
ry,

PHYSICAL REVIEW D, VOLUME 63, 024019
Rotational modes of relativistic stars: Analytic results
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We study ther modes and rotational ‘‘hybrid’’ modes~inertial modes! of relativistic stars. As in Newtonian
gravity, the spectrum of low-frequency rotational modes is highly sensitive to the stellar equation of state. If
the star and its perturbations obey the same one-parameter equation of state~as with barotropic stars!, there
exist no pure r modes at all—no modes whose limit, for a star with zero angular velocity, is an axial-parity
perturbation. Rotating stars of this kind similarly have no pureg modes, no modes whose spherical limit is a
perturbation with polar parity and vanishing perturbed pressure and density. In spherical stars of this kind, the
r modes andg modes form a degenerate zero-frequency subspace. We find that rotation splits the degeneracy
to zerothorder in the star’s angular velocityV, and the resulting modes are generically hybrids, whose limit as
V→0 is a stationary current with both axial and polar parts. Because each mode has definite parity, its axial
and polar parts have alternating values ofl. We show that each mode belongs to one of two classes, axial-led
or polar-led, depending on whether the spherical harmonic with the lowest value ofl that contributes to its
velocity field is axial or polar. Newtonian barotropic stars retain a vestigial set of purely axial modes~those
with l 5m); however, for relativistic barotropic stars, we show that these modes must also be replaced by
axial-led hybrids. We compute the post-Newtonian corrections to thel 5m modes for uniform density stars. On
the other hand, if the star is nonbarotropic~that is, if the perturbed star obeys an equation of state that differs
from that of the unperturbed star!, the r modes alone span the degenerate zero-frequency subspace of the
spherical star. In Newtonian stars, this degeneracy is split only by the order-V2 rotational corrections. How-
ever, when relativistic effects are included, the degeneracy is again broken at zeroth order. We compute ther
modes of a nonbarotropic, uniform density model to first post-Newtonian order.

DOI: 10.1103/PhysRevD.63.024019 PACS number~s!: 04.40.Dg, 95.30.Sf, 97.60.Jd, 97.10.Sj
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I. INTRODUCTION

The discovery that ther modes in rotating stars are ge
nerically unstable due to the emission of gravitational wa
@1,2# has attracted a large amount of attention in the last
years. The current models suggest that ther-mode instability
may cause a newly born neutron star to spin down to a f
tion of the Kepler frequency~which provides the limit of
dynamical stability! in the first few months of its existenc
@3,4#. Since a considerable amount of gravitational radiat
is generated in the process, ther modes provide a promising
source for the generation of gravitational-wave interfero
eters that are currently under construction@5#. It is also
speculated that the instability associated with ther modes
may be relevant for older neutron stars in accreting syst
@6,7#.

Since the instability was first discovered and its poten
astrophysical relevance was appreciated, there have
many attempts to improve on the detailed physics incor
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rated in the models. This effort leads to difficult questio
regarding, for example, neutron star superfluidity@8#, the in-
terplay between the magnetic field and fluid pulsatio
@9–11#, and the formation of a solid crust as a young neutr
star cools@12–18#. These and several other issues must
addressed before the true astrophysical relevance of tr
modes can be assessed. Our understanding of ther-mode
instability, however, is based almost entirely on Newton
calculations, and it is important to compute these modes
relativistic context, where instability growth times may diffe
significantly from Newtonian-based estimates.~The closely
related instability of thef modes of rapidly rotating stars i
sharply strengthened by relativistic effects; see@19# for a
review.!1

The purpose of the present investigation is to underst
how general relativity affects the properties of ther modes.
In order to address this issue, we first need to discuss
general nature of the modes of rotating stars.

The spherical symmetry of a nonrotating star implies t

1There are as yet no fully relativistic calculations of other puls
tion modes~like the f mode! of rapidly rotating stars, except in th
Cowling approximation@20#.
©2000 The American Physical Society19-1
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its perturbations can be divided into two classes, polar
axial, according to their behavior under parity. Where po
tensor fields on a two-sphere can be constructed from
scalarsYl

m and their gradients¹Yl
m ~and the metric on a

two-sphere!, axial fields involve the pseudovectorr̂ 3¹Yl
m ,

and their behavior under parity is opposite to that ofYl
m .

That is, axial perturbations of oddl are invariant under par
ity, and axial perturbations with evenl change sign. Becaus
a rotating star is also invariant under parity, its perturbatio
may also be divided into distinct parity eigenstates. If a mo
varies continuously along a sequence of equilibrium confi
rations that starts with a spherical star and continues alo
path of increasing rotation, the mode will be called axial if
is axial for the spherical star. Its parity cannot change alo
the sequence, butl is well defined only for modes of spher
cal configuration.

It is useful to subdivide stellar pulsation modes accord
to the physics dominating their behavior. This classificat
was first developed by Cowling@21# for the polar perturba-
tions of Newtonian polytropic models. Thep modes of
spherical models are polar-parity modes having pressur
their dominant restoring force. They typically have lar
pressure and density perturbations and high frequen
~higher than a few kilohertz for neutron stars!. Theg modes
are polar-parity modes that are chiefly restored by grav
They typically have very small pressure and density per
bations and low frequencies. Indeed, for spherical barotro
stars, which are marginally stable to convection, theg modes
are all zero frequency and have vanishing perturbed pres
and density.2 Similarly, all axial-parity perturbations of non
rotating perfect fluid models have zero frequency. The p
turbed pressure and density as well as the radial compo
of the fluid velocity all vanish for axial perturbations; bein
rotational scalars, they must have polar parity. Thus,
axial perturbations of a spherical star are simply station
horizontal fluid currents. This Newtonian picture of stell
pulsation is readily generalized to the relativistic case. T
only difference is that the various modes will now gener
gravitational waves. This means that they are no lon
‘‘normal modes,’’ but satisfy outgoing-wave boundary co
ditions at spatial infinity. Furthermore, one can identify
additional class of such outgoing modes in relativistic sta
Like the modes of black holes, these modes are essent
associated with the dynamical spacetime geometry and h
been termedw modes or gravitational-wave modes@22#. For

2The lowestp mode for each value ofl andm is termed anf mode
or fundamental mode; it may also be regarded as ag mode, in that
it is present in uniform-density models, but it has finite frequency
barotropic stars. We use the term ‘‘barotropic’’ here to denote a
for which the perturbed and unperturbed configurations satisfy
same one-parameter equation of state. In earlier work, we had
‘‘isentropic’’ instead, because isentropic stars with no composit
gradient have this property, and ‘‘barotropic’’ is not always used
include perturbations. Here, however, because the departur
neutron-star matter from a one-parameter equation of state is d
nated by a composition gradient, not an entropy gradient, ‘‘isen
pic’’ is inaccurate.
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a general discussion of the oscillations of relativistic sta
we refer the reader to the recent review article by Kokko
and Schmidt@23#.

In general, the classification of modes is relevant also
rotating stars, even though the character of the vari
modes may be significantly affected by rotation. In partic
lar, rotation imparts a finite frequency to the zero-frequen
perturbations of spherical stars. Because these modes a
stored by the Coriolis force, their frequencies are prop
tional to the star’s angular velocityV. In fluid mechanics,
such modes are generally known as inertial mod
@24,25,14#. In nonbarotropic stars these rotationally restor
modes all have axial parity~the polarg modes are nondegen
erate already in a spherical nonbarotropic star becaus
internal entropy or composition gradients!. In astrophysics,
these modes were first studied in Newtonian gravity by
paloizou and Pringle@26#, who called themr modes because
of their similarity to the Rossby waves of terrestrial mete
rology. In barotropic stars, however, the space of ze
frequency modes of the spherical model includes the polag
modes in addition to the axialr modes. This large degenera
subspace of zero-frequency modes is split by rotation to
roth order in the angular velocity, and the rotationally r
stored~inertial! modes of barotropic stars are generically h
brids whose spherical limits are mixtures of axial and po
perturbations. This has been shown in Newtonian gravity
Lockitch and Friedman@27# ~see also@28,29#!. In order to
distinguish between the two classes of inertial modes,
refer to modes which become purely axial in the spheri
limit as r modes, while modes that limit to a mixed pari
state are called rotational hybrid modes. This is a natu
nomenclature given the standard distinction between a
and polar modes in relativistic studies of spherical stars.

Attempts to study ther modes of rotating relativistic star
were not made until rather recently@1,30–34#. In fact, the
present investigation is the first study of this problem th
puts all its different facets in the proper context. In particul
we prove that~apart from a set of stationary dipole mode!
rotating relativistic barotropic stars haveno pure r modes
~modes whose limit for a spherical star is purely axial!. This
is in contrast with barotropic Newtonian stars which retain
vestigial set of purely axial modes~those having spherica
harmonic indicesl 5m). Instead, the Newtonianr modes
with l 5m>2 acquire relativistic corrections with both axia
and polar parity to become discrete hybrid modes of the c
responding relativistic models. We compute these corr
tions for slowly rotating barotropic stars to first pos
Newtonian order.

For nonbarotropic relativistic stars the situation is som
what different. In the slow-motion approximation in whic
they have so far been studied, nonbarotropic stars have
markably, acontinuousspectrum. Kojima@30# has shown
that purely axial modes would be described by a sing
second-order ordinary differential equation~ODE! for the
modes’ radial behavior. He then argues that the continu
spectrum is implied by the fact that the eigenvalue probl
is singular~the coefficient of the highest derivative term
the equation vanishes at some value of the radial coordina!.
This claim has been made mathematically precise by Be
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ROTATIONAL MODES OF RELATIVISTIC STARS: . . . PHYSICAL REVIEW D 63 024019
and Kokkotas@31#. As the latter authors point out, the co
tinuous spectrum may be an artifact of the vanishing of
imaginary part of the frequency in the slow-rotation lim
~Or, more broadly, it may be an artifact of the slow rotati
approximation itself.! In this paper we show that, in add
tion to the continuous spectrum, certain discrete modes
exist as solutions to Kojima’s equation. These modes are
relativistic analogue to the Newtonianr modes in non-
barotropic stars. We compute these modes for slowly ro
ing nonbarotropic stars.

In a complementary study of the relativisticr modes,
Kojima and Hosonuma@34# have recently derived the orde
V2 rotational corrections to Kojima’s equation. Working
the time domain, they derive a set of evolution equations
an axial perturbation and its lowest order polar and ax
corrections. Direct numerical evolution of these equatio
~with appropriate initial data! would provide a useful com
parison with our results on the modes of nonbarotropic re
tivistic stars.

When does one need to take into account the departu
a neutron star from barotropy in computing rotation
modes? Because of bulk viscosity, a gravitational-wa
driven instability is unlikely to set in above about 1010K.
This is well below the Fermi temperature of the star’s ba
ons, and the departure from barotropy appears to be do
nated by composition gradients in the crust and inter
These have been discussed in the context ofg modes of
spherical stars by Finn@35# and by Reisenegger and Gold
reich @36,37# and for rotating stars by Lai@38#. Because the
time scale of perturbations is too slow to allow the beta a
inverse beta decays that would allow a displaced fluid e
ment to adjust its composition to that of the surrounding s
D logp/D logr is greater thand log p/d logr by a factor of 1
1 1

2 x, wherex5np /n'631023r/rnuclearis the local ratio of
protons to baryons. This leads in the star’s interior tog-mode
frequencies limited by the Brunt-Va¨isälä frequency,

gS 3r

10P
xD 1/2

;~500 s21!S r

rnuclear
D 1/2

~with g the local acceleration of gravity!; when a crust is
present, crustalg modes have comparable frequencies. T
g-mode frequencies of spherical stars are then of order 1
200 Hz; when this is smaller than the frequencies of
rotationally restored modes of the barotropic models, o
expects the barotropic approximation to be valid.

The plan of the paper is as follows. We begin, in Sec.
with a brief review of the Eulerian and Lagrangian perturb
tion formalisms, both of which are used in the paper. In S
III, we consider the time-independent perturbations
spherical relativistic stars and prove that the subspace
nonradial zero-frequency modes is spanned by ther and g
modes in barotropic models, but by ther modes alone in
nonbarotropic models. Because of this difference, the c
acter of the mode spectrum in rotating barotropic mod
differs considerably from that of nonbarotropic models.
Sec. IV A, we consider rotating nonbarotropic stars and
gue that the problem of finding theirr modes is well defined
In Sec. IV B, we consider the barotropic case and derive a
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of perturbation equations whose structure parallels the co
sponding Newtonian equations of Lockitch and Friedm
@27#.3 This similarity between the Newtonian and relativist
equations leads to an identical structure of the mode sp
trum and to a parallel theorem that every nonradial mod
either an axial-led or polar-led hybrid~the result has so fa
been proved only for slowly rotating relativistic stars!. We
consider the relativisticr-mode solutions of barotropic stars
finding that the zero-frequency dipole (l 51) solutions are
the only purely axial solutions allowed. In other words, the
are no nonstationary modes in barotropic relativistic st
whose limit asV→0 is a pure axial perturbation. In particu
lar, Newtonianr modes havingl 5m>2 do not exist in baro-
tropic relativistic stars and must be replaced by axial-led
brid modes. This section concludes with a discussion of
boundary conditions appropriate to the relativistic mod
~Sec. IV C!. Finally, in Sec. V we construct the pos
Newtonian corrections to the well-known Newtonianr
modes in uniform-density stars, both barotropic and n
barotropic. Some of the detailed equations, as well as
proof of the theorem regarding the barotropic mode sp
trum, are presented in Appendixes A–C. We use geo
etrized units (G5c51) throughout the paper.

II. EULERIAN AND LAGRANGIAN PERTURBATIONS

In general relativity, a complete description of a se
gravitating perfect fluid configuration is provided by a spac
time with metricgab , sourced by an energy-momentum te
sor,

Tab5~e1p!uaub1pgab , ~2.1!

where the fluid four-velocityua is a unit timelike vector
field,

uaua521, ~2.2!

and e and p are, respectively, the total energy density a
pressure of the fluid as measured by an observer mo
with four-velocity ua. The metric and fluid variables satisf
an equation of state,

e5e~p,s!, ~2.3!

with s the entropy per baryon, as well as the Einstein eq
tion

Gab58pTab . ~2.4!

An equilibrium stellar model is a stationary solutio
(gab ,ua,e,p) to these equations. In this paper we will co
sider only equilibrium models obeying a one-parame
equation of state,

e5e~p!, ~2.5!

3We will refer to equations from Ref.@27# by the equation numbe
with the prefix ‘‘LF.’’ For example, Eq.~LF, 25! will mean Eq.~25!
from Ref. @27#.
9-3
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LOCKITCH, ANDERSSON, AND FRIEDMAN PHYSICAL REVIEW D63 024019
because this accurately models the equilibrium configura
of a neutron star.

Adiabatic perturbations of such a star may be studied
ing either the Eulerian or the Lagrangian perturbation f
malism @39,40#. An Eulerian perturbation may be describe
in terms of a smooth family@ ḡab(l),ūa(l),ē(l),p̄(l)# of
solutions to the exact equations~2.2!–~2.4! that coincides
with the equilibrium solution atl50:

@ ḡab~0!,ūa~0!,ē~0!,p̄~0!#5~gab ,ua,e,p!.

Then the Eulerian changedQ in a quantityQ may be defined
~to linear order inl! as

dQ[
dQ

dl U
l50

. ~2.6!

Thus a Eulerian perturbation is simply a chan
(hab ,dua,de,dp) in the equilibrium configuration at a par
ticular point in spacetime~where we have written the chang
in the metric ashab[dgab). These must satisfy the pe
turbed Einstein equationdGa

b58pdTa
b , together with an

equation of state relatingde and dp that may, in general
differ from that of the equilibrium configuration@see Eq.
~2.13! below#.

In the Lagrangian perturbation formalism@39,40#, on the
other hand, perturbed quantities are expressed in terms o
Eulerian change in the metric,hab , and a Lagrangian dis
placement vectorja, which connects fluid elements in th
equilibrium star to the corresponding elements in the p
turbed star. The Lagrangian changeDQ in a quantityQ is
related to its Eulerian changedQ by

DQ5dQ1£jQ, ~2.7!

with £j the Lie derivative alongja.
The identities

Dgab5hab12¹ (ajb) , ~2.8!

D«abgd5 1
2 «abgdgmnDgmn ~2.9!

then allow one to express the fluid perturbation in terms
hab andja,

Dua5 1
2 uaubugDgbg , ~2.10!

Dp

G1p
5

De

e1p
5

Dn

n
52

1

2
qabDgab , ~2.11!

whereG1 is the adiabatic index,n is the baryon density, and
qab[gab1uaub. Using Eqs.~2.7!–~2.11!, it is straightfor-
ward to express the corresponding Eulerian changes als
terms ofhab andja, e.g.,

dua5qb
a£ujb1 1

2 uaubughbg . ~2.12!
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For an adiabatic perturbation of an equilibrium model obe
ing a one-parameter equation of state, Eqs.~2.7! and ~2.11!
imply that the Eulerian changes in the pressure and ene
density are related by

dp

G1p
5

de

~e1p!
1jaAa , ~2.13!

where we have introduced the Schwarzschild discriminan

Aa5
1

~e1p!
¹ae2

1

G1p
¹ap, ~2.14!

which governs convective stability in the star. In general,
adiabatic indexG1 need not be the function

G[
~e1p!

p

dp

de
~2.15!

associated with the equilibrium equation of state. In terms
this function, we have

Aa5S 1

G
2

1

G1
D 1

p
¹ap. ~2.16!

We will call a model barotropic if the perturbed configur
tion satisfies the same one-parameter equation of state a
unperturbed configuration. In this case,G1[G and the
Schwarzschild discriminant vanishes identically. Such st
are marginally stable to convection. In this paper we stu
low-frequency pulsation modes of slowly rotating relativis
stars. We consider both barotropic and nonbarotropic m
els.

III. STATIONARY PERTURBATIONS OF SPHERICAL
STARS

The equilibrium of a spherical perfect fluid star is d
scribed by a static, spherically symmetric spacetime w
metric gab of the form

ds252e2n~r !dt21e2l~r !dr21r 2du21r 2 sin2 u dw2

~3.1!

and the energy-momentum tensor~2.1! with the fluid four-
velocity given by

ua5e2nta. ~3.2!

Here ta5(] t)
a is the timelike Killing vector of the space

time.
For barotropic stars, the pressure and energy density

related by an equation of state of form

p5p~e!. ~3.3!

In addition to this, the various quantities must satisfy t
Einstein equationGab58pTab , which leads to the standar
Tolman-Oppenheimer-Volkov~TOV! equations

dp

dr
52

~e1p!~M14pr 3p!

r ~r 22M !
, ~3.4!

dM

dr
54pr 2e, ~3.5!
9-4
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and

dn

dr
52

1

~e1p!

dp

dr
, ~3.6!

where

M ~r ![ 1
2 r ~12e22l!. ~3.7!

Our main focus in this study is on the low-frequency o
cillations, corresponding to rotationally restored modes~r
modes and other inertial modes! of slowly rotating stars. As
in Newtonian theory, we expect these modes to limit to s
tionary perturbations of a spherical star as the rotation
goes to zero. In other words, we are interested in the spac
zero-frequency modes: the linearized, time-independ
perturbations of the static equilibrium. As in the Newtoni
case @27#, we find that this zero-frequency subspace
spanned by two classes of perturbations. To identify th
classes explicitly, we must examine the equations govern
the perturbed configuration.

Using the Eulerian formalism, we express the perturb
configuration in terms of the set (hab ,dua,de,dp), satisfy-
ing the perturbed Einstein equationdGa

b58pdTa
b , together

with an equation of state relatingde anddp.
The perturbed Einstein tensor is given by

dGa
b52 1

2 $¹g¹gha
b2¹g¹bha

g2¹g¹ahg
b1¹a¹bh

12Ra
ghg

b1~¹g¹dhgd2¹g¹gh2Rgdhgd!da
b%,

~3.8!

whereh[gabhab , ¹a is the covariant derivative associate
with the equilibrium metric, and
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b58p~Ta

b2 1
2 Tda

b!58p@~e1p!uaub1 1
2 ~e2p!da

b#

~3.9!

is the equilibrium Ricci tensor. The perturbed energ
momentum tensor is given by

dTa
b5~de1dp!uaub1dpda

b

1~e1p!duaub1~e1p!uadub. ~3.10!

Following Thorne and Campolattaro@41#, we expand our
perturbed variables in scalar, vector, and tensor sphe
harmonics. The perturbed energy density and pressure
scalars and therefore must have polar parity

de5de~r !Yl
m , ~3.11!

dp5dp~r !Yl
m . ~3.12!

The perturbed four-velocity for a polar-parity mode c
be written

duP
a5H 1

2
H0~r !Yl

mta1
1

r
W~r !Yl

mr a1V~r !¹aYl
mJ e2n

~3.13!

@wherer a is the coordinate vector field (] r)
a#, while that of

an axial-parity mode can be written

duA
a52U~r !e~l2n!eabgd¹bYl

mug¹dr . ~3.14!

~We have chosen the exact form of these expressions
later convenience.!

To simplify the form of the metric perturbation we wi
again follow Thorne and Campolattaro@41# and work in the
Regge-Wheeler@42# gauge. The metric perturbation for
polar-parity mode can then be written
hmn
P 5F H0~r !e2n H2~r ! 0 0

symm H2~r !e2l 0 0

0 0 r 2K~r ! 0

0 0 0 r 2 sin2 uK~r !

G Yl
m , ~3.15!

while that of an axial-parity mode can be written

hmn
A 53

0 0 h0~r !S 21

sinu D ]wYl
m h0~r !sinu]uYl

m

0 0 h1~r !S 21

sinu D ]wYl
m h1~r !sinu]uYl

m

symm symm 0 0

symm symm 0 0

4 . ~3.16!
9-5
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The Regge-Wheeler gauge is unique for perturbati
having spherical harmonic indexl>2. However, whenl
51 or l 50, there remain additional gauge degrees
freedom.4 In addition, the components of the perturbed E
stein equation acquire a slightly different form in each of t
three cases.~Campolattaro and Thorne@43# discuss the dif-
ference between thel>2 andl 51 cases.!

We have derived the components of the perturbed E
stein equation using the Maple tensor package5 by substitut-
ing expressions~3.11!–~3.16! into Eqs. ~3.8! and ~3.10!
@making liberal use of the equilibrium equations~3.4!
through~3.7! to simplify the expressions#. The resulting set
of equations for the casel>2 are equivalent to those pre
sented by Thorne and Campolattaro@41# upon specializing
their equations to the case of stationary perturbations
making the necessary changes of notation.6 Similarly, the set
of equations for the casel 51 is equivalent to that presente
by Campolattaro and Thorne@43#. For completeness, th
equations governing stationary perturbations of spher
stars are given in Appendix A.

Decomposition of the zero-frequency subspace

By inspection of the three sets of perturbation equati
given in Appendix A, it is evident that they decouple in
two independent classes. We find that any solution

~H0 ,H1 ,H2 ,K,h0 ,W,V,U,de,dp! ~3.17!

to the equations governing the time-independent pertu
tions of a static, spherical star is a superposition of~i! a
solution

~0,H1,0,0,h0 ,W,V,U,0,0! ~3.18!

to Eqs.~A6!–~A8! or ~A21! and ~ii ! a solution

~H0,0,H2 ,K,0,0,0,0,de,dp! ~3.19!

to Eqs.~A1!–~A5!, ~A11!–~A14!, or ~A18!–~A20!.
For solutions of type~ii !, the vanishing of the (tr ), (tu),

and (tw) components of the perturbed metric in our coor

4Letting eAB be the metric on a two-sphere witheAB andDA the
associated volume element and covariant derivative, respecti
one finds the following: Whenl>2, the polar tensorsDADBYl

m

andeABYl
m are linearly independent, but whenl 51, they coincide.

In addition, the axial tensore (A
BDC)DBYl

m vanishes identically for
l 51 and, of course,DAYl

m vanishes forl 50.
5www.maplesoft.com
6In particular, their fluid variables~denoted by the subscriptTC!

are related to ours as follows:UTC(r ,t)5Ut, WTC(r ,t)5

2relWt, VTC(r ,t)5Vt, andde/(e1p)5dp/G1p52(K1
1
2 H0).

Their equilibrium metric has the opposite signature and differs
the definitions of the metric potentialsnTC5

1
2 n andlTC5

1
2 l.
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nate system implies that these solutions are static. If
assumes the linearization stability7 of these solutions, i.e.
that any solution to the static perturbation equations is t
gent to a family of exact static solutions, then the theor
that any static self-gravitating perfect fluid is spherical im
plies that any solution of type~ii ! is simply a neighboring
spherical equilibrium.

Thus, under the assumption of linearization stability,
have shown that all stationary nonradial (l .0) perturbations
of a spherical star have

H05H25K5de5dp50

and satisfy Eqs.~A6!–~A8!. That is,

05H11
16p~e1p!

l ~ l 11!
e2lrW, ~3.20!

05e2~n2l!@e~n2l!H1#8116p~e1p!e2lV, ~3.21!

h092~n81l8!h081F ~22 l 22 l !

r 2 e2l2
2

r
~n81l8!2

2

r 2Gh0

5
4

r
~n81l8!U, ~3.22!

where a prime denotes a derivative with respect tor. Observe
that if we use Eq.~3.20! to eliminateH1(r ) from Eq.~3.21!,
we obtain

V5
e2~n1l!

l ~ l 11!~e1p!
@~e1p!en1lrW#8. ~3.23!

This equation is clearly the generalization to relativistic st
of the conservation of mass equation in Newtonian grav
Eq. ~LF, 13!. The other two equations relate the two dynam
cal degrees of freedom of the spacetime metric to the per
bation of the fluid four-velocity and vanish in the Newtonia
limit.

These perturbations must be regular everywhere and
isfy the boundary condition that the Lagrangian change
the pressure vanish at the surface of the star,r 5R. We show
in Sec. IV C below that this boundary condition requires on

W~R!50, ~3.24!

leaving W(r ) and U(r ) otherwise undetermined. IfW(r )
andU(r ) are specified, then the functionsH1(r ), h0(r ), and
V(r ) are determined by the above equations. The soluti
for the metric variables are subject to matching conditions
the solutions in the exterior spacetime, which must also
regular at infinity: see Sec. IV C.

Finally, we consider the equation of state of the perturb
star. We have seen that for an adiabatic oscillation of a
obeying a one-parameter equation of state, Eq.~2.11!, im-
plies that the perturbed pressure and energy density are
lated by

ly,

n

7We are aware of a proof of this linearization stability prope
under assumptions on the equation of state that are satisfie
uniform density stars, but would not allow polytropes@44#.
9-6
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dp

G1p
5

de

~e1p!
1j rF e8

~e1p!
2

p8

G1pG ~3.25!

for some adiabatic indexG1(r ).
The Lagrangian displacement vectorja is related to our

perturbation variables by Eq.~2.12!:

qb
a£ujb5dua2 1

2 uaubughbg . ~3.26!

Thus we have

e2n] tj
r5dur ~3.27!

or @taking the initial displacement~at t50) to be zero#

j r5tendur . ~3.28!

For the class of perturbations under consideration,
have seen thatdp5de50. Thus Eqs.~3.25! and ~3.28! re-
quire that

durF e8

~e1p!
2

p8

G1pG50. ~3.29!

For axial-parity perturbations this equation is automatica
satisfied, sinceduA

a has nor component: cf. Eq.~3.14!. In
other words, a spherical star always admits a set of a
zero-frequency modes~the r modes!.

For polar-parity perturbations,duP
r 5e2nW(r )/rÞ0, and

Eq. ~3.29! will be satisfied if and only if

G1~r ![G~r !5
~e1p!

p

dp

de
. ~3.30!

Thus we see that a spherical star admits a class of p
zero-frequency modes~theg modes! if and only if the star is
barotropic; that is, if and only if the perturbed star obeys
same one-parameter equation of state as the equilibrium

That all axial-parity fluid perturbations of a spherical re
tivistic star are time independent was first shown by Tho
and Campolattaro@41#. The time-independentg modes in
spherical, barotropic, relativistic stars were found by Tho
@45#.

To summarize: We have shown that a spherical star
ways admits a class of zero-frequencyr modes~stationary
fluid currents with axial parity!, but admits zero-frequencyg
modes~stationary fluid currents with polar parity! if and only
if the star is barotropic. Conversely, the zero-frequency s
space of nonradial perturbations of a nonbarotropic sphe
star is spanned by ther modes only, while the zero
frequency subspace of non-radial perturbations of a sphe
barotropic star is spanned by ther andg modes—that is, by
convective fluid motions having both axial and polar par
and with vanishing perturbed pressure and density. Be
stationary, theser andg modes do not couple to gravitation
radiation, although ther modes do induce a nontrivial metri
perturbation (htu ,htwÞ0) in the spacetime exterior to th
star~frame dragging!. One would expect this large subspa
of modes, which is degenerate at zero frequency, to be
by rotation, as it is in Newtonian stars. Our aim is to inve
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tigate this issue in more detail, and we will begin by cons
ering perturbations of slowly rotating relativistic stars.

IV. PERTURBATIONS OF SLOWLY ROTATING STARS

The equilibrium of a perfect fluid star that is rotatin
slowly with uniform angular velocityV is described@46,47#
by a stationary, axisymmetric spacetime with metricgab of
the form

ds252e2n~r !dt21e2l~r !dr21r 2du21r 2 sin2 u dw2

22v~r !r 2 sin2 u dt dw ~4.1!

~accurate to orderV!. The energy-momentum tensor follow
from Eq. ~2.1! and the fluid four-velocity to orderV:

ua5e2n~ ta1Vwa!. ~4.2!

Hereta5(] t)
a andwa5(]w)a are, respectively, the timelike

and rotational Killing vectors of the spacetime.
That the star is rotating slowly corresponds to the assu

tion that V is small compared to the Kepler velocity,VK

;AM /R3, the angular velocity at which the star is dynam
cally unstable to mass shedding at its equator. In particu
we neglect all quantities of orderV2 or higher. To orderV
the star retains its spherical shape, because the centrif
deformation of its figure is an order-V2 effect @46#. This
means that Eqs.~3.3!–~3.7! governing a spherical star rema
relevant also for a slowly rotating equilibrium configuratio
In addition we need to solve an equation@46# that determines
the new metric functionv(r ) in terms of the spherical metric
functionsn(r ) andl(r ):

e~n1l!

r 4

d

dr S r 4e2~n1l!
dv̄

dr D2
4

r S dn

dr
1

dl

dr D v̄50, ~4.3!

where

v̄~r ![V2v~r !. ~4.4!

This new metric variable is a quantity of orderV that gov-
erns the dragging of inertial frames induced by the rotat
of the star@46#. Apart from the frame-dragging effect, how
ever, the spacetime is unchanged from the spherical confi
ration. Outside the star, Eq.~4.3! has the solution

v̄5V2
2J

r 3 , ~4.5!

where J is the angular momentum of the spacetime. T
relation can be used to provide boundary conditions forv̄
~and its derivative! at the surface of the star in terms ofV
andJ. Specifically, the solution to Eq.~4.3! is normalized by
requiring that

v̄~R!1 1
3 Rv̄8~R!5V, ~4.6!
9-7
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whereR is the radius of the star.
Note that v̄c and v̄ satisfy the inequalities 0,v̄c<v̄

<V ~where an indexc denotes the value at the center of t
star!. This means that 0<v<V2v̄c and thatV, v, and v̄
are positive for all values ofr. Defining a rescaled variabl
ṽ5v̄/V, we haveṽc5v̄c /V<ṽ<1. Then, to linear order
in V, a single integration of Eq.~4.3! suffices to determine
the frame dragging for allV and a specific stellar model~a
given equation of state and, say, the central density!.

We now consider the nonradial perturbations of the
slowly rotating equilibrium models to linear order inV.
Since the equilibrium spacetime is stationary and axisy
metric, we may decompose our perturbations into mode
the form8 ei (st1mw). The perturbation equations have be
written down in the Eulerian formalism by Kojima@48#, but
we will find it convenient to work also in the Lagrangia
formalism. We therefore begin by expanding the perturb
density and pressure, the displacement vectorja, and the
metric perturbationshab in tensor spherical harmonics.

The Eulerian change in the density and pressure may
written as

de5 (
l 5m

`

de l~r !Yl
meist ~4.7!

and

dp5 (
l 5m

`

dpl~r !Yl
meist, ~4.8!
ri

d
ba
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an
ng
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respectively.
The Lagrangian displacement vector can be written

ja[
1

ikV (
l 5m

` H 1

r
Wl~r !Yl

mr a1Vl~r !¹aYl
m

2 iU l~r !Pm
aembgd¹bYl

m¹gt¹dr J eist, ~4.9!

where we have defined

Pm
a[e~n1l!~dm

a2tm¹at ! ~4.10!

and introduced the comoving frequency

kV[s1mV. ~4.11!

The exact form of expression~4.9! has been chosen for late
convenience. In particular, we have chosen a gauge in w
j t[0. Note also the chosen relative phase between the te
in Eq. ~4.9! with polar parity~those with coefficientsWl and
Vl) and the terms with axial parity~those with coefficients
Ul).

Working in the Regge-Wheeler gauge, we express
metric perturbation as
hmn5eist (
l 5m

` 3
H0,le

2nYl
m H1,l~r !Yl

m h0,l~r !S m

sinu DYl
m ih0,l~r !sinu]uYl

m

H1,l~r !Yl
m H2,l~r !e2lYl

m h1,l~r !S m

sinu DYl
m ih1,l~r !sinu]uYl

m

symm symm r 2Kl~r !Yl
m 0

symm symm 0 r 2 sin2 u Kl~r !Yl
m

4 . ~4.12!
n-

ally
la-
Again, note the choice of phase between the polar-pa
components~those with coefficientsH0,l , H1,l , H2,l , and
Kl) and the axial-parity components~those with coefficients
h0,l andh1,l).

The use of the Lagrangian formalism introduces ad
tional gauge freedom into the problem of stellar pertur
tions. This freedom is associated with a class of trivial d
placements that leave all physical quantities invari
@49,50#. One eliminates this gauge freedom by restricti

8We will always choosem>0 since the complex conjugate of a
m,0 mode with real frequencys is anm.0 mode with frequency
2s. Note thats is the frequency measured by an inertial obser
at infinity.
ty

i-
-
-
t

attention to the ‘‘canonical’’ displacements—those that co
serve vorticity in constant entropy surfaces@51,39#. This
conservation law, known as Ertel’s theorem, is essenti
the curl of the perturbed Euler equation and in general re
tivity has the form@39#

DH £uvab2
2

n2 ¹ [an¹b]pJ 50 ~4.13!

or

£uDvab5
2

n2 $¹ [aDn¹b]p1¹ [an¹b]Dp%, ~4.14!

where
r

9-8
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vab[2¹ [aS e1p

n
ub] D ~4.15!

is the relativistic vorticity. For our slowly rotating equilib
rium star, Eq.~4.14! can be written using Eq.~2.11! and
~2.16! as

ikVe2nDvab5
2

n
Ar¹ [ar¹b]Dp, ~4.16!

sinceAa5Ar¹ar : cf. Eq. ~2.16!. Note that the three spatia
components of the perturbed vorticity are not independ
being related by the identity

¹ [aDvbg]50. ~4.17!

We seek those modes that in the limitV→0 belong to the
zero-frequency subspace considered in the previous sec
We have shown that such modes must have axial parit
nonbarotropic stars, but may be either polar or axial in
barotropic case. We will, therefore, require that our pert
bation variables obey an ordering in powers ofV that reflects
this spherical limit:

Ul ,h0,l;O~1!,

Wl ,Vl ,H1,l;H O~1! barotropic stars

O~V2! nonbarotropic stars,

H0,l ,H2,l ,Kl ,h1,lde l ,dpl ,s;O~V!. ~4.18!
o

in
b

as

is

02401
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In addition to the new equations that arise at orderV, the
zeroth-order quantities must obey the zeroth-order pertu
tion equations~3.20!, ~3.22!, and~3.23!, for all l. The degen-
eracy of the zero-frequency modes will be split atzeroth
order if there is a subset of theO(V) equations that involves
only the O(1) variables. While this occurs in Newtonia
gravity only for barotropic stars@27#, in general relativity it
occurs also for nonbarotropic stars.

A. Nonbarotropic case

In a search for the relativisticr modes, Kojima@30# has
recently applied his general perturbation equations@48# to
the case of a mode whose spherical limit is purely ax
Accordingly, he assumes an ordering of his perturbat
variables in powers ofV that agrees with our nonbarotrop
ordering~although he does not distinguish between the ba
tropic and nonbarotropic cases!. Kojima then finds that the
zeroth-order equation~3.22! is joined at orderV by an addi-
tional pair of equations, which can be written

l ~ l 11!H i ~s1mv!e22nFh0,l8 22
h0,l

r G

1
~ l 21!~ l 12!h1,l

r 2 J 22imv8e22nh0,l50 ~4.19!

and
l ~ l 11!H i ~s1mv!e22nh0,l2e22lh1,l8 2F2M

r 2 14p~p2e!r Gh1,l J
1 im@16p~p1e!r 2v̄e22nh0,l22rv8e22n22lh0,l1v8r 2e22n22lh0,l8 #216pmv̄~p1e!r 2e22nUl50. ~4.20!
ars
he
ird
es

en-
,

-

These two equations can be combined to give a sec
relation between the zeroth-order variablesh0,l andUl :

Fs1mV2
2mv̄

l ~ l 11!GUl1~s1mV!h0,l50. ~4.21!

Kojima derived this equation from the perturbed Einste
equation, but as we will see in Sec. IV B, the equation can
written down immediately in the Lagrangian formalism
one of the spatial components of Eq.~4.16!, Dvuw50 @cf.
Eq. ~4.53!#. Inspection of the Eulerian equations~as, for ex-
ample, given by Kojima@48#! appears to suggest that there
no other equation in addition to Eqs.~3.22! and ~4.21! that
nd

e

involves only the zeroth-order axial variablesh0,l and Ul .
However, after a closer study we find that for barotropic st
there is, in fact, a third such equation, implying that t
system is overdetermined. While the existence of this th
equation is obscured by the Eulerian formalism, it aris
naturally in the Lagrangian framework as the other indep
dent spatial component of Eq.~4.16!. In nonbarotropic stars
this equation couples theO(1) variables occurring on the
left-hand side~LHS! to theO(V) variables~such as the per-
turbed pressure and density! appearing on the RHS. How
ever, for barotropic stars the RHS vanishes identically~since
Ar[0) and the third equation relating only theO(1) vari-
ables emerges@cf. Eq. ~4.54! or ~4.55!#.
9-9
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LOCKITCH, ANDERSSON, AND FRIEDMAN PHYSICAL REVIEW D63 024019
Hence, for barotropic stars, the assumption that the m
is purely axial asV→0 leads to an overdetermined syste
of equations. The appropriate spherical limit is therefore o
that also includes the polar variablesWl , Vl , andH1,l , as in
Eq. ~4.18!. For nonbarotropic stars, on the other hand,
r-mode assumption appears to be consistent. Combining
~4.21! with Eq. ~3.22! gives Kojima’s ‘‘master’’ equation for
h0,l :

Fs1mV2
2mv̄

l ~ l 11!G H en2l
d

dr Fe2n2l
dh0,l

dr G
2F l ~ l 11!

r 2 2
4M

r 3 18p~p1e!Gh0,l J
116p~p1e!~s1mV!h0,l50. ~4.22!

Kojima used this equation to argue that ther-mode spec-
trum of a relativistic star is continuous. The conclusion th
the equation supports a continuous spectrum was shown
more mathematical rigour by Beyer and Kokkotas@31#. Ba-
sically, the continuous spectrum arises because Eq.~4.22! is
a singular eigenvalue problem; the combinations1mV
22mv̄/ l ( l 11) may have a zero in the intervalr P@0,̀ #. It
is interesting to ask whether the presence of a continu
part of the spectrum is physical or whether it is an artifact
the approximations we have introduced. That the latter m
be the case can be argued for in the following way. To le
ing order in the slow-rotation expansion, the mode freque
s is a real-valued quantity, but at higher orders it must ha
also an imaginary part~corresponding to dissipation due
gravitational wave emission!. If we were to consider Eq
~4.22! for complex frequencies, the problem will be regul
and there will likely be no continuous spectrum. The po
sible presence of a continuous spectrum is an interestin
sue that should be investigated in more detail, but it is not
focus of the present study. What we want to emphasize h
is that two important questions regarding Eq.~4.22! have not
yet been answered. First of all, it has not been shown tha
problem is well defined. As we have already stated, one
show that the system of equations is overdetermined
barotropic stars. This means that Eq.~4.22! can only be rel-
evant for nonbarotropic stars. But in order to show that
equation is, indeed, relevant, we must demonstrate tha
other perturbation variables are uniquely specified give
solution forh0,l from Eq.~4.22!. Given the relative complex
ity of the perturbed Einstein equation, this is not a triv
task. Second, we need to investigate whether Eq.~4.22! al-
lows distinct mode solutions in addition to its continuo
spectrum. After all, the true relativistic analogue to a Ne
tonian r mode ought to be a distinct mode with a we
defined eigenfunction.

We address the first issue by considering the perturba
equations that arise in the Eulerian formalism; cf.@48#. As
far as the axial perturbation variables are concerned, the
of equations~4.19!, ~4.21!, and ~4.22! makes sense: We
have three equations governingh0,l , h1,l , and Ul for all l.
What is not so clear is whether the remainingO(V) pertur-
bation equations yield uniqueKl , H0,l , H2,l , dpl , andde l
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once the axial variables are specified.~For nonbarotropic
stars, the variablesWl , Vl , and H1,l are assumed to be o
order V2, so they will not enter into our calculation.! In
order to show that this is the case, we must show that
remaining equations can be reduced to five independ
ones. In this effort we are immediately helped by the fa
that, given the assumed ordering~4.18!, ~i! the two equations
dGtw58pdTtw anddGtu58pdTtu both imply Eq.~3.22! at
orderV and~ii ! dGtr28pdTtr;V2 and so is automatically
satisfied at lower orders. This leaves us with six equatio
The equation of state for the perturbations and, for exam
the five remaining Einstein equations. In other words,
problem would seem to be overdetermined. However,
nonbarotropic stars the equation of state~2.13! that relates
dp to dr is of orderV2; that is, it fixes theO(V2) quantity
Wl . Thus we have five equations for our five unknown va
ables and the problem is well defined. In other words, i
discrete mode which is limited to a purely axial perturbati
asV→0 exists, it should follow from Eq.~4.22!. For com-
pleteness, the perturbation equations for nonbarotropic s
~complete to orderV! that follow from Eq.~4.18! are listed
in Appendix B.

Let us now suppose that a distinctr-mode solution exists
in the nonbarotropic case. One would intuitively expect t
to be the case since there will then be an internal stratifi
tion in the star associated with the composition gradient
the Newtonian case, this stratification leads to a singlr
mode for each combination ofl and m at orderV ~these
modes then become nondegenerate at orderV2 @26,52,53#!,
and it also leads to the presence of nontrivial polarg modes.

From the above discussion we know that a relativistir
mode of a nonbarotropic star should follow from Eq.~4.22!.
We begin our search for such solutions by deriving a c
straint on the possible mode frequencies. We do this by
scaling out bothV andm from the problem by expressing th
frequencys in terms of a real parametera, such that

s52mVF12
2a

l ~ l 11!G . ~4.23!

Then Eq.~4.22! can be written

~a2ṽ !H en2l
d

dr Fe2n2l
dh0,l

dr G
2F l ~ l 11!

r 2 2
4M

r 3 18p~p1e!Gh0,l J
116p~p1e!ah0,l50, ~4.24!

where we have usedṽ5v̄/V. From this equation we se
that the eigenvaluesa and the corresponding eigenfunction
h0,l are not explicitly dependent on eitherV or m. The latter
means that, if we find an acceptable mode solution to
~4.24!, it will be relevant for allmÞ0 for each given multi-
pole l. This would be in accordance with the nonbarotrop
Newtonian case where one finds a singler mode for each
combination ofl andm at orderV @26,52,53#.

As we will now establish, nontrivial solutions to Eq
~4.24! may exist provided thata2ṽ vanishes at at least on
9-10
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point in the intervalr P@0,̀ #. To show this we first assum
that a2ṽ does not have a zero inr P@0,̀ #. Then we can
define a new well-behaved functionf through h0,l5r 2(a
2ṽ) f . By introducing this definition in Eq.~4.24!, multiply-
ing by r 2f , and integrating overr P@0,̀ #, one can show tha
~as long asf vanishes both asr→0 andr→` as is required
by the regularity conditions!

2E
0

`

~a2ṽ !2r 4e2l2nu f 8udr

5E
0

`

~a2ṽ !2@ l ~ l 11!22#r 2el2nu f u2dr. ~4.25!

Here both integrands are positive definite, and it follows t
we can have no nontrivial solutions forf.

In other words, a nontrivial solution forh0,l can only exist
if a2ṽ50 at some point in the spacetime. That is, the
genvaluea must lie somewhere in the range

ṽc<a<1. ~4.26!

As already noticed by Kojima@30#, this agrees well with the
Newtonian result. As the star becomes less relativistic,ṽc
→1 and our integral relation then predicts a nontrivial so
tion only for a51, i.e., the Newtonianr-mode eigenvalue
We will attempt to find discreter-mode solutions, with fre-
quencies in the permissible range, in Sec. V B.

B. Barotropic case

As indicated above, the conservation of vorticity giv
rise to a mixing of axial and polar modes at zeroth order
V. This suggests that the modes of barotropic stars will
nerically be of a hybrid nature, and as a consequence,
equations determining the modes are more complicated
those forr modes of nonbarotropic stars.

The relevant perturbation equations for the barotro
case follow from the spatial components of Eq.~4.16!, which
for barotropic stars becomes, simply,

Dvab50. ~4.27!

We begin by expressing this relation, i.e.,

05Dvab5¹aFDS e1p

n
ubD G2¹bFDS e1p

n
uaD G ,

~4.28!

in terms ofja andhab .
Making use of Eq.~2.11!, we have

DS e1p

n
uaD5

e1p

n FDua2
1

2
qgbDggbS G1p

e1pDuaG ,
~4.29!

where

Dua[D~gabub!5Dgabub1gabDub. ~4.30!
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The ordering~4.18! implies that uaubhab and gabhab
vanish to zeroth order inV, since the only zeroth-order me
ric components arehtr , htu , andhtw . Therefore,

1
2 uaubDgab5uaub¹ajb , ~4.31!

1
2 qabDgab5qab¹ajb , ~4.32!

Dua5uaubug¹bjg , ~4.33!

Dua5habub1ub¹bja1ub¹ajb

1uaubug¹bjg . ~4.34!

From Eqs.~2.11! and ~3.6! and the relation

uaub¹ajb52jbua¹aub1ua¹a~ubjb!

52jb¹bn1O~V!, ~4.35!

we obtain

1

2
qabDgab5S e1p

G1p D n8e22lj r , ~4.36!

uaub¹ajb52n8e22lj r , ~4.37!

to zeroth order inV. We will also use the explicit form ofuw

determined from Eq.~4.2!,

uw5e2nv̄r 2 sin2 u, ~4.38!

and the components ofDua to zeroth order inV:

Dur5e2nFhtr1 ikVj r1Vr 2] r S 1

r 2 jwD
1

e2n

r 2 ] r~r 2ve22n!jwG , ~4.39!

Duu5e2n@htu1 ikVju1V]ujw22v̄ cotujw#,

~4.40!

Duw5e2n@htw1 ikVjw1V]wjw

12v̄ sinu cosu ju

1en] r~r 2v̄e2n!sin2 u e22lj r #. ~4.41!

For completeness, we explicitly write down the compone
of ikVjW to zeroth order inV @cf. Eq. ~4.9!#:

ikVj t5O~V!,

ikVju5(
l

1

r 2 sinu
@Vl sinu ]uYl

m1mUlYl
m#eist,
9-11
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ikVj r5(
l

1

r
WlYl

meist,

ikVjw5(
l

i

r 2 sin2 u
@mVlYl

m1Ul sinu ]uYl
m#eist,

ikVj t50,

ikVju5(
l

1

sinu
@Vl sinu ]uYl

m1mUlYl
m#eist,
02401
ikVj r5(
l

e2l

r
WlYl

meist,

ikVjw5(
i

i @mVlYl
m1Ul sinu ]uYl

m#eist.

~4.42!

By making use of Eqs.~4.29!–~4.41! and expressions
~4.42! and ~4.12! for the components ofikVjW andhab , we
may now write the spatial components ofDvab . We will
use Eq.~3.20! to eliminateH1,l ~for all l! from the resulting
expressions and drop the ‘‘0’’ subscript on the metric fun
tions h0,l , writing h0,l[hl :
Dvuw5S e1p

n D H ]uDuw2]wDuu2]uF1

2
qabDgabS G1p

e1pDuwG J
5S e1p

n D e2n sinu

ikV (
l

H @ l ~ l 11!kV~hl1Ul !22mv̄Ul #Yl
m22v̄Vl

3@sinu ]uYl
m1 l ~ l 11!cosu Yl

m#1
e2n

r
] r~r 2v̄e22n!Wl@sinu ]uYl

m12 cosu Yl
m#J eist, ~4.43!

Dv ru5S e1p

n Den@] r~e2nDuu!2]u~e2nDur !#

5S e1p

n D en

k V sinu (
l

H mkV] r@e22n~hl1Ul !#Yl
m22] r~v̄e22nUl !cosu sinu ]uYl

m

1
1

r 2 ] r~r 2v̄e22n!Ul@m21 l ~ l 11!~cos2 u21!#Yl
m22m] r~v̄e22nVl !cosu Yl

m

1
m

r 2 ] r~r 2v̄e22n!Vl sinu ]uYl
m1kVF] r~e22nVl !1e22nS 16pr ~e1p!

l ~ l 11!
2

1

r De2lWl Gsinu ]uYl
mJ eist, ~4.44!

Dvwr5S e1p

n DenH ]w~e2nDur !2] r~e2nDuw!1] rF1

2
qabDgabS G1p

e1pDe2nuwG J
5S e1p

n D en

ikV (
l

H mkVF] r~e22nVl !1e22nS 16pr ~e1p!

l ~ l 11!
2

1

r De2lWl GYl
m22] r~v̄e22nVl !cosu sinu ]uYl

m

1
m2

r 2 ] r~r 2v̄e22n!VlYl
m1] rF1

r
] r~r 2v̄e22n!Wl G~cos2 u21!Yl

m22m] r~v̄e22nUl !cosu Yl
m

1kV] r@e22n~hl1Ul !#sinu ]uYl
m1

m

r 2 ] r~r 2v̄e22n!Ul sinu ]uYl
mJ eist. ~4.45!

These equations can be rewritten using the standard identities

sinu]uYl
m5 lQl 11Yl 11

m 2~ l 11!QlYl 21
m , ~4.46!

cosu Yl
m5Ql 11Yl 11

m 1QlYl 21
m , ~4.47!

with Ql defined as

Ql[F ~ l 1m!~ l 2m!

~2l 21!~2l 11!G
1/2

. ~4.48!
9-12
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We then get, fromDvuw50,

05(
l

H @ l ~ l 11!kV~hl1Ul !22mv̄Ul #Yl
m1Fe2n

r
] r~r 2v̄e22n!Wl22l v̄Vl G~ l 12!Ql 11Yl 11

m

2Fe2n

r
] r~r 2v̄e22n!Wl12~ l 11!v̄Vl G~ l 21!QlYl 21

m J . ~4.49!

From Dv ru50 we have

05(
l

H F22] r~v̄e22nUl !1
~ l 11!

r 2 ] r~r 2v̄e22n!Ul G lQl 11Ql 12Yl 12
m

1F lkV] r~e22nVl !22m] r~v̄e22nVl !1
lm

r 2 ] r~r 2v̄e22n!Vl1 lkVe22nS 16pr ~e1p!

l ~ l 11!
2

1

r De2lWl GQl 11Yl 11
m

1FmkV] r@e22n~hl1Ul !#12] r~v̄e22nUl !@~ l 11!Ql
22 lQl 11

2 #1
1

r 2 ] r~r 2v̄e22n!Ul@m21 l ~ l 11!~Ql 11
2 1Ql

221!#GYl
m

2F ~ l 11!kV] r~e22nVl !12m] r~v̄e22nVl !1
m~ l 11!

r 2 ] r~r 2v̄e-2n!Vl1~ l 11!kVe22nS 16pr ~e1p!

l ~ l 11!
2

1

r De2lWl GQlYl 21
m

1F2] r~v̄e22nUl !1
l

r 2 ] r~r 2v̄e22n!Ul G~ l 11!Ql 21QlYl 22
m J . ~4.50!

From Dvwr50 we have

05(
l

H F] r S 1

r
] r~r 2v̄e22n!Wl D22l ] r~v̄e22nVl !GQl 12Ql 11Yl 12

m

1F lkV] r@e22n~hl1Ul !#22m] r~v̄e22nUl !1
ml

r 2 ] r~r 2v̄e22n!Ul GQl 11Yl 11
m

1FmkV] r~e22nVl !12] r~v̄e22nVl !@~ l 11!Ql
22 lQl 11

2 #1
m2

r 2 ] r~r 2v̄e22n!Vl1] r S 1

r
] r~r 2v̄e22n!Wl D ~Ql 11

2 1Ql
221!

1mkVe22nS 16pr ~e1p!

l ~ l 11!
2

1

r De2lWl GYl
m2F ~ l 11!kV] r@e-2n~hl1Ul !#12m] r~v̄e22nUl !1

m~ l 11!

r 2 ] r~r 2v̄e22n!Ul G
3QlYl 21

m 1F] r S 1

r
] r~r 2v̄e22n!Wl D12~ l 11!] r~v̄e22nVl !GQl 21QlYl 22

m J . ~4.51!

Finally, let us rewrite these equations using the orthogonality relation for spherical harmonics:

E Yl 8
m8Yl

m* dV5d l l 8dmm8 , ~4.52!

wheredV is the usual solid-angle element on the unit two-sphere.
From Dvuw50 we have, for all allowedl,

05@ l ~ l 11!kV~hl1Ul !22mv̄Ul #1~ l 11!QlFe2n

r
] r~r 2v̄e22n!Wl 2122~ l 21!v̄Vl 21G

2 lQl 11Fe2n

r
] r~r 2v̄e22n!Wl 1112~ l 12!v̄Vl 11G . ~4.53!

Similarly, Dv ru50 leads to
024019-13
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05~ l 22!Ql 21QlF22] r~v̄e22nUl 22!1
~ l 21!

r 2 ] r~r 2v̄e22n!Ul 22G
1QlF ~ l 21!kV] r~e22nVl 21!22m] r~v̄e22nVl 21!

1
m~ l 21!

r 2 ] r~r 2v̄e22n!Vl 211~ l 21!kVe22nS 16pr ~e1p!

~ l 21!l
2

1

r De2lWl 21G
1FmkV] r@e22n~hl1Ul !#12] r~v̄e22nUl !~~ l 11!Q1

22 lQl 11
2 !

1
1

r 2 ] r~r 2v̄e22n!Ul@m21 l ~ l 11!~Ql 11
2 1Ql

221!#G
2Ql 11F ~ l 12!kV] r~e22nVl 11!12m] r~v̄e22nVl 11!

1
m~ l 12!

r 2 ] r~r 2v̄e22n!Vl 111~ l 12!kVe22n

3S 16pr ~e1p!

~ l 11!~ l 12!
2

1

r De2lWl 11G1~ l 13!Ql 11Ql 12F2] r~v̄e22nUl 12!1
~ l 12!

r 2 ] r~r 2v̄e22n!Ul 12G , ~4.54!

and fromDvwr50, we get

05Ql 21QlF] r S 1

r
] r~r 2v̄e22n!Wl 22D22~ l 22!] r~v̄e22nVl 22!G

1QlF ~ l 21!kV] r@e22n~hl 211Ul 21!#22m] r~v̄e22nUl 21!1
m~ l 21!

r 2 ] r~r 2v̄e22n!Ul 21G
1FmkV] r~e22nVl !12] r~v̄e22nVl !~~ l 11!Ql

22 lQl 11
2 !1

m2

r 2 ] r~r 2v̄e22n!Vl1] r S 1

r
] r~r 2v̄e22n!Wl D ~Ql 11

2 1Ql
221!

1mkVe22nS 16pr ~e1p!

l ~ l 11!
2

1

r De2lWl G2Ql 11F ~ l 12!kV] r@e22n~hl 111Ul 11!#12m] r~v̄e22nUl 11!

1
m~ l 12!

r 2 ] r~r 2v̄e22n!Ul 11G1Ql 11Ql 12F] r S 1

r
] r~r 2v̄e22n!Wl 12D12~ l 13!] r~v̄e22nVl 12!G . ~4.55!
th
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It is instructive to consider the Newtonian limit@27#

v~r !,n~r !,l~r !,hl~r !→0 ~5.56!

of these perturbation equations. We have already seen
Eq. ~3.23! is the relativistic generalization of the Newtonia
mass conservation equation~LF,13! @or Eq.~LF,42!# and that
the otherO(1) perturbation equations~3.20! and~3.22! sim-
ply vanish in the Newtonian limit. Similarly, one can readi
observe that the conservation of vorticity equations have
their Newtonian limit the corresponding equations from Lo
kitch and Friedman@27#:

Eq. ~4.53!→Eq. ~LF,38!,

Eq. ~4.54!→Eq. ~LF,40!,
02401
at

s
-

Eq. ~4.55!→Eq. ~LF,39!,

~and similarly for the other forms of these equations!.
This correspondence leads us to expect the same stru

for the relativistic modes as was found in the barotro
Newtonian case: we expect to find a discrete set of ax
and polar-led hybrid modes with opposite behavior un
parity @27#. Further, we expect a one-to-one corresponde
between these relativistic hybrid modes and the Newton
modes, which the relativistic hybrids should approach in
Newtonian limit.

In deriving the components of the perturbed vorticity te
sor in Newtonian gravity,~LF,38!–~LF,40!, no assumptions
about the ordering of the perturbation variables (dr,dva) in
powers of the angular velocityV were required. Thus the
theorem concerning the character of the Newtonian mo
9-14
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~cf. Appendix A@27#! applies to any discrete normal mode
a uniformly rotating barotropic star with arbitrary angul
velocity.

We conjecture that the perturbations of relativistic st
obey the same principle: If (ja,hab) with jaÞ0 is a dis-
crete normal mode of a uniformly rotating stellar mod
obeying a one-parameter equation of state, then the dec
position of the mode into spherical harmonicsYl

m has l 5m
as the lowest contributing value ofl, whenmÞ0, and has 0
or 1 as the lowest contributing value ofl, whenm50.

However, in deriving the curl of the perturbed Euler equ
tion for relativistic models, we have imposed assumptio
that restrict its generality. We have derived Eqs.~4.53!–
~4.55! in a form that requires a slowly rotating equilibrium
model, assumes the ordering~4.18!, and neglects terms o
order V2 and higher. Under these more restrictive assum
tions, the following theorem holds.

Theorem 1. Let „gab(V),Tab(V)… be a family of station-
ary, axisymmetric spacetimes describing a sequence of
lar models in uniform rotation with angular velocityV and
obeying a one-parameter equation of state, wh
„gab(0),Tab(0)… is a static spherically symmetric spacetim
describing the nonrotating model. Let„ja(V),hab(V)… with
jaÞ0 be a family of discrete normal modes of these spa
times obeying the same one-parameter equation of s
where„ja(0),hab(0)… is a stationary nonradial perturbatio
of the static spherical model. Let„ja(V0),hab(V0)… be a
member of this family withV0!VK , the angular velocity of
a particle in orbit at the star’s equator. Then the decomp
tion of „ja(V0),hab(V0)… into spherical harmonicsYl

m @i.e.,
into ~l,m! representations of the rotation group about its c
ter of mass# has l 5m as the lowest contributing value ofl,
whenmÞ0, andl 51 as the lowest contributing value ofl,
whenm50.

We designate a nonaxisymmetric9 mode with parity
(21)m11 an ‘‘axial-led hybrid’’ if ja andhab receive con-
tributions only from

axial terms with l 5m, m12, m14, ...,

polar terms with l 5m11, m13, m15, ... .

Similarly, we designate a nonaxisymmetric10 mode with par-
ity ( 21)m a ‘‘polar-led hybrid’’ if ja andhab receive con-
tributions only from

9Whenm50, there exists a set of modes with parity11 that may
be designated as ‘‘axial-led hybrids,’’ sinceja and hab receive
contributions only from axial terms withl 51,3,5, . . . andpolar
terms withl 52,4,6, . . . .

10Whenm50, there exists a set of modes with parity21 that may
be designated as ‘‘polar-led hybrids,’’ sinceja and hab receive
contributions only from polar terms withl 51,3,5, . . . andaxial
terms with l 52,4,6, . . . . The family of modes for whichja and
hab receive contributions only from polar terms withl
50,2,4, . . . andaxial terms withl 51,3,5, . . . would have parity
11 and could be designated ‘‘polar-led hybrids.’’ However, the
modes require a more general theorem to establish their chara
02401
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polar terms with l 5m, m12, m14, ...,

axial terms with l 5m11, m13, m15, ... .

We prove the theorem separately for each parity clas
Appendix C.

In essence, the theorem shows that if a mode of a slo
rotating barotropic star has a stationary nonradial pertur
tion as its spherical limit, then it is generically a hybrid mo
with mixed axial and polar angular behavior. An immedia
consequence of the theorem is that ther modes of barotropic
stars ~if they exist at all! must havel 5m ~or l 51 if m
50), and it is well known that barotropic Newtonian sta
retain a vestigial set of purely axial modes—the ‘‘classicar
modes’’—whose angular behavior is a purely axial h
monic, havingl 5m. Let us address the question of wheth
or not such purer-mode solutions also exist in barotrop
relativistic stars.

We apply the perturbation equations for barotropic st
to the case of an axial mode belonging to a pure spher
harmonic of indexl. In other words, let us assume thathl(r )
andUl(r ) ~for some particular value ofl! are the only non-
vanishing coefficients in the spherical harmonic expansi
~4.9! and ~4.12! of the Lagrangian displacementja and the
perturbed metrichab , respectively.

The set of equations to be satisfied are the zeroth-o
~spherical! equations ~3.20!, ~3.22!, and ~3.23! and the
order-V conservation of circulation equations~4.53!–~4.55!,
as well as suitable boundary conditions at infinity and at
surface of the star~Sec. IV C!. Recall that as a result of Eq
~4.17!, the conservation of circulation equations are linea
dependent and we need only satisfy two of them, say, E
~4.53! and ~4.54!.

With hl(r ) andUl(r ) the only nonvanishing perturbatio
variables, Eqs.~3.20! and~3.23! vanish identically, while Eq.
~3.22! remains unchanged. Equation~4.53! becomes

05@ l ~ l 11!kV~hl1Ul !22mv̄Ul #, ~4.57!

and Eq.~4.54! with l→ l 12, l→ l , and l→ l 22 gives the
equations

05 lQl 11Ql 12F22] r~v̄e22nUl !1
~ l 11!

r 2 ] r~r 2v̄e22n!Ul G ,
~4.58!

05mkV] r@e22n~hl1Ul !#

12] r~v̄e22nUl !@~ l 11!Ql
22 lQl 11

2 #

1
1

r 2 ] r~r 2v̄e22n!Ul@m21 l ~ l 11!~Ql 11
2 1Ql

221!#,

~4.59!

05~ l 11!Ql 21Q1F2] r~v̄e22nUl !1
l

r 2 ] r~r 2v̄e22n!Ul G ,
~4.60!

respectively.
e
er.
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Given the requirement thatl 5m when m.0 ~and l 51
when m50), one readily finds that these equations can
satisfied only whenl 51. Thus no purely axial modes wit
l 5m>2 exist in barotropic relativistic stars@33#. The di-
pole (l 51) solutions turn out to be stationary (s50) and
have the natural physical interpretation of a uniform rotat
of the star.11

In Newtonian barotropic stars there remained a large
of purely axial modes withl 5m, the l 5m52 mode being
the one expected to dominate the gravitational-wave-dri
instability of sufficiently hot and rapidly rotating neutro
stars@3,4#. In barotropic relativistic stars, however, we s
that all such purer modes withl 5m>2 are forbidden by the
perturbation equations and instead must be replaced by a
led hybrids. We explicitly construct these important hyb
modes to first post-Newtonian order in Sec. V C.

C. Boundary conditions

Having understood the general nature of the relativis
perturbation problem and derived the relevant perturba
equations for both barotropic and nonbarotropic stars,
want to determine mode solutions. Before we can do this,
need to discuss the boundary conditions that should be
posed.

For nonbarotropic stars, the zeroth-order variables
governed by the single equation~4.22!, while for barotropic
stars we have the set of perturbation equations~3.20!, ~3.22!,
~3.23!, and ~4.53!–~4.55!. A physically reasonable solutio
(ja,hab) to these equations must be regular everywhere
the spacetime. Of course, the fluid variablesWl(r ), Vl(r ),
and Ul(r ) ~for all l! have support only inside the star,r
P@0,R#. The metric functionsH1,l(r ) will also have support
only inside the star~for all l!, since they are directly propor
tional toWl(r ) by Eq.~3.20!. The metric functionshl(r ), on
the other hand, satisfy the nontrivial differential equati
~3.22! in the exterior spacetime and will, therefore, have s
port on the whole domainr P@0,̀ #. Let us now consider the
boundary and matching conditions that our solutions m
satisfy.

At the surface of the star,r 5R, the perturbed pressur
Dp must vanish.~This is how one defines the surface of t
perturbed star.! The Lagrangian change in pressure is giv
by Eq. ~2.11!:

Dp52 1
2 G1pqabDgab . ~4.61!

11When m50 and l 51, the solution corresponds to a sma
change in the angular velocity of the star about its original ro
tional axis. Whenl 5m51, the solution represents uniform rotatio
of the star about an axis perpendicular to its original rotational a
These solutions are derived in detail by Lockitch@33# and are a
generalization of the axial dipole modes studied in nonrotating r
tivistic stars by Campolattaro and Thorne@43#.
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Making use of Eq.~4.36! and the equilibrium equations~3.4!
and ~3.6!, we find that, atr 5R,

05Dp5
2eM0

R2~R22M0! (l
Wl~R!Yl

meist. ~4.62!

where M05M (R) is the gravitational mass of the equilib
rium star and satisfies 2M0,R.

For the equations of state we consider,12 the energy den-
sity e(r ) either goes to a constant or vanishes at the surf
of the star in the manner~this would be the behavior for a
polytrope!:

e~r !;S 12
r

RD k

~4.63!

~for some constantk!. In both cases, it is required that

Wl~R!50 ~all l !. ~4.64!

If e(R)Þ0, then Eq.~4.62! requires this directly. On the
other hand, ife vanishes as in Eq.~4.63!, then Vl(r ) will
diverge at the surface by Eq.~3.23! if Eq. ~4.64! is not sat-
isfied. By Eq.~3.20!, this also implies thatH1,l(r ) vanishes
at the surface of the star. This boundary condition is~obvi-
ously! relevant only in the barotropic case.

In the exterior vacuum spacetime,r .R, we have only to
satisfy the single equation~3.22! for all l, which becomes

hl91F ~22 l 22 l !

r 2 e2l2
2

r 2Ghl50 ~4.65!

or

S 12
2M0

r Dhl92F l ~ l 11!

r 2 2
4M0

r 3 Ghl50, ~4.66!

where we have usede22l5(122M0 /r ) for r .R.
Since this exterior equation does not couplehl(r ) for dif-

ferent values ofl, we can find its solution explicitly. The
solution that is regular at spatial infinity can be written

hl~r !5(
s50

`

ĥl ,sS R

r D l 1s

. ~4.67!

If we substitute this series expansion into Eq.~4.66!, we find
the following recursion relation for the expansion coef
cients:
-

s.

-

12This restriction can be dropped if the boundary conditi
Dp(r 5R)50 is replaced byDh(r 5R)50, with the comoving en-
thalpy h[*0

pdp8/@e(p8)1p8#.
9-16
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ĥl ,s5S 2M0

R D ~ l 1s22!~ l 1s11!

s~2l 1s11!
ĥl ,s21 , ~4.68!

with ĥl ,0 an arbitrary normalization constant. We therefo
have the full solution to zeroth order inV of the perturbation
equations in the exterior spacetime.

This exterior solution must be matched at the surface
the star to the interior solution forhl(r ). One requires tha
the solutions be continuous at the surface,

lim
«→0

@hl~R2«!2hl~R1«!#50, ~4.69!

for all l, and that the Wronskian of the interior and exter
solutions vanish atr 5R, i.e., that

lim
«→0

@hl~R2«!hl8~R1«!2hl8~R2«!hl~R1«!#50,

~4.70!

for all l.
Thus, in solving the perturbation equations to zeroth or

in V, we need only work in the interior of the star~as in the
Newtonian case!. In the interior of a nonbarotropic star, th
perturbation (ja,hab) must only satisfy Eq.~4.22! together
with the matching conditions~4.69! and ~4.70!. In the baro-
tropic case we have the full set of coupled equations~3.20!,
~3.22!, ~3.23!, and ~4.53!–~4.55! for all l, subject to the
boundary and matching conditions~4.64!, ~4.69!, and~4.70!.

Finally, we note that since we are working in lineariz
perturbation theory, there is a scale invariance to the eq
tions. If (ja,hab) is a solution to the perturbation equation
then (Kja,Khab) is also a solution for constantK. We will
find it convenient to impose the following normalizatio
condition in addition to the boundary and matching con
tions just discussed:

Um~r 5R!51 for axial hybrids andr modes,

Um11~r 5R!51 for polar hybrids. ~4.71!

V. RELATIVISTIC CORRECTIONS TO THE r MODES
OF UNIFORM-DENSITY STARS

In a future paper, we will consider the general problem
numerically solving for ther modes and hybrid modes o
fully relativistic stars. Preliminary results have already be
02401
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presented by Lockitch@33#. For now, we will focus on the
post-Newtonian corrections to the Newtonianr modes. The
equilibrium structure of a slowly rotating star with uniform
density is particularly simple@47# and lends itself readily to
such a post-Newtonian analysis. The results we obtain in
way provide important insights into the relativistic corre
tions to the familiar Newtonianr modes.

A. Post-Newtonian uniform-density model

For a spherically symmetric star with constant density

e~r !5
3M0

4pR3 , ~5.1!

the equilibrium equations~3.3!–~3.7! have the well-known
exact solution inside the star (r<R):

p~r !5e5 S 12
2M0

R
D 1/2

2F12
2M0

R
S r

R
D 2G1/2

3F12
2M0

R
S r

R
D 2G1/2

2S 12
2M0

R
D 1/26 ,

~5.2!

M ~r !5M0S r

RD 3

, ~5.3!

e2n~r !5H 3

2 F12
2M0

R S r

RD 2G1/2

2
1

2 S 12
2M0

R D 1/2J 2

,

~5.4!

e22l~r !512
2M0

R S r

RD 2

, ~5.5!

whereM0 is the gravitational mass of the star andR is its
radius.

To find the equilibrium solution corresponding to a slow
rotating star, we must also solve Hartle’s@46# equation~4.3!:

05r 2v̄91@42r ~n81l8!#r v̄824r ~n81l8!v̄ ~5.6!

~see also@47#!, where we may use the spherical solution
write
r ~n81l8!54pr 2~e1p!e2l5

3S 2M0

R
D S r

R
D 2S 12

2M0

R
D 1/2

F12
2M0

R
S r

R
D 2G H 3F12

2M0

R
S r

R
D 2G1/2

2S 12
2M0

R
D 1/2J . ~5.7!
9-17
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To simplify the problem, we expand our equilibrium s
lution in powers of (2M0 /R) and work only to linear
order.13 We will need the expressions

r ~n81l8!5
3

2 S r

RD 2S 2M0

R D1OS 2M0

R D 2

~5.8!

and

e22n511F3

2
2

1

2 S r

RD 2G S 2M0

R D1OS 2M0

R D 2

. ~5.9!

Since we are also working to linear order in the sta
angular velocity, we may setV51 without loss of general-
ity. We write

v̄5(
i 50

`

v i S r

RD 2i

~5.10!

and solve Eq.~5.6! subject to the boundary condition~4.6! at
the surface of the star:

15V5F v̄1
1

3
Rv̄8G

r 5R

. ~5.11!

To order (2M0 /R) the solution is

v̄~r !512S 12
3r 2

5R2D S 2M0

R D1OS 2M0

R D 2

. ~5.12!

B. Nonbarotropic stars

In order to find the find the relativistic analogue to t
familiar Newtonianr modes of nonbarotropic stars, we inse
the above expressions in Eq.~4.22!. We also assume that th
mode frequency can be approximated as

k5
2m

l ~ l 11! F11k1S 2M0

R D1OS 2M0

R D 2G ~5.13!

and that the eigenfunction takes the form

hl'hl
~0!~r !S 2M0

R D1OS 2M0

R D 2

. ~5.14!

Solutions of this form would then lead toUl;O(1) via Eq.
~4.21!.

Under these assumptions, Eq.~4.22! is trivially satisfied
to leading order. At order (2M0 /R)2 we find an equation

Fk1112
3r 2

5R2G H hl
~0!92

l ~ l 11!

r 2 hl
~0!J 1

6

R2 hl
~0!50.

~5.15!

13This expansion will give us the first post-Newtonian~1PN! cor-
rections to the Newtonianr modes.
02401
t

Before proceeding, it is useful to compare our definition
the post-Newtonian eigenvaluek1 to the eigenvaluea we
used in Sec. IV A. We then immediately see that

a511k1S 2M0

R D ~5.16!

and deduce that the established range for possible eige
quencies translates into

21,k1,0. ~5.17!

Within this range there are two possibilities. Ifk1<22/5,
we will have a singular eigenvalue problem, while f
22/5,k1,0, the problem is nonsingular. To determine t
r modes to first order in 2M0 /R for the uniform-density
model, one need only consider the simpler nonsingular s
ation, because the eigenvalues of the relativisticr modes turn
out to be in the nonsingular range. The continuous part of
spectrum@30,31#, as noted earlier, may be an artifact of a
approximation in which the frequency is real.

We can rewrite Eq.~5.15! as

d2hl
~0!

dr2 2F l ~ l 11!

r 2 1
30

3r 225R2~k111!Ghl
~0!50. ~5.18!

As long as22/5,k1,0, this equation can readily be inte
grated, and the solutions are well behaved at all values or.
We have integrated Eq.~5.18! using a fourth-order Runge
Kutta scheme, initiated from the appropriate regular pow
series solution close to the center of the star. That is, we

hl
~0!'Dr l 11H 12

6r 2

R2~k111!@~ l 12!~ l 13!2 l ~ l 11!#J
~5.19!

at an initial point close tor 50 and then integrate Eq.~5.18!
to the surfacer 5R. At the surface we demand thathl

(0) and
its derivative can be smoothly matched to the exterior so
tion according to Eq.~4.70!. For each value ofl, we then find
a single acceptable solution, corresponding to a distinct
genvaluek1 . These eigenvalues, forl 52 – 10, are listed in
Table I. It should be recalled that the tabulated eigenval
correspond to mode frequencies~in the inertial frame! given
by

s'2mV1
2mV

l ~ l 11! F11k1S 2M0

R D G1OS 2M0

R D 2

.

~5.20!

A typical eigenfunction, corresponding tol 52, is shown in
Fig. 1.

We thus find a single post-Newtonianr-mode solution for
each allowed combination ofl andm. This is very much in
accordance with the Newtonianr-mode results for nonbaro
tropic stars at orderV ~the degeneracy of these modes is n
broken until at orderV2). The main difference in the rela
tivistic case is that the post-Newtonian corrections~of order
2M0 /R) break the degeneracy at orderV and make it pos-
sible for us to determine the eigenfunctions.
9-18
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Given these results, we expect similarr-mode solutions to
exist also in the fully relativistic case. It is, in fact, easy
demonstrate this and we have extended our calculation
uniform density star to include all terms in Eq.~4.22!. We
then find that the mode eigenvalue is always such thaa
2ṽ5a2v̄/VÞ0 in the interior of the star~recall the dis-
cussion in Sec. IV A!. The solutions to the problem are thu
regular. The associated eigenvalues, forl 52 – 10, and a star
with compactnessM /R50.2 are given and compared to th
post-Newtonian results in Table I.

C. Barotropic stars

Having established that discreter-mode solutions exist for
nonbarotropic relativistic stars, we now turn to the barotro
case. As we have shown, we will then not have purely a
solutions ~for l>2). Instead, we need to calculate hybr
modes by solving Eqs.~3.20!, ~3.22!, ~3.23!, and ~4.53!–
~4.55! subject to the boundary, matching, and normalizat
conditions~4.64!, ~4.69!, ~4.70!, and ~4.71!. As in the non-
barotropic case, we seek the post-Newtonian correction
the well-known Newtonianr modes. For barotropic star
such modes exist only forl 5m with frequency and radia
dependence given by

k5
2

~m11!
, ~5.21!

Um5S r

RD m11

. ~5.22!

TABLE I. Relativistic r-mode and hybrid-mode frequencies
uniform-density stars. We list the numerically determined values
the post-Newtonianr-mode frequency correctionk1r -mode

for the
nonbarotropic star and compare the corresponding eigenvaluesapN

to ones obtained for fully relativistic uniform-density stars,a, for a
star of compactness 2M0 /R50.4. In this case the value of th
frame dragging at the surface of the star leads tov̄(R)/V
50.84424 and we can see that the eigenvalues approach this
as l increases. It is also interesting to compare our post-Newton
eigenvalues to the result we deduce for the hybridl 5m modes of
barotropic stars, k1hybrid

524(m21)(2m111)/5(2m11)(2m
15). The two results typically do not differ by more than a fe
percent. This is important since the two modes~for l 5m) corre-
spond to the relativistic analogue~for nonbarotropic and barotropi
stars, respectively! of the same Newtonianr mode.

l k1hybrid
k1r -mode

apN a

2 20.2667 20.2629 0.8949 0.9086
3 20.3532 20.3428 0.8629 0.8699
4 20.3897 20.3734 0.8506 0.8561
5 20.4073 20.3868 0.8453 0.8502
6 20.4163 20.3931 0.8428 0.8474
7 20.4211 20.3962 0.8415 0.8460
8 20.4235 20.3979 0.8408 0.8453
9 20.4247 20.3988 0.8405 0.8448
10 20.4251 20.3993 0.8403 0.8446
02401
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Therefore, let us make the following ansatz for our perturb
solution inside the star. We assume that the coefficients
the spherical harmonic expansions~4.9! and ~4.12! of the
Lagrangian displacement,ja and the perturbed metrichab ,
respectively, have the form

k5
2

~m11! F11k1S 2M0

R D1OS 2M0

R D 2G , ~5.23!

Um~r !5S r

RD m11F11um,0S 12
r 2

R2D S 2M0

R D
1OS 2M0

R D 2G , ~5.24!

hm~r !5S r

RD m11Fhm,01hm,1S r

RD 2G S 2M0

R D
1OS 2M0

R D 2

, ~5.25!

Wm11~r !5wm,0S r

RD m11S 12
r 2

R2D S 2M0

R D1OS 2M0

R D 2

,

~5.26!

Vm11~r !5S r

RD m11Fvm,01vm,1S r

RD 2G S 2M0

R D
1OS 2M0

R D 2

, ~5.27!

FIG. 1. Numerically determined post-Newtonianr-mode eigen-
function hl(r ) for l 52 in the interior of a uniform-density sta
~solid line!. The result is compared to the corresponding eigenfu
tion for the particular hybrid mode that is the relativistic counterp
of the Newtonianl 5m52r mode in a barotropic star~shown as a
dashed curve!. Of course, in the barotropic case several other fu
tions ~such asWm11 andVm11) are also nonzero~see Fig. 2!. The
functions are normalized in accordance with Eq.~4.71!.
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Um12~r !5um12,0S r

RD m13S 2M0

R D1OS 2M0

R D 2

,

~5.28!

wherek1 , um,0 , hm,0 , hm,1 , wm11,0, vm11,0, vm11,1, and
um12,0 are ~as yet! unknown constants. We have chosen t
form of Um(r ) so as to automatically satisfy the normaliz
tion condition ~4.71! and we have chosen the form o
Wm11(r ) so as to automatically satisfy the boundary con
tion ~4.64!. Note that we have assumed thathl , Vl 8 , Wl 8 ,
and Ul 9 are of order (2M0 /R)2 or higher for all l .m, l 8
.m11 andl 9.m12. We will justify this ansatz by show
ing self-consistently that such a solution satisfies the per
bation equations.

Observe that the exterior solution~4.67! for hm(r ) already
has a natural expansion in powers of (2M0 /R) as a result of
the recursion relation~4.68!:

hm~r !5ĥm,0S R

r D mS 2M0

R D1OS 2M0

R D 2

. ~5.29!

The normalization constantĥm,0 is determined by the match
ing condition~4.69!,

ĥm,05hm,01hm,1 , ~5.30!

while Eq. ~4.70! imposes the following condition on the in
terior solution:

05ĥm,0$2m~hm,01hm,1!2@~m11!hm,01~m13!hm,1#%

~5.31!

or

05~2m11!hm,01~2m13!hm,1 . ~5.32!

We turn now to the barotropic perturbation equatio
~3.20!, ~3.22!, ~3.23!, and ~4.53!–~4.55!. Recall that these
latter three equations are not linearly independent, being
lated by Eq.~4.17!. Also, because Eq.~3.20! merely ex-
pressesH1,l(r ) in terms ofWl(r ), we may eliminateH1,l(r )
from our system and ignore Eq.~3.20!. Thus a complete se
of perturbation equations is provided by Eqs.~3.22!, ~3.23!,
~4.53!, and~4.54! for all allowed values ofl.

We expand these equations to first post-Newtonian o
using Eqs.~5.8!, ~5.9!, and~5.12! to replace the equilibrium
quantities and using our ansatz, Eqs.~5.23!–~5.28!, to re-
place the various perturbation variables. The result is an
gebraic system of seven independent equations, which
gether with our matching condition~5.32! allows us to
uniquely find our eight unknown constantsk1 , um,0 , hm,0 ,
hm,1 , wm11,0, vm11,0, vm11,1, andum12,0. These equations
are derived in detail by Lockitch@33#. Here we will simply
present the resulting solution

k5
2

~m11! F12
4~m21!~2m111!

5~2m11!~2m15!

3S 2M0

R D1OS 2M0

R D 2G , ~5.33!
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Um~r !5S r

RD m11F11um,0S 12
r 2

R2D S 2M0

R D
1OS 2M0

R D 2G , ~5.34!

hm~r !5S r

RD m11F2
3

~2m11!
1

3

~2m13!

3S r

RD 2G S 2M0

R D1OS 2M0

R D 2

, ~5.35!

Wm11~r !5~m11!~m12!KS r

RD m11

3S 12
r 2

R2D S 2M0

R D1OS 2M0

R D 2

, ~5.36!

Vm11~r !5KS r

RD m11F ~m12!2~m14!S r

RD 2G
3S 2M0

R D1OS 2M0

R D 2

, ~5.37!

Um12~r !52KQm12

~m11!2~m13!

~2m13!

3S r

RD m13S 2M0

R D1OS 2M0

R D 2

, ~5.38!

where we have defined the constant

K[
6~m21!Qm11

5~m12!~2m15!
~5.39!

and where

um,052
KQm11

24m~m12!~2m13!

3$48~m11!4~m13!21~2m13!2~2m15!

3@m~m12!2248#%. ~5.40!

Since our solution satisfies the full perturbation equatio
to order (2M0 /R), our ansatz was self-consistent. Thus w
have explicitly found the first post-Newtonian corrections
the l 5m Newtonianr modes of barotropic uniform-densit
stars.

The solution reveals the expected mixing of axial a
polar terms in the spherical harmonic expansion ofja. All of
the barotropic Newtonianr modes withm>2 pick up both
axial and polar corrections14 of order (2M0 /R), becoming
axial-led hybrid modes of the relativistic star. Thel 5m52

14When m51, the constantK vanishes and we recover the axi
dipole solution mentioned in Sec. IV B.
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hybrid mode is shown in Figs. 1 and 2, and compared to
correspondingr mode in a nonbarotropic star~see Sec. V B!.

In addition, we see from Eq.~5.33! that the Newtonian
r-mode frequency also picks up a small relativistic corr
tion. The frequency decreases, just as it does in the nonb
tropic case~see Table I!, and it is natural that general rela
tivity will have such an effect. One reason is th
gravitational redshift will tend to decrease the fluid oscil
tion frequencies measured by a distant inertial obser
Also, because these modes are rotationally restored, they
be affected by the dragging of inertial frames induced by
star’s rotation. The Coriolis force is ‘‘determined not by th
angular velocityV of the fluid relative to a distant observe
but by its angular velocity relative to the local inertial fram
v̄(r )’’ ~Hartle and Thorne@54#!. Thus, the Coriolis force
decreases—and the modes oscillate less rapidly—as
dragging of inertial frames becomes more pronounced.

Finally, we note that the metric perturbation~whose radial
behavior is determined by the functionhm! is of the same
order as the post-Newtonian corrections to the fluid per

FIG. 2. The (r /R)3 radial dependence of the Newtonianl 5m
52 r mode is shown~dashed curve! together with the post-
Newtonian corrections to this mode for a uniform-density star
compactness 2M /R50.2, i.e., the coefficientsUl(r ), Wl(r ), and
Vl(r ) with l<4 of the spherical harmonic expansion~4.9! ~solid
curves!. The vertical scale is set by the normalization ofU2(r ) to
unity at the surface of the star, and the other coefficients have b
scaled by a factor of 100. Thus, while the relativistic corrections
the equilibrium structure of the star are of the order of 20%,
relativistic corrections to ther mode are only of the order of 1%.
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bation. Thus there is no justification for the Cowling a
proximation in constructing the hybrid-mode solutions.
Newtonian theory, the Cowling approximation correspon
to neglecting the variation in the gravitational potential. T
original motivation for this@21# is that some pulsation mode
~in particular theg modes! are mainly located in the les
dense regions close to the surface of the star and do
involve large mass motion. Hence they will lead to variatio
in the gravitational potential that are small compared to
associated fluid velocities. The obvious generalization of t
approach to general relativity would be to discard all met
perturbations@55#. However, as was pointed out by Fin
@56#, this approximation is not natural for relativisticg
modes. The main reason is that, even though these m
involve small density perturbations, they could involve lar
fluid velocities. Hence Finn argues that one should ke
those metric perturbations that can be associated with ‘‘m
mentum transport’’ in calculations ofg modes. As is easy to
see, similar arguments can be used for the modes we
sider in the present paper. This would suggest that
should not discard the metric perturbationsh1 , h0 , andH1
in the relativistic Cowling approximation forr modes and
hybrid modes. Interestingly, should we adopt this point
view, we retain the main perturbation equations we ha
used in the present paper. Hence this ‘‘approximatio
would be consistent with our results. Furthermore, t
would explain why the attempts to find relativisticr modes
within the Cowling approximation~by neglecting all metric
perturbations! have failed@32#. Of course, this discussion ha
little relevance for the present study. But it could be of cr
cial importance for attempts to findr modes in numerical
simulations~by studying fluid motion in relativistic simula
tions with a ‘‘frozen’’ metric! that are currently under way
@57,58#.

VI. DISCUSSION

In this paper we have taken the first steps towards
understanding of bothr modes and rotational hybrid mode
of rotating relativistic stars. We have derived the perturb
tion equations that govern these modes to linear order in
rotation frequencyV ~at which the star is still spherical!. For
nonbarotropic stars we have focused on modes that ha
purely axial limit asV→0. These would be a natural rela
tivistic generalization of the Newtonianr modes. For baro-
tropic stars~and multipolesl>2), we have shown that no
such modes exist in the relativistic case, even though N
tonian stars retain a vestigial set corresponding tol 5m. In-
stead, all modes of barotropic stars must have a hybrid
ture. Having derived the relevant perturbation equations,
calculate relativistic corrections at the first post-Newton
level ~order 2M0 /R! to the Newtonianr modes of both non-
barotropic and barotropic stars.

It is worth pointing out that, even though our results f
barotropic and nonbarotropic stars are quite different,
particular modes that we have focused on~the analogues of
the vestigiall 5m r modes that remain for barotropic New
tonian stars! are not too dissimilar. As is clear from the re
sults given in Table I, the mode frequencies in the two ca
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we have considered do not differ by more than a few perc
Furthermore, we can see from Fig. 1 that the axial eigenfu
tions h0,l are similar. There are, of course, still considera
differences between the two cases. In the nonbarotropic
we predict that purely axial modes exist for all combinatio
of l and mÞ0, while in the barotropic case all modes a
hybrids. Still, the fact that our results for the two cases se
consistent is encouraging. We anticipate that further w
will eventually unveil a behavior quite similar to that of th
Newtonian problem, for which the detailed barotropic lim
has been investigated by Yoshida and Lee@59#.

This paper represents progress in several important d
tions, but a considerable amount of work remains before
can claim to have a complete understanding of the natur
the rotational modes in relativity. For example, we have
yet discussed how the inferred changes in both mode
quency and eigenfunction will affect the strength of t
gravitational-wave-driven instability. To do this we need
estimate the rate at which these modes radiate gravitati
waves and also assess the strength of various dissip
mechanisms~like viscosity! that tend to damp an unstab
mode. This is obviously an important issue, and we plan
address it once our ongoing work on fully relativistic hybr
modes of barotropic stars is completed. At that point it w
also be appropriate to obtain and discuss results for diffe
realistic equations of state.
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APPENDIX A: EQUATIONS DESCRIBING STATIONARY
PERTURBATIONS OF SPHERICAL STARS

We have derived the various equations governing stat
ary perturbations of a spherical star using the Maple ten
package by substituting expressions~3.11!–~3.16! into Eqs.
~3.8! and~3.10! @making liberal use of the equilibrium equa
tions ~3.4! through ~3.7! to simplify the expressions#. The
resulting equations are listed in the three distinct casel
>2, l 51, andl 50 below.

1. CaselÐ2

The nonvanishing components of the perturbed Eins
equation forl>2 are as follows. We will use Eq.~A4! below
to replaceH2 by H0 . From dGt

t58pdTt
t we have~using

primes to denote derivatives with respect tor!

05e22lr 2K91e22l~32rl8!rK 8

2@ 1
2 l ~ l 11!21#K2e22lrH 08

2@ 1
2 l ~ l 11!1128pr 2e#H018pr 2de. ~A1!
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From dGr
r58pdTr

r we similarly have

05e22l~11rn8!rK 82@ 1
2 l ~ l 11!21#K2e22lrH 08

1@ 1
2 l ~ l 11!2128pr 2p#H028pr 2dp. ~A2!

From dGu
u1dGw

w58p(dTu
u1dTw

w) we have

05e22lr 2K91e22l@r ~n82l8!12#rK 8

216pr 2dp2e22lr 2H092e22l~3rn82rl812!rH 08

216pr 2pH0 . ~A3!

From dGu
u2dGw

w58p(dTu
u2dTw

w) we have

H25H0 . ~A4!

From dGr
u58pdTr

u we have

K85e22n@e2nH0#8. ~A5!

From dGt
r58pdTt

r we have

05H11
16p~e1p!

l ~ l 11!
e2lrW. ~A6!

From dGt
u58pdTt

u we have

05e2~n2l!@e~n2l!H1#8116p~e1p!e2lV. ~A7!

From dGt
w58pdTt

w we have

h092~n81l8!h081F ~22 l 22 l !

r 2 e2l2
2

r
~n81l8!2

2

r 2Gh0

5
4

r
~n81l8!U. ~A8!

From dGr
w58pdTr

w we have

~ l 21!~ l 12!h150. ~A9!

Finally, from dGu
w58pdTu

w we have

e2~n2l!@e~n2l!h1#850. ~A10!

2. CaselÄ1

The l 51 case differs froml>2 in two respects@43#.
First, H2(r )ÞH0(r ), because the equationdGu

u2dGw
w

58p(dTu
u2dTw

w) vanishes identically. Second, we may e
ploit the aforementioned gauge freedom for this case
eliminate the metric functionsK(r ) andh1(r ). @We note that
Eq. ~A9! implies h1(r )50 for l>2 anyway.# With these
two differences taken into account, the nonvanishing com
nents of the perturbed Einstein equation forl 51 are as fol-
lows. FromdGt

t58pdTt
t we have
9-22



o
b

he
m
x

nc
-

it

as

:

ROTATIONAL MODES OF RELATIVISTIC STARS: . . . PHYSICAL REVIEW D 63 024019
05e22lrH 281~228pr 2e!H228pr 2de. ~A11!

From dGr
r58pdTr

r we have

05e22lrH 082H01~118pr 2p!H218pr 2dp.
~A12!

From dGu
u1dGw

w58p(dTu
u1dTw

w) we have

05e22lr 2H091e22l~2rn82rl811!rH 082H01e22l~1

1rn8!rH 281~1116pr 2p!H2116pr 2dp. ~A13!

From dGr
u58pdTr

u we

05rH 081~rn821!H01~rn811!H2 . ~A14!

From dGt
r58pdTt

r we again have

05H118p~e1p!e2lrW. ~A15!

From dGt
u58pdTt

u we again have

05e2~n2l!@e~n2l!H1#8116p~e1p!e2lV. ~A16!

Finally, from dGt
w58pdTt

w we have

h092~n81l8!h082F2

r
~n81l8!1

2

r 2Gh05
4

r
~n81l8!U.

~A17!

3. CaselÄ0

The l 50 case differs yet again from the previous tw
being the case of stationary, spherically symmetric pertur
tions of a static, spherical equilibrium. To maximize t
similarity to the preceding two cases, we will use the sa
form for the perturbed metric except that we may now e
ploit the gauge freedom for this case to eliminate the fu
tions K(r ), H1(r ), and h1(r ). The nonvanishing compo
nents of the perturbed Einstein equation forl 50 are as
follows.

From dGt
t58pdTt

t we have

05e22lrH 281~128pr 2e!H228pr 2de. ~A18!
02401
,
a-

e
-
-

From dGr
r58pdTr

r we have

05e22lrH 081~118pr 2p!H218pr 2dp. ~A19!

From dGu
u1dGw

w58p(dTu
u1dTw

w) we have

05e22lr 2H091e22l~2rn82rl811!rH 081e22l~1

1rn8!rH 28116pr 2pH2116pr 2dp. ~A20!

Finally, from dGt
r58pdTt

r we have

0516p~e1p!W. ~A21!

APPENDIX B: PERTURBATION EQUATIONS FOR
SLOWLY ROTATING NONBAROTROPIC STARS

The assumption of a purely axial perturbation in the lim
V→0 leads to the following equations@cf. Eq.~4.18!#: The
three axial quantities follow from

Fs1mV2
2mv̄

l ~ l 11!G H en2l
d

dr Fe2n2l
dh0,l

dr G2F l ~ l 11!

r 2

2
4M

r 3 18p~p1e!Gh0,l J 116p~p1e!~s1mV!h0,l

50, ~B1!

Fs1mV2
2mv̄

l ~ l 11!GUl1~s1mV!h0,l50 ~B2!

and

l ~ l 11!H i ~s1mv!e22nFh0,l8 22
h0,l

r G2
~ l 21!~ l 12!h1,l

r 2 J
22imv8e22nh0,l50 ~B3!

or, alternatively, Eq.~4.20!.
The solutions to these three equations then serve

sources for three of the remaining~at orderV! Einstein equa-
tions that determine the polar parity metric perturbations
~ l 21!l ~ l 11!~ l 12!e2n~H2,l2H0,l !Yl
m2$r 2e22lv8h0,l8

1@ l ~ l 11!v22re22lv8216pr 2~p1e!v̄#h0,l216p i ~p1e!r 2v̄Ul%$2~ l 21!~ l 12!

3sinu ]uYl
m14l ~ l 11!cosu Yl

m%50, ~B4!

l ~ l 11!e2n@r ~Kl82H0,l8 !1~12rn8!H0,l2~11rn8!H2,l #Yl
m2 l ~ l 11!$2rvh0,l8

1@rv822v~11rn8!#h0,l%sinu ]uYl
m12rv8h0,l~sinu ]uYl

m2 l ~ l 11!cosu Yl
m!50, ~B5!

and
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l ~ l 11!e2nF2n8e22lS Kl82
H2,l

r 2 D2
~ l 21!~ l 12!

r 2 ~kl2H0,l !1S 6M

r 3 28pe DH0,l GYl
m2 l ~ l 11!

3Fv8e22lh0,l8 1S 16p~pv̄1eV!2v
~ l 21!~ l 12!r 16M

r 3 Dh0,l Gsinu ]uYl
m2S 4

r
v8e22lh0,l232p i ~p1e!v̄Ul D

3~sinu ]uYl
m2 l ~ l 11!cosu Yl

m!1
4l 2~ l 11!2

r 2 vh0,l cosu Yl
m50. ~B6!

These equations determine the polar metric perturbationsKl , H0,l , andH2,l onceh0,l andUl are known for alll. Finally,
the last two Einstein equations lead to the following equations fordpl andde l ~recall that for nonbarotropic stars the equati
of state determines the radial componentWl of dua, a quantity of orderV2!:

FH0,l9 22n8Kl81S 2

r
12n82l8DH0,l8 1n8H2,l8 2

l ~ l 11!

r 2 e2lH0,l18p~3p1e!e2lH2,l18pe2l~3dpl1de l !Ge2nYl
m

1F S 4v

r
12v822vn8Dh0,l8 1S 4v~n8!222v8n82

8v

r
n8Dh0,l132p i ~p1e!Ve2lUl G

3sinu ]uYl
m2

4l ~ l 11!

r 2 ve2lh0,l cosu Yl
m50, ~B7!

FKl91S 2

r
24p~p1e!re2lDKl81

1

r
~H0,l8 2H2,l8 !2

l ~ l 11!

2r 2 e2l~H0,l1H2,l !18p~p1e!e2lH2,l18pe2l~dpl1de l !GYl
m

1F2

r
ve22nh0,l8 1S 2

r
~v822vn8!116pe2l~p1e!v̄2

l ~ l 11!

r 2 ve2lDe22nh0,l116p i ~p1e!v̄e2l22nUl G
3sinu ]uYl

m2
2l ~ l 11!

r 2 ve2l22nh0,lcosu Yl
m50. ~B8!
-

APPENDIX C: PROOF OF THEOREM 1

1. Axial-led hybrids with mÌ0

Let l be the smallest value ofl 8 for which Ul 8Þ0 in the
spherical harmonic expansion~4.9! of the displacement vec
tor ja or for which hl 8[h0,l 8Þ0 in the spherical harmonic
expansion~4.12! of the metric perturbationhab . The axial
parity of (ja,hab), (21)l 11, and the vanishing ofYl

m for
l ,m implies l>m. That the mode is axial-led meansWl 8
50, Vl 850, andH1,l 850 for l 8< l . We show by contradic-
tion that l 5m.

Supposel>m11. From Eq.~4.53!, *DvuwYl*
mdV50,

we have

05 l ~ l 11!kV~hl1Ul !22mv̄Ul

2 lQl 11Fe2n

r
] r~r 2v̄e22n!Wl 1112~ l 12!v̄Vl 11G ,

~C1!

and from Eq.~4.55! with l→ l 21, *DvwrYl 21* m dV50, we
have
02401
052H ~ l 11!kV] r@e22n~hl1Ul !#12m] r~v̄e22nUl !

1
m~ l 11!

r 2 ] r~r 2v̄e22n!Ul J
1Ql 11F] rF1

r
] r~r 2v̄e22n!Wl 11G

12~ l 12!] r~v̄e22nVl 11!G . ~C2!

Together these give

052] r~v̄e22nUl !1
l

r 2 ] r~r 2v̄e22n!Ul ~C3!

52~r 2v̄e22n!2 l/2] r@r l~v̄e22n!~ l 12!/2Ul # ~C4!

or

Ul5K~v̄e22n!2~ l 12!/2r 2 l ~C5!

~for some constantK!, which is singular asr→0.
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2. Axial-led hybrids with mÄ0

Let m50 and letl be the smallest value ofl 8 for which
Ul 8Þ0 in the spherical harmonic expansion~4.9! of the dis-
placement vectorja or for whichhl 8[h0,l 8Þ0 in the spheri-
cal harmonic expansion~4.12! of the metric perturbation
hab . Since¹aY0

050, the mode vanishes unlessl>1. That
the mode is axial-led meansWl 850, Vl 850, andH1,l 850 for
l 8< l . We show by contradiction thatl 51.

Suppose l>2. Then Eq. ~4.54! with l→ l 22,
*Dv ruYl 22* 0 dV50, becomes

052] r~v̄e22nUl !1
l

r 2 ] r~r 2v̄e22n!Ul ~C6!

52~r 2v̄e22n!2 l/2] r@r l~v̄e22n!~ l 12!/2Ul # ~C7!

or

Ul5K~v̄e22n!2~ l 12!/2r 2 l ~C8!

~for some constantK!, which is singular asr→0.

3. Polar-led hybrids with mÐ0

Let l be the smallest value ofl 8 for which Wl 8Þ0 or
Vl 8Þ0 in the spherical harmonic expansion~4.9! of the dis-
placement vectorja or for which H1,l 8Þ0 in the spherical
harmonic expansion~4.12! of the metric perturbationhab .
The polar parity of (ja,hab),(21)l , and the vanishing ofYl

m

for l ,m implies l>m. That the mode is polar-led mean
Ul 850 andhl 850 for l 8< l . We show by contradiction tha
l 5m whenm.0 and thatl 51 whenm50.
tt.

. J

o,

. J

tt

as

02401
Suppose l>m11. From Eq. ~4.53! with l→ l 21,
*DvuwYl 21* m dV50, we have

05~ l 21!QlFe2n

r
] r~r 2v̄e22n!Wl12~ l 11!v̄Vl G .

~C9!

Substituting forVl using Eq.~3.23!, we find

05
l

r
] r~r 2v̄e22n!Wl12v̄e22n

e2~n1l!

~e1p!

3] r@~e1p!e~n1l!rWl #, ~C10!

52~r 2v̄e22n!2~ l 22!/2
e2~n1l!

r 2~e1p!
] r@~r 2v̄e22n! l/2

3~e1p!e~n1l!rWl #. ~C11!

with the solution

Wl5K~v̄e22n!2 l/2
e2~n1l!

~e1p!
r 2~ l 11! ~C12!

~for some constantK!, which is singular asr→0.
Whenm50 this argument fails to establish thatl cannot

be equal to 1, because Eq.~C9! is trivially satisfied for l
51 as a result of the overalll 21 factor. Instead, the argu
ment proves thatl cannot be greater than 1 in this case a
therefore thatl 51.
D
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