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Gluing 4-simplices: A derivation of the Barrett-Crane spin foam model for
Euclidean quantum gravity
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We derive the Barrett-Crane spin foam model for Euclidean 4-dimensional quantum gravity from a dis-
cretizedBF theory, imposing the constraints that reduce it to gravity at the quantum level. We obtain in this
way a precise prescription of the form of the Barrett-Crane state sum, in the general case of an arbitrary
manifold with boundary. In particular we derive the amplitude for the edges of the spin foam from a natural
procedure of gluing different 4-simplices along a common tetrahedron. The generalization of our results to
higher dimensions is also shown.
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I. INTRODUCTION

In recent years, many different approaches to the prob
of finding a complete theory of quantum gravity have be
converging to the formalism of the so-called spin foa
@1,2#. These kind of models are obtained by translating
geometric information about a~triangulated! manifold into
the language of combinatorics and group theory, so that
usual concepts of a metric and of metric properties are so
how emerging from them, and not regarded as fundame
In some sense this implements in a precise way the idea
sum over geometries, but now we are summing over labe
2-complexes~spin foams!, i.e. collections of faces, edges an
vertices combined together and labeled by representation
a group~or a quantum group!. A spin foam emerges whe
considering the evolution in time of spin networks@3–5#,
which were discovered to represent states of quantum
eral relativity at the kinematical level@6–10#. Spin foam
models exist also for topological field theories in differe
dimensions@11–14#, and many different spin foam mode
have been developed for gravity@15–18#. One of the most
promising spin foam models for gravity in 4 dimensions w
proposed in@19# and is known as the Barrett-Crane state s
model. It was shown@20# to be related at the classical lev
to gravity, and more exactly to correspond to the Pleban
action @21,22#, which contains gravity as a sector of the s
lutions. This in turn can be considered as a constrained
pological field theory, namely aBF theory@23#, plus a con-
straint on theB field. Another result which suggests that th
Barrett-Crane model is indeed related to quantum gravit
that the semiclassical limit of the amplitude for a 4-simpl
~so in a sense the simplest possible manifold! gives a path
integral with the action given by a form of the Regge calc
lus action with the areas of the triangles of the triangula
manifold as variables instead of the edges of the triang
tion @24,25#. The Barrett-Crane model was originally ob
tained through a quantization of a 4-simplex, meaning
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study of the correct way to translate the conditions that
termine the classical geometry of a 4-simplex into the qu
tum language of representations of SO~4!, which is the local
gauge symmetry group of Euclidean gravity in 4 dimensio
In this way the quantum amplitude for a 4-simplex was o
tained and a state sum~discrete partition function! deduced
from it, leaving some ambiguity regarding the amplitudes
be associated to the lower dimensional simplices~tetrahedra
and triangles! in the spin foam model. In this sense th
Barrett-Crane state sum was more guessed at than de
~for an attempt to set up a general formalism for deriving
spin foam model from a classical action, see@26#!.

We will try to derive the Barrett-Crane model for Euclid
ean gravity in 4 dimensions from a discretization of t
SO~4! BF theory, imposing the constraints that reduce t
theory to gravity~the Barrett-Crane constraints! at the quan-
tum level, i.e. at the level of the representations of SO~4!
used, and not starting from a discretization of the Pleban
action, i.e. from a constrained action at the classical leve

The reasons for this approach are several: at the c
tinuum ~and classical! level the relation between the Pleba
ski action and theBF action already mentioned; at the di
crete ~and quantum! level, the fact that a complete
discretization of SU~2! BF theory in 4 dimensions has bee
carried out@27#, and leads to the Crane-Yetter discrete top
logical theory, the Barrett-Crane model being a ‘‘constrain
doubling’’ of it.

Of course the best thing to do would be to discretize
rectly the Plebanski action, obtaining directly the Barre
Crane state sum model in this way, but this is very diffic
due to the non-linearity of the additional term in theB field
~similar problems exist for the discretization of theBF
theory with a cosmological constant; see@28#!, and requires
further investigation.

II. BARRETT-CRANE MODEL

Let us first recall the basic elements of the Barrett-Cra
work @19#.

A geometric 4-simplex is completely and uniquely cha
acterized~up to parallel translation and inversion through t
origin! by a set of 10 bivectors, each corresponding to
©2000 The American Physical Society22-1
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triangle in the 4-simplex and satisfying the following pro
erties:

~i! The bivector changes sign if the orientation of the t
angle is changed.

~ii ! Each bivector is simple, i.e. given by a wedge prod
of two vectors.

~iii ! If two triangles share a common edge, the sum of
two bivectors is simple.

~iv! The sum~considering orientations! of the 4 bivectors
corresponding to the faces of a tetrahedron is zero.

~v! The assignment of bivectors is non-degenerate.
~vi! The bivectors~thought of as operators! corresponding

to triangles meeting at a vertex of a tetrahedron satisfy
inequality trb1@b2 ,b3#>0.

The crucial observation now is that bivectors can
thought of as being elements of the Lie algebra so~4!, so we
can label the triangles in the triangulation with represen
tions of so~4!, i.e. considering the splitting so(4).su(2)
% su(2), with pairs of spins (j ,k) and the tetrahedra in th
triangulation with tensors in the product of the four spac
on its triangles. The point is to translate the conditions ab
into conditions on the representations of this algebra.

The corresponding conditions on the representations w
found to be the following:

~i! Different orientations of a triangle correspond to du
representations.

~ii ! The representations of the triangles are ‘‘simple re
resentations’’ of SO~4! of the form (j , j ), i.e. representations
of class 1 with respect to the subgroup SO~3! @29#.

~iii ! Given two triangles, if we decompose the pair
representations into its Clebsch-Gordan series, the tenso
the tetrahedron is decomposed into summands which
non-zero only for simple representations.

~iv! The tensor for the tetrahedron is invariant und
SO~4!.

It was then proved@33# that the intertwiner proposed i
the original paper is unique up to normalization.

Out of these conditions, an amplitude for a quantu
4-simplex can be deduced and calculated@30#, and it is pos-
sible to write down a spin foam model~for fixed triangula-
tion! from these amplitudes:

Z~D!5(
j f

)
f

Af)
e

Ae)
v

Av
BC ~1!

where the products are over the faces, dual to triang
edges, dual to tetrahedra, and vertices, dual to 4-simplice
the 2-complex representing the spin foam and which is d
to the triangulationD of the 4-dimensional manifold. The
sum is over the spins labeling the triangles, and the am
tudes are the Barrett-Crane amplitude for the vertices,
suitable amplitudes for edges and faces of the spin fo
Since there is no complete derivation from a classical the
so far for this state sum, the exact amplitudes for edges
faces are not determined, but different models with the sa
Barrett-Crane amplitude for the vertices are proposed in@31#
and@32#. The problem of the choice of the amplitudes for t
interior tetrahedra is also related to the problem of how
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glue two 4-simplices along a common tetrahedron inside
manifold, a problem not addressed in these works.

In this paper we try to derive the complete state sum fr
a constrained discretization of a classical theory, so that
way of gluing different 4-simplices is natural, and the corr
sponding amplitude for the edges of the spin foam is
tained automatically.

III. BF THEORY, PLEBANSKI ACTION, AND THE
BARRETT-CRANE MODEL

We now review briefly the relationship between Pleban
action,BF theory and the Barrett-Crane model. The so~4!-
Plebanski action@21# ~without cosmological constant! is
given by

S5S~v,B,f!5E
M

FBIJ`FIJ~v!2
1

2
f IJKLBKL`BIJG

~2!

where v is an so~4!-valued connection 1-form,v
5vm

IJXIJdxm, XIJ are the generators of so~4!, F5dv is the
corresponding two-form curvature,B is an so~4!-valued
2-form, B5Bmn

IJ XIJdxm`dxn, andf IJKL is a Lagrange mul-
tiplier. The associated equations of motion are

dS

dv
→DB5dB1@v,B#50 ~3!

dS

dB
→FIJ~v!5f IJKLBKL ~4!

dS

df
→BIJ`BKL5e e IJKL ~5!

wheree5(1/4!)e IJKLBIJ`BKL.
Thus it is evident that this theory is like aBF topological

field theory, with a type of source term and with a non-line
constraint on theB field. In turn the relation with gravity
arises because the constraint~5! is satisfied if and only if
there exists a real tetrad fieldeI5em

I dxm so that one of the
following equations holds:

I BIJ56eI`eJ ~6!

II BIJ56
1

2
eKL

IJ eK`eL. ~7!

If we restrict the fieldB to be always in sector II~with the
plus sign!, and substitute the expression forB in terms of the
tetrad field into the action, we obtain

S5E
M

e IJKLeI`eJ`FKL ~8!

which is just the action for general relativity in the first ord
Palatini formalism.

The restriction on theB field is always possible classi
cally, so the two theories do not differ at the classical lev
but they are different at the quantum level, since in the qu
2-2
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GLUING 4-SIMPLICES: A DERIVATION OF THE . . . PHYSICAL REVIEW D 63 024022
tum theory one cannot avoid interference between differ
sectors. This is discussed in@20#.

It was shown in@20# that a discretization of the con
straints~5! which give gravity fromBF theory proves that
they are the classical analogue of the Barrett-Crane c
straints. Consequently, we can look at the Barrett-Crane s
sum model as a~tentative! quantization of the Plebanski ac
tion and thus strongly related~even if somewhat different! to
gravity.

IV. DISCRETIZED SU „2… BF THEORY

Let us now sketch the discretization of SU~2! BF theory
as given in@27#. ~Baez has pointed out some ambiguities
this discretization procedure; we refer to@2# and @26# for
alternative approaches.!

Consider the SU~2! BF theory action, which can be
thought of as being the self-dual~or anti-self-dual! part of an
SO~4! BF theory action, as we will see later,

S5E
M

B`F ~9!

whereB is an su~2!-valued 2-form field, andF is the 2-form
curvature of an su~2!-valued connection 1-form.

Consider now a piecewise linear 4-dimensional simplic
manifold, which is given by a triangulation of the manifo
M. According to the Regge calculus picture, the curvature
located at the different trianglest @(d22)-dimensional sim-
plices#. Consider also the complex which is dual to the t
angulation, having a vertex for each 4-simplex of the tria
gulation, an edge~dual link! for each tetrahedron connectin
the two different 4-simplices that share it, and a~dual! face
for each triangle in the triangulation~see Fig. 1!. ~An earlier
work using the complex dual to the triangulation is@51#.!

The 2-dimensional surface bounded by the dual links c
necting the 4-simplices that share the same triangle is ca
a dual plaquette. It is easy to see that the correspond
between a triangle in the original triangulation and a d
plaquette is 1-1~see Fig. 2!.

We introduce a dual link variableU( l̃ )5eiv( l̃ ) for each
dual link l̃ . Consequently the product of dual link variabl
along the boundary] P̃ of a dual plaquetteP̃ leads to a
curvature located at the center of the dual plaquette, i.e
the center of the triangle t.

We define the curvatureF(t) located on the trianglet by
the equation

FIG. 1. A dual edgee with the four dual faces meeting on it.
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l̃ P] P̃

U~ l̃ ![ei F (t). ~10!

We then approximate the 2-form fieldB with a distributional
field B(t) with values on the triangles of the original trian
gulation. Note that this gives an exact theory for a topolo
cal field theory like theBF one, but it represents only a
approximation for a non-topological theory like gravit
Nevertheless, this approximation would be better and be
when we refine the triangulation or sum over all the possi
different triangulations which would be the next step af
constructing a spin foam model for a given triangulation.

The discretized action forBF theory is then

S5
1

2 (
t

BIFI5(
t

tr S 2 i B~ t !F ln )
l̃ P P̃

U~ l̃ !G D ~11!

where now the indicesI refer to su~2! algebra values.
We then impose the following constraint:

F S )
l̃ P P̃

U~ l̃ !DBS )
l̃ P P̃

U~ l̃ !D †Gab

5Bab ~12!

which is equivalent to imposing on the discrete partiti
function theBF equation of motion on theF field which says
that the holonomy of the curvature vanishes.

This constraint is equivalent to the relation

@F,B#5 i e IJKFIBJ
sK

2
50 ~13!

or BI}FI . Taking into account the parallel and antiparal
nature ofBI andFI this constraint can be rewritten as

B3

uBu F)I 51

2

dS FI

uFu
1

BI

uBu D1)
I 51

2

dS FI

uFu
2

BI

uBu D G ~14!

where the termB3/uBu is needed to keep rotational invar
ance of the expression.

The necessity of another kind of constraint is clear fro
the following argument. Consider the identity

ei4pnL51 ~15!

where

L5
FI

uFu
s I

2
.

FIG. 2. The dual plaquettef for the trianglet.
2-3
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Inserting this into the expression for the action and using
fact thatF andB are parallel leads to

S5(
t

tr~2 i B~ t !ln eiF (t)!

5(
t

tr~2 i B~ t !ln eiF (t)1 i4pnI!

5S1
1

2 (
t

4pnuB~ t !u. ~16!

Thus, imposing the single valuedness ofeiS ~and hence of
the partition function! we have an additional constraint fo
the B field to be of integer absolute valueN52J, with
J half-integer.

Finally we can write down the partition function for th
SU~2! lattice theory with the above constraints as

Z5E DUDB dF S )
l̃ P P̃

U~ l̃ !DBS )
l̃ P P̃

U~ l̃ !D †

2BG
3(

N
d~ uBu2N!eiS. ~17!

It is possible to prove@27# that this partition function is
invariant under gauge transformation on the lattice.

Evaluating theB integral, we obtain

Z5E DU(
J

8J cos~JuFu!. ~18!

Using the known formula for the characterxJ of the spin-J
representation of SU~2!,

xJ~eiF IJI !5

sinS ~2J11!
uFu
2 D

sin
uFu
2

, ~19!

we can recast it in the form

Z5E DU)
t

(
J

~2J11! xJS )
l̃ P P̃

U~ l̃ !D . ~20!

This expression is just formal because the summation is
convergent, but can be easily regularized. We will disc
the regularization issue later.

V. DISCRETIZED SO „4… BF THEORY

Let us now turn to the case of the SO~4! BF theory.
It is well known that the double covering of the SO~4!

algebra, the Spin~4! algebra, is isomorphic to a direct produ
of two SU~2! algebras:

Spin~4!.SU~2!L3SU~2!R . ~21!

Since we are interested in the connection with gravity, and
in only some representations of this group, the simple rep
sentations, we can use this decomposition also in our c
02402
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and so work with the Spin~4! group, because at the end th
imposition of the constraints will give us the same result a
we had started from an SO~4! theory, the reason being tha
the set of simple representations of SO~4! coincides with the
set of simple representations of Spin~4!.

Thus we can split the Spin~4! BF theory action into a sum
of the SU~2! chiral parts:

S5E
M

BIJFIJ5E
M

BI
1FI

11E
M

BI
2FI

2 . ~22!

Consequently the Spin~4! BF partition function gets factor-
ized into a product of two SU~2! partition functions,

Z„Spin~4!…5Z„SU~2!…LZ„SU~2!…R , ~23!

and at the discretized level we can write~dropping theL and
R subscripts!

Z„Spin~4!…5Z„SU~2!…Z„SU~2!…

5E DU)
t

(
j

~2 j 11!x j S )
l̃ P P̃

U~ l̃ !D
3E DU8)

t
(

k
~2k11!xkS )

l̃ P P̃

U8~ l̃ !D
5E DUDU8)

t
(
j ,k

~2 j 11!~2k11!x j

3S )
l̃ P P̃

U~ l̃ !D xkS )
l̃ P P̃

U8~ l̃ !D , ~24!

so we are assigning two independent SU~2! variables to each
dual link.

Now the product of characters of two representationj
and k is given by the character of the direct product rep
sentationj 3k of the group SU(2)3SU(2):

x j 3kS) ~U,U8! D5x j S) U DxkS) U8 D . ~25!

Thus we have

Z„Spin~4!…5E dU dU8)
t

(
j ,k

~2 j 11!~2k11!x j 3k

3S) ~U,U8! D . ~26!

Now we note that the double integral over SU~2! is equiva-
lent, because of the isomorphism mentioned, to an inte
over Spin~4! and the sum above is

(
j ,k

~2 j 11!~2k11!x j 3kS) ~U,U8! D
5(

J
dimJxJS) gD ~27!
2-4
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whereJ is the highest weight of the general (j ,k) represen-
tation of Spin~4! @29#, and the assignment of the pair o
SU~2! elements (U,U8) is equivalent to an assignment of
Spin~4! group elementg.

In the end, we have the following expression for the d
cretized partition function of Spin~4! BF theory:

ZBF„Spin~4!…5E
Spin(4)

dg)
s

(
Js

dimJs
xJsS)e

geD ~28!

where the first product is over the plaquettes in the d
complex ~remember the 1-1 correspondence between
angles and plaquettes!, the sum is over~the highest weight
of! the representations of Spin~4!, and the last product is ove
the edges of the dual complex to which the group elemen
assigned.

The partition function for the SO~4! BF theory is conse-
quently obtained considering only the representation
which the components of the vectorsJs are all integers.

VI. CONSTRAINING OF THE BF THEORY AND THE
BARRETT-CRANE MODEL FOR A SINGLE 4-SIMPLEX

Before going on we clarify what is exactly the location
the g variables; consider a 4-simplex; it has 5 differe
3-simplices~tetrahedra! in it, ~1-2-3-4!, ~4-5-6-7!, ~7-3-8-9!,
~9-6-2-10!, ~1-5-8-10! ~the numbers label the triangles in th
tetrahedra of the 4-simplex!, each of which is given by 4
2-simplices~triangles!, and eachd-simplex is glued to an-
other one along a common (d21)-simplex. Thus a generic
4-simplex has 5 tetrahedra and 10 triangles in it~see Fig. 3!.
Each dual link goes from a 4-simplex to a neighboring o
through the shared tetrahedron, so we have 5 dual links c
ing out from a 4-simplex.

We can assign two dual link variables to each dual l
dividing it into two segments going from the center of ea
4-simplex to the center of the boundary tetrahedron; i.e.,
assign one group elementg to each of them~see Fig. 4!.

Consider now a dual plaquette. It is given by a numb
say,m of dual links each divided into two segments, so the
are 2m dual link variables on the boundary of each plaque
When a tetrahedron sharing the triangle to which
plaquette corresponds is on the boundary of the manifold,
plaquette results in being truncated by the boundary,
there will be edges exposed on it~not connecting
4-simplices!. To each of these exposed edges we also as
a group variable.

We now make use of the character decomposition form
which decomposes the character of a given representatio
a product of group elements into a product of~Wigner! D
functions in that representation:

xJsS )
l̃ P] P̃

ge~ l̃ !D
5(

$k%
)

i
Dkiki 11

Js ~gei
! with k15k2m11 ~29!
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where the product on thei index goes around the bounda
of the dual plaquette surrounding the triangle labeled byJs ,
and there is aD function for each group element assigned
a dual link and to the edges exposed on the boundary.

We choose real representations of Spin~4! ~this is always
possible!. Note that this can be seen as a way to implem
automatically the first of the Barrett-Crane constraints,
that there will be no need to impose it explicitly in the fo
lowing. Thus we have

ZBF„Spin~4!…

5S)
e
E

Spin(4)
dgeD)

s
(

Js ,$k%
dimJs)i

Dkiki 11

Js ~gei
!.

~30!

Consider now a single 4-simplex. Note that in this case
the tetrahedra are on the boundary of the manifold, whic

FIG. 3. Schematic representation of a 4-simplex; the thick lin
represent the 5 tetrahedra and the thin lines the triangles.

FIG. 4. The dual link corresponding to the tetrahedron on wh
two 4-simplices meet.
2-5
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DANIELE ORITI AND RUTH M. WILLIAMS PHYSICAL REVIEW D 63 024022
given by the interior of the 4-simplex. Writing down explic
itly all the products ofD functions and labeling the indice
appropriately, we can write down the partition function f
the Spin~4! BF theory on a manifold consisting of a sing
4-simplex in the following way:

ZBF„Spin~4!…5 (
$Js%,$ke%

S)
s

dimJsD
3)

e
E

Spin(4)
dgeDke1me1

J1
e

D
ke2me2

J2
e

3D
ke3me3

J3
e

D
ke4me4

J4
e S )

ẽ
Dil

J D . ~31!

The situation is now as follows: we have a contribution
each of the 5 edges of the dual complex, correspondin
the tetrahedra of the triangulation, each of them made o
product of the 4D functions for the 4 representations labe
ing the 4 faces incident to an edge, corresponding to th
triangles of the tetrahedron. There is an extra product o
the faces with a weight given by the dimension of the rep
sentation labeling that face, and the indices of the WigneD
functions refer one to the center of the 4-simplex, one end
the dual edge, and the other to a tetrahedron on the boun
the other end of the dual edge. There is also an additio
product ofD functions, one for each group element assign
to an edge exposed on the boundary, and not integrated
because we are working with fixed connection on the bou
ary.
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Now we want to go fromBF theory to gravity~Plebanski!
theory by imposing the Barrett-Crane constraints on theBF
partition function. These are quantum constraints on the r
resentations of SO~4! which are assigned to each triangle
the triangulation, so they can be imposed at this ‘‘quantum
level. The constraints are essentially two: the simplicity co
straints, saying that the representations by which we labe
triangles are to be chosen from the simple representation
SO~4! @Spin~4!#, and the closure constraint, saying that t
tensor assigned to each tetrahedron has to be an inva
tensor of SO~4! @Spin~4!#. As we have chosen real represe
tations, there is no need to impose the first constraint of S
III, and the third one will be imposed automatically in th
following. We can implement the second constraint at t
level by requiring that all the representation functions ha
to be invariant under the subgroup SO~3! of SO~4!, so real-
izing these representations in the space of harmonic fu
tions over the coset SO(4)/SO(3).S3, which was proved in
@38,42# to be a complete characterization of the simple re
resentations of SO(D) for any dimensionD. We then imple-
ment the fourth constraint by requiring that the amplitude
a tetrahedron is invariant under a general SO~4! transforma-
tion. We note that these constraints have the effect of bre
ing the topological invariance of the theory. Moreover, fro
now on we can replace the integrals over Spin~4! with inte-
grals over SO~4!, and the sum with a sum over the SO~4!
representations only.

Consequently we write
sition
ZBC5 (
Js ,$ke%

S)
s

dimJsD)e
E

SO(4)
dgeE

SO(3)
dh1E

SO(3)
dh2E

SO(3)
dh3E

SO(3)
dh4E

SO(4)

3dge8Dke1me1

J1
e

~geh1ge8!Dke2me2

J2
e

~geh2ge8!Dke3me3

J3
e

~geh3ge8!Dke4me4

J4
e

~geh4ge8!S )
ẽ

D D
5 (

Js ,$ke%
S)

s
dimJsD)e

AeS )
ẽ

D D . ~32!

Let us consider now the amplitude for each edgee of the dual complex:

Ae5E
SO(4)

dgeE
SO(3)

dh1E
SO(3)

dh2E
SO(3)

dh3E
SO(3)

dh4E
SO(4)

3dge8Dke1me1

J1
e

~geh1ge8!Dke2me2

J2
e

~geh2ge8!Dke3me3

J3
e

~geh3ge8!Dke4me4

J4
e

~geh4ge8! ~33!

for a particular tetrahedron~edge! made out of the triangles 1,2,3,4, say, and write the integrals using the decompo
property for the representation function of a product of group elements:

Ae5E
SO(4)

dg1Dk1l 1

J1 ~g1!Dk2l 2

J2 ~g1!Dk3l 3

J3 ~g1!Dk4l 4

J4 ~g1!

3E
h1

dh1Dl 1i 1

J1 ~h1!E
SO(3)

dh2Dl 2i 2

J2 ~h2!E
SO(3)

dh3Dl 3i 3

J3 ~h3!E
SO(3)

dh4Dl 4i 4

J4 ~h4!

3E
SO(4)

dg18Di 1m1

J1 ~g18!Di 2m2

J2 ~g18!Di 3m3

J3 ~g18!Di 4m4

J4 ~g18! ~34!
2-6
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where the sum over repeated indices is understood. We have now to perform the different integrals.
The integral of a product of 4D functions is given by

E
SO(4)

dg Da1b1

j 1 ~g!Da2b2

j 2 ~g!Da3b3

j 3 ~g!Da4b4

j 4 ~g!5(
J

Ca1a2a3a4

j 1 j 2 j 3 j 4J Cb1b2b3b4

j 1 j 2 j 3 j 4J
~35!
r
rs

r

r

e

n

in

the

the
the
ng

the
rs,
nd
ron

tt-
where theC functions for allJ’s are an orthonormal basis fo
the space of the SO~4! invariant tensors that are intertwine
between the 4 different representationsj 1 , j 2 , j 3 , j 4, so Eq.
~35! results. They are given by

Ca1a2a3a4

j 1 j 2 j 3 j 4J
5AdimJCa1a2a

j 1 j 2J Ca3a4a
j 3 j 4J

~36!

where theCa iak

j i j kJ are Wigner 3j symbols for SO~4!, normal-

ized so that

Ca iaka
j i j kJ Ca iakb

j i j kK
5dJKdab .

The integral over the subgroup SO~3! of a representation
function of a subgroup element in a representationJ of the
group SO~4! is given by@29#

E
SO(3)

dh Dab
J ~h!5wa

J wb
J ~37!

wherewa
J is a normalized SO~3! invariant vector in 4 dimen-

sions in the irreducible representationJ of SO~4!. Since such
a vector exists~and is non-vanishing! only if the representa-
tion J is simple, the effect of the integrations over SO~3! is to
project the intertwinersC into the one-dimensional vecto
space of intertwiners between simple representations
SO~4!.

Consequently we obtain

Ae5(
I ,L

Ck1k2k3k4

J1J2J3J4ICl 1l 2l 3l 4

J1J2J3J4Iwl 1

J1wl 2

J2wl 3

J3wl 4

J4wi 1

J1wi 2

J2wi 3

J3wi 4

J4

3Ci 1i 2i 3i 4

J1J2J3J4LCm1m2m3m4

J1J2J3J4L . ~38!

As we said, the projection of the intertwine
Cl 1l 2l 3l 4

J1J2J3J4Iwl 1

J1wl 2

J2wl 3

J3wl 4

J4 vanishes unless all theJ’s and theI

~or theL) are simple. When this happens, the result is giv
by @29#

Ca1a2a3a4

J1J2J3J4I wa1

J1 wa2

J2 wa3

J3 wa4

J4 5
1

ADJ1
DJ2

DJ3
DJ4

~39!

whereD j5dimj , so the amplitude for a single tetrahedro
on the boundary is
02402
of

n

Ae5 (
simple I,L

1

DJ1
DJ2

DJ3
DJ4

Ck1k2k3k4

J1J2J3J4ICm1m2m3m4

J1J2J3J4L

5
1

DJ1
DJ2

DJ3
DJ4

Bk1k2k3k4

J1J2J3J4Bm1m2m3m4

J1J2J3J4 , ~40!

where theB’s are the Barrett-Crane intertwiners, defined
@19#, and shown to be unique up to scaling in@33#, and from
now on the sums are over simple representations only.

Note that the simplicity of the representations labeling
tetrahedra~the third of the Barrett-Crane constraints! comes
automatically, without the need to impose it explicitly.

We note also that because of the projection above and
consequent restriction to the simple representations of
group, the result we end with is independent of havi
started from the Spin~4! or the SO~4! BF partition function,
as we anticipated.

We see that each tetrahedron on the boundary of
4-simplex contributes with two Barrett-Crane intertwine
one with indices referring to the center of the 4-simplex a
the other indices referring to the center of the tetrahed
itself ~see Fig. 5!.

FIG. 5. Diagram of a 4-simplex, indicating the two Barre
Crane intertwiners assigned to each tetrahedron.
2-7
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DANIELE ORITI AND RUTH M. WILLIAMS PHYSICAL REVIEW D 63 024022
The partition function for this theory~taking into account
all the different tetrahedra! is then given by

ZBC5 (
$J%,$k%,$n%,$ l %,$ i %,$m%

DJ1
•••DJ10

1

~DJ1
•••DJ10

!2

3Bk1k2k3k4

J1J2J3J4Bl 4l 5l 6l 7

J4J5J6J7Bn7n3n8n9

J7J3J8J9 Bh9h6h2h10

J9J6J2J10

3Bi 10i 8i 5i 1

J10J8J5J1Bm1m2m3m4

J1J2J3J4 Bm4m5m6m7

J4J5J6J7 Bm7m3m8m9

J7J3J8J9

3Bm9m6m2m10

J9J6J2J10 Bm10m8m5m1

J10J8J5J1 S )
ẽ

D D . ~41!

Now the product of the five Barrett-Crane intertwiners w
indices m gives just the Barrett-Crane amplitude for th
4-simplex which the indices refer to, given by a 15j symbol
constructed out of the 10 labels of the triangles and th
labels of the tetrahedra~see Fig. 6!, so that we can write
down explicitly the state sum for a manifold consisting o
single 4-simplex as

ZBC5 (
$ j f %,$ke8%

)
f

D j f)
e8

Bke81ke82ke83ke84

j e81 j e82 j e83 j e84

D j e81
D j e82

D j e83
D j e84

3)
v

BBCS )
ẽ

D D ~42!

where it is understood that there is only one vertex,BBC is
the Barrett-Crane amplitude for a 4-simplex, and the nota
e8i means that we are referring to thei th face~in some given
ordering! of the tetrahedrone8, which is on the boundary o
the 4-simplex, or equivalently to thei th 2-simplex of the four
which are incident to the dual edge~1-simplex! e8 of the spin

FIG. 6. Schematic representation of the Barrett-Crane amplit
for a 4-simplex.
02402
5

n

foam~dual 2-complex!, which is open, i.e. not ending on an
other 4-simplex. Also theD functions for the exposed edge
are constrained to be in the simple representation.

VII. GLUING 4-SIMPLICES AND THE STATE SUM FOR
A GENERAL MANIFOLD WITH BOUNDARY

Now consider the problem of gluing two 4-simplices t
gether along a common tetrahedron, say, 1234.

The most natural way to do it, having already the st
sum for a single 4-simplex, so for the simplest manifold w
boundary, is to consider the two 4-simplices separately, t
considering the common tetrahedron in the interior twi
and glue them together along it. So we are considering
state sum for a single 4-simplex as the basic and uni
building block for constructing more complex state sums
more complex manifolds.

The gluing is done by multiplying the two single partitio
functions, and imposing that the values of the spins and
the projections~theke8 i ’s! of the common tetrahedron are o
course the same in the two partition functions. This com
from the integration over the group elements assigned to
exposed edges that are being glued and become part o
interior, and thus have to be integrated out.

Everything in the state sum is unaffected by the gluin
except for the common tetrahedron, which now is in t
interior of the manifold. In this naive sense we could say t
this way of gluing is local, because it depends only on
parameters of the common tetrahedron, i.e. it should be
termined only by the two boundary terms which are asso
ated with it when it is considered as part of the two differe
4-simplices that are being glued.

What exactly happens for the amplitude of this inter
tetrahedron is

e

FIG. 7. The gluing of two 4-simplices along a common tetrah
dron.
2-8



i

a

th
ar

a
an
a

d

er
riz

r

d,

it

an
m
ne
re
n
ll

th

th

and

he
tely
ith
der
tion,

of
ent
the

n as
ly
nd-

q.
ld
ould
Eq.
oth

ns

e

ith
n-

ave

ate
the
a

nd
ould

der

GLUING 4-SIMPLICES: A DERIVATION OF THE . . . PHYSICAL REVIEW D 63 024022
(
$m%

Bm1m2m3m4

J1J2J3J4

DJ1
DJ2

DJ3
DJ4

Bm1m2m3m4

J1J2J3J4

DJ1
DJ2

DJ3
DJ4

5 (
$m%,I ,L

Cm1m2m3m4

J1J2J3J4I Cm1m2m3m4

J1J2J3J4L

~DJ1
DJ2

DJ3
DJ4

!2

5(
I ,L

AD IDLCm1m2m
J1J2I Cm3m4m

J1J2I Cm1m2n
J1J2L Cm3m4n

J3J4L

~DJ1
DJ2

DJ3
DJ4

!2

5(
I ,L

D Id ILdmn

~DJ1
DJ2

DJ3
DJ4

!2
5(

I

D I

~DJ1
DJ2

DJ3
DJ4

!2
~43!

where we have used the orthogonality between the intertw
ers, andI labels the interior edge~tetrahedron!.

We see that the result of the gluing is the insertion of
amplitude for the tetrahedra~dual edges! in the interior of the
triangulated manifold, and of course the disappearing of
boundary termsB since the tetrahedron is not anymore p
of the boundary of the new manifold~see Fig. 7!.

We can now write down explicitly the state sum for
manifold with boundary which is then constructed out of
arbitrary number of 4-simplices, and has some tetrahedr
the boundary and some in the interior:

ZBC5 (
$ j f %,$ke8%,$Je%

)
f

D j f)
e8

Bke81ke82ke83ke84

j e81 j e82 j e83 j e84

D j e81
D j e82

D j e83
D j e84

3)
e

DJe

~D j e1
D j e2

D j e3
D j e4

!2)v
BBCS )

ẽ
D D ~44!

where the$e8% and the$e% are the sets of boundary an
interior edges of the spin foam, respectively, while theẽ are
the remaining exposed edges.

It is important to note that the number of paramet
which determine the gluing and that in the end characte
the tetrahedron in the interior of the manifold is 5~4 labels
for the faces and one for the tetrahedron itself!, which is
precisely the number of parameters necessary in orde
determine a first quantized geometry of a tetrahedron@34#.

Moreover, the partition function with which we ende
apart from the boundary terms, is the one obtained in@32#,
studying a generalized matrix model, and shown to be fin
at all orders in the sum over the representations@32,52#.

We see that our procedure of inserting the Barrett-Cr
constraints at the level of the representations starting fro
discretizedBF theory has led us exactly to the Barrett-Cra
model for Euclidean quantum gravity, with a precise p
scription for the amplitudes of the faces and, more importa
the edges of the spin foam, coming directly and natura
from the gluing of the different 4-simplices, and also wi
sensible boundary terms.

Several comments are opportune at this point.
~i! The gluing procedure used above is consistent with

formalism developed for general spin foams@1,2#, saying
02402
n-

n

e
t
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e

to
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that when we glue two manifoldsM andM8 along a com-
mon boundary, the partition functions associated to them
to the composed manifold satisfy Z(M)Z(M8)
5Z(MM8), as is easy to verify; see@1,2# for more details.

~ii ! In the original Barrett-Crane paper@19# two different
ways of considering the tetrahedra in the interior of t
manifold were mentioned: one is to consider them separa
as part of two different 4-simplices, and then label them w
two Barrett-Crane intertwiners; the other one is to consi
them each as an autonomous element of the triangula
and so label them with only one simple representation
SO~4!. Consequently there should have been two differ
models. Our result suggest that the two models are in fact
same one, because if we consider an interior tetrahedro
belonging to two different 4-simplices, then it is separate
on the boundary of the two and should be assigned a bou
ary term as in Eq.~44! for each of the 4-simplices. The
gluing then will give us a term for an interior edge, as in E
~44!. If on the other hand we consider the whole manifo
and a tetrahedron in it as an independent element, we sh
assign to it the term for an interior edge as given again in
~44!; consequently the state sum will be the same in b
cases at the end.

~iii ! If we had imposed on our representation functio
invariance under the left action of SO~3! ~instead of the right
one we used in the above! and then to the edge amplitude th
invariance under the left action of SO~4! ~again, instead of
the right one used before!, we would have ended up with
exactly the same result, i.e. the same spin foam model w
the same amplitude for the simplices of different dimensio
ality. There are two other possible cases. We could h
imposed the invariance under the right action of SO~3! and
the left action of SO~4!, thus having

Ae5E
SO(4)

dgeE
SO(3)

dh1E
SO(3)

dh2E
SO(3)

dh3E
SO(3)

dh4

3E
SO(4)

dge8Dke1me1

J1
e

~ge8geh1!Dke2me2

J2
e

~ge8geh2!

3D
ke3me3

J3
e

~ge8geh3!Dke4me4

J4
e

~ge8geh4!, ~45!

but in this case we would have ended up with a trivial st
sum model with amplitude 1 for each 4-simplex, because
multiplication of all the terms for the tetrahedra leads to
product of the norms of the unit vectorsw, which are by
definition 1, as could be verified performing the integrals a
carrying out the same steps as above. Otherwise we c
have imposed the invariance under the left action of SO~3!
and then, on the whole amplitude, the right invariance un
SO~4!:

Ae5E
SO(4)

dgeE
SO(3)

dh1E
SO(3)

dh2E
SO(3)

dh3E
SO(3)

dh4

3E
SO(4)

dge8Dke1me1

J1
e

~h1gege8!Dke2me2

J2
e

~h2gege8!

3D
ke3me3

J3
e

~h3gege8!Dke4me4

J4
e

~h4gege8! ~46!
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obtaining, after the integrations,

Ae5(
L

DL

AD j 1
D j 2

D j 3
D j 4

wk1

j 1wk2

j 2wk3

j 3wk4

j 4Cm1m2m3m4

j 1 j 2 j 3 j 4

~47!

and, for a 4-simplex,

Z5 (
$ j f %$ j e8%$k%

)
f

D j f)
e8

D j e8

AD j e81
D j e82

D j e83
D j e84

3wke81

j e81wke82

j e82wke83

j e83wke84

j e84$15j %v ~48!

where the 15j symbol is an ordinary 15j symbol constructed
from a product of fiveC functions. The whole partition func
tion for this model~gluing different 4-simplices as above! is
then

Z5 (
$ j f %$ j e8%$k%

)
f

D j f)
e8

D j e8

AD j e81
D j e82

D j e83
D j e84

3wke81

j e81wke82

j e82wke83

j e83wke84

j e84

3)
e

D j e

2

D j e1
D j e2

D j e3
D j e4

)
v

$15j %v . ~49!

This looks like case A in@31#, but with different amplitudes
for the 2 and 3 dimensional simplices, and of course w
additional boundary terms.

Note, however, that in this case the amplitudes for
interior tetrahedra are not really coming from the gluin
which gives just a multiplication of pre-existent factor
without any new contribution, so we could say that this
ternative model somehow makes the gluing more trivial,
cause of more trivial boundary terms. In fact we could a
sorb all the boundary terms for a 4-simplex except
vectorsw in the vertex amplitude, as a rescaling, and th
after the gluing, the final state sum would not have any a
plitude (Ae51) for the interior tetrahedra.

In addition, our result suggests that the correct and co
plete way of deriving a state sum that implements
Barrett-Crane constraints from a generalized matrix mode
like in @32#, i.e. imposing the constraints on the represen
tions only in the interaction term of the field over a gro
manifold, because this derivation leads to the correct e
amplitudes coming from the gluing, and these amplitudes
not present in@31#.

~iv! Regarding the regularization issue, it seems that e
starting from a discretized action in which the sum over
representations is not convergent, we end up with a state
which is finite, at all orders, according to the results
@32,52#. Anyway another way to regularize completely th
state sum model, making it finite at all orders, is to use
quantum group at a root of unity so that the sum over
representations is automatically finite due to the finitenes
the number of representations of any such quantum grou
this case we have only to replace the elements of the s
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sum coming from the recoupling theory of SO~4! ~intertwin-
ers and 15j symbols! with the corresponding objects for th
quantum deformation of it.

~v! The semiclassical limit of this state sum can be stud
with the same methods as@24#, leading to the similar results

~vi! The structure of the state sum and the form of t
boundary terms is a very close analogue of that discovere
@35,36# for SU~2! topological field theories, like the Crane
Yetter model in 4 dimensions, in any number of dimensio
the difference being the group used, of course, and the
sence of any constraints on the representations so tha
topological invariance is maintained.

~vii ! In these works, and also in ours, the boundary c
ditions are chosen so that the connection is fixed on
boundary; if another boundary condition is chosen, for e
ample if we fix theB field to be constant on the boundary,
we choose a mixed situation where we fix part of the co
nection and part of theB field on the boundary, then we hav
to add another term in the action, and consequently the s
sum will be different; an analysis of these problems w
carried out in@28# for the 3-dimensional case~Turaev-Viro
model!.

VIII. GENERALIZATION TO THE CASE OF AN
ARBITRARY NUMBER OF DIMENSIONS

It is quite straighforward to generalize our procedure a
results to an arbitrary number of dimensions of spacetim
Much of what we need in order to do it is already at o
disposal. It was shown in@38# that it is possible to conside
gravity as a constrainedBF theory in any dimension~inci-
dentally, the same was proposed for supergravity@39–41#!,
and also the concept of simple spin networks was gene
ized to any dimensions in@42#, with the representations o
SO(D) @Spin(D)# required to be invariant under a gener
transformation of SO(D21), so that they are realized a
harmonic functions over the homogeneus spa
SO(D)/SO(D21).SD21, and so that the spin network it
self can be thought as a kind of Feynmann diagram
spacetime.

Also the construction of a complete hierarchy of discre
topological field theories in every dimension of spacetim
performed in@36#, with a structure similar to that one w
propose for the Barrett-Crane model, represents an additi
motivation for doing this.

What is missing for applying our procedure in this gene
case is just a discretization of aBF theory with general
gauge group SO(D), where we cannot make use of any d
composition of the algebra in terms of the SU(2) one.

Anyway, we can guess that the structure of the discreti
partition function found in Sec. V for the group SO~4! in 4
dimensions of spacetime, using the splitting of this gro
into a product of two SU~2! groups, is indeed the genera
form of a discretized partition function forBF theory for any
compact group in any dimension@interestingly, it is analo-
gous to that found in@27# for the case of SU~2! in 4 dimen-
sions, and in@37# for SU~2! in 3 dimensions#.

So we are saying that it is reasonable to think that
discretized partition function forBF theory in an arbitrary
2-10
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D-dimensional~Euclidean! ~triangulated! spacetime for any
compact groupG and in particular for SO~D! is

ZBF5S)
e
E

G
dgeD)

f
(
Jf

DJf
xJfS )

e8P] f

ge8D ~50!

wheree8 is a dual link on the boundary of the dual plaque
f ~face of the spin foam! associated with a trianglet in the
triangulation,e indicates the set of dual links, and the cha
acter is in the representationJf of the groupG.

A way to justify this heuristically~for a more rigorous
discretization leading to the same result, see@26#! is the fol-
lowing.

We start from a discretized action like the one we us
before~of course the same remarks concerning the appr
mation used apply also here!,

SBF5(
t

B~ t !F~ t !, ~51!

having again approximated theB field with a distributional
field with values only on the (D22)-simplicest of the origi-
nal triangulation, and witheiF (t)5)e8P] fge8 . With this ac-
tion the partition function for the theory becomes

ZBF5E
G
DAE

G
DB~ t !expS i(

t
B~ t !F~ t ! D

5E
G
DAE

G
DB~ t !)

t
eiB(t)F(t)

5E
G
DA)

t
d~eiF (t)!

5)
e
E

G
dge)

f
dS )

e8P] f

ge8D ~52!

with the notation as above, and having replaced the prod
over the (D22)-simplices with a product over the faces
02402
-

d
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ct

the dual triangulation~plaquette!, which is possible becaus
they are in 1-1 correspondence.

Now we can use the decomposition of the delta funct
of a group element into a sum of characters, obtaining

ZBF5S)
e
E

G
dgeD)

f
(
Jf

DJf
xJfS )

e8P] f

ge8D , ~53!

i.e. the partition function we were trying to derive.
From now on we can proceed as for SO~4! in 4 dimen-

sions. ConsiderG5SO(D) and theJ’s as the highest weigh
labeling the representations of that group.

We can decompose the characters into a product oD
functions, and rearrange the sums and products in the p
tion function to obtain

ZBF5 (
$Jf %,$k%,$m%

)
f

D f)
e

AeS )
ẽ

D D ~54!

where

Ae5E
SO(D)

dgeDke1me1

Je1 ~ge!•••DkeDmeD

JeD ~ge! ~55!

whereei labels thei th of theD faces incident on the edgee.
Now we can apply our procedure and insert here

Barrett-Crane constraints:

Ae5E
SO(D)

dgeE
SO(D21)

dh1•••E
SO(D21)

dhD

3E
SO(D)

dge8Dke1me1

Je1 ~geh1ge8!•••DkeDmeD

JeD ~gehDge8!.

~56!

Performing the integrals and carrying on the same steps a
Secs. VI and VIII, leads to the analogue of the formula~44!
in higher dimensions~or alternatively to the analogue of cas
A in @31#!:
ZBC
D 5 (

$ j f %,$Je%,$Je8%,$ke8%,$Ke8%
)

f
D j f)

e8
ADJe81

•••DJe8(D23)

3
Cke81ke82Ke81

j e81 j e82Je81 Cke83Ke82Ke81

j e83Je82Je81
•••Cke8(D22)Ke8(D24)Ke8(D23)

j e8(D22)Je8(D24)Je8(D23) Cke8(D21)ke8DKe8(D23)

j e8(D21) j e8DJe8(D23)

D j e81
•••D j e8D

)
e

DJe1
•••DJe(D23)

~D j e1
•••D j eD

!2 )v
BBC

D S )
ẽ

D D .

~57!
of

There areD faces @corresponding to (D22)-dimensional
simplices# incident on each edge@corresponding to
(D21)-dimensional simplices# e @(D21)-simplex in the in-
terior# or e8 @(D21)-simplex on the boundary#. There are
D11 edges for each vertex~corresponding to a
D-dimensional simplex!, and consequentlyD(D11)/2 faces
for eachD-simplex. Each edge is labeled by a set of (D
23) J’s. Here B BC

D is the higher dimensional analogue
the Barrett-Crane amplitude, i.e.@the SO(D) analogue of#
the 3

2 (D11)(D22)J symbol constructed out of theD(D
11)/2 labels of the faces and the (D23)(D11) labels of
the edges.
2-11
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Again, this result is a very close analogue of the state s
for a topological field theory in general dimension, obtain
in @36#.

Of course, everywhere we are summing over only sim
representations of SO(D), i.e. representations of SO(D) that
are of class 1 with respect to the subgroup SO(D21) @29#.

IX. CONCLUSIONS

We conclude with a summary of our procedure and
sults, and with some comments on possible directions of
ture work.

In this paper we have proposed a way to derive
Barrett-Crane spin foam model for Euclidean quantum gr
ity in 4 dimensions, starting from a discretization of a SO~4!
BF theory@SO~4! is the local symmetry group in the Euclid
ean case#. The trick is to discretize the~unconstrained! clas-
sicalBF theory, and then impose the constraints that lead
the gravity theory at the quantum level, which means at
level of the representations of the gauge group by which
label the elements of the spin foam. In this way, we argue
is possible to circumvent the difficulties in discretizing a
then quantizing directly the Plebanski action for gravi
which is the classical counterpart of the Barrett-Crane mo
The result we end with is exactly the Barrett-Crane s
foam model with a precise prescription of the form t
Barrett-Crane state sum should have, in the general cas
an arbitrary manifold with boundary. In particular we d
rived the amplitude for the edges of the spin foam, from
clear and natural procedure of gluing different 4-simplic
together along a common tetrahedron. The fact that our
sult coincides with that derived in@32# from a generalized
matrix model, and shown to be necessary to make the
over colorings finite, seems to reinforce our proposal. Mo
over, our results and the state sum we obtain can be e
generalized to higher dimensions.

We can now say something about possible ways to
prove and develop our results and to apply them to so
physical problem.

Of course a very important thing to do would be to d
cretize the Plebanski action, so to start with a constrainedBF
theory at the classical level, and quantize it in the same w
we did, to see if we really end up with the same result, as
expect.

Another thing that should be studied more and that sho
be quite straighforward is a derivation, along the same lin
of a Barrett-Crane state sum for a different choice of bou
ary conditions, for example with theB field kept fixed on the
boundary instead of the connection. To obtain this we h
only to discretize the additional boundary action in theBF
theory and apply again our procedure.
02402
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Having at hand both kinds of state sum, a careful analy
of the more appropriate boundary conditions in the case
spacetime representing a black hole should be carried
and then in principle it should be possible~apart from the
technical problems of the calculations! to use the derived
state sum model for a calculation of black hole entrop
along the lines of@43# for the 3-dimensional case.

Of course, before trying to apply the state sum mode
any physical problem, another thing is necessary, which
the implementation in a precise way of a sum over trian
lations or over spin foams~2-complexes!, which is necessary
to restore an infinite number of degrees of freedom to
theory. Only after this is done can we start to consider t
model as a concrete proposal for a quantum theory of g
ity, thus regarding it as an approach to a complete quant
tion of Einstein theory, leading to the possibility of studyin
physical aspects of gravitational field in a sensible way.
very promising approach to this problem is represented
the generalized matrix models proposed in@31,32# and gen-
eralized to any kind of spin foam~also not related to gravity!
in @44,45#, but more study is necessary to settle it dow
definitely.

Still to understand and develop is a Lorentzian~causal!
version of these models; some work in this direction w
carried out in@46#, and recently important results were foun
in @47,53#. Our procedure should be in principle~apart from
all the technical difficulties! applicable also to the case i
which the local symmetry group is the Lorentz group, a
this possibility will be investigated in the future. A very dif
ferent but related solution to the problem of implementi
causality in these models was proposed and develope
@48–50#.

Also still to understand is the question of the semiclas
cal limit of the model. In fact, apart from the connection wi
discrete gravity obtained in@24#, a great deal of work is still
necessary to understand how a classical background m
can emerge from a theory of this kind, and if it is possible,
has to be possible, to develop a picture of perturbations
this background from this model, proving that it contai
gravitons as is necessary for any satisfactory theory of qu
tum gravity.
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