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Self-force on charges in the spacetime of spherical shells

Lior M. Burko and Yuk Tung Liu
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

Yoav Soen
Department of Physics, Technion-Israel Institute of Technology, 32000 Haifa, Israel

~Received 27 August 2000; published 27 December 2000!

We study the self-force acting on static electric or scalar charges inside or outside a spherical, massive, thin
shell. The regularization of the self-force is done using the recently proposed mode sum regularization pre-
scription. In all cases the self-force acting on the charge is repulsive. We find that in the scalar case the force
is quadratic in the mass of the shell, and is a second post-Newtonian effect. For the electric case the force is
linear in the shell’s mass, and is a first post-Newtonian effect. When the charge is outside the shell our results
correct the known zero self-force in the scalar case or the known repulsive, inverse-cubic force law in the
electric case, for the finite size of the shell. When the charge is near the center of the shell the charge undergoes
harmonic oscillations.
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I. INTRODUCTION AND OVERVIEW

The calculation of the self-force acting on a particle
curved spacetime has become recently exceedingly im
tant, as the Laser Interferometer Space Antenna~LISA! is
currently planned to fly as early as 2010. One of the m
promising gravitational-wave sources for LISA is extrem
mass-ratio binaries, where the evolution in the last yea
inspiral is strongly affected by the self-force acting on t
inspiraling object. The long-term goal then is to compute
momentary self-forces acting on a compact object, which
in a generic orbit around a supermassive black hole. O
the self-force is known, this force could be included in t
determination of the orbital evolution under radiation rea
tion.

However, much is yet to be understood about the na
of self-forces in curved spacetime even for problems wh
are significantly simpler than the astrophysically motiva
ones. These problems, nevertheless, are motivated by b
pedagogical on the one hand, and by illuminating some
portant points of principle, which are relevant also for ast
physically realistic problems, on the other hand. A numbe
simple static configurations have thus been analyzed, inc
ing the self-force acting on scalar or electric charges h
static in the spacetime of a Schwarzschild black hole@1–4#,
electric or magnetic dipoles which are static outside
Schwarzschild black hole@5#, a static electric charge outsid
a Kerr black hole@6# or a Kerr-Newman black hole@7#, a
static electric charge in a spherically-symmetric Brans-Dic
field @8#, and a static charge in the spacetime of a cos
string@9,10#. In all these analyses the self-force was found
leading order in the charge of the particle, i.e., to ord
~charge!2. In this paper, too, we calculate the self-force
that order.

Still, there are elementary configurations where the s
force acting on charges is as yet poorly understood. Spe
cally, little is known on the self-force acting on charges
the spacetime of spherical, massive~thin! shells. This prob-
lem is interesting from a pedagogical point of view becau
the derivation of the self-force is simple, whether the cha
0556-2821/2000/63~2!/024015~18!/$15.00 63 0240
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is inside the shell~where spacetime is locally flat! or outside
the shell~where spacetime is locally Schwarzschild!. How-
ever, despite the simplicity, there are some non-trivial iss
which are demonstrated already in this simple context. F
when the charge is inside the shell, there is a non-zero s
force acting on it, even when the charge is static. Seco
this non-zero force exists although the charge moves alo
geodesic of spacetime~a static worldline is a geodesic in fla
spacetime!. Third, already in this simple context it is eviden
that the Einstein equivalence principle is not satisfied
problems which involve self interaction. Namely, two ide
tical static particles, one in a globally-Minkowski spacetim
and one in a locally Minkowski spacetime experience diff
ent forces: the former a zero self-force and the latter a n
zero self-force, although the geometries of the local nei
borhoods of the two particles are exactly identical.@The self-
force is considered here to order~charge!2. Under this
assumption, the geometry is a fixed background, and is g
by the solution of the Einstein equations in the absence of
charge. When higher order terms, of order~charge! 4 or
higher, are considered, the geometries in the local neigh
hoods of the particles would no longer be identical, beca
of the different ways in which the particles’ fields couple
the geometry in the two cases.# Because the self-force
couples to the charge of the particle in a way which depe
on the type of charge, the worldline of a particle which ca
ries one type of charge deviates from the worldline of
particle which carries a different type of charge. The reas
for this failure of the equivalence principle is obvious: th
equivalence principle relates to the local neighborhood of
particle. The self-force, however, is affected by the bound
conditions on the surface of discontinuity~the shell!, and
these far-field conditions affect the near-field of the parti
such that a self-force arises. In problems where there is n
trivial dynamics, this effect comes about by the scattering
the tails of the field off the spacetime curvature, and t
scattering occurs also at arbitrary large distances from
position of the particle in the remote past. In this sense
self force is a non-local effect, which transcends the dom
©2000 The American Physical Society15-1
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of applicability of the equivalence principle. The equivalen
principle is transcended also when the particle is outside
spherical shell. Although spacetime outside a spherical s
of massM is identical to the spacetime outside a black h
of the same massM ~by virtue of Birkhoff’s theorem!, the
self-forces acting on two identical particles, one in
globally-Schwarzschild spacetime and the other in a loca
Schwarzschild spacetime, are different. In principle, o
could infer on ~classes of! spherical mass distributions b
solving the inverse problem, and finding the spherical m
distribution which induces a measured self-force. An imp
tant point of principle then, is that the interior of the sour
for the gravitational field is important for the orbital evolu
tion of particles. As noted by Ryan@11#, the orbital evolution
under radiation reaction would enable us to map the sp
time around a black hole~or, possibly, some other dens
objects!. In addition, it would allow us also to infer on th
interior of the source, its equation of state, its density dis
bution, etc.

The problem of the self force in the spacetime of a sph
cal massive shell was first considered by Unruh, who stud
the case of a static electric chargeq inside a spherical shell o
massM and radiusR @12#. Unruh found that there was
radial non-zero force acting on the charge.@The related prob-
lem of a point charge, coupled to a massive~Proca! vector
field, within a spherical shell was studied by Le´auté and
Linet @13#.# Below, we shall recapitulate Unruh’s result, b
derive it using the newly-proposed mode sum regulariza
prescription~MSRP! @14,15#. We shall also provide more
insight into the meaning of the result. We find that the se
force acting on the charge is directed toward the center of
sphere ~the self force acts to repel the charge from t
sphere!. When the charge is very close to the center, t
induces harmonic oscillations, with angular frequency
v25 1

3 (G/c2)q2M /(mR4), to leading order inM /R, where
m is the particle’s mass. Here,G is Newton’s gravitational
constant, andc is the speed of light.

Then, we also study the self-force acting on an elec
chargeq outside a spherical shell. For the case where
source of the gravitational field is a Schwarzschild bla
hole, the self-force was found by Smith and Will@2#, who
found that there was a repelling self-force, which was giv
by f r̂(r )5(G/c2)q2M /r 3. Here,q is the electric charge o
the particle,M is the black hole’s mass, andr is the usual
radial Schwarzschild coordinate.~This expression for the
force is exact in a reference frame of a freely-falling obser
who is instantaneously at rest at the position of the char!
When the source of the gravitational force is extended,
Smith-Will force is corrected by a finite-size term, which,
leading order inM /r , is of the same order inG/c2 as the
Smith-Will term. Specifically, we find that when the sour
is a thin spherical shell of massM, to the leading order in
M /r , the self-force is given by f r̂5(G/c2)q2M /r 3@1
1 2

3 (R/r )21O(R/r )4#, whereR is the radius of the shell
For r @R ~when the charge is very far from the shell! this
correction is very small. However, when the charge is v
close to the shell, higher-order terms in (R/r )2 become com-
parable with the Smith-Will term, such that the correcti
terms may become more important than the leading-o
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term. We find that near the shell, the self-force becomes v
large. ~In fact, approaching the shell we find that the se
force diverges. We shall study that effect in detail, and sh
that when the charge is very close to the shell our mathem
cal model breaks down, such that the physical self-force
always finite.!

Next, we calculate the self-force acting on a particle e
dowed with scalar chargeq. For the case where the charge
inside the shell we again find a self-force which directs
ward the center. However, this force is quadratic inM /R,
and is of orderG2/c4. When the charge is near the cente
the self-force acting on it is again that of an harmonic os
lator, with angular frequencyv25 1

15 (G2/c4)q2M2/(mR5),
to the leading order inM /R. When the scalar charge is ou
side the spherical shell, we find a correction to the w
known result of a zero self-force which is the case when
source for the gravitational field is a black hole@1,3,4#. To
leading order inM /r , this self-force is given byf r̂(r )
5 1

3 (G2/c4)q2(M2/r 5)R@11O(R/r )2#. We find that when
the source of the gravitational field is extended, there i
finite-size correction also for this case. However, because
zero-size force happens to vanish, the finite-size effec
always larger than the zero-size effect~unlike the electric
charge case!.

The regularization prescription we use in the calculat
of the self-force is based on Ori’s mode sum regularizat
prescription~MSRP! @14,15#, which is an application of the
axiomatic Quinn-Wald approach@16# and the approach o
Mino, Sasaki, and Tanaka@17#. We note, that although the
regularization procedures used in Refs.@5–9# yield the cor-
rect results for the regularized self-force, they are hard
generalize to cases where exact solutions are unknown
where there is non-trivial dynamics. MSRP does not sh
this difficulty, and the regularization using MSRP is indepe
dent of the existence of an exact solution. Next, we desc
MSRP very succinctly. More details are available in Re
@15,18#. We note that MSRP has been developed in de
only for scalar charges, but it is likely that the approach
applicable in general also for higher-spin fields. The con
bution to the physical self force from the tail part of th
Green’s function can be decomposed into stationary Teu
sky modes, and then summed over the frequenciesv and the
azimuthal numbersm. The self-force equals then the lim
e→02 of the sum over alll modes, of the difference be
tween the force sourced by the entire worldline~the bare
force bareFm

l ) and the force sourced by the half-infinit
worldline to the future ofe, where the particle has prope
time t50, and t5e is an event along the past (t,0)
worldline. Next, we seek a regularization functionhm

l which
is independent ofe, such that the series( l(

bareFm
l 2hm

l ) con-
verges. Once such a function is found, the regularized s
force is then given byrenFm5( l(

bareFm
l 2hm

l )2dm , where
dm is a finite valued function. MSRP then shows, from
local integration of the Green’s function, that the regulariz
tion functionhm

l 5aml 1bm1cml 21. For several cases, whic
have already been studied, MSRP yields the values of
functions am ,bm ,cm and dm analytically. Alternatively,
am ,bm , and cm ~but not dm) can also be found from the
5-2
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SELF-FORCE ON CHARGES IN THE SPACETIME OF . . . PHYSICAL REVIEW D 63 024015
large-l behavior of bareFm
l . In addition to the~non-local!

contribution of the tail’s part of the Green’s function to th
self-force, there are also two additional, local terms:
Abraham-Lorentz-Dirac type term, and a term which coup
to Ricci curvature and which preserves conformal invarian
For simple cases~including those we are interested in here! it
was found that the finite termdm equals the sum of the two
local contributions@18,19#, such that the total radiation
reaction force can be found directly from the large-l behavior
of the modes of the bare force. MSRP has already been
plied successfully for a number of cases: static scalar or e
tric charges in the spacetime of a Schwarzschild black h
@4#, a scalar charge in uniform circular orbit around
Schwarzschild black hole@20#, and a scalar charge plungin
radially into a Schwarzschild black hole@21#. There is also
strong evidence that MSRP is applicable also for elec
charges@22,4,19#. Recently, a closely-related regularizatio
procedure, based on Riemannz-function regularization, was
applied by Lousto for the case of a point mass falling radia
into a Schwarzschild black hole@23#. Lousto considered an
orbit which is geodesic in the absence of radiation-reac
effects, and computed the first-order correction of the spa
time metric and orbit. It is presently unclear, however, h
to extend Lousto’s method for non-geodesic orbits.

The organization of this paper is as follows. In Sec. II w
study the self-force acting on a scalar charge inside~II A !
and outside~II B ! a spherical shell. In Sec. III we conside
the self-force on an electric charge, both inside~III A ! and
outside~III B ! the shell, and in Sec. IV make some heuris
comments regarding the physical origin of the self-force
the problem in question.

II. SCALAR CHARGE

Consider a thin uniform spherical shell of massM and
radius R. In the spacetime of this shell we place a sta
particle. In this section the particle is endowed with a sca
e

e
de

d,
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chargeq. ~In Sec. III we consider the case where the parti
is electrically charged.! We consider the scalar field to be
linearized, test field in the geometry of the shell’s spacetim
That is, the field is uncoupled to the geometry. This simp
fication allows us to obtain the self-force to orderq2. The
particle is static at radiusr 5r 0, with either r 0,R ~in Sec.
II A ! or r 0.R ~in Sec. II B! ~see Fig. 1!. The fixed back-
ground geometry is described by the metric

FIG. 1. A test charge~scalar or electric! q is placed~a! inside
and ~b! outside a spherical shell of massM and radiusR. In both
cases the particle is atr 5r 0, and without loss of generality the

particle is positioned on theẑ-axis. See the text for more details.
ds25H 2S 12
2M

R Ddt21dr21r 2du21r 2 sin2 udw2, r ,R,

2S 12
2M

r Ddt21S 12
2M

r D 21

dr21r 2du21r 2sin2udw2, r .R.

~1!
th

t

Here the radial coordinater is defined such that the surfac
area of the 2-spherer 5const, t5const is 4pr 2, andt is the
~proper! time of a static observer at infinity. The spacetim
~1! is Schwarzschild outside the shell and Minkowski insi
the shell. Note thatgtt→21 as r→`, but gttÞ21 inside
the shell, although spacetime is~locally! Minkowski.

The linearized field equation for a minimally couple
massless scalar fieldF is given by

¹m¹mF~xa!524pr~xa!, ~2!
where¹m denotes covariant differentiation compatible wi
the metric~1!. The charge densityr is given by

r~xm!5qE
2`

`

dt
d4@xm2zm~t!#

A2g
. ~3!

Hereq is the total charge,t is the proper time,g is the metric
determinant, andzm is the worldline of the charge. Withou
loss of generality, we place the charge on thez-axis at r
5r 0 andu50.
5-3
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A. Scalar charge inside a spherical shell

1. Derivation of the bare force

In this section we shall study the case where the sc
charge is inside the shell, i.e.,r 0,R. Then bothr andF can
be decomposed into a sum over the Legendre polynom
according to

r~r ,u!5
q d~r 2r 0!

4pr 0
2 (

l 50

`

~2l 11!Pl~cosu! ~4!

F~r ,u!5(
l 50

`

f l~r !Pl~cosu!. ~5!

Note that becausedt/dt51/A2gtt, the factorA2gtt in the
metric determinantg is canceled. Also note that the series
Eq. ~4! diverges. This is indeed what is expected, because
particle is construed as pointlike. Obviously, the charge d
sity of a pointlike particle diverges on its worldline.

Substitution of Eqs.~4! and ~5! into Eq. ~2! yields

f ,rr
l 1

2

r
f ,r

l 2
l ~ l 11!

r 2
f l52q

2l 11

r 0
2

d~r 2r 0!, r ,R,

~6!

S 12
2M

r Df ,rr
l 1

2

r 2
~r 2M !f ,r

l 2
l ~ l 11!

r 2
f l50, r .R,

where commas denote partial derivatives. The solution
the inhomogeneous equation forr ,R is given by a linear
combination of the solutions which solve the correspond
homogeneous equation, i.e., a linear combination ofr l and
r 2 l 21. Outside the shell, wherer .R, the solution is a linear
combination of the Legendre functionsPl(r /M21) and
Ql(r /M21) @4#. Note thatPl(z) diverges andQl(z) van-
ishes asz→` for all values of l. @Except for l 50, as
P0(z)51 for all values ofz. However, as we require that a
the individual modes of the fieldf l fall off at infinity ( r
→`), this behavior ofP0(z) is enough to rule it out as th
relevant solution for large values ofr.# We next require that
f l(r ) be regular both at infinity and at the origin. We th
write the solution for Eq.~6! as

f l~r !5H Al Ql S r

M
21D , r>R ~region III!,

Cl r l1Dl r 2( l 11), r 0<r<R ~region II!,

Bl r l r<r 0 ~region I!,
~7!

whereAl , Bl , Cl , andDl are constants to be determined
matching conditions. Specifically, we require thatf l(r ) be
continuous everywhere~in particular, continuous also acros
r 5r 0 and r 5R).

Integrating Eq.~6! over r from r 5r 02e to r 5r 01e and
taking the limit e→01, and using the continuity off l(r )
acrossr 0, we find
02401
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lim
e→01

@f ,r
l ~r 01e!2f ,r

l ~r 02e!#52
~2l 11! q

r 0
2

. ~8!

The integration of Eq.~6! overr from r 5R2e to r 5R1e is
complicated by the discontinuity ofgrr acrossr 5R. This
unnecessary complication can be removed by introducing
new radial coordinateu(r ), defined by

u[H r , r>R,

A12
2M

R
~r 2R!1R, r<R.

~9!

With this new radial coordinate, the metric~1! becomes

ds252K~u!dt21
du2

K~u!
1r ~u!2~du21sin2 udw2!.

~10!

Here, r is considered to be a function ofu obtained by the
inverse transform of Eq.~9!, and

K~u!5H S 12
2M

u D , u>R,

S 12
2M

R D , u<R.

~11!

In this new gauge,guu is continuous everywhere~and so are
the other metric coefficients! although the gradients of th
metric functionsgtt,u , guu,u , andr ,u are still discontinuous
at u5R. In terms ofu, Eq. ~6! becomes

Kf ,uu
l 1S 2K

r

dr

du
1K ,uDf ,u

l 2
l ~ l 11!

r 2
f l50 for rÞr 0 .

~12!

Recall now thatf l is continuous everywhere. However,f ,u
l

may at the most be step-function discontinuous atu5R ~the
strongest form of discontinuity it may have is a step-functi
discontinuity; however, below we find that it is, in fact, co
tinuous! such thatf ,uu

l may, at the most, behave like
d-function ~however, below we find that it is, in fact, pro
portional to a step-function discontinuity!. In addition, also
K ,u and r ,u are step-function discontinuous, but do not i
volve d-functions. Consequently, when we integrate Eq.~12!
over u from u5R2e to u5R1e and take the limite
→01, only the contribution of the first term can be no
vanishing~because that is the only term which may involve
d-function!, and is given, after integration by part, by

lim
e→01

S Kf ,u
l U

R2e

R1e

2E
R2e

R1e

K ,uf ,u
l duD 50.

The second term vanishes since it does not contai
d-function, which implies thatf ,u

l is continuous atu5R. In
view of Eq. ~9!, this means that
5-4
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A12
2M

R
f ,r

l ~R1!5f ,r
l ~R2!. ~13!

Here,R6 denotes lime→01(R6e).
The constantsAl , Bl , Cl andDl in ~7! are determined by

the matching conditions off l , which are~to reiterate!: ~1! f l

is continuous everywhere;~2! f l vanishes atr 5` and is
finite at r 50 @these two conditions have been taken in
account in writing Eq.~7!#; ~3! f ,r

l is discontinuous atr
5r 0 andr 5R according to Eqs.~8! and~13!. The results are

Al5q

~2l 11!
M

R

l
M

R
Ql2A12

2M

R
Ql8

r 0
l

Rl 11
~14a!

Cl52q
r 0

l

R2l 11
El

s ~14b!
i.e
h

e

by
ce
tw
t

02401
Dl5qr0
l ~14c!

Bl5
q

r 0
l 11

1Cl , ~14d!

whereQl8 is the derivative ofQl with respect to its argumen
and the argument of bothQl andQl8 is (R/M )21, and

El
s5

A12
2M

R
Ql81~ l 11!

M

R
Ql

A12
2M

R
Ql82 l

M

R
Ql

. ~15!

Collecting our results, the fieldF is given by
icle, i.e.,
F~r ,u!55
(
l 50

`

AlQl S r

M
21D Pl~cosu!, r>R ~region III!,

(
l 50

`

q
r 0

l

r l 11
Pl~cosu!2(

l 50

`
q

R S r 0

R D l S r

RD l

El
sPl~cosu!, r 0<r<R ~region II!,

(
l 50

`

q
r l

r 0
l 11

Pl~cosu!2(
l 50

`
q

R S r 0

R D l S r

RD l

El
sPl~cosu!, r<r 0 ~region I!.

~16!

We are interested in the self force acting on the charge, which results from the field in the neighborhood of the part
the field aroundr 5r 0. As r 0,R, the field in the neighborhood of the charge is given by

F~r ,R,u!5(
l 50

`

qF r l

r 0
l 11

Q~r 02r !1
r 0

l

r l 11
Q~r 2r 0!GPl~cosu!2(

l 50

`
q

R S r 0

R D l S r

RD l

El
sPl~cosu!. ~17!
e
on

in
or-
tic
Here, Q(x) is the Heaviside step function, i.e.,Q(x)51
if x.0 and Q(x)50 if x,0. To find the self-force, we
next calculate the force according tof m5q¹mF, and
evaluate this expression at the position of the particle,
at r 5r 0. @We note that the alternative force law whic
is frequently used, i.e., f m5q(¹mF1umun¹nF), is
likely not to be derivable from an action principl
without introduction of non-linear coupling terms@24#.
The simpler force law we use was recently justified
Quinn @25# using stress-energy considerations. Noti
however, that for the static particle we assume here the
force laws coincide.# Clearly, only the radial componen
of the force f m is non-zero. The~bare! radial force is then
given by
.,

,
o

f r
bare52(

l 50

` F q2

2r 0
2

1S q

RD 2

l El
s S r 0

R D 2l 21G . ~18!

Clearly, f r
bare diverges.

2. Regularization of the bare force

In order to find the regularized, physical self-force w
next use MSRP. First, we find the regularization functi
hr5ar l 1br1cr l

21. Note that the functionsar ,br , andcr
are found from a local analysis of the Green’s function,
the neighborhood of the worldline. However in the neighb
hood of the worldline spacetime is Minkowski. For a sta
5-5
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scalar particle in Minkowski spacetime the values ofar ,br ,
and cr are known, and are given byar505cr , and br5
2q2/(2r 0

2). ~Note that these values were obtained for t
gauge wheregtt521. However, re-definition of the coordi
natet does not change the values of these functions. Ano
point to be made here is that we use here the ‘‘averag
value forar , which vanishes. The analysis can also be c
ried out using the ‘‘one-sided’’ valuesar

6 , or any of their
linear combinations. However, MSRP guarantees the s
result for the regularized self-force whatever the choice
ar may be. For more details see Ref.@15#.! Next, for a static
scalar particle in Minkowski spacetimedr50, such that the
regularized radial self-force is given by

f r52(
l 50

` F q2

2r 0
2

1S q

RD 2

l El
s S r 0

R D 2l 21

1br G
52S q

RD 2

(
l 50

`

l El
s S r 0

R D 2l 21

. ~19!

This expression forf r is guaranteed by MSRP to be finite
and also to be the correct, physical, total self-force.

3. Properties of the regularized force

It can be shown thatEl
s is always positive, such that th

self-force directs towards the origin. In terms of the physi
forces present in the problem, this force arises from
sphere, and acts to repel the charge from it. To gain m
insight into this result, we next expandEl

s in M /R. This
expansion is given by

El
s5

l 11

2~2l 11!~2l 13! S M

R D 2

1OS M

R D 3

, ~20!

such that the self-force becomes

f r52S q

RD 2S M

R D 2

3F(
l 51

`
l ~ l 11!

2~2l 11!~2l 13! S r 0

R D 2l 21

1OS M

R D G . ~21!

To the leading order inM /R the self-force is given by

f r52q2
G2

c4

M2

R4 F 32x0
2

16x0
3~12x0

2!
2

31x0
2

32x0
4

lnS 11x0

12x0
D G ,

~22!

where x0[r 0 /R. In Eq. ~22! we re-introduced Newton’s
gravitational constantG, and the speed of lightc. Equation
~22! implies that this force is a 2nd post-Newtonian effec

In this small M /R limit, we further consider two cases
The first case is the charge being close to the center.
self-force is

f r52
1

15
q2

G2

c4

M2

R5
r 0F11OS r 0

R D 2G . ~23!
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The charge then oscillates under this self-force at ang
frequency

v25
1

15
q2

G2

c4

M2

mR5
, ~24!

where m is the particle’s mass. We note that although t
force law ~23! corresponds to the case where the particle
static, when the deviation from the center is small enou
the velocity during the oscillations is also small such that
correction to the static force-law is negligible, and t
damped oscillations’ frequency is, to first order, unchang

The next case we consider is the case where the ch
approaches the shell, i.e.x0→12. To the leading orders in
12x0 the self-force becomes

f r52q2
G2

c4

M2

R4 H 1

16~12x0!
1

1

8
ln~12x0!1

9

32
2

ln2

8

1O@~12x0!ln~12x0!#J , ~25!

which implies that the self force increases when the part
is closer to the shell. In fact, in the limitx0→12 this self-
force diverges. Recall that this self-force is supposedly
regularized, physical self force, which should be everywh
finite, even at the surface of discontinuity. Below, in Sec.
we discuss the origin for the self-force. We show there t
this origin is the gravitational interaction between t
charge’s field and the shell’s mass elements.~In fact, in Sec.
IV the analysis is done to only linearized order inM, such
that in the scalar case, where the force is quadratic inM, it
yields a zero effect; however, for the electric case, where
self-force is linear inM, it yields a result in total agreemen
with our analysis below in Sec. III.! Due to the spherica
symmetry of the shell, clearly only the parts of the fie
which are external to the shell contribute to the total inter
tion. The closer the particle to the shell, the stronger the fi
in the exterior of the shell in the neighborhood of the latt
such that indeed one expects the interaction to be stron
The divergence we find in the coincidence limit is a sho
coming of the mathematical model we use. Recall that
treat both the shell and the particle as mathemat
d-functions. In actuality, one should endow both with fini
extensions, which would remove this divergence. T
d-functions model fails because it is incompatible with t
assumption of staticity which we make. Specifically, t
pointlike particle has some finite energy density and mass
the electric analog, the electrically-charged particle has
electrostatic field which gravitates, and a mass. For an e
tron the charge is much larger than the mass, such tha
latter can be ignored for the purpose of this discussion. T
gravitational effect of the electrostatic field acts then to re
the shell. Approaching the shell this repulsion grows u
boundedly, such that at some finite distance the inter
stresses in the shell will no longer hold, and the geome
becomes dynamic. Hence, the assumption of staticity fail
the coincidence limit. When the particle is endowed with
large mass~but still considered as pointlike!, it is, in fact, a
5-6
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tiny black hole. When that black hole is put too close to t
shell, the shell’s internal stresses would no longer be abl
hold against the pull of the particle’s gravity, and the sh
would break. In our mathematical analysis we assume
the entire configuration is static, and this assumption fails
the coincidence limit. An analogous discussion can be m
also for a particle endowed with a scalar charge.

Next we consider the case whenM /R is not small. Figure
2 shows the magnitude of the self-force in units
q2G2/(c4R2) as a function ofR/M calculated by the full
expression~19! ~solid line! and the smallM /R expression
~22! ~dashed line!. ~This full expression, and similarly the
full expressions computed below, is computed using the
merical method outlined in Ref.@4#.! The charge is placed a
r 0 /R51/2. It can be seen that the self-force increases
R/M decreases and the linear expression~22! deviates from
the full expression. It can be shown that the self-force
proaches

f r→2
q2

R2

G2

c4

x0

~12x0
2!2

~26!

whenR/M→2.

4. Alternative regularization procedure

We remark that the regularization procedure, which
performed using MSRP, can be justified by a more straig
forward, albeit less robust approach. We can make direct
of the scalar-field comparison axiom of Quinn@25# ~which is
modeled after the comparison axiom for electric and gra
tational fields of Quinn and Wald, for which plausibility a
guments were given@16#!. The scalar-field compariso
axiom states the following~see@25# for more details!: Con-
sider two points,P andP̃, each lying on time-like worldlines
in possibly different spacetimes which contain Klein-Gord

FIG. 2. The magnitude of the self-forceu f r̂ u, in units of
q2G2/(R2c4), experienced by a static, test, scalar charge as a fu
tion of R/M computed by the full expression Eq.~19! ~solid line!
and the smallM /R expansion~22! ~dashed line!. The charge is
placed inside the shell atr 0 /R51/2, and the self-force approache
the limit (8/9)q2G2/(R2c4) predicted by Eq.~26! whenR/M→2.
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fieldsf andf̃ sourced by particles of chargeq on the world-

lines. If the four-accelerations of the worldlines atP and P̃
have the same magnitude, and if we identify the neighb
hoods ofP and P̃ via the exponential map such that th
four-velocities and four-accelerations are identified via R
mann normal coordinates, then the difference between
scalar forcesf m and f̃ m is given by the limitx→0 of the field
gradients, averaged over a sphere at geodesic distancex from
the worldline atP, i.e.,

f m2 f̃ m5 lim
x→0

q^¹mf2¹̃mf̃&x . ~27!

We note that this axiom assumes a nearly trivial form for
case in question: the local neighborhood of the particle
question and of a similar particle in a~globally-!Minkowski
spacetime are identical.~It is only the far-away properties o
spacetime which are different for the two spacetimes.! An-
other remark is that we do not need to average here o
directions, as the forces in our case are direction indep
dent. Setting our minds to use this comparison axiom,
write the scalar field~16! as

F~r ,u!5H (
l 50

`

AlQl S r

M
21D Pl~cosu!, r>R,

Fc~r ,u!1DFs~r ,u!, r<R,

~28!

where

Fc~r ,u!5(
l 50

`

qF r l

r 0
l 11

Q~r 02r !1
r 0

l

r l 11
Q~r 2r 0!GPl~cosu!

5(
l 50

`

q
r ,

l

r .
l 11

Pl~cosu!

5
q

ur2r 0ẑu
~29!

is just the usual scalar field for a particle at rest in a globa
Minkowski spacetime, andDFs(r ,u) is a term which cor-
rects for the finite size of the Minkowski patch of spacetim
which is given by

DFs~r ,u!52(
l 50

`
q

R S r 0

R D l S r

RD l

El
sPl~cosu!. ~30!

Here r ,5min(r,r0) and r .5max(r,r0). Hence inside the
shell, the scalar field contains the Coulomb fieldFc and a
correctionDFs . We next identifyFc with f̃. The self-force
therefore arises only fromDFs , and is given by

f r5q~DFs! ,r ~31!

52S q

RD 2

(
l 51

`

l El
s S r 0

R D 2l 21

, ~32!

c-
5-7
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a result which is identical to Eq.~19!. ~Alternatively, we can argue that the self-force on a static particle in a globa
Minkowski spacetime is zero, such thatFc does not contribute to the self-force. The self-force therefore arises only f
DFs .)

B. Scalar charge outside the shell

1. Derivation of the bare force

Next, we study the case where the scalar charge is outside the shell, i.e., the case wherer 0.R. Now, the charge density~3!
is decomposed as

r~r ,u!5
q

4p

d~r 2r 0!

r 0
2

A12
2M

r 0
(
l 50

`

~2l 11! Pl~cosu! ~33!

@instead of Eq.~4!# and the potential is decomposed as in Eq.~5!. Then the scalar-field equation¹m¹mF524pr becomes

S 12
2M

r Df ,rr
l 1

2

r 2 ~r 2M !f ,r
l 2

l ~ l 11!

r 2
f l52q

2l 11

r 0
2

d~r 2r 0!A12
2M

r 0
, r .R,

~34!

f ,rr
l 1

2

r
f ,r

l 2
l ~ l 11!

r 2
f l50, r ,R.

Our solution here follows closely the solution of the preceding section.
The d-function in Eq.~34! gives one of the matching conditions:

lim
e→01

@f ,r
l ~r 01e!2f ,r

l ~r 02e!#52q
2l 11

r 0
2 S 12

2M

r 0
D 21/2

, ~35!

while the other matching conditions are the same as in the case when the scalar charge is inside the shell. The s
expressed as a linear combination of Legendre functionsPl andQl with argumentsr /M21 for r .R, and is proportional to
r l for r ,R. Hence,

f l~r !55
AlQl S r

M
21D , r>r 0 ~region III!,

Cl Pl S r

M
21D1DlQl S r

M
21D , R<r<r 0 ~region II!,

Blr
l , r<R ~region I!,

~36!

where the constantsAl , Bl , Cl andDl are determined by the matching conditions. The result for the scalar fieldF(r ,u) is
then given by

F~r ,u!5

¦

q

M
A12

2M

r 0
(
l 50

`

~2l 11!Pl~cosu!@Pl~z0!1Ẽl
sQl~z0!#Ql~z!, r>r 0 ~region III!,

q

M
A12

2M

r 0
(
l 50

`

~2l 11!Pl~cosu!Ql~z0!@Pl~z!1Ẽl
sQl~z!#, R<r<r 0 ~region II!,

q
~2l 11! M

Rl 12
AR~r 022M !

r 0~R22M !

Ql~z0!

l
M

R
Ql~Z!2A12

2M

R
Ql8~Z!

r l Pl~cosu!,
r<R ~region I!.

~37!

Here,z[r /M21, z0[r 0 /M21, Z[R/M21, and we have used the WronskianW@Pn(z),Qn(z)#521/(z221) to simplify
the expression. We are interested in the field in the neighborhood of the particle. Asr 0.R, the field in this neighborhood can
be written as
024015-8
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whereẼl
s is given by

Ẽl
s5

l
M

R
Pl~Z!2A12

2M

R
Pl8~Z!

A12
2M

R
Ql8~Z!2

lM

R
Ql~Z!

, ~39!

which can be shown to be positive for alll andM /R,1/2.
To find the self-force, we next calculate the force acco

ing to f m5q¹mF, and evaluate this expression at the po
tion of the particle, i.e., atr 5r 0. Clearly, only the radial
component of the forcef m is non-zero. The~bare! radial
force is then given by

f r
bare5

q2

M2
A12

2M

r 0
(
l 50

`

~2l 11!H 1

2
@Pl~z0!Ql8~z0!

1Pl8~z0!Ql~z0!#1Ẽl
sQl~z0!Ql8~z0!J . ~40!

The series, when summed naively, diverges.

2. Regularization of the bare force

To regularize the bare force and extract the finite, phys
self-force, we use MSRP. Again, only the radial self-force
not trivial. The regularization functionhr5ar l 1br1cr l

21

can be found from a local analysis near the particle, wh
spacetime is locally Schwarzschild. In Schwarzschild spa
time the values ofar ,br ,cr , anddr are completely known
for a static scalar particle, and are given byar505cr ~we
again use here the ‘‘averaged’’ value forar), and br5
2@q2/(2r 0

2)#@(12M /r 0)/(122M /r 0)#. In addition, it is
also known thatdr50. In Ref. @4# it was shown that when
MSRP is applied to the term proportional to the squ
brackets in Eq.~40!, the sum over all modes vanishes. Th
is, when f r

bare is written as a sum over modes, i.e.,f r
bare

[( l 50
` f r

bare l , the regularized self-force can be written
f r5( l 50

` ( f r
bare l2br). Because this series converges, it c

be split into two sums, the first of which vanishes@4#, such
that the regularized, physical self-force in an orthonorm
basis is given by

f r̂5S q

M D 2S 12
2M

r 0
D(

l 50

`

~2l 11!Ẽl
sQl S r 0

M
21DQl8S r 0

M
21D .

~41!

This is a repulsive force, as it always directs away from
center of the coordinates~and also away from the shell!. This
result ~41! corrects the zero self-force result~for the case
where the source of the gravitational field is a black h
@1,3,4#! for the finite size of the shell.
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3. Properties of the regularized force

For smallM /R, the leading order of Eq.~41! is given by

f r̂5S q

r 0
D 2S M

r 0
D 2

(
l 51

`
l ~ l 11!

2~2l 21!~2l 11! S R

r 0
D 2l 21

~42!

which can be written as

f r̂5q2
G2

c4

M2

r 0
4 F113y0

2

32y0
2

lnS 11y0

12y0
D2

123y0
2

16y0~12y0
2!

G ,

~43!

wherey0[R/r 0. Here, we re-introduced Newton’s consta
G and the speed of lightc. As the charge approaches th
shell (y0→12),

f r̂5q2
G2

c4

M2

r 0
4 H 1

16~12y0!
2

1

8
ln~12y0!2

3

32
1

ln 2

8

1O@~12y0!ln~12y0!#J . ~44!

The divergence which we find in the coincidence limit
again due to the simplified model of the pointlike charge~see
discussion above!. Note, that the result for the self-force i
the limit where the particle approaches the shell from
outside~44! is similar to the result for the self-force in th
limit where the particle approaches the shell from the ins
~25!. In fact, the leading order terms~in the inverse of the
distance from the shell! of the two cases are identical~they
only have opposite signs, because the self-force in both c
repels the particle from the shell!. However, the next terms
~which are proportional to the logarithm of the distance fro
the shell! are no longer identical~the relative signs are dif-
ferent! because of the different direction of the shell’s cu
vature with regard to the particle’s position.

Figure 3 shows the self-forcef r̂ as a function ofR/M
computed by the full expression~41! ~solid line! and the
small M /R formula ~43! ~dashed line!. The charge is placed
at r 0 /R52. The self-force increases asR/M decreases,
reaches a maximum atR/M'2.3 and drops to zero whe
R/M→2. It is easy to show analytically from Eqs.~39! and
~41! that the self-force vanishes in the limitR/M→2, which
coincides with the case when the shell is replaced b
Schwarzschild black hole. Of course, in that limit the sh
can no longer be static, and must implode instead. T
spacetime then is that of a Schwarzschild black hole w
appropriate boundary conditions at the event horizon, wh
are unaffected by the implosion of the shell inside the bla
hole. That is the reason why the static shell gives the ri
result ~of a zero self-force! in the limit of coincidence of its
radius with the Schwarzschild radius.

Finally, Fig. 6~a! displays the magnitude of the self-forc
u f r̂ u as a function ofr 0 /R for R52.5M . We can see that the
F~r .R,u!5
q

M
A12

2M

r 0
(
l 50

`

~2l 11!Pl~cosu!@Pl~z0!Ql~z!Q~r 2r 0!1Pl~z!Ql~z0!Q~r 02r !1Ẽl
sQl~z0!Ql~z!#,

~38!
5-9
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small M /R expressions~dashed line! are no longer accurat
in this case. The self force decreases as the charge m
away from the shell, but diverges atr 05R ~see the above
discussion!.

4. Alternative regularization procedure

Again, the regularization prescription can be perform
also by applying directly Quinn’s comparison axiom. Th
time, we choose the spacetime of a globally-Schwarzsc
spacetime~a Schwarzschild black hole! as the ‘‘tilde’’ space-
time. That is, we write the total scalar field as

F~r ,u!5H Fsch~r ,u!1DF~r ,u!, r>R,

Bl r l Pl~cosu!, r<R,
~45!

where

Bl5q
~2l 11!M

Rl 12 S 12
2M

r 0
D 1/2S 12

2M

R
D 21/2

3

Ql S r 0

M
21D

l
M

R
Ql S R

M
21D 2A12

2M

R
Ql8S R

M
21D

,

~46!

and

Fsch~r ,u!5
q

M
A12

2M

r 0
(
l 50

`

~2l 11!Pl~cosu!

3FPl S r 0

M
21DQl S r

M
21DQ~r 2r 0!

1Pl S r

M
21DQl S r 0

M
21DQ~r 02r !G ~47!

FIG. 3. Same as Fig. 2 but the scalar charge is placed outsid
shell atr 0 /R52. Solid line is computed by the full expression E
~41!; dashed line is computed by the smallM /R formula ~43!. The
self-force vanishes in the limitR/M→2.
02401
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is the scalar field~which we choose to bef̃! for the case
where the shell is replaced by a Schwarzschild black hole
the same mass@4#, and

DF~r ,u!5
q

M
A12

2M

r 0
(
l 50

`

~2l 11!Ẽl
sQl S r 0

M
21D

3Ql S r

M
21D Pl~cosu!, ~48!

is the correction due to the finiteness of the shell’s radi
Applying the comparison axiom, the self-force is given b

f r5q~DF! ,r

f r̂5S q

M D 2S 12
2M

r 0
D(

l 50

`

~2l 11!Ẽl
sQl S r 0

M
21DQl8S r 0

M
21D ,

~49!

which is identical to Eq.~41!. @This can also be stated, alte
natively, in the following way: Because the self force is ze
when the source of the gravitational field is point-like, t
self-force is given only byf r5q(DF) ,r .]

III. ELECTRIC CHARGE

The second type of charge we study is an electric cha
q, which again, following the preceding section, is at re
inside or outside a spherical shell of massM. In this case, we
look for the solution of the Maxwell equation

¹nFmn54p j m, ~50!

where Fmn is the Maxwell field-strength tensor, which i
antisymmetric and related to the 4-vector potentialAm by
Fmn5An,m2Am,n . Here, j m5rum is the four-current den-
sity, r is the charge density, andum is the 4-velocity of the
charge. Since the charge is static, the spatial componen
j m vanish. From the spatial components of Eq.~50!, one can
easily show that it is possible to choose a gauge so tha
spatial components ofAm vanish. The equation forAt is
given by the temporal component of Eq.~50!:

1

A2g
~A2g gna gtt At,a! ,n524p j t, ~51!

with j t given by

j t5qE
2`

`

ut
d4@xm2zm~t!#

A2g
dt. ~52!

A. Electric charge inside the shell

1. Derivation of the bare force

For the case where the electric charge is inside the sh
r 0,R. This case was studied by Unruh in Ref.@12#. The
decomposition ofAt and j t into modes yields

he
5-10
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At~r ,u!5(
l 50

`

f l~r !Pl~cosu! ~53!

j t~r ,u!5
q

4p

d~r 2r 0!

r 0
2 S 12

2M

R D 21/2

3(
l 50

`

~2l 11!Pl~cosu!. ~54!

Substituting these decompositions into Eq.~51! we find that
the latter becomes

f ,rr
l 1

2

r
f ,r

l 2S 12
2M

r D 21 l ~ l 11!

r 2
f l50, r .R,

~55!

f ,rr
l 1

2

r
f ,r

l 2
l ~ l 11!

r 2
f l5q

~2l 11!

r 0
2

A12
2M

R

3d~r 2r 0!, r ,R.
02401
The general solution forr ,R is a linear combinations of the
basic solutions which solve the corresponding homogene
equation, i.e., a linear combination ofr l and r 2 l 21. The
solution outside the shell is a linear combinations ofr
22M )Ql8@(r /M )21# and (r 22M )Pl8@(r /M )21# @26–28#.
As in the case of scalar charge, we perform the coordin
transformation~9!, re-express Eq.~51! in terms ofu, inte-
grate it from u5R2e to u5R1e and take the limite
→01. We end up with the same condition~13! for f ,r

l at
r 5R. The potentialAt is solved in the same way asF in the
scalar charge case. The matching conditions in this case
~1! f l is continuous everywhere;~2! f l is finite atr 50 and
vanishes atr 5`; ~3! f ,r

l satisfies Eq.~13! and

lim
e→01

@f ,r
l ~r 01e!2f ,r

l ~r 02e!#5q
2l 11

r 0
2
A12

2M

R
,

~56!

which comes from integrating Eq.~55! acrossr 5r 0. The
time component of the 4-vector potentialAm , the only non-
vanishing component in our gauge, in a normalized basi
then
At̂~r ,u!55
(
l 50

`

Gl ~r 22M ! Ql8S r

M
21D Pl~cosu!, r>R ~region III!,

(
l 50

`

q
r 0

l

r l 11
Pl~cosu!1(

l 50

`
q

R S r 0

R D l S r

RD l

El
e Pl~cosu!, r 0<r<R ~region II!,

(
l 50

`

q
r l

r 0
l 11

Pl~cosu!1(
l 50

`
q

R S r 0

R D l S r

RD l

El
e Pl~cosu!, r<r 0 ~region I!,

~57!

where

Gl52q
2l 11

A12
2M

r

Mr 0
l

Rl 13
F S 12

2M

R
DQl9S R

M
21D 2

M

R
S lA12

2M

R
21D Ql8S R

M
21D G21

~58!

and

El
e5

M

R
F ~ l 11!A12

2M

R
11GQl8S R

M
21D 1S 12

2M

R
DQl9S R

M
21D

M

R
S lA12

2M

R
21D Ql8S R

M
21D 2S 12

2M

R
DQl9S R

M
21D

. ~59!

In the neighborhood of the charge the potential then is given by

At̂~r ,u!5(
l 50

`

qF r l

r 0
l 11

Q~r 02r !1
r 0

l

r l 11
Q~r 2r 0!GPl~cosu!1(

l 50

`
q

R S r 0

R D l S r

RD l

El
e Pl~cosu!. ~60!
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The self-force is computed by calculating the Lorentz fo
arising from this potential, and evaluating it at the position
the charge. We thus find the bare force to be

f r
bare5(

l 50

` F2
q2

2r 0
2

2S q

RD 2

l El
e S r 0

R D 2l 21G . ~61!

This ~bare! force diverges when the series is naive
summed.

2. Regularization of the bare force

Next, we regularize this force using MSRP. Althoug
MSRP has been developed only for scalar charges, it
shown in Refs.@4,22# that it is also applicable for electri
charges, at least in simple cases. In particular, for an ele
charge at rest in a locally-Minkowski spacetime, the valu
of the regularization functions are known, and are given
ar505cr , br52q2/(2r 0

2), and dr50. Consequently, the
regularized, physical self-force is given by

f r52S q

RD 2

(
l 50

`

l El
e S r 0

R D 2l 21

. ~62!

3. Properties of the regularized force

WhenEl
e is expanded inM /R we find

El
e5

1

2l 11 S M

R D1OS M

R D 2

, ~63!

such that

f r52S q

RD 2 M

R F(
l 51

`
l

2l 11 S r 0

R D 2l 21

1OS M

R D G . ~64!

To the leading order inM /R this result can be written as

f r52q2
G

c2

M

R3

1

2x0
F 1

12x0
2 2

1

2x0
lnS 11x0

12x0
D G , ~65!

wherex05r 0 /R. This force is directed toward the center,
away from the sphere, and in this sense it is a repelling fo
In Eq. ~65! we re-introduced Newton’s constantG and the
speed of lightc. This force is a 1st post-Newtonian effect

When the charge is close to the center, the self-forc
proportional to r, and the charge will oscillate with fre
quency

v5A1

3
q2

G

c2

M

mR4 ~66!

53.931025
rad

s S q

eD S M

M (
D 1/2S m

me
D 21/2S R

3 kmD 22

,

~67!

wherem is the charge’s mass,e is electron’s charge,me is
the electron’s mass, andM ( is solar mass. This frequency
02401
e
f

as
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s
y

e.

is

small, and is unlikely of being detected. Next we consid
the force to the leading orders in 12x0, and find that

f r52q2
G

c2

M

R3 H 1

4~12x0!
1

1

4
ln~12x0!1

3

8
2

ln 2

4

1O@~12x0!ln~12x0!#J . ~68!

Again, this force diverges in the coincidence limit (x0
→12), but this divergence only signifies the breakdown
our model at this limit.

Figure 4 shows the self forcef r as a function ofR/M
computed by full expression~62! ~solid line! and the small
M /R expression~65! ~dashed line!. The result is very similar
to the scalar charge case~cf. Fig. 2!. It can be shown that

f r→2
q2

R2

G

c2

2x02x0
3

~12x0
2!2

~69!

asR/M→2.

4. Alternative regularization procedure

Similarly to the direct application of the compariso
axiom in the scalar case, we can apply the electric-field co
parison axiom@16# here analogously. The electric field com
parison axiom is nearly identical to the scalar-field compa
son axiom. In fact, all that we need to change in its definit
is to replace the scalar fieldsf and f̃ with the Maxwell
fields Fmn and F̃mn , respectively, and replace Eq.~27! with

f m2 f̃ m5 lim
x→0

q^Fmn2F̃mn&xu
n. ~70!

FIG. 4. The magnitude of the self-forceu f r̂ u, in units of
q2G/(R2c2), experienced by an electric charge as a function
R/M , computed by the full expression Eq.~62! ~solid line! and the
small M /R formula ~65! ~dashed line!. The charge is placed insid
the shell atr 0 /R51/2, and the self-force approaches the lim
(14/9)q2G/(R2c2) predicted by Eq.~69! whenR/M→2.
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In order to apply the comparison axiom we write the pote
tial in the form

At̂~r ,u!

5H (
l 50

`

Gl ~r 22M ! Ql8S r

M
21D Pl~cosu!, r>R,

Fc~r ,u!1DFe~r ,u!, r<R,

~71!

whereFc is the Coulomb field~29!, which is the potential
which is used to constructF̃mn , and

DFe~r ,u!5(
l 50

`
q

R S r 0

R D l S r

RD l

El
e Pl~cosu! ~72!

is the correction term due to the finite size of the Minkows
patch of spacetime. Applying the comparison axiom, we fi
that the self-force is given by

f r52S q

RD 2

(
l 51

`

l El
e S r 0

R D 2l 21

, ~73!

which is identical to Eq.~62!.
02401
-
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B. Electric charge outside the shell

1. Derivation of the bare force

Next, we shall study the case where the electric chargq
is outside the shell, i.e., the case wherer 0.R. The time-
component of the 4-current density is now decomposed

j t5
q

4p

d~r 2r 0!

r 0
2 (

l 50

`

~2l 11!Pl~cosu!. ~74!

With At decomposed as in Eq.~53!, the Maxwell equation
~50! becomes

f ,rr
l 1

2

r
f ,r

l 2S 12
2M

r D 21 l ~ l 11!

r 2
f l

5q~2l 11!
d~r 2r 0!

r 2
, r .R,

~75!

f ,rr
l 1

2

r
f ,r

l 2
l ~ l 11!

r 2
f l50, r ,R.

Hence,f l can be written as
e electric
f l~r !55
Al~r 22M !Ql8S r

M
21D , r>r 0 ~region III!,

Cl~r 22M !Pl8S r

M
21D1Dl~r 22M !Ql8S r

M
21D , R<r<r 0 ~region II!,

Blr
l , r<R ~region I!,

~76!

when lÞ0. Whenl 50 the solution has the form

f0~r !55
A0

r
, r>r 0 ~region III!,

C01
D0

r
, R<r<r 0 ~region II!,

B0 , r<R ~region I!.

~77!

Al , Bl , Cl andDl are constants to be determined by the matching conditions, which are the same as the case when th
charge is inside the shell, except that Eq.~56! is replaced by

lim
e→01

@f ,r
l ~r 01e!2f ,r

l ~r 02e!#5q
2l 11

r 0
2

. ~78!

Straightforward calculations yield
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At~r ,u!5

¦

2
q

r
1(

l 51

` q

M3

2l 11

l ~ l 11!
~r 22M !~r 022M !Pl~cosu!@Pl8~z0!Ql8~z!1Ẽl

eQl8~z0!Ql8~z!#, r>r 0 ,

2
q

r 0
1(

l 51

` q

M3

2l 11

l ~ l 11!
~r 22M !~r 022M !Pl~cosu!@Pl8~z!Ql8~z0!1Ẽl

eQl8~z0!Ql8~z!#, R<r<r 0 ,

2
q

r 0
1(

l 51

`

q
Mr 0

Rl 13

~2l 11!S 12
2M

r 0
DQl8~z0!

S 12
2M

R
DQl9~Z!2

M

R
S lA12

2M

R
21D Ql8~Z!

r l Pl~cosu!, r<R.

~79!

Here,

Ẽl
e5

2S 12
2M

R
D Pl9S R

M
21D 1

M

R
S lA12

2M

R
21D Pl8S R

M
21D

S 12
2M

R
DQl9S R

M
21D 2

M

R
S lA12

2M

R
21D Ql8S R

M
21D

, ~80!

and we have used the WronskianW@Pn8(z),Qn8(z)#5n(n11)/(z221)2 to simplify the expressions. In the neighborhood of
charge the potential can thus be written as

At52
q

r
Q~r 2r 0!2

q

r 0
Q~r 02r !1(

l 51

`
q

M3

2l 11

l ~ l 11!
~r 22M !~r 022M !Pl~cosu!@Pl8~z!Ql8~z0!Q~r 02r !

1Pl8~z0!Ql8~z!Q~r 2r 0!1Ẽl
eQl8~z0!Ql8~z!#. ~81!
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The ~bare! force is given formally by

f r
bare5qFrmum5qS 12

2M

r 0
D 21/2

At,r , ~82!

which of course diverges.

2. Regularization of the bare force

The application of MSRP to this case is not straightf
ward, because the analytical value ofbr is as yet unknown.
However, it was shown in Ref.@4# that it can be computed
numerically, by studying the large-l behavior of the modes
of the bare force. It was also found numerically in Ref.@4#
that for an electric charge at rest in Schwarzschild space
the values of the other regularization functions are given
ar505cr and thatdr50. When MSRP is applied, the regu
larized, physical self-force in an orthonormal frame is fou
to be given by

f r̂5q2
M

r 0
3

1
q2r 0

M3 S 12
2M

r 0
D(

l 51

`
2l 11

l ~ l 11!
Ẽl

eFQl8S r 0

M
21D G2

1
q2r 0

2

M4 S 12
2M

r 0
D 2

(
l 51

`
2l 11

l ~ l 11!
Ẽl

eQl8S r 0

M
21D

3Ql9S r 0

M
21D . ~83!
02401
-

e
y

3. Properties of the regularized force

To leading order inM /R, the self-force is reduced to th
following simple expression:

f r̂5
q2M

r 0
3 (

l 50

`
l 11

2l 11 S R

r 0
D 2l

, ~84!

which can be written as

f r̂5q2
G

c2

M

2r 0
3 F 1

12y0
2

1
1

2y0
lnS 11y0

12y0
D G , ~85!

wherey05R/r 0. In the last equation we re-introduced New
ton’s constantG and the speed of lightc. The effect of the
finite size of the shell is to increase the self-force repuls
which was found first by Smith and Will for the case whe
the source of the gravitational field is a~Schwarzschild!
black hole@2#. To leading orders in 12y0 we find that the
force is given by

f r̂5q2
G

c2

M

r 0
3 H 1

4~12y0!
2

1

4
ln~12y0!1

1

8
1

ln2

4

1O@~12y0!ln~12y0!#J . ~86!
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This force diverges in the coincidence lim
(y0→12), again, due to the breakdown of the mathemati
model.

Figure 5 shows~a! the total self-force and~b! the correc-
tion of the self-force due to the finite Minkowski patch@i.e.
D f r̂ in Eq. ~92!# in unit of q2G/(c2R2) as a function ofR/M
based on the full expression~83! and the smallM /R formula
~85!. The charge is placed atr 0 /R52. We can see that th
situation is very similar to the scalar case~cf. Fig. 3!. The
self-force reduces to the Will-Smith result in the limitR/M
→2, as expected.

Finally, Fig. 6~b! shows the magnitude of the self-force
unit of q2G/(c2R2) as a function ofr 0 /R for R52.5M . We
can see that the smallM /R expressions~dashed line! devi-
ates significantly from the full expression~solid line! when
the charge is inside the shell, but is quite accurate when
outside the shell. The reason is that the self-force is do
nated by the Smith-Will force, which are present in both t
full and the smallM /R expressions, when the charge is ou
side the shell. The self-force decreases as the charge m
away from the shell, but diverges atr 05R ~see the above
discussion!.

4. Alternative regularization procedure

Again, we can apply the comparison axiom directly. W
thus write the potential as

At5H At
sch1DAt , r>R,

Blr
l Pl~cosu!, r<R,

~87!

FIG. 5. Same as Fig. 4 but the electric charge is placed out
the shell atr 0 /R52. The upper panel~a! shows the total self-force
The lower panel~b! shows the correction to the self-force due to t
finite size of the Minkowski patch@i.e. D f r̂ in Eq. ~92!#. Solid lines
are calculated by the full expression Eq.~83!; dashed lines are
calculated based on the smallM /R formula ~85!. The self-force
approaches the Smith-Will result whenR/M→2.
02401
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where

At
sch52

q

r
Q~r 2r 0!2

q

r 0
Q~r 02r !

1(
l 51

`
q

M3

2l 11

l ~ l 11!
~r 22M !~r 022M !Pl~cosu!

3FPl8S r

M
21DQl8S r 0

M
21DQ~r 02r !

1Pl8S r 0

M
21DQl8S r

M
21DQ~r 2r 0!G ~88!

is the potential if the shell is replaced by a Schwarzsch
black hole of the same mass@4# ~i.e., a point-like source
for the gravitational field!, which is the origin for F̃mn ,
and

DAt5
q

M3 ~r 022M !~r 22M !(
l 51

`
2l 11

l ~ l 11!
Ẽl

e

3Ql8S r 0

M
21DQl8S r

M
21D Pl~cosu! ~89!

is the correction for the potential because of the finite size
the Minkowski patch of spacetime. Here,

e FIG. 6. The magnitude of the self-forceu f r̂ u experienced by~a!
a scalar charge@in units ofq2G2/(c4R2)] and ~b! an electric charge
@in units of q2G/(c2R2)] as a function of the charge’s positionr 0.
The radius of the shell is set toR52.5M . Solid lines are calculated
by corresponding full expressions and dashed lines are calcu
by the appropriate expressions for smallM /R.
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Bl55 q~2l 11!M
r 0

Rl 13 S 12
2M

r 0
D Ql8S r 0

M
21D

S 12
2M

R
DQl9S R

M
21D 2

M

R
S lA12

2M

R
21D Ql8S R

M
21D

, lÞ0,

2
q

r 0
, l 50.
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The difference in the self-forces between the actual and
‘‘tilde’’ spacetimes is then given by

f r2 f̃ r5q~Frm2F̃rm!um5qS 12
2M

r 0
D 21/2

~DAt! ,r .

~91!

This difference then equals

f r2 f̃ r[D f r5qS 12
2M

r 0
D 21/2

DAt,r

f r̂5
q2r 0

M3 S 12
2M

r 0
D(

l 51

`
2l 11

l ~ l 11!
Ẽl

eFQl8S r 0

M
21D G2

1
q2r 0

2

M4 S 12
2M

r 0
D 2

(
l 51

`
2l 11

l ~ l 11!
Ẽl

e

3Ql8S r 0

M
21DQl9S r 0

M
21D . ~92!

Recall now thatf r̂5D f r̂1 f̃ r̂ , where f̃ r̂ is the Smith-Will
force given byf̃ r̂5q2(M /r 0

3). When combined, we recove
the self forcef r̂ , which is identical to Eq.~83!.

IV. HEURISTIC VIEWPOINT ON THE ORIGIN OF THE
SELF-FORCE

The self-force experienced by a static electric charge
the presence of the shell can be interpreted as a result o
interaction between the charge’s electric field and the she
gravitational field. In this section, we shall consider the s
force in the smallM /R limit, i.e. Eqs. ~65! and ~85!, by a
heuristic argument. It is the linearization inM /R which al-
lows us to obtain the solution very easily.

Consider a static electric chargeq at the origin of the
coordinate system. Spacetime is then described by
Reissner-Nordstro¨m metric

ds252S 12
2m

r
1

q2

r 2 D dt21S 12
2m

r
1

q2

r 2 D 21

dr2

1r 2~ dq21sin2q dw2!, ~93!
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wherem is the mass of the charge. A particle of massm fixed
at r will experience a ‘‘gravitational force’’ f a

52m Dua/Dt, whereua is the 4-velocity andD/Dt de-
notes covariant derivative@compatible with the metric~93!#
with respect to the particle’s proper time. Because of
symmetry of the setup, the only non-vanishing componen
f a, in an orthonormal basis, is

f r̂52m~ut!2 G tt
r S 12

2m

r
1

q2

r 2 D 21/2

52
mm

r 2 1
mq2

r 3

~94!

to leading order inm andq2, whereGbg
a are the connection

coefficients. The first term is the usual~attractive! gravita-
tional force, whereas the second term, which is a repuls
force, comes from the stress-energy tensor of the elec
field. In what follows we shall ignore the former, as we a
interested only in the electric-field interaction and not in t
direct gravitational force. Because of the staticity of t
problem, the two-body system~charge and massive particle!
conserves linear momentum. Consequently, Newton’s th
law is applicable for this two-body system.~In general, when
radiation is present, Newton’s third law is inapplicable.! It
follows from Newton’s third law that the static electri
charge also experiences this repulsive forceq2m/r 3 apart
from the usual attractive gravitational force. This addition
repulsive force on the static charge is then interpreted a
result of the interaction between the charge’s electric fi
and the point massm, i.e., it is the self-force. Notice that thi
result is the same as the self force acting on a static ele
charge in Schwarzschild spacetime computed by Smith
Will @2# ~notice, however, that by this argument we only fin
the leading order term inm. The Smith-Will force, however,
is an exact result!.

Now, suppose the charge is surrounded by a spher
shell of radiusR and massM @Fig. 7~a!#. In the smallM /R
and test charge limits, the ‘‘gravitational force’’ acting o
the shell by the charge’s electric field is equal to the sum
the forces acting on each particle on the shell. We expr
the mass m of a small element of the shell bym
5M d2x/(4pR2), whered2x is an area element of the she
From symmetry, it is clear that the total force is aligned
the z-axis. We thus project all the contributions to the to
force on this axis, such that the vector summation becom
trivial. The resultant force is along thez-axis and is given by
5-16
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Fẑ5
M

4pR2Eshell
dx2

q2

r 3
cos~u1j!

5
q2M

2 E
21

1 R cosu2r 0

~r 0
21R222r 0R cosu!2

d~cosu!

5q2
G

c2

M

R3

1

2x0
F 1

12x0
2

2
1

2x0
lnS 11x0

12x0
D G , ~95!

where the anglesu andj are defined in Fig. 7~a!, and

r 5Ar 0
21R222r 0R cosu and cos~u1j!5

R cosu2r 0

r
.

~96!

We re-introduced Newton’s constantG and the speed of ligh
c in the last expression of Eq.~95!. The self-force experi-
enced by the charge is of the same magnitude but dir
towards the center of the shell, which is exactly the same
Eq. ~65!.

When the charge is outside the shell, we have@Fig. 7~b!#

FIG. 7. Geometry of the charge and the shell in Sec. IV:~a! the
charge is inside the shell;~b! the charge is outside the shell.R is the
shell’s radius;r 0 is the distance between the chargeq and the
shell’s centerC. P is an arbitrary point on the shell.r is the distance
between the chargeq and pointP. u is the angle between linesCq
andCP; j ~in the upper figure! is the angle between linesqP and
CP, andx ~in the lower figure! is the angle between linesqC and
qP.
02401
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as

Fẑ52
M

4pR2Eshell
dx2

q2

r 3 cosx

52
q2M

2r 0
3 E

21

1 12y0 cosu

~11y0
222y0 cosu!2

d~cosu!

52q2
G

c2

M

2r 0
3 F 1

12y0
2

1
1

2y0
lnS 11y0

12y0
D G , ~97!

where we have used the expressions

r 5AR21r 0
222r 0R cosu and cosx5

r 02R cosu

r
,

~98!

and re-introducedG andc in the last expression of Eq.~97!.
Hence, the self-force is2Fẑ ~repel the shell!, exactly the
same as in Eq.~85!.

We can carry out the above calculation also to the sc
charge case. Consider a scalar test charge at the origin o
coordinates. Recall that we are interested here in the s
force, and not in the usual gravitational attraction due to
particle’s mass. Hence, in what follows we ignore the m
of the scalar charge. Next, we write the coupled Einste
Klein-Gordon equations,

Gmn58pTmn

hF524pr, ~99!

whereh denotes the covariant wave operator, andr is the
charge density given by Eq.~3! for a static charge at the
origin, and look for a static, spherically symmetric solutio
Here, Tmn is the stress-energy tensor of a massless sc
field, which is given by

Tmn5
1

4p S F ,mF ,n2
1

2
gmngabF ,aF ,bD . ~100!

The Einstein equations then reduce to

Rmn52F ,mF ,n

hF524pr, ~101!

whose solution is given by

ds252 dt21
dr2

11
q2

r 2

1r 2~ dq21sin2 q dw2! ~102!

and
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F ,r52
q

r 2

1

A11
q2

r 2

and F5sinh21~q/r !. ~103!

Hence the ‘‘gravitational force’’ experienced by a sta
point massm is f a52m Dua/ Dt52m(ut)2 G tt

a50, since
G tt

a50 for the metric~102!. D/ Dt here denotes covarian
differentiation compatible with the metric~102!. Thus we
conclude that the self-force is zero to leading order inm.
Consequently, after integration over the shell, the self-fo
is zero also to linear order inM. This result is in accord with
our previous calculation that the self-force in the sca
charge case is a second post-Newtonian effect.

We can also make the following arguments for the dir
tion of the self-force. For concreteness, consider the cas
an electric charge inside the shell. The electric field lin
near the charge have the usual distribution in space. H
ever, outside the shell they are distorted due to the curva
of space. Specifically, the electric field lines are closer th
what they would be if spacetime were flat. The reason is
the ratio of the circumference and the~proper! radius is
smaller than 2p. When the charge is off the center of th
sphere, the curvature effect is stronger outside the shell a
side closer to the charge. Because of the stress in the
trostatic field~one has to put in energy to squeeze elec
c
T.
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field lines!, this results in a force acting on the charge in t
direction of the center of the sphere. An alternative vie
point is the following. The electrostatic field is accompani
by a stress-energy tensor which gives rise to an effec
metric which is similar to the Reissner-Nordstro¨m metric
without the mass term. This metric induces repulsive~or
anti-! gravity, which is the origin for the repulsive force ac
ing on the charge.~The usual Reissner-Nordstro¨m geometry
is attractive at large distances because of the mass term.
however, repulsive at short distances, where the mass ter
small compared with the charge term in the metric. T
happens, nevertheless, only deep inside the Reiss
Nordström black hole, and is responsible for the pheno
enon of gravitational bounce@29#. The occurrence of gravi-
tational bounce in actuality is uncertain because of the inn
horizon instability of realistic black holes@30#. For recent
reviews see@31,32#.! Consequently, the self-force on th
charge directs toward the center of the shell.
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