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Noncommutative geometry as a regulator
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We give a perturbative quantization Bf space-time in the case where the commuta@s=[ X*,X"] of
the underlying algebra generators are not central. We argue that this kind of quantum space-time can be used
as a regulator for quantum field theories. In particular we show, in the cagé tfeory, that by choosing
appropriately the commutatos*” we can remove all the infinities by reproducing all the counterterms. In
other words, the renormalized action &% plus the counterterms can be rewritten as only a renormalized
action on the quantum space-tir@gR*. We conjecture therefore that the renormalization of quantum field
theory is equivalent to the quantization of the underlying space-Rfne
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I. INTRODUCTION quantum field theories. As one can immediately see the typi-
cal length scale of Pauli’s lattice is of the order of Planck’s
Noncommutative geometrfNCG) [1] allows one to de- scalex, which is very small compared to the weak scale and
fine the geometry of a given space in terms of its underlyingherefore corrections to the classical action will be very small
algebra. It is therefore more general than ordinary differencompared to the actual quantum corrections. This idea, how-
tial geometry in the sense that it enables us to describe algéver, is still very plausible especially after the dicovery made
braically the geometry of any space whether or not it isin [19] of an UV-IR mixing which could be used in a large
smooth and/or differentiable. It is generally believed thatextra-diemension-like activity to solve the above hierarchy
NCG can be used to reformulate if not solve many problemgroblem.
in particle physics and general relativity such as the problem The philosphy of this paper will be quite different. We
of infinities in quantum field theorie®QFT9 and its possible Wwill assume that space-time is really discrete and that the
connection to quantum gravif—7]. The potential for con- ~continuum picture is only an approximati¢80]. The dis-
structing new nonperturbative methods for quantum fieldcreteness, however, is not given priori but is a conse-
theories using NCG is also well appreciai@d-4,8—16. The  quence of the requirement that the quantum field theory un-
recent major interest in NCG, however, was mainly initiatedder consideration be finite. The noncommutativity parameter
by the work of[17] on Yang-Mills theory on a noncommu- 6 is therefore expected to be a function of both the space-
tative torus and its appearance as a limit of the matrix modetime and the quantum field theory and it is completely deter-
of M theory. The relevance of NCG in string theory was mined by the finiteness requirement. This simply mean that
further discussed in18]. the quantization of space-time is achieved by replacing the
Quantum field theories on noncommutative space-timgoordinate functiong” by the coordinate operato}” as in
were extensively analyzed recently in the literatit®@—29  [32] but, and contrary to what was done[#, these opera-
and it was shown that divergences, although not completelfors will not satisfy the centrality conditionis<#,[ X”,X“]]
removed, are considerably softened. The reason is that theO.
quantization ofR* or R? by replacing the coordinate func-  This paper is organized as follows: In Sec. | we introduce
tions x* by the coordinate operatod” in the sense of6]  the star produck33] for the case where the noncommutativ-
will only modify vertices in the quantum theory and not ity parameteré is not a constant. The necessary and suffi-
propagators. On compact spaces, on the other hand, suchent condition under which this star product is associative
the four-spheres” [8], the two-spheres? [9], and CB [15]  turns out to be simplfX#,[X”,X%]]=0. The associativity
divegences are automatically canceled out when we quantizequirement, however, is relaxed and allowed to be broken to
the space and that is because on comapct sgatesh was the first order in this double commutator. This relaxation is
not the case on noncompact spacgsantization leads to a necessary because one can check that we cannot generalize
finite number of degrees of freedofpoints. [6] by making the commutatorsX*,X”] not central while
It is hoped that noncommutative geometry will shed newsimultaneously preserving associativity. The algeh#a*()
light on the meaning of renormalization because it provides avhere A is the algebra of functions oR* is then defined.
very powerful tool to formulate the possible physical mecha- In Sec. Il we quantize perturbatively the algebré,£).
nisms underlying the renormalization process of quantunin other words we find the homomorphisml ) — (A, X)
field theories. One such mechanism which was developed bgrder by order in perturbation theory whekes the algebra
Deser[38], Ishamet al.[39], and pursued ifi30,31 is Pau-  of operators generated by the coordinate operaX#sThe
li's old idea that the quantization of gravity should give rise star product becomes under quantization the nonassociative
to a discrete structure of space-time which will regulateoperator productx and the corresponding Moyal brackets
become the commutatfr,.]« [34]. The difference between
X and the ordinary dot product of operators is of the order of
*Email address: ydri@suhep.phy.syr.edu the double commutatdrX*,[ X”,X*]]. This is basically an
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example of deformation quantizatip83—3¢ and in particu-
lar it shows explicitly the result df35] that the quantization
prescription of Doplicheet al. [6] of space-time is a defor-

mation quantization oR*. We rederive also the space-time

uncertainty relations given if6]. In Sec. lll we construct a
Dirac opertor on the quantum space-tif@R* and write
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Iei(erk*h)X:eX[{ _ }CI-W(X)hVi
2 dEr

down the action integrals of a scalar field in terms of the

algebra @, X) as well as in terms of the algebral(x). The
finiteness requirement is then used to #ixn the two-loop

approximation of thep* theory. Section IV contains conclu-

sions and remarks.

IIl. STAR PRODUCT
A. Associativity

Let R* be the space-time with the metriey,,

X ex[{—lzpC(x+§)k+|(p+k)§ } £=0
1 » d
—ex _EC (X)p"a_g“
X ex;{—%kC(x+§)h+i(k+h)§ }
£=0
(2.9

To see clearly what are the kind of conditions we need to

=(1,1,1,1). The algebra underlying the whole differential €Nsure that the equatid=0 is an identity, we first expand

geometry ofR* is simply the associative algebg of func-
tionsf on R%. It is generated by the coordinate functiotts

n=0,1,2,3. This algebra is trivially a commutative algebra
under the pointwise multiplication. A review of how the al-

gebra (4,.) captures all the differential geometry Bf can
be found in[2-5].

It is known that we can make the algeh#anoncommu-
tative if we replace the dot product by the star prdi8s].
The pair (4,*) is then describing a deformatioR* of

space-time which will be taken by definition to be the quan- “

tum space-time. The product is defined for any two func-
tions f(x) andg(x) of A by [18]

f*g<x>=exp('ECM”(x> FO+H OG0+ 7= o,

2.1

d
IE* an”

whereC#” form a rank-2 tenso€ which in general contains
a symmetric as well as an antisymmetric gdrt]. It is as-
sumed to be a function of of the form

CH(X)=x(x)(0*"+ian""), (2.2

wherey(x) is some function ok. Here @ is the antisymmet-
ric part and it is an-independent tensoa is as we will see

the nonassociativity parameter and it is determined in terms
of the tensoré as follows. The requirement that the star
product(2.1) be associative can be expressed as the condi-

tion thatl =0 wherel is given by

| :(eipx*eikX)*eihx_eipx*(eikx*eihX)_ (2_3)

e'P* are the generators of the algehrh written in their
bounded forms. Using the definitiq2.1) we can check that

eipx* eikx:efikalzei(erk)x (2_4)

and therefore Eq(2.3) takes the form

both sides of Eq(2.5) in powers ofC and keep terms only
up to the second order. It will then read

|—i Chh o ke G kO (2.6)
4 VpﬁX’u’ pV aXM " "

As we can clearly see the associativity of the star product at
this order is maintaned if and only i€*"9,C=0 and
C"*9,C=0. The two consequences of these two conditions
are given by the equations»””d,x=0 and 6*"d,x=0.

The first equation is simplya=0 because the solutiog
=const will be discarded in this paper. The second equation,
on the other hand, means that we can simply check that the
noncommutativity matrixé is singular, i.e., def=0. We

can also check that the two above conditions are necessary
and sufficient to make the star produ@.l) associative

at all orders because of the identities

H1V1QK2V2. . . Vi " =
0 0 0 &Mlvﬂz ----- MnX 0

If we would like to avoid the singularity of the noncom-
mutativity matrix @, we have then to relax the requirement of
associativity. We can start by reducing the associativity of
the star producf2.1) by imposing only one of the above two
conditions, say,

aC

CH'—=0

IxH

v 9X _
IXH

C 0. 2.7

Before we analyze this equation further, we remark that this
condition on the tensa€ will lead to the identities

CHLYICH2Y2. . . CHn¥ng"
Rl X

. C¥P=0. (29

Equation(2.7) will also lead to the equation
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aC This is a generalization of the quantization conditions chosen
Cr—=ig"x’[af+ia?y]. (2.9 in [6]. This equation, however, can be thought of as giving

axk the nonassociativity parametaiin terms of the noncommu-
tativity matrix 6. The solution is

1 W\/l
_0MV0 _

Zﬁwﬁf“’

In order to have a very small amount of nonassociativity in
the theory we will assume thatis a very small parameter in
such a way that only linear terms aare relevant. Putting a=
Egs.(2.7) and (2.9 into Eq. (2.5 will then give

2 1/2

—detéd (2.1

ia As we can see from the above analysis it is necessary and
I = = (kOh)O(p,k+h, x,dx) e~ xkth/2gi(p+kih)x sufficient to choos@ in such a way that E¢(2.15) is a very
2 small number in order for the associativity of the star product
(2.10 (2.1) to be broken with the very small amount given by Eq.

whereO is a function(which we will not write down explic- (Z.t(Zin the star product2.1) we can define the Moyal
itly) of the momentea,k,h and of y and all its derivatives 9 P ) y

: : ! . ; ; . .. bracket of any two function§(x) andg(x) by {f(x),g(x)}
{dx}. This functionO is such that it vanishes identically if — _ : :
d,x=0. In other words a trivial solution to the equation =+g(x)—g*f(x) and in particular the Moyal brackets of

=0 is y=const which we will discard in this paper. We two coordinate functions are given by
would like to determiney from the requirement that the {XH X" =1 x(X) 67 (2.16
guantum field theory which we will eventually write down
on QR* be finite. So we will leavey arbitrary at this stage. For self-consistency these brackets should satisfy the Jacobi
Clearly x will be model depenedent and it can generally beidentity
put in the form

{XB{xH XV {XY X x L+ {xH {x xPY} =0, (2.1

x<x>=n§1 A" n(X), 21)  put

B Ix# x"}}=—iax(dPx) 6+ 2.1
where we do not have a tree level term because by assump- DEDEXT lax(9°x) .18

tion this function will be entirely determined by the different cjearly at the limit of associativity d—0), Eq. (2.18 is
infinities of the theory which are generally of higher ordersgimply zero and therefore E¢R.17 holds. We would like,
in 7. In other words the zero order is absent in E311)  powever, to maintain Jacobi identity even &£ 0. We then
because QFTs are usually finite at this order. need to impose the following constraint @n

It is instructive to solve Eq2.7) for 6 in terms ofy. We
assume thatd,x#0 and rewrite Eq.(2.7) in the form 0*BgHr + 927 9P+ 9o 9P =0, (2.19
C#'9,x=Ne” where\ is a small number and is a four-
vector given by (1,0,0,0). Solving Eq.7) for 6 will give ~ which will make Eq.(2.17) an identity. A class of solutions

the following equation: to Eqg.(2.19 can be given by those antisymmetric tensérs
such that
i detC 3
A o*r=akaj 66", (2.20
- (a2) X 0,00 X | | |
wv#0 wherea’; are arbitrary real numbers arf§ is an antisym-
metric tensor which satisfies
detC x° g
Aoy 06" 06" =(n"“n"F— 9P "), (2.21

—a2¢% —iag;, 0%+ o /detg ~ Iix
(212 Equation.(2.19 is the only constarint we need to impose on
the tensor9 in order to have both the associativity require-

with ment in the sense of E@2.10 and Jacobi identiy2.17) to
a2 be satisfied. By requiring that E¢2.16) should lead to a
detC= x* deto+ a4_?gwgw ] (2.13 certain kind of space-time uncertainty relations we can fur-

ther restrict the allowed antisymmetric tenséras we will

(ijk) are the even permutations of (123) and @ét given see in the next section.

by detd=[3e€,,q30""0F]%. The four equation$2.12) pro-

- . X e B. Algebra (A,*)
vide four constraints on the tensérwhich reduce at limit

A—0 to one constraint given by A general element(x) of A will be defined by
deto=—at+ g, n" 2.1 f(X)=f s F(p.x)e (222
etd=—a 2 Ouv . (2.14 (277)4 ! ! '
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wheref is a smooth continuous function of the four-vegpor
and of the fuzziness functioy which satisfiesf* (—p, x)
=f(p,x). It is of the general formf(p,x)=To(p.x)

+af,(p,x). The star produc2.1) can then be rewritten as

4

T(p,x)9(k,x)e PCk2

d*p
f*g(x)_J (2m)* (2m)°

ag(k, x)

ei(p+k)x
Ix

+af(p,x) O(p.k,x,dx)

ZJ e Txg(p,x)eP
(2m* T
O(p,k, x,dx) is the function defined by E@2.10. The Fou-

rier transform Txg(p,x)=T*g(p,x)o+af*g(p,x); is
given, on the other hand, by

(2.23

o~ d*k [ _ _
f*g(p,x)=f (Zw)A{f(p—k,X)g(k,X)el(Pk)Ck/2
~ ag(k,
+af(p—k,x) QEXX) O(p—k,K,x,dx) |.

(2.29

The functionf(p,x) can always be expanded 4¢p, x)

=2n:0anf_n()()~f(p) which suggests that Eq2.22 can be
rewritten in the form6]

f(x)=n§0 anfa(x), (2.25
where
— d*p ~ .
fn(x):fn(X)f (Zw)4fn(p)e'px. (2.26

fo(X) are the generators of the algebtd, ) written in a
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we first remark that by using E¢R.1) the Moyal brackets of
the generatok* with any functionf(x) are given by

af
{X’“,f}zi)(ﬁ"”g. (2.2D

It is then clear that the only obvious solutions to the equation
{x*,f}=0 are the trivial ones, namely, the constant func-
tions. However, choosing the central eleméfxx) to be a
constant is not good because it will lead to a singular basis at
x(X)=0 which can be seen from the fact that the Moyal
brackets{z*,z"} at y(x) =0 will then not vanish on the con-
trary to what happens to the Moyal brackégs16 which
clearly vanish afy=0. So we must find at least one central
element which is not a constant function. The only clear way
to find such an element is to use perturbation theory. We
assume then that the quantum field theory which we will
write on QR* is relevant only up to thé" order. The func-
tion x(x) will then take the form

N
X0 =2 A"xn(X)

(2.28
n=1
and we would have that
YV (x)=0. (2.29
This last equation can be rewritten by using E&27) as
{x*,x"}=0; (2.30

in other wordsxN is a central element of the algebrain

the#N approximation. Actually any combination of the order

of 2N is central as can be seen from E(®&27 and(2.29.

By choosingC(x)=x"(x), the Moyal brackets of any two

coordinatez*(x) andz”(x) will then read
{z#, 2y =ixNor". (2.3)

x* and z#(x) give equivalent descriptions of the algebra

(A,*) and therefore the quantization of Eg.16) is equiva-
lent to the quantization of Eq2.31). It is obvious, however,

way which will allow us to see the classical limit defined by {4t the quantization of Eq2.31) is more straightforward

x—0. In this limit they must generate the algebtd, ().

than the quantization of Eq2.16). The new basig*(x) can

Therefore the function@(x) are such that they tend to a pe found in terms ok* as follows. First we note that for the
constant whery—0. This constant can always be chosen topurpose of finding* it is sufficent to work up to the second

be 1.

C. Change of generator basis

Finally we would like to rewrite Eq(2.16 in a way

which will be more suitable for quantization. This will in-

volve finding a basig*(x) for which the Moyal brackets
{z*,z"} are in the center of the algebral(+), in other words
{x*,{z*,z"}}=0. This is not the case for the basi$ as we
can see from Eq.2.18. We then must havez*,z"}
=i 6*"C(x) whereC(x) is any function ofx which does com-
mute (in the sense of Moyal bracketwith the elements of

the algebra @,*). To find such a basis we need first to find

the central elements(x) of the algebra /,*). To this end

order inC. The star producf2.1) of any two functionsf (x)
andg(x) will read, up to this order,

Frg(0 = F(0G(X) + = x()(847+ ia ) 29
*g(X) =f(X)g(x)+ 5 x(x "+iant')—
g g 2X n Xt ox”

1
— 20004 Fian ) (6 +ian®)

#?f 9%g
>< - - 1
IXHIX IXV P

(2.32

and therefore the Moyal brackets of these two functions are
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. =ixix v 29
,0t=iy(x)6*" —
9 X IXH* gx”
ia i
=5 x2(X)0*F 9 (233
2 AXFIXY IXY IXP

In particular the Moyal brackets of the two coordinatééx)
andz”(x) are given by

@ =ixo o 2
22,27 =i x(x) ** —
IxX* gx”
ia 2(x) 976 i 9%z 9%z° (2.3
— —=x°(x 7 . (2.
2 IXFIXE IXY IXP

Comapring Egs(2.31) and(2.34 will then give that

) T
,U.I/(?i 9z — N*laﬁa
OxX® gx”
az+ _
=>§=)((X)(N Dz

(2.39

Equation (2.35 defines scaling transformations which de-
pend on space-time points. A more thorough study of these
transformations will be reported elsewhere. As we can

clearly see the definitiof2.35 of the new basig” in terms
of x* will make the quadratic term in E@2.34) vanish, and
for that matter all terms which are higher ordersGrwill

also vanish. We would like now to rewrite E(R.39 in a
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where nowD**(z)=xN(#*"+ian*"). This star product,
however, is completely equivalent to E@.1). It is simply
the star product2.1) written in the basigz*. A general ele-
ment of the algebraA,*) will be written in this basis as

d%p - )
f(2)= f P F(pye, (239

(2m)*

wheref(p)=To(p)+afi(p). The star product2.38 will
then have the form

4 d4

* = _p_k~ e —ipDk/24i(p+k)z
fxg(z) J(ZW)4(2W)4f(p)g(k)e e

f d4p i e ipz
fxg(p)e'’P?, (2.40

(2m)*
wherefxg(p) is given by

4

-~ d’k - ~ .
f*g(p):f(277)4f(p—k)g(k)e_l(p—k)Dk/Z_ (2.41)

In this casef*g(p) is a function only ofyN and not ofy.
However, xN is simply a constant in th&" approximation
and therefore Eq2.40 is of the same form as E@2.39.

IIl. QUANTUM SPACE-TIME

A. Quantization

We will now show that the algebra4,*) does really
describe a quantum space-time. In other wo@R* is a
space-time we obtain by quantizatif®f in the following

form which is better suited for quantization. To this end weWay. First of all we assume that the quantizationRdf is

make use of Eq(2.27) for the case wheré=z". We then completely equivalent to the quantization of its underlying
obtain algebra (4,.) [3,4]. Then in analogy with quantum mechan-

ics we will quantize (4, .) by the usual quantization prescrip-
(2.36  tion of replacing the coordinate function$ by the coordi-

nate operatorX* so that the algebra of the functiongl,(.)
where we have used E@.35. Equation(2.36 is actually is mapped onto an algebra of operatofs X) [6]. If this
Eq. (2.35 only written in terms of Moyal brackets which algebra of operators¥, ) is to describe the quantum space-
under quantization will go to the commutator as we will see time QR?, it must be constructed in such a way that it will be
For the coordinatesz* the Jacobi identity{z*,{z",z}}  homomorphic to {4,*). In other words we must construct a

{X’U“,ZV}: iX(X)(N+ l)/20/.l,1/,

+{z*{z*,2"}}+{z" {z%,z*}}=0 trivially follows from Eq.
(2.32.

By using Eq.(2.33 we can find that the Moyal brackets
of the generator* with any functionf of .4 can be written as

homomorphism¥’ from (A, X) to (A,*) which will map any
elementF(X) of A to the element2.22 of (A,*) in such a
way that the operator produ€t(X) X G(X) is mapped onto
the star product2.23. We would then have

F(X)— X(F(X))="f(x) (3.9

of
mfv=iyNorr—, 2.3 .
{1 =ix"0 9z’ 2.37 together with

FIX)XG(X)—X(F(X)XG(X))=f*g(x), (3.2

where we have made use of Eg.35. The Moyal brackets

(2.31) and(2.37) do clearly correspond to the star product whereg(x) is the image of the operat@(X). In particular

from Eq. (3.1 the coordinate operatod§* are mapped onto
the coordinate functiong” and from Eq.(3.2) the Moyal
brackets{f,g} are mapped onto the commutatdf,G]
=FXG—GXF [34]. As we will see the homomorphisi

f(z+€)9(z+ 1)l e= -0,
(2.39

i d
f* g(z)=exp(§D" (z)@ pye

025004-5



BADIS YDRI

PHYSICAL REVIEW D 63 025004

has no nontrivial kernals and therefore the arrows in Eqgslt is clear from this equation that the central elements of the

(3.1) and(3.2) can go the other way.
The productx which we will call the nonassociative op-

algebraA are either those operators which are mapped onto
the constant functions or the operarwhich is mapped

erator product cannot be the ordinary dot product of operaento xyN. The operators mapped onto the constant functions

tors because it is clear from the definitio®.2) that X is

are clearly multiples of the identity operatbr The operator

nonassociative whereas the dot product of operators is triviO, on the other hand, BN which can be seen as follows. By
ally an associative product. We can assume, however, thatitsing Eq.(2.32 we can prove that in th&"N approximation

will reduce at the limit ofa—0 to the ordinary dot product
of operators. The differencA between the nonassociative
productxX and the ordinary dot product is of the orderaf
and it is given by

FXG—-F-G
A(F,G)=T, (3.3
whereF - G is defined by
X(F(X)-G(X))=limf*g(x). (3.9

a—0

The first step in constructing this homomorphiskris to
impose on the coordinate operatof§ commutation rela-
tions which are of the same form as Eg.16). We then have

[ XK X" =1RO*", (3.5
whereR is an operator defined by
X(R)=x(x). (3.6)

In terms of the ordinary commutator, E.5 will simply
read

[ X% X"]=iR 6" (3.7

The contributionA (X#,X”) —A(X”,X*) to this commutator
is identically zero becaus&(X*,X")=(—R/2)n*".

The operatoR clearly does not commute witK* be-
cause

[RX#], =R¥, (3.8

where R* are the elements of the algebra mapped to
{x,x*}, i.e.,

X(RM)={x,x*}=—ix0""d,x. (3.9
Equation(3.8) will simply mean that the Jacobi identity

[XM,[XV’XLY]X]X + [Xa,[X,LL,XV]X]X + [XV,[XCY1X}L]><]>< = O
(3.10
is not satisfied unless we choogdo satisfy Eq.(2.19.

In general the commutator of the generaXdtr with any
elementF(X) of the algebraA is found to be
[X*,F]x=AF, (3.11

where by using Eq93.1) and(3.2), AF is the operator irA
mapped to{x*,f}, i.e.,

X(AF)={x* f}. (3.12

we have thay* (x* (x* (x- - -* (x*x))) - - -)=x" where we

have N factors in the product. This equation will become

under quantization RN+aSN-3RMA(R,RN-™1)=0.

However, by using the definitiof8.3) of A, one can check

that in the#N approximation the second term in the expres-

sion of O is of the order ofiN "1 and therefor@©=RN. The

generators<* will then commute withRN, i.e.,
[X* RN, =0. (3.13

In generalX# will commute with any element o which is

of the order offN.

The fact thatR does not commute with the algebra
makes the definitior{3.5 of quantum space-time not very
useful when we try to construct explicitly the homomor-
phismX. To see this more clearly we first note that general
elementd=(X) of the algebraA are of the form

d4
F(X):f (2 p)

77_4

[F(p,R)eP*+e PXF*(p,R)].
(3.19

The nonassociative product of any two such elemeéifts)
and G(X) will involve four different terms because does
not commute withe(PX). So there is no obvious way as to
how to mapF(X) given by Eq.(3.14) onto f(x) given by
Eq. (2.22 or for that matter how to map (X) X G(X) onto
the star product=g.

For the purpose of quantization a better definition of
quantum space-tim@R* is such that the commutators of the
generators are in the center of the algebra. We need then to
find a basisz* for which we have the commutators
[z#,Z27]=16*"C whereC is a central element of the algebra
A. If Z* is the operator itA mapped to the coordinate func-
tion z* introduced in Eq(2.31), thenC will be simply given
by RN. We would then have

[Z*,Z"] =i 6*"RN. (3.19
The ordinary commutator will also be given by a similar
equation [Z*,Z"]=i6*"RN because of the fact that
A(Z#,2")=(—RN2)y*".

The definition of the operatoz” in terms of X* can be
given by the equation

[X*,Z"]=i*"RNTD2, (3.16

with
(3.1

where we clearly have used the requirement that this equa-
tion should be mapped onto E®.36).

X R(><N+ 1)/2) =  (N+1)12,
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The coordinate operatoz* are clearly unbounded and
one would like to work with bounded operators. We will
therefore consider instead the operateéf¥ as the genera-
tors of the algebra\. A general elemenf(Z) of A will be
defined by

F is a smooth continuous function of the four-vegtarhich
must satisfyF *(—p)=F(p) in order for F(Z) to be Her-
mitian.

The product of any two elemengZ) andG(Z) of Acan
be found to be

4

d’p
(2m)*

F(p)e'P”.

F(2) (3.18

4

d*p
(2m)* (2m)*

4

F( p)'é(k)e—iRNpeklzei(m K)Z

F(Z)XG(Z):f

4 4

d*p -~ . .
+af F(p)G(k)A(e'P?,e'*?),
2mt 2mt P
(3.19
where we have made use of Weyl formula
eipzeikz:e—iRNpek/zei(p+k)z_ (3.20

B. Coherent states

Until now we did not define the homomorphisthexplic-
ity and once this is done the quantization Bf will be
completed. We claim that(F) is defined as the map taking

F to its diagonal matrix element in the coherent states basis

[x) [11,28,29. If we are working in the basi€3.15 instead
of (3.5, then X(F) is defined as the map takinfg to its
diagonal matrix element in the coherent states bsisIn
order to defineX we need first to introduce the coherent
states basifz). We start by performing a coordinates trans-
formation to bringé to the standard fornB given by[16]

|

where o, is the Pauli matrix.0 and B are related byB
=AOAT where A is an SO(4) transformation. Equation
(3.15 becomes, under this transformation,

[Q*,Q"]=iR"B"",

0

iO'z

iO'z

B=a
0

(3.2)

(3.22
where Q* are the new coordinate operators and they ar
given in terms ofZ* by the equatioQ*=A*,Z". The only
non-vanishing commutation relations in E@3.22 are
[Q°QY=[Q? Q% =iaRN and as we can see we have two
commuting sets of conjugate variableQ%Q') and
(Q2,Q3). Therefore we need to introduce only two commut-
ing sets of creation and annhilation operatossa() and

(b,b™). These creation and annhilation operators are defined

by

PHYSICAL REVIEW D63 025004

1

J2aRN

1
J2aRN

The commutation relation&.22) in terms of these creation
and annhilation operators re@d,a’]=[b,b']=1. A state
In) (neZ,) of the harmonic oscillatora,a') is defined by
a'|n)=n+1|n+1) andan)=\n|n—1). In the same way

a statelm) (meZ,) of the harmonic oscillatork,b™) is
defined byb'|m)=\m+1|m+1) and b/m)=\m/m—1).
Following [37] we can then introduce the coherent states
|q°%q*) and|qg?q®) defined by the equations

(Q°+iQY),

(Q*+iQ?). (3.23

0% 12 o (q%+igh"
ogly=e q°%" +qt /4arN ny,
* 2,1 i~3
|q2q3>:e*q22+q32/4aRN (g +ig*)™ Im)
~=o (ZaRN)mIZ\/H ’
(3.29
These coherent states can also be written as
la%g*)=U(q°%q")|0),
19%9%)=U(q%0%)]0), (3.29

where the operatord (q°,q*) andU(qg?,q°) are given by

0 A1y — '_ 110_ 01
U(a®.q) eXp<aRN(qQ qQ>>,

i
U(qz,q3)=exp< ﬁ(qSQz—qu%) :

(3.29
These operators have the property that
U~*a%a")(aQ+BQHU(a%a")
=a(Q%+q%)+B(Q*+ah),
U™Y(0%0%)(aQ’+BQ*U(d?,a%)
=a(Q*+0%)+B(Q%+q%), (3.27)

wherea andpg are arbitrary complex numbers. This property
simply means that the effect 6f(q°,q*) or U(g?,q°) on the

operatorQ)® andQ* or Q” andQ® is to translate them by the

¢ numbersq® andqg? or g2 andq?, respectively. The opera-
tors U(q°,q%) andU(qg?,g3) are therefore called translation
operators. Finally a general coherent state of the theory is
clearly given by

lay=1a%a"|q9?a®)=U(q%a")U(a?,q*)|0)|0).
(3.28

Using the above structure we can then show the identity
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(q|e'PR|q)=eiPie~aR"p4 (3.29
The proof goes as follows:
(ale™2|q)=(a°q? /PR P12 q%*)
X (23| el (P27 +PsQ%) | g2g3)
=(0|e”ePe#|0)(0|e“ePe©|0), (3.30

where A=(—i/aR")(q'Q°~q°Q"), B=i(poQ°+p,QY),
C=(-i/aR")(q’°Q*~q*Q®%), andD=i(p,Q*+p3Q°). By
using the Weyl formula(3.20 we can then compute that
exp@A)expB)exp(—A)=exp(A,B])expB). However, [A,B]
=i(poq®+p.q') and therefore 0| exp(®)exp®B)exp(—A)|0)
=expi(pya’+p.at)(0lexp®)[0). Using the Weyl formula
again we get that exBj=exp(—&a’ +£&a)
=exp(—|&%2)exp & at)expEa) where ¢ is given by
§=(\/aR“/2)(ip0+ p1). The final result is
(0lexp@)exp®)exp(—A)|0)=exgi(poa’+p.q") Jexd (—aRY
4)(p5+p7)]. Similar calculations will give that
(0lexp(C)exp@)exp(—C))=exHi(po’+psa’) lex (—ar
4)(p5+p)]. All of this put together gives Eq3.29. How-
ever, the formula3.29 is clearly valid in any other basis
and not only in the basi€3.22. Rotating back to the basis
(3.15 will then give

(2]eP?|z) = elPze— x4, (3.31
where it is understood that™ is the eigenvalue of the op-
erator RN on the coherent statdz) defined by |z)
=U(A"Y)|q). Equation(3.3]) is the basic identity needed

in defining the mapY. To show this we rewrite E43.31) in
the following way:

J . )
- —) (zl€P¥z) =P (3.32
17

We note that at the limit op— O this identity takes the form

(2|2 zy=z*.

(3.33

Equation(3.32 suggests that we define the homomorphism

X by

axN 9 9
F(Z) = XF(2)=expq == ——— [(z|F(2)|2)]

oz (92#

=f(2). (3.39
Now putting Eqs(2.39 and(3.18 into Eqg.(3.34) and using
Eq. (3.31) we get thatf (p) =F(p) which simply means that
X has no non-trivial kernal§37]. The homomorphism¥
needs also to satify the requirement

PHYSICAL REVIEW D 63 025004

FXG(Z)— XFXG(Z))= exp(

X[(zIFxG(2)[2)]
(3.39

which can be checked by putting Eq2.40 and (3.19 in
this last equation and using again Eg§.31).

=f*g(2),

C. Uncertainty relations

A class of solutions to the conditio(2.14 which was
found to be the necessary and sufficient condition for the
associativity to hold approximately in the sense of £410
can be given by

1 1 .. )
— — detg=—,(e-b)*=cosla,
a a

1 1 . .
-—0 0””5—2(82—b2)=sinhza,
a

2a2 "
(3.3
wheree andb are defined by
0 —ie; —ie, —ieg
ie, 0 by —b,
“lie, -bs 0 b, |’ (339
ie; b, ~—b, 0

anda is a real number which can be taken to be a function of
a. The valuea=0 corresponds to the case considerefbin
From the above two equatiori8.36) we can find that

(3.39

We would like now that the commutation relatiof5) lead
to certain space-time uncertainty relations. This llprin-
ciple) further restrict the allowed antisymmetric tensas
Using the basic identity of quantum mechanidsa?Ab?
=:|([A,B])|? whereAa?=(AA%)=(A?)—(A)?, the space-
time uncertainty relations are

2
(Ax2(ax)2= 5 [Exe X 2= o g
=
2
(AX%)2 > (Axi)zzﬁéz
j=11=3 4
and
2
(Ax‘)z(ij)ZZ@SZ. (3.39
1=i<j=3 4
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By using the facts TAx)2=Z(Ax)?, (Z;;Ax'AX)? ay
>Ei<j(Ax'Axl)2 and Eq.(3.38 the above uncertainty rela- f d*x exp — 1 on o ([D, @]« X[D*®])
tions will take the form XH Xy,

i A :J d*x d,¢* 9" . (4.3

AXOD AXi=—,
= 2
Comparing Egs(4.1) and (4.3) we can find that= should

DY satisfy the condition
> AXAxI=Z, (3.40
1=i<j=3 2 i
Tr y”[DM,QJ][F,d)]nga“”A([DM,<I>],[DV,<I>])

where A=a(R). These are the same uncertainty relations
which were derived irf6]. We can conclude from the rela- 1
tions (3.40 that quantum space-time has a cellular structure. =—g(n"= 7“7”)f d*x x9,0“(X|[D,,,®]
The minimal volume(the volume of one cellis (y27\)*
and therefore a finite volum¥ of quantum space-time con- X[D,,®]|x)), (4.4

tains V/(\/2m\)* states. An estimation of the fuzziness of
space-time would determine or at least give a bouncvon Wwhere {/2)c*"=[v*,y"]. A trivial solution to Eq.(4.4) is
which will restrict further the allowed tensots given by

i
IV. QUANTUM FIELD THEORIES ON QR* [F,®]=— g[y"‘Da,d)]_lgf“’A([DM RONB

A. Dirac operator N
) o ) X[D,,®])—[y*D,,®] “Fo,
Before we try to write action integrals on a given space [0y, @D =1[¥*Da, @] "Fo

we need always to define first the Dirac operator on it. ThisWhere
Dirac operator will provide the notion of derivations on this
space and by constructing it we would have basically con-

1
structed Connes triplet associated to this sga¢eFor QR* (X|Fo|x)= §( 7=y YY) x9,0%((X|[[D, , D]
this triplet consists of a representatibifA) of the algebra
underlying the quantum space-time in some Hilbert space, X[D,,®]|x)). (4.5

the Dirac operatoD, and the Hilbert spaceél on which it
acts. In the last section we have already constructed the rep- D,, are by definition the quantum derivations OR* and
resentationlI(A) in terms of the coherent states balsis. they are given by
The corresponding Dirac operator in the other hand will be
defined by[14] p( ay 9 9
o 5 g ex 2 3XM)(<X|[DM'®]X|X>) d,b. (4.6)
| atxexs| -2 | (0.1 X[D. @10
4 oxk Xy By Egs.(3.34) and(3.39, Eq. (4.6) satisfies Eq(4.3) trivi-
ally. To find the quantum derivation®,, we first have to
=f d*x d,¢* "¢, (4.2 reexpress the classical derivations in terms of the Moyal
brackets and the star product introduced in Sec. | and once
this is done the transition to the quantum derivations is quite
straightforward. It simply consists of replacing the Moyal
brackets by the commutatpr], and the star product by the
nonassociative operator produgt as explained in the last
section. By using the Moyal brackef2.33 any arbitrary
vector field£# should satisfy

where ¢ is any element of the algebrd and® is its corre-
sponding operator i\. Clearly the ordinary Dirac operator
D on R* given by D= y*d,, where{y*} is the Clifford
algebra satsifyind y*,y"} =27"", will satisfy Eq. (4.1) in
the limit 6—0. In other words it will satisfy the equation
T D,®][D,®]=[d*xd,pi"¢. It is reasonable to assume
that this Clifford algebra will not get modified under quanti- (LH )y =ix0%P3, L 40, 4.7
zation of space-time so that we can wiideas “ P

where ¢ is any element of the algebrd. It is clear that we
D=v*D,+aF. (4.2 have to assume that* is of the order ofiN~1 in order to
have only the term written in Eq4.7). This vector£#, on
This assumption can be justified by the fact that ff@are  the other hand, will be defined by
not elements of the algebrd and therefore quantizing the
algebra will not quantize thenk. in Eq. (4.2) is a connection {£H, dt=ixN0*Pa,. (4.9
arising from the nonassociativity of the underlying algebra
(A,*) and it is defined such that E¢.1) takes the form Comparing Egs(4.7) and (4.8 we get that
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Ao L= xN"1nh

=

sz XN rdxe+ Lk,
(4.9

where L§ is an x-independent vector. In terms of Moyal
brackets this last equatidd.9) will be rewritten as

{x#, LV =—ixNor”. (4.10
Quantizing Eq.(4.8), however, will give that
[L4 P =i6*"RNX[D,,®],, (4.11

where we have used E@4.6). This last equation can be
iterated to give

[D, . ®]=—iR™Ng, [L" D],
+iaR Mg, JA(RY,R™ML",®]). (4.12

This is the definition of the quantum derivatioDs, and it is
given in terms of the operatots* defined by
(X|L#|x)=L". (4.13

It must also satisfy
[X*,L"]«=—iRNg*", (4.14

which follows from Eq.(4.10. Putting everything together
the Dirac operator is then given by:

D=—iR™ N, ;y“L"+adD, (4.15
where

[6D, @] =[F,®],+iR Mo, ARV, RNLY,®]).

(4.1
The Dirac operatof4.15 does act on the Hilbert space
H=A®C* (4.17

B. Renormalization and causality

We define scalar field® on the quantum space-tin@R*
to be elements of the algebfa they are given by Eq3.14)
or (3.18. Action integrals for such fields will have the form
[14]

1 - ~
<X|§[D!(I)]><X[qu)]><

2 4

—%ﬁ)x&)—%(&)x&))x(cﬁxéﬂx) . (4.19

The trace is taken over the coherent states QasisHerem
is the mass of the scalar fieftl, andg is the strength of the
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d* interaction. These two parameters are assumed to be the
physical parameters of the theory; in other words, they are

finite. The fieldd is mapped via the homomorphisito an
ordinary scalar fieldp given by

»(X) =exp(

In terms of this new field the actio@.18 will read

S= f d*x

The field ¢ is a general element of the algebtd,¢) which
is of the form(2.22. It is clearly a function ofy which can
always be put in the form

. d*p
b0 | oo

ay d d

_TL;X_ME>(<X|CD|X>)' (4.19

1. m’. . g% . . . .
5 0ud* "= ¢ b= (P* d)*(¢* @) |.
(4.20

b(p,x)€e'P

:¢+ﬁlﬁl+ﬁzlp2+ e +ﬁNlﬂN .
(4.20

¢ is a scalar field which is independent #f and of the
fuzziness functionsy;, xs..., xn; in other words it is the
(commutative classical field of the theoryy, ¢, . .. iy,

on the other hand, are scalar fields which are also indepen-
dent of 24 but do depend oryq,x>, - - .,xn- Their depen-
dence ony’s is such that they go to zero at the limit of all
Xi—0. ¥, s,...4py are assumed to be finite and therefore the
noncommutative fieldp is also finite.¢ can then be identi-
fied with the renormalized scalar field of the theory. For
simplicity we will only consider the two-loop calculation of
the ¢* theory. In this caséN=2 and we will have three
scalar fieldse, 4, and i, and two fuzzyness functiong,
and y,. The action(4.20 in terms of these functions will
read

S=S ]+ b 1, 42] (4.22
For the moment we will only focus on the first term in Eq.
(4.22. The actiony ¢] depends only on the fielep and it
has the form

S[¢]=f d4x.c+f d*x AL, 4.23
where
1 m2 g4
L=50,h0"¢p= > ¢°= 78" (4.24
and
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A£=J d4xXA£1(¢)+f d*X x?ALy(p)

—f LR >+f dp a1 )
R e BpS TP

Xx(p—DALy(,p).

(4.25

In Eq. (4.25 and in all that will follow f(p) is the Fourier

transform of the functionf(x) and it is defined byf(p)
= [d*x f(x)e'PX.

Although ¢ is the classical field, we will show below that

PHYSICAL REVIEW D63 025004

and

d4
| : 2;;4x<2><pmcl<¢,p>

dp d*l
(1) (p—
+f 2 (zw)u( (WX (p—=1ALy(,p)

[z

=~29d, " p— 5m2¢2 z<2’¢4}

(4.29

L in (4.24 generates exactly the renormalized action of theX(l) and y? are given be(l):ﬁxl and X(Z):ﬁz)(z- The

¢ theory, and as Eq4.23 suggestsAL will generate the
corresponding counter termg.will depend therefore on the
classical LagrangianA£,, AL, and the usual renormaliza-
tion constantsZ,, Z3, and m?. For consistencyA £, and
AL, should not depend og which is the case as we can see

from their explicit expressions

4

¢(k)

a
A= | i H00| (PR

X (pk—k?+m?) $(p—k)
_3ag4 dtq d*l
(2m)* (2m)*

(al)

X¢(P—k—q—|)¢(Q)¢(|)l (4.26

and

(pk k?+m?)

d*k
aci(o.m= | et OlE

X (pAk—kAK)2p(p—k)
1g*[ d*q d%
44t) 2m* (2m)*

1
x (qu)2+§[(p—q—S)A(q+s)]2)

Xp(p—k=q—s)p(q)¢(9) |, (4.27)

action (4.23 will then take the form

N m?+ ém? 9t

S[¢>]=f d'X 5230, 0" b= ————¢*= ;7214
(4.30
Z;=1+79, 2,=1+zM+7?, and sm?=sm3+ sm3.

Solving Eqgs.(4.28 and(4.29 for y, and y, will give

»(p) 1
Wny= 7 | T2
_9_4(1) d*k  d¥
4!Z f(zw)4(2w)4¢(k)¢(l)
x¢(—p—k—l)1 (4.3)
and
¢(p) |1
(2) - "
g* d*k  d*l
VAR k) (1
2 J(ZW)4(2W)4¢< )o(1)
ch(—p—k—l)l
CAL(ep) [Ny
AL (bD) (277)4x (Hx(p—1).

(4.32

whereA= g+iaz. For the¢? theory it is known that in the Putting the actior(4.30 back into Eq.(4.22 we get
first order of quantum theory both the mass and the coupling

constant need to be renormalized. In the second order, how-

SZS[(%]_FS[(%vwl]! (433)

ever, we need also a field renormalization. So we would have

d4
| S AL

[ o]

1
> omzg?— z<1)¢4

> (4.28

where §[ ¢] is the action integral given by E¢4.30 with
the substitutionp— ¢, i.e.,

1 " MPESMPL. g .
5430y $9" = ———¢ ——Zl¢

S[P/)]:fd“x
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This is exactly the standard renormalized action of #fe
theory with all of its counter terms. S &,u]
= [d*x L(¢, ), on the other hand, is given by

. ah?y, " ah®mixy .
Ll nl=——50,0,00"0" 1+ ———— b

ah’gx1., - ah’g*xi - A
0.t — U0, P

hgtz(V

+hSmidy, + 6 3.

(4.39
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It is very instructive to perform the following consistency
check on our results. First we remark that the commutation
relations (2.16 combined with the solution$4.31) and
(4.32 lead directly to the conclusion that the coordinatés
diverge, which definitely needs to be avoided in order to
keep the finiteness of the field. The solution to this prob-
lem is to assume that the antisymmetric ten8mcales in
such a way that the coordinate$ remain well defined. We
then write6=27 4,6, and compute the commutation relations
(2.16 which will then take the form{x*,x"}=iZ[a,Z3
+a,0m*+azZ,+a,0m>+asZ, om’+agZ;+as 0k, a
=a;(x),i=1,7, ardfinite (computablgfunctions orR*. The
minimal prescription that will keep this commutator from

As we can immediately remark, this action does not contairdiverging is thatZ,=1/(Z36m*Z3). In other wordsé di-
the field ¢, given in Eq.(4.21). So at this order of perturba- rectly measures the infinities of the field theory. We will

tions, ¢, is an arbitrary finite scalar field.

leave the discussion on how really smallis to a future

Clearly the finiteness requirement given by equationscommunication.

(4.28 and (4.29 reduces considerably the noncausality of

the field fj) However, as we can see from E¢$.33, (4.39),

The action(4.18 or (4.20 may be viewed as a classical
action describing ap* theory of a(classical noncommuta-

and (4.39 this scalar field is still highly noncausal in the tive field ¢ living on a quantum space-tim@R*. The non-
sense that its conjugate momentum, which follows from thecommutativity effects of this theory were shown to be ex-

aciton(4.33), is not given by the ordinary expressidndg .
It does contain extra corrections coming from E4.39.
Nevertheless, one can construct a causal figldrom ¢ as
follows. The action integral of. will be by definition given
by
1 B L L LGP« L
5230#¢C0M¢C— T‘z’c_ Hzl‘f’c}’
(4.3

and it should be equal to E(.33), i.e., 5 ¢.]=S. The field
&, on the other hand, will be defined by

el [ at

be=p+h%;. (4.3
From Eqgs.(4.33 and(4.36 the field ¢, should satisfy
L($,y)
h2yy=— —. 4.3
Ve e (06 5710 (439

The field ¢, is causal but not necessarily finite. The fiehd

actly the quantum effects of an ordinary quantdgfhtheory

of a quantum(commutativé field ¢ living on R*. This map
between the noncommutative classical field thoery and the
commutative quantum field theory is consistent by construc-
tion because the two limits, the classical limit~0 and the
commutative limity—O0, are identical.

V. CONCLUSION

We showed that the scalar field action &4 plus its
counterterms can be rewritten only as a renormalized action
on QR* with no counterterms. This leads us to believe that
renormalization of quantum field theory is in general equiva-
lent to the process of quantizing the underlying space-time.

Finding phenomenological consequences of NCG such as
the correction to the Coulomb potential due to the noncom-
mutativity of space-time will be very interesting because it
will allow us to put bounds on the nature of space-time at the
very short distances. Results will be reported elsewhere.

Trying to include gravity as the source of the regulariza-
tion and not merely as another term in the action is also
under investigation. We would like the commutation relation

on the other hand, is finite but not causal. Clearly the finite(2.15 or (3.3) to be a consequence of quantum gravity. A
and causal scalar field theory which we can construct omarge extra dimensionlike activity will be then used to make

QR is such thatg.= ¢. The solution to this condition is duantum gravity corrections of the same order as the quan-

clealry ¢4=0 which can be reexpressed as a constraint ofum co_rrections. This will clearly involve going to higher
the field i, dimensions.

The connection of the quantum space-time constructed in
E(:l),lﬂl)ZO- (4.39 this paper to orqllnary lattices is also very important to such
matters as confinement and asymptotic freedom.

The only consistent solution to this equation is the trivial
one: ;=0. It is the only solution we can check which is
compatible with the fieldp being finite. The class of fields

given by Egs(4.21) and(4.39 are the only both causal and
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