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While real degrees of freedom are usually described by operators which are self-adjoint, there are exceptions
described by merely symmetric operators. It has been shown that such exceptional degrees of freedom gener-
ally display a form of “unsharpness.” Various studies in quantum gravity indicate that the widely expected
unsharpness of space-time at very short distances can be described by such operators. It is also known,
however, that unlike self-adjoint operators, merely symmetric operators do not generate unitary transforma-
tions, at least not straightforwardly. This raises the question of whether merely symmetric operators are able to
play the important double role which self-adjoint operators often play, namely, both to represent a real degree
of freedom and also to act as a symmetry generator. Here, we answer this question for a large class of
symmetric non-self-adjoint operataxs We show that operators which coincide with suchXaon the physical
domain are even able to generate the entire unitary group of the Hilbert space.
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I. INTRODUCTION speaking, one type of unsharp degree of freedom has no
(proper nor impropgreigenvectors, and the other type has
As a rule, real degrees of freedom are described in quari‘eigenvectors” which, however, are not orthogonal.
tum theory through operators which are self-adjoint. But But do such unsharp real degrees of freedom actually oc-
there are exceptions to the rule. This is because the basiur? As will be explained in the next section, they do occur
quantization requirement that a real degree of freedom of abiquitously from simple quantum mechanical examples to
classical theory become an opera@rwhose expectation even applied circumstances, such as in microscopy, in elec-
values(Q) are real does not strictly require th@tbe self-  tronic communication, and, most interestingly, apparently
adjoint. An operator whose expectation values are real igalso in theories of quantum gravity such as string theory.
merely what is called a symmettioperator. This need not be surprising, however, due to the generality
A crucial property of merely symmetric operators is thatof the argument:Any degree of freedom, in whichever
they are not diagonalizable. As a consequence, a commaheory, if described by a linear operator whose expectation
feature of degrees of freedom which are described by merelyalues are real, can only be self-adjoint or merely symmetric,
symmetric operators is that they are “unsharp” or “fuzzy,” and it can therefore only be sharp or unsharp in the sense
as opposed to self-adjoint operators, which always describ&hich we just discussed.
degrees of freedom which are absolutely “sharp”: Namely, This applies, in particular, to any real space-time coordi-
every real degree of freedom described by a self-adjoint oprate which is described by a linear operaXgrin any can-
eratorQ is of course sharp in the sense ti@ipossesses a didate quantum gravity theory. Every such coordingtean
spectral resolution, or “eigenbasis,” and that for its eigen-only be either discrete or continuous, namelyXifis self-

vectors|q,) the uncertainty irQ vanishes, adjoint with a discrete or a continuous spectrum respectively
B or the coordinate is unsharp in one of two ways, namek; if
AQ(|gn))=0, D) is merely symmetric.

In studies in quantum gravity such unsharp coordinates
have indeed appeared, in particular in string theory and in
AQ(|4)) =(|(Q—(|Q|4))?| )2 2) noncommutative geometry; see e[@—6]. The ultraviolet
regularity of simple quantum field theories over specific
Of course, also whenq is in the continuous spectrurh\Q  choices of such unsharp coordinates was demonstrated in
can be made arbitrarily small. [7,8]. Recently, the ultraviolet properties of fields over one
On the other hand, when an operafpis merely symmet-  of the two types of unsharp coordinates was studied in full
ric and therefore not diagonalizable, then this implies thagenerality in[9]. It was found that fields over such coordi-
there is an obstruction to precisely determining the physicahates are always continuous fields, but also that they are
qguantity which this operatoQ represents. As was first fields with ultraviolet regular properties much like fields over
pointed out in[1] such degrees of freedo@ are therefore lattices. Namely, such fields are determined everywhere if
always “unsharp” in one of two ways. We will give a proper known only on any one of a set of lattices with a certam
definition of the two types of unsharpness later. Roughlygeneral irregulgrminimum spacing.
Interestingly, recent studies indicate that models of the
structure of space-time at the Planck scale might conceivably

with the usual definition, for normalized),

*Email address: kempf@phys.ufl.edu be put to experimental tests in the foreseeable future:
'Recall that self-adjointness and symmetry coincide only in finite For example, one of the successes of inflationary cosmol-
dimensional Hilbert spaces. ogy is that it predicts a spectrum of density perturbations
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which matches the current experimental evidence. Crucially, (lply)eR, forall |¢p)eDpypys. 4
however, inflationary models tend to inflate to the extent that

initially sub-Planckian scales become cosmological scaleg»hus p is a symmetric operator. On the other hand, plane

e Ve o o oey he bouncay condion, 5, Ths
yPp P P 9 goes not possess(normalizable or nonnormalizable

under changes in the assumed structure of space-time at the o . L
; : U eigenvectors—which implies that is not self-adjoint but
Planck scaldapparently unlike Hawking radiation; see e.g. . X L
) . .only symmetric. One can show thais not even self-adjoint
[24]). The experimental data on the perturbation spectrum, in : . . ;
. . . on any invariant subspace, which means fhé a so-called
particular from cosmic microwave backgrouf@MB) ob-

. . 9 simple symmetrioperator.
servations, are set to further improve significantly. .
; . . But even though the plane waves are not physical states,
In a different development it was also pointed dsée

e.g.[12,13) that the existence of large extra dimensions indue to the boundary condition, one may wonder Whether this
which only gravity propagates could effectively bring the really matters, because one can of course approximate plane
Planck scale down from T6° m to possibly just above the ave> by sequences of physical states which are plane waves
scale of 108 m which is currently accessible through ac- within most of the interval —L,L] and which decay to zero
celeratorgthough this framework does not predict the actuaItOW""rqS the boundaries, such as to always obey the boundary
value of the new Planck scale condition, Eq.(3).

Here, our aim will not be to try to already match theory ., One may therefore be tempted to believe thais stil

and experiment but rather to address a fundamental theore approximately” self-adjoint and should therefore describe

) . . ) . 3 sharp entity. This is, however, not the case. Namely, since
ical problem which necessarily arises with unsharp degreegX is bounded from above by the finite size of the box, we

gr;r.eedom that are described by merely symmetric OPeratan expect 'from the uncertain.ty relation that the minimum

Namely,a priori, it appears that merely symmetric opera- unpertalnty n momenturﬁpmm is larger than £ET0. Indeed,
tors fail to be able to play the important double role whichP 'S unsharp in the sense thaF for. all physical staigs
self-adjoint operators often play, namely a role both as a reaf DP“.VS the_ mome”t“m uncertainty is bounded from below
degree of freedom and a role as a generator of unitary tran y a fixed finite amount,
formations. For example, from a self-adjoint operaXowe
can obtain unitary operators such as [@x§X)T'] which
might stand for local gauge transformations. It is known that
merely symmetric operators cannot be exponentiated in this 5)
way.

Here, we will address this problem for one of the o a5 s readily verified by a variational calculation; see e.g.
types of unsharp degrees of freedom. We will find that any14). Thus, perhaps surprisingly, while a sequence of physi-
such symmetric operatot, defined on some physical Hilbert ca| wave functions can approximate a plane wave, the corre-
space domairDy,s, does generate unitaries, though in asponding sequence of the states’ uncertainty in momentum
subtle way: for each sucK there exists a family of self- cannot converge to zero.
adjoint operators{X(u)} which coincide with X on the Intuitively, the reason is that the larger the part of the
physical domainD, s and which generate unitaries in the interval on which a physical wave function approximates a
usual way. We will find that those operatdkgu) are gen-  plane wave, the steeper the wave function must decay to zero
erating the entire unitary group of the Hilbert space. towards the interval boundaries. But a steep decay necessar-

Given the generality of the result that we aim at, we needly yields a significant contribution to the derivative operator
to be as precise as possible about the assumptions and whahnd the calculation of4p)?=(p?) — (p)2.
follows from them. Therefore, after reviewing how unsharp'  Technically, the phenomenon is related to the fact that
degrees of freedom arise and after giving concrete and dgs an unbounded operator, as discussed e.fL5016].
tailed examples of our claim, the main result will be formu-  Thjs type of unsharp operator actually occurs frequently.
lated as a mathematical lemma, the proof of which, togethegor example, as a little thought shows, the angular resolution
with a corollary, we will give in the Appendices. of optical images is the resolution of the photon momentum
in the direction parallel to the opening of the optical instru-

Il. UNSHARP DEGREES OF FREEDOM ment. Thus, the aperture induced unsharpness of images, for
A. Examples example from a telescope, is technically the unsharpness of

the momentum of a particle in a box.

S Also, for example the uncertainty in the time resolution of

band-limited electronic signals reduces to this d&ge

Most interestingly, there are also indications that unsharp
degrees of freedom of this type occur with the description of
space-time at the Planck scale, where, as is well known,

Ap(zﬁ)?Apmin:% for all normalized |¢)eDppys,

A simple example of an unsharp degree of freedom i
given by the momentum operatpe= —id, of a particle in a
box, say in the one-dimensional interjatL,L]. Because
of the confining box potential, all physical wave functions
#(X) e DppyCH= L2(—L,L) vanish at the boundary:

W(—L)=0=g(L) &) various theoretical arguments have long indicated that space-
' time displays a fundamental “foamines$%ee[17]) or un-
The expectation values @f are real: sharpness.
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In particular, several studies, see €.8-5,18-23 sug- the noncommuting coordinates which have recently been
gest that the structure of space-time at the Planck scale, onuch discussed; see e[@7,28. The corresponding uncer-
the string scale, is characterized effectively by correctiortainty relation
terms to the uncertainty relations and, in particular, by cor-

rections of the type E
ASAT=Z[([S,T])| ©

h
—_— 2 DY
AXAP= 2 [1+k(aP)™---]. ®) implies of course that, if sayS,T]=i1, and if we know for

. _ - o . example thatAT is smaller than some value, sayT
As is easily verified, for ank>0, Eq.(6) implies the exis- <t .. thenAS cannot be made arbitrarily small but pos-

tence of a finite lower bound fakX, namely sesses instead a finite lower bourtdS=1/2t,,,,. For ex-
ample, the recently discussed UV/IR connection in noncom-
AXmin=7k. (7)  mutative geometries is of this form. But how can this

. L . . fuzzyness ofS be compatible with the fact that self-adjoint
Technically, itis clear that any operat¥rwhich obeys this  ,herators camliwaysbe resolved to arbitrary precision?

type of uncertainty relation, in whichever theory, cannot pos- The reason is that to requirAT<t, is to restrict the

sessldeigenvhecf:tors_ since, by E_(I_qr']) the uncerr;[:intyA)r Hilbert space to only those vectors for whidiT<t, holds
would vanish for eigenvectors. Thus, any sihs merely 6 on this sub-domain, the restriction of the oper&is

symHmetrll(c_. dtob I . hi hnot self-adjoint—it is merely symmetric.
ere,k Is assumed to be a small positive constant which 1o example illustrates that the noncommutativity of op-

is related to the Planck scale or, in string theory, to the Strin%rators induces an interplay between their domains which

scale. It has been shown that this type of cutoff could solvqhen affects whether these operators are self-adjoint or

the trans-Planckian energy paradox of black hole radiation,q e\ symmetric. While this seems obvious, let us however
see[24]. For general reviews of quantum gravity and string 5156 noint out that not only the kinematical commutation
theory motivations of Eq(6) see e.g[4,5,25. For a path

. ; A , relations between operators, but in the same way also the
integral ;pp]roach to this type of modified uncertainty re"""dynamical operator equations of motion affect the domains
tions seq 26].

. o . of the operators involved. Thus, it appears that thera is
A practical general characterization of this type of un-

haro d t froed p X ] . thi priori no reason to exclude the possibility that, for example
sharp degree of freedom was first giver{ i Name Y, this i 3 fundamental theory of quantum gravity, the sharpness or
type of unsharp degrees of freedom possesses a finite low

: . ﬁﬁsharpness of real degrees of freedom, such as those of
_boundAQ_mm onAQ which can bgQ) dependent; i.e., there space-time, can also vadynamicallyby this mechanism.
is a functionAQnin(q) such that

AQ\¢>>AQmin(<¢|Q| b)) (8) IIl. EXAMPLES OF THE GENERATING OF UNITARIES

- . - Our aim now is to clarify whether or not symmetric op-
for all D . Intuitively, if such aQ were a position . . . : 2 :
|#) € Dphys y Q P erators, while possessing the interesting ability to describe

operator in nonrelativistic quantum mechanics, the interpre
tation would be tha®) describes a space on which the pOSi_!Jnsharp real degrees of freedom, are also able to play a role

tion of a particle can be resolved only to a limited precision'n tVr:/e ggnergm(tjmg ofhs.ymm(;rles.f he cl f simol
and that this limit can in general depend on the position /& Will address this problem for the class of simple sym-

where one tries to localize the particle along tBecoordi- metric operators V‘.’hiCh describe fUZZY'.A type short-distance
nate structures, i.e. which have equal deficiency indices, and we

Finally, let us also recall the precise definition of this typeWi”Fﬁnd thehfol_lowling: . rwith | defi
of unsharp degrees of freedom, as givefilih Namely, such . or ?‘ZC. Simpie symmetnhc qpelre(lj rw£ equ?. he."
Q are simple symmetric operators whose so-called deficienc iency indices, acting on a physica domaiynys Which 1S
indices d.. :=dim((Q=i1)Dy)" (see e.g[29]) are equal ense in a Hilbert spackl, there exists a family of self-
d,=d_. For lack of a better name, the type of unsharpnes&dioint operator(a) which coincide withX on the physi-
described by these operators was called fuzzy A. The oni§@ domain. We will prove that these operatotga), to-
other type of unsharp real degree of freedom—represent ther, generate even the fuI_I unitary group of the H|I_bert
by simple symmetric operators whose deficiency indites space. Let us first discuss this phenomenon for the simple

are unequal—might be called fuzzy B. Concrete examples of*@mPple of the momentum operator of the particle in a box

fuzzy B type degrees of freedom arise for example in opticé’ersus the case of 'ghg particle on t_he full rgal line.
from diffraction at an edge. For a particle residing on the entire real line the operators

x andp are of course self-adjoint and can be exponentiated
to yield unitaries: The operatossandp are represented ir-
reducibly as the self-adjoint multiplication and differentia-
Let us briefly consider the general circumstances in whichion operators<- (x) = xy(x) andp- ¢(x) = —idyi(x) act-
unsharp degrees of freedom can occur. ing on a dense domain in the Hilbert spadeof square
To this end, let us assume tt&andT are two self-adjoint  integrable wave functiong(x) over the real line and, as is
operators which do not commute, suchxandp, or such as  well known,x andp, together generate all unitary operators

B. Unsharpness from kinematics and dynamics
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U on the Hilbert spacéd, via the Weyl formula A. Scalar case
dsdt We show this first for a scalar particle in a box, i.e. with-
U=J f_th u(s,t)exdi(sx+tp)/h]. (10)  out an isospinor index.

As discussed above, the momentum operpfoacting as

Theu(s,t) are suitable complex-valued functions. In fact, all p-#(x)=—id@(x) on the physical wave functiongs

bounded operator8 € B(H) can be generated in this way. Elgphyshovﬁr Lhe_lntlerval, |fs a t§|mple syrnmtettrr:c tc))pergtor.
On the other hand, we can also represeaind p reduc- ough all pnysical wave functions vanish at the boundary,

ibly, for example, as the self-adjoint multiplication and dif- they are a deznse set in the Hilbert space of square integrables
ferentiation operators phys= H=L"(—L,L). ) _
Let us now construct a family of operatop$a) which
X-i(X)=x¢i(x) and p-i(x)=—idyy(x) (11)  coincide withp on the physical domai® s, but whose
domain is larger and who are self-adjoint on this larger do-
acting on a Hilbert space of wave functiopigx) on the real  main. This is simple functional analysis: The operaju(s)
line which then possess an additional “isospinor” index, are obtained by extending the domany,,s such as to in-

runningi=1, ... n. clude wave functions which are periodic up to a phase
The scalar product of wave functions then contains an ‘
iso-sum: Pp(—L)=e""y(L). (13

N For each arbitrary fixed phas¥* the boundary terms of the
(d)=2, J dxif (X) i(x). (120 partial integrations in the equation ¢n|(p(e)|¥,))
=1 =({¢1|p(@))| ) vanish. This makep(«) self-adjoint with
Clearly,x andp are acting diagonally in the isospinor space.&n €igenbasis of plane vv_a_veﬁ‘“)(x) which obey the corre-
Thereforex andp do not generate the(n) of the isorota-  SPonding boundary condition:
tions. Thus, in this case, the Weyl formula, Et0), does not

yield all bounded operators; nor does it yield all unitaries on ¢§1a)(x):eiwnx where wn:ZWn——a, ne’.
the Hilbert space. Only if we supplemented the operakors 2L
andp by additional HermitiamXx n matrices,T;, could we (14

generateU(n) on the isospinor space and therefore all of\yhat are the implications for the generating of unitaries?

B(E)' ider th h h icle i Were the wave functions not restricted to the intenl,
_ Let us now consider the case where the particle IS cong,q 4 pe self-adjoint ang could be exponentiated to obtain
fined to the interval —L,L]. As we saw above, the momen- a unitary operator, say(a):=exp(ap), for somea=0,

tum operatoip=—idx is then no longer self-adjoint and itis ,ose action is of course to translate wave functions by the
instead simple symmetric of type fuzzy A. What difference ;1,1 inta to the right:

does this make?

Our proposition in this case is that there exists a one- U(a) - p(x)=eyh(x) = y(x+a). (15)
parameter family of self-adjoint operatopé«), say (0<«
<2mr), such that In the case where the particle is confined to the box, how-
(i) eachp(a@) coincides withp on the physical domain, ever, i.e. where the Hilbert space only consists of wave func-
ie. tions on the interval, the operatpris not self-adjoint and
cannot be exponentiated: The formal expressidfa)
p(a)|py=ply) forall [¢)eDpnys, =exp(ap) is now not a unitary transformation, because it

.. would translate beyond the interval boundaries, which is not
(i) the p(«), together,(weakly) generate the algeb(H) (?efined in the Hilbgrt space.
0

of bounded operators on the Hilbert space, which includes Nevertheless, for the particle in a box, there exists, as we

course the full unitary group oH. saw, a whole family of self-adjoint extensiop§«) of p.

Indeed,.we claim that, unlike in the Weyl formula, the Since eachp(a) is self-adjoint, each can be exponentiated
operatorx is now no longer needed to gener&gH), be- o resulting operator

cause the operatorsp(a) alone already generate

B(H)—even though eaclp(a) coincides withp on the U, (a)=exdiap(a)] (16)
physical domairD,, which is dense in the Hilbert space. We

will also consider the case where the wave functions of thes unitary. Are these unitaries translating wave functions be-
particle in the box carry an isospinor index: thenis again  yond the interval boundaries? The actionlbf(a) on wave
simple symmetric of type fuzzy A and our lemma applies.functions is indeed again to translate wave functions to the
We then claim that there exists a multi-parameter set of selfright (say fora>0), as in Eqg.(15). Now, however, as a
adjoint operatorp(u), which again all coincide witlp on  result of the boundary condition, E¢l3), the part of the
physical states and which generate alBfH). This means wave function which would be translated beyond the right
that there is no need to introduce isospin rotation generatoligterval boundary reappears into the interval from the left,
T; by hand, since th@(u) are able to generate all: transla- with the same modulus, but phase shifted by the pledse
tions, phase rotations and isorotations. Crucially now, the product
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U, (—a)U,(a) (17) are now obtained by enlarging the domainpoto include
wave functions which obey the boundary condition

is a unitary operator which does not translate wave functions.
This is because the first factor translatesalgnd the second "
factor translates back by the same amount. Nevertheless, ’z”i(_l-):;l ujj (L) (22)
since the two factors translate with different phase shifts, the
product is not the identity operator. Namely, whereu;; is any unitarynxn matrix, generalizing the phase
U.(—a)U,(a) is the unitary operator whose action is to ei of the scalar case above. As is readily checked, the proof
leave the modulus of wave functions unchanged, but tef self-adjointness of thp(u) requires again the cancellation
phase shift the wave functions on a part of the interval.  of the boundary terms which arise through the partial inte-

E.g., choosing somae[0,2.], the action is grations needed to show th@ty|p(u))|#)= (| (p(u)|¢)),
and this cancellation is achieved exactly by the boundary
U (—a)Uq(a)- ¢(x) conditions of the form of Eq(22).
W(X) for xe[—L,L—a], As in the scalar case, while does not directly yield uni-
={ ) (19  taries, each of the self-adjoip{u) which reduce tg on the
ellemaly(x) for xe[L—a,L]. physical domain does generate unitaries, e.g. by exponentia-
tion (a real:

By suitable composition of operatots,(a) for variousa _
and « it is therefore possible to generate unitaries which U,(a):=e'aPW), (23
yield arbitrary local phase rotations of wave functions. o ) _

For example, we can in this way compose an operato_}rhe unitariedJ ,(a) again act on wave functions by translgt—
which phase rotates wave functions b in an interval INd them by the amoura, and, because of the self-adjoint
[L—a,L—a+b] (where O0<b<a<2L), and leaves the extension’s boundary conditions, any part of the wave func-

wave functions invariant outside that interval: tion which hits a boundary reappears from the other side into

the interval, now iso-rotated by the mattix(or by u™?! if a

Uo(—=(a=b))Uo(—b)U (a)- #(x) Is negative.
It is possible to proceed as in the scalar case, composing
p(x)  for xe[—-L,L-a]U[L—a+b,L], such unitaries to translate the wave functions back and forth,
- ' (@ y(x) for xe[L—a,L—a+b]. using different self-adjoint extensions. It is clear that in this
way arbitrary local isorotations can be generated.
(19 Thus, the set of self-adjoint operators which reduce to

Thus, remarkably, the set of self-adjoints which coincidel" the physical domain indeed generates not only transla-

. . . tions but also arbitrary local phase rotations and—if an isos-
with p on the physical domain is able to generate all trans- Y P

X X . inor index is present—then they even generate all local iso-
lationsand also all local phase rotations, while we recall thatp : P y g
: X . X rotations.
in the case where is self-adjoint, the operatot is needed

order to generate local phase rotations, namely throu Let us remark thap has this property of course no matter
&1 (9 :,b(x)zge”(x)://(x). P ' y gnow largeL, is i.e. no matter how small p,;, is, as long as

they are finite. Changing context, this means that for ex-
ample position coordinates in a theory of quantum gravity
B. Case with isospin with some unmeasurably small but finite fuzzinesx,,
We consider again a particle constrained to the intervawould be able to in this sense provide also the generdiors
[ —L,L]. The particle’s wave functiog;(x) shall now carry ~ of isorotations in the Hilbert space on which they act. This

an isospinor index =1, ... n. The scalar product in the Perhaps indicates the possibility of a mechanism by which
Hilbert space of square integrables on the interval then ininternal degrees of freedom could arise from Planck scale
cludes an iso-sum: structure.
" L IV. GENERAL CASE
Wo=3 [ axwrose. @)

Let us begin by clarifying the definitions: A symmetric
_ i . operatorX is calledsimple symmetrid X is not self-adjoint
Because of the box potential, the physical wave functionsgn if it possesses no invariant subspace such that the restric-

|#/) € Dphys, again obey the boundary condition tion of X to this subspace yields a self-adjoint operator. Our
o o examples above are simple symmetric. Further, we recall
$i(—L)=0=4(L) (i=1,...n). 2D that theCayley transformedperatorS of a symmetric op-

. . : L eratorX, defined as
The action of p is diagonal in iso-spacep- ¢;(x)=

—idyi(X). Again, there are no plane waves in the physical S:=(X—i1)(X+i1)7 1, (24)
domain and therefore the momentum operator on the physi-

cal domain is not self-adjoint. Instegaljs simple symmetric is isometric. An isometric operator is calls@nple isometric
[with deficiency indicesif,n)]. Self-adjoint extensiong(u) if it cannot be reduced to an invariant subspace such that the
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reduced operator is unitary. It is known that a subspace resional, sayNxXN matrices. The quantization and the neces-
duces a symmetric operatof if and only if it reduces its  sary limit N—co are highly nontrivial, but it is clear that the
Cayley transform; see, for examplg29]. Note, however, resulting operators will still be at least symmetric. The short-
that not every isometric operator is the Cayley transform of alistance structure which they describe will therefore fall into
symmetric operator. one of the types which we discussed. If these operators are

Now a precise statement of our claim is the following: found to be of type fuzzy A, then our present results show

Lemmalet X be a closed simple symmetric operator with how they relate to the unitary group of the Hilbert space on
equal deficiency indices, defined on a domBig which is  which they act.
dense in a complex Hilbert spate Then, the self-adjoint Also studies in the context of quantum groufee e.g.
extensionsX(a) of X generate a*-algebra.4 which is [31,32) and in the wider field of noncommutative geometry
weakly dense in3(H). Thus, in particular, the self-adjoint have yielded new approaches to building models for space-
extensions generate the full unitary graupH) of the Hil-  time at the Planck scalesee e.g[33-35), some of which
bert space. are related to string theorfsee e.g[27,28,36). As far as

The full proof is given in Appendix A. To summarize, the these models of space-time use linear operators to describe
proof begins by using th¥(«) to generate a suitable sét real entities such as coordinates, which they of course usu-
of unitaries, which in turn generate an algebtaThe main  ally do, we are covering these operators. It should be inter-
part of the proof is then to show that the commutatitof  esting to investigate our present results in those contexts.
the algebrad is A'=C1. This implies that its double com-

mutant is.A”"=B(H). The lemma then follows since, with ACKNOWLEDGMENTS
von Neumanr(see, e.g.[37]), the double commutant of any i
*_algebra is its weak closure. _'_I'he author is happy to thank John Klauder for very useful
criticisms.
V. CONCLUSIONS AND OUTLOOK APPENDIX A: PROOF OF THE LEMMA

We discussed that real degrees of freedom which are de- \ye pegin by choosing a suitable set of unitaries which are

scribed by linear operators can only be self-adjoint, in WhiChgenerated by the self-adjoint extensiotér) of X. To this
case they are “sharp” entities—or they are merely symmet-

A ) i end, consider the isometric Cayley transfoBof X,

ric, in which case they display one of two types of “unsharp-

ness.” S:i=(X—il)(X+i1) %, (A1)
We then considered the problem that self-adjoint opera-

tors physically often play an important double role, namelywith domain

both representing a real degree of freedom and also acting as

a generator of unitary transformations—while merely sym- Ds=(X+i1)Dy. (A2)
metric operators are known not to generate unitaries in a ] o )
straightforward way. We define thdocal group7 as the set of all unitaries which

This led us to investigate whether and to what extent thénap the deficiency spads = ((X+i1)Dx)" onto itself and
operators which arise with the description of “fuzzy” de- which act as the identity obs, i.e.
grees of freedom are also able to generate unitary transfor- . . .t
mations. 7:={T|T:Dg—Dg,T:Dg—Dg Tpg=LTT'=T'T=1}.

Studying the class of unsharp degrees of freedom of the (A3)
type fuzzy A (i.e. those described by operators with equal . ) .
deficiency indiceswe found that these possess a remarkabldt IS clear that the local grou, is isomorphic to the uPltary
property: groupU(n), wheren is the deficiency index:=dim(Dg).

For any such symmetric operatot defined on some Since, by assumption, both deficiency indices are equal,
physical Hilbert space domaid < there is always a set of € both spaces
self-adjoint operators which coincide withon D6, and
which together generate all unitaries in the Hilbert space. We
Zoncludle that, 'T th's vl\:ay, at I?astfthe ope;a_tors_ Ozgypﬁ.rgzzgére of equal dimension, there exist unitary extensionS. of

can piay a rolé in all aspects of symmetries in the Hilbert ) o1 |y pe one of the unitary extensions &f
space in which they act.

This result applies quite generally because we did not U'U=uUuU'=1, UiL,—L , Up=S (A5)
make any further technical or physical assumptions about s
these gnshqrp degrees of freedom or about the physic@le consider now the coset
theory in which they occur.

We are covering, for example, Fhe case of the matrix M:={MIM=UT,TeT} (AB)
model for M theory(see e.g[30]), which employs symmet-
ric operatorsX;, to encode space-time information. In this of unitary extensions o8.
case, the matrix elements of thg are interpreted in terms of Indeed, as is well known, each unitary extension of the
coordinates of DO-branes. Initially, th§ are finite dimen- Cayley transfornt of a symmetricX, i.e. here each element

L. =((X*=i1)Dy)" (A4)
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of M is indeed generated, via the Cayley transform, by &On the other handJ,:1 (K CK*;

self-adjoint extensiotX(«) of X.
We will now show that the* -algebraA generated by\t

is weakly dense i3(H). As mentioned, this follows from
von Neumann'’s double commutant theorem if we can prove
that only multiples of the identity operator commute with

M, i.e. withU and all elements of.
To this end, let us consider an operatowhich obeys

IV[]<e and [V,U]=0=[V,T], V TeTZ (A7)

We need to show that is a multiple of the identity operator.
Since the closure oK implies the closure of the defi-

ciency spac®g and ofDg, we can uséd=Dg® Dg to write
V and the element$ e 7 in block form:

10
T_Ot’v_

Vp L
DgD

VDst s

. (A8)
Vogos VD§D§>
Here,t=Tp,, i.e.t:Dg—Dg and, e.g.,VDSDé:Dg—>DS. In
this notation[ T,V]=0 reads
VDSDé(l_t)>

=0.
[t!VDéDé]

0
((t_l)VDéDs A9

Equation(A9) holds for allT € 7, and in particular it holds

for unitariest:Dg— Dg for which the value 1 is a regular

point, e.g.t=—1. Thus,VDSDézo andVDéDszo.
Further, 7 is the full unitary group oDg . It is therefore
irreducibly represented oBbs . Thus,[t,VDéDé]zo,Vt im-

plies with Schur(see, e.g[37]) thatV acts onDg as a mul-
tiple of the identity, i.e.VDéDéz)\l where\ € C. In block

matrix form, V therefore reads

Vpo. O
= 5 . (A10)
0 A
Consider now the kernel
K:=kerV—2\1). (A11)

By construction,DsCK and K- CDsg. As the kernel of a

closed operatorK is closed. We wish to show that in fact

K=H andK*=¢J, which is to say tha¥=\1.

To this end, let us assume the opposite, namely khat
+J.

We can then usél=K* @K to write bothV andU in a
new block form:

VKL KL 0 U KL KL
- VKKL )\ 1 ' B

UKiK

. (A12
uKK) ( )

UKKL

The relation[V,U]=0 now reads

ot (VKLKL_)\].)UKLK O O
= . (A13)
e VKKJ-UKJ-K O O

PHYSICAL REVIEW D 63 024017

i.e., the range ol . is
not in the kernel of the operatoW/(-\1):

((VKLKL_)\NW)

#0, Viw)#0,w
Vi L|w) ) @) @)

(V-AD)|w)=

S UKLKK .
(A14)

Thus, the existence of any nonzero vedw) e K+ in the
rangeU 1« K would contradict Eq(A13). Consequently, the
range ofUx1xK is empty, i.e.Ug.ix=0.

Therefore,K is an invariant subspace faJ. Since also
[U1,V]=0, it follows analogously thaK is an invariant
subspace fotJ ", Thus,K andK* both reducelJ:

UKLKL 0
U= .

6 U (A15)

SinceU|p =S andK~ CDs, we haveUy.g:=Sg:k:. This
implies thatk* is an invariant subspace f& on whichSis
unitary. However, the simplicity oK implies that alscS is
simple; i.e.,.Sdoes not have any invariant subspace on which
it would be unitary.

Thus, in fact K- = andK =H. Consequentlyy=\1,
which had to be shown.

With von Neumann this implies that the weak closure of
the *-algebraA generated by 1 and the elements df is
the algebraB(H) of all bounded operators on the Hilbert
space, and3(H) includes of course all unitaries. We recall
that this means that for each bounded oper&erB(H)
there exist sequences of operatBrs= A such that

i (4B—=Bo|$)=0  V|v), [d)eH.
n—o

Thus, for any simple symmetri¥ with equal deficiency
indices the set of self-adjoint operators which coincide with
X on its domain generate indedd.g. via generating the
cosetM) the full unitary group of the Hilbert space.

APPENDIX B: A COROLLARY

As we mentioned before, in finite dimensional Hilbert
spaces every symmetric operator; i.e., every operator whose
expectation values are real, i.e. every matrix obeyXg
=XJ*i , is also self-adjoint. Therefore, in finite dimensional
Hilbert spaces, there are no simple symmetric operators; i.e.,
our lemma cannot be applied.

Let us add, however, that the above proof yields as a
corollary that any simple isometric operator with equal defi-
ciency indices has the property that its unitary extensions,
together, generate all unitaries ai(H). And indeed, there
exist simple isometric operators also in finite dimensional
Hilbert spaces.

As an illustration, let us consider the simple case of the
two dimensional Hilbert space spanned by normalized vec-
torse;,e,. We define a linear operatds, as the map which
mapsS:e;—e,. Clearly,Sis not unitary, because of its lim-
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ited domainDg:=Ce; and rangeCe,. Also, Sdoes not have Wwheree'® is any arbitrary phase. Thus, each unitary exten-

any invariant proper subspac®is norm preserving where it sion of Sis of the formUT(a) for some . Indeed, the

is defined. ThusSis a simple isometric operator. The dimen- algebra generated byU,and the unitary extensiorib(a)

sions of its deficiency spaces, i.e. of the orthogonal compleare all ofM,(C), as is clear because it contains for example

ments of its domain and range, are both 1; i.e., they arghe Pauli matrices:

equal. ThusSis an operator to which the corollary of our

lemma applies. The claim is that the unitary extensionS of

generate all X2 matrices, including of course the unitaries.
To see this, we begin by choosing one unitary extension

o1=U, 0,=iUT(m), o3=T(m). (B3)

UofSeg. We also observe that the inverse Cayley transfofraf S
0 1 does exist,
U ( 1 O)' (B1)
10
The elementsT(«) of the local group7 of all unitaries X=i(S+1)(S— 1)_1=—i(2 1), (B4)

which act as the identity ob g and which act as a unitary on
Dg are of the form
but is not symmetric, which demonstrates, as we mentioned,
(B2) that thg inverse Cayle.y transform of a si_mple isometric op-
erator is not necessarily simple symmetric.
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