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Behavior of Kasner cosmologies with induced matter
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We extend the induced matter model, previously applied to a variety of isotropic cases, to a generalization
of Bianchi type-I anisotropic cosmologies. The induced matter model is a 5D Kaluza-Klein approach in which
assumptions of compactness are relaxed for the fifth coordinate, leading to extra geometric terms. One inter-
pretation of these extra terms is to identify them as an “induced matter” contribution to the stress-energy
tensor. In similar spirit, we construct a five dimensional metric in which the spatial slices possess Bianchi
type-l geometry. We find a set of solutions for the five dimensional Einstein equations, and determine the
pressure and density of induced matter. We comment on the long-term dynamics of the model, showing that
the assumption of positive density leads to the contraction over time of the fifth scale factor.
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[. INTRODUCTION are particularly of interest when examining the properties of

An intriguing notion suggested by Einstein is that thethe very early universe. As Belinskii, Khalatnikov and Lif-
properties of matter in general relativity might have purelyshitz demonstratefP], the behavior of the most general ap-
geometric origin[1]. Wesson has recently revived this idea proach to the initial singularitylooking backward in timg
within the context of five dimensional Kaluza-Klein cos- might be well modeled by anisotropi@ianchi-type cos-
mologies[2]. In standard Kaluza-Klein models, extra dimen- mologies. As the chaotic cosmology program suggests, close
sions are required to be compact, and hence unobservabletatthe initial singularity, conditions may have been far less
present. Following the idea that cosmological dynamicgegular than they are toddyL0]. Perhaps, as some authors
might naturally reduce the size of higher dimensi@8s6], have suggested, the same mechanism underlying cosmologi-
Wesson relaxes this assumption of compactness. Wessaeal dimensional reduction might have also led to isotropiza-
further postulates that the impact of the fifth dimensiontion[11,12?
might be felt in the four dimensional universe through the To this aim, we have extended the Bianchi anisotropic
presence of “induced matter.” By moving all terms related geometries by adding an extra dimension. We hope to gen-
to the fifth dimension from the geometric to the energy-eralize Wesson'’s results by finding and analyzing solutions
momentum side of the vacuum field equations, he naturallpf the Einstein equations for these models, and by examining
introduces a way of describing matter geometrically. Thusghe density and pressure of the associated induced matter.
not just electromagnetic phenomena, but also material propA/e have begun our study by looking at Bianchi type-I; fu-
erties such as densities and pressures, are molded by thee studies will focus on other Bianchi types.
extra dimension7].

Wesson considers the 5D extension of the flat 4D metric.
He derives the Einstein tensor for this metric and sets it equal || THe GENERALIZED BIANCHI TYPE-I MODEL
to zero. He then collects all the terms@} dependent on the
fifth scale factor or on derivatives with respect to the fifth ~We construct the 5D extension of the 4D Bianchi type-|
coordinate, and identifies the density of the induced mattefetric:
with this total. Similarly, he collects all the terms i@}
(=G3%=G3) that depend on the fifth scale factor or on de- , , , ,
rivatives of the fifth coordinate and identifies the pressure of ds’=e’dt’—e*dx’—efdy’—e’dZ—e dy’. (2.1
the induced matter with this sum. Remarkably, he finds that
the properties of this matter obey the same relationships as in
the standard four-dimensional case. Namely, he shows that Here, following Wesson’s notation, we supplement the
the perfect fluid described by the induced matter density antime coordinate and the three spatial coordinatesy andz
pressure satisfies both the first law of thermodynamics anwith a fifth coordinate). We assume that the metric coeffi-
Newton’s law of motion. Furthermore, he demonstrates thagientsu, v, a, 8 andy each depend, in general, on bdth
one particular solution of the Einstein equations for his metand . (An earlier study by Socorro, Villanueva and Pimen-
ric satisfies the equation of state for radiation, and anothetal [13] considered a similar model, but assumed only time
demonstrates the type of behavior associated witllependence of the scale factprd/e use overdots to repre-
Einstein—de Sitter cosmologi¢8]. sent partial derivatives with respect tp and asterisks to

These results pertain to the special situation of spatiallyepresent partial derivatives with respectyto
isotropic geometries. However, it is instructive to examine We find the non-zero components of the Einstein tensor
the more general case of anisotropic models. These modeler this metric:
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In looking at the 5D “vacuum” case, we set each of these Einstein tensor compdiss2.2—(2.7)] equal to zero.
Then, we collect each of the terms@ﬁ dependent on eithek or on derivatives with respect b and identify this quantity
with the 4D induced matter density:

p=e AXW T BT Y

7,4/.1**l**l**1*21*21*21**1** * K
+e ke +§B +§y +Za +Z'B —I—Z'y —Z,ua—Z,LL,B—Z,uy

. (2.9

+Ea*ﬁ*+ia* 'y*-I—EIB* v*
4 4 4

Similarly, we collect each of the terms &2, Gg and G§ dependent on eithek or on derivatives iny and identify each
sum with the respective components of the 4D induced matter pressure:
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ships found by Wessd8] for the isotropic case, these equa-
+17,* ut+ EM* V*) (2.9  fions determine the behavior of the induced matter, govern-
4 4 ing its material properties. Since, in general, the three
pressure terms are unequal, we cannot consider the induced

matter a perfect fluid.
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4'8 s gk 219 We solve these equatiorig.12—(2.17) with Egs. (2.8—

(2.11) using the separation of variables method. We make

Writing the Einstein equations in terms of these density andhe following substitutions:
pressure components, the 5D componéi®)—(2.7) reduce

to the equivalent of 4D form: a=2p;Int+2s;In ¢ (3.9
1 1 1 B=2p,Int+2s,In ¢ (3.2
el —Zzap—-Say—ZBy|+p=0 (21
dOP ey TGPy Te e y=2psint+2ssn ¢ (3.3
1 1 1 1 1 H=2pgInt+2s4ln ¢ (3.4

1
where thep; ands; generalize the Kasner parameters.
1 We note that unlike th@; parameters, the, parameters
+—yv|+P;=0 do not refer to a time evolution, but rather to configurations
4 of the manifold that depend on the fifth coordinate. Without
(2.13 loss of generality, we rescale the time coordinate by setting
v=0. The Einstein equations reduce to the following six

B 1 1 1, 1,1 1 relationships:
2% T2V T Y T4V g 4 2p4-2
(P1P2+ P1P3+ P1Pat P2P3+ P2Pa+ P3Pa) (1°P479)
1
+ Zy'v') +P,=0 = (S5 +55+ 554515, 5153— 5154+ 5,53~ 5,4
(2.14 — S35, 51— S~ S3) (Y27 ) (3.5
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S1P1 ¥ S2P2 ¥ SaP3 S1Pa—S2Pa~S3Pe=0. (3.10 Note that Eqs(3.11)—(3.15 delineate a 3D surface within
For each equation to hold, its left- and right-hand sidegshe 8D parameter space, implying that three of the param-
must independently equal zero. After some manipulationgters are independent. Arbitrarily selectipg, p, ands, as
this yields the following simple relationships for the gener-these free parameters, we can express the remaining param-

alized Kasner parameters: eters as
|
Pr ps 1 1
pzz_?_E‘FEii\/‘3p§_3p121_2p1p4+2l31+2p4+1 (3.16
Pr ps 1_1
Ps=— 5 ~ 5 t 575V~ 3P1~3Pa—2p1Pat 2Py +2ps+ 1 (3.17
1484)(p1+pa—4pips— 1+ f
1:( 4)(P1 2p4 P1P4 ) (3.18
Aps—2p4+2
where
f=/24p3— 24p;+ 16p,p3+ 24pip; — 24p1 P} — 1201, — 3p1 — 3p;+ 6p1Ps+ 2Ps +6p,+ 1 (3.19
s s, 1 >
32——E+E+§i\/s4+254+1 (3.20
s s, 1 >
S=— 5t 55 TVST25,+1 (3.21
|
Expression2.8) becomes Equations(2.9—(2.11) become:
Ps(ps—1) P1P4
= (3.22 P,=— 2 (3.23
Consequently, in order to guarantee positive induced density,
p, must be negative. This provides a natural means by which P,=— P2P4 (3.24)
the fifth scale factor contracts over time. t?
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these approaches. Because the most prominent candidate

P3P4 . .

- (3.25 models are ten- and eleven-dimensional, one naturally won-
t ders what mechanism confines present-day observed matter

to four non-compact dimensions. Compactification repre-

sents but one possibility, in which extra-dimensions are

curled into one of the Calabi-Yau configurations.

P3:

Hence the density and pressure are each independéntiof
the manner of Socorret al.[13], we can define an effective

pressure: L
Randall and Sundrum have recently made an intriguing
13 Pa(ps—1) alternative suggestion in which we reside in a universe of

Peti=5 E Pi=— o —. (3.26  more than four non-compact dimensidd®]. They examine

=1 3t a 3-brang (3+1)-dimensional subspag@ a space of higher

dimensions, and show how standard gravitational theory
might be reproduced in a low-energy limit without assuming
p=3P;. (3.27) that the higher dimensions are compact. They demonst_rate
that for certain tensions of the brane, the probability of losing
This resembles the equation of state of a hot photon gagnergy to the higher dimensional modalities would be suffi-
appropriate for the very early universe. The deviations of theciently low that known tests of gravity would be upheld.

Then we can compose the effective “equation of state:”

actual induced pressure components fi@gy; correspond to As this study indicates, dynamical dimensional reduction
directional anisotropies in the behavior of these relativistidepresents yet another alternative. Without presupposition of
particles as the universe expands. compactness, the higher-dimensional equivalent of general
relativistic dynamics might naturally lead to a shrinking of
IV. CONCLUSIONS AND FURTHER STUDIES extra scale factors.

This present study has focused on a higher dimensional

We have found a class of solutions for the generalizedanalogy of Kasner cosmologies. In four dimensions, Kasner
Bianchi type-lI cosmology with induced matter. Resemblingmodels display the simplest type of anisotropic dynamics,
the Kasner models, these solutions possess two additionalonotonic evolution of the scale factors. Research has
degrees of freedom. This permits, for instance, all three scalshown that more complex types of anisotropic behavior can
factors to exhibit growth; whereas in the standard Kasnebe represented by transitions between epochs of Kasner-like
case, one must contract while the other two expand. behavior. In particular, the chaotic “Mixmaster” type dy-

In general, the scale factors of these models depend natamics of Bianchi types VIII and IX can be constructed by
only on time, but also on the higher dimensign The de- means of pasting together the asymptotic behavior of succes-
pendence ony takes place by means of power laws similar sive Kasner solutions. Furthermore, as Belinskii, Khalatni-
to the temporal behavior. Note, however, that thekov and Lifshitz proved, never-ending oscillatory behavior
y-dependent terms themselves do not exhibit temporal evaepresents the general approach to the initial singularity for
lution, but, rather, correspond to various configurations ofthe full solution of the four-dimensional Einstein vacuum
the manifold. equationd9)].

We have calculated the induced density and pressure as- Considering these important results, much work has been
sociated with these cosmologies, and found simple relationdone examining the question of chaos in Kaluza-Klein mod-
ships between them. As we have found, guaranteeing thels. While chaotic oscillatory behavior is absent in all models
positive nature of the induced density naturally leads to di-of dimension 11 or highd20], as well as in diagonal models
mensional reduction. While compactification is not assumeaf dimension 5 or higher, Demaret, de Rop and Henneaux
a priori, shrinking down of the higher dimension occurs as ahave shown that chaos can be reestablished for space-time

consequence of these models’ dynamics. dimensions between 5 and 10 in the homogeneous vacuum
Wesson and Ponce de Leon have speculated that the imase when off-diagonal terms are includéed].
pact of higher dimensiongvia induced matter could be Barrow and Darowski have investigated the possibility

measured by means of presently observable astrophysical paf chaos in string cosmology. Using a Hamiltonian analysis,
rameters, including effects on the peculiar velocity of galax-they considered Bianchi-type IX models with a low-energy
ies [14]. Wesson has also suggested that Kaluza-Kleireffective action for bosonic string theor§This action is of
solitons—objects derived from higher dimensional theoryinterest because the solutions it generates display a kinetic-
with some of the features of black holgbut lacking energy driven universal dynamics known as pre-big-bang in-
singularitie3—represent possible dark matter candidatedlation[22,23). Barrow and Dhrowski found that unlike the
[15]. Perhaps the impact of anisotropy on induced matter iffour-dimensional vacuum case, the universe engages in a
the early universe might manifest itself through similarly only finite number of oscillations, then maintains monotonic

measurable astrophysical mechanisms. Kasner behavior. They proposed that the need for duality
In recent years, cosmologies based on superstring and Bymmetry appears to be incompatible with chp24l.
theories have generated great interjddl]. The discovery Dabrowski has recently examined generalizations of

that dualities between various superstring models followBianchi-type | and IX models within the context of Fma-

from classical symmetries of an encompassing M theoryWitten cosmology. He has investigated the situation in which
with supergravity as its low-energy limii7,18, has led to  six of the eleven dimensions of M theory are compactified on
heightened exploration of the cosmological implications ofa Calabi-Yau space, leaving five non-compact dimensions: a
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homogeneous 3-space, the time coordinate, and a fifth coor- Considering these intriguing new results, it would be in-

dinate that is aS'/Z, orbifold. His study has focused on terested to see if Mixmaster chaos is possible within the con-
whether or not chaotic dynamics would be possible duringext of induced matter theory. In examining the Kasner pa-
such a five-dimensional era for cosmologies with Bianchi-rameter space of our model, we find that there is a finite
type IX 3-space geometries. In exploring the solution spaceegion that supports isotropic expansion of the three spatial
for such models, he has discovered it to be divided into twgarameters, namely

classes: a small region of the parameter space, centered on
isotropic solutions, for which oscillatory behavior is strictly

1
impossible, and the remainder of the space, for which oscil- P1=P2=Ps=5 “.
lations from one Kasner epoch to the next can begin. How-
ever, in the latter case, once the oscillations drive the uni- 1
verse into the near-isotropic region, they immediately cease. Psa=— 2 (4.2
Hence, fully chaotic dynamics are impossible for such cos-
mologies[25]. S4=—2 4.3
In yet another interesting recent development, Damour
and Henneaux have demonstrated that chaotic oscillatory be- 1
havior can be restored for some higher dimensional models —1s81,5.8<3. 4.4

by the presence of p-forms in the field spectrum of

superstring- and M theories. As these researchers have Hence, we expect that if Mixmaster oscillations were to
shown, the question of whether or not oscillatory transitiongropel the universe into such a region, the universe would
continue indefinitely depends upon the coupling strength bebegin to expand monotonically, and chaotic oscillations
tween the p-forms and the dilaton field. In the absence ofvould cease. To determine conclusively whether or not such
p-forms, or for low coupling strengths, monotonic behaviorbehavior would indeed take place, our future studies will
of the Kasner sort remains stable and no chaos is exhibitefidcus on a full examination of the effects of induced matter
[26,27]. on the behavior of Bianchi-types VIII and IX.
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