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We study the modes and rotational “hybrid” mode@nertial modes of relativistic stars. As in Newtonian
gravity, the spectrum of low-frequency rotational modes is highly sensitive to the stellar equation of state. If
the star and its perturbations obey the same one-parameter equation g¢astefith barotropic staysthere
existno pure r modes at a-no modes whose limit, for a star with zero angular velocity, is an axial-parity
perturbation. Rotating stars of this kind similarly have no pgireodes, no modes whose spherical limit is a
perturbation with polar parity and vanishing perturbed pressure and density. In spherical stars of this kind, the
r modes andy modes form a degenerate zero-frequency subspace. We find that rotation splits the degeneracy
to zerothorder in the star’s angular velocify, and the resulting modes are generically hybrids, whose limit as
(1 —0 is a stationary current with both axial and polar parts. Because each mode has definite parity, its axial
and polar parts have alternating valued.dfVe show that each mode belongs to one of two classes, axial-led
or polar-led, depending on whether the spherical harmonic with the lowest valuthaif contributes to its
velocity field is axial or polar. Newtonian barotropic stars retain a vestigial set of purely axial nftbdss
with 1=m); however, for relativistic barotropic stars, we show that these modes must also be replaced by
axial-led hybrids. We compute the post-Newtonian corrections tb=the modes for uniform density stars. On
the other hand, if the star is nonbarotrofiicat is, if the perturbed star obeys an equation of state that differs
from that of the unperturbed sjathe r modes alone span the degenerate zero-frequency subspace of the
spherical star. In Newtonian stars, this degeneracy is split only by the Ortlestational corrections. How-
ever, when relativistic effects are included, the degeneracy is again broken at zeroth order. We compute the
modes of a nonbarotropic, uniform density model to first post-Newtonian order.
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I. INTRODUCTION rated in the models. This effort leads to difficult questions
regarding, for example, neutron star superfluid&y; the in-

The discovery that the modes in rotating stars are ge- terplay between the magnetic field and fluid pulsations
nerically unstable due to the emission of gravitational wave$§9—11], and the formation of a solid crust as a young neutron
[1,2] has attracted a large amount of attention in the last tw@tar cools[12—18. These and several other issues must be
years. The current models suggest thatrtneode instability addressed before the true astrophysical relevance of the
may cause a newly born neutron star to spin down to a frachodes can be assessed. Our understanding of-thede
tion of the Kepler frequencywhich provides the limit of mstabthy, however_, is based almost entirely on Newtom_an
dynamical stability in the first few months of its existence Calculations, and it is important to compute these modes in a
[3.4]. Since a considerable amount of gravitational radiatiorf€lativistic context, where instability growth times may differ
is generated in the process, theodes provide a promising Significantly from Newtonian-based estimaté€Ehe closely
source for the generation of gravitational-wave interferomTelated instability of thé modes of rapidly rotating stars is
eters that are currently under constructifl. It is also ~ Sharply strengthened by relativistic effects; 48] for a
speculated that the instability associated with theodes — 'eview) _ o
may be relevant for older neutron stars in accreting systems The purpose of the present investigation is to understand

[6,7].

how general relativity affects the properties of thenodes.

Since the instability was first discovered and its potentialln order to address this issue, we first need to discuss the
astrophysical relevance was appreciated, there have be&fneral nature of the modes of rotating stars.
many attempts to improve on the detailed physics incorpo- The spherical symmetry of a nonrotating star implies that

*Email address: lockitch@gravity.phys.psu.edu There are as yet no fully relativistic calculations of other pulsa-
"Email address: na@maths.soton.ac.uk tion modes(like the f mode of rapidly rotating stars, except in the
*Email address: friedman@uwm.edu Cowling approximatiorj20].
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its perturbations can be divided into two classes, polar oa general discussion of the oscillations of relativistic stars,
axial, according to their behavior under parity. Where polamwe refer the reader to the recent review article by Kokkotas
tensor fields on a two-sphere can be constructed from thand Schmid{23].
scalarsY|" and their gradient&’Y]" (and the metric on a In general, the classification of modes is relevant also for
two-spherg axial fields involve the pseudovectdx VY[", rotating stars, even though the character of the various
and their behavior under parity is opposite to thatygt. =~ modes may be significantly affected by rotation. In particu-
That is, axial perturbations of oddare invariant under par- lar, rotation imparts a finite frequency to the zero-frequency
ity, and axial perturbations with evérchange sign. Because perturbations of spherical stars. Because these modes are re-
a rotating star is also invariant under parity, its perturbationstored by the Coriolis force, their frequencies are propor-
may also be divided into distinct parity eigenstates. If a moddional to the star's angular velocit{. In fluid mechanics,
varies continuously along a sequence of equilibrium configusuch modes are generally known as inertial modes
rations that starts with a spherical star and continues along[24,25,14. In nonbarotropic stars these rotationally restored
path of increasing rotation, the mode will be called axial if it modes all have axial paritithe polarg modes are nondegen-
is axial for the spherical star. Its parity cannot change alongrate already in a spherical nonbarotropic star because of
the sequence, buiis well defined only for modes of spheri- internal entropy or composition gradient$n astrophysics,
cal configuration. these modes were first studied in Newtonian gravity by Pa-
It is useful to subdivide stellar pulsation modes accordingPaloizou and Pringl¢26], who called themr modes because
to the physics dominating their behavior. This classificatiorof their similarity to the Rossby waves of terrestrial meteo-
was first developed by Cowlin21] for the polar perturba- rology. In barotropic stars, however, the space of zero-
tions of Newtonian polytropic models. The modes of frequency modes of the spherical model includes the gplar
spherical models are polar-parity modes having pressure dBodes in addition to the axialmodes. This large degenerate
their dominant restoring force. They typically have largesubspace of zero-frequency modes is split by rotation to ze-
pressure and density perturbations and high frequencig®th order in the angular velocity, and the rotationally re-
(higher than a few kilohertz for neutron starfheg modes  Stored(inertial) modes of barotropic stars are generically hy-
are polar-parity modes that are chiefly restored by gravitybrids whose spherical limits are mixtures of axial and polar
They typically have very small pressure and density perturperturbations. This has been shown in Newtonian gravity by
bations and low frequencies. Indeed, for spherical barotropitockitch and Friedmar27] (see alsd28,29). In order to
stars, which are marginally stable to convection,gheodes  distinguish between the two classes of inertial modes, we
are all zero frequency and have vanishing perturbed pressuréfer to modes which become purely axial in the spherical
and density’. Similarly, all axial-parity perturbations of non- limit as r modes, while modes that limit to a mixed parity
rotating perfect fluid models have zero frequency. The perstate are called rotational hybrid modes. This is a natural
turbed pressure and density as well as the radial componefpmenclature given the standard distinction between axial
of the fluid velocity all vanish for axial perturbations; being and polar modes in relativistic studies of spherical stars.
rotational scalars, they must have polar parity. Thus, the Attempts to study the modes of rotating relativistic stars
axial perturbations of a spherical star are simply stationaryvere not made until rather recentl§,30-34. In fact, the
horizontal fluid currents. This Newtonian picture of stellar present investigation is the first study of this problem that
pulsation is readily generalized to the relativistic case. Theduts all its different facets in the proper context. In particular,
only difference is that the various modes will now generateve prove thatapart from a set of stationary dipole mogles
gravitational waves. This means that they are no longefotating relativistic barotropic stars have pure r modes
“normal modes,” but satisfy outgoing-wave boundary con- (modes whose limit for a spherical star is purely axidhis
ditions at spatial infinity. Furthermore, one can identify anis in contrast with barotropic Newtonian stars which retain a
additional class of such outgoing modes in relativistic starsvestigial set of purely axial modeshose having spherical
Like the modes of black holes, these modes are essentialljarmonic indices =m). Instead, the Newtonian modes
associated with the dynamical spacetime geometry and hawith | =m=2 acquire relativistic corrections with both axial
been termedv modes or gravitational-wave modg22]. For ~ and polar parity to become discrete hybrid modes of the cor-
responding relativistic models. We compute these correc-
tions for slowly rotating barotropic stars to first post-
°The lowestp mode for each value dfandmis termed arf mode Newtonian order. . L . L
or fundamental mode; it may also be regarded gst@ode, in that For ﬂonbarotroplc relat|V|st|c_ stars the ;ltua_tlon_ IS some-
what different. In the slow-motion approximation in which

it is present in uniform-density models, but it has finite frequency in h far b died b - h
barotropic stars. We use the term “barotropic” here to denote astap’]ey ave so ar' een studied, non .f.:lrotroplc stars have, re-
acontinuousspectrum. Kojima[30] has shown

for which the perturbed and unperturbed configurations satisfy thenarkably, . ) X
same one-parameter equation of state. In earlier work, we had usdfat purely axial modes would be described by a single,

“isentropic” instead, because isentropic stars with no compositionsécond-order ordinary differential equati¢@DE) for the
gradient have this property, and “barotropic” is not always used tomodes’ radial behavior. He then argues that the continuous
include perturbations. Here, however, because the departure &P€ctrum is implied by the fact that the eigenvalue problem
neutron-star matter from a one-parameter equation of state is domis singular(the coefficient of the highest derivative term of
nated by a composition gradient, not an entropy gradient, “isentrothe equation vanishes at some value of the radial coordinate
pic” is inaccurate. This claim has been made mathematically precise by Beyer
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and Kokkotag31]. As the latter authors point out, the con- of perturbation equations whose structure parallels the corre-
tinuous spectrum may be an artifact of the vanishing of thesponding Newtonian equations of Lockitch and Friedman
imaginary part of the frequency in the slow-rotation limit. [27].2 This similarity between the Newtonian and relativistic
(Or, more broadly, it may be an artifact of the slow rotationequations leads to an identical structure of the mode spec-
approximation itselj. In this paper we show that, in addi- trum and to a parallel theorem that every nonradial mode is
tion to the continuous spectrum, certain discrete modes alseither an axial-led or polar-led hybridhe result has so far
exist as solutions to Kojima’'s equation. These modes are thieeen proved only for slowly rotating relativistic star§Ve
relativistic analogue to the Newtonian modes in non- consider the relativistic-mode solutions of barotropic stars,
barotropic stars. We compute these modes for slowly rotatfinding that the zero-frequency dipolé={1) solutions are
ing nonbarotropic stars. the only purely axial solutions allowed. In other words, there
In a complementary study of the relativistic modes, are no nonstationary modes in barotropic relativistic stars
Kojima and Hosonum§34] have recently derived the order- whose limit as() —0 is a pure axial perturbation. In particu-
Q? rotational corrections to Kojima’s equation. Working in lar, Newtoniarr modes having=m=2 do not exist in baro-
the time domain, they derive a set of evolution equations fotropic relativistic stars and must be replaced by axial-led hy-
an axial perturbation and its lowest order polar and axiabrid modes. This section concludes with a discussion of the
corrections. Direct numerical evolution of these equationdhoundary conditions appropriate to the relativistic modes
(with appropriate initial dagawould provide a useful com- (Sec. IVQ. Finally, in Sec. V we construct the post-
parison with our results on the modes of nonbarotropic relaNewtonian corrections to the well-known Newtonian
tivistic stars. modes in uniform-density stars, both barotropic and non-
When does one need to take into account the departure @arotropic. Some of the detailed equations, as well as the
a neutron star from barotropy in computing rotationalproof of the theorem regarding the barotropic mode spec-
modes? Because of bulk viscosity, a gravitational-wavetrum, are presented in Appendixes A-C. We use geom-
driven instability is unlikely to set in above about®®.  etrized units G=c=1) throughout the paper.
This is well below the Fermi temperature of the star’'s bary-
ons, and the departure from barotropy appears to be domi- . EULERIAN AND LAGRANGIAN PERTURBATIONS
nated by composition gradients in the crust and interior. o o
These have been discussed in the contexgahodes of In general relativity, a complete description of a self-
spherical stars by Finf35] and by Reisenegger and Gold- grawta.tlng per_fect fluid configuration is provided by a space-
reich[36,37] and for rotating stars by L4B8]. Because the time with metricg,z, sourced by an energy-momentum ten-
time scale of perturbations is too slow to allow the beta andOr,
inverse beta decays that would allow a displaced fluid ele- T (et n 2.1
ment to adjust its composition to that of the surrounding star, ap= (€T P)UaUs*+PYag, -
A'?gp/Nng Is greater thamilsog p/dlogp by a factor of 1 \yhere the fluid four-velocityu® is a unit timelike vector
+2X, wherex=n,/n~6X10""p/ pyycears the local ratio of field,
protons to baryons. This leads in the star’s interiogtmode

frequencies limited by the Brunt-\&da frequency, utu,=-—1, (2.2
3p \¥2 . vz and € and p are, respectively, the total energy density and
9 10p X ~(500s7) Pruclen pressure of the fluid as measured by an observer moving

with four-velocity u®. The metric and fluid variables satisfy

(with g the local acceleration of gravitywhen a crust is @ eqguation of state,

present, crustalj modes have comparable frequencies. The e=€(p,s) 2.3
g-mode frequencies of spherical stars are then of order 100— T '
200 Hz; when this is smaller than the frequencies of thyith s the entropy per baryon, as well as the Einstein equa-
rotationally restored modes of the barotropic models, ongjgn
expects the barotropic approximation to be valid.

The plan of the paper is as follows. We begin, in Sec. Il, Gop=87T 5. (2.9
with a brief review of the Eulerian and Lagrangian perturba-
tion formalisms, both of which are used in the paper. In Sec. An equilibrium stellar model is a stationary solution
lll, we consider the time-independent perturbations of(d.z,U% €,p) to these equations. In this paper we will con-
spherical relativistic stars and prove that the subspace dfider only equilibrium models obeying a one-parameter
nonradial zero-frequency modes is spanned byrtaedg  equation of state,
modes in barotropic models, but by themodes alone in
nonbarotropic models. Because of this difference, the char- e=€(p), (2.9
acter of the mode spectrum in rotating barotropic models
differs considerably from that of nonbarotropic models. In
Sec. IVA, we consider rotating nonbarotropic stars and ar- 3we will refer to equations from Ref27] by the equation number
gue that the problem of finding thairmodes is well defined.  with the prefix “LF.” For example, Eq(LF, 25) will mean Eq.(25)
In Sec. IV B, we consider the barotropic case and derive a sdétom Ref.[27].
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because this accurately models the equilibrium configuratiofror an adiabatic perturbation of an equilibrium model obey-

of a neutron star. ing a one-parameter equation of state, Hgs7) and (2.11)
Adiabatic perturbations of such a star may be studied usimply that the Eulerian changes in the pressure and energy

ing either the Eulerian or the Lagrangian perturbation for-density are related by

malism[39,40. An Eulerian perturbation may be described

in terms of a smooth familyg,g(\),u®(\),e(\),p(\)] of ﬁ: i+§aAa, (2.13
solutions to the exact equatiori2.2—(2.4) that coincides I'ip  (etp)
with the equilibrium solution ak =0: where we have introduced the Schwarzschild discriminant
[gaﬁ(o)iujy(o)i?(o)vﬁ(o)]:(gaﬁ yUayf,p)- _ 1 l
A,=——V, e—=—V_p, 2.1
(erp) = Tpp P (214

Then the Eulerian chang®) in a quantityQ may be defined

(to linear order in\) as which governs convective stability in the star. In general, the

adiabatic indeXd’; need not be the function
_de

_(et+p)dp
Q=4 - (2.6) =" de

(2.19

) . ] . associated with the equilibrium equation of state. In terms of
Thus a Eulerian perturbation is simply a changethis function, we have

(hyp,6u®, 8€,6p) in the equilibrium configuration at a par-
ticular point in spacetiméwhere we have written the change A
in the metric ash,;=69,5). These must satisfy the per- “
turbed Einstein equatio®G”=8= 8T, together with an
equation of state relatinge and dp that may, in general,
differ from that of the equilibrium configuratiofsee Eq.

(2.13 below]. . . . Schwarzschild discriminant vanishes identically. Such stars
In the Lagrangian perturbation formalisi89,40, on the 516 marginally stable to convection. In this paper we study
other hand, perturbed quantities are expressed in terms of thigyfrequency pulsation modes of slowly rotating relativistic

Eulerian change in the metriti,;, and a Lagrangian dis- stars. We consider both barotropic and nonbarotropic mod-
placement vectog®, which connects fluid elements in the g|s.

equilibrium star to the corresponding elements in the per-

1 1 1V 01
1" 1"1 p ap' ( . @
We will call a model barotropic if the perturbed configura-
tion satisfies the same one-parameter equation of state as the
unperturbed configuration. In this casE;=I" and the

turbed star. The Lagrangian chand€ in a quantityQ is . STATIONARY PERTURBATIONS OF SPHERICAL
related to its Eulerian chang# by STARS
B The equilibrium of a spherical perfect fluid star is de-
AQ=4Q+EQ, (2.7 scribed by a static, spherically symmetric spacetime with

, , - metric g,z of the form
with £, the Lie derivative along*.

The identities ds?’=—e?’dt?+e®*dr2+r2d 6>+ r? sir? 6 dp?
3.1
AGap=hapt2V(atp), (2.8 and the energy-momentum tend@r1) with the fluid four-
velocity given by
Aga/}'yﬁ: % Saﬁyﬁg’uVAg,u,v (29) u¢=e "t<, (32)
then allow one to express the fluid perturbation in terms oHeret*=(4,)¢ is the timelike Killing vector of the space-
h,s and &%, time.
For barotropic stars, the pressure and energy density are
Aue=1 u“uﬁumgﬁy, (2.10 related by an equation of state of form
p=p(e). 3.3
Ap Ae An 1 s
Tp erp 5d"Ag4, (2.1)  |n addition to this, the various quantities must satisfy the

Einstein equatio,,;=87T .z, which leads to the standard

wherel'; is the adiabatic index) is the baryon density, and Tolman-Oppenheimer-VolkolTOV) equations

q*$=g*#+u®uP. Using Egs.(2.7)—(2.11), it is straightfor- dp (e+p)(M+4mr3p)
ward to express the corresponding Eulerian changes also in ar r(r—2M) , (3.9
terms ofh,; and &%, e.g.,
dM )
Su=qgE &P+ 3 utuPurhy, . (2.12 W_A'ﬂ € 3.9
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and RE=8m(T:~ 1 Tof)=8a[(e+p)uuf+ & (e~ p)of]
dv 1 dp - (3.9
dr (e+p) dr’ 3.6 is the equilibrium Ricci tensor. The perturbed energy-

momentum tensor is given by
where

S5TP=(8e+ dp)u ul+ 6psP°

=1 —e 22
M(r)=3r(1—e °Y). (3.7) +(e+ p)&uauﬁ+(e+ p)uaéuﬂ. (3.10

Following Thorne and Campolattafd1], we expand our
perturbed variables in scalar, vector, and tensor spherical
harmonics. The perturbed energy density and pressure are
scalars and therefore must have polar parity

Our main focus in this study is on the low-frequency os-
cillations, corresponding to rotationally restored modes
modes and other inertial modesf slowly rotating stars. As
in Newtonian theory, we expect these modes to limit to sta

tionary perturbations of a spherical star as the rotation rate Se=de(r)YM", (3.11)
goes to zero. In other words, we are interested in the space of
zero-frequency modes: the linearized, time-independent Sp=3p(r)Y™. (3.12

perturbations of the static equilibrium. As in the Newtonian

case [27], we find that this zero-frequency subspace is The perturbed four-velocity for a polar-parity mode can
spanned by two classes of perturbations. To identify thesbe written

classes explicitly, we must examine the equations governing

the perturbed configuration. a_ } My 1 m. a ayml| =
Using the Eulerian formalism, we express the perturbed SUp=) 7 Ho(DYIt+ ZWIDYr 4+ V() VY e
configuration in terms of the seh(,,du®, de, 5p), satisfy- (3.13

ing the perturbed Einstein equatid®”=875T#, together
with an equation of state relatings and &p.
The perturbed Einstein tensor is given by

[wherer“ is the coordinate vector field){)“], while that of
an axial-parity mode can be written

a_ (N—v) _aByé m
5GE— — %{Vﬂ’hﬁ—VyVBhg—VVVah'ﬁnLVaVBh dup=—U(r)e €TV gY ULV or . (3.19
(We have chosen the exact form of these expressions for
+2RIhE+(V7V°h 5~V V"h—R"h ;) 85}, later conveniencg.
(3.9 To simplify the form of the metric perturbation we will
again follow Thorne and Campolattafré1] and work in the
wherehzg“ﬁhaﬁ, V, is the covariant derivative associated Regge-Wheelef42] gauge. The metric perturbation for a

with the equilibrium metric, and polar-parity mode can then be written
Ho(r)e?”  Hy(r) 0 0
symm  H,(r)e?* 0 0
hP,= ? , ym, (3.19
ald 0 0 r<K(r) 0
0 0 0 r2sir? OK(r)

while that of an axial-parity mode can be written

-1 )
0 0 ho(l’)<m)3¢Y{n ho(r)3|n000Y{”
A -1\ o N
h%,= 0 0 hy(r) p LY hi(r)sinéa,Y," | . (3.16
symm  symm 0 0
[ symm  symm 0 0 ]
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The Regge-Wheeler gauge is unique for perturbationgate system implies that these solutions are static. If one
having spherical harmonic indebe2. However, whenl assumes the linearization stabilitpf these solutions, i.e.,
=1 or 1=0, there remain additional gauge degrees ofthat any solution to the static perturbation equations is tan-
freedom? In addition, the components of the perturbed Ein-gent to a family of exact static solutions, then the theorem
stein equation acquire a slightly different form in each of thethat any static self-gravitating perfect fluid is spherical im-
three cases(Campolattaro and Thorr@3] discuss the dif- Plies that any solution of typéii) is simply a neighboring
ference between the=2 andl=1 cases. spherical equilibrium. _ _ o o

We have derived the components of the perturbed Ein- Thus, under the assumption of I|n§ar|zat|on stabll_lty, we
stein equation using the Maple tensor pacRamesubstitut- have shown that all stationary nonradib0) perturbations
ing expressions(3.1)—(3.16 into Egs. (3.8) and (3.10 of a spherical star have
[making liberal use of the equilibrium equation8.4) Ho=H,=K=8e=6p=0
through(3.7) to simplify the expressiojsThe resulting set
of equations for the case=2 are equivalent to those pre- and satisfy Eqs(A6)—(A8). That is,
sented by Thorne and Campolattddi] upon specializing 16m(e+p)

their equations to the case of stationary perturbations ando=H,+ ] e\ rw, (3.20
making the necessary changes of notafi@milarly, the set (I+1)
of equations for the cade=1 is equivalent to that presented (=N a(r—)) , o\
by Campolattaro and Thorngt3]. For completeness, the 0=e e Hl'+16m(e+p)eV, (3.21)
equations governing stationary perturbations of spherical (2—12—1) 2
stars are given in Appendix A. hg—(v'+N")h{+ r—zea— F(v’+)\’)— 2 ho
Decomposition of the zero-frequency subspace 4
=—(v'+A\")U, 3.22

By inspection of the three sets of perturbation equations '
given in Appendix A, it is evident that they decouple into

. ) ) where a prime denotes a derivative with respect tObserve
two independent classes. We find that any solution P P

that if we use Eq(3.20 to eliminateH(r) from Eq.(3.22),

(HoH1Ha K ho W,V,U e,5p) (317 e opan
e*(V‘F)\)
= [(etp)e” MW]'. 3.2
to the equations governing the time-independent perturba- (1 +1)(e+ p)[(E P) | 323
ggﬁifg a static, spherical star is a superposition(ipfa This equation is clearly the generalization to relativistic stars
of the conservation of mass equation in Newtonian gravity,
Eq.(LF, 13). The other two equations relate the two dynami-
(0H1,0,0ho,W,V,U,0,0 (3.18 cal degrees of freedom of the spacetime metric to the pertur-
bation of the fluid four-velocity and vanish in the Newtonian
to Eqgs.(A6)—(A8) or (A21) and(ii) a solution limit.
These perturbations must be regular everywhere and sat-
(Ho,0H,K,0,0,0,08€, 5p) (3.19 isfy the boundary condition that the Lagrangian change in
the pressure vanish at the surface of the staR. We show
to Egs.(A1)—(A5), (A11)—(A14), or (A18)—(A20). in Sec. IV C below that this boundary condition requires only
For solutions of typdii), the vanishing of thet¢), (t6), W(R) =0 (3.24)

and (t¢) components of the perturbed metric in our coordi-

leaving W(r) and U(r) otherwise undetermined. NV(r)

andU(r) are specified, then the functioktg (r), ho(r), and

V(r) are determined by the above equations. The solutions

for the metric variables are subject to matching conditions to

- . ) the solutions in the exterior spacetime, which must also be

Letting eag be the metric on a two-sphere withg andD, the regular at infinity: see Sec. IVC

aSSO]EIaC;[edtthfUI’lTe _eler.ne\r/l\t/harr\hizov;nant ldertnvatlveé) reDspYergtlvely, Finally, we consider the equation of state of the perturbed

one in s € following: en=2, Ihe polar tensor’) s ¥ star. We have seen that for an adiabatic oscillation of a star

ande,gY," are linearly independent, but whér 1, they coincide. . . .
obeying a one-parameter equation of state, dqll), im-

In addition, the axial tensog A®D DY " vanishes identically for . .
) (A PcoyVBT) _
I=1 and, of courseD ,Y™ vanishes foil = 0. plies that the perturbed pressure and energy density are re

Swww.maplesoft.com lated by

8In particular, their fluid variablegdenoted by the subscrifitC)
are related to ours as followsUc(r,t)=Ut, Wq(r,t)=
—reMWt, Voo(r,t)=Vt, and de/(e+p)=8p/T1p=—(K+3Ho). "We are aware of a proof of this linearization stability property
Their equilibrium metric has the opposite signature and differs inunder assumptions on the equation of state that are satisfied by
the definitions of the metric potentialg = %v and\tc= %A. uniform density stars, but would not allow polytropest].
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5p Se €' p’ tigate this issue in more detail, and we will begin by consid-
T (et p) +¢' (exp) Top (3.29  ering perturbations of slowly rotating relativistic stars.
for some adiabatic indek(r). . IV. PERTURBATIONS OF SLOWLY ROTATING STARS
The Lagrangian displacement vectf is related to our
perturbation variables by E¢2.12: The equilibrium of a perfect fluid star that is rotating
slowly with uniform angular velocity) is described 46,47
Q§£u§/3: sur— 1 u“uﬁu“/hﬁy. (3.26 by a stationary, axisymmetric spacetime with megjg; of
the form

Thus we have
ds?=—e?"dt?+e?Mdr?+r2d 6>+ r2sir? 6 de?

e Vo =ou" (3.27
—2o(r)r?sirf dt de (4.2

or [taking the initial displacemer(att=0) to be zerg

(accurate to ordef)). The energy-momentum tensor follows
from Eq.(2.1) and the fluid four-velocity to ordef:

For the class of perturbations under consideration, we

£=te’su’. (3.29

have seen thafp= de=0. Thus Eqs(3.25 and (3.29 re- u“=e "(t*+Qe). (4.2
quire that
Heret“=(d)“ ande“=(d,)“ are, respectively, the timelike
su' €' ~ p_,}: (3.29 and rotational Killing vectors of the spacetime.
(e+p) TI'yp ' That the star is rotating slowly corresponds to the assump-

tion that Q) is small compared to the Kepler velocit{)«
For axial-parity perturbations this equation is automatically~ \/M/R®, the angular velocity at which the star is dynami-
satisfied, sincedu, has nor component: cf. Eq(3.14. In  cally unstable to mass shedding at its equator. In particular,
other words, a spherical star always admits a set of axialve neglect all quantities of ordé? or higher. To orde)

zero-frequency modeghe r modes. the star retains its spherical shape, because the centrifugal
For polar-parity perturbationsjup=e~"W(r)/r#0, and  deformation of its figure is an ordd)? effect [46]. This
Eq. (3.29 will be satisfied if and only if means that Eq$3.3—(3.7) governing a spherical star remain

relevant also for a slowly rotating equilibrium configuration.
In addition we need to solve an equatidi®] that determines
the new metric functiom(r) in terms of the spherical metric
functionsv(r) and\(r):
Thus we see that a spherical star admits a class of polar

zero-frequency modgshe g modes if and only if the star is ertN) ¢ do\ 4/dv dn
barotropic; that is, if and only if the perturbed star obeys the — —( 4 (V“‘)—A) (—+ —)
same one-parameter equation of state as the equilibrium star. rodr dr dr  dr

That all axial-parity fluid perturbations of a spherical rela-
tivistic star are time independent was first shown by Thornevhere
and Campolattar¢41]. The time-independeny modes in -
spherical, barotropic, relativistic stars were found by Thorne o(r)=0-ow(r). (4.9
[45].

To summarize: We have shown that a spherical star alThis new metric variable is a quantity of ord@rthat gov-
ways admits a class of zero-frequencynodes(stationary  erns the dragging of inertial frames induced by the rotation
fluid currents with axial parity but admits zero-frequenay  of the star{46]. Apart from the frame-dragging effect, how-
modes(stationary fluid currents with polar parjtif and only  ever, the spacetime is unchanged from the spherical configu-
if the star is barotropic. Conversely, the zero-frequency subration. Outside the star, E¢4.3) has the solution
space of nonradial perturbations of a nonbarotropic spherical
star is spanned by the modes only, while the zero- 2]
frequency subspace of non-radial perturbations of a spherical 0=0- 7, (4.9
barotropic star is spanned by thendg modes—that is, by
convective fluid motions having both axial and polar parity ) . .
and with vanishing perturbed pressure and density. Bein{/"€réJ is the angular momentum of the spacetime. This
stationary, theseandg modes do not couple to gravitational T€lation can be used to provide boundary conditionsdor
radiation, although the modes do induce a nontrivial metric (@nd its derivativeat the surface of the star in terms 6f
perturbation b,,h,,#0) in the spacetime exterior to the andJ_. _Spemflcally, the solution to Eq¢4.3) is normalized by
star(frame dragging One would expect this large subspace "€auiring that
of modes, which is degenerate at zero frequency, to be split
by rotation, as it is in Newtonian stars. Our aim is to inves- w(R)+ : Rw'(R)=Q, (4.6)

+p)d
(Epp) d—S. (3.30

Ty(r)=T(r)=

w=0, 4.3

r
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whereR is the radius of the star. respectively.
Note thatw, and w satisfy the inequalities dw.<w The Lagrangian displacement vector can be written

<() (where an index denotes the value at the center of the

stap. This means that 8§ w<{)— w. and that(), o, andw L

are positive for all values af. Defining a rescaled variable o~ re aym

»=0/Q, we havew.=w./Q<®=<1. Then, to linear order T ikQ :2 W,(r)Y| VIOV,

in Q, a single integration of Eq4.3 suffices to determine

the frame dragging for al) and a specific stellar modéh . « 5 m iot

given equation of state and, say, the central density 'U'(r)Pf’ﬁMM VYV Vo (e, 4.9
We now consider the nonradial perturbations of these

slowly rotating equilibrium models to linear order ifl.

Since the equilibrium spacetime is stationary and axisym-

metric, we may decompose our perturbations into modes of

the forn? e/(?*me). The perturbation equations have been pe—grth) (5%t yap) 4.10

written down in the Eulerian formalism by Kojin{48], but K weooH

we will find it convenient to work also in the Lagrangian

formalism. We therefore begin by expanding the perturbednd introduced the comoving frequency

density and pressure, the displacement vegtgrand the

metric perturbation$,; in tensor spherical harmonics.

where we have defined

The Eulerian change in the density and pressure may be kfl=o+ml. (4.1
written as
o The exact form of expressia@.9) has been chosen for later
Se=D S€,(r)YMeit (4.7) convenience. In particular, we have chosen a gauge in which
= £,=0. Note also the chosen relative phase between the terms
in Eq. (4.9 with polar parity(those with coefficient®V, and
and V|) and the terms with axial paritfthose with coefficients
5p=2 spi(r)YMeiot, (4.9 Working in the Regge-Wheeler gauge, we express our
I=m metric perturbation as

m . .
Hoe®Y™  Hy(nY ho'(r)(_B)Y'm ihg (r)sin@a,Y"
- m . .
h,,=eotS | Hu(DY" Ha (el hl,,(r)( ne)v’" ihy,(r)sin6a,Y("| (4.12
=m
symm symm r K,(r) 0
symm symm 0 r2sirt 9K, (r)Y"

Again, note the choice of phase between the polar-parityattention to the “canonical” displacements—those that con-
components(those with coefficientdHo,;, Hyy, Hy, and  serve vorticity in constant entropy surfacgsl,39. This

K,) and the axial-parity componentthose with coefficients conservation law, known as Ertel's theorem, is essentially
ho, andhy). the curl of the perturbed Euler equation and in general rela-

The use of the Lagrangian formalism introduces additivity has the form[39]
tional gauge freedom into the problem of stellar perturba-
tions. This freedom is associated with a clasg'of tr!vial Qis- Al Eyw,p 22V[anVB]p _ 4.13
placements that leave all physical quantities invariant
[49,50. One eliminates this gauge freedom by restricting

or

8we will always choosen=0 since the complex conjugate of an £ Aw :Ez{v AnV ;p+V NV zAp}, (4.19
m<0 mode with real frequency is anm>0 mode with frequency umTeR 0 [ Al [e? A

—o. Note thato is the frequency measured by an inertial observer
at infinity. where

024019-8
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In addition to the new equations that arise at or@erthe
(4.19 zeroth-order quantities must obey the zeroth-order perturba-

tion equationg3.20), (3.22, and(3.23), for all I. The degen-
is the relativistic vorticity. For our slowly rotating equilib- eracy of the zero-frequency modes will be split z#roth
rium star, Eq.(4.14 can be written using Eq2.11) and  order if there is a subset of tf@({)) equations that involves
(2.16 as only the O(1) variables. While this occurs in Newtonian
gravity only for barotropic starf27], in general relativity it
occurs also for nonbarotropic stars.

e+p

(l)a352V[a _n U,B]

. N 2
ikQe ”Awa5=ﬁA,V[arVB]Ap, (4.16
A. Nonbarotropic case

sinceA,=A,V r: cf. Eq.(2.16. Note that the three spatial o .
components of the perturbed vorticity are not independent, In @ search for the relativistic modes, Kojima[30] has
being related by the identity recently applied his general perturbation equatipt] to
the case of a mode whose spherical limit is purely axial.
Accordingly, he assumes an ordering of his perturbation
VidAwg,=0. (4.17  variables in powers of) that agrees with our nonbarotropic
ordering(although he does not distinguish between the baro-
We seek those modes that in the liflit-0 belong to the tropic and nonbarotropic cagekojima then finds that the
zero-frequency subspace considered in the previous sectioreroth-order equatiof8.22) is joined at ordex) by an addi-
We have shown that such modes must have axial parity itional pair of equations, which can be written
nonbarotropic stars, but may be either polar or axial in the
barotropic case. We will, therefore, require that our pertur-

bation variables obey an ordering in powerdbthat reflects . o @
this spherical limit: (1) e+ mo)e = ho =2
U, ho~0O(1),
- +
WV H O(1) barotropic stars +M}—2imw’e‘2”ho,=0 (4.19
~ r L
PERTLET1 002 nonbarotropic stars,
H0'| 1H2,| ,K| ,h11| 5€| ,5p| ,(T’"O(Q) (418) and
|
_ 2M
[(1+1){i(o+mw)e 2*hy—e 2} i,|_[77+477(p_6)r hm]
+im[16m(p+ e)r?we ?*hg —2rw’e 2" Mg+ w'r’e” 2"~ ?*hy |- 16rma(p+ €)r?e” 2*U;=0. (4.20

These two equations can be combined to give a seconidvolves only the zeroth-order axial variablag, and U, .
relation between the zeroth-order variabhgg and U, : However, after a closer study we find that for barotropic stars
there is, in fact, a third such equation, implying that the
system is overdetermined. While the existence of this third
equation is obscured by the Eulerian formalism, it arises
naturally in the Lagrangian framework as the other indepen-
Kojima derived this equation from the perturbed Einsteindent spatial component of EG}.16). In nonbarotropic stars,
equation, but as we will see in Sec. IV B, the equation can behis equation couples th®(1) variables occurring on the
written down immediately in the Lagrangian formalism asleft-hand sidgLHS) to theO()) variables(such as the per-
one of the spatial components of E¢.16), Aw,,=0 [cf.  turbed pressure and dengitgppearing on the RHS. How-
Eqg. (4.53]. Inspection of the Eulerian equatiofes, for ex-  ever, for barotropic stars the RHS vanishes identicaliyce
ample, given by Kojim&48]) appears to suggest that there is A,=0) and the third equation relating only ti@(1) vari-
no other equation in addition to Eq&.22 and (4.21) that  ables emergegf. Eq. (4.54 or (4.595].

2Mw

o+m— +1)

U|+(O'+mQ)h0’|:0. (42])

024019-9
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Hence, for barotropic stars, the assumption that the modence the axial variables are specifidffor nonbarotropic

is purely axial af)—0 leads to an overdetermined systemstars, the variable®V,, V|, andH;, are assumed to be of

of equations. The appropriate spherical limit is therefore on@rder 02, so they will not enter into our calculation. In

that also includes the polar variabM§, V|, andH,,, asin  order to show that this is the case, we must show that the

Eq. (4.18. For nonbarotropic stars, on the other hand, theemaining equations can be reduced to five independent

r-mode assumption appears to be consistent. Combining Eqnes. In this effort we are immediately helped by the fact

(4.21) with Eq. (3.22 gives Kojima’'s “master” equation for that, given the assumed orderig18), (i) the two equations

ho, 0G;,=8mdTy, and 6G,=8m 5T, both imply Eq.(3.22 at
orderQ and(ii) 6G,,— 85T, ~0? and so is automatically

2Mo N dho,l} satisfied at lower orders. This leaves us with six equations:

[(1+1)

I(1+1) 4M
r—z—r—3+8’77(p+6)

d

o+mQ-— e”*—[e

dr The equation of state for the perturbations and, for example,

the five remaining Einstein equations. In other words, the

H ] problem would seem to be overdetermined. However, for
(o}

dr

nonbarotropic stars the equation of sté2el3 that relates
8p to dp is of orderQ)?; that is, it fixes theD(Q?) quantity
+16m(p+€)(oc+m)hy,=0. (4.22 W, . Thus we have five equations for our five unknown vari-
ables and the problem is well defined. In other words, if a
Kojima used this equation to argue that themode spec- discrete mode which is limited to a purely axial perturbation
trum of a relativistic star is continuous. The conclusion thatas 2 —0 exists, it should follow from Eq(4.22. For com-
the equation supports a continuous spectrum was shown witfleteness, the perturbation equations for nonbarotropic stars
more mathematical rigour by Beyer and Kokkof84]. Ba-  (complete to ordef)) that follow from Eq.(4.18 are listed
sically, the continuous spectrum arises because4£82 is  in Appendix B.
a singular eigenvalue problem; the combination- mQ Let us now suppose that a distiremode solution exists
—2mwll(1+1) may have a zero in the interviak [0,]. It in the nonbarotropic case. One would intuitively expect this
is interesting to ask whether the presence of a Continuou@ be the case since there will then be an internal stratifica-
part of the spectrum is physical or whether it is an artifact oftion in the star associated with the composition gradient. In
the approximations we have introduced. That the latter maghe Newtonian case, this stratification leads to a simgle
be the case can be argued for in the following way. To leadmode for each combination dfand m at order() (these
ing order in the slow-rotation expansion, the mode frequencynodes then become nondegenerate at oftfef26,52,53),
o is a real-valued quantity, but at higher orders it must haveand it also leads to the presence of nontrivial pglanodes.
also an imaginary partcorresponding to dissipation due to ~ From the above discussion we know that a relativistic
gravitational wave emissionIf we were to consider Eq. mode of a nonbarotropic star should follow from E4.22.
(4.22 for complex frequencies, the problem will be regular We begin our search for such solutions by deriving a con-
and there will likely be no continuous spectrum. The pos-straint on the possible mode frequencies. We do this by first
sible presence of a continuous spectrum is an interesting igcaling out bott{) andm from the problem by expressing the
sue that should be investigated in more detail, but it is not théequencyo in terms of a real parameter, such that
focus of the present study. What we want to emphasize here
is that two important questions regarding E422 have not o=—-mQ
yet been answered. First of all, it has not been shown that the
problem is well defined. As we have already stated, one can .
show that the system of equations is overdetermined fof "€n EQ.(4.22 can be written
barotropic stars. This means that E4.22 can only be rel- d dhy,
evant for nonbarotropic stars. But in order to show that the (a—&‘)){e”‘”a e A ar }
equation is, indeed, relevant, we must demonstrate that all
other perturbation variables are uniquely specified given a [(1+1) 4M
solution forhg, from Eq.(4.22. Given the relative complex- | =z~ 73 t87(pte) ho,|]
ity of the perturbed Einstein equation, this is not a trivial
task. Second, we need to investigate whether (B2 al- +16m(p+ €)ahg,; =0, (4.249
lows distinct mode solutions in addition to its continuous
spectrum. After all, the true relativistic analogue to a New-where we have use®=w/{). From this equation we see
tonian r mode ought to be a distinct mode with a well- that the eigenvalues and the corresponding eigenfunctions
defined eigenfunction. ho, are not explicitly dependent on eith@ror m. The latter
We address the first issue by considering the perturbatiomeans that, if we find an acceptable mode solution to Eg.
equations that arise in the Eulerian formalism; [é8]. As  (4.24), it will be relevant for allm#0 for each given multi-
far as the axial perturbation variables are concerned, the spble |. This would be in accordance with the nonbarotropic
of equations(4.19, (4.21), and (4.22 makes sense: We Newtonian case where one finds a singlenode for each
have three equations governihg,, h,,;, andU, for all .~ combination ofl andm at order(} [26,52,53.
What is not so clear is whether the remaini@¢()) pertur- As we will now establish, nontrivial solutions to Eq.
bation equations yield uniqu€,, Ho;, Hy;, dp;, and de (4.24) may exist provided thak— @ vanishes at at least one

2a

1_|(|+1)

. (4.23
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point in the intervak € [0,0]. To show this we first assume The ordering(4.18 implies thatu“uﬁhaﬁ and g“Bhaﬁ
that «—® does not have a zero ine[0,]. Then we can vanish to zeroth order if2, since the only zeroth-order met-
define a new well-behaved functionthrough hy;=r?(a  ric components aréy, , hy,, andh,,. Therefore,

—w)f. By introducing this definition in Eq4.24), multiply-

ing by r?f, and integrating overe [0,%], one can show that L yeuPAg, 5= uuby ¢ (4.31)
(as long ad vanishes both as—0 andr—x as is required ? “p “sh '

by the regularity conditions
% anAgaﬁ:qaﬂvagﬂi (432

_ * _~\2p A= N—v|f1
jo (a=®)%r*e " "|f'|dr Au=uuPurvé (4.33

Au,=h,guP+UPV 4¢,+UPY &y
FULUPUIV GE . (4.34

Here both integrands are positive definite, and it follows that o, Egs.(2.1) and (3.6) and the relation
we can have no nontrivial solutions fér

In other words, a nontrivial solution fdry; can only exist
if «a—®=0 at some point in the spacetime. That is, the ei-
genvaluea must lie somewhere in the range =— gﬂvﬁw o), (4.395

= Jm(a—z))z[l(l+1)—2]r2e""’|f|2dr. (4.25
0

UUPY &= — EPUV ug+uV (UPEp)

we=<as<l. (4.26  we obtain

As already noticed by Kojimg30], this agrees well with the 1 e+p

Newtonian result. As the star becomes less relativigiic, =q%PAQg, .= v'e g, (4.36
i . ) L 2 B\ Typ

—1 and our integral relation then predicts a nontrivial solu- !

tion only for =1, i.e., the Newtoniam-mode eigenvalue. .

We will attempt to find discrete-mode solutions, with fre- uubV Ep=—1v'e ¢, (4.37

guencies in the permissible range, in Sec. VB.

to zeroth order irf). We will also use the explicit form af,,

B. Barotropic case determined from Eq(4.2),

As indicated above, the conservation of vorticity gives U .=e “orsir o, (4.39
rise to a mixing of axial and polar modes at zeroth order in ¢
(). This suggests that the modes of barotropic stars will geand the components dfu,, to zeroth order ir):
nerically be of a hybrid nature, and as a consequence, the

equations determining the modes are more complicated than 1
those forr modes of nonbarotropic stars. Au,=e™” htr+iKQ§,+Qrzar(—2§¢>
The relevant perturbation equations for the barotropic r
case follow from the spatial components of E4.16), which e2v
for barotropic stars becomes, simply, + 2 ar(rzweZV)§¢}, (4.39
Aw,z=0. (4.27 _ o
Aug=e "Thyy+ikQéy+Q0dyé,— 2w cotoé, ],
We begin by expressing this relation, i.e., (4.40
0=Aw,=V, A(ﬂuﬁ) ~VgA ﬂu,l) , Aug=e " Thy, +inQdE, + 0,8,
n n .
(4.28 +2wsindcosl &,

in terms of&* andh, . +e"d(r’we”")sin e ¢,]. (4.4

Making use of Eq(2.11), we have

I'\p of i kQ € to zeroth order irQ) [cf. Eq. (4.9)]:

A

u

(4.29

[e3

1 B
Au,—5077Ag,,

e+p ) e+p
U, | =
n n

ikQ&E=0(Q),
where

1 .
ikQEl= Z gL Vising Y+ mu,Y"e ",

Au,=A(g,puP)=Ag,zuP+g,zAUP (4.30 resin
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1 . e\ .
ikQE = —WYe, ikQE =, ——WyYPe'”,
| |

i ikQE,=>, iI[MVY™+U, sind d,Y et
. o_ m . m aiot i
ikQE Z g MUY+ U sing d,Y["e' ™, (4.42
By making use of Eqs(4.29—(4.41) and expressions
ikQ&=0, (4.42) and (4.12) for the components dfxQ& andh,,, we
may now write the spatial components &fv, ;. We will
1 use Eq.(3.20 to eliminateH,, (for all I) from the resulting
iKQ§0=E [V, sin6d,Y"+mU, Y et expressions and drop the “0” subscript on the metric func-
T sing ! ! ' tions hg, , writing hg;=h,:

e+ 1 B Flp
AQ)a(P: — &QAU<P—&‘PALI9—¢99 Eq Agaﬁ e+p U‘P
e+p)\e "sind
== WZ [1(1+1)kQ(h+U)) —2maU,]Y"- 2V,
|
e’ _
X[sin@a,Y"+1(1+1)cosd Y]+ . 3, (r2we 2")W,[sin@ 9,Y"+ 2 cosh Y"] 1 €', (4.43
E+p v -V -V
Awyy= n_ e"[d,(e""Auy) —dy(e""Auy)]
6+p e’ —2v m a2V H m
= Tm; mxQa,[e2"(hj+U,)]Y"—24,(we 2"U,)cosh sin 6 3,Y!
1 _ _
+r—za,(rzwefz”)u,[mzﬂ(l+1)(cos’- 6—1)1Y"—2ma,(we 2"V,)cosh Y
m 1671 (e+ 1 .
+r—zo7r(r26e*2V)V, sinf d,Y"+ kQ ar(ez”v,)+e2”(|(|+l)p)—F e?MW, sinaagY[“} e, (4.49
€+p v —v —v 1 af Flp —v
Awy= e e’ d,(e”"Au,)—d,(e Auq,)+ar§q AQ.p eTp e "u,
e+ e’ 167r(e+ 1 _
= np iKQE| {mKQ ar(e‘z”V,)Jre‘z”(#— F)eZAW| Y"—2d,(we ?"V,)cosésing d,Y"

2

m o 1 _ _
+ Tga,(rzwe—b)vlv{‘w 9, = 9, (r?we ?")W,|(cog 6—1)Y"—2md,(we 2"U,)cosh Y|"

r

m .
+kQa[e 2" (h+U))]sinf d,Y"+ r—zar(rzae—b)u. sing &0Y,m] e'ot, (4.45

These equations can be rewritten using the standard identities

SiN09,Y"=1Q) 1Yk, — (I + QYL (4.46
cosfY"=Q. 1YL+ QYL (4.47
with Q, defined as
[ a+my(l=m) |2
=l2—De+1 (4.49
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We then get, from\w,,=0,

2v

[1(1+1)kQ(h +U;) — 2moU, Y™+ er

-3

g(rPwe )W, =2V, [(1+2)Q 1Y},

eZv o o
— gr(rZoe Wi+ 2(1+ DaV,

<|—1>Q|v.ml]. (.49

FromAw,,=0 we have

_ (1+1) —
OZEI { —20,(we™?"U)) + 2 9 (r?we ") U, [1Q11Q+2Y ],
[ Im 1671 (e+ 1
+|1kQd, (e 2"V))—2md,(we ?"V,) + r—zar(rzae—b)v,ﬂKQe—ZV(ﬁ—F MW, |Q 1Y,

+ mxnar[e2”<h.+u|>]+2ar(5e2”u|>[<|+1>Q$—IQf+1]+}m(rzae2“>u|[m2+|<l+1><QF+1+Q.2—1>]}Y{“

[ |

—(1+1)kQa,(e2"V))+2md,(we 2"V, + m( ; b 3 (rlwe?")V,+(l +1)KQe2”(%— %) eZAW,}QN{“l
[ |

+ 2ar(ae*2Vu|)+r—zar(rZEe*ZV)u, (I+1)Q|1Q,Y|m2]. (4.50

FromAw, =0 we have

QI+2QI +1Yln:|+—2

o=2| ”arGﬁr(rZEe2”)W|)—2Ic7r(5e2”V|)

—2v 2V ml 2/ —2v m
+ Qo e (h+U)]-2mi(we U+ 7 a(rfwe ") U, |Qu+1 Y1y,
-2 2 2 2 m2 22 . 22 2 2
+mxQa(e V) +2d (we” V)L +DQI—1Q1 ]+ 1z di(rfwe ")V i+ 4| - ar(rfwe )W, [(Qr 1+ Qi —1)
167r(e+ 1 m(l+1
+mKQe2V<I(I+1)p)— F) eZAW,}Ylm— (I+1)kQa,[e2"(h+U))]+2md,(we 2"U)) + (rz )ar(rZEeZV)U,}
1 _ —
XQYL + f?r(rﬁr(rzweZV)W| +2(|+1)§r(we2VV|)}Q|1Q|Y|mz : (4.5
Finally, let us rewrite these equations using the orthogonality relation for spherical harmonics:
f YTY™dO =8 Sy (452
whered() is the usual solid-angle element on the unit two-sphere.
FromAw,,=0 we have, for all allowed,
eZV
0=[I(I+1)KQ(h|+U|)—2m5U|]+(I+1)Q{ : d(rwe 2" )W,_;—2(I-1)wV,_,
eZV
—1Qy+1 » g(rPwe )W 1 +2(1+2)wV . q|. (4.53

Similarly, Aw,,=0 leads to
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0=(l —2)Q|1Q|{ —20,(we™?"U;_,) + (I—r_zl—)ﬁr(rzae_zy)lhz}

+Q|| (I=1)kQd (" #V| 1) —2mJ,(we ?"V| 1)

m(l—1)
+

167r(e+ 1
= ar(rzaefz”)v,,ﬁ(l—1);<Qe*2”J

-1 _F)enw”}

+| meQa[e”2(h+U))]+26,(we 2"U)((1+1)Q3—1Q% )

+ }m(rzae2V>u|[m2+l<|+1><Q|2+1+Q$—1>]}

~ Q1| (1+2)kQa €72V, ;1) +2md, (@6 2"V, 1)

m(l+2
(r2 ) 3, (rPwe ")V, 1+ (1 +2)kQe 2"

167r(e+p) 1
D 1]

(14+2)

+(14+3)Q41Q) 42| 20, (we™2"U)45) + 2 dr(r?we ?")Uy,,

, (4.59

and fromAw,, =0, we get

1 _ —
0=Q,-1Q 5r<70r(r2w62”)W|2> —2(l —2)5r(w€‘2VV|z)}

m(l—1)

+Qi|(I-1)kQa[e?"(h_1+U,_)]—-2md(we >"U;_;)+ 2 3r(r2532V)U|1}

2

—2v ——2v 2 2 m 27—\ —2v 1 27— 2v 2 2
+ meQdi (e V) + 20 (we V) ((1+ 1) QI —1Q ) + 7 dr(rFwe =)V + ;| —di(r we "W, |(Qfy 1+ Qi —1)
_,[16mr(e+p) 1), . .,
+mxQe " Tarn )¢ MW= Q| (1+2)kQ0,[e 2 (hy 1+ U 1)1+ 2m6, (we™?"Uy 1)

m(l+2) o
12 g (r’we ?" U,

+Qi+1Q1+2 +2(1+3) 9, (we 2"V 15) |. (4.59

1 _
&r(rar(rzwezv)WHZ

It is instructive to consider the Newtonian limfi27] Eq. (4.55—Eq. (LF,39),

(1), v(r),A(r),h(r)—0 (5.56 (and similarly for the other forms of these equatipns

) ) This correspondence leads us to expect the same structure
of these perturbation equations. We have already seen thaf, e relativistic modes as was found in the barotropic

Eq.(3.23 is the_relativisti_c generalization of the Newtonian newtonian case: we expect to find a discrete set of axial-
mass conservation equatidrF, 13) [or Eq.(LF,42]and that 504 polar-led hybrid modes with opposite behavior under
the otherO(1) perturbation equatiori8.20 and(3.22) sim- 4ty [27]. Further, we expect a one-to-one correspondence
ply vanish in the Newtonian limit. Similarly, one can readily henyeen these relativistic hybrid modes and the Newtonian

observe that the conservation of vorticity equations have ag,gges, which the relativistic hybrids should approach in the
their Newtonian limit the corresponding equations from Loc-Newtonian limit.

kitch and Friedmarh27]: In deriving the components of the perturbed vorticity ten-
sor in Newtonian gravity(LF,38)—(LF,40), no assumptions

Eq. (4.53—Eq. (LF,38), about the ordering of the perturbation variablép (v ?) in
powers of the angular velocit§ were required. Thus the
Eq. (4.549—Eq. (LF,40), theorem concerning the character of the Newtonian modes
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(cf. Appendix A[27]) applies to any discrete normal mode of polar terms withl=m, m+2, m+4, ...,
a uniformly rotating barotropic star with arbitrary angular
velocity. axial terms withl=m+1, m+3, m+5,...
We conjecture that the perturbations of relativistic stars
obey the same principle: If§(*,h,z) with £#0 is a dis- We prove the theorem separately for each parity class in

crete normal mode of a uniformly rotating stellar model Appendix C.
obeying a one-parameter equation of state, then the decom- In essence, the theorem shows that if a mode of a slowly
position of the mode into spherical harmonigs hasl=m  rotating barotropic star has a stationary nonradial perturba-
as the lowest contributing value gfwhenm+0, and has 0 tion as its spherical limit, then it is generically a hybrid mode
or 1 as the lowest contributing value bfwhenm=0. with mixed axial and polar angular behavior. An immediate
However, in deriving the curl of the perturbed Euler equa-consequence of the theorem is that threodes of barotropic
tion for relativistic models, we have imposed assumptionsstars (if they exist at all must havel=m (or [=1 if m
that restrict its generality. We have derived E¢$.53— =0), and it is well known that barotropic Newtonian stars
(4.55 in a form that requires a slowly rotating equilibrium retain a vestigial set of purely axial modes—the “classical
model, assumes the orderiig.18, and neglects terms of modes”—whose angular behavior is a purely axial har-
order Q2 and higher. Under these more restrictive assump#monic, havingl=m. Let us address the question of whether
tions, the following theorem holds. or not such pureg-mode solutions also exist in barotropic
Theorem 1Let (g,5(12),T,5(2)) be a family of station-  relativistic stars.
ary, axisymmetric spacetimes describing a sequence of stel- We apply the perturbation equations for barotropic stars
lar models in uniform rotation with angular velocify and to the case of an axial mode belonging to a pure spherical
obeying a one-parameter equation of state, wherdarmonic of indeX. In other words, let us assume thg(r)
(945(0),T,5(0)) is a static spherically symmetric spacetime andU,(r) (for some particular value dj are the only non-
describing the nonrotating model. L@t*(2),h,z(£2)) with  vanishing coefficients in the spherical harmonic expansions
£+ 0 be a family of discrete normal modes of these spacef4.9) and (4.12 of the Lagrangian displaceme&t and the
times obeying the same one-parameter equation of statperturbed metri,z, respectively.
where(£%(0),h,4(0)) is a stationary nonradial perturbation ~ The set of equations to be satisfied are the zeroth-order
of the static spherical model. L&£*(£20),h,5({20)) be a  (spherical equations(3.20, (3.22, and (3.23 and the
member of this family with) < Q) , the angular velocity of order{) conservation of circulation equatio4.53—(4.55),
a particle in orbit at the star’'s equator. Then the decomposias well as suitable boundary conditions at infinity and at the
tion of (£(Q),h,5(Q¢)) into spherical harmonic¥" [i.e.,  surface of the stafSec. IV Q. Recall that as a result of Eq.
into (1,m) representations of the rotation group about its cen{4.17), the conservation of circulation equations are linearly
ter of mas$ hasl=m as the lowest contributing value 6f dependent and we need only satisfy two of them, say, Egs.
whenm=0, andl=1 as the lowest contributing value bf  (4.53 and(4.54.
whenm=0. With h,(r) andU,(r) the only nonvanishing perturbation
We designate a nonaxisymmefrienode with parity Vvariables, Eqs(3.20 and(3.23 vanish identically, while Eq.
(—1)™"* an “axial-led hybrid” if £ andh,, receive con- (3.22 remains unchanged. Equati¢h53 becomes
tributions only from _
0=[1(1+1)kQ(h+U))—2mwU,], (4.57)
axial terms withl=m, m+2, m+4,..., ) )
and Eq.(4.54 with | —1+2, |—I, andl—I1—2 gives the

polar terms withl=m+1, m+3, m+35,... equations

Similarly, we designate a nonaxisymmetficnode with par- o= 1Q,+1Q)4 5 —24,(we™2"U)) + ( +21) a.(r?we 2"\ U,|,
ity (—1)™ a “polar-led hybrid” if £&* andh,z receive con- r

tributions only from (4.58
0=mxQd,[e ?"(h+U))]

SWhenm=0, there exists a set of modes with parityl that may +20,(we 2"U)[(1+ l)Q|2— IQ|2+ 1]
be designated as “axial-led hybrids,” sing¢ and h,z receive 1
tceorr;t]rslva\J/;[tlﬁri ;2% from axial terms with=1,3,5... andpolar + r_Zar(r2we—2”)u|[m2+|(| + 1)(Q|2+1+Q|2_ D],
Owhenm=0, there exists a set of modes with paritL that may
be designated as “polar-led hybrids,” sing¢ and h,; receive (4.59
contributions only from polar terms with=1,3,5... andaxial |
terms withl=2,4,6 ... . The family of nodes for whiché* and _ — —2v 2— 2
h,s receive contributions only from polar terms with 0=(+1)Qi-1Qu| 20 (0& U+ rzo(riwe Wil
=0,2,4 ... andaxial terms withl=1,3,5 ... would have parity (4.60
+1 and could be designated “polar-led hybrids.” However, these
modes require a more general theorem to establish their charactetespectively.
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Given the requirement that=m whenm>0 (and|l=1 Making use of Eq(4.36) and the equilibrium equation(8.4)
whenm=0), one readily finds that these equations can beand(3.6), we find that, ar =R,
satisfied only wher=1. Thus no purely axial modes with
|=m=2 exist in barotropic relativistic star$33]. The di-
pole (=1) solutions '_[urn_out to be_stationaryr_(= 0) and _ 0=Ap= =
have the natural physical interpretation of a uniform rotation R“(R—2M,)
of the start _ o 3
In Newtonian barotropic stars there remained a large se¥hereMqo=M(R) is the gravitational mass of the equilib-
of purely axial modes with=m, thel=m=2 mode being UM star and satisfies\,<R. _
the one expected to dominate the gravitational-wave-driven, For the-equanons of state we consﬂﬁthe energy den-
instability of sufficiently hot and rapidly rotating neutron sity e(r) e|t_her goes to a constant or vanishes at Fhe surface
stars[3,4]. In barotropic relativistic stars, however, we seeOf the sta.r in the manng(this would be the behavior for a
that all such pure modes with =m=2 are forbidden by the polytrope:
perturbation equations and instead must be replaced by axial-
led hybrids. We explicitly construct these important hybrid

k
.
modes to first post-Newtonian order in Sec. V C. f(f)N(l— ﬁ) (4.63

Mo S WRY. (462

(for some constari). In both cases, it is required that

C. Boundary conditions

Having understood the general nature of the relativistic Wi(R)=0 (all ). (4.64

perturbation problem and derived the relevant perturbatioqnf (R)#0, then Eq.(4.62 requires this directly. On the
equations for both barotropic and nonbarotropic stars, we . hand ife vaniéhés as in Eq4.63 thenV(.r) will
want to determine mode solutions. Before we can do this, WSiverge at the surface by E@.23 if Eq. 7(4.64) isl not sat-

need to discuss the boundary conditions that should be imgfieq. By Eq.(3.20), this also implies that,,(r) vanishes

posed. _ _ at the surface of the star. This boundary conditiofolsvi-
For nonbarotropic stars, the zeroth-order variables argysly) relevant only in the barotropic case.
governed by the single equati¢A.22, while for barotropic In the exterior vacuum spacetime; R, we have only to

stars we have the set of perturbation equati@0, (3.22,  satisfy the single equatiof8.22 for all I, which becomes
(3.23, and (4.53—(4.55. A physically reasonable solution

(é*,h,p) to these equations must be regular everywhere in )
the spacetime. Of course, the fluid variabWg(r), V,(r), h”+[(2_| —1) o E}h
and U,(r) (for all 1) have support only inside the star, ! r? 2|t
€[0,R]. The metric functiongd,(r) will also have support

only inside the staffor all I), since they are directly propor- Of

tional toW,(r) by Eq.(3.20. The metric function$,(r), on

the other hand, satisfy the nontrivial differential equation oM
(3.22 in the exterior spacetime and will, therefore, have sup- ( 1— 0) hy' —
port on the whole domaine [0,]. Let us now consider the r

boundary and matching conditions that our solutions must
satisfy y g where we have useel 2*=(1—2M,/r) for r>R.

At the surface of the star,=R, the perturbed pressure Since this exterior equatipn dpes not'coulpller). fpr dif-
Ap must vanish(This is how one defines the surface of theferen_t values_ of, we can f|nd_ |ts_ S.OI.Ut'On epr|C|t_Iy. The
perturbed stay. The Lagrangian change in pressure is givenSOIUt'on that is regular at spatial infinity can be written
by Eq.(2.11):

=0 (4.6

I(1+1) 4M,
r2 r3

h=0, (4.66

R I+s
T) . (4.6

h(r)=2>, h
Ap=—3T1pq*PAg,;. (4.61) (") SZO s

If we substitute this series expansion into E466), we find

1 _ the following recursion relation for the expansion coeffi-
"When m=0 and =1, the solution corresponds to a small cients:

change in the angular velocity of the star about its original rota-

tional axis. Wherl =m= 1, the solution represents uniform rotation

of the star about an axis perpendicular to its original rotational axis.

These solutions are derived in detail by Lockii38] and are a 12This restriction can be dropped if the boundary condition
generalization of the axial dipole modes studied in nonrotating relaAp(r =R) =0 is replaced byAh(r =R) =0, with the comoving en-
tivistic stars by Campolattaro and Thorp#s]. thalpy h=f8dp’/[e(p’) +p'].
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R s2l+s+1) ls—1, (4.68 post.-_Ne_wtonian corrections to the Newtoniamodes. '_rhe

equilibrium structure of a slowly rotating star with uniform
density is particularly simplg47] and lends itself readily to
such a post-Newtonian analysis. The results we obtain in this
way provide important insights into the relativistic correc-
fions to the familiar Newtonian modes.

. (2M0) (I1+s=2)(1+s+1) . presented by Lockitch33]. For now, we will focus on the
l,s—

with ﬁLO an arbitrary normalization constant. We therefore
have the full solution to zeroth order {i of the perturbation
equations in the exterior spacetime.

This exterior solution must be matched at the surface o
the star to the interior solution fdr (r). One requires that
the solutions be continuous at the surface,

A. Post-Newtonian uniform-density model
lim[h(R—¢)—h(R+¢)]=0, (4.69 For a spherically symmetric star with constant density,
g—0

3M,

for all I, and that the Wronskian of the interior and exterior e(r)= et (5.1)

solutions vanish at=R, i.e., that

the equilibrium equation$3.3)—(3.7) have the well-known

lim [y(R=e)hj (R+e) =y (R=e)hi(R+e)]=0, exact solution inside the star €R):

e—0
(4.70
1/2 271172

for all I, _ Mo | 2Mof T

Thus, in solving the perturbation equations to zeroth order R R \R
in (), we need only work in the interior of the stes in the p(r)=e YNNG YRR
Newtonian case In the interior of a nonbarotropic star, the 31— of - 0
perturbation £€,h,) must only satisfy Eq(4.22 together R \R R
with the matching conditions4.69 and(4.70. In the baro- (5.2

tropic case we have the full set of coupled equati$20),

(3.22, (3.23, and (4.53—(4.55 for all I, subject to the 3

boundary and matching conditiof#.64), (4.69, and(4.70. M(r)=M (L) (5.3
Finally, we note that since we are working in linearized R/ '

perturbation theory, there is a scale invariance to the equa-

tions. If (£*,h,p) is a solution to the perturbation equations, oM. (1212 1 OM .| 12) 2

then K&*,Kh,z) is also a solution for constait. We will ez”“):{—[ _ _°<_> } — _( _ _0)

find it convenient to impose the following normalization R IR 2 R '

condition in addition to the boundary and matching condi- (5.4

tions just discussed:
2

. . —2)(r) 2Mo (1
Un(r=R)=1 for axial hybrids andr modes, e =l-=1g/" (5.9
Uni1(r=R)=1 for polar hybrids. (4.71) where My, is the gravitational mass of the star aRds its
radius.

To find the equilibrium solution corresponding to a slowly

V. RELATIVISTIC CORRECTIONS TO THE r MODES rotating star, we must also solve Hartlg¢46] equation(4.3):

OF UNIFORM-DENSITY STARS — —
0=r?w"+[4=r(v'+\)ro’—4r(v'+\)o (5.6)

In a future paper, we will consider the general problem of
numerically solving for ther modes and hybrid modes of (see alsd47]), where we may use the spherical solution to
fully relativistic stars. Preliminary results have already beenrite

s I
TR T
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To simplify the problem, we expand our equilibrium so- Before proceeding, it is useful to compare our definition of
lution in powers of (My/R) and work only to linear the post-Newtonian eigenvalue, to the eigenvaluex we
order?® We will need the expressions used in Sec. IVA. We then immediately see that

r\2/2M, 2Mg)?
ﬁ) (T) +O(T) (5.8

3 1/r)\2
ol 2

2M,

R

3
I'(V"f')\'):E

(5.1

a=1+k,

and deduce that the established range for possible eigenfre-
quencies translates into

and

—1<K1<O

2Mg 2Mg) 2

I - 5.1

(R)+O(R>. (5.9 (5.17
Within this range there are two possibilities. #f < — 2/5,

Since we are also working to linear order in the star'swe will have a singular eigenvalue problem, while for
angular ve]ocny, we may sé2 =1 without loss of general- —2/5< «,;<0, the problem is nonsingular. To determine the
ity. We write r modes to first order in [2,/R for the uniform-density

r 2i
d

model, one need only consider the simpler nonsingular situ-
ation, because the eigenvalues of the relativistitodes turn

and solve Eq(5.6) subject to the boundary conditiga.6) at

the surface of the star:

2 2\R

oo
522 Wi
1=0

(5.10

out to be in the nonsingular range. The continuous part of the
spectrum[30,31], as noted earlier, may be an artifact of an
approximation in which the frequency is real.

We can rewrite Eq(5.15 as

[(1+1) 30

d%nh{®
2 37 BR%(k, 1 1)

dr?

(5.18

(0) —
1=0= (5.11 h™=0.

1
w+§Rw’

r=R

As long as—2/5< k;<0, this equation can readily be inte-
grated, and the solutions are well behaved at all values of
We have integrated Eq5.18 using a fourth-order Runge-
Kutta scheme, initiated from the appropriate regular power
series solution close to the center of the star. That is, we use

To order (2M,/R) the solution is

_ 3r2\ [2M, 2Mg)\ 2
w(r)=1—(1—w>(?)+o<?) . (6.12

6r2

. O ppl+1)1_

B. Nonbarotropic stars hy”’~Dr [1 R+ DI+ 2)(1+3)=1(1+ 1)]]

In order to find the find the relativistic analogue to the (5.19
familiar Newtonianr modes of nonbarotropic stars, we insert '

the above expressions in Ed.22). We also assume that the at an initial point close to =0 and then integrate E¢5.18

mode frequency can be approximated as
2Mg o 2M,)\ 2 51
R’ ORI

and that the eigenfunction takes the form

2m

ATIESD)

1+ K1

2
ZMO) (5.14

“”mm“%zg%+O(TT

Solutions of this form would then lead td,~O(1) via Eq.
(4.22.

Under these assumptions, Eg.22) is trivially satisfied
to leading order. At order (,/R)? we find an equation

3r? Lo ld+1) 6
K1+ 1— 5—R4[h|(0) - _rZ_hI(O)] + ﬁzhfo)=0.

(5.15

13This expansion will give us the first post-Newtoni@dPN) cor-
rections to the Newtonian modes.

to the surface =R. At the surface we demand tha{®’ and

its derivative can be smoothly matched to the exterior solu-
tion according to Eq(4.70. For each value df we then find

a single acceptable solution, corresponding to a distinct ei-
genvaluek;. These eigenvalues, foe=2-10, are listed in
Table I. It should be recalled that the tabulated eigenvalues
correspond to mode frequenci@s the inertial framg given

by
Q2L [BMo) | o 2Mo 2
RN TR ) Rt R |-
(5.20
A typical eigenfunction, corresponding te-2, is shown in
Fig. 1.

We thus find a single post-Newtoniarmode solution for
each allowed combination dfandm. This is very much in
accordance with the Newtoniarmode results for nonbaro-
tropic stars at ordef) (the degeneracy of these modes is not
broken until at orde€)?). The main difference in the rela-
tivistic case is that the post-Newtonian correctigasorder
2M,/R) break the degeneracy at ord@rand make it pos-
sible for us to determine the eigenfunctions.
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TABLE |. Relativistic r-mode and hybrid-mode frequencies of 0
uniform-density stars. We list the numerically determined values of
the post-Newtoniarr-mode frequency correctiovxlr_mode for the
nonbarotropic star and compare the corresponding eigenvalyes
to ones obtained for fully relativistic uniform-density staas for a -0.01 -
star of compactness\N2,/R=0.4. In this case the value of the
frame dragging at the surface of the star leads «(R)/Q
=0.84424 and we can see that the eigenvalues approach this value
asl increases. It is also interesting to compare our post-Newtonian
eigenvalues to the result we deduce for the hybridn modes of

barotropic

barotropic  stars, KL g —4(m—1)(2m+11)/5(2m+1)(2m \\
+5). The two results typically do not differ by more than a few 003 I N |
percent. This is important since the two modés |=m) corre- \
spond to the relativistic analogyr nonbarotropic and barotropic \\\ Py
stars, respectivejyof the same Newtonian mode. S
00, 02 04 06 08 1
l thybrid Klr-mode apN a ’ ' ( r/R ) ' '
2 —0.2667 —0.2629 0.8949 0.9086 ) ) ) )
3 ~0.3532 ~0.3428 0.8629 0.8699 FI_G. 1. Numerically _determ!ned_post-Newtqm&mnode eigen-
4 —0.3897 _0.3734 0.8506 0.8561 fun(?tlo_n h,(r) for I=2_ in the interior of a unlform-(_jen5|_ty star
(solid line). The result is compared to the corresponding eigenfunc-
5 —0.4073 —0.3868 0.8453 0.8502 tion for the particular hybrid mode that is the relativistic counterpart
6 —0.4163 —0.3931 0.8428 0.8474 of the Newtoniarl = m=2r mode in a barotropic stashown as a
7 —0.4211 —0.3962 0.8415 0.8460 dashed curve Of course, in the barotropic case several other func-
8 —0.4235 —0.3979 0.8408 0.8453  tions(such asW,,.; andV,,, ) are also nonzer¢see Fig. 2 The
9 —0.4247 —0.3988 0.8405 0.8448 functions are normalized in accordance with E471).
10 —0.4251 —0.3993 0.8403 0.8446

Therefore, let us make the following ansatz for our perturbed

solution inside the star. We assume that the coefficients of

Given these results, we expect simitamode solutions to  the spherical harmonic expansiof%9 and (4.12 of the
exist also in the fully relativistic case. It is, in fact, easy to Lagrangian displacement® and the perturbed metric, 5,
demonstrate this and we have extended our calculation faespectively, have the form
uniform density star to include all terms in E@.22. We
then find that the mode eigenvalue is always such that 2 2M, 2M,) 2
—w=a—w/Q#0 in the interior of the stafrecall the dis- k=——|1+ Kl(—) +O(—) } (5.23
cussion in Sec. IV A The solutions to the problem are thus (m+1) R R
regular. The associated eigenvalues,|fe2—-10, and a star

with compactnes$1/R=0.2 are given and compared to the r\mtt r2\(2Mgq
post-Newtonian results in Table I. Um(r)= (ﬁ) 1+ Um,O( 1- E) (T)
2
C. Barotropic stars +O<%) , (5.24
Having established that discratenode solutions exist for

nonbarotropic relativistic stars, we now turn to the barotropic 1 21/ oM
case. As we have shown, we will then not have purely axial ho(r)= (_) h- +h (L) }(_0)
solutions (for 1=2). Instead, we need to calculate hybrid " R mo- MR R
modes by solving EQgs(3.20, (3.22, (3.23, and (4.53— M| 2
(4.55 subject to the boundary, matching, and normalization <_°) , (5.25
conditions(4.64), (4.69, (4.70, and(4.72). As in the non- R

barotropic case, we seek the post-Newtonian corrections to
the well-known Newtoniarr modes. For barotropic stars r\m+i1 r2\(2M, 2M,)\ 2
such modes exist only fdr=m with frequency and radial Wm+1(f)=Wm,o(§> (1— @)(T) +O(T) :

dependence given by (5.2
2
TET O el el g2
p\m+l 2M, 2
Um=(§> . (5.22 +0 T) , (5.27
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™3 2mg 2Mo)\? rymet r?\(2Mg
Um+2(f)—Um+2,o(§) (T) +O(T) , Um(f)—(§> 1+Um,o(1— RT)(T)
(5.28 YRE
where k1, Umo, Nmos Nm1s Wmt1,00 Um+1,00 Um+1,2, @nd O(T : (5.34
Un+ 2,0 are(as yej unknown constants. We have chosen the
form of U,(r) so as to automatically satisfy the normaliza- pm+l 3 3
tion condition (4.71) and we have chosen the form of hp(r)= —) — +
W,,+1(r) so as to automatically satisfy the boundary condi- R (2m+1) = (2m+3)
tion (4.64). Note that we have assumed thwgt V,, W,,, r\2]{2M, 2Mg\?
and U, are of order (M,/R)? or higher for alll>m, |’ X5 MT) +O(T) : (5.39
>m+1 andl”>m+ 2. We will justify this ansatz by show-
ing self-consistently that such a solution satisfies the pertur- m+1
bation equations. W, 1(r)=(m+1)(m+ 2)K( _)
Observe that the exterior soluti¢f.67) for h,,,(r) already R
has a natural expansion in powers oMg/R) as a result of r2\ [ 2M, 2My) 2
the recursion relatior4.689: (1— RZ ?) +O(T) , (5.39
. [R\M2M, 2M,)\?
hm(r)th’O(r <?) +O(T) . (5.29 m+1 r\2
Vm+1(r)=K(§) (m+2)—(m+4) §> }
The normalization constafit,, o is determined by the match- oM M2
ing condition(4.69), cvo o
9 (4.69 x( = )+o( = ) (5.37)
Amo=Nmo* N1, (5.30
(m+1)%(m+3)
while Eq. (4.70 imposes the following condition on the in- Um+2(r)= —KQm+2(2m—+3)
terior solution:
. r\mt3/2m, 2Mg) 2
0= of =M(Nimo* hin) ~[(M+ 1) N+ (M+3) P 1} X(ﬁ) (T> +0(T) - 539
(5.31
or where we have defined the constant
0=(2m+1)hyot+ (2m+3)hy, ;. (5.32 K 6(m—1)Qm; (5.39
5(m+2)(2m+5) ’
We turn now to the barotropic perturbation equations
(3.20, (3.22, (3.23, and (4.53—-(4.55. Recall that these and where
latter three equations are not linearly independent, being re-
lated by Eq.(4.17. Also, because Eq(3.20 merely ex- KQmq+1
pressedd (r) in terms ofW(r), we may eliminateH(r) Um,o= — 24m(m+2)(2m+3)
from our system and ignore E@3.20. Thus a complete set
of perturbation equations is provided by E3.22), (3.23), x{48m+1)4(m+3)2+(2m+3)%(2m+5)
(4.53, and(4.54 for all allowed values of. )
We expand these equations to first post-Newtonian order X[m(m-+2)°—48]}. (5.40

using EGs(5.8), (5.9), and(5.12 to replace the equilibrium Since our solution satisfies the full perturbation equations

uantities and using our ansatz, E§5.23—(5.28), to re- X
d g 8.23-(529 go order (2,/R), our ansatz was self-consistent. Thus we

place the various perturbation variables. The result is an a o ” : .
gebraic system of seven independent equations, which tQ12V€ explicitly found the first post-Newtonian corrections to

gether with our matching conditiont5.32 allows us to the | =m Newtonianr modes of barotropic uniform-density

; - : stars.
uniquely find our eight unknown constants, Uy, hmos . . .
Nm1s Wans 100 Ums 1.0, Ums11, adUnsso. These equations The solution reveals the expected mixing of axial and

are derived in detail by Lockitcf33]. Here we will simply polar terms i_n the sphe_rical harmoni.c expansip@‘bfAlI of
; ; the barotropic Newtonian modes withm=2 pick up both
present the resulting solution X ; )
axial and polar correctioh$ of order (2M,/R), becoming

2 4(m—1)(2m+11) axial-led hybrid modes of the relativistic star. Them=2
T m+1) | 5(2m+1)(2m+5)
2
% ZMO) +O( ZMO) (5.33 Whenm=1, the constanK vanishes and we recover the axial
R R ' dipole solution mentioned in Sec. IV B.
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1 ‘ r r . ‘ w bation. Thus there is no justification for the Cowling ap-
proximation in constructing the hybrid-mode solutions. In
Newtonian theory, the Cowling approximation corresponds
U, to neglecting the variation in the gravitational potential. The
original motivation for thi§21] is that some pulsation modes
(in particular theg modes are mainly located in the less
05 - 100 Wy —___ ; - dense regions close to the surface of the star and do not
Y involve large mass motion. Hence they will lead to variations
7 in the gravitational potential that are small compared to the
y associated fluid velocities. The obvious generalization of this
approach to general relativity would be to discard all metric
perturbations[55]. However, as was pointed out by Finn
[56], this approximation is not natural for relativistig
modes. The main reason is that, even though these modes
involve small density perturbations, they could involve large
fluid velocities. Hence Finn argues that one should keep
those metric perturbations that can be associated with “mo-
mentum transport” in calculations @f modes. As is easy to
see, similar arguments can be used for the modes we con-
sider in the present paper. This would suggest that one
should not discard the metric perturbatidms hy, andH,
in the relativistic Cowling approximation for modes and
hybrid modes. Interestingly, should we adopt this point of
view, we retain the main perturbation equations we have
used in the present paper. Hence this “approximation”
-1 g 0‘2 0‘4 ole 0‘8 a would be cpnsistent with our resglts. Fu_rthermore, this
: : (r/R) : ) w_ou_Id explain vyhy the attempts to find relapwsnmodes
within the Cowling approximatioritby neglecting all metric
FIG. 2. The ¢/R)? radial dependence of the Newtonita m perturbationshave failed 32]. Of course, this discussion has
=2r mode is shown(dashed curve together with the post- little relevance for the present study. But it could be of cru-
Newtonian corrections to this mode for a uniform-density star ofCial importance for attempts to find modes in numerical
compactness M/R=0.2, i.e., the coefficients),(r), W(r), and  simulations(by studying fluid motion in relativistic simula-
V,(r) with I<4 of the spherical harmonic expansi¢h9 (solid  tions with a “frozen” metrig that are currently under way
curves. The vertical scale is set by the normalizationlf(r) to  [57,58.
unity at the surface of the star, and the other coefficients have been
scaled by a factor of 100. Thus, while the relativistic corrections to
the equilibrium structure of the star are of the order of 20%, the VI. DISCUSSION
relativistic corrections to the mode are only of the order of 1%.

In this paper we have taken the first steps towards an
understanding of both modes and rotational hybrid modes
hybrid mode is shown in Figs. 1 and 2, and compared to thef rotating relativistic stars. We have derived the perturba-
corresponding mode in a nonbarotropic stésee Sec. VB  tion equations that govern these modes to linear order in the

In addition, we see from E(5.33 that the Newtonian rotation frequency) (at which the star is still spherigalFor
r-mode frequency also picks up a small relativistic correc-nonbarotropic stars we have focused on modes that have a
tion. The frequency decreases, just as it does in the nonbarpurely axial limit as{)—0. These would be a natural rela-
tropic case(see Table), and it is natural that general rela- tivistic generalization of the Newtonianmodes. For baro-
tivity will have such an effect. One reason is thattropic stars(and multipolesl=2), we have shown that no
gravitational redshift will tend to decrease the fluid oscilla-such modes exist in the relativistic case, even though New-
tion frequencies measured by a distant inertial observertonian stars retain a vestigial set corresponding=ton. In-
Also, because these modes are rotationally restored, they widtead, all modes of barotropic stars must have a hybrid na-
be affected by the dragging of inertial frames induced by thaure. Having derived the relevant perturbation equations, we
star’s rotation. The Coriolis force is “determined not by the calculate relativistic corrections at the first post-Newtonian
angular velocityQ) of the fluid relative to a distant observer level (order 2V ;/R) to the Newtoniam modes of both non-
but by its angular velocity relative to the local inertial frame, barotropic and barotropic stars.

w(r)” (Hartle and Thorng54]). Thus, the Coriolis force It is worth pointing out that, even though our results for
decreases—and the modes oscillate less rapidly—as thEarotropic and nonbarotropic stars are quite different, the
dragging of inertial frames becomes more pronounced.  particular modes that we have focused (tme analogues of

Finally, we note that the metric perturbatiomhose radial the vestigiall=m r modes that remain for barotropic New-
behavior is determined by the functidn,) is of the same tonian starsare not too dissimilar. As is clear from the re-
order as the post-Newtonian corrections to the fluid pertursults given in Table I, the mode frequencies in the two cases
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we have considered do not differ by more than a few percenfrom 6G; =8 5T; we similarly have

Furthermore, we can see from Fig. 1 that the axial eigenfunc-

tionshy, are similar. There are, of course, still considerable  g—g=2\(1 43" ) rK’ —[1 (I +1)—1]K—e 2rH}
differences between the two cases. In the nonbarotropic case

we predict that purely axial modes exist for all combinations +[31(1+1)—1—87r2p]Ho—8mr25p. (A2)
of | and m#0, while in the barotropic case all modes are

hybrids. Still, the fact that our results for the two cases seeng,qm sG -+ 5G¢=8m(5T+ 5T%) we have

consistent is encouraging. We anticipate that further work o ® o ¢

will eventually unveil a behavior quite similar to that of the 0=e 2 r2K"+e 2\ [r(»' —\")+2]rK’

Newtonian problem, for which the detailed barotropic limit

has been investigated by Yoshida and [59]. —167r26p—e Mr2Hy—e M 3rv' —r\ +2)rH|
This paper represents progress in several important direc- )
tions, but a considerable amount of work remains before we —167r“pHo. (A3)

can claim to have a complete understanding of the nature of ) )

the rotational modes in relativity. For example, we have noffom 6G,— 6G{=8m(5T,— 6T¢) we have

yet discussed how the inferred changes in both mode fre-

quency and eigenfunction will affect the strength of the Hz=H,. (A4)
gravitational-wave-driven instability. To do this we need to

estimate the rate at which these modes radiate gravitation&rom G;=8m 3T/ we have

waves and also assess the strength of various dissipation

mechanismglike viscosity that tend to damp an unstable K'=e ?"[e’H,]’. (A5)
mode. This is obviously an important issue, and we plan to

address it once our ongoing work on fully relativistic hybrid From 6G{=8x5T; we have

modes of barotropic stars is completed. At that point it will

also be appropriate to obtain and discuss results for different 16m7(e+p) ~
realistic equations of state. 0=H, We rw. (A6)
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APPENDIX A: EQUATIONS DESCRIBING STATIONARY :f(yr +\")U. (A8)
PERTURBATIONS OF SPHERICAL STARS r

We have derived the various equations governing stationgrom 5G¢=875T¢ we have
ary perturbations of a spherical star using the Maple tensor
package by substituting expressiai@s11)—(3.16 into Egs. (1—1)(14+2)h,=0. (A9)
(3.8) and(3.10 [making liberal use of the equilibrium equa-
tions (3.4) through (3.7) to simplify the expressiors The
resulting equations are listed in the three distinct cdses
=2,1=1, andl=0 below. e~ (" M[e* M, ] =0. (A10)

Finally, from 6G§=8mdT; we have

1. Casel=2 2. Casel=1

The nonvanishing components of the perturbed Einstein The | =
equation fol =2 are as follows. We will use E¢A4) below
to replaceH, by Hy. From 6G{=8=4T; we have(using
primes to denote derivatives with respectjo

1 case differs from =2 in two respectd43].
First, Hy(r)#Ho(r), because the equatiodGj— G
=87(8T;— 8T%) vanishes identically. Second, we may ex-

0=e " 2r2K"+e 2 (3—r\")rK’ eliminate the metric functionis(r) andh,(r). [We note that
Eqg. (A9) implies hy(r)=0 for =2 anyway] With these

ploit the aforementioned gauge freedom for this case to

—[31(1+1)—1]K—e 2rH| two differences taken into account, the nonvanishing compo-

nents of the perturbed Einstein equation ferl are as fol-
—[31(1+1)+1—-87r2e]Ho+87r?de. (Al) lows. From8Gi=874T; we have
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0=e 2rH,+(2—8nr2e)H,—8mr2de.  (A11l)  From 6G;=8m4sT; we have
From 6G;=8= 45T, we have 0=e " 2MrH{+(1+87r2p)H,+8ar?6p.  (AL9)

0=e’2“rH6—Ho+(1+8wr2p)Hz+87ﬂ25p-( ) From 8G{+ 6G¢=8m(ST4+ 5T¥) we have
A12

A= 2N 2 g —2\ 2 ’ ’ —2\
= r“Hqy+ 2rv'—rN +1)rH + 1
From 6G -+ 6G¢=8m(5T)+ 5T¥) we have 0=e ote T(2ry =+ LrHo+e T

+rv')rH,+ 167r2pH,+ 16712 58p. A20
0=e"2Mr2Hi+e 2M2rv’ —r\' +1)rHy{—Hy+e M (1 v )rH+ 16mr"pH, P (A20)
+rV,)rHé+(1+ 167Tr2p)H2+ 16’7Tr25p (A13) Fina”y, from 5G{:8775T{ we have
From 6G/=8=7 6T we 0=167(e+p)W. (A21)
O=rHo+(rv'=1)Ho+(rv'+1)H,. (A14) APPENDIX B: PERTURBATION EQUATIONS FOR

From 5G{= 877_5.'_{ we again have SLOWLY ROTATING NONBAROTROPIC STARS

_ n The assumption of a purely axial perturbation in the limit
0=H;+8m(e+p)e™rW. (A15) 0 .0 leads to the following equatiofsf. Eq.(4.18]: The

From 5Gf=87-r§Tf we again have three axial quantities follow from

Oze—(v—)\)[e(v—)\)Hl]r+167T(6+p)e2}\v_ (A16) B 2mo V*)\E 7V7}\dh0'| _ [(1+1)
oM |8 T |® T A r2
Finally, from 6Gf=8m48T{ we have AM
2 2 4 _r_3+877(p+6) h0,| +16’77(p+€)(0'+m9)hoy|
hg— (v +N")hi—|=(v'+N')+ = |hg==(v'+N\")U.
r r r _
(A17) =0, (BD)
2mo
3. Casel=0 a+mQ—m Ui+ (c+mQ)hg=0 (B2

The =0 case differs yet again from the previous two,
being the case of stationary, spherically symmetric perturbas,
tions of a static, spherical equilibrium. To maximize the
similarity to the preceding two cases, we will use the same
form for the perturbed metric except that we may now ex- I(I+1)
ploit the gauge freedom for this case to eliminate the func-

, hoy| (I=1)(I+2)hy,
hO,I_zT - —rh

i(c+mw)e ?”

tions K(r), Hy(r), and hy(r). The nonvanishing compo- —2imw’e*2”h0,|=0 (B3)
nents of the perturbed Einstein equation fe+rO are as
follows. or, alternatively, Eq(4.20.

From 5G;=8m5T; we have The solutions to these three equations then serve as

i 5 5 sources for three of the remainiat order()) Einstein equa-
O0=e"“'rHy+(1-8nr“e)H,~8mrde.  (A1l8)  tions that determine the polar parity metric perturbations:

(I=DI(1+1)(1+2)e*(Hy—Ho) Y"—{r?e ?w'hy,
+1(1+1)w—2re ? o' —16mr2(p+€)w]lhg— 16mi(p+ €)r?oU H2(1 - 1)(1 + 2)
Xsinfa,Y"+41(1+1)cos Y} =0, (B4)

1(1+21)€2"[r (K{ —Hg) + (1= v )Hoy = (L+1v ) Hpy Y= 1(1 + 1){2r why,
+[row’ —2w(1+rv")]hg}sin g d,Y"+2r o hg (sin@ d,Y"— (1 +1)cosf Y") =0, (B5)

and
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Hy)

_ (I=1)(1+2) 6M
I(I+1)e?”| 2v'e ZK(K(——z— —T(k,—HOJ)—F(rT—Bwe)HOJ}Y{“—I(I+1)

r

N _ (I=1)(1+2)r+6M _ m (4, o , —
X|w'e" “hg +| 16m(pw+ed) —w 3 hoy|sin@ dgY, — Te e “*hg;—327i(p+ €) wU

_ 412(1+1)?
X(sin@d,Y"=1(1+1)cosOY")+ r—zwho" cosfY"=0. (B6)

These equations determine the polar metric perturbatignsd,,, andH,, oncehy, andU, are known for alll. Finally,
the last two Einstein equations lead to the following equationgfiprand Se, (recall that for nonbarotropic stars the equation
of state determines the radial compon@jtof su®, a quantity of ordef)?):

2 I(1+1
01~ 2V K[ +| =420 =\ [Ho +v'Hp — (rz )eZKHO,|+87T(3p+e)eZKH2,|+8we2k(35pl+5e|) ey
4o ’ ’ ’ 1\ 2 ror 8w ’ H 2\
+ T+2w —2wv’ |y +| 4o(v' ) 20"y i ho,+32mi(p+e)Qe-*U,
41(1+1)
Xsing d,Y|"— (r—z we”‘hoJ cosf Y|"=0, (B7)
2 ) 1 I(1+1) 5 ~ m
K|+ F—4w(p+e)re A K,’+F(H()J—H§J)— 2 e”(Ho'|+H2’|)+87T(p+6)e AH2,|+87re (8p+de) Y,
2 2 I(1+1
+| T we g+ | — (0" —2wv") + 167 (p+ €) o - ( s ) e eZVhoy|+16wi(p+e)5e2*2”U|}
21(1+1)
Xsing d,Y"— —(rz— we®~2"hy cosf Y["=0. (B8)
|
APPENDIX C: PROOF OF THEOREM 1 ) )
0=—{(I+1)xQd,[e “"(h+U))]+2md,(we “*U
1. Axial-led hybrids with m>0 I+ Drrafe = (h+Up]+2ma (we =)
Let | be the smallest value d¢f for which U,,#0 in the + m(l;tl) P (rZEeZV)U|]
spherical harmonic expansi@a.9) of the displacement vec- r '

tor £&¢ or for which h;,=hg;,#0 in the spherical harmonic
expansion(4.12 of the metric perturbatiom, ;. The axial +Q41
parity of (£%,h,s), (—1)'"*, and the vanishing o¥}" for

1 -
&r{F &r(rzwe 2V)WIJrl

I<m implies |=m. That the mode is axial-led meai;, .,
=0, V,,=0, andH,, =0 forI’<I. We show by contradic- +2(1+2)d (we "V 4q) | (C2
tion thatl =m.
SUppOSd>m+ 1. From Eq(453, an)e‘pYik mdQZO, Together these give
we have
I
— A2V _ 2——2v
0=1(1+1)xQ(h +U,)—2maU, 0=2d(we ""U)) + 7 dr(r we "")U, (€3
2v
~1Q14q| g(rPwe 2" )W 1 +2(1+2) V4|, =2(r’we ") "% [r'(we” )22y, ] (CH
(Cy or
UIZK(ae72V)7(|+2)/2r7| (C5)

and from Eq.(4.55 with |—1—1, [Aw, Y 1dQ=0, we
have (for some constari), which is singular as— 0.
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2. Axial-led hybrids with m=0 Suppose I=m+1. From Eq. (453 with |—I-1,
_ ; JAw,, YFMdQ =0, we have
Let m=0 and letl be the smallest value df for which b T1-1 '
U, # 0 in the spherical harmonic expansigh9) of the dis- o2v
placement vectog” or for whichh;,=hg,, #0 in the spheri- 0=(1-1)Q, Tgr(rZJe*ZV)Wl +2(1+1)wV,|.

cal harmonic expansioi4.12 of the metric perturbation

h,s. SinceV,Y3=0, the mode vanishes unleks 1. That (C9)
the mode is axial-led meavy;, =0, V, =0, andH,,,=0 for o . .
I’<I. We show by contradiction that=1. Substituting forV, using Eq.(3.23, we find
Suppose 1=2. Then Eq. (4.54 with |—I1-2, .
*0 — | -
JAw,,Y{,dQ =0, becomes 0= a,(r?me 2")W, + 2me 2"
| r (e+p)
0=24,(we"2"U))+ r—zar(rZEe*ZV)u. (Co) X 3, (e+p)e ™ Mrw,], (C10
:2(r25e72V)7|/2&r[r|(56721/)(|+2)/2Ul] (C7) e_(,,+)\)
_ 22— —2n—(1-2)/2 2— —2mnl2
o 2(rcwe™ ") (et p) [(remwe™<")
U =K(me 2v)(+22 - o) X (e+p)e Mrw,]. (C1y
(for some constark), which is singular as— 0. with the solution
3. Polar-led hybrids with m=0 _ e (¥tN
_ W =K(we 2") 2 ———r~(*D (C12
Let | be the smallest value df for which W,,#0 or (e+p)

V|, # 0 in the spherical harmonic expansi@h9) of the dis-

placement vectoé® or for which Hy,,#0 in the spherical (for some constari), which is singular as—0.

harmonic expansioi@4.12 of the metric perturbatiom,, s . Whenm=0 this argument fails to establish tHatannot
The polar parity of f“,haﬁ),(—l)', and the vanishing of " be equal to 1, because E(C9) is trivially satisfied forl

for I<m implies I=m. That the mode is polar-led means =1 as a result of the overdll-1 factor. Instead, the argu-
U, =0 andh;,=0 for I’<I. We show by contradiction that ment proves thalt cannot be greater than 1 in this case and

[=m whenm>0 and tha =1 whenm=0. therefore that=1.
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