later comparison to the tri-
compactified theory fronD =10 supergravity, contains the dimensional case. Actually, this construction can be seen as a
massive antisymmetric tensor fields. Thus, since supersynfuPerspace and Abelian version of the so-cafiédYang-
metry places severe constraints on the ground state and thdlls models[3]. . .
mass spectrum of the excitations, supersymmetric mecha- AS our basic superfield action we take
nisms of mass generation are of considerable importance. In
particular, alternative methods for mass generation can play BE:_I d4x( —ik
an important role in the context of superstrings. 8

In this work we review some aspects of the=1—-D g2 )
=4 BF model. In particular we call attention about a fermi- + —U dzaB“BaJrj dZH—Bdga“, (2.1
onic topological ternito the best of our knowledge, this term 2

has not been d'SC.USSEd in the I|tera1ul=¢owev¢r, the main - \here W, is a spinor superfield strengti, is a chiral
new results of this paper are the construction ilN& 1

superspace of Al=2—D=3 topological model, and thi spinor sup.erfieldﬁ&BfO, K and.g are massive param-
—1-D=3 superspace mass generation mechanism for thg'€'S: Their corresponding expansions are

j 2B W, — f dze—BéV_Vé}

*Email address: carlos@fisica.ufc.br 10ur spinorial notations and other conventions follow R&#].
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Wa(x'9,_):4”\&()()_[4553()().4_gi(UuEV)gFW(X)]HB . The superfigld actiorf2.1) is a particular case qf the ac-
_ tion proposed in Ref[15]. However, a point of difference
+46020" gﬂfa (2.20  must be noted. In contrast wiftt5], we have not considered

coupling with matter fields and a propagation term for the
gauge fields. On the other hand, our supersjgteterm was

) — 0000 [ B
Ba(x.0,0)=¢ () + 07T ap(X) + 00£.(X)], constructed in a distinct and simpler way. A quite similar

23 construction was introduced by Claek al. [16].
where The off-diagonal mass terné\ (or Zy°A) has been
. . shown by Brooks and Gatd47] in the context of super-
Tap=T(ap)T Tiap = —41(0"") 5Bt 28 ,5(M +|N()2- ) Yang-Mills theory. Note that the identity
4
i
Our conventions for supersymmetric covariant derivatives )/50"“’258 #mﬁo“ﬁ (2.9

are

reveals a connection between the topological behavior de-

Daziﬂaﬂ.y&@w noted by the Levi-Civita tensoe,,,z, and the pseudo-
96° o escalarys.
So, it is worthwhile to mention that this term has topo-
_ d logical origin and it can be seen as a fermionic counterpart of
D.=- ﬁg—ié’“ffﬁ:;ﬁ#- (2.5 the BF term. In our opinion, this fermionic mass term de-

serves more attention and will be investigated elsewhere.

We call attention to the electromagnetic field strength and
the antisymmetric gauge field which are containeMpand . THE N=2—-D=3 TOPOLOGICAL MODEL

B, , respectively. In terms of the components fields, the ac- As it is well known, theBF model inD=3 consists in a

tion (2.1) can be read as one form field (‘*‘B”" field) and one form gauge field. So,
i L the Chern-Simons term is simply the identificationB>and
S= f d“x[ — —[EN—&N] A. However, as has been shown in Hél, after dimensional
2 reduction of the four-dimension&@F model, an interesting
p o additional term arises, namely, a topological term which in-
+ E[w“oz&aﬂ)\wr bo(aH) 9, N\, ] volves a 2 form ad a 0 form. We will call it aB¢ term. A
quite similar model was presented in a Yang-Mills version
by Del Cimaet al.[18], and its finiteness was proved in the
framework of algebraic renormalization.
Following the procedure of Ref9], we will carry out a
I | 1 dimensional reduction in the bosonic sector of Eq6). Di-
s(p&+yé)+ 5B By, §(M2+ NZ)H mensional reduction is usually done by expanding the fields
in normal modes corresponding to the compactified extra
= f d“x

+g% (3P E+3B*B,,— 3(M2+N?))

K ~
+5B*'F,,— kDN

+g?

K= 5. K— Ko dimensions, and integrating out the extra dimensions. This
(7~7 A+sWy oA+ 5BYF,,— KDN> approach is very useful in dual models and superstiihgs
Here, however, we only consider the fields in higher dimen-
sions to be independent of the extra dimensions. In this case,
: (2.6 e assume that our fields are independent of the extra coor-
dinatexs.
In the last equality above, the fermionic fields have been Therefore, after dimensional reduction, the bosonic sector
organized as four-component Majorana spinors as follows of Eq. (2.6) can be written as

(fa) (Aa
ga )\a

and we denote the dual field-strength definirfg,,
E%stBF“'B. Furthermore, we use the following identities

: q;:(ifl), (2.7) Sbos:J dSX{[KSMaﬁV”F“'B-I—KSMWBW(?"‘QD—KDN]
l,ba
+0?[5B*'B,,— VAV, —3(M?+N?)]}, (3.1

whereV* is a vectorial field andp represents a real scalar
field. Notice that the first term in right-hand side of E§.1)

WA= ygA+ YN, can be transformed in the Chern-Simons term if we identify
_ _ V#=A¥. The second one is the so-callBg term.
Wy A= YN — Y\, Now let us proceed to the dimensional reduction of the
o o fermionic sector of the model. First, note that the Lorentz
Wy A= poP N+ o\, (2.8 group in three dimensions 8L(2,R) rather tharSL(2,C) in
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D=4. Therefore, Weyl spinors with four degrees of freedom

will be mapped into Dirac spinofsSo the correct associa-
tions keeping the degrees of freedom are sketched as

_ [Ea| _
S e Ed=Eat PR

gﬂ(

‘I’=<iz>ﬂ‘lfi=¢aiixa. 3.2
From Eq.(3.2), we find that
VESLW,E_+V_E,),
Ty, A=W yra, A +W _y AL,
EyPAL(E AL +E AL, (3.3

wherehattedindex means three-dimensional space-time.

Thus, the dimensionally reduced fermionic sector of Eq.

(2.6) may be written

iK K ~
Sferm.:f dSX{Z(»‘:+A++:«_A_)+ Z(‘P+ Yo, A -
2

) g L] o]
+V_y*9,A L)+ E(\If+:_+‘1'_:+) . (3.9

The actionS= S,y + Sterm IS invariant under the follow-
ing supersymmetry transformatiofisere and in rest of the
paper, greek indices mean three-dimensional space:time

SN o=—1D 9= (a*0")omgF s,
8pa=iD Lo (a*0") oL sF 1y
SF#'=igM(na’p—Nc’{)—id"(natp—No*{),
6D=4d,(—notp+Nao”{), (3.5
S(WaTixe) =0V . =i 7PT o= PT s,
ST po= = 1ptat L0\ 0uth,

S(£atiTy)= 05 .= —iL\(a")MPT g F ma(a) P T g,
(3.6)

where » and { are supersymmetric parameters, which indi-
cates that we have two supersymmetries in the aforemen-

tioned action.

2For details about spinorial dimensional reduction, we suggest o

Refs.[20] and[21].
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IV. REMARKS ON SOME 3D SUPERSYMMETRIC
MODELS AND STUCKELBERG FORMULATION

From the two topological terms introduced in E§.1) we

can setup two supersymmetric models. The first one, which
involves a two and a zero form, can be expressed as

S= f d®xd?*6(D*®B,+ 1g?B*B,), 4.1

whereB, and® are spinor and real scalar superfields, which
are defined by projection as

Bal=Xa»

DBy =2IM g, =M 3=B""(0,,) ap.

and

D*B,|=2N,
DD Byl =2w,, 4.2
d|=¢,
Daq)| = ¢a’
D2d|=F. 4.3

Here the supersymmetry covariant derivative is given by

Da=aa+i05aa5. So, in terms of components fields, the
action(4.1) becomes

s:f X[ (k™ oM g+ 2K )% w,,— 2kFN)

+30%(40 Y o 21 X0 0P X g+ MPIM 5+ 2N?)].

(4.4
Starting from the definitions of two spinor superfields
given by
Aol=¢&q,
DaACY| = 2G1
DAD,A4l=2p,, 4.5
and
Wl =N,
D Wl =fap, 4.6
where
~ ~ i
_VM(Uﬂ)ﬁa; faBE(UM)an’u; f"“:—ESMVPFVp,
4.7
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we can propose another supersymmetric action, now involvfor it. Before that, for illustration purpose, we quote the

ing two 1-forms, namely

S= f d3xd20( AW, — g2A“A )

bosonic action introduced in RgD]:

s=f A3X[EH ., H "+ K, BH 3" $+ 30, $3" $],

(5.
— 3 ay  __i\/apB
_j d*X[(2p "N =1V o) whereH ,,,, a three form field strength of thg“” field, is
) ) ) defined as
— 0% (4p w,+ 20 £,0P g+ VPV 5, +2G)].
4.9 Huvp=91uBup=39,B,,+3,B,,+3,B,,. (5.2

It is easy to see that the superspace actidr® and(4.8) TheN=1 superspace construction of the supersymmetric

are not invariant under the following gauge transformationsversion of Eq.(5.1) proceeds as follows. First, we introduce
a scalar superfiel defined by

sB*=DAD“Il,,
G=-D*B,, (5.3
8d=0, 4.9 ) , ) .
where B, is the super-Kalb-Ramond field defined in Eq.
SA“=D2Q), (4.2). Then, after looking the expressidd.1), we find the
action
SW*=0. (4.10

S= J d®xd?6[ — 3(D*G?)+kB*D , & — :D*®D ,P].
(5.4)

However, if we reparametrizda “ and B* through intro-
duction of the Stakelberg superfields® and3 , such that

1 Now it is straightforward to show that the topological
A= (A% =A"+ aD"@, termkB*D ,® gives rise to a mass term for the super-Kalb-
Ramond field. The equation of motion associated wtlis

B“—(B*)’'=B*+DFD"Il,

412 D*(kB,—D,P)=0. (5.5

and imposing tha® and3 , transform like Consequently,
50 =—gQ, kB,— D, P=C. (5.6
SSA=_TIP, 4.12 Since that the constaidt can be absorbed bg,, we con-

clude that

we ensure gauge invariance for that superactions.

We remark that integrating out the superfi@g in Eq.
(4.1) we arrive at a supersymmetric Klein-Gordon action
and, if we do the same foA , in Eq. (4.8, we obtain a
Maxwell superaction. Observe that both these relations may
be understood as two duality transformations. We recall here
that an analogous connection iD4oure bosonidBF-theory
was viewed as a perturbative expansion in the coupling  This exhibits a topological mechanism of mass generation
around the topological puilF theory[4]. Thereupon, itmay  for the Kalb-Ramond field. Naturally, the topological mass
be interesting to perform a similar investigation in the frame-terms arise due to the coupling of tBe, and® superfields.
work of action(4.1). In other words, this mass term results of the breakdown of
the gauge invariancét.9).

Incidentally let us mention a possible equivalence similar
to that between massive topologically and self-dual theories

In order to show the topoloaical ma eneration for th in D=3 [13]. Indeed, starting from Eq4.1), we can con-
opological mass generation 1or e, 41 action by introduction of a mass term for the super-
Kalb-Ramond two form field, we will construct a variation

from the model(4.1), by introducing the propagation term field @, namely

kB,—D,»=0. (5.7

Therefore the original actiotb.4) can be rewritten as

szf d®xd?¢[ (D*G?)+ $k’B*B,]. (5.9

V. N=1 SUPERSPACE TOPOLOGICAL MASS
GENERATION

szf d®xd?9(D*®B,+ 39°B*B,+ md?). (5.9

SFor historical reasons, it is important to cite here the first work, to
the best of our knowledge, in the framework of supersymmetric It is easy to see that the equations of motion of E§9)
Stickelberg formalism, namely Ref22]. and(5.4) are equivalent. So, the acti@B.9) can be consid-
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ered locally equivalent to actiofb.4). On the other hand, it We have introduced two massive gauge invariant models
would be interesting to investigate if this equivalence is prefor an antisymmetric tensor field into =1—-D=3 su-

served at quantum level. perspace. In the first, we resort to the &eiberg formalism
and in the other, we construct an abelian topologically mas-
VI. CONCLUSIONS sive theory, and a topologically generated mass for the Kalb-

Ramond superfield is exhibited. An equivalence of both mas-
sive models is suggested. Furthermore, a component field
analysis is performed, showing a second supersymmetry in
the model.

In this work, we have constructed af=1—-D=3 su-
perspace action for a model involving an antisymmetric
gauge field. Our main point is a topological term that con-
sists in a coupling of this 2-form field and a scalar field. To
the best of our knowledge, in the form presented here, this
model is completely new in the literature. A similar ap-
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