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Behavior of Kasner cosmologies with induced matter
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We extend the induced matter model, previously applied to a variety of isotropic cases, to a generalization
of Bianchi type-I anisotropic cosmologies. The induced matter model is a 5D Kaluza-Klein approach in which
assumptions of compactness are relaxed for the fifth coordinate, leading to extra geometric terms. One inter-
pretation of these extra terms is to identify them as an ‘‘induced matter’’ contribution to the stress-energy
tensor. In similar spirit, we construct a five dimensional metric in which the spatial slices possess Bianchi
type-I geometry. We find a set of solutions for the five dimensional Einstein equations, and determine the
pressure and density of induced matter. We comment on the long-term dynamics of the model, showing that
the assumption of positive density leads to the contraction over time of the fifth scale factor.
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I. INTRODUCTION
An intriguing notion suggested by Einstein is that t

properties of matter in general relativity might have pure
geometric origin@1#. Wesson has recently revived this ide
within the context of five dimensional Kaluza-Klein co
mologies@2#. In standard Kaluza-Klein models, extra dime
sions are required to be compact, and hence unobservab
present. Following the idea that cosmological dynam
might naturally reduce the size of higher dimensions@3–6#,
Wesson relaxes this assumption of compactness. We
further postulates that the impact of the fifth dimensi
might be felt in the four dimensional universe through t
presence of ‘‘induced matter.’’ By moving all terms relate
to the fifth dimension from the geometric to the energ
momentum side of the vacuum field equations, he natur
introduces a way of describing matter geometrically. Th
not just electromagnetic phenomena, but also material p
erties such as densities and pressures, are molded b
extra dimension@7#.

Wesson considers the 5D extension of the flat 4D met
He derives the Einstein tensor for this metric and sets it eq
to zero. He then collects all the terms inG0

0 dependent on the
fifth scale factor or on derivatives with respect to the fi
coordinate, and identifies the density of the induced ma
with this total. Similarly, he collects all the terms inG1

1

(5G2
25G3

3) that depend on the fifth scale factor or on d
rivatives of the fifth coordinate and identifies the pressure
the induced matter with this sum. Remarkably, he finds t
the properties of this matter obey the same relationships a
the standard four-dimensional case. Namely, he shows
the perfect fluid described by the induced matter density
pressure satisfies both the first law of thermodynamics
Newton’s law of motion. Furthermore, he demonstrates t
one particular solution of the Einstein equations for his m
ric satisfies the equation of state for radiation, and ano
demonstrates the type of behavior associated w
Einstein–de Sitter cosmologies@8#.

These results pertain to the special situation of spati
isotropic geometries. However, it is instructive to exam
the more general case of anisotropic models. These mo
0556-2821/2000/63~2!/024009~6!/$15.00 63 0240
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are particularly of interest when examining the properties
the very early universe. As Belinskii, Khalatnikov and Li
shitz demonstrated@9#, the behavior of the most general a
proach to the initial singularity~looking backward in time!
might be well modeled by anisotropic~Bianchi-type! cos-
mologies. As the chaotic cosmology program suggests, c
to the initial singularity, conditions may have been far le
regular than they are today@10#. Perhaps, as some autho
have suggested, the same mechanism underlying cosmo
cal dimensional reduction might have also led to isotropi
tion @11,12#?

To this aim, we have extended the Bianchi anisotro
geometries by adding an extra dimension. We hope to g
eralize Wesson’s results by finding and analyzing solutio
of the Einstein equations for these models, and by examin
the density and pressure of the associated induced ma
We have begun our study by looking at Bianchi type-I; f
ture studies will focus on other Bianchi types.

II. THE GENERALIZED BIANCHI TYPE-I MODEL

We construct the 5D extension of the 4D Bianchi type
metric:

ds25endt22eadx22ebdy22egdz22emdc2. ~2.1!

Here, following Wesson’s notation, we supplement t
time coordinatet and the three spatial coordinatesx, y andz
with a fifth coordinatec. We assume that the metric coeffi
cientsm, n, a, b andg each depend, in general, on botht
andc. ~An earlier study by Socorro, Villanueva and Pime
tal @13# considered a similar model, but assumed only tim
dependence of the scale factors.! We use overdots to repre
sent partial derivatives with respect tot, and asterisks to
represent partial derivatives with respect toc.

We find the non-zero components of the Einstein ten
for this metric:
©2000 The American Physical Society09-1
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In looking at the 5D ‘‘vacuum’’ case, we set each of these Einstein tensor components@Eqs. ~2.2!–~2.7!# equal to zero.
Then, we collect each of the terms inG0

0 dependent on eitherm or on derivatives with respect toc and identify this quantity
with the 4D induced matter density:
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Similarly, we collect each of the terms inG1
1, G2

2 andG3
3 dependent on eitherm or on derivatives inc and identify each

sum with the respective components of the 4D induced matter pressure:
024009-2
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Writing the Einstein equations in terms of these density a
pressure components, the 5D components~2.2!–~2.7! reduce
to the equivalent of 4D form:
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Generalizing for this Bianchi type-I model the relatio
ships found by Wesson@8# for the isotropic case, these equ
tions determine the behavior of the induced matter, gove
ing its material properties. Since, in general, the th
pressure terms are unequal, we cannot consider the ind
matter a perfect fluid.

Two additional equations further govern the model’s b
havior:

e2n~2a .* 12b .* 12g .* 1a .a* 1b .b* 1g .g* 2a .n*
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III. PROPERTIES OF THE MODEL

We solve these equations~2.12!–~2.17! with Eqs. ~2.8!–
~2.11! using the separation of variables method. We ma
the following substitutions:

a52p1ln t12s1ln c ~3.1!

b52p2ln t12s2ln c ~3.2!

g52p3ln t12s3ln c ~3.3!

m52p4ln t12s4ln c ~3.4!

where thepi andsi generalize the Kasner parameters.
We note that unlike thepi parameters, thesi parameters

do not refer to a time evolution, but rather to configuratio
of the manifold that depend on the fifth coordinate. Witho
loss of generality, we rescale the time coordinate by set
n50. The Einstein equations reduce to the following s
relationships:

~p1p21p1p31p1p41p2p31p2p41p3p4!~ t2p422!

5~s1
21s2

21s3
21s1s21s1s32s1s41s2s32s2s4

2s3s42s12s22s3!~c22s422! ~3.5!
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For each equation to hold, its left- and right-hand sid
must independently equal zero. After some manipulati
this yields the following simple relationships for the gene
alized Kasner parameters:
si
ic
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Note that Eqs.~3.11!–~3.15! delineate a 3D surface within
the 8D parameter space, implying that three of the para
eters are independent. Arbitrarily selectingp1 , p4 ands4 as
these free parameters, we can express the remaining pa
eters as
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Expression~2.8! becomes

r5
p4~p421!

t2
. ~3.22!

Consequently, in order to guarantee positive induced den
p4 must be negative. This provides a natural means by wh
the fifth scale factor contracts over time.
ty,
h

Equations~2.9!–~2.11! become:

P152
p1p4

t2
~3.23!

P252
p2p4

t2
~3.24!
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P352
p3p4

t2
. ~3.25!

Hence the density and pressure are each independent ofc. In
the manner of Socorroet al. @13#, we can define an effective
pressure:

Pe f f5
1

3 (
i 51

3

Pi5
p4~p421!

3t2
. ~3.26!

Then we can compose the effective ‘‘equation of state:’’

r53Pe f f . ~3.27!

This resembles the equation of state of a hot photon
appropriate for the very early universe. The deviations of
actual induced pressure components fromPe f f correspond to
directional anisotropies in the behavior of these relativis
particles as the universe expands.

IV. CONCLUSIONS AND FURTHER STUDIES

We have found a class of solutions for the generaliz
Bianchi type-I cosmology with induced matter. Resembli
the Kasner models, these solutions possess two additi
degrees of freedom. This permits, for instance, all three s
factors to exhibit growth; whereas in the standard Kas
case, one must contract while the other two expand.

In general, the scale factors of these models depend
only on time, but also on the higher dimensionc. The de-
pendence onc takes place by means of power laws simi
to the temporal behavior. Note, however, that t
c-dependent terms themselves do not exhibit temporal e
lution, but, rather, correspond to various configurations
the manifold.

We have calculated the induced density and pressure
sociated with these cosmologies, and found simple relat
ships between them. As we have found, guaranteeing
positive nature of the induced density naturally leads to
mensional reduction. While compactification is not assum
a priori, shrinking down of the higher dimension occurs a
consequence of these models’ dynamics.

Wesson and Ponce de Leon have speculated that the
pact of higher dimensions~via induced matter! could be
measured by means of presently observable astrophysica
rameters, including effects on the peculiar velocity of gala
ies @14#. Wesson has also suggested that Kaluza-Kl
solitons—objects derived from higher dimensional theo
with some of the features of black holes~but lacking
singularities!—represent possible dark matter candida
@15#. Perhaps the impact of anisotropy on induced matte
the early universe might manifest itself through simila
measurable astrophysical mechanisms.

In recent years, cosmologies based on superstring an
theories have generated great interest@16#. The discovery
that dualities between various superstring models foll
from classical symmetries of an encompassing M theo
with supergravity as its low-energy limit@17,18#, has led to
heightened exploration of the cosmological implications
02400
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these approaches. Because the most prominent cand
models are ten- and eleven-dimensional, one naturally w
ders what mechanism confines present-day observed m
to four non-compact dimensions. Compactification rep
sents but one possibility, in which extra-dimensions a
curled into one of the Calabi-Yau configurations.

Randall and Sundrum have recently made an intrigu
alternative suggestion in which we reside in a universe
more than four non-compact dimensions@19#. They examine
a 3-brane@~311!-dimensional subspace# in a space of higher
dimensions, and show how standard gravitational the
might be reproduced in a low-energy limit without assumi
that the higher dimensions are compact. They demonst
that for certain tensions of the brane, the probability of los
energy to the higher dimensional modalities would be su
ciently low that known tests of gravity would be upheld.

As this study indicates, dynamical dimensional reduct
represents yet another alternative. Without presuppositio
compactness, the higher-dimensional equivalent of gen
relativistic dynamics might naturally lead to a shrinking
extra scale factors.

This present study has focused on a higher dimensio
analogy of Kasner cosmologies. In four dimensions, Kas
models display the simplest type of anisotropic dynami
monotonic evolution of the scale factors. Research
shown that more complex types of anisotropic behavior
be represented by transitions between epochs of Kasner
behavior. In particular, the chaotic ‘‘Mixmaster’’ type dy
namics of Bianchi types VIII and IX can be constructed
means of pasting together the asymptotic behavior of suc
sive Kasner solutions. Furthermore, as Belinskii, Khalat
kov and Lifshitz proved, never-ending oscillatory behav
represents the general approach to the initial singularity
the full solution of the four-dimensional Einstein vacuu
equations@9#.

Considering these important results, much work has b
done examining the question of chaos in Kaluza-Klein mo
els. While chaotic oscillatory behavior is absent in all mod
of dimension 11 or higher@20#, as well as in diagonal model
of dimension 5 or higher, Demaret, de Rop and Henne
have shown that chaos can be reestablished for space
dimensions between 5 and 10 in the homogeneous vac
case when off-diagonal terms are included@21#.

Barrow and Da¸browski have investigated the possibilit
of chaos in string cosmology. Using a Hamiltonian analys
they considered Bianchi-type IX models with a low-ener
effective action for bosonic string theory.~This action is of
interest because the solutions it generates display a kin
energy driven universal dynamics known as pre-big-bang
flation @22,23#!. Barrow and Da¸browski found that unlike the
four-dimensional vacuum case, the universe engages
only finite number of oscillations, then maintains monoton
Kasner behavior. They proposed that the need for dua
symmetry appears to be incompatible with chaos@24#.

Da̧browski has recently examined generalizations
Bianchi-type I and IX models within the context of Horˇava-
Witten cosmology. He has investigated the situation in wh
six of the eleven dimensions of M theory are compactified
a Calabi-Yau space, leaving five non-compact dimension
9-5
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homogeneous 3-space, the time coordinate, and a fifth c
dinate that is aS1/Z2 orbifold. His study has focused o
whether or not chaotic dynamics would be possible dur
such a five-dimensional era for cosmologies with Bianc
type IX 3-space geometries. In exploring the solution sp
for such models, he has discovered it to be divided into t
classes: a small region of the parameter space, centere
isotropic solutions, for which oscillatory behavior is strict
impossible, and the remainder of the space, for which os
lations from one Kasner epoch to the next can begin. Ho
ever, in the latter case, once the oscillations drive the u
verse into the near-isotropic region, they immediately cea
Hence, fully chaotic dynamics are impossible for such c
mologies@25#.

In yet another interesting recent development, Dam
and Henneaux have demonstrated that chaotic oscillatory
havior can be restored for some higher dimensional mo
by the presence of p-forms in the field spectrum
superstring- and M theories. As these researchers h
shown, the question of whether or not oscillatory transitio
continue indefinitely depends upon the coupling strength
tween the p-forms and the dilaton field. In the absence
p-forms, or for low coupling strengths, monotonic behav
of the Kasner sort remains stable and no chaos is exhib
@26,27#.
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Considering these intriguing new results, it would be
terested to see if Mixmaster chaos is possible within the c
text of induced matter theory. In examining the Kasner p
rameter space of our model, we find that there is a fin
region that supports isotropic expansion of the three spa
parameters, namely

p15p25p35
1

2
~4.1!

p452
1

2
~4.2!

s4522 ~4.3!

21<s1 ,s2 ,s3<
1

3
. ~4.4!

Hence, we expect that if Mixmaster oscillations were
propel the universe into such a region, the universe wo
begin to expand monotonically, and chaotic oscillatio
would cease. To determine conclusively whether or not s
behavior would indeed take place, our future studies w
focus on a full examination of the effects of induced mat
on the behavior of Bianchi-types VIII and IX.
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