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Unsharp degrees of freedom and the generating of symmetries
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While real degrees of freedom are usually described by operators which are self-adjoint, there are exceptions
described by merely symmetric operators. It has been shown that such exceptional degrees of freedom gener-
ally display a form of ‘‘unsharpness.’’ Various studies in quantum gravity indicate that the widely expected
unsharpness of space-time at very short distances can be described by such operators. It is also known,
however, that unlike self-adjoint operators, merely symmetric operators do not generate unitary transforma-
tions, at least not straightforwardly. This raises the question of whether merely symmetric operators are able to
play the important double role which self-adjoint operators often play, namely, both to represent a real degree
of freedom and also to act as a symmetry generator. Here, we answer this question for a large class of
symmetric non-self-adjoint operatorsX. We show that operators which coincide with such anX on the physical
domain are even able to generate the entire unitary group of the Hilbert space.
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I. INTRODUCTION

As a rule, real degrees of freedom are described in qu
tum theory through operators which are self-adjoint. B
there are exceptions to the rule. This is because the b
quantization requirement that a real degree of freedom
classical theory become an operatorQ whose expectation
values^Q& are real does not strictly require thatQ be self-
adjoint. An operator whose expectation values are rea
merely what is called a symmetric1 operator.

A crucial property of merely symmetric operators is th
they are not diagonalizable. As a consequence, a com
feature of degrees of freedom which are described by me
symmetric operators is that they are ‘‘unsharp’’ or ‘‘fuzzy,
as opposed to self-adjoint operators, which always desc
degrees of freedom which are absolutely ‘‘sharp’’: Name
every real degree of freedom described by a self-adjoint
eratorQ is of course sharp in the sense thatQ possesses a
spectral resolution, or ‘‘eigenbasis,’’ and that for its eige
vectorsuqn& the uncertainty inQ vanishes,

DQ~ uqn&)50, ~1!

with the usual definition, for normalizeduc&,

DQ~ uc&)ª^cu~Q2^cuQuc&!2uc&1/2. ~2!

Of course, also whenq is in the continuous spectrum,DQ
can be made arbitrarily small.

On the other hand, when an operatorQ is merely symmet-
ric and therefore not diagonalizable, then this implies t
there is an obstruction to precisely determining the phys
quantity which this operatorQ represents. As was firs
pointed out in@1# such degrees of freedomQ are therefore
always ‘‘unsharp’’ in one of two ways. We will give a prope
definition of the two types of unsharpness later. Roug

*Email address: kempf@phys.ufl.edu
1Recall that self-adjointness and symmetry coincide only in fin

dimensional Hilbert spaces.
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speaking, one type of unsharp degree of freedom has
~proper nor improper! eigenvectors, and the other type h
‘‘eigenvectors’’ which, however, are not orthogonal.

But do such unsharp real degrees of freedom actually
cur? As will be explained in the next section, they do occ
ubiquitously from simple quantum mechanical examples
even applied circumstances, such as in microscopy, in e
tronic communication, and, most interestingly, apparen
also in theories of quantum gravity such as string theo
This need not be surprising, however, due to the genera
of the argument:Any degree of freedom, in whicheve
theory, if described by a linear operator whose expecta
values are real, can only be self-adjoint or merely symmet
and it can therefore only be sharp or unsharp in the se
which we just discussed.

This applies, in particular, to any real space-time coor
nate which is described by a linear operatorXi in any can-
didate quantum gravity theory. Every such coordinateXi can
only be either discrete or continuous, namely ifXi is self-
adjoint with a discrete or a continuous spectrum respectiv
or the coordinate is unsharp in one of two ways, namely ifXi
is merely symmetric.

In studies in quantum gravity such unsharp coordina
have indeed appeared, in particular in string theory and
noncommutative geometry; see e.g.@2–6#. The ultraviolet
regularity of simple quantum field theories over speci
choices of such unsharp coordinates was demonstrate
@7,8#. Recently, the ultraviolet properties of fields over o
of the two types of unsharp coordinates was studied in
generality in@9#. It was found that fields over such coord
nates are always continuous fields, but also that they
fields with ultraviolet regular properties much like fields ov
lattices. Namely, such fields are determined everywher
known only on any one of a set of lattices with a certain~in
general irregular! minimum spacing.

Interestingly, recent studies indicate that models of
structure of space-time at the Planck scale might conceiva
be put to experimental tests in the foreseeable future:

For example, one of the successes of inflationary cosm
ogy is that it predicts a spectrum of density perturbatio

e
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which matches the current experimental evidence. Crucia
however, inflationary models tend to inflate to the extent t
initially sub-Planckian scales become cosmological sca
and, as was recently demonstrated in@10,11#, the inflation-
arily predicted perturbation spectrum is in general not rob
under changes in the assumed structure of space-time a
Planck scale~apparently unlike Hawking radiation; see e.
@24#!. The experimental data on the perturbation spectrum
particular from cosmic microwave background~CMB! ob-
servations, are set to further improve significantly.

In a different development it was also pointed out~see
e.g. @12,13#! that the existence of large extra dimensions
which only gravity propagates could effectively bring th
Planck scale down from 10235 m to possibly just above the
scale of 10218 m which is currently accessible through a
celerators~though this framework does not predict the actu
value of the new Planck scale!.

Here, our aim will not be to try to already match theo
and experiment but rather to address a fundamental the
ical problem which necessarily arises with unsharp degr
of freedom that are described by merely symmetric ope
tors.

Namely,a priori, it appears that merely symmetric oper
tors fail to be able to play the important double role whi
self-adjoint operators often play, namely a role both as a
degree of freedom and a role as a generator of unitary tr
formations. For example, from a self-adjoint operatorX we
can obtain unitary operators such as exp@iai(X)Ti# which
might stand for local gauge transformations. It is known t
merely symmetric operators cannot be exponentiated in
way.

Here, we will address this problem for one of the tw
types of unsharp degrees of freedom. We will find that a
such symmetric operatorX, defined on some physical Hilbe
space domainDphys, does generate unitaries, though in
subtle way: for each suchX there exists a family of self-
adjoint operators$X(u)% which coincide with X on the
physical domainDphys and which generate unitaries in th
usual way. We will find that those operatorsX(u) are gen-
erating the entire unitary group of the Hilbert space.

Given the generality of the result that we aim at, we ne
to be as precise as possible about the assumptions and
follows from them. Therefore, after reviewing how unsha
degrees of freedom arise and after giving concrete and
tailed examples of our claim, the main result will be form
lated as a mathematical lemma, the proof of which, toge
with a corollary, we will give in the Appendices.

II. UNSHARP DEGREES OF FREEDOM

A. Examples

A simple example of an unsharp degree of freedom
given by the momentum operatorp52 i ]x of a particle in a
box, say in the one-dimensional interval@2L,L#. Because
of the confining box potential, all physical wave functio
c(x)PDphys,H5L2(2L,L) vanish at the boundary:

c~2L !505c~L !. ~3!

The expectation values ofp are real:
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^cupuc&PR, for all uc&PDphys. ~4!

Thus, p is a symmetric operator. On the other hand, pla
waves do not obey the boundary condition, Eq.~3!. Thus,p
does not possess~normalizable or nonnormalizable!
eigenvectors—which implies thatp is not self-adjoint but
only symmetric. One can show thatp is not even self-adjoint
on any invariant subspace, which means thatp is a so-called
simple symmetricoperator.

But even though the plane waves are not physical sta
due to the boundary condition, one may wonder whether
really matters, because one can of course approximate p
waves by sequences of physical states which are plane w
within most of the interval@2L,L# and which decay to zero
towards the boundaries, such as to always obey the boun
condition, Eq.~3!.

One may therefore be tempted to believe thatp is still
‘‘approximately’’ self-adjoint and should therefore describ
a sharp entity. This is, however, not the case. Namely, si
Dx is bounded from above by the finite size of the box, w
can expect from the uncertainty relation that the minimu
uncertainty in momentumDpmin is larger than zero. Indeed
p is unsharp in the sense that for all physical statesuc&
PDphys the momentum uncertainty is bounded from belo
by a fixed finite amount,

Dp~c!>Dpmin5
p

2L
for all normalized uc&PDphys,

~5!

as is readily verified by a variational calculation; see e
@14#. Thus, perhaps surprisingly, while a sequence of phy
cal wave functions can approximate a plane wave, the co
sponding sequence of the states’ uncertainty in momen
cannot converge to zero.

Intuitively, the reason is that the larger the part of t
interval on which a physical wave function approximates
plane wave, the steeper the wave function must decay to
towards the interval boundaries. But a steep decay nece
ily yields a significant contribution to the derivative operat
p and the calculation of (Dp)25^p2&2^p&2.

Technically, the phenomenon is related to the fact thap
is an unbounded operator, as discussed e.g. in@15,16#.

This type of unsharp operator actually occurs frequen
For example, as a little thought shows, the angular resolu
of optical images is the resolution of the photon moment
in the direction parallel to the opening of the optical instr
ment. Thus, the aperture induced unsharpness of images
example from a telescope, is technically the unsharpnes
the momentum of a particle in a box.

Also, for example the uncertainty in the time resolution
band-limited electronic signals reduces to this case@9#.

Most interestingly, there are also indications that unsh
degrees of freedom of this type occur with the description
space-time at the Planck scale, where, as is well kno
various theoretical arguments have long indicated that sp
time displays a fundamental ‘‘foaminess’’~see@17#! or un-
sharpness.
7-2
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In particular, several studies, see e.g.@2–5,18–23# sug-
gest that the structure of space-time at the Planck scale
the string scale, is characterized effectively by correct
terms to the uncertainty relations and, in particular, by c
rections of the type

DXDP>
\

2
@11k~DP!21•••#. ~6!

As is easily verified, for anyk.0, Eq. ~6! implies the exis-
tence of a finite lower bound forDX, namely

DXmin5\Ak. ~7!

Technically, it is clear that any operatorX which obeys this
type of uncertainty relation, in whichever theory, cannot p
sess eigenvectors since, by Eq.~1!, the uncertaintyDX
would vanish for eigenvectors. Thus, any suchX is merely
symmetric.

Here,k is assumed to be a small positive constant wh
is related to the Planck scale or, in string theory, to the str
scale. It has been shown that this type of cutoff could so
the trans-Planckian energy paradox of black hole radiat
see@24#. For general reviews of quantum gravity and stri
theory motivations of Eq.~6! see e.g.@4,5,25#. For a path
integral approach to this type of modified uncertainty re
tions see@26#.

A practical general characterization of this type of u
sharp degree of freedom was first given in@1#: Namely, this
type of unsharp degrees of freedom possesses a finite l
boundDQmin on DQ which can bê Q& dependent; i.e., there
is a functionDQmin(q) such that

DQuc&>DQmin~^cuQuc&! ~8!

for all uc&PDphys. Intuitively, if such aQ were a position
operator in nonrelativistic quantum mechanics, the interp
tation would be thatQ describes a space on which the po
tion of a particle can be resolved only to a limited precisi
and that this limit can in general depend on the posit
where one tries to localize the particle along theQ coordi-
nate.

Finally, let us also recall the precise definition of this ty
of unsharp degrees of freedom, as given in@1#. Namely, such
Q are simple symmetric operators whose so-called deficie
indices d6ªdim((Q6 i1)DQ)' ~see e.g.@29#! are equal,
d15d2 . For lack of a better name, the type of unsharpn
described by these operators was called fuzzy A. The o
other type of unsharp real degree of freedom—represe
by simple symmetric operators whose deficiency indicesd6

are unequal—might be called fuzzy B. Concrete example
fuzzy B type degrees of freedom arise for example in op
from diffraction at an edge.

B. Unsharpness from kinematics and dynamics

Let us briefly consider the general circumstances in wh
unsharp degrees of freedom can occur.

To this end, let us assume thatSandT are two self-adjoint
operators which do not commute, such asx andp, or such as
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the noncommuting coordinates which have recently b
much discussed; see e.g.@27,28#. The corresponding uncer
tainty relation

DSDT>
1

2
u^@S,T#&u ~9!

implies of course that, if say@S,T#5 i1, and if we know for
example thatDT is smaller than some value, sayDT
<tmax, then DS cannot be made arbitrarily small but po
sesses instead a finite lower bound:DS>1/2tmax. For ex-
ample, the recently discussed UV/IR connection in nonco
mutative geometries is of this form. But how can th
fuzzyness ofS be compatible with the fact that self-adjoin
operators canalwaysbe resolved to arbitrary precision?

The reason is that to requireDT<t0 is to restrict the
Hilbert space to only those vectors for whichDT<t0 holds
true. On this sub-domain, the restriction of the operatorS is
not self-adjoint—it is merely symmetric.

The example illustrates that the noncommutativity of o
erators induces an interplay between their domains wh
then affects whether these operators are self-adjoint
merely symmetric. While this seems obvious, let us howe
also point out that not only the kinematical commutati
relations between operators, but in the same way also
dynamical operator equations of motion affect the doma
of the operators involved. Thus, it appears that there ia
priori no reason to exclude the possibility that, for examp
in a fundamental theory of quantum gravity, the sharpnes
unsharpness of real degrees of freedom, such as thos
space-time, can also varydynamicallyby this mechanism.

III. EXAMPLES OF THE GENERATING OF UNITARIES

Our aim now is to clarify whether or not symmetric op
erators, while possessing the interesting ability to desc
unsharp real degrees of freedom, are also able to play a
in the generating of symmetries.

We will address this problem for the class of simple sy
metric operators which describe fuzzy-A type short-distan
structures, i.e. which have equal deficiency indices, and
will find the following:

For each simple symmetric operatorX with equal defi-
ciency indices, acting on a physical domainDphys which is
dense in a Hilbert spaceH, there exists a family of self-
adjoint operatorsX(a) which coincide withX on the physi-
cal domain. We will prove that these operatorsX(a), to-
gether, generate even the full unitary group of the Hilb
space. Let us first discuss this phenomenon for the sim
example of the momentum operator of the particle in a b
versus the case of the particle on the full real line.

For a particle residing on the entire real line the operat
x andp are of course self-adjoint and can be exponentia
to yield unitaries: The operatorsx andp are represented ir
reducibly as the self-adjoint multiplication and differenti
tion operatorsx•c(x)5xc(x) andp•c(x)52 i ]xc(x) act-
ing on a dense domain in the Hilbert spaceH of square
integrable wave functionsc(x) over the real line and, as i
well known,x andp, together, generate all unitary operator
7-3
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ACHIM KEMPF PHYSICAL REVIEW D 63 024017
U on the Hilbert spaceH, via the Weyl formula

U5E E dsdt

2p\
u~s,t !exp@ i ~sx1tp!/\#. ~10!

Theu(s,t) are suitable complex-valued functions. In fact,
bounded operatorsBPB(H) can be generated in this way.

On the other hand, we can also representx andp reduc-
ibly, for example, as the self-adjoint multiplication and d
ferentiation operators

x•c i~x!5xc i~x! and p•c i~x!52 i ]xc i~x! ~11!

acting on a Hilbert space of wave functionsc i(x) on the real
line which then possess an additional ‘‘isospinor’’ inde
running i 51, . . . ,n.

The scalar product of wave functions then contains
iso-sum:

^cuf&5(
i 51

n E
2`

`

dxc i* ~x!f i~x!. ~12!

Clearly,x andp are acting diagonally in the isospinor spac
Therefore,x andp do not generate theU(n) of the isorota-
tions. Thus, in this case, the Weyl formula, Eq.~10!, does not
yield all bounded operators; nor does it yield all unitaries
the Hilbert space. Only if we supplemented the operatorx
andp by additional Hermitiann3n matrices,Ti , could we
generateU(n) on the isospinor space and therefore all
B(H).

Let us now consider the case where the particle is c
fined to the interval@2L,L#. As we saw above, the momen
tum operatorp52 i ]x is then no longer self-adjoint and it i
instead simple symmetric of type fuzzy A. What differen
does this make?

Our proposition in this case is that there exists a o
parameter family of self-adjoint operatorsp(a), say (0<a
,2p), such that

~i! eachp(a) coincides withp on the physical domain
i.e.

p~a!uc&5puc& for all uc&PDphys,

~ii ! the p(a), together,~weakly! generate the algebraB(H)
of bounded operators on the Hilbert space, which include
course the full unitary group onH.

Indeed, we claim that, unlike in the Weyl formula, th
operatorx is now no longer needed to generateB(H), be-
cause the operatorsp(a) alone already generat
B(H)—even though eachp(a) coincides with p on the
physical domainDp , which is dense in the Hilbert space. W
will also consider the case where the wave functions of
particle in the box carry an isospinor index: then,p is again
simple symmetric of type fuzzy A and our lemma applie
We then claim that there exists a multi-parameter set of s
adjoint operatorsp(u), which again all coincide withp on
physical states and which generate all ofB(H). This means
that there is no need to introduce isospin rotation genera
Tj by hand, since thep(u) are able to generate all: transl
tions, phase rotations and isorotations.
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A. Scalar case

We show this first for a scalar particle in a box, i.e. wit
out an isospinor index.

As discussed above, the momentum operatorp, acting as
p•c(x)52 i ]xc(x) on the physical wave functionsc
PDphys over the interval, is a simple symmetric operato
Although all physical wave functions vanish at the bounda
they are a dense set in the Hilbert space of square integra
Dphys5H5L2(2L,L).

Let us now construct a family of operatorsp(a) which
coincide withp on the physical domainDphys, but whose
domain is larger and who are self-adjoint on this larger d
main. This is simple functional analysis: The operatorsp(a)
are obtained by extending the domainDphys such as to in-
clude wave functions which are periodic up to a phase

c~2L !5eiac~L !. ~13!

For each arbitrary fixed phaseeia the boundary terms of the
partial integrations in the equation̂ c1u(p(a)uc2&)
5(^c1up(a))uc2& vanish. This makesp(a) self-adjoint with
an eigenbasis of plane wavescn

(a)(x) which obey the corre-
sponding boundary condition:

cn
(a)~x!5eivnx where vn5

2pn2a

2L
, nPZ.

~14!

What are the implications for the generating of unitarie
Were the wave functions not restricted to the interval,p
would be self-adjoint andp could be exponentiated to obtai
a unitary operator, sayU(a)ªexp(iap), for some a>0,
whose action is of course to translate wave functions by
amounta to the right:

U~a!•c~x!5ea]xc~x!5c~x1a!. ~15!

In the case where the particle is confined to the box, ho
ever, i.e. where the Hilbert space only consists of wave fu
tions on the interval, the operatorp is not self-adjoint and
cannot be exponentiated: The formal expressionU(a)
5exp(iap) is now not a unitary transformation, because
would translate beyond the interval boundaries, which is
defined in the Hilbert space.

Nevertheless, for the particle in a box, there exists, as
saw, a whole family of self-adjoint extensionsp(a) of p.
Since eachp(a) is self-adjoint, each can be exponentiat
and the resulting operator

Ua~a!ªexp@ iap~a!# ~16!

is unitary. Are these unitaries translating wave functions
yond the interval boundaries? The action ofUa(a) on wave
functions is indeed again to translate wave functions to
right ~say for a.0), as in Eq.~15!. Now, however, as a
result of the boundary condition, Eq.~13!, the part of the
wave function which would be translated beyond the rig
interval boundary reappears into the interval from the le
with the same modulus, but phase shifted by the phaseeia.

Crucially now, the product
7-4
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UNSHARP DEGREES OF FREEDOM AND THE . . . PHYSICAL REVIEW D 63 024017
Ua8~2a!Ua~a! ~17!

is a unitary operator which does not translate wave functio
This is because the first factor translates bya and the second
factor translates back by the same amount. Neverthe
since the two factors translate with different phase shifts,
product is not the identity operator. Namel
Ua8(2a)Ua(a) is the unitary operator whose action is
leave the modulus of wave functions unchanged, but
phase shift the wave functions on a part of the interval.

E.g., choosing someaP@0,2L#, the action is

Ua8~2a!Ua~a!•c~x!

5H c~x! for xP@2L,L2a#,

ei (a2a8)c~x! for xP@L2a,L#.
~18!

By suitable composition of operatorsUa(a) for various a
and a it is therefore possible to generate unitaries wh
yield arbitrary local phase rotations of wave functions.

For example, we can in this way compose an opera
which phase rotates wave functions byeia in an interval
@L2a,L2a1b# ~where 0,b,a,2L), and leaves the
wave functions invariant outside that interval:

Ua„2~a2b!…U0~2b!Ua~a!•c~x!

5H c~x! for xP@2L,L2a#ø@L2a1b,L#,

ei (a)c~x! for xP@L2a,L2a1b#.

~19!

Thus, remarkably, the set of self-adjoints which coinc
with p on the physical domain is able to generate all tra
lationsandalso all local phase rotations, while we recall th
in the case wherep is self-adjoint, the operatorx is needed
order to generate local phase rotations, namely thro
ei f (x)c(x)5ei f (x)c(x).

B. Case with isospin

We consider again a particle constrained to the inter
@2L,L#. The particle’s wave functionc i(x) shall now carry
an isospinor indexi 51, . . . ,n. The scalar product in the
Hilbert space of square integrables on the interval then
cludes an iso-sum:

^cuf&5(
i 51

n E
2L

L

dxc i* ~x!f i~x!. ~20!

Because of the box potential, the physical wave functio
uc&PDphys, again obey the boundary condition

c i~2L !505c i~L ! ~ i 51, . . . ,n!. ~21!

The action of p is diagonal in iso-space:p•c i(x)5
2 i ]xc i(x). Again, there are no plane waves in the physi
domain and therefore the momentum operator on the ph
cal domain is not self-adjoint. Instead,p is simple symmetric
@with deficiency indices (n,n)#. Self-adjoint extensionsp(u)
02401
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are now obtained by enlarging the domain ofp to include
wave functions which obey the boundary condition

c i~2L !5(
i 51

n

ui j c j~L ! ~22!

whereui j is any unitaryn3n matrix, generalizing the phas
eia of the scalar case above. As is readily checked, the p
of self-adjointness of thep(u) requires again the cancellatio
of the boundary terms which arise through the partial in
grations needed to show that„^cup(u)…uf&5^cu„p(u)uf&…,
and this cancellation is achieved exactly by the bound
conditions of the form of Eq.~22!.

As in the scalar case, whilep does not directly yield uni-
taries, each of the self-adjointp(u) which reduce top on the
physical domain does generate unitaries, e.g. by expone
tion (a real!:

Uu~a!ªeiap(u). ~23!

The unitariesUu(a) again act on wave functions by transla
ing them by the amounta, and, because of the self-adjoin
extension’s boundary conditions, any part of the wave fu
tion which hits a boundary reappears from the other side
the interval, now iso-rotated by the matrixu ~or by u21 if a
is negative!.

It is possible to proceed as in the scalar case, compo
such unitaries to translate the wave functions back and fo
using different self-adjoint extensions. It is clear that in th
way arbitrary local isorotations can be generated.

Thus, the set of self-adjoint operators which reduce top
on the physical domain indeed generates not only tran
tions but also arbitrary local phase rotations and—if an is
pinor index is present—then they even generate all local
rotations.

Let us remark thatp has this property of course no matt
how largeL, is i.e. no matter how smallDpmin is, as long as
they are finite. Changing context, this means that for
ample position coordinatesX in a theory of quantum gravity
with some unmeasurably small but finite fuzzinessDXmin
would be able to in this sense provide also the generatorTi
of isorotations in the Hilbert space on which they act. Th
perhaps indicates the possibility of a mechanism by wh
internal degrees of freedom could arise from Planck sc
structure.

IV. GENERAL CASE

Let us begin by clarifying the definitions: A symmetr
operatorX is calledsimple symmetricif X is not self-adjoint
and if it possesses no invariant subspace such that the re
tion of X to this subspace yields a self-adjoint operator. O
examples above are simple symmetric. Further, we re
that theCayley transformedoperatorS of a symmetric op-
eratorX, defined as

Sª~X2 i1!~X1 i1!21, ~24!

is isometric. An isometric operator is calledsimple isometric
if it cannot be reduced to an invariant subspace such tha
7-5
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reduced operator is unitary. It is known that a subspace
duces a symmetric operatorX if and only if it reduces its
Cayley transform; see, for example,@29#. Note, however,
that not every isometric operator is the Cayley transform o
symmetric operator.

Now a precise statement of our claim is the following:
Lemma.Let X be a closed simple symmetric operator w

equal deficiency indices, defined on a domainDX which is
dense in a complex Hilbert spaceH. Then, the self-adjoint
extensionsX(a) of X generate a* -algebra A which is
weakly dense inB(H). Thus, in particular, the self-adjoin
extensions generate the full unitary groupU(H) of the Hil-
bert space.

The full proof is given in Appendix A. To summarize, th
proof begins by using theX(a) to generate a suitable setM
of unitaries, which in turn generate an algebraA. The main
part of the proof is then to show that the commutantA8 of
the algebraA is A85C1. This implies that its double com
mutant isA95B(H). The lemma then follows since, wit
von Neumann~see, e.g.,@37#!, the double commutant of an
* -algebra is its weak closure.

V. CONCLUSIONS AND OUTLOOK

We discussed that real degrees of freedom which are
scribed by linear operators can only be self-adjoint, in wh
case they are ‘‘sharp’’ entities—or they are merely symm
ric, in which case they display one of two types of ‘‘unshar
ness.’’

We then considered the problem that self-adjoint ope
tors physically often play an important double role, nam
both representing a real degree of freedom and also actin
a generator of unitary transformations—while merely sy
metric operators are known not to generate unitaries i
straightforward way.

This led us to investigate whether and to what extent
operators which arise with the description of ‘‘fuzzy’’ de
grees of freedom are also able to generate unitary trans
mations.

Studying the class of unsharp degrees of freedom of
type fuzzy A ~i.e. those described by operators with equ
deficiency indices! we found that these possess a remarka
property:

For any such symmetric operatorX defined on some
physical Hilbert space domainDphys there is always a set o
self-adjoint operators which coincide withX on Dphys, and
which together generate all unitaries in the Hilbert space.
conclude that, in this way, at least the operators of type fu
A can play a role in all aspects of symmetries in the Hilb
space in which they act.

This result applies quite generally because we did
make any further technical or physical assumptions ab
these unsharp degrees of freedom or about the phy
theory in which they occur.

We are covering, for example, the case of the ma
model for M theory~see e.g.@30#!, which employs symmet-
ric operators,Xi , to encode space-time information. In th
case, the matrix elements of theXi are interpreted in terms o
coordinates of D0-branes. Initially, theXi are finite dimen-
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sional, sayN3N matrices. The quantization and the nece
sary limit N→` are highly nontrivial, but it is clear that the
resulting operators will still be at least symmetric. The sho
distance structure which they describe will therefore fall in
one of the types which we discussed. If these operators
found to be of type fuzzy A, then our present results sh
how they relate to the unitary group of the Hilbert space
which they act.

Also studies in the context of quantum groups~see e.g.
@31,32#! and in the wider field of noncommutative geomet
have yielded new approaches to building models for spa
time at the Planck scale~see e.g.@33–35#!, some of which
are related to string theory~see e.g.@27,28,36#!. As far as
these models of space-time use linear operators to des
real entities such as coordinates, which they of course u
ally do, we are covering these operators. It should be in
esting to investigate our present results in those contexts
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APPENDIX A: PROOF OF THE LEMMA

We begin by choosing a suitable set of unitaries which
generated by the self-adjoint extensionsX(a) of X. To this
end, consider the isometric Cayley transformS of X,

Sª~X2 i1!~X1 i1!21, ~A1!

with domain

DS5~X1 i1!DX . ~A2!

We define thelocal groupT as the set of all unitaries which
map the deficiency spaceDS

'5„(X1 i1)DX…
' onto itself and

which act as the identity onDS , i.e.

Tª$TuT:DS→DS ,T:DS
'→DS

' ,TuDS
51,TT†5T†T51%.

~A3!

It is clear that the local group,T, is isomorphic to the unitary
groupU(n), wheren is the deficiency indexnªdim(DS

').
Since, by assumption, both deficiency indices are eq

i.e. both spaces

L65„~X6 i1!DX…
' ~A4!

are of equal dimension, there exist unitary extensions ofS.
Let U be one of the unitary extensions ofS:

U†U5UU†51, U:L1→L2 , U uDS
5S. ~A5!

We consider now the coset

Mª$M uM5UT,TPT% ~A6!

of unitary extensions ofS.
Indeed, as is well known, each unitary extension of

Cayley transformS of a symmetricX, i.e. here each elemen
7-6
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of M is indeed generated, via the Cayley transform, b
self-adjoint extensionX(a) of X.

We will now show that the* -algebraA generated byM
is weakly dense inB(H). As mentioned, this follows from
von Neumann’s double commutant theorem if we can pr
that only multiples of the identity operator commute wi
M, i.e. with U and all elements ofT.

To this end, let us consider an operatorV which obeys

iVi,` and @V,U#505@V,T#, ; TPT. ~A7!

We need to show thatV is a multiple of the identity operator
Since the closure ofX implies the closure of the defi

ciency spaceDS
' and ofDS , we can useH5DS% DS

' to write
V and the elementsTPT in block form:

T5S 1 0

0 t D , V5S VDSDS
VDSD

S
'

VD
S
'DS

VD
S
'D

S
'
D . ~A8!

Here, t5TuD
S
', i.e. t:DS

'→DS
' and, e.g.,VDSD

S
':DS

'→DS . In

this notation,@T,V#50 reads

S 0 VDSD
S
'~12t !

~ t21!VD
S
'DS

@ t,VD
S
'D

S
'# D 50. ~A9!

Equation~A9! holds for allTPT, and in particular it holds
for unitariest:DS

'→DS
' for which the value 1 is a regula

point, e.g.t521. Thus,VDSD
S
'50 andVD

S
'DS

50.

Further,T is the full unitary group onDS
' . It is therefore

irreducibly represented onDS
' . Thus, @ t,VD

S
'D

S
'#50,;t im-

plies with Schur~see, e.g.@37#! that V acts onDS
' as a mul-

tiple of the identity, i.e.VD
S
'D

S
'5l1 wherelPC. In block

matrix form,V therefore reads

V5S VDSDS
0

0 l1
D . ~A10!

Consider now the kernel

Kªker~V2l1!. ~A11!

By construction,DS
',K and K',DS . As the kernel of a

closed operator,K is closed. We wish to show that in fac
K5H andK'5B, which is to say thatV5l1.

To this end, let us assume the opposite, namely thatK'

ÞB.
We can then useH5K'

% K to write bothV andU in a
new block form:

V5S VK'K' 0

VKK' l1D , U5S UK'K' UK'K

UKK' UKK
D . ~A12!

The relation@V,U#50 now reads

S ••• ~VK'K'2l1!UK'K

••• VKK'UK'K
D 5S 0 0

0 0D . ~A13!
02401
a

e

On the other hand,UK'KK,K'; i.e., the range ofUK'K is
not in the kernel of the operator (V2l1):

~V2l1!uw&5S (VK'K'2l)uw&

VKK'uw&
DÞ0, ;uv&Þ0,uv&

PUK'KK .

~A14!

Thus, the existence of any nonzero vectoruw&PK' in the
rangeUK'KK would contradict Eq.~A13!. Consequently, the
range ofUK'KK is empty, i.e.UK'K50.

Therefore,K is an invariant subspace forU. Since also
@U21,V#50, it follows analogously thatK is an invariant
subspace forU21. Thus,K andK' both reduceU:

U5S UK'K' 0

0 UKK
D . ~A15!

SinceU uDS
5S andK',DS , we haveUK'K'5SK'K'. This

implies thatK' is an invariant subspace forS, on whichS is
unitary. However, the simplicity ofX implies that alsoS is
simple; i.e.,Sdoes not have any invariant subspace on wh
it would be unitary.

Thus, in fact,K'5B andK5H. Consequently,V5l1,
which had to be shown.

With von Neumann this implies that the weak closure
the *-algebraA generated by 1,U and the elements ofT is
the algebraB(H) of all bounded operators on the Hilbe
space, andB(H) includes of course all unitaries. We reca
that this means that for each bounded operatorBPB(H)
there exist sequences of operatorsBnPA such that

lim
n→`

^cuB2Bnuf&50 ;uc&, uf&PH.

Thus, for any simple symmetricX with equal deficiency
indices the set of self-adjoint operators which coincide w
X on its domain generate indeed~e.g. via generating the
cosetM) the full unitary group of the Hilbert space.

APPENDIX B: A COROLLARY

As we mentioned before, in finite dimensional Hilbe
spaces every symmetric operator; i.e., every operator wh
expectation values are real, i.e. every matrix obeyingXi j

5Xji* , is also self-adjoint. Therefore, in finite dimension
Hilbert spaces, there are no simple symmetric operators;
our lemma cannot be applied.

Let us add, however, that the above proof yields a
corollary that any simple isometric operator with equal de
ciency indices has the property that its unitary extensio
together, generate all unitaries andB(H). And indeed, there
exist simple isometric operators also in finite dimensio
Hilbert spaces.

As an illustration, let us consider the simple case of
two dimensional Hilbert space spanned by normalized v
tors e1 ,e2. We define a linear operator,S, as the map which
mapsS:e1→e2. Clearly,S is not unitary, because of its lim
7-7
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ited domainDSªCe1 and rangeCe2. Also, Sdoes not have
any invariant proper subspace.S is norm preserving where i
is defined. Thus,S is a simple isometric operator. The dime
sions of its deficiency spaces, i.e. of the orthogonal com
ments of its domain and range, are both 1; i.e., they
equal. Thus,S is an operator to which the corollary of ou
lemma applies. The claim is that the unitary extensions oS
generate all 232 matrices, including of course the unitarie

To see this, we begin by choosing one unitary extens
U of S, e.g.

U5S 0 1

1 0D . ~B1!

The elementsT(a) of the local groupT of all unitaries
which act as the identity onDS and which act as a unitary o
DS

' are of the form

T~a!ªS 1 0

0 eiaD ~B2!
ck
o.

r,

a-

02401
e-
re

n

whereeia is any arbitrary phase. Thus, each unitary exte
sion of S is of the form UT(a) for somea. Indeed, the
algebra generated by 1,U and the unitary extensionsT(a)
are all ofM2(C), as is clear because it contains for examp
the Pauli matrices:

s15U, s25 iUT~p!, s35T~p!. ~B3!

We also observe that the inverse Cayley transformX of S
does exist,

X5 i ~S11!~S21!2152 i S 1 0

2 1D , ~B4!

but is not symmetric, which demonstrates, as we mention
that the inverse Cayley transform of a simple isometric o
erator is not necessarily simple symmetric.
D
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