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We derive the Barrett-Crane spin foam model for Euclidean 4-dimensional quantum gravity from a dis-
cretizedBF theory, imposing the constraints that reduce it to gravity at the quantum level. We obtain in this
way a precise prescription of the form of the Barrett-Crane state sum, in the general case of an arbitrary
manifold with boundary. In particular we derive the amplitude for the edges of the spin foam from a natural
procedure of gluing different 4-simplices along a common tetrahedron. The generalization of our results to
higher dimensions is also shown.
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[. INTRODUCTION study of the correct way to translate the conditions that de-
termine the classical geometry of a 4-simplex into the quan-
In recent years, many different approaches to the problertum language of representations of @0 which is the local
of finding a complete theory of quantum gravity have beergauge symmetry group of Euclidean gravity in 4 dimensions.
converging to the formalism of the so-called spin foamsln this way the quantum amplitude for a 4-simplex was ob-
[1,2]. These kind of models are obtained by translating théained and a state sufdiscrete partition functiondeduced
geometric information about ériangulated manifold into ~ from it, leaving some ambiguity regarding the amplitudes to
the language of combinatorics and group theory, so that thle associated to the lower dimensional simpligegrahedra

usual concepts of a metric and of metric properties are somé@nd triangles in the spin foam model. In this sense the

how emerging from them, and not regarded as fundamenta arrett-Crane state sum was more guesged at than_ c_ierived
or an attempt to set up a general formalism for deriving a

In some sense this implements in a precise way the idea of a_. . .
sum over geometries, but now we are summing over labeledP" foar_n model frqm a classical action, $@6). .
2-complexegspin foams, i.e. collections of faces, edges and we W'I.l try to der_|ve the Barrett-Crane_ mod_el f(_)r Euclid-

. ; T ’ . ean gravity in 4 dimensions from a discretization of the
vertices combined together and Iapeled by representations 0(4) BF theory, imposing the constraints that reduce this
a group(or a quantum group A spin foam emerges when e 1o gravity(the Barrett-Crane constraiftat the quan-
considering the evolution in time of spin network3-5],  y;m jevel, i.e. at the level of the representations of( &0
which were discovered to represent states of quantum gefsed, and not starting from a discretization of the Plebanski
eral relativity at the kinematical level6—10]. Spin foam  cijon, i.e. from a constrained action at the classical level.
models exist also for topological field theories in different The reasons for this approach are several: at the con-
dimensiong 11-14, and many different spin foam models tinuum (and classicallevel the relation between the Pleban-
have been developed for gravify5-18. One of the most  ski action and théBF action already mentioned; at the dis-
promising spin foam models for gravity in 4 dimensions wascrete (and quantum level, the fact that a complete
proposed if19] and is known as the Barrett-Crane state sumdiscretization of S(R) BF theory in 4 dimensions has been
model. It was showii20] to be related at the classical level carried ouf27], and leads to the Crane-Yetter discrete topo-
to gravity, and more exactly to correspond to the PlebanskKiogical theory, the Barrett-Crane model being a “constrained
action[21,22], which contains gravity as a sector of the so-doubling” of it.
lutions. This in turn can be considered as a constrained to- Of course the best thing to do would be to discretize di-
pological field theory, namely BF theory[23], plus a con-  rectly the Plebanski action, obtaining directly the Barrett-
straint on theB field. Another result which suggests that the Crane state sum model in this way, but this is very difficult
Barrett-Crane model is indeed related to quantum gravity iglue to the non-linearity of the additional term in tBefield
that the semiclassical limit of the amplitude for a 4-simplex(similar problems exist for the discretization of th&F
(so in a sense the simplest possible manjfgives a path theory with a cosmological constant; §&8]), and requires
integral with the action given by a form of the Regge calcu-further investigation.
lus action with the areas of the triangles of the triangulated
manifold as variables instead of the edges of the triangula-
tion [24,25. The Barrett-Crane model was originally ob-
tained through a quantization of a 4-simplex, meaning a Let us first recall the basic elements of the Barrett-Crane

Il. BARRETT-CRANE MODEL

work [19].
A geometric 4-simplex is completely and uniquely char-
*Email address; d.oriti@damtp.cam.ac.uk acterizedup to parallel translation and inversion through the
"Email address: r.m.williams@damtp.cam.ac.uk origin) by a set of 10 bivectors, each corresponding to a
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triangle in the 4-simplex and satisfying the following prop- glue two 4-simplices along a common tetrahedron inside the

erties: manifold, a problem not addressed in these works.
(i) The bivector changes sign if the orientation of the tri-  In this paper we try to derive the complete state sum from
angle is changed. a constrained discretization of a classical theory, so that the
(ii) Each bivector is simple, i.e. given by a wedge productway of gluing different 4-simplices is natural, and the corre-
of two vectors. sponding amplitude for the edges of the spin foam is ob-

(i) If two triangles share a common edge, the sum of théained automatically.
two bivectors is simple.

(iv) The sum(considering orientationf the 4 bivectors lll. BF THEORY, PLEBANSKI ACTION, AND THE
corresponding to the faces of a tetrahedron is zero. BARRETT-CRANE MODEL

(v) The assignment of bivectors is non-degenerate.

(vi) The bivectorgthought of as operatorsorresponding We now review briefly the relationship between Plebanski
to triangles meeting at a vertex of a tetrahedron satisfy thé@ction, BF theory and the Barrett-Crane model. Theé4e
inequality thy[b,,bs]=0. Plebanski action[21] (without cosmological constantis

The crucial observation now is that bivectors can begiven by
thought of as being elements of the Lie algebrétsmso we 1
can label the triangles in the triangulation with representa- st(w,Bycb):f [B”/\F,J(w)——géuKLBKL/\B”
tions of s@4), i.e. considering the splitting so(#)su(2) M 2
@su(2), with pairs of spins {,k) and the tetrahedra in the 2
triangulation with tensors in the product of the four spaces

on its triangles. The point is to translate the conditions abovd/nere o is an sed)-valued connection 1-form,w

NN .
into conditions on the representations of this algebra. =w,; X;dx*, X, are the generators of €9, F=dw is the
The corresponding conditions on the representations wer‘éO”ESpO”d'qg two-form curvatureB is an s¢4)-valued
found to be the following: 2-form, B=B,;, X|;dx*/\dx", and ¢, is a Lagrange mul-
(i) Different orientations of a triangle correspond to dualfiplier. The associated equations of motion are
representations. 5S
(ii) The representations of the triangles are “simple rep- 5—HDB=dB+[w,B]=O ®)
resentations” of S@}) of the form (j,j), i.e. representations w
of class 1 with respect to the subgroup (810 29]. 5S
(iii ) Give_n two tri_angles, if we decompqse the pair of EH[:'J(w):qyJKLBKI_ (4
representations into its Clebsch-Gordan series, the tensor for
the tetrahedron is decomposed into summands which are 5S
non-zero only for simple representations.. _ _ 2 L BUABKL=g (UKL (5)
(iv) The tensor for the tetrahedron is invariant under o¢
Sq4) h =(1/4) IJ/\ KL
It was then proved33] that the intertwiner proposed in Wheree=(1/4!)e; B~/AB™, o _
the original paper is unique up to normalization. Thus it is evident that this theory is likeBF topological

Out of these conditions, an amplitude for a quantumﬁeld theory, with a type of source term and with a non-linear

4-simplex can be deduced and calculdt@@], and it is pos- constraint on theB field. In turn the relation with gravity
sible to write down a spin foam modéor fixed triangula- arises because the constra{f} is satisfied if and only if

tion) from these amplitudes: there exists a real tetrad fieki:ehdx“ so that one of the
following equations holds:
N=+al Aed
20)=3 TT Ad] A] A€ & | Bimrene ©
f v 1
Il BY=+2¢& efNe (7)

where the products are over the faces, dual to triangles,

edges, dual to tetrahedra, and vertices, dual to 4-simplices, ¢f we restrict the fieldB to be always in sector lwith the
the 2-complex representing the spin foam and which is dugblus sign, and substitute the expression ®in terms of the

to the triangulationA of the 4-dimensional manifold. The tetrad field into the action, we obtain

sum is over the spins labeling the triangles, and the ampli-

tudes are the Barrett-Crane amplitude for the vertices, and _ I A ad A EKL

suitable amplitudes for edges and faces of the spin foam. S f €k e/\E/AF ®
Since there is no complete derivation from a classical theory

so far for this state sum, the exact amplitudes for edges anghich is just the action for general relativity in the first order
faces are not determined, but different models with the samBalatini formalism.

Barrett-Crane amplitude for the vertices are proposd@1n The restriction on theB field is always possible classi-
and[32]. The problem of the choice of the amplitudes for thecally, so the two theories do not differ at the classical level,
interior tetrahedra is also related to the problem of how tdout they are different at the quantum level, since in the quan-
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FIG. 2. The dual plaquettefor the trianglet.
FIG. 1. A dual edges with the four dual faces meeting on it.

tum theory one cannot avoid interference between different IT ud)=€Fo, (10)
sectors. This is discussed [ig0]. TeoP
It was shown in[20] that a discretization of the con-

straints(5) which give gravity fromBF theory proves that [ ! . . .
they are the classical analogue of the Barrett-Crane corfi€/d B(t) with values on the triangles of the original trian-

straints. Consequently, we can look at the Barrett-Crane sta@ation. Note that this gives an exact theory for a topologi-
sum model as #entative quantization of the Plebanski ac- ¢! field theory like theBF one, but it represents only an

tion and thus strongly relatggéven if somewhat differento ~ @PProximation for a non-topological theory like gravity.
Nevertheless, this approximation would be better and better

We then approximate the 2-form fieRlwith a distributional

gravity. when we refine the triangulation or sum over all the possible
IV. DISCRETIZED SU (2) BF THEORY different Friangula}tions which would bg the next step after
constructing a spin foam model for a given triangulation.
Let us now sketch the discretization of @)BF theory The discretized action fdBF theory is then
as given in[27]. (Baez has pointed out some ambiguities in 1
this discretization procedure; we refer @] and [26] for s==> B'F'=> tr( —iB)|In]] U(T)D (12)
alternative approaches. 25 t Tep

Consider the S(2) BF theory action, which can be
thought of as being the self-du@r anti-self-dual part of an ~ where now the indicek refer to si2) algebra values.

SQ4) BF theory action, as we will see later, We then impose the following constraint:
tlaB
s=f B/F ) (IL um)B(ﬂ~ uu)) } =B** (12
M leP leP

whereB is an si2)-valued 2-form field, andF is the 2-form  which is equivalent to imposing on the discrete partition

curvature of an s@)-valued connection 1-form. function theBF equation of motion on thE field which says
Consider now a piecewise linear 4-dimensional simplicialthat the holonomy of the curvature vanishes.

manifold, which is given by a triangulation of the manifold  This constraint is equivalent to the relation

M. According to the Regge calculus picture, the curvature is K

located at the different triangléq (d— 2)-dimensional sim- i 1R17 _

plices|. Consider also the complex which is dual to the tri- [F.B]=i eF B 5 =0 (13

angulation, having a vertex for each 4-simplex of the trian-

gulation, an edgédual link) for each tetrahedron connecting oOr B'«F'. Taking into account the parallel and antiparallel

the two different 4-simplices that share it, anddaal) face  nature ofB' andF' this constraint can be rewritten as

for each triangle in the triangulatiisee Fig. 1 (An earlier 2

work using the complex dual to the triangulation %l].) I1 s
The 2-dimensional surface bounded by the dual links con- =1

necting the 4-simplices that share the same triangle is called

a dual plaquette. It is easy to see that the correspondeneehere the termB®/|B| is needed to keep rotational invari-

between a triangle in the original triangulation and a dualance of the expression.

Fl Bl

m - E (14

Fl BI) 2
=+ |+ ][] 8
EMCiA

B3
El

plaquette is 1-Xsee Fig. 2 ~ The necessity of another kind of constraint is clear from
We introduce a dual link variable)(T)=e'“() for each the following argument. Consider the identity
dual link T. Consequently the product of dual link variables g4l — 1 (15)

along the boundaryP of a dual plaquette® leads to a

curvature located at the center of the dual plaquette, i.e. avhere

the center of the triangle t. -
We define the curvaturg(t) located on the triangleby L= F_ g

the equation |F| 2°
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Inserting this into the expression for the action and using thand so work with the Spid) group, because at the end the

fact thatF andB are parallel leads to imposition of the constraints will give us the same result as if
we had started from an 3@ theory, the reason being that
S= 2 tr(—i B(t)IneF®) the set of simple representations of (@{Dcoincides with the
t set of simple representations of S@in
Thus we can split the Spi#) BF theory action into a sum
:2 tr(—i B(t)In giFM+idmnl) of the SU2) chiral parts:
t
— 1J +et =i
:s+%2 47n|B(1)|. (16) S jMBIJF fMBI Fi +IMBI Fi (2

Consequently the Spi) BF partition function gets factor-

Thus, imposing the single valuednessebt (and hence of ized into a product of two S(2) partition functions,

the partition function we have an additional constraint for
the B field to be of integer absolute valugd=2J, with Z(Spin(4))=Z(SU(2)),.Z(SU(2))g, (23
J half-integer.

Finally we can write down the partition function for the and at the discretized level we can writiopping thel and

SU(2) lattice theory with the above constraints as R subscript$
z= f DUDE 5{(11 um)s(n U(T))T—B} Z(Spin(4))=Z(SU(2))Z(SU(2))
TeP TeP
| =fDUH > @i+ x| I1 um)
xS olBl-Nes a7 ¢
It is possible to prove27] that this partition function is Xf DU'H ; (2k+1)xk THE U'(T))

invariant under gauge transformation on the lattice.
Evaluating theB integral, we obtain

=f pUDU’[] Ek (2j+1)(2k+1)y;
t o

z:f DU, 8JcoqJ|F|). (18)
J
Using the known formula for the charactgy of the spind X THE> U x« THE U’(I))’ (24
representation of S@), © °
|F| S0 we are assigning two independent(3Wariables to each
sinl (2J+ 1)7) dual link.
XJ(eiF'J.): L ——— (19) Now the product of characters of two representatipns
sinﬂ andk is given by the character of the direct product repre-
2 sentationj Xk of the group SU(2X SU(2):
we can recast it in the form
Xijxk I1 (U,U’)):XJ(H U)xk(ﬂ U')- (29

zszuH > (23+1) x;
t J

leP Thus we have

11 U(T)) . (20

This expression is just formal because the summation is not . _ TS 2
convergent, but can be easily regularized. We will discuss Z(Spin(4))= | dudU i (2] +1)(2k+ 1) Xjxk
the regularization issue later.

V. DISCRETIZED SO (4) BF THEORY X(H (.U )) (29

Let us now turn to the case of the S8PBF theory. Now we note that the double integral over @Vis equiva-

It is well known that the double covering of the 8 |ent, because of the isomorphism mentioned, to an integral
algebra, the Spid) algebra, is isomorphic to a direct product gver Spirf4) and the sum above is

of two SU(2) algebras:

Spin4)=~SU(2), X SU 2)s. (21 S @i+ 2k Do IT 0,01
.k
Since we are interested in the connection with gravity, and so
in only some representations of this group, the simple repre- :E dimeJ( H g) (27)
sentations, we can use this decomposition also in our case, J
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whereJ is the highest weight of the genergl k) represen- 45 o O
tation of Spirt4) [29], and the assignment of the pair of
SU(2) elements (,U") is equivalent to an assignment of a
Spin4) group element.

In the end, we have the following expression for the dis-
cretized partition function of Spid) BF theory:

o ©

Zgr(Spin(4))= fspm)dglj by dimJ”XJ(T<1;I ge> (28) 10

where the first product is over the plaquettes in the dual
complex (remember the 1-1 correspondence between tri-
angles and plaquetteshe sum is ovefthe highest weight
of) the representations of Sp#), and the last product is over
the edges of the dual complex to which the group element is
assigned.

The partition function for the S@) BF theory is conse- 6
guently obtained considering only the representation for 2
which the components of the vectals are all integers.

VI. CONSTRAINING OF THE BF THEORY AND THE

BARRETT-CRANE MODEL FOR A SINGLE 4-SIMPLEX FIG. 3. Schematic representation of a 4-simplex; the thick lines
) ) ) ) represent the 5 tetrahedra and the thin lines the triangles.
Before going on we clarify what is exactly the location of

the g variables; consider a 4-simplex; it has 5 differentwhere the product on thieindex goes around the boundary
3-simplices(tetrahedrain it, (1-2-3-4, (4-5-6-7), (7-3-8-9,  of the dual plaquette surrounding the triangle labeled by
(9-6-2-10, (1-5-8-1Q (the numbers label the triangles in the and there is @ function for each group element assigned to
tetrahedra of the 4-simplgxeach of which is given by 4 a dual link and to the edges exposed on the boundary.
2-simplices(triangles, and eachd-simplex is glued to an- We choose real representations of $gjr(this is always
other one along a commor {- 1)-simplex. Thus a generic possiblg. Note that this can be seen as a way to implement
4-simplex has 5 tetrahedra and 10 triangles ifsée Fig. 3. automatically the first of the Barrett-Crane constraints, so

Each dual link goes from a 4-simplex to a neighboring onethat there will be no need to impose it explicitly in the fol-
through the shared tetrahedron, so we have 5 dual links comewing. Thus we have

ing out from a 4-simplex.

We can assign two dual link variables to each dual linkZge(Spin(4))
dividing it into two segments going from the center of each
4-S|_mplex to the center of the boundary tetrahec_iron; ie,we — ( 11 f . dge) T > dimJgH Diﬁ« (ge,)-
assign one group elemegtto each of thenisee Fig. 4. e Jspin4) o Jg.k i il

Consider now a dual plaquette. It is given by a number, (30)
say,m of dual links each divided into two segments, so there
are 2n dual link variables on the boundary of each plaquette Consider now a single 4-simplex. Note that in this case all
When a tetrahedron sharing the triangle to which thethe tetrahedra are on the boundary of the manifold, which is
plaquette corresponds is on the boundary of the manifold, the
plaquette results in being truncated by the boundary, anc
there will be edges exposed on itnot connecting
4-simplice$. To each of these exposed edges we also assig!
a group variable.

We now make use of the character decomposition formula
which decomposes the character of a given representation ¢
a product of group elements into a product(®fignen D
functions in that representation:

XJ,

1L ge(T>)

ledP

= z H Di”k (o) With  Ky=Komiq (29) FIG..4. The dual link corresponding to the tetrahedron on which
kb i Hikr two 4-simplices meet.
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given by the interior of the 4-simplex. Writing down explic-  Now we want to go fronBF theory to gravity(Plebanski

itly all the products ofD functions and labeling the indices theory by imposing the Barrett-Crane constraints onBife
appropriately, we can write down the partition function for partition function. These are quantum constraints on the rep-
the Spirt4) BF theory on a manifold consisting of a single resentations of S@) which are assigned to each triangle of

4-simplex in the following way: the triangulation, so they can be imposed at this “quantum”
level. The constraints are essentially two: the simplicity con-
Zgr(Spin4))= 2 (H dim; ) straints, saying that the representations by which we label the
ahikel | o 7 triangles are to be chosen from the simple representations of

SQO4) [Spin(4)], and the closure constraint, saying that the

<11 j dgeDil m Diz m tensor assigned to each tetrahedron has to be an invariant
e JSpin4) erer Tezlez tensor of S®) [Spin(4)]. As we have chosen real represen-
e " , tations, there is no need to impose the first constraint of Sec.
XD s k:4me4( s D”) (3D 1Il, and the third one will be imposed automatically in the

following. We can implement the second constraint at this
The situation is now as follows: we have a contribution for/€Vel Py requiring that all the representation functions have
each of the 5 edges of the dual complex, corresponding ti P€ invariant under the subgroup &Dof SO4), so real-
the tetrahedra of the triangulation, each of them made of ¥ing these representations in the space of harmonic func-
product of the 4D functions for the 4 representations label- tions over the coset 9@)/SO(3)=S?, which was proved in
ing the 4 faces incident to an edge, corresponding to the ¥38,42 to be a complete characterization of the simple rep-
triangles of the tetrahedron. There is an extra product oveiesentations of SQX) for any dimensiorD. We then imple-
the faces with a weight given by the dimension of the represment the fourth constraint by requiring that the amplitude for
sentation labeling that face, and the indices of the Widgher a tetrahedron is invariant under a generak®@ransforma-
functions refer one to the center of the 4-simplex, one end ofion. We note that these constraints have the effect of break-
the dual edge, and the other to a tetrahedron on the boundaiiyig the topological invariance of the theory. Moreover, from
the other end of the dual edge. There is also an additionalow on we can replace the integrals over $fjiwith inte-
product ofD functions, one for each group element assignedyrals over S@), and the sum with a sum over the G0
to an edge exposed on the boundary, and not integrated ovRfpresentations only.
because we are working with fixed connection on the bound- consequently we write
ary.

Zoc= > (HdimJ 1T dge dhlf dhzf dhsf dh4f
Jo ket \ 7o 7)7e Jsaa) Sa3) SQ3) o) Sa3) SO(4)

XdgeDyt | (9ehiglD | (9ehog)Dy | (9ehagl) Dy <geh4gg>( II D)
€. €. e €. e e (= e

me4

= 2 (H dim;,

Jo ,{ke} o

I1 Ae(H D)- (32
€ e
Let us consider now the amplitude for each eégs the dual complex:

Ae:f dgef dhlj thJ dhgf dh4f
SO4) SO3) SO(3) SO(3) SO3) sSO(4)

P 1 ~J5 PN INJa /
XdgeD,! o (9en19e)DiZ 1\ (QeN20e)Dyl 1\ (9eNage)D? o (9ehage) (33

for a particular tetrahedrofedge made out of the triangles 1,2,3,4, say, and write the integrals using the decomposition
property for the representation function of a product of group elements:

J J J J
Ae= Lw)dngki.l(gl)Dk;z(gl)Dkg,s(ggiju(gl)

xf dh,D* (hl)f dh,D;2 (hz)f dhgD® (h3)f dh,D* (hy)
hy SO3) 212 SO3) SO(3) 44

l1ig I3i3

I~y ’ J ’ J , J ,
stom)dng ', (90D %, (91)D; %, (91)D; 1 (91) (34)

i1my
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where the sum over repeated indices is understood. We have now to perform the different integrals.
The integral of a product of B functions is given by

i2 i3 ia i1i2i3i4d ~i1i2iziad
fSQA)d alBl(g)D B(g)D ﬂ(g)D ﬂ(g) EC C (35)

ajayagay = B1BoB3By

where theC functions for allJ’s are an orthonormal basis for 1
the space of the S@) invariant tensors that are intertwiners A=
between the 4 different representatignsj,, js, ja, SO EQ.

(35) results. They are given by

313533341 ~J735333,L

simple |L AJ1A32A33A34 kikakgk, ~mymymgm,

JllzJ 34l _ \/mclllz\] i3igd (36) _ 1 gl1J2Jadagdidalals (40)

ala2a3a4 a a2a aza,a AJ AJ AJ AJ kikokgk, —mymomgmy,’
1 2 3 4

where theCJclJ('iJk are Wigner 3 symbols for S@4), normal-

ized so that where theB’s are the Barrett-Crane intertwiners, defined in
[19], and shown to be unique up to scaling 88], and from
i ik _ 5 s now on the sums are over simple representations only.

ajaa” ae B TIKCap Note that the simplicity of the representations labeling the

tetrahedrathe third of the Barrett-Crane constraint®mes
The integral over the subgroup $) of a representation automatically, without the need to impose it explicitly.

function of a subgroup element in a representatlasf the We note also that because of the projection above and the
group S@4) is given by[29] consequent restriction to the simple representations of the

group, the result we end with is independent of having

started from the Spid) or the S@4) BF partition function,
J —add i
qu)dh DaB(h)—wawﬁ (37) as we anticipated.

We see that each tetrahedron on the boundary of the

4-simplex contributes with two Barrett-Crane intertwiners,

wherew? is a normalized S@) invariant vector in 4 dimen- ©Nneé with indices referring to the center of the 4-simplex and
sions in the irreducible representatidof SO4). Since such the other indices referring to the center of the tetrahedron

a vector exist¢and is non-vanishingonly if the representa- itself (see Fig. 5.
tion Jis simple, the effect of the integrations over @Dis to

project the intertwinersC into the one-dimensional vector it 2B
space of intertwiners between simple representations o
SO4).

Consequently we obtain

J132J304l ~J1J2J34] Ja I 92,93, ,d
AeZE Ck1k2k3k4 Clll ? |3 4WI 1WI 2WI 3W 4W 1W 2W w4
L 1XoK3Kg llol3ly 1 12 I3 14

1 12 B
CJ1J2J3J4LCJ1J2J3J4L (38) ito
iqioigiy mymymamy *

As we said, the projection of the intertwiner

Cfllljzifj“'wllwl 2WI 3W vanishes unless all thés and thel ”0

(or thel) are S|mple When this happens, the result is given

by [29]

1 !
CilJZJ?’J“' wiwewhwli = — = (39 'S
1¥p%3%y @ Qp Az @y /AJ AJ AJ AJ 8
1 2 3 4
j9

where Aj=dim;, so the amplitude for a single tetrahedron  FIG. 5. Diagram of a 4-simplex, indicating the two Barrett-
on the boundary is Crane intertwiners assigned to each tetrahedron.
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j10

FIG. 6. Schematic representation of the Barrett-Crane amplitud
for a 4-simplex.

The partition function for this theorftaking into account
all the different tetrahedyds then given by

1

Zo~= 2 A, Ay —mMmMm
B On iy JlO(AJl"'AJm)Z

313233345 94353637 5 J793)8d9 pJglgdd
« BI19233%agdalsded7g 793389 g Iodedadio
kikakaky ~l4lslgl7 T n7ngngng ~hghghshyg

_JiqlanleBJlJstle J4d5J6d7  RJ7d3Jgdg
l10'g!sl1 — MyMpMgMy — MyMsMgM7 = M7 M3MgMg

1T D).
e
Now the product of the five Barrett-Crane intertwiners with

indices m gives just the Barrett-Crane amplitude for the
4-simplex which the indices refer to, given by aj l¥ymbol

Jgdd2d10 BJIOJSJSJl
MgMgMaMyg My gMgMsMy

(41)
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FIG. 7. The gluing of two 4-simplices along a common tetrahe-
dron.

e

foam (dual 2-comple) which is open, i.e. not ending on any
other 4-simplex. Also th® functions for the exposed edges
are constrained to be in the simple representation.

VII. GLUING 4-SIMPLICES AND THE STATE SUM FOR
A GENERAL MANIFOLD WITH BOUNDARY

Now consider the problem of gluing two 4-simplices to-
gether along a common tetrahedron, say, 1234.

The most natural way to do it, having already the state
sum for a single 4-simplex, so for the simplest manifold with
boundary, is to consider the two 4-simplices separately, thus
considering the common tetrahedron in the interior twice,
and glue them together along it. So we are considering the
state sum for a single 4-simplex as the basic and unique
building block for constructing more complex state sums for
more complex manifolds.

constructed out of the 10 labels of the triangles and the 5 T1pe gluing is done by multiplying the two single partition

labels of the tetrahedrésee Fig. 6, so that we can write
down explicitly the state sum for a manifold consisting of a
single 4-simplex as

jerlerzlerslers
Bke’lke'zke'3ke’4

A A

ler2™ 1e’3™ e’

BCT . 2 H Ajf
fighdker f

<1 BBC([e[ 0|

II

e’ Aje'lA

z

(42)

where it is understood that there is only one vertByg is

functions, and imposing that the values of the spins and of
the projectiongthek,/;’'s) of the common tetrahedron are of
course the same in the two partition functions. This comes
from the integration over the group elements assigned to the
exposed edges that are being glued and become part of the
interior, and thus have to be integrated out.

Everything in the state sum is unaffected by the gluing,
except for the common tetrahedron, which now is in the
interior of the manifold. In this naive sense we could say that
this way of gluing is local, because it depends only on the
parameters of the common tetrahedron, i.e. it should be de-

the Barrett-Crane amplitude for a 4-simplex, and the notationermined only by the two boundary terms which are associ-

e'i means that we are referring to tite face(in some given
ordering of the tetrahedror’, which is on the boundary of
the 4-simplex, or equivalently to théh 2-simplex of the four
which are incident to the dual edgk-simplex e’ of the spin

ated with it when it is considered as part of the two different
4-simplices that are being glued.

What exactly happens for the amplitude of this interior
tetrahedron is
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g’192934 B 192934 that when we glue two manifold$1 and M’ along a com-
MM2MsMs M M2MsMa mon boundary, the partition functions associated to them and
m A5,85,85,45, A5 45,854, to the composed manifold satisfy Z(M)Z(M')
31333338 ~33pdalil =Z(MAM"), as is easy to verify; sdd.,2] for more details.
m, momam, Cm, momam, (i) In the original Barrett-Crane papgt9] two different
= ways of considering the tetrahedra in the interior of the
WL (Mg A A A,)? manifold were mentioned: one is to consider them separately
as part of two different 4-simplices, and then label them with
\/A,ALCrJT}Jrﬁ' menljrf]' menljrf]LnCﬂn‘erﬁLn two Barrett-Crane intertwiners; the other one is to consider
172 34 1772 34 . .
=> them each as an autonomous element of the triangulation,
e (A5,85,45,4,,)% and so label them with only one simple representation of
SQO(4). Consequently there should have been two different
A 8L 6mn A, models. Our result suggest that the two models are in fact the
= “ (A%AJZA%A%)Z = : (A%AJZA%AJ“)Z (43) same one, because if we consider an interior tetrahedron as

belonging to two different 4-simplices, then it is separately
) ) _ on the boundary of the two and should be assigned a bound-
where we have used the orthogonality between the mtertwmé1ry term as in Eq(44) for each of the 4-simplices. The
ers, and labels the interior edggetrahedron gluing then will give us a term for an interior edge, as in Eq.

We see that the result of the gluing is the insertion of a44) I on the other hand we consider the whole manifold
amplitude for the tetrahedfdual edgepin the interior of the 54 3 tetrahedron in it as an independent element, we should
triangulated manifold, and of course the disappearing of th%ssign to it the term for an interior edge as given again in Eq.
boundary term® since the tetrahedron is not anymore part(44); consequently the state sum will be the same in both
of the boundary of the new manifoldee Fig. 7. cases at the end.

We can now write down explicitly the state sum for a i) |f we had imposed on our representation functions
manifold with boundary which is then constructed out of anj,yariance under the left action of %® (instead of the right
arbitrary number of 4-simp|icesz ano_l has some tetrahedra ofe we used in the abovand then to the edge amplitude the
the boundary and some in the interior: invariance under the left action of $0 (again, instead of
the right one used beforewe would have ended up with
exactly the same result, i.e. the same spin foam model with
the same amplitude for the simplices of different dimension-
17 er2 je’sAje’4 ality. There are two other possible cases. We could have

imposed the invariance under the right action of($Gnd

the left action of S@), thus having
Al BBC(H D) (44)
v e
where the{e’} and the{e} are the sets of boundary and

Ae=J dgeJ dhlf dhzf dh3J dh,
SO(4) SO3) SO3) SO3) SO3)
interior edges of the spin foam, respectively, while &are

13 ) 3 ,
the remaining exposed edges. X qu4)dgeDk;mel(gegehl)Dkzzmez(gegehZ)
It is important to note that the number of parameters
which determine the gluing and that in the end characterize
the tetrahedron in the interior of the manifold ig4 labels
for the faces and one for the tetrahedron itselfhich is
precisely the number of parameters necessary in order
determine a first quantized geometry of a tetrahedBar.
Moreover, the partition function with which we ended,
apart from the boundary terms, is the one obtainefB3H,

Bje’lje’ZJ e'3le’s
- H Ker1Ker2Ker 3Kar 2
Jf

Zgc= E H A
{ithiker b 43eh  f e A,

-
X
e (AjelAj A

e2 jeS

A

lea

)

e
J3

’ 3¢ ,
X Dke3mea(gegeh3)Dk:4m64(gegeh4), (45)

but in this case we would have ended up with a trivial state

Qum model with amplitude 1 for each 4-simplex, because the
multiplication of all the terms for the tetrahedra leads to a

product of the norms of the unit vectovg which are by

.. definition 1, as could be verified performing the integrals and

%arrying out the same steps as above. Otherwise we could
have imposed the invariance under the left action of 30

@nd then, on the whole amplitude, the right invariance under
constraints at the level of the representations starting from ' P ' 9

discretizedBF theory has led us exactly to the Barrett-Crane
model for Euclidean quantum gravity, with a precise pre-
scription for the amplitudes of the faces and, more important, Ae= Lom)dge So(s)dhl So(g)dhz Sq3)dh3 so<3)dh4
the edges of the spin foam, coming directly and naturally
from the gluing of the different 4-simplices, and also with

’ 38 ’ 3¢ f
sensible boundary terms. x fso(4)dgeDkilmel(hlgege)Dkzzmez(hZQege)
Several comments are opportune at this point.
(i) The gluing procedure used above is consistent with the 35 '~ J5 ,
formalism developed for general spin foarffs2], saying kesmes(h?’gege)Dke4me4(h4gege) (46)
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obtaining, after the integrations, sum coming from the recoupling theory of 8 (intertwin-
ers and 1p symbolg with the corresponding objects for the
Ay S SRR ST SO guantum deformation of it.
Ae= % \/ﬁ LﬁWLZZWLiWLiCiﬁi?n’f,’T{;m (v) The semiclassical limit of this state sum can be studied
117127037 s with the same methods §24], leading to the similar results.
(47) (vi) The structure of the state sum and the form of the
and, for a 4-simplex, boundary terms is a very close analogue of that discovered in
[35,36 for SU(2) topological field theories, like the Crane-
Yetter model in 4 dimensions, in any number of dimensions,

Jer

= A, H the difference being the group used, of course, and the ab-
Uoliehie 1T AL AL A A sence of any constraints on the representations so that the
o topological invariance is maintained.
><Wf(‘z,llwffe,zzwf(igw{(ee,i{l5j}v (48 (vii) In these works, and also in ours, the boundary con-

ditions are chosen so that the connection is fixed on the
where the 15 symbol is an ordinary 15symbol constructed boundary; if another boundary condition is chosen, for ex-
from a product of fiveC functions. The whole partition func- ample if we fix theB field to be constant on the boundary, or
tion for this model(gluing different 4-simplices as abovis ~ we choose a mixed situation where we fix part of the con-
then nection and part of thB field on the boundary, then we have

to add another term in the action, and consequently the state

Aje, sum will be different; an analysis of these problems was
Z= E H AJfH carried out in[28] for the 3-dimensional casd@uraev-Viro
Uofieta 71T AL AjLA LA mode).
XWLe’rlwf(e’VZWIj(e’,SWLe’f
el Telz Tels Teld VIIl. GENERALIZATION TO THE CASE OF AN
A2 ARBITRARY NUMBER OF DIMENSIONS
<1 11 {15} (49
e A 1Aj ZA]- SA]. " Jro- It is quite straighforward to generalize our procedure and
e €. €. e

results to an arbitrary number of dimensions of spacetime.
This looks like case A i31], but with different amplitudes Much of what we need in order to do it is already at our
for the 2 and 3 dimensional simplices, and of course withdisposal. It was shown i[88] that it is possible to consider
additional boundary terms. gravity as a constraineBF theory in any dimensiofinci-

Note, however, that in this case the amplitudes for thedentally, the same was proposed for supergra\8g~41)),
interior tetrahedra are not really coming from the gluing,and also the concept of simple spin networks was general-
which gives just a multiplication of pre-existent factors, ized to any dimensions if42], with the representations of
without any new contribution, so we could say that this al-SO(D) [Spin(D)] required to be invariant under a general
ternative model somehow makes the gluing more trivial, betransformation of SP—1), so that they are realized as
cause of more trivial boundary terms. In fact we could ab-harmonic  functions over the homogeneus space
sorb all the boundary terms for a 4-simplex except theSOD)/SOD—1)=S""1, and so that the spin network it-
vectorsw in the vertex amplitude, as a rescaling, and thenself can be thought as a kind of Feynmann diagram for
after the gluing, the final state sum would not have any amspacetime.
plitude (A.=1) for the interior tetrahedra. Also the construction of a complete hierarchy of discrete

In addition, our result suggests that the correct and comtopological field theories in every dimension of spacetime
plete way of deriving a state sum that implements theperformed in[36], with a structure similar to that one we
Barrett-Crane constraints from a generalized matrix model igropose for the Barrett-Crane model, represents an additional
like in [32], i.e. imposing the constraints on the representamotivation for doing this.
tions only in the interaction term of the field over a group  What is missing for applying our procedure in this general
manifold, because this derivation leads to the correct edgease is just a discretization of BF theory with general
amplitudes coming from the gluing, and these amplitudes argauge group SAY), where we cannot make use of any de-
not present if31]. composition of the algebra in terms of the SU(2) one.

(iv) Regarding the regularization issue, it seems that even Anyway, we can guess that the structure of the discretized
starting from a discretized action in which the sum over thepartition function found in Sec. V for the group &9 in 4
representations is not convergent, we end up with a state sudimensions of spacetime, using the splitting of this group
which is finite, at all orders, according to the results ofinto a product of two S(2) groups, is indeed the general
[32,52. Anyway another way to regularize completely the form of a discretized partition function f@F theory for any
state sum model, making it finite at all orders, is to use acompact group in any dimensidimterestingly, it is analo-
guantum group at a root of unity so that the sum over thegous to that found in27] for the case of S(2) in 4 dimen-
representations is automatically finite due to the finiteness o$ions, and if37] for SU(2) in 3 dimensiong
the number of representations of any such quantum group; in So we are saying that it is reasonable to think that the
this case we have only to replace the elements of the stattiscretized partition function foBF theory in an arbitrary
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D-dimensional(Euclidean (triangulatedl spacetime for any

compact groups and in particular for S) is

11 f dge)H > Ayl 11 ger) (50)
e G o Js

e’ eof

Zgp=

wheree’ is a dual link on the boundary of the dual plaquette

f (face of the spin foamassociated with a trianglein the

PHYSICAL REVIEW D 63 024022

the dual triangulatioriplaquette, which is possible because
they are in 1-1 correspondence.

Now we can use the decomposition of the delta function
of a group element into a sum of characters, obtaining

ZBF:(I_e[ dege)H ; Ajxs, I1 ge’): (53

e’ eof

triangulation,e indicates the set of dual links, and the char-i.e. the partition function we were trying to derive.

acter is in the representatian of the groupG.

A way to justify this heuristically(for a more rigorous
discretization leading to the same result, &) is the fol-
lowing.

From now on we can proceed as for @Din 4 dimen-
sions. Conside=SO(D) and theJ’s as the highest weight
labeling the representations of that group.

We can decompose the characters into a produdD of

We start from a discretized action like the one we usedunctions, and rearrange the sums and products in the parti-
before (of course the same remarks concerning the approxition function to obtain

mation used apply also here

SBF=2 B(F(1), (51)

having again approximated th field with a distributional
field with values only on theld — 2)-simplicest of the origi-
nal triangulation, and wite'" V=11, _ g, . With this ac-
tion the partition function for the theory becomes

zBsz DAJ DB(t)exp(iZ B(t)F(t))
G G t
=f DAJ DB(t)[] eBOF®
G G t
=f DAJ] 8(eFO)
G t
(52)

=11 [ gad] of 11 o |

e’ eof

BE= E H AfH Ae(H D) (54)
b ikp{m; £ e 2
where
Ae= jSQD)dgeDkeimel(QE)‘ .. DkegmeD(ge) (55)

whereei labels theith of theD faces incident on the edge
Now we can apply our procedure and insert here the
Barrett-Crane constraints:

Ae:j dgef dhlf th
sSQ(D) SO(D-1) SQ(D-1)

rnyJe ’ Je ,
X LO(D)dgeDkeimel(gehlge). DI (gahogy).

(56)

Performing the integrals and carrying on the same steps as in
Secs. VI and VIII, leads to the analogue of the form{44)

with the notation as above, and having replaced the produdh higher dimensiongor alternatively to the analogue of case
over the O —2)-simplices with a product over the faces of A in [31]):

Zsc > [T 4,11

i I T ke ke T

Jerderaders ~lersder2dern .
Ker1kKeroKer1 ~KergKerpKerg

\ AJe'l' ’ 'AJe’(D—s)

. le'(p-2)de'(D-4)de’ (D-3) Cje’(D—l)je’DJe’(D—S)

A A

J.e’l. J'e’D

There areD faces[corresponding to [ —2)-dimensional
simpliced incident on each edge[corresponding to
(D—1)-dimensional simplicds [ (D — 1)-simplex in the in-
terior] or e’ [(D—1)-simplex on the boundatyThere are
D+1 edges for each vertex(corresponding to a
D-dimensional simple)x and consequentl® (D + 1)/2 faces

ke'(p-2)Ke'(D—4)Ke' (D-3) ke'(D—l)ke'DKe'(D—s)H

Ay, .AJe(D,s) BDC( D)
I I B INI .
v e

€ (Ajel”. J.eD)2

(57)

for eachD-simplex. Each edge is labeled by a set &f (
—-3) Js. HereBgC is the higher dimensional analogue of
the Barrett-Crane amplitude, i.fthe SOQ) analogue of
the 3(D+1)(D—2)J symbol constructed out of thB (D
+1)/2 labels of the faces and th® ¢ 3)(D +1) labels of
the edges.
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Again, this result is a very close analogue of the state sum Having at hand both kinds of state sum, a careful analysis
for a topological field theory in general dimension, obtainedof the more appropriate boundary conditions in the case of a
in [36]. spacetime representing a black hole should be carried out,

Of course, everywhere we are summing over only simpleand then in principle it should be possiklapart from the
representations of SQY), i.e. representations of SO that  technical problems of the calculation® use the derived
are of class 1 with respect to the subgroup BG(1) [29]. state sum model for a calculation of black hole entropy,

along the lines of43] for the 3-dimensional case.
IX. CONCLUSIONS Of course, before trying to apply the state sum model to
) any physical problem, another thing is necessary, which is

We conclude with a summary of our procedure and rethe implementation in a precise way of a sum over triangu-
ture work. _ to restore an infinite number of degrees of freedom to the

In this paper we have proposed a way to derive theneory. Only after this is done can we start to consider this
Barrett-Crane spin foam model for Euclidean quantum gravmodel as a concrete proposal for a quantum theory of grav-
|ty in4 dimenSiOf’iS, Starting from a diSCfetizat-ion of a(SD |ty, thus regarding it as an approach to a Compiete quantiza-
BF theory[SQ4) is the local symmetry group in the Euclid- tion of Einstein theory, leading to the possibility of studying
ean casg The trick is to discretize th@unconstrainericlas-  physical aspects of gravitational field in a sensible way. A
sicalBF theory, and then impose the constraints that lead tQ/ery promising approach to this probiem is represented by
the gravity theory at the quantum level, which means at tthe generaiized matrix models propose([3|1’32 and gen-
level of the representations of the gauge group by which Werajized to any kind of spin foartalso not related to gravity
label the elements of the Spin foam. In this way, we argue, |tn [441431 but more Study is necessary to settle it down
is possible to circumvent the difficulties in discretizing and definitely.

then quantizing directly the Plebanski action for gravity, siill to understand and develop is a Lorentzi@ausal
which is the classical counterpart of the Barrett-Crane modelersion of these models; some work in this direction was
The result we end with is exactly the Barrett-Crane spincarried out in46], and recently important results were found
foam model with a precise prescription of the form thein [47,53. Our procedure should be in principlapart from
Barrett-Crane state sum should have, in the general case gfi the technical difficulties applicable also to the case in
an arbitrary manifold with boundary. In particular we de- which the local symmetry group is the Lorentz group, and
rived the amplitude for the edges of the spin foam, from ahjs possibility will be investigated in the future. A very dif-
clear and natural procedure of gluing different 4-simplicesterent but related solution to the problem of implementing

together along a common tetrahedron. The fact that our recausality in these models was proposed and developed in
sult coincides with that derived if82] from a generalized [48-5(.

matrix model, and shown to be necessary to make the sum Ajso still to understand is the question of the semiclassi-

over colorings finite, seems to reinforce our proposal. Moreca| |imit of the model. In fact, apart from the connection with
over, our results and the state sum we obtain can be easilyjscrete gravity obtained if24], a great deal of work is still
generalized to higher dimensions. necessary to understand how a classical background metric
We can now say something about possible ways to imzan emerge from a theory of this kind, and if it is possible, as
prove and develop our results and to apply them to som@ias to be possible, to develop a picture of perturbations of
physical problem. this background from this model, proving that it contains

Of course a very important thing to do would be to dis- gravitons as is necessary for any satisfactory theory of quan-
cretize the Plebanski action, so to start with a constraBi®ed  tum gravity.

theory at the classical level, and quantize it in the same way
we did, to see if we really end up with the same result, as we
expect.

Another thing that should be studied more and that should ACKNOWLEDGMENTS
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