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Noncommutative geometry as a regulator

Badis Ydri*
Physics Department, Syracuse University, Syracuse, New York 13244-1130

~Received 11 April 2000; published 14 December 2000!

We give a perturbative quantization ofR4 space-time in the case where the commutatorsCmn5@Xm,Xn# of
the underlying algebra generators are not central. We argue that this kind of quantum space-time can be used
as a regulator for quantum field theories. In particular we show, in the case off4 theory, that by choosing
appropriately the commutatorsCmn we can remove all the infinities by reproducing all the counterterms. In
other words, the renormalized action onR4 plus the counterterms can be rewritten as only a renormalized
action on the quantum space-timeQR4. We conjecture therefore that the renormalization of quantum field
theory is equivalent to the quantization of the underlying space-timeR4.

DOI: 10.1103/PhysRevD.63.025004 PACS number~s!: 11.10.Gh, 11.10.Lm
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I. INTRODUCTION

Noncommutative geometry~NCG! @1# allows one to de-
fine the geometry of a given space in terms of its underly
algebra. It is therefore more general than ordinary differ
tial geometry in the sense that it enables us to describe a
braically the geometry of any space whether or not it
smooth and/or differentiable. It is generally believed th
NCG can be used to reformulate if not solve many proble
in particle physics and general relativity such as the prob
of infinities in quantum field theories~QFTs! and its possible
connection to quantum gravity@2–7#. The potential for con-
structing new nonperturbative methods for quantum fi
theories using NCG is also well appreciated@2–4,8–16#. The
recent major interest in NCG, however, was mainly initiat
by the work of@17# on Yang-Mills theory on a noncommu
tative torus and its appearance as a limit of the matrix mo
of M theory. The relevance of NCG in string theory w
further discussed in@18#.

Quantum field theories on noncommutative space-t
were extensively analyzed recently in the literature@19–29#
and it was shown that divergences, although not comple
removed, are considerably softened. The reason is tha
quantization ofR4 or R2 by replacing the coordinate func
tions xm by the coordinate operatorsXm in the sense of@6#
will only modify vertices in the quantum theory and n
propagators. On compact spaces, on the other hand, su
the four-sphereS4 @8#, the two-sphereS2 @9#, and CP2 @15#
divegences are automatically canceled out when we quan
the space and that is because on comapct spaces~which was
not the case on noncompact spaces! quantization leads to a
finite number of degrees of freedom~points!.

It is hoped that noncommutative geometry will shed n
light on the meaning of renormalization because it provide
very powerful tool to formulate the possible physical mech
nisms underlying the renormalization process of quant
field theories. One such mechanism which was develope
Deser@38#, Ishamet al. @39#, and pursued in@30,31# is Pau-
li’s old idea that the quantization of gravity should give ri
to a discrete structure of space-time which will regula
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quantum field theories. As one can immediately see the t
cal length scale of Pauli’s lattice is of the order of Planck
scalelp which is very small compared to the weak scale a
therefore corrections to the classical action will be very sm
compared to the actual quantum corrections. This idea, h
ever, is still very plausible especially after the dicovery ma
in @19# of an UV-IR mixing which could be used in a larg
extra-diemension-like activity to solve the above hierarc
problem.

The philosphy of this paper will be quite different. W
will assume that space-time is really discrete and that
continuum picture is only an approximation@30#. The dis-
creteness, however, is not givena priori but is a conse-
quence of the requirement that the quantum field theory
der consideration be finite. The noncommutativity parame
u is therefore expected to be a function of both the spa
time and the quantum field theory and it is completely det
mined by the finiteness requirement. This simply mean t
the quantization of space-time is achieved by replacing
coordinate functionsxm by the coordinate operatorsXm as in
@32# but, and contrary to what was done in@6#, these opera-
tors will not satisfy the centrality conditions†Xm,@Xn,Xa#‡
50.

This paper is organized as follows: In Sec. I we introdu
the star product@33# for the case where the noncommutati
ity parameteru is not a constant. The necessary and su
cient condition under which this star product is associat
turns out to be simply†Xm,@Xn,Xa#‡50. The associativity
requirement, however, is relaxed and allowed to be broke
the first order in this double commutator. This relaxation
necessary because one can check that we cannot gene
@6# by making the commutators@Xm,Xn# not central while
simultaneously preserving associativity. The algebra (A,* )
whereA is the algebra of functions onR4 is then defined.

In Sec. II we quantize perturbatively the algebra (A,* ).
In other words we find the homomorphism (A,* )→(A,3)
order by order in perturbation theory whereA is the algebra
of operators generated by the coordinate operatorsXm. The
star product becomes under quantization the nonassoci
operator product3 and the corresponding Moyal bracke
become the commutator@ .,.#3 @34#. The difference between
3 and the ordinary dot product of operators is of the order
the double commutator†Xm,@Xn,Xa#‡. This is basically an
©2000 The American Physical Society04-1
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BADIS YDRI PHYSICAL REVIEW D 63 025004
example of deformation quantization@33–36# and in particu-
lar it shows explicitly the result of@35# that the quantization
prescription of Doplicheret al. @6# of space-time is a defor
mation quantization ofR4. We rederive also the space-tim
uncertainty relations given in@6#. In Sec. III we construct a
Dirac opertor on the quantum space-timeQR4 and write
down the action integrals of a scalar field in terms of t
algebra (A,3) as well as in terms of the algebra (A,* ). The
finiteness requirement is then used to fixu in the two-loop
approximation of thef4 theory. Section IV contains conclu
sions and remarks.

II. STAR PRODUCT

A. Associativity

Let R4 be the space-time with the metrichmn

5(1,1,1,1). The algebra underlying the whole different
geometry ofR4 is simply the associative algebraA of func-
tions f on R4. It is generated by the coordinate functionsxm,
m50,1,2,3. This algebra is trivially a commutative algeb
under the pointwise multiplication. A review of how the a
gebra (A,.) captures all the differential geometry ofR4 can
be found in@2–5#.

It is known that we can make the algebraA noncommu-
tative if we replace the dot product by the star prduct@33#.
The pair (A,* ) is then describing a deformationQR4 of
space-time which will be taken by definition to be the qua
tum space-time. The* product is defined for any two func
tions f (x) andg(x) of A by @18#

f * g~x!5expS i

2
Cmn~x!

]

]jm

]

]hnD f ~x1j!g~x1h!uj5h50 ,

~2.1!

whereCmn form a rank-2 tensorC which in general contains
a symmetric as well as an antisymmetric part@11#. It is as-
sumed to be a function ofx of the form

Cmn~x!5x~x!~umn1 iahmn!, ~2.2!

wherex(x) is some function ofx. Hereu is the antisymmet-
ric part and it is anx-independent tensor.a is as we will see
the nonassociativity parameter and it is determined in te
of the tensoru as follows. The requirement that the st
product~2.1! be associative can be expressed as the co
tion that I 50 whereI is given by

I 5~eipx* eikx!* eihx2eipx* ~eikx* eihx!. ~2.3!

eipx are the generators of the algebraA written in their
bounded forms. Using the definition~2.1! we can check tha

eipx* eikx5e2 ipCk/2ei (p1k)x ~2.4!

and therefore Eq.~2.3! takes the form
02500
l
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Ie2 i (p1k1h)x5expS 2
1

2
Cmn~x!hn

]

]jmD
3FexpS 2

i

2
pC~x1j!k1 i ~p1k!j D GUj50

2expS 2
1

2
Cnm~x!pn

]

]jmD
3FexpS 2

i

2
kC~x1j!h1 i ~k1h!j D GU

j50

.

~2.5!

To see clearly what are the kind of conditions we need
ensure that the equationI 50 is an identity, we first expand
both sides of Eq.~2.5! in powers ofC and keep terms only
up to the second order. It will then read

I 5
i

4 FCmnhnp
]C

]xm
k2Cnmpnk

]C

]xm
hG . ~2.6!

As we can clearly see the associativity of the star produc
this order is maintaned if and only ifCmn]mC50 and
Cnm]mC50. The two consequences of these two conditio
are given by the equationsahmn]mx50 and umn]mx50.
The first equation is simplya50 because the solutionx
5const will be discarded in this paper. The second equat
on the other hand, means that we can simply check that
noncommutativity matrixu is singular, i.e., detu50. We
can also check that the two above conditions are neces
and sufficient to make the star product~2.1! associative
at all orders because of the identitie
um1n1um2n2

•••umnnn]m1 ,m2 , . . . ,mn

n x50.

If we would like to avoid the singularity of the noncom
mutativity matrixu, we have then to relax the requirement
associativity. We can start by reducing the associativity
the star product~2.1! by imposing only one of the above tw
conditions, say,

Cmn
]C

]xm
50

⇒

Cmn
]x

]xm
50. ~2.7!

Before we analyze this equation further, we remark that t
condition on the tensorC will lead to the identities

Cm1n1Cm2n2
•••Cmnnn]m1 ,m2 , . . . ,mn

n Cab50. ~2.8!

Equation~2.7! will also lead to the equation
4-2
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Cnm
]C

]xm
5 i ]nx2@au1 ia2h#. ~2.9!

In order to have a very small amount of nonassociativity
the theory we will assume thata is a very small parameter in
such a way that only linear terms ina are relevant. Putting
Eqs.~2.7! and ~2.9! into Eq. ~2.5! will then give

I 5
ia

2
~kuh!O~p,k1h,x,]x!e2 ixkuh/2ei (p1k1h)x,

~2.10!

whereO is a function~which we will not write down explic-
itly ! of the momentap,k,h and of x and all its derivatives
$]x%. This functionO is such that it vanishes identically
]mx50. In other words a trivial solution to the equationI
50 is x5const which we will discard in this paper. W
would like to determinex from the requirement that th
quantum field theory which we will eventually write dow
on QR4 be finite. So we will leavex arbitrary at this stage
Clearly x will be model depenedent and it can generally
put in the form

x~x!5 (
n51

\nxn~x!, ~2.11!

where we do not have a tree level term because by assu
tion this function will be entirely determined by the differe
infinities of the theory which are generally of higher orde
in \. In other words the zero order is absent in Eq.~2.11!
because QFTs are usually finite at this order.

It is instructive to solve Eq.~2.7! for u in terms ofx. We
assume that]mxÞ0 and rewrite Eq.~2.7! in the form
Cmn]mx5len wherel is a small number ande is a four-
vector given by (1,0,0,0). Solving Eq.~2.7! for u will give
the following equation:

i detC

a32~a/2! (
m,nÞ0

umnumn

5l
x3

]0x
,

detC

2a2u0i2 iau imu0m1u jkAdetu
5l

x3

] ix
,

~2.12!

with

detC5x4Fdetu1a42
a2

2
umnumnG . ~2.13!

( i jk ) are the even permutations of (123) and detu is given

by detu5@ 1
8 emnabumnuab#2. The four equations~2.12! pro-

vide four constraints on the tensoru which reduce at limit
l→0 to one constraint given by

detu52a41
a2

2
umnumn. ~2.14!
02500
p-

This is a generalization of the quantization conditions cho
in @6#. This equation, however, can be thought of as givi
the nonassociativity parametera in terms of the noncommu
tativity matrix u. The solution is

a5F1

4
umnumn2AS 1

4
umnumnD 2

2detuG1/2

. ~2.15!

As we can see from the above analysis it is necessary
sufficient to chooseu in such a way that Eq.~2.15! is a very
small number in order for the associativity of the star prod
~2.1! to be broken with the very small amount given by E
~2.10!.

Using the star product~2.1! we can define the Moya
bracket of any two functionsf (x) andg(x) by $ f (x),g(x)%
5 f * g(x)2g* f (x) and in particular the Moyal brackets o
two coordinate functions are given by

$xm,xn%5 ix~x!umn. ~2.16!

For self-consistency these brackets should satisfy the Ja
identity

ˆxb,$xm,xn%‰1ˆxn,$xb,xm%‰1ˆxm,$xn,xb%‰50, ~2.17!

but

ˆxb,$xm,xn%‰52 iax~]bx!umn. ~2.18!

Clearly at the limit of associativity (a→0), Eq. ~2.18! is
simply zero and therefore Eq.~2.17! holds. We would like,
however, to maintain Jacobi identity even foraÞ0. We then
need to impose the following constraint onu:

uabumn1uanubm1uamunb50, ~2.19!

which will make Eq.~2.17! an identity. A class of solutions
to Eq. ~2.19! can be given by those antisymmetric tensorsu
such that

umn5aa
mab

n u0
ab , ~2.20!

whereaa
m are arbitrary real numbers andu0 is an antisym-

metric tensor which satisfies

u0
mnu0

ab5~hmahnb2hmbhna!. ~2.21!

Equation.~2.19! is the only constarint we need to impose o
the tensorsu in order to have both the associativity requir
ment in the sense of Eq.~2.10! and Jacobi identiy~2.17! to
be satisfied. By requiring that Eq.~2.16! should lead to a
certain kind of space-time uncertainty relations we can f
ther restrict the allowed antisymmetric tensorsu as we will
see in the next section.

B. Algebra „A,* …

A general elementf (x) of A will be defined by

f ~x!5E d4p

~2p!4
f̃ ~p,x!eipx, ~2.22!
4-3
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where f̃ is a smooth continuous function of the four-vectorp

and of the fuzziness functionx which satisfiesf̃ * (2p,x)
5 f̃ (p,x). It is of the general form f̃ (p,x)5 f̃ 0(p,x)
1a f̃1(p,x). The star product~2.1! can then be rewritten a

f * g~x!5E d4p

~2p!4

d4k

~2p!4 F f̃ ~p,x!g̃~k,x!e2 ipCk/2

1a f̃~p,x!
]g̃~k,x!

]x
O~p,k,x,]x!Gei (p1k)x

5E d4p

~2p!4
f̃ * g̃~p,x!eipx. ~2.23!

O(p,k,x,]x) is the function defined by Eq.~2.10!. The Fou-
rier transform f̃ * g̃(p,x)5 f̃ * g̃(p,x)01a f̃* g̃(p,x)1 is
given, on the other hand, by

f̃ * g̃~p,x!5E d4k

~2p!4 F f̃ ~p2k,x!g̃~k,x!e2 i (p2k)Ck/2

1a f̃~p2k,x!
]g̃~k,x!

]x
O~p2k,k,x,]x!G .

~2.24!

The function f̃ (p,x) can always be expanded asf̃ (p,x)
5(n50anf̄ n(x) f̃ (p) which suggests that Eq.~2.22! can be
rewritten in the form@6#

f ~x!5 (
n50

anf n~x!, ~2.25!

where

f n~x!5 f̄ n~x!E d4p

~2p!4
f̃ n~p!eipx. ~2.26!

f n(x) are the generators of the algebra (A,* ) written in a
way which will allow us to see the classical limit defined b
x→0. In this limit they must generate the algebra (A,.).
Therefore the functionsf̄ n(x) are such that they tend to
constant whenx→0. This constant can always be chosen
be 1.

C. Change of generator basis

Finally we would like to rewrite Eq.~2.16! in a way
which will be more suitable for quantization. This will in
volve finding a basiszm(x) for which the Moyal brackets
$zm,zn% are in the center of the algebra (A,* ), in other words
ˆxa,$zm,zn%‰50. This is not the case for the basisxm as we
can see from Eq.~2.18!. We then must have$zm,zn%
5 iumnC(x) whereC(x) is any function ofx which does com-
mute ~in the sense of Moyal brackets! with the elements of
the algebra (A,* ). To find such a basis we need first to fin
the central elementsC(x) of the algebra (A,* ). To this end
02500
we first remark that by using Eq.~2.1! the Moyal brackets of
the generatorxm with any functionf (x) are given by

$xm, f %5 ixumn
] f

]xn
. ~2.27!

It is then clear that the only obvious solutions to the equat
$xm, f %50 are the trivial ones, namely, the constant fun
tions. However, choosing the central elementC(x) to be a
constant is not good because it will lead to a singular basi
x(x)50 which can be seen from the fact that the Moy
brackets$zm,zn% at x(x)50 will then not vanish on the con
trary to what happens to the Moyal brackets~2.16! which
clearly vanish atx50. So we must find at least one centr
element which is not a constant function. The only clear w
to find such an element is to use perturbation theory.
assume then that the quantum field theory which we w
write on QR4 is relevant only up to the\N order. The func-
tion x(x) will then take the form

x~x!5 (
n51

N

\nxn~x! ~2.28!

and we would have that

xN11~x!50. ~2.29!

This last equation can be rewritten by using Eq.~2.27! as

$xm,xN%50; ~2.30!

in other words,xN is a central element of the algebraA in
the\N approximation. Actually any combination of the ord
of \N is central as can be seen from Eqs.~2.27! and ~2.29!.
By choosingC(x)5xN(x), the Moyal brackets of any two
coordinateszm(x) andzn(x) will then read

$zm,zn%5 ixNumn. ~2.31!

xm and zm(x) give equivalent descriptions of the algeb
(A,* ) and therefore the quantization of Eq.~2.16! is equiva-
lent to the quantization of Eq.~2.31!. It is obvious, however,
that the quantization of Eq.~2.31! is more straightforward
than the quantization of Eq.~2.16!. The new basiszm(x) can
be found in terms ofxm as follows. First we note that for the
purpose of findingzm it is sufficent to work up to the secon
order inC. The star product~2.1! of any two functionsf (x)
andg(x) will read, up to this order,

f * g~x!5 f ~x!g~x!1
i

2
x~x!~umn1 iahmn!

] f

]xm

]g

]xn

2
1

8
x2~x!~umn1 iahmn!~uab1 iahab!

3
]2f

]xm]xa

]2g

]xn]xb
, ~2.32!

and therefore the Moyal brackets of these two functions
4-4
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$ f ,g%5 ix~x!umn
] f

]xm

]g

]xn

2
ia

2
x2~x!uabhmn

]2f

]xm]xa

]2g

]xn]xb
. ~2.33!

In particular the Moyal brackets of the two coordinateszm(x)
andzn(x) are given by

$zd,zs%5 ix~x!umn
]zd

]xm

]zs

]xn

2
ia

2
x2~x!uabhmn

]2zd

]xm]xa

]2zs

]xn]xb
. ~2.34!

Comapring Eqs.~2.31! and ~2.34! will then give that

umn
]zd

]xm

]zs

]xn
5xN21uds

⇒ ]zm

]xn
5x~x!(N21)/2hn

m .

~2.35!

Equation ~2.35! defines scaling transformations which d
pend on space-time points. A more thorough study of th
transformations will be reported elsewhere. As we c
clearly see the definition~2.35! of the new basiszm in terms
of xm will make the quadratic term in Eq.~2.34! vanish, and
for that matter all terms which are higher orders inC will
also vanish. We would like now to rewrite Eq.~2.35! in a
form which is better suited for quantization. To this end w
make use of Eq.~2.27! for the case wheref 5zn. We then
obtain

$xm,zn%5 ix~x!(N11)/2umn, ~2.36!

where we have used Eq.~2.35!. Equation~2.36! is actually
Eq. ~2.35! only written in terms of Moyal brackets whic
under quantization will go to the commutator as we will se
For the coordinateszm the Jacobi identityˆzm,$zn,za%‰
1ˆza,$zm,zn%‰1ˆzn,$za,zm%‰50 trivially follows from Eq.
~2.31!.

By using Eq.~2.33! we can find that the Moyal bracket
of the generatorzm with any functionf of A can be written as

$zm, f %5 ixNumn
] f

]zn
, ~2.37!

where we have made use of Eq.~2.35!. The Moyal brackets
~2.31! and ~2.37! do clearly correspond to the star produc

f * g~z!5expS i

2
Dmn~z!

]

]jm

]

]hnD f ~z1j!g~z1h!uj5h50 ,

~2.38!
02500
e
n

.

where now Dmn(z)5xN(umn1 iahmn). This star product,
however, is completely equivalent to Eq.~2.1!. It is simply
the star product~2.1! written in the basiszm. A general ele-
ment of the algebra (A,* ) will be written in this basis as

f ~z!5E d4p

~2p!4
f̃ ~p!eipz, ~2.39!

where f̃ (p)5 f̃ 0(p)1a f̃1(p). The star product~2.38! will
then have the form

f * g~z!5E d4p

~2p!4

d4k

~2p!4
f̃ ~p!g̃~k!e2 ipDk/2ei (p1k)z

5E d4p

~2p!4
f̃ * g̃~p!eipz, ~2.40!

where f̃ * g̃(p) is given by

f̃ * g̃~p!5E d4k

~2p!4
f̃ ~p2k!g̃~k!e2 i (p2k)Dk/2. ~2.41!

In this casef̃ * g̃(p) is a function only ofxN and not ofx.
However,xN is simply a constant in the\n approximation
and therefore Eq.~2.40! is of the same form as Eq.~2.39!.

III. QUANTUM SPACE-TIME

A. Quantization

We will now show that the algebra (A,* ) does really
describe a quantum space-time. In other wordsQR4 is a
space-time we obtain by quantizatingR4 in the following
way. First of all we assume that the quantization ofR4 is
completely equivalent to the quantization of its underlyi
algebra (A,.) @3,4#. Then in analogy with quantum mechan
ics we will quantize (A,.) by the usual quantization prescrip
tion of replacing the coordinate functionsxm by the coordi-
nate operatorsXm so that the algebra of the functions (A,.)
is mapped onto an algebra of operators (A,3) @6#. If this
algebra of operators (A,3) is to describe the quantum spac
time QR4, it must be constructed in such a way that it will b
homomorphic to (A,* ). In other words we must construct
homomorphismX from (A,3) to (A,* ) which will map any
elementF(X) of A to the element~2.22! of (A,* ) in such a
way that the operator productF(X)3G(X) is mapped onto
the star product~2.23!. We would then have

F~X!→X„F~X!…5 f ~x! ~3.1!

together with

F~X!3G~X!→X„F~X!3G~X!…5 f * g~x!, ~3.2!

whereg(x) is the image of the operatorG(X). In particular
from Eq. ~3.1! the coordinate operatorsXm are mapped onto
the coordinate functionsxm and from Eq.~3.2! the Moyal
brackets$ f ,g% are mapped onto the commutator@F,G#3

5F3G2G3F @34#. As we will see the homomorphismX
4-5
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has no nontrivial kernals and therefore the arrows in E
~3.1! and ~3.2! can go the other way.

The product3 which we will call the nonassociative op
erator product cannot be the ordinary dot product of ope
tors because it is clear from the definition~3.2! that 3 is
nonassociative whereas the dot product of operators is t
ally an associative product. We can assume, however, th
will reduce at the limit ofa→0 to the ordinary dot produc
of operators. The differenceD between the nonassociativ
product3 and the ordinary dot product is of the order ofa
and it is given by

D~F,G!5
F3G2F•G

a
, ~3.3!

whereF•G is defined by

X„F~X!•G~X!…5 lim
a→0

f * g~x!. ~3.4!

The first step in constructing this homomorphismX is to
impose on the coordinate operatorsXm commutation rela-
tions which are of the same form as Eq.~2.16!. We then have

@Xm,Xn#35 iRumn, ~3.5!

whereR is an operator defined by

X~R!5x~x!. ~3.6!

In terms of the ordinary commutator, Eq.~3.5! will simply
read

@Xm,Xn#5 iRumn. ~3.7!

The contributionD(Xm,Xn)2D(Xn,Xm) to this commutator
is identically zero becauseD(Xm,Xn)5(2R/2)hmn.

The operatorR clearly does not commute withXm be-
cause

@R,Xm#35Rm, ~3.8!

where Rm are the elements of the algebraA mapped to
$x,xm%, i.e.,

X~Rm!5$x,xm%52 ixumn]nx. ~3.9!

Equation~3.8! will simply mean that the Jacobi identity

†Xm,@Xn,Xa#3‡31†Xa,@Xm,Xn#3‡31†Xn,@Xa,Xm#3‡350
~3.10!

is not satisfied unless we chooseu to satisfy Eq.~2.19!.
In general the commutator of the generatorXm with any

elementF(X) of the algebraA is found to be

@Xm,F#35DF, ~3.11!

where by using Eqs.~3.1! and~3.2!, DF is the operator inA
mapped to$xm, f %, i.e.,

X~DF !5$xm, f %. ~3.12!
02500
s.
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It is clear from this equation that the central elements of
algebraA are either those operators which are mapped o
the constant functions or the operatorO which is mapped
onto xN. The operators mapped onto the constant functi
are clearly multiples of the identity operator1. The operator
O, on the other hand, isRN which can be seen as follows. B
using Eq.~2.32! we can prove that in the\N approximation
we have thatx* (x* (x* „x•••* (x* x)…)•••)5xN where we
have N factors in the product. This equation will becom
under quantization RN1a(m50

N22RmD(R,RN2m21)5O.
However, by using the definition~3.3! of D, one can check
that in the\N approximation the second term in the expre
sion ofO is of the order of\N11 and thereforeO5RN. The
generatorsXm will then commute withRN, i.e.,

@Xm,RN#350. ~3.13!

In generalXm will commute with any element ofA which is
of the order of\N.

The fact thatR does not commute with the algebraA
makes the definition~3.5! of quantum space-time not ver
useful when we try to construct explicitly the homomo
phismX. To see this more clearly we first note that gene
elementsF(X) of the algebraA are of the form

F~X!5E d4p

~2p!4
@ F̃~p,R!eipX1e2 ipXF̃1~p,R!#.

~3.14!

The nonassociative product of any two such elementsF(X)
and G(X) will involve four different terms becauseR does
not commute withe( ipX). So there is no obvious way as t
how to mapF(X) given by Eq.~3.14! onto f (x) given by
Eq. ~2.22! or for that matter how to mapF(X)3G(X) onto
the star productf * g.

For the purpose of quantization a better definition
quantum space-timeQR4 is such that the commutators of th
generators are in the center of the algebra. We need the
find a basis Zm for which we have the commutator
@Zm,Zn#35 iumnC whereC is a central element of the algebr
A. If Zm is the operator inA mapped to the coordinate func
tion zm introduced in Eq.~2.31!, thenC will be simply given
by RN. We would then have

@Zm,Zn#35 iumnRN. ~3.15!

The ordinary commutator will also be given by a simil
equation @Zm,Zn#5 iumnRN because of the fact tha
D(Zm,Zn)5(2RN/2)hmn.

The definition of the operatorsZm in terms ofXm can be
given by the equation

@Xm,Zn#35 iumnR3
(N11)/2, ~3.16!

with

X~R3
(N11)/2!5x (N11)/2, ~3.17!

where we clearly have used the requirement that this eq
tion should be mapped onto Eq.~2.36!.
4-6
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The coordinate operatorsZm are clearly unbounded an
one would like to work with bounded operators. We w
therefore consider instead the operatorseipZ as the genera
tors of the algebraA. A general elementF(Z) of A will be
defined by

F~Z!5E d4p

~2p!4
F̃~p!eipZ. ~3.18!

F̃ is a smooth continuous function of the four-vectorp which
must satisfyF̃1(2p)5F̃(p) in order for F(Z) to be Her-
mitian.

The product of any two elementsF(Z) andG(Z) of A can
be found to be

F~Z!3G~Z!5E d4p

~2p!4

d4k

~2p!4
F̃~p!G̃~k!e2 iRNpuk/2ei (p1k)Z

1aE d4p

~2p!4

d4k

~2p!4
F̃~p!G̃~k!D~eipZ,eikZ!,

~3.19!

where we have made use of Weyl formula

eipZeikZ5e2 iRNpuk/2ei (p1k)Z. ~3.20!

B. Coherent states

Until now we did not define the homomorphismX explic-
itly and once this is done the quantization ofR4 will be
completed. We claim thatX(F) is defined as the map takin
F to its diagonal matrix element in the coherent states b
ux& @11,28,29#. If we are working in the basis~3.15! instead
of ~3.5!, then X(F) is defined as the map takingF to its
diagonal matrix element in the coherent states basisuz&. In
order to defineX we need first to introduce the cohere
states basisuz&. We start by performing a coordinates tran
formation to bringu to the standard formB given by @16#

B5aS is2 0

0 is2
D , ~3.21!

where s2 is the Pauli matrix.u and B are related byB
5LuLT where L is an SO(4) transformation. Equation
~3.15! becomes, under this transformation,

@Qm,Qn#5 iRNBmn, ~3.22!

where Qm are the new coordinate operators and they
given in terms ofZm by the equationQm5Lm

nZn. The only
non-vanishing commutation relations in Eq.~3.22! are
@Q0,Q1#5@Q2,Q3#5 iaRN and as we can see we have tw
commuting sets of conjugate variables (Q0,Q1) and
(Q2,Q3). Therefore we need to introduce only two commu
ing sets of creation and annhilation operators (a,a†) and
(b,b†). These creation and annhilation operators are defi
by
02500
is

-

e

-

d

a5
1

A2aRN
~Q01 iQ1!,

b5
1

A2aRN
~Q21 iQ3!. ~3.23!

The commutation relations~3.22! in terms of these creation
and annhilation operators read@a,a†#5@b,b†#51. A state
un& (nPZ1) of the harmonic oscillator (a,a†) is defined by
a†un&5An11un11& andaun&5Anun21&. In the same way
a stateum& (mPZ1) of the harmonic oscillator (b,b†) is
defined byb†um&5Am11um11& and bum&5Amum21&.
Following @37# we can then introduce the coherent sta
uq0q1& and uq2q3& defined by the equations

uq0q1&5e2q02
1q12

/4aRN

(
n50

`
~q01 iq1!n

~2aRN!n/2An!
un&,

uq2q3&5e2q22
1q32

/4aRN

(
m50

`
~q21 iq3!m

~2aRN!m/2Am!
um&.

~3.24!

These coherent states can also be written as

uq0q1&5U~q0,q1!u0&,

uq2q3&5U~q2,q3!u0&, ~3.25!

where the operatorsU(q0,q1) andU(q2,q3) are given by

U~q0,q1!5expS i

aRN
~q1Q02q0Q1!D ,

U~q2,q3!5expS i

aRN
~q3Q22q2Q3!D .

~3.26!

These operators have the property that

U21~q0,q1!~aQ01bQ1!U~q0,q1!

5a~Q01q0!1b~Q11q1!,

U21~q2,q3!~aQ21bQ3!U~q2,q3!

5a~Q21q2!1b~Q31q3!, ~3.27!

wherea andb are arbitrary complex numbers. This proper
simply means that the effect ofU(q0,q1) or U(q2,q3) on the
operatorsQ0 andQ1 or Q2 andQ3 is to translate them by the
c numbersq0 andq1 or q2 andq3, respectively. The opera
tors U(q0,q1) andU(q2,q3) are therefore called translatio
operators. Finally a general coherent state of the theor
clearly given by

uq&5uq0q1&uq2q3&5U~q0,q1!U~q2,q3!u0&u0&.
~3.28!

Using the above structure we can then show the identity
4-7
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^queipQuq&5eipqe2aRNp2/4. ~3.29!

The proof goes as follows:

^queipQuq&5^q0q1uei (p0Q01p1Q1)uq0q1&

3^q2q3uei (p2Q21p3Q3)uq2q3&

5^0ueAeBe2Au0&^0ueCeDe2Cu0&, ~3.30!

where A5(2 i /aRN)(q1Q02q0Q1), B5 i (p0Q01p1Q1),
C5(2 i /aRN)(q3Q22q2Q3), andD5 i (p2Q21p3Q3). By
using the Weyl formula~3.20! we can then compute tha
exp(A)exp(B)exp(2A)5exp(@A,B#)exp(B). However, @A,B#
5 i (p0q01p1q1) and thereforê 0uexp(A)exp(B)exp(2A)u0&
5expi(p0q

01p1q
1)^0uexp(B)u0&. Using the Weyl formula

again we get that exp(B)5exp(2j*a11ja)
5exp(2uju2/2)exp(2j*a1)exp(ja) where j is given by
j5(AaRN/2)(ip01p1). The final result is
^0uexp(A)exp(B)exp(2A)u0&5exp@i(p0q

01p1q
1)#exp@(2aRN/

4)(p0
21p1

2)#. Similar calculations will give that
^0uexp(C)exp(D)exp(2C)&5exp@i(p2q

21p3q
3)#exp@(2aRN/

4)(p2
21p)#. All of this put together gives Eq.~3.29!. How-

ever, the formula~3.29! is clearly valid in any other basi
and not only in the basis~3.22!. Rotating back to the basi
~3.15! will then give

^zueipZuz&5eipze2axNp2/4, ~3.31!

where it is understood thatX N is the eigenvalue of the op
erator RN on the coherent stateuz& defined by uz&
5U(L21)uq&. Equation~3.31! is the basic identity neede
in defining the mapX. To show this we rewrite Eq.~3.31! in
the following way:

expS 2
axN

4

]

]zm

]

]zm
D ~^zueipZuz&!5eipz. ~3.32!

We note that at the limit ofp→0 this identity takes the form

^zuZmuz&5zm. ~3.33!

Equation~3.32! suggests that we define the homomorphi
X by

F~Z!→X„F~Z!…5expS 2
axN

4

]

]zm

]

]zm
D @^zuF~Z!uz&#

5 f ~z!. ~3.34!

Now putting Eqs.~2.39! and~3.18! into Eq.~3.34! and using
Eq. ~3.31! we get thatf̃ (p)5F̃(p) which simply means tha
X has no non-trivial kernals@37#. The homomorphismX
needs also to satify the requirement
02500
F3G~Z!→X„F3G~Z!…5expS 2
axN

4

]

]zm

]

]zm
D

3@^zuF3G~Z!uz&#

5 f * g~z!, ~3.35!

which can be checked by putting Eqs.~2.40! and ~3.19! in
this last equation and using again Eq.~3.31!.

C. Uncertainty relations

A class of solutions to the condition~2.14! which was
found to be the necessary and sufficient condition for
associativity to hold approximately in the sense of Eq.~2.10!
can be given by

2
1

a4
detu[

1

a4
~eW•bW !25cosh2a,

2
1

2a2
umnumn[

1

a2
~eW22bW 2!5sinh2a,

~3.36!

whereeW andbW are defined by

u5S 0 2 ie1 2 ie2 2 ie3

ie1 0 b3 2b2

ie2 2b3 0 b1

ie3 b2 2b1 0

D , ~3.37!

anda is a real number which can be taken to be a function
a. The valuea50 corresponds to the case considered in@6#.
From the above two equations~3.36! we can find that

e2>b2>a2. ~3.38!

We would like now that the commutation relations~3.5! lead
to certain space-time uncertainty relations. This will~in prin-
ciple! further restrict the allowed antisymmetric tensorsu.
Using the basic identity of quantum mechanics,Da2Db2

> 1
4 u^@A,B#&u2 whereDa25^DA2&5^A2&2^A&2, the space-

time uncertainty relations are

~Dxm!2~Dxn!2>
1

4
u^@Xm,Xn#&u25

^R&2

4
uumnu2

⇒

~Dx0!2 (
i 51i 53

~Dxi !2>
^R&2

4
eW2

and

(
1< i , j <3

~Dxi !2~Dxj !2>
^R&2

4
bW 2. ~3.39!
4-8
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By using the facts ((Dxi)2>((Dxi)2, (( i , jDxiDxj )2

>( i , j (DxiDxj )2 and Eq.~3.38! the above uncertainty rela
tions will take the form

Dx0(
i 51

i 53

Dxi>
l

2
,

(
1< i , j <3

DxiDxj>
l

2
, ~3.40!

where l5a^R&. These are the same uncertainty relatio
which were derived in@6#. We can conclude from the rela
tions ~3.40! that quantum space-time has a cellular structu
The minimal volume~the volume of one cell! is (A2pl)4

and therefore a finite volumeV of quantum space-time con
tains V/(A2pl)4 states. An estimation of the fuzziness
space-time would determine or at least give a bound ol
which will restrict further the allowed tensorsu.

IV. QUANTUM FIELD THEORIES ON QR4

A. Dirac operator

Before we try to write action integrals on a given spa
we need always to define first the Dirac operator on it. T
Dirac operator will provide the notion of derivations on th
space and by constructing it we would have basically c
structed Connes triplet associated to this space@1#. For QR4

this triplet consists of a representationP(A) of the algebraA
underlying the quantum space-time in some Hilbert spa
the Dirac operatorD, and the Hilbert spaceH on which it
acts. In the last section we have already constructed the
resentationP(A) in terms of the coherent states basisux&.
The corresponding Dirac operator in the other hand will
defined by@14#

E d4x expS 2
ax

4

]

]xm

]

]xm
D ~^xu@D,F#33@D,F#3ux&!

5E d4x ]mf* ]mf, ~4.1!

wheref is any element of the algebraA andF is its corre-
sponding operator inA. Clearly the ordinary Dirac operato
D on R4 given by D5gm]m , where $gm% is the Clifford
algebra satsifying$gm,gn%52hmn, will satisfy Eq. ~4.1! in
the limit u→0. In other words it will satisfy the equatio
Tr@D,F#@D,F#5*d4x]mf]mf. It is reasonable to assum
that this Clifford algebra will not get modified under quan
zation of space-time so that we can writeD as

D5gmDm1aF. ~4.2!

This assumption can be justified by the fact that theg ’s are
not elements of the algebraA and therefore quantizing th
algebra will not quantize them.F in Eq. ~4.2! is a connection
arising from the nonassociativity of the underlying algeb
(A,* ) and it is defined such that Eq.~4.1! takes the form
02500
s

.

s

-

e,

p-

e

E d4x expS 2
ax

4

]

]xm

]

]xm
D ~@Dm ,F#33@Dm,F#3!

5E d4x ]mf* ]mf. ~4.3!

Comparing Eqs.~4.1! and ~4.3! we can find thatF should
satisfy the condition

TrFgm@Dm ,F#@F,F#1
i

8
smnD~@Dm ,F#,@Dn ,F#!G

52
1

8
~hmn2gmgn!E d4x x]a]a~^xu@Dm ,F#

3@Dn ,F#ux&!, ~4.4!

where (i /2)smn5@gm,gn#. A trivial solution to Eq.~4.4! is
given by

@F,F#52
i

8
@gaDa ,F#21smnD~@Dm ,F#,

3@Dn ,F#!2@gaDa ,F#21F0 ,

where

^xuF0ux&5
1

8
~hmn2gmgn!x]a]a~^xu@Dm ,F#

3@Dn ,F#ux&!. ~4.5!

Dm are by definition the quantum derivations onQR4 and
they are given by

expS 2
ax

4

]

]xm

]

]xm
D ~^xu@Dm ,F#3ux&!5]mf. ~4.6!

By Eqs.~3.34! and ~3.35!, Eq. ~4.6! satisfies Eq.~4.3! trivi-
ally. To find the quantum derivationsDm we first have to
reexpress the classical derivations in terms of the Mo
brackets and the star product introduced in Sec. I and o
this is done the transition to the quantum derivations is qu
straightforward. It simply consists of replacing the Moy
brackets by the commutator@ ,#3 and the star product by th
nonassociative operator product3 as explained in the las
section. By using the Moyal brackets~2.33! any arbitrary
vector fieldL m should satisfy

$L m,f%5 ixuab]aL m]bf, ~4.7!

wheref is any element of the algebraA. It is clear that we
have to assume thatL m is of the order of\N21 in order to
have only the term written in Eq.~4.7!. This vectorL m, on
the other hand, will be defined by

$L m,f%5 ixNumb]bf. ~4.8!

Comparing Eqs.~4.7! and ~4.8! we get that
4-9
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]aL m5xN21ha
m

⇒

L m5E xN21 dxm1L 0
m ,

~4.9!

where L 0
m is an x-independent vector. In terms of Moya

brackets this last equation~4.9! will be rewritten as

$xm,L n%52 ixNumn. ~4.10!

Quantizing Eq.~4.8!, however, will give that

@Lm,F#35 iumnRN3@Dn ,F#3 , ~4.11!

where we have used Eq.~4.6!. This last equation can b
iterated to give

@Dm ,F#352 iR2Numn
21@Ln,F#3

1 iaR2Numn
21D~RN,R2N@Ln,F#!. ~4.12!

This is the definition of the quantum derivationsDm and it is
given in terms of the operatorsLm defined by

^xuLmux&5L m. ~4.13!

It must also satisfy

@Xm,Ln#352 iRNumn, ~4.14!

which follows from Eq.~4.10!. Putting everything togethe
the Dirac operator is then given by:

D52 iR2Numn
21gmLn1adD, ~4.15!

where

@dD,F#35@F,F#31 iR2Numn
21D~RN,R2N@Ln,F#!.

~4.16!

The Dirac operator~4.15! does act on the Hilbert space

H5A^ C4. ~4.17!

B. Renormalization and causality

We define scalar fieldsF̂ on the quantum space-timeQR4

to be elements of the algebraA; they are given by Eq.~3.14!
or ~3.18!. Action integrals for such fields will have the form
@14#

S5E d4x expS 2
ax

4

]

]xm

]

]xm
D F ^xu

1

2
@D,F̂#33@D,F̂#3

2
m2

2
F̂3F̂2

g4

4!
~F̂3F̂!3~F̂3F̂!ux&G . ~4.18!

The trace is taken over the coherent states basisux&. Herem

is the mass of the scalar fieldF̂, andg is the strength of the
02500
F̂4 interaction. These two parameters are assumed to be
physical parameters of the theory; in other words, they

finite. The fieldF̂ is mapped via the homomorphismX to an
ordinary scalar fieldf̂ given by

f̂~x!5expS 2
ax

4

]

]xm

]

]xm
D ~^xuF̂ux&!. ~4.19!

In terms of this new field the action~4.18! will read

S5E d4xF1

2
]mf̂* ]mf̂2

m2

2
f̂* f̂2

g4

4!
~f̂* f̂ !* ~f̂* f̂ !G .

~4.20!

The fieldf is a general element of the algebra (A,* ) which
is of the form~2.22!. It is clearly a function ofx which can
always be put in the form

f̂~x!5E d4p

~2p!4
f̂~p,x!eipx

5f1\c11\2c21•••1\NcN .
~4.21!

f is a scalar field which is independent of\ and of the
fuzziness functionsx1, x2,..., xN; in other words it is the
~commutative! classical field of the theory.c1 ,c2 , . . . ,cN ,
on the other hand, are scalar fields which are also indep
dent of \ but do depend onx1 ,x2 , . . . ,xN. Their depen-
dence onx ’s is such that they go to zero at the limit of a
x i→0. c1,c2,...,cN are assumed to be finite and therefore t
noncommutative fieldf̂ is also finite.f̂ can then be identi-
fied with the renormalized scalar field of the theory. F
simplicity we will only consider the two-loop calculation o
the f4 theory. In this caseN52 and we will have three
scalar fieldsf, c1, andc2 and two fuzzyness functionsx1
and x2. The action~4.20! in terms of these functions wil
read

S5S@f#1S@f,c1 ,c2#. ~4.22!

For the moment we will only focus on the first term in E
~4.22!. The actionS@f# depends only on the fieldf and it
has the form

S@f#5E d4x L1E d4x DL, ~4.23!

where

L5
1

2
]mf]mf2

m2

2
f22

g4

4!
f4 ~4.24!

and
4-10
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DL5E d4x xDL1~f!1E d4x x2DL2~f!

5E d4p

~2p!4
x~p!DL1~f,p!1E d4p

~2p!4

d4l

~2p!4
x~ l !

3x~p2 l !DL2~f,p!. ~4.25!

In Eq. ~4.25! and in all that will follow f (p) is the Fourier
transform of the functionf (x) and it is defined byf (p)
5*d4x f(x)eipx.

Althoughf is the classical field, we will show below tha
L in ~4.24! generates exactly the renormalized action of
f4 theory, and as Eq.~4.23! suggests,DL will generate the
corresponding counter terms.x will depend therefore on the
classical LagrangiansDL1 , DL2 and the usual renormaliza
tion constantsZ1 , Z3, and dm2. For consistencyDL1 and
DL2 should not depend onx which is the case as we can s
from their explicit expressions

DL1~f,p!5E d4k

~2p!4
f~k!F2

a

4
~pk2k2!

3~pk2k21m2!f~p2k!

2
3ag4

4! E d4q

~2p!4

d4l

~2p!4
~ql !

3f~p2k2q2 l !f~q!f~ l !G ~4.26!

and

DL2~f,p!5E d4k

~2p!4
f~k!F 1

16
~pk2k21m2!

3~pAk2kAk!2f~p2k!

1
1

4

g4

4!E d4q

~2p!4

d4s

~2p!4

3S ~qAs!21
1

2
@~p2q2s!A~q1s!#2D

3f~p2k2q2s!f~q!f~s!G , ~4.27!

whereA5u1 iah. For thef4 theory it is known that in the
first order of quantum theory both the mass and the coup
constant need to be renormalized. In the second order, h
ever, we need also a field renormalization. So we would h

E d4p

~2p!4
x (1)~p!DL1~f,p!

5E d4xF2
1

2
dm1

2f22
g4

4!
Z1

(1)f4G ~4.28!
02500
e

g
w-
e

and

E d4p

~2p!4
x (2)~p!DL1~f,p!

1E d4p

~2p!4

d4l

~2p!4
x (1)~ l !x (1)~p2 l !DL2~f,p!

5E d4xF1

2
Z3

(2)]mf]mf2
1

2
dm2

2f22
g4

4!
Z1

(2)f4G .
~4.29!

x (1) and x (2) are given byx (1)5\x1 and x (2)5\2x2. The
action ~4.23! will then take the form

S@f#5E d4xF1

2
Z3]mf]mf2

m21dm2

2
f22

g4

4!
Z1f4G .

~4.30!

Z3511Z3
(2) , Z1511Z1

(1)1Z1
(2) , and dm25dm1

21dm2
2.

Solving Eqs.~4.28! and ~4.29! for x1 andx2 will give

x (1)~p!5
f~p!

DL1~f,p! F2
1

2
dm1

2f~2p!

2
g4

4!
Z1

(1)E d4k

~2p!4

d4l

~2p!4
f~k!f~ l !

3f~2p2k2 l !G ~4.31!

and

x (2)~p!5
f~p!

DL1~f,p! F1

2
@Z3

(2)p22dm2
2#f~2p!

2
g4

4!
Z1

(2)E d4k

~2p!4

d4l

~2p!4
f~k!f~ l !

3f~2p2k2 l !G
2

DL2~f,p!

DL1~f,p!
E d4l

~2p!4
x (1)~ l !x (1)~p2 l !.

~4.32!

Putting the action~4.30! back into Eq.~4.22! we get

S5S@f̂#1S@f̂,c1#, ~4.33!

whereS@f̂# is the action integral given by Eq.~4.30! with
the substitutionf→f̂, i.e.,

S@f̂#5E d4xF1

2
Z3]mf̂]mf̂2

m21dm2

2
f̂22

g4

4!
Z1f̂4G .

~4.34!
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This is exactly the standard renormalized action of thef4

theory with all of its counter terms. S@f̂,c1#

5*d4x L(f̂,c1), on the other hand, is given by

L@f̂,c1#52
a\2x1

2
]m]nf̂]m]nc11

a\2m2x1

2
]mf̂]mc1

1
a\2g4x1

4
f̂2]mf̂]mc11

a\2g4x1

4
f̂c1]mf̂]mf̂

1\dm1
2f̂c11

\g4Z1
(1)

6
f̂3c1 . ~4.35!

As we can immediately remark, this action does not cont
the fieldc2 given in Eq.~4.21!. So at this order of perturba
tions,c2 is an arbitrary finite scalar field.

Clearly the finiteness requirement given by equatio
~4.28! and ~4.29! reduces considerably the noncausality
the fieldf̂. However, as we can see from Eqs.~4.33!, ~4.34!,
and ~4.35! this scalar field is still highly noncausal in th
sense that its conjugate momentum, which follows from
aciton~4.33!, is not given by the ordinary expressionZ3]0f̂.
It does contain extra corrections coming from Eq.~4.35!.
Nevertheless, one can construct a causal fieldf̂c from f̂ as
follows. The action integral off̂c will be by definition given
by

S@f̂c#5E d4xF1

2
Z3]mf̂c]

mf̂c2
m21dm2

2
f̂c

22
g4

4!
Z1f̂c

4G ,
~4.36!

and it should be equal to Eq.~4.33!, i.e.,S@f̂c#5S. The field
f̂, on the other hand, will be defined by

f̂c5f̂1\2c28 . ~4.37!

From Eqs.~4.33! and ~4.36! the fieldc28 should satisfy

\2c2852
L~f̂,c1!

@]21m21~g4/6!f̂2#f̂
. ~4.38!

The fieldf̂c is causal but not necessarily finite. The fieldf̂,
on the other hand, is finite but not causal. Clearly the fin
and causal scalar field theory which we can construct
QR4 is such thatf̂c5f̂. The solution to this condition is
clealry c2850 which can be reexpressed as a constraint
the fieldc1:

L~f̂,c1!50. ~4.39!

The only consistent solution to this equation is the triv
one: c150. It is the only solution we can check which
compatible with the fieldf̂ being finite. The class of fieldsf̂
given by Eqs.~4.21! and~4.39! are the only both causal an
finite scalar fields which we can write down onQR4. The
corresponding action integral is given by Eq.~4.20! or,
equivalently, Eq.~4.34!.
02500
in
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It is very instructive to perform the following consistenc
check on our results. First we remark that the commutat
relations ~2.16! combined with the solutions~4.31! and
~4.32! lead directly to the conclusion that the coordinatesxm

diverge, which definitely needs to be avoided in order
keep the finiteness of the fieldf̂. The solution to this prob-
lem is to assume that the antisymmetric tensoru scales in
such a way that the coordinatesxm remain well defined. We
then writeu5ZuuF, and compute the commutation relation
~2.16! which will then take the form$xm,xn%5 iZu@a1Z1

2

1a2dm41a3Z11a4dm21a5Z1dm21a6Z31a7#uF
mn. ai

5ai(x),i 51,7, arefinite ~computable! functions onR4. The
minimal prescription that will keep this commutator fro
diverging is thatZu51/(Z1

2dm4Z3). In other wordsu di-
rectly measures the infinities of the field theory. We w
leave the discussion on how really smallu is to a future
communication.

The action~4.18! or ~4.20! may be viewed as a classica
action describing af4 theory of a~classical! noncommuta-
tive field f̂ living on a quantum space-timeQR4. The non-
commutativity effects of this theory were shown to be e
actly the quantum effects of an ordinary quantumf4 theory
of a quantum~commutative! field f̂ living on R4. This map
between the noncommutative classical field thoery and
commutative quantum field theory is consistent by constr
tion because the two limits, the classical limith→0 and the
commutative limitx→0, are identical.

V. CONCLUSION

We showed that the scalar field action onR4 plus its
counterterms can be rewritten only as a renormalized ac
on QR4 with no counterterms. This leads us to believe th
renormalization of quantum field theory is in general equiv
lent to the process of quantizing the underlying space-tim

Finding phenomenological consequences of NCG such
the correction to the Coulomb potential due to the nonco
mutativity of space-time will be very interesting because
will allow us to put bounds on the nature of space-time at
very short distances. Results will be reported elsewhere.

Trying to include gravity as the source of the regulariz
tion and not merely as another term in the action is a
under investigation. We would like the commutation relati
~2.15! or ~3.3! to be a consequence of quantum gravity.
large extra dimensionlike activity will be then used to ma
quantum gravity corrections of the same order as the qu
tum corrections. This will clearly involve going to highe
dimensions.

The connection of the quantum space-time constructe
this paper to ordinary lattices is also very important to su
matters as confinement and asymptotic freedom.
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