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Self-force on charges in the spacetime of spherical shells
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We study the self-force acting on static electric or scalar charges inside or outside a spherical, massive, thin
shell. The regularization of the self-force is done using the recently proposed mode sum regularization pre-
scription. In all cases the self-force acting on the charge is repulsive. We find that in the scalar case the force
is quadratic in the mass of the shell, and is a second post-Newtonian effect. For the electric case the force is
linear in the shell's mass, and is a first post-Newtonian effect. When the charge is outside the shell our results
correct the known zero self-force in the scalar case or the known repulsive, inverse-cubic force law in the
electric case, for the finite size of the shell. When the charge is near the center of the shell the charge undergoes
harmonic oscillations.
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I. INTRODUCTION AND OVERVIEW is inside the sheliwhere spacetime is locally fladr outside

The calculation of the self-force acting on a particle inthe shell(where spacetime is locally Schwarzschilelow-
curved spacetime has become recently exceedingly impoever, despite the simplicity, there are some non-trivial issues
tant, as the Laser Interferometer Space Ante(i8A) is  which are demonstrated already in this simple context. First,
currently planned to fly as early as 2010. One of the moswhen the charge is inside the shell, there is a non-zero self-
promising gravitational-wave sources for LISA is extremeforce acting on it, even when the charge is static. Second,
mass-ratio binaries, where the evolution in the last year ofhis non-zero force exists although the charge moves along a
inspiral is strongly affected by the self-force acting on thegeodesic of spacetim@ static worldline is a geodesic in flat
inspiraling object. The long-term goal then is to compute thespacetimg Third, already in this simple context it is evident
momentary self-forces acting on a compact object, which ighat the Einstein equivalence principle is not satisfied by
in a generic orbit around a supermassive black hole. Oncproblems which involve self interaction. Namely, two iden-
the self-force is known, this force could be included in thetical static particles, one in a globally-Minkowski spacetime
determination of the orbital evolution under radiation reac-and one in a locally Minkowski spacetime experience differ-
tion. ent forces: the former a zero self-force and the latter a non-

However, much is yet to be understood about the natureero self-force, although the geometries of the local neigh-
of self-forces in curved spacetime even for problems whichborhoods of the two particles are exactly identi¢@he self-
are significantly simpler than the astrophysically motivatedforce is considered here to ordéchargg®. Under this
ones. These problems, nevertheless, are motivated by beimgsumption, the geometry is a fixed background, and is given
pedagogical on the one hand, and by illuminating some imby the solution of the Einstein equations in the absence of the
portant points of principle, which are relevant also for astro-charge. When higher order terms, of ordeharge* or
physically realistic problems, on the other hand. A number ohigher, are considered, the geometries in the local neighbor-
simple static configurations have thus been analyzed, includioods of the particles would no longer be identical, because
ing the self-force acting on scalar or electric charges helaf the different ways in which the particles’ fields couple to
static in the spacetime of a Schwarzschild black hale4], the geometry in the two cas¢sBecause the self-force
electric or magnetic dipoles which are static outside acouples to the charge of the particle in a way which depends
Schwarzschild black holgs], a static electric charge outside on the type of charge, the worldline of a particle which car-
a Kerr black holeg[6] or a Kerr-Newman black holg7], a  ries one type of charge deviates from the worldline of a
static electric charge in a spherically-symmetric Brans-Dickeparticle which carries a different type of charge. The reason
field [8], and a static charge in the spacetime of a cosmidor this failure of the equivalence principle is obvious: the
string[9,10]. In all these analyses the self-force was found toequivalence principle relates to the local neighborhood of the
leading order in the charge of the particle, i.e., to ordemparticle. The self-force, however, is affected by the boundary
(chargé?. In this paper, too, we calculate the self-force toconditions on the surface of discontinuitthe shell, and
that order. these far-field conditions affect the near-field of the particle

Still, there are elementary configurations where the selfsuch that a self-force arises. In problems where there is non-
force acting on charges is as yet poorly understood. Specifirivial dynamics, this effect comes about by the scattering of
cally, little is known on the self-force acting on charges inthe tails of the field off the spacetime curvature, and this
the spacetime of spherical, massitkin) shells. This prob- scattering occurs also at arbitrary large distances from the
lem is interesting from a pedagogical point of view becauseposition of the particle in the remote past. In this sense the
the derivation of the self-force is simple, whether the chargeself force is a non-local effect, which transcends the domain
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of applicability of the equivalence principle. The equivalenceterm. We find that near the shell, the self-force becomes very
principle is transcended also when the particle is outside thiarge. (In fact, approaching the shell we find that the self-
spherical shell. Although spacetime outside a spherical shefbrce diverges. We shall study that effect in detail, and show
of massM is identical to the spacetime outside a black holethat when the charge is very close to the shell our mathemati-
of the same masWl (by virtue of Birkhoff's theoremy the  cal model breaks down, such that the physical self-force is
self-forces acting on two identical particles, one in aalways finite)
globally-Schwarzschild spacetime and the other in a locally- Next, we calculate the self-force acting on a particle en-
Schwarzschild spacetime, are different. In principle, onedowed with scalar chargg For the case where the charge is
could infer on(classes of spherical mass distributions by inside the shell we again find a self-force which directs to-
solving the inverse problem, and finding the spherical masgard the center. However, this force is quadraticMiR,
distribution which induces a measured self-force. An impor-ynd is of orderG2/c*. When the charge is near the center,
tant point of principle then, is that the interior of the sourcene selt-force acting on it is again that of an harmonic oscil-
f_or the grayltatlonal field is important for the_ orbital eyolu- lator, with angular frequency?= £ (G%c*)q?M% (mF),
tion of par_uc!es. As ngted by Rydi1], the orhital evolution to the leading order iM/R. When the scalar charge is out-
u_nder radiation reaction would enable us to map the SPACide the spherical shell, we find a correction to the well
time around a black holéor, possibly, some other dense K 3 o

nown result of a zero self-force which is the case when the

objects. In addition, it would allow us also to infer on the e . .
interior of the source, its equation of state, its density distri->24ce for the gravnatlon_al field is a b!ack.h¢ﬂ33,4]l To
bution, etc. Iea}dmg ardgr |r;M5/r, this self-fozrce is given byf;(r)

The problem of the self force in the spacetime of a spheri-,_ 5(G/c)q ]S'\t/lh Ir )R[% ”:.O(FT/]E.) |3;|' .We Imdd trgjattr\]/vhen_
cal massive shell was first considered by Unruh, who studiea“? source of the gravitational Tield 1S extended, there 1s a
the case of a static electric charg@side a spherical shell of Inite-size correction also for this case. Hov.ve'ver,.because the
massM and radiusR [12]. Unruh found that there was a zero-size force happens to vanish, the finite-size effect is
radial non-zero force acting on the charfjehe related prob- always larger than the zero-size efféanlike the electric
lem of a point charge, coupled to a mass{¥oca vector charge case o o . .
field, within a spherical shell was studied by dide and The regularization prescription we use in the calculation

Linet [13].] Below, we shall recapitulate Unruh’s result, but of the self-force is based on Ori's mode sum regularization

oo oo iption(MSRP [14,15, which is an application of the
derive it using the newly-proposed mode sum regularlzatlorP”.aSC”p. .
prescription(MSRP [14,15. We shall also provide more axiomatic Quinn-Wald approacii6] and the approach of

insight into the meaning of the result. We find that the self—MinO’ Sasaki, and Tanakd7]. We note, that although the

force acting on the charge is directed toward the center of thgegularization procedures qsed in Refs-9] yield the cor-
sphere(the self force acts to repel the charge from the'€ct results for the regularized self-force, they are hard to

sphere. When the charge is very close to the center, thisgenerallze to cases where exact solutions are unknown, or

induces harmonic oscillations, with angular frequency Ofwhere there is non-trivial dynamics. MSRP does not share

. 1o ka1 e, s Ml S e o g U s e
m is the particle’s mass. Her& is Newton’s gravitational X X ution. INext, w !

: : MSRP very succinctly. More details are available in Refs.
constant, and is the speed of light. ) :
Then, we also study the self-force acting on an electriéls’lg-l' We note that MSRP has been developed in detail

chargeq outside a spherical shell. For the case where thé)nly for scalar charges, but it is likely that the approach is

- - ; ; applicable in general also for higher-spin fields. The contri-
source of the gravitational field is a Schwarzschild bIackbution to the physical self force from the tail part of the

hole, the self-force was found by Smith and Wil], who G 's functi be d d into stati Teukol
found that there was a repelling self-force, which was given reens function can be decomposed into stationary | €ukol-
by f:(r)=(G/c?)q?M/r3. Here,q is the electric charge of sky modes, and then summed over the frequengiasd the

the particle,M is the black hole's mass, andis the usual azimuthal numbersn. The self-force equals then the limit

radial Schwarzschild coordinat€This expression for the e—~0" of the sum over all modes, c.)f the dn‘ference be-
force is exact in a reference frame of a freely-falling Observe}weenbtar;elforce sourced by the entire worldliftae pa_r N
who is instantaneously at rest at the position of the chargef0rc® **'T,) and the force sourced by the half-infinite
When the source of the gravitational force is extended, thivorldline to the future ofe, where the particle has proper
Smith-Will force is corrected by a finite-size term, which, to imé 7=0, and 7= is an event along the past{0)
leading order inM/r, is of the same order iG/c? as the worldline. Next, we seek a regularization funcnbb which
Smith-will term. Specifically, we find that when the source is independent o, such that the serie8 ("}, —h,,) con-

is a thin spherical shell of masd, to the leading order in Vverges. Once such a function is found, the regularized self-
M/r, the self-force is given byf;=(G/c?)q?M/r¥1  force is then given by®F, == ("*F! —h!)—d,, where
+2(R/r)2+ O(R/r)#], whereR is the radius of the shell. d, is a finite valued function. MSRP then shows, from a
For r>R (when the charge is very far from the shethis  local integration of the Green’s function, that the regulariza-
correction is very small. However, when the charge is venytion functionh'leaMI +b,+c,l~*. For several cases, which
close to the shell, higher-order terms iR/¢)? become com- have already been studied, MSRP yields the values of the
parable with the Smith-Will term, such that the correctionfunctions a,,b,,c, and d, analytically. Alternatively,
terms may become more important than the leading-ordea,, ,b,, andc, (but notd,) can also be found from the
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larget behavior of ba"fF'M. In addition to the(non-loca)
contribution of the tail’'s part of the Green's function to the
self-force, there are also two additional, local terms: an
Abraham-Lorentz-Dirac type term, and a term which couples
to Ricci curvature and which preserves conformal invariance.
For simple case@ncluding those we are interested in heite
was found that the finite term,, equals the sum of the two
local contributions[18,19, such that the total radiation-
reaction force can be found directly from the ladgeehavior

of the modes of the bare force. MSRP has already been ap-
plied successfully for a number of cases: static scalar or elec- s
tric charges in the spacetime of a Schwarzschild black hole or e
[4], a scalar charge in uniform circular orbit around a -
Schwarzschild black holg20], and a scalar charge plunging
radially into a Schwarzschild black hoJ21]. There is also
strong evidence that MSRP is applicable also for electric ;
chargeg22,4,19. Recently, a closely-related regularization :
procedure, based on Riemagifiunction regularization, was :
applied by Lousto for the case of a point mass falling radially y
into a Schwarzschild black hol@3]. Lousto considered an

orbit which is geodesic in the absence of radiation-reaction

effects, and computed the first-order correction of the space-

time metric and orbit. It is presently unclear, however, how ®

to extend Lousto’s method for non-geodesic orbits. FIG. 1. A test chargéscalar or electricq is placed(a) inside
The organization of this paper is as follows. In Sec. Il Wegnq (b) outside a spherical shell of mast and radiusR. In both
study the self-force acting on a scalar charge ingiti&)  cases the particle is at=r,, and without loss of generality the

and outside(ll B) a spheric_al shell. In Sec._ Il we consider particle is positioned on the-axis. See the text for more details.
the self-force on an electric charge, both insidéA ) and

outside(lll B) the shell, and in Sec. IV make some heuristic

comments regarding the physical origin of the self-force forcharged. (In Sec. lll we consider the case where the particle
the problem in question. is electrically charged.We consider the scalar field to be a

linearized, test field in the geometry of the shell’s spacetime.
That is, the field is uncoupled to the geometry. This simpli-
fication allows us to obtain the self-force to ordgt. The

Consider a thin uniform spherical shell of maglsand  particle is static at radius=r, with eitherry<R (in Sec.
radius R. In the spacetime of this shell we place a staticll A) or ro>R (in Sec. 1l B (see Fig. 1 The fixed back-
particle. In this section the particle is endowed with a scalaground geometry is described by the metric

L 2M

R

( 2M

— 1__
r

Here the radial coordinateis defined such that the surface whereV , denotes covariant differentiation compatible with
area of the 2-sphene=const,t=const is 47r2, andt is the  the metric(1). The charge density is given by
(proped time of a static observer at infinity. The spacetime
(1) is Schwarzschild outside the shell and Minkowski inside 0 S xH—z(7)]
the shell. Note thay,;— —1 asr—, butg,# —1 inside p(x“)=qf dr————-
the shell, although spacetime (iscally) Minkowski. - V=g
The linearized field equation for a minimally coupled,
massless scalar field is given by Hereq is the total charges is the proper timeg is the metric
determinant, and* is the worldline of the charge. Without
loss of generality, we place the charge on thaxis atr
V, VD (x*)=—4mp(X?), (2 =ry and #=0.

Il. SCALAR CHARGE

dt?+dr2+r2d 6%+ r? sir? 6d¢?, r<r,

ds?= (1)

dt?+

2M\ 1 _
1-— dr2+r2de?+r2sirfade?, r>R.

(©)
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A. Scalar charge inside a spherical shell (21+1)q
: I 4l _ - _ -
1. Derivation of the bare force I|m+[¢'r(r0+ €)= b (ro—e)]= 2 ®
e—0

In this section we shall study the case where the scalar
charge is inside the shell, i.eg<R. Then bothp and® can  The integration of Eq(6) overr fromr=R—etor=R+e€is
be decomposed into a sum over the Legendre polynomialsomplicated by the discontinuity af,, acrossr=R. This
according to unnecessary complication can be removed by introducing the
new radial coordinate(r), defined by

q8(r—ro) <
p(r,0)=——5— > (2l+1)P(cosh)  (4) r, =R,
u= 2M 9
B 1—?(T—R)+R, r<Rk. ©
O(r,0)= 2, ¢'(r)Pi(cosp). (5)
=0 With this new radial coordinate, the metiit) becomes
Note that becausét/dr=1/\/— gy, the factory—gy in the 5
metric determinang is canceled. Also note that the series in d<?= — K(u)dt2+ FHW2(d6P+ sir? 6do?
Eq. (4) diverges. This is indeed what is expected, because the (W) K(u) S #%)-
particle is construed as pointlike. Obviously, the charge den- (10
sity of a pointlike particle diverges on its worldline.
Substitution of Eqs(4) and (5) into Eq. (2) yields Here,r is considered to be a function of obtained by the
inverse transform of Eq9), and
Coo2 0 10+ 21+1
Bt T # = At <R ( _¥) U=R,
(®) K(u)= ( ZM) (11
1-—|, usR.
I(1+1) R

2
( ——>¢rr+—( —M)d)r —¢> =0, r>R,
r* In this new gaugeg,, is continuous everywher@nd so are
}he other metric coefficientsalthough the gradients of the
metric functionsgy , gyuyu, andr , are still discontinuous
gat u=R. In terms ofu, Eq. (6) becomes

where commas denote partial derivatives. The solution fo
the inhomogeneous equation foxXR is given by a linear
combination of the solutions which solve the correspondin
holrml)geneous equation, i.e., a linear combinatiom' aind oK d 0+ )
r—'~*. Outside the shell, wheme>R, the solution is a linear I r I I_

combination of the Legendre functior,(r/M—1) and Keuut _E+K'“)¢'” 2 ¢= forr#ro.
Q(r/M—1) [4]. Note thatP,(z) diverges andQ,(z) van- (12)
ishes asz—c for all values ofl. [Except forl=0, as

Po(z)=1 for all values ofz. However, as we require that all Recall now thatp' is continuous everywhere. Howev@tLu

the individual modes of the fielg' fall off at infinity (r ~ may at the most be step-function discontinuousaR (the
—c), this behavior ofP((z) is enough to rule it out as the strongest form of discontinuity it may have is a step-function
relevant solution for large values of]l We next require that  discontinuity; however, below we find that it is, in fact, con-
¢'(r) be regular both at infinity and at the origin. We thus tinuoug such that¢',, may, at the most, behave like a

write the solution for Eq(6) as s-function (however, below we find that it is, in fact, pro-
portional to a step-function discontinujtyln addition, also
A Qf— r=R (region III), K, andr , are step-function discontinuou;, but do not in-
M volve §-functions. Consequently, when we integrate B@)

over u from u=R—¢€ to u=R+e¢ and take the limite
| —07, only the contribution of the first term can be non-
B r r<ro (region ), vanishing(because that is the only term which may involve a

() S-function), and is given, after integration by part, by
R+e R+e
! —f Koo', du) =

continuous everywher@n particular, continuous also across 0t R-e JR-e
r=rgoandr=R).

Integrating Eq(6) overr fromr=ryo—etor=ry+eand The second term vanishes since it does not contain a
taking the limite—0", and using the continuity o&'(r) S-function, which implies that;b[u is continuous ati=R. In
acrossr, we find view of Eq.(9), this means that

| _
¢ (r)= C, r'+D, r U*D ro<r<R (region ),

whereA,, B, C,, andD, are constants to be determined by
matching conditions. Specifically, we require thal(r) be lim (K¢>'
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2M D,=qr, (149
V1= R (R)=¢L(R). (13 e

Here,R™ denotes lim_ o+ (R* €).

The constantg\, B;, C, andD, in (7) are determined by B = i+C (140
the matching conditions ap', which are(to reiterate: (1) ¢' ' b
is continuous everywherd?) ¢' vanishes ar=« and is
finite at r=0 [these two conditions have been taken into
account in writing Eq.(7)]; (3) ¢!r is discontinuous at whereQ)y is the derivative ofQ; with respect to its argument
=r, andr =R according to Eqs(8) and(13). The results are and the argument of bot®, andQ/ is (R/M)—1, and

M
(241 o N 2M M
A=a— ° (143 Vi- 7 Q+1+D)=Q

2M R|+1 s
/ El= . 15
'RATVITRQ | N o

0

R QAUIRQ
|
o .
C=—-ad— 7k (14b) . o
R2+1 Collecting our results, the field is given by
f o
Z |Q|( )P|(COS«9), r=R (region 1ll),
r -
d(r,0)=1 lzoqr'—le(COSﬁ) Z %(—)( )E P,(cosd), ro<r<R (region II), (16)
=gl . .
2 I Pi(cost) - 3, | & | | 5] EfPi(cose), r=ro  (region .

We are interested in the self force acting on the charge, which results from the field in the neighborhood of the particle, i.e.,
the field around =r,. Asro<R, the field in the neighborhood of the charge is given by

I I’I * |
®(r<R,0)= Z Q| 700N+ —0(r—r) | P(cos) - -3, %(EO) ( ) ESP|(cosp). (17)
r =0
|
Here, ®(x) is the Heaviside step function, i.eQ(x)=1 * 2 q\2 rol2 1
if x>0 and®(x)=0 if x<0. To find the self-force, we fFare:—E —+lg |E|S(§) . (18
next calculate the force according tb,=qV,®, and =0 | 2rg

evaluate this expression at the position of the particle, i.e.,
at r=ry. [We note that the alternative force law which
is frequently used, ie.f,=q(V,®+u,u’v,®), is
likely not to be derivable from an action principle
without introduction of non-linear coupling termi24]. 2. Regularization of the bare force

The simpler force law we use was recently justified by In order to find the regularized, physical self-force we
Quinn [25] using stress-energy considerations. Noticenext use MSRP. First, we find the regularization function
however, that for the static particle we assume here the twh,=a,l +b,+c,| . Note that the functions, ,b,, andc,
force laws coincidd. Clearly, only the radial component are found from a local analysis of the Green’s function, in
of the forcef, is non-zero. Thebarg radial force is then the neighborhood of the worldline. However in the neighbor-
given by hood of the worldline spacetime is Minkowski. For a static

Clearly, f*® diverges.
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scalar particle in Minkowski spacetime the valuesapfb, , The charge then oscillates under this self-force at angular
andc, are known, and are given bg,=0=c,, andb,= frequency

—q2/(2r§). (Note that these values were obtained for the

gauge wherg,,= — 1. However, re-definition of the coordi- , 1 ,G* Mm?

natet does not change the values of these functions. Another @ =754 4 mEe’ (24)

point to be made here is that we use here the “averaged”

value fora,, which vanishes. The analysis can also be carwherem is the particle’s mass. We note that although the
ried out using the “one-sided” valuezxri , or any of their force law(23) corresponds to the case where the particle is
linear combinations. However, MSRP guarantees the samgatic, when the deviation from the center is small enough,
result for the regularized self-force whatever the choice fothe velocity during the oscillations is also small such that the
a, may be. For more details see REf5].) Next, for a static  correction to the static force-law is negligible, and the
scalar particle in Minkowski spacetintg =0, such that the damped oscillations’ frequency is, to first order, unchanged.
regularized radial self-force is given by The next case we consider is the case where the charge

approaches the shell, i.gg—1~. To the leading orders in

fr=—§ q_22+ q 2| E,S(r—o) 2'*1+br 1—X, the self-force becomes
=ol2rg IR R ,GPM?[ 1 1 9 In2
q 5 @ . ‘0 ol—1 fr__ ?F{]ﬁ(l—_xo)"rgm(l_xo)ﬁ-s—z—?
=—<§) |:20 | E] ﬁ) . (19
+O[(l—x0)ln(1—x0)]], (25
This expression foff, is guaranteed by MSRP to be finite,

and also to be the correct, physical, total self-force. which implies that the self force increases when the particle

is closer to the shell. In fact, in the limig— 1~ this self-
force diverges. Recall that this self-force is supposedly the
It can be shown thaE} is always positive, such that the regularized, physical self force, which should be everywhere
self-force directs towards the origin. In terms of the physicalfinite, even at the surface of discontinuity. Below, in Sec. IV
forces present in the problem, this force arises from thave discuss the origin for the self-force. We show there that
sphere, and acts to repel the charge from it. To gain moréhis origin is the gravitational interaction between the
insight into this result, we next exparf in M/R. This  charge’s field and the shell's mass elemefitsfact, in Sec.
expansion is given by IV the analysis is done to only linearized orderNfy such
) 5 that in the scalar case, where the force is_quadrati\z‘l,iriit
+O(—) (20) yields a zero _effect.; hov_veyer, for the ele_ctrlc case, where the
R/ self-force is linear inM, it yields a result in total agreement

3. Properties of the regularized force

B [+1
S 2(21+1)(21+3)

M

S —_—
E, R

2

with our analysis below in Sec. [)l.Due to the spherical
such that the self-force becomes symmetry of the shell, clearly only the parts of the field
) which are external to the shell contribute to the total interac-
fo_ (ﬂ) (M tion. The closer the particle to the shell, the stronger the field
r R/ | R in the exterior of the shell in the neighborhood of the latter,
such that indeed one expects the interaction to be stronger.
- I(1+1) ro|2* M The divergence we find in the coincidence limit is a short-
x Z‘l 2(21+1)(21+3) R +0 R/ (22) coming of the mathematical model we use. Recall that we
treat both the shell and the particle as mathematical
To the leading order iM/R the self-force is given by o-functions. In actuality, one should endow both with finite
extensions, which would remove this divergence. The

2(;2 M2 3—x§ 3+x§ 1+Xo S-functions model fails because it is incompatible with the
fi=—q°"— — - ; assumption of staticity which we make. Specifically, the
c* R 163(1—x3) 325 \1—x i : i -
0 0 0 0 pointlike particle has some finite energy density and mass. In

(220 the electric analog, the electrically-charged particle has an
electrostatic field which gravitates, and a mass. For an elec-
tron the charge is much larger than the mass, such that the
(22) implies tha this force s a 2nd post-Newtonian effect. 2% 260 o8 O 18 212 FIORRE €12 ST el
In this smallM/R limit, we further consider two cases. '?e shell. Approaching the shell this repulsion arows upn-

The first case is the charge being close to the center. Thgr:] - APP 9 L -P grov

: oundedly, such that at some finite distance the internal
self-force is ) ;

stresses in the shell will no longer hold, and the geometry

(2 becomes dynamic. Hence, the assumption of staticity fails in
|

where xo=rqy/R. In Eqg. (22) we re-introduced Newton’s
gravitational constan®, and the speed of light. Equation

2 2
f=— EricE M_r (23  the coincidence limit. When the particle is endowed with a
r 15q C4 R5 0

large masgbut still considered as pointlikeit is, in fact, a

1+0
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10° | fields ¢ and¢ sourced by particles of chargeon the world-
lines. If the four-accelerations of the worldlinesRand P
107" have the same magnitude, and if we identify the neighbor-
hoods of P and P via the exponential map such that the
@ 10 four-velocities and four-accelerations are identified via Rie-
5 mann normal coordinates, then the difference between the
"g': . scalar forces , andﬂ is given by the limitx— O of the field
10 gradients, averaged over a sphere at geodesic distenoe
the worldline atP, i.e.,
107 T _ ) T
f,—f,=lmq(V, 06—V, d). (27
x—0
10° : : :
0 10 20 30 40

We note that this axiom assumes a nearly trivial form for the
case in question: the local neighborhood of the particle in

FIG. 2. The magnitude of the self-forcH;|, in units of question and of a similar particle in(globally-)Minkowski
g2G?/(R%c*), experienced by a static, test, scalar charge as a funcspacetime are identicallt is only the far-away properties of
tion of R/'M computed by the full expression E(L9) (solid line) spacetime which are different for the two spacetimés-
and the smallM/R expansion(22) (dashed ling The charge is other remark is that we do not need to average here over
placed inside the shell a,/R=1/2, and the self-force approaches directions, as the forces in our case are direction indepen-
the limit (8/9)9°G?/(R?*c*) predicted by Eq(26) whenR/M—2.  dent. Setting our minds to use this comparison axiom, we

write the scalar field16) as

tiny black hole. When that black hole is put too close to the
shell, the shell's internal stresses would no longer be able to *
hold against the pull of the particle’s gravity, and the shell 2 AQ
would break. In our mathematical analysis we assume that ~ P(F:#)=) =0
the entire configuration is static, and this assumption fails in D (r,0)+AD(r,0), r<Rr,
the coincidence limit. An analogous discussion can be made
also for a particle endowed with a scalar charge. where

Next we consider the case whi&tYR is not small. Figure
2 shows the magnitude of the self-force in units of
q°G?/(c*R?) as a function ofR/M calculated by the full q’c(f.9)=|20 q
expression(19) (solid line) and the smallM/R expression N
(22) (dashed ling (This full expression, and similarly the o !
full expressions computed below, is computed using the nu- = E q|—+<lP,(cosa)
merical method outlined in Ref4].) The charge is placed at =0 1y
ro/R=1/2. It can be seen that the self-force increases as
R/M decreases and the linear expressi@?) deviates from . q

. = = (29

the full expression. It can be shown that the self-force ap- Ir—roZ
proaches

]
M_l) Pi(cosf), =R

[

r o
71000~ N+ 53
Mo r

O(r—rg) |P)(cosh)

is just the usual scalar field for a particle at rest in a globally-
> G2 xo Minkowski spacetime, and®(r,6) is a term which cor-

T 52 o8 2,2 (26)  rects for the finite size of the Minkowski patch of spacetime,
R (1-x3) L
which is given by
whenR/M —2. = gl
AD(r,0)=—> —(—0) —) ESP(cosd).  (30)
4. Alternative regularization procedure i=o RIR/ R

We remark that the regularization procedure, which we o r_=min(r,ro) and r-=max¢,ro). Hence inside the

performed using MSRP, can be justified by a more straightyy,q|| ‘the scalar field contains the Coulomb fidkd and a

forward, albeit less robust approach. We can make direct use . . . o~
of the scalar-field comparison axiom of Quif26] (which is correctionA® . We next identifyd with ¢. The self-force

modeled after the comparison axiom for electric and gravitnerefore arises only from®s, and is given by
tational fields of Quinn and Wald, for which plausibility ar-
guments were giver[16]). The scalar-field comparison
axiom states the followingsee[25] for more details Con- - -
sider two pointsP andP, each lying on time-like worldlines - (ﬂ) 2 | ES (r_O) (32)
in possibly different spacetimes which contain Klein-Gordon R/ = "\R '

fi=a(Ady) (31)
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a result which is identical to Eq19). (Alternatively, we can argue that the self-force on a static particle in a globally-
Minkowski spacetime is zero, such th&t. does not contribute to the self-force. The self-force therefore arises only from

Adg.)
B. Scalar charge outside the shell

1. Derivation of the bare force

Next, we study the case where the scalar charge is outside the shell, i.e., the casg,wlkerblow, the charge densii)
is decomposed as

g S(r—rg) 2M &
p(r,@)—ET 1_726 (21+1) P,(cos6) (33)

[instead of Eq(4)] and the potential is decomposed as in E). Then the scalar-field equatioh, V#® = —4mp becomes

2MY 2 o 1+1) 21+1 2M
==t 2(r—M)é, — 2 &=-q 2 o(r—=ro) 1—K1 r>R,
(34)
po 2, i+
¢,rr+r¢,r_ 2 #»=0, r<R.
r
Our solution here follows closely the solution of the preceding section.
The &-function in Eq.(34) gives one of the matching conditions:

_ | | 21+1(  2M)| "2

im [¢(rote)=¢ (ro—e)]=—q——|1-——] (35

e0t o 0

while the other matching conditions are the same as in the case when the scalar charge is inside the shell. The solution is
expressed as a linear combination of Legendre functiyrend Q, with arguments/M —1 for r >R, and is proportional to
r' for r<R. Hence,

A|Q|(%—1), r=rg, (region 1l1),

| _

¢ (n= C|P|($—1)+D|Q,<%—1), R<r=r, (region I, (36
Br', r<R (region ),

where the constantd;, B, C, andD, are determined by the matching conditions. The result for the scalardigldd) is
then given by

q 2M - .
M V1~ r—E (21+1)Py(cosd)[ Py(zo) + EfQi(20)1Qi(2), r=ro (region 1),
0l1=0
q 2M — ,
o 0)={ M 1—K§0(2I+1)P|(c099)Q|(Zo)[P|(Z)+E.Q|(Z)], R<r<ro (region II), 37

21+1) M R(ro—2M) Qi(zp) b )
ez ViRr-2m) om L ek (region ).
IEQ|(Z)— 1—?Q((Z)

Here,z=r/M—1, zy=r,/M—1, Z=R/M—1, and we have used the WronskifiP,(z),Q,(z)]= —1/(z>— 1) to simplify
the expression. We are interested in the field in the neighborhood of the partialg>AS the field in this neighborhood can
be written as
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O(r>R, 9):% 1- 2r_|:)/||20 (214 1)Py(cosO)[ Pi(2o) Q(2)O(r —1o) + Py (2)Qi(20) O (ro—1) + EfQi(20) Qi(2)],
(39
WhereEf is given by 3. Properties of the regularized force
For smallM/R, the leading order of Eq41) is given by

| M ) 2M ) 2 2> 2l-1
—P(2)-\/1-—P/(Z M [(1+1 R\~
~ R I( R I( f;: g) (_) # _) (42)
Ef= , (39 ro/ \ro) i=12(21-1)(21+1) \rg
2M , IM
1= =Qi (2)— FQKZ) which can be written as
2 812 2 a2

which can be shown to be positive for aland M/R<1/2. fF:qu_ M= 1+3y0|n 1tyo) _ 173¥5 '

To find the self-force, we next calculate the force accord- c* rg | 32y \1-Yo/ 16y,(1-yd)

ing to f,=qV ,®, and evaluate this expression at the posi- (43

tion of the particle, i.e., at=rq. Clearly, only the radial ) ,

component of the forcé , is non-zero. Thebare radial wherey,=R/r. Here,.we re-introduced Newton'’s constant

force is then given by G and the §peed of light. As the charge approaches the
shell (yo—17),

2

2M
f?af‘f:q— 1-—> (21+1)
lo =0

1
VE 5[PI(20)Q (20) 8™ 3 In2

11
L TV E PRV A L
fi=d" rg|16(l—y0) g1 Yo" 3t 3

+P|,(ZO)Q|(ZO)]+EFQ|(ZO)QI,(ZO)] (40) +O[(1_y0)|n(1_y0)]] (44)

The series, when summed naively, diverges. The divergence which we find in the coincidence limit is

again due to the simplified model of the pointlike chafgee
discussion aboye Note, that the result for the self-force in
To regularize the bare force and extract the finite, physicathe limit where the particle approaches the shell from the
self-force, we use MSRP. Again, only the radial self-force isoutside(44) is similar to the result for the self-force in the
not trivial. The regularization functioh,=a,l+b,+c,/~*  limit where the particle approaches the shell from the inside
can be found from a local analysis near the particle, wheré25). In fact, the leading order termén the inverse of the
spacetime is locally Schwarzschild. In Schwarzschild spacedistance from the shelbf the two cases are identicéhey
time the values of, ,b, ,c,, andd, are completely known only have opposite signs, because the self-force in both cases
for a static scalar particle, and are given &y=0=c, (we repels the particle from the shelHowever, the next terms
again use here the “averaged” value fa), and b,= (which are proportional to the logarithm of the distance from
—[g?/(2r)[(1—M/rg)/(1—2M/rg)]. In addition, it is the shell are no longer identicalthe relative signs are dif-
also known thatl,=0. In Ref.[4] it was shown that when fereny bgcause of the different directio_n of the shell's cur-
MSRP is applied to the term proportional to the squarevature with regard to the particle’s position.
brackets in Eq(40), the sum over all modes vanishes. That Figure 3 shows the self-forck as a function ofR/M
is, when f?'® is written as a sum over modes, i.d%® computed by the full expressio@l) (solid line) and the
EEfc:ofPare' , the regularized self-force can be written as smallM/R formula (43) (dashgd ling The charge is placed
f, =37 (f°¥°'—p ). Because this series converges, it candt To/R=2. The self-force increases @&/M decreases,

—0 ' : : hes a maximum &/M~2.3 and drops to zero when
be split into two sums, the first of which vanished, such reac . .
that the regularized, physical self-force in an orthonormaIR/M_’z' It is easy to ShO\.N ana!ytlcally from E¢S9) ﬁ!”d
basis is given by (41) that the self-force vanishes in the liniRf M — 2, which

coincides with the case when the shell is replaced by a
5 % Schwarzschild black hole. Of course, in that limit the shell
fﬁz<ﬂ) (1_ﬂ>2 (21+1)ESQ (r_°_1>Q/(r_0_1)_ can no longer be static, and must implode instead. The
M o /=0 Y "\ M spacetime then is that of a Schwarzschild black hole with
(41 appropriate boundary conditions at the event horizon, which
are unaffected by the implosion of the shell inside the black
This is a repulsive force, as it always directs away from thehole. That is the reason why the static shell gives the right
center of the coordinatdand also away from the shgllThis  result(of a zero self-forcgin the limit of coincidence of its
result (41) corrects the zero self-force resufor the case radius with the Schwarzschild radius.
where the source of the gravitational field is a black hole Finally, Fig. 6a) displays the magnitude of the self-force
[1,3,4)) for the finite size of the shell. |f;| as a function of 4/R for R=2.5M. We can see that the

2. Regularization of the bare force
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is the scalar fieldwhich we choose to b%ﬁ) for the case

[
where the shell is replaced by a Schwarzschild black hole of
\ the same magst], and
A
107 2M & ~ [
AD(r,0)= /1= 225 (21 +1)E|SQ|(—O—1
9 M loi=0 M
S
= r
& 107 XQ M—l)ﬂ(cose), (48)
is the correction due to the finiteness of the shell’s radius.
. Applying the comparison axiom, the self-force is given by
107 |
: - ; f,=q(AdP
0 10 20 30 40 =AAP)
RIM 5 ®
i q M - o [ To
FIG. 3. Same as Fig. 2 but the scalar charge is placed outside tHé = vl =7 |20 (2I1+1)ErQ, v Qi)
shell atr,/R=2. Solid line is computed by the full expression Eq. 0= (49)
(41); dashed line is computed by the smislfR formula (43). The
seli-farce vanishes in the limi/M—2. which is identical to Eq(41). [This can also be stated, alter-

small M/R expressiongdashed lingare no longer accurate natively, in the following way: Because the self force is zero

in this case. The self force decreases as the charge mov&41en the source of the gravitational field is point-like, the
away from the shell, but diverges B{=R (see the above SEli-force is given only byf,=q(A®) ]

discussion
IIl. ELECTRIC CHARGE

4. Alternative regularization procedure ) .
The second type of charge we study is an electric charge

Again, the regularization prescription can be performedy \vhich again, following the preceding section, is at rest
also by applying directly Quinn’s comparison axiom. This jnside or outside a spherical shell of m&ésin this case, we
time, we choose the spacetime of a globally-Schwarzschilghok for the solution of the Maxwell equation
spacetimda Schwarzschild black holas the “tilde” space-

time. That is, we write the total scalar field as V FA=4gjH, (50)
SC
d(r 0):{(1) ”(r,a)+Aq>(r,0), r=R, (45) where F,, is the Maxwell field-strength tensor, which is
’ B, r' Py(cos#), r<R, antisymmetric and related to the 4-vector potenfigl by

F.=A,,—A,,. Here, j*=pu* is the four-current den-

where sity, p is the charge density, and* is the 4-velocity of the
12 _1p charge. Since the charge is static, the spatial components of

B,=q (2+1)M _ 2_M 1— Z_M j* vanish. From the spatial components of E&), one can
: R!+2 o R easily show that it is possible to choose a gauge so that all

spatial components of, vanish. The equation foA, is
o ( o 1) given by the temporal component of E&O):
| ==
M

’ 1
" <R ) Vi f(R ) o (Tegrg A=A (6D
RAM T TNV R ! ’

(46)  Wwith jt given by

and © 54 XM_Z# T
B jtzqf u‘—[ (7] dr. (52)
q 2M — v—9g
O5Nr,0)=—\/1— —2, (21+1)P,(cosh)
M ro =0
A. Electric charge inside the shell
r r
X | P, Mo—l)Q(m—l)@(r—ro) 1. Derivation of the bare force

For the case where the electric charge is inside the shell,
r To _ ro<R. This case was studied by Unruh in Rgf2]. The
+P'( M 1)Q'( M 1)®(r0 r)} @7 decomposition oA, andj' into modes yields
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At<r,e>=|§O #'(r)P(cosh)

| q or—ro) [  2M| 72
t — R

><|2O (21+1)P(cos#).

Substituting these decompositions into Es{l) we find that

the latter becomes

—1
2|v|> I(1+1) R

&' +E¢| il _
,rr r ,r r r2 ’

L2 1141 (2041 2M
¢,rr+F¢,r_r—2¢_q 2 -5

X &(r—ryg),

r<R.

(53

(54

(55

PHYSICAL REVIEW D 63 024015

The general solution far<R is a linear combinations of the
basic solutions which solve the corresponding homogeneous
equation, i.e., a linear combination of andr~'"!. The
solution outside the shell is a linear combinations of (
—2M)Q([(r/M)—1] and ¢ —2M)P/[(r/M)—1] [26-28.

As in the case of scalar charge, we perform the coordinate
transformation(9), re-express Eq(51) in terms ofu, inte-
grate it fromu=R—e€ to u=R+¢€ and take the limite
—0%. We end up with the same conditiga3) for ¢"r at
r=R. The potentialA; is solved in the same way ds in the
scalar charge case. The matching conditions in this case are:
(1) ¢' is continuous everywheré2) ¢' is finite atr=0 and

vanishes at =; (3) d)f, satisfies Eq(13) and
. | | 21+1 2M
lim [¢,r(r0+6)_¢,r(r0_ _?1
e—~0"
(56)

which comes from integrating Ed55) acrossr=r,. The
time component of the 4-vector potenti),, the only non-
vanishing component in our gauge, in a normalized basis is
then

( o
Z G|(r—2M)Q{(%—l) P,(cosb), r=R (region IlI),
* [ [
Al(r,0)={ Z q MRS, Pi(cos#) + Z %( )(%) E°P,(cos), ro<r<R (region I, (57)
q !
Z d—51 (T Pi(cosf)+ Z ﬁ( )( )Ee P,(cosf), TI<rg (region ),
where
B 21+1  Mr) 2Mm| )M\/W (R >1
G|——q—2M R|+3 1—? | M—l —E | 1—?—1 Q| M—l (58)
Vi=
and
M [ 2M R 2m| R
E (I+1) 1—F+1 Q M_l +1 R Q M—l
Br= o (59
M 2M ) R 2M . R_
R I 1_F_1 Ql(——l)— 1 F)Q'(M 1)
In the neighborhood of the charge the potential then is given by
| | ® I
At(r 0)= E q —770(ro—1)+ I+lG)(r ro) P|(cos¢9)+2 %(—) ( ) E; Pi(cos#). (60)
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The self-force is computed by calculating the Lorentz forcesmall, and is unlikely of being detected. Next we consider
arising from this potential, and evaluating it at the position ofthe force to the leading orders in-Ix,, and find that
the charge. We thus find the bare force to be

q> [a\® _o(ro|®" f qZG M‘ +1In(1 x)+3 n2
bare_ L el 0 = 2R3 4(1=x.) ' 4 - T

fr “h 2[‘% (R |E| (R) . (61) C ( XO)

This (bare force diverges when the series is naively +O[(1—xo)ln(l—xo)]]. (68)
summed.

Again, this force diverges in the coincidence limikq(

) . . —17), but this divergence only signifies the breakdown of
Next, we regularize this force using MSRP. Although gy model at this limit.

MSRP has been developed only for scalar charges, it was Figure 4 shows the self forcé as a function ofR/M
shown in Refs[4,22] that it is also applicable for electric computed by full expressiof62) (solid line) and the small
charges, at least in simple cases. In particular, for an electrigy/r expressior(65) (dashed ling The result is very similar

charge at rest in a locally-Minkowski spacetime, the valuesg the scalar charge cagef. Fig. 2. It can be shown that
of the regularization functions are known, and are given by

a,=0=c,, br=—q2/(2r§), andd,=0. Consequently, the ) 3
regularized, physical self-force is given by o3 G 2X—Xp 69)
' R? ¢ (1-x3)?

2. Regularization of the bare force

q\2Z ro| 21
fr=-— —) I Ee(—) . 62
' R lzo "\R (62 asR/IM—2.
3. Properties of the regularized force 4. Alternative regularization procedure
WhenEy is expanded irM/R we find Similarly to the direct application of the comparison
axiom in the scalar case, we can apply the electric-field com-
e 1 (M M2 parison axioni16] here analogously. The electric field com-
Ey “21+1\ R +0 R/ (63 parison axiom is nearly identical to the scalar-field compari-
son axiom. In fact, all that we need to change in its definition
such that is to replace the scalar field$ and ¢ with the Maxwell
IV | BRI M fieldsF,, andF,,, respectively, and replace E@7) with
f=—(3) —{E— —°> +0 —” (64)
' R/ R|=121+1\R R/ AT = v
=1 fﬂ—fM=I|qu<FM,,—FW>Xu . (70
X—
To the leading order iM/R this result can be written as
GM 1 1 1 1+Xg 10°
= — 2— —_—— ] —— ———
fr q C2 R3 2X0 1—X(2) 2XQ n 1—X0 ! (65)
wherexy=ry/R. This force is directed toward the center, or )
away from the sphere, and in this sense it is a repelling force g 10°
In Eq. (65 we re-introduced Newton’s constaGt and the 8
speed of lightc. This force is a 1st post-Newtonian effect. "g':
When the charge is close to the center, the self-force is
proportional tor, and the charge will oscillate with fre- 107
quency
1,6 M 66 .
*=N39 z2mr (66 B 10 20 30 40
RIM
12 -12 -2
—3.9x 1075r_ aj( M7 m R FIG. 4. The magnitude of the self-forcd;|, in units of
' Mo me 3km/ "’ g°G/(R?c?), experienced by an electric charge as a function of

(67) R/M, computed by the full expression E@2) (solid line) and the
small M/R formula (65) (dashed ling The charge is placed inside
wherem is the charge’s mass is electron’s chargem, is  the shell atr,/R=1/2, and the self-force approaches the limit
the electron’s mass, and; is solar mass. This frequency is (14/9)g°G/(R?c?) predicted by Eq(69) whenR/M —2.
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In order to apply the comparison axiom we write the poten- B. Electric charge outside the shell
tial in the form 1. Derivation of the bare force
Af(r,a) Next, we shall study the case where the electric chgrge

is outside the shell, i.e., the case whege>R. The time-
component of the 4-current density is now decomposed as

[

2 (214 1)P,(cos#). (74)

lzo Gl(r—zM)Q{(%ﬂ) P,(cosf), =R,

9 5(r—r0
D (r,0)+AD(r,6), r<R, =7

(71

I'

where®d_ is the Coulomb field29), which is the potential gg)hb,zzgric;c;mposed as in Eg53), the Maxwell equation

which is used to construét,,,, and

. O 4 +2¢' (1 2M *1|(|+1)¢I
_s 9 () e et \-T) T3
ACI)e(r,B)—leO R( R) R) E; P,(cosé) (72 r
. . . . . o(r—ro)
is the correction term due to the finite size of the Minkowski =q(2l+1)———, r>R,
patch of spacetime. Applying the comparison axiom, we find r
that the self-force is given by (75
q\2 ro) 21 | E I_I(I-i—l) |
—(ﬁ) lleEf’(E) : (73 Pt ydm—5 =0 <R
which is identical to Eq(62). Hence,¢' can be written as
A(r—2M)Q/ (M 1), r=rg (region 111),
ey — r . 7
#r) '(r_ZM)P'(M 1)+D|(r—2M)Q(<M—1), R<r=rq (region II), (70
Br', r<R (region ),
whenl#0. Whenl =0 the solution has the form
A
TO’ r=r, (region 11I),
¢°(r)= D - (77)

C0+TO’ R<r=<r, (region II),

By, r<R (region ).

A, B,, C, andD, are constants to be determined by the matching conditions, which are the same as the case when the electric
charge is inside the shell, except that Esp) is replaced by

21+1

lim [¢,(ro+e)— ¢ (ro—€)]=1 (78)

e—0" 0

Straightforward calculations yield
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q _ q 2|+1 ! ’ =en~’ ’
—?+Z,1WI(Hl)(r—2M)(ro—2M)P|(cos¢9)[P|(zO)Q|(z)+E|Q|(zo)Q|(z)], r=rop,
q <« q 2+1 ~
_E"‘glWI(ITl)(r_ZM)(ro_ZM)Pl(COSG)[P((Z)Q((Zo)"‘EFQ((ZO)Q((Z)]: R=<r=r,,
Ar,0)= oM (79
» (21+1) 1——)Q|'(Zo)
M
AL g2 o r' P,(cosf), r<R.
ro i=1 R'*S( ZM) ) M 2M ) ,
1-— Q@) - =1\ 1-——1]Q{@)
Here,
( 2|v|) (R M [ 2m (R )
—|1-—|P/| =1+ =|I1\/1- —1]|P/| ——1
R M R R M

Er= , (80)
2M , R M 2M , R
(1_F>Q'<M_1 Q'(M_l)

——1\/1-—-1
R R

and we have used the Wronskifi P/(z),Q/(2)]=n(n+1)/(z>— 1)? to simplify the expressions. In the neighborhood of the

charge the potential can thus be written as

A= q@ q@ i q 2l+1 2M 2M)P P/ ! Q]
=7 (r_ro)_a (ro_r)+|:1W|(|+1)(r_ )(ro—2M)P(cost)[ Py (2)Q,(zp)®(ro—r)
+P[(20)Q[ (2)0(r —10) +EfQ/ (20) Q[ (2)]. (81)
|
The (bare force is given formally by 3. Properties of the regularized force
oM | ~ 12 To leading order irM/R, the self-force is reduced to the
fPare:quu,u:q( 1— r_> A, (820  following simple expression:
0
2 * 21
which of course diverges. g™ I+1 (R
=5 i, ®4

2. Regularization of the bare force

The application of MSRP to this case is not straightfor-which can be written as
ward, because the analytical valuelpfis as yet unknown.

However, it was shown in Ref4] that it can be computed G M 1 1 1+y,
numerically, by studying the largebehavior of the modes =0 5 5t 2—|n( = ) : (85
of the bare force. It was also found numerically in Ref] ¢ 2rp[1-yy  <Yo Yo

that for an electric charge at rest in Schwarzschild spacetime ) ]
the values of the other regularization functions are given byvhereyo=R/ro. In the last equation we re-introduced New-
a,=0=c, and thatd,=0. When MSRP is applied, the regu- ton’s constaniG and the speed of light. The effect of the

to be given by which was found first by Smith and Will for the case where

the source of the gravitational field is @chwarzschili

,M g M\ 21+1 Mo 2 black hole[2]. To leading orders in y, we find that the
e el S ol 1| e savensy
3 =
2,2 2> G M 1 1 1 In2
q°rg 2M 2|+1~e [ To fr= 2__[—__|n 1— NI —
e ] Bt THerlamyy AT
xQ! I:/I_O_j')' (83 +O[(1_y0)|n(1_YO)]] . (86)
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FIG. 6. The magnitude of the self-for¢&| experienced bya)
a scalar charggn units ofq?G?/(c*R?)] and (b) an electric charge
[in units of q>G/(c?R?)] as a function of the charge’s positiag.
The radius of the shell is set ®=2.5M. Solid lines are calculated
by corresponding full expressions and dashed lines are calculated
by the appropriate expressions for smdllR.

FIG. 5. Same as Fig. 4 but the electric charge is placed outside
the shell ar,/R=2. The upper pandh) shows the total self-force.
The lower pane{b) shows the correction to the self-force due to the
finite size of the Minkowski patcfi.e. Af; in Eq.(92)]. Solid lines
are calculated by the full expression E®3J); dashed lines are
calculated based on the small/R formula (85). The self-force
approaches the Smith-Will result wh&iM — 2.

where

This force diverges in the coincidence limit
(Yo—17), again, due to the breakdown of the mathematical
model. A=~ 2 O(r—rg)~ ~O(re-1)

Figure 5 showsga) the total self-force andb) the correc- r )
tion of the self-force due to the finite Minkowski patfike. .
Af; in Eq.(92)]in unit of g°G/(c?R?) as a function oR/M 2 a
based on the full expressi@83) and the smalM/R formula = M3
(85). The charge is placed at/R=2. We can see that the
situation is very similar to the scalar cagd. Fig. 3. The
self-force reduces to the Will-Smith result in the linktM
—2, as expected.

Finally, Fig. b) shows the magnitude of the self-force in +P
unit of g°G/(c?R?) as a function of /R for R=2.5M. We
can see that the smalll/R expressiongdashed ling devi-
ates significantly from the full expressidsolid line) when
the charge is inside the shell, but is quite accurate when it i& the potential if the shell is replaced by a Schwarzschild
outside the shell. The reason is that the self-force is domiblack hole of the same magé] (i.e., a point-like source
nated by the Smith-Will force, which are present in both thefor the gravitational fielgd which is the origin forFW,
full and the smallM/R expressions, when the charge is out-and
side the shell. The self-force decreases as the charge moves
away from the shell, but diverges B§=R (see the above
discussion

2|+l

o'

—2M)(ro—2M)P,(coséb)

+
PI )Q|(__1)®(ro—f)

) T
M—l)Q|(m—l)®(r—ro)} (88)

q +1._
4. Alternative regularization procedure AAt:W(rO_ 2M)(r— ZM); mEf

Again, we can apply the comparison axiom directly. We

i i r r
thus write the potential as xQ| M0 _ l) Q (M _ 1) P,(cosf) 89)
sch
A= ACTHAA r=R, (87) is the correction for the potential because of the finite size of
! Br'P,(cos), r<R, the Minkowski patch of spacetime. Here,
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=1
2M Qi M
q(2|+1)M— 1— — , 1#0,
ro 2M R M 2M R
B,= 1- — Q| ——1|-=|1\/1- ——1|Q/| ——1 (90)
R M R R M
9 I-0.
\ fo

The difference in the self-forces between the actual and thevheremis the mass of the charge. A particle of masfixed

“tilde” spacetimes is then given by

—1/2
fr_TrZQ(Fru_iirp)uM:q(l_?) (AAt),r-

at r will experience a “gravitational force” f¢
—uDu?/D7, whereu” is the 4-velocity andD/D 7 de-
notes covariant derivativeeompatible with the metri¢93)]
with respect to the particle’'s proper time. Because of the
symmetry of the setup, the only non-vanishing component of

(9D f2, in an orthonormal basis, is
This difference then equals
2\ —1/2 2
; q pmm o uq
oM |~ 12 fr=—u(ut)2F¥t<1—T+rz) -zt oE
fr_frEAfr:C](l_r_) AA, (94)
0
q%rg “21+1 ~e 2 to leading order irm andg?, wherel';,, are the connection
fi= _M3 21 il +1)E Qv coefficients. The first term is the usuttractive gravita-
tional force, whereas the second term, which is a repulsive
q2r2 M\22 2141 force, comes from the stress-energy tensor of the electric
—40( —) 2 Ef field. In what follows we shall ignore the former, as we are
M r =1 1(0+1) interested only in the electric-field interaction and not in the
" ; direct gravitational force. Because of the staticity of the
xQ/ _°_1> |"<_°_ 1)_ (92 problem, the two-body systefeharge and massive partigle
M M conserves linear momentum. Consequently, Newton’s third
law is applicable for this two-body systeifin general, when
Recall now thatf;=Af:+T:, wheref; is the Smith-will  radiation is present, Newton’s third law is inapplicaplk.

force given byf;=
the self forcef;, which is identical to Eq(83).

IV. HEURISTIC VIEWPOINT ON THE ORIGIN OF THE
SELF-FORCE

The self-force experienced by a static electric charge in®
the presence of the shell can be interpreted as a result of e
interaction between the charge’s electric field and the shell’
gravitational field. In this section, we shall consider the self’
force in the smallM/R limit, i.e. Egs. (65) and (85), by a
heuristic argument. It is the linearization M/R which al-

lows us to obtain the solution very easily.

Consider a static electric chargpat the origin of the
coordinate system. Spacetime is then described by th

Reissner-Nordstra metric

2

2m 2 2\ -1
d52=—(1—T+?—f dt2+ 1—T+?—2') C|I'2

+r2(dd%+sinfd de?),

g2(M/r3). When combined, we recover

(93

follows from Newton’s third law that the static electric
charge also experiences this repulsive fogfg./r® apart
from the usual attractive gravitational force. This additional
repulsive force on the static charge is then interpreted as a
result of the interaction between the charge’s electric field
and the point masa, i.e., it is the self-force. Notice that this
sult is the same as the self force acting on a static electric
arge in Schwarzschild spacetime computed by Smith and
ill [2] (notice, however, that by this argument we only find
the leading order term i. The Smith-Will force, however,
is an exact result

Now, suppose the charge is surrounded by a spherical
shell of radiusR and massv [Fig. 7(@)]. In the smallM/R
and test charge limits, the “gravitational force” acting on
gﬂe shell by the charge’s electric field is equal to the sum of
the forces acting on each particle on the shell. We express
the massu of a small element of the shell by
=M d?x/(47R?), where d?x is an area element of the shell.
From symmetry, it is clear that the total force is aligned on
the z-axis. We thus project all the contributions to the total
force on this axis, such that the vector summation becomes
trivial. The resultant force is along ttreaxis and is given by

024015-16
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(b)

FIG. 7. Geometry of the charge and the shell in Sec.(&the
charge is inside the shelb) the charge is outside the shéflis the
shell’'s radius;ry is the distance between the chargeand the
shell’s centelC. P is an arbitrary point on the shellis the distance
between the charggand pointP. 6 is the angle between ling3q
andCP; ¢ (in the upper figurkis the angle between linesP and
CP, andy (in the lower figure is the angle between linegC and
qP.

Fi= M f dxzq—zcos{0+§)
AmR?Jshen 3

B szfl Rcosf—r,
2 J-1(r3+R?-2r,Rcosh)?

d(cos#h)

_,GM 1 1 1 1+Xg o5
TR 1 o x| P

where the angle$ and ¢ are defined in Fig. (&), and
> Rcosé—rg,
r=\/r0+R —2rgRcosfd and co$0+§)=f.
(96)

PHYSICAL REVIEW D 63 024015

N M q2
F?=— f dx?>—5cos
47R2)shen 1 X
2
M (1 1-yycosé
__4 3f 5 Yo 2d(cosﬁ)
2ry J-1(1+yg5— 2y, coso)
G M 1 1 1+
= | e ]| @
c22ri|1-ys 2Yo 1=Yo
where we have used the expressions
ro—Rcosd
r=yR?+r3—2r,Rcosfd and cos(zof,
(98)

and re-introduce@ andc in the last expression of E¢97).

Hence, the self-force is-F* (repel the shell exactly the
same as in Eq85).

We can carry out the above calculation also to the scalar
charge case. Consider a scalar test charge at the origin of the
coordinates. Recall that we are interested here in the self-
force, and not in the usual gravitational attraction due to the
particle’s mass. Hence, in what follows we ignore the mass
of the scalar charge. Next, we write the coupled Einstein-
Klein-Gordon equations,

G,,=8nT,,

Od=—4mp, (99
where[dJ denotes the covariant wave operator, anid the
charge density given by Ed3) for a static charge at the
origin, and look for a static, spherically symmetric solution.
Here, T,, is the stress-energy tensor of a massless scalar
field, which is given by

We re-introduced Newton’s consta@tand the speed of light
c in the last expression of Eq95). The self-force experi-
enced by the charge is of the same magnitude but directs
towards the center of the shell, which is exactly the same as
Eq. (65).

When the charge is outside the shell, we hewvig. 7(b)] and

024015-17
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1 1 B
TMV:E (D”uq)’,,— Eglmjg q),a(b,ﬂ . (100)
The Einstein equations then reduce to
R,,=2® , &,
Odb=—4mp, (10D
whose solution is given by
2
ds’=— dt’+ S +Hr3(d9?+sin® 9 de?) (102
1+ 4
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q 1 field lineg, this results in a force acting on the charge in the

® =————— and ®=sinh *(qg/r). (103 dirgction of the center of the spherg. An a_lternative vie_w—
r2 2 point is the following. The electrostatic field is accompanied

1+ — by a stress-energy tensor which gives rise to an effective

2 metric which is similar to the Reissner-Nordstrometric

o ) ~ without the mass term. This metric induces repulsiee

Hence the “gravitational force” experienced by a static antj) gravity, which is the origin for the repulsive force act-
point massy is f*=—u Du®/ D7=—pu(u")?T'§=0, since  ing on the charge(The usual Reissner-Nordstrogeometry
I'§=0 for the metric(102. D/ D7 here denotes covariant is attractive at large distances because of the mass term. It is,
differentiation compatible with the metricl02. Thus we however, repulsive at short distances, where the mass term is
conclude that the self-force is zero to leading ordein  small compared with the charge term in the metric. This
Consequently, after integration over the shell, the self-forcdnappens, nevertheless, only deep inside the Reissner-
is zero also to linear order M. This result is in accord with  Nordstran black hole, and is responsible for the phenom-
our previous calculation that the self-force in the scalarenon of gravitational bounde9]. The occurrence of gravi-
charge case is a second post-Newtonian effect. tational bounce in actuality is uncertain because of the inner-

We can also make the following arguments for the direc-horizon instability of realistic black holef30]. For recent
tion of the self-force. For concreteness, consider the case oéviews see[31,32.) Consequently, the self-force on the
an electric charge inside the shell. The electric field linesharge directs toward the center of the shell.
near the charge have the usual distribution in space. How-
ever, outside the shell they are distorted due to the curvature
of space. Specifically, the electric field lines are closer than
what they would be if spacetime were flat. The reason is that We thank Jeremy Heyl, Amos Ori, and Kip Thorne for
the ratio of the circumference and thprope) radius is invaluable discussions. L.M.B. wishes to thank the Technion
smaller than Zr. When the charge is off the center of the Institute of Theoretical Physics, where part of this research
sphere, the curvature effect is stronger outside the shell at thgas done, for hospitality. At Caltech this research was sup-
side closer to the charge. Because of the stress in the eleperted by NSF grants AST-9731698 and PHY-9900776 and
trostatic field(one has to put in energy to squeeze electricoy NASA grant NAG5-6840.
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