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Uniformly accelerating black holes in a de Sitter universe
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A class of exact solutions of Einstein’s equations is analyzed which describes uniformly accelerating
charged black holes in an asymptotically de Sitter universe. This is a generalization of theC metric which
includes a cosmological constant. The physical interpretation of the solutions is facilitated by the introduction
of a new coordinate system for de Sitter space which is adapted to accelerating observers in this background.
The solutions considered reduce to this form of the de Sitter metric when the mass and charge of the black
holes vanish.
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I. INTRODUCTION

It has recently been suggested@1# that pair creation of
black holes is possible in a background with a cosmolog
constant as this supplies the necessary negative potentia
ergy. To investigate this process, an exact solution of E
stein’s equations is required which represents a pair of b
holes which accelerate away from each other in a de S
background. In fact, a general class of such solutions is av
able @2# ~and used in@1#! which includes mass and charg
parameters as well as a cosmological constantL. When
L50, these solutions include the well-knownC metric
which describes two black holes which uniformly acceler
in a Minkowski background under the action of conical s
gularities@3#. However, forLÞ0, the physical, geometrica
and global properties of the space-time@2# have not been
investigated thoroughly even at the classical level.

It is the purpose of the present paper to provide a phys
interpretation for this family of exact solutions. We wi
show that indeed it represents~possibly charged! black holes
uniformly accelerating in a de Sitter universe. This interp
tation is obtained after first introducing a new coordina
system which is adapted to the motion of~two! uniformly
accelerating test particles in de Sitter space. We will th
show that, for small mass and charge parameters, some o
Plebanski-Demianski solutions@2# can be regarded as pertu
bations of de Sitter space in these coordinates. This ena
the physical meaning of the parameters to be determine

II. UNIFORMLY ACCELERATING OBSERVERS
IN de SITTER SPACE

It is well known that de Sitter space can be represente
a 4-hyperboloid

2Z0
21Z1

21Z2
21Z3

21Z4
25a2[3/L ~1!
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in a 5-dimensional Minkowski space. In the familiar param
etrization by static coordinates,

Z05Aa22R2 sinh~T/a!,

Z156Aa22R2 cosh~T/a!,

Z45R cosQ,

Z25R sinQ cosF,

Z35R sinQ sinF, ~2!

the metric is

ds25
dR2

12
R2

a2

1R2~dQ21sin2Q dF2!2S 12
R2

a2 DdT2,

~3!

with RP@0,a#, TP(2`,`), QP@0,p#, FP@0,2p). The
two maps given by Eqs.~2! cover two causally disconnecte
areasZ1.0 andZ1,0 of the manifold.

Now, let us consider the timelike world-linesxm(t):

R5R0 , Q5Q0 , F5F0 , T5at/Aa22R0
2, ~4!

where R0 ,Q0 and F0 are constants. The 4-velocity i
um5(0,0,0,a/Aa22R0

2), and the 4-acceleration i

u̇m5Dum/dt[u;n
m un5(2R0 /a2,0,0,0). Obviously,t is the

proper time sinceumum521, and the 4-acceleration is con
stant with modulus

uAu[uu̇mu5
R0

aAa22R0
2

. ~5!

Since umu̇m50, this constant value ofuAu is identical to the
modulus of the 3-acceleration measured in the natural lo
orthonormal frame of the observer.

The world-lines~4! therefore represent the motion ofuni-
formly accelerating observers in a de Sitter universe. Wh
©2000 The American Physical Society06-1
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R050 the world-line is a geodesic with zero acceleratio
On the other hand, whenR05a, the accelerationA is un-
bounded and motion is along the null cosmological horiz
In general, these uniformly accelerated trajectories are g
by constant values ofZ2 , Z3 andZ4 on the de Sitter hyper
boloid, and coincide with the orbits of the isometry gen
ated by the Killing vector]T .

It is also instructive to visualize these accelerated obs
ers in the standard global coordinate representation o
Sitter space:

Z052a
cosh

sinh
,

Z15a
cosx

sinh
,

Z45a
sinx

sinh
cosQ,

Z25a
sinx

sinh
sinQ cosF,

Z35a
sinx

sinh
sinQ sinF, ~6!

wherehP@0,p#, xP@0,p#. With this, the metric is

ds25
a2

sin2h
@dx21sin2x~Q21sin2Q dF2!2dh2#. ~7!

This immediately leads to the familiar conformal diagram
de Sitter space~Fig. 1!. Comparing expressions forZ4 in
Eqs.~2! and~6!, it can be seen that the trajectories of acc
erated observers are given by

FIG. 1. The conformal diagram for de Sitter space indicat
trajectories of observers with uniform accelerationA. Each point
represents a complete 2-sphere.
02400
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sinx5
auAu

A11a2A2
sinh, ~8!

and indicated in Fig. 1.

III. NEW ACCELERATING COORDINATES
FOR de SITTER SPACE

We now introduce a new coordinate system which is p
ticularly well suited for studying uniformly acceleratin
point sources in de Sitter space. This is given by the follo
ing parametrization of Eq.~1!:

Z05
Aa22r 2 sinh~T/a!

A11a2A21A r cosu
,

Z156
Aa22r 2 cosh~T/a!

A11a2A21A r cosu
,

Z45
A11a2A2 r cosu1a2A

A11a2A21A r cosu
,

Z25
r sinu cosF

A11a2A21A r cosu
,

Z35
r sinu sinF

A11a2A21A r cosu
. ~9!

With r P@0,a#, TP(2`,`), uP@0,p#, FP@0,2p), this
again covers two causally disconnected areas of the de S
manifold. In these coordinates, the de Sitter space is re
sented in the form

ds25
1

@A11a2A21A r cosu#2 H dr 2

12
r 2

a2

1r 2~du21sin2u dF2!2S 12
r 2

a2DdT2J . ~10!

This new static metric is conformal to the standard form~3!
to which it reduces whenA50. The transformation betwee
Eqs.~3! and ~10! is given by relatingr ,u to R,Q as

R22a25
r 22a2

@A11a2A21A r cosu#2
,

R sinQ5
r sinu

A11a2A21A r cosu
,

R cosQ5
A11a2A2 r cosu1a2A

A11a2A21A r cosu
, ~11!
6-2
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which can be obtained by comparing Eqs.~2! with Eqs.~9!.
It is obvious that the originr 50 of the coordinates~10!

corresponds toR05a2uAu/A11a2A2 and Z2505Z3. Sub-
stituting the above value ofR0 into Eq.~5!, we conclude that
the parameterA in the metric~10! is exactly the value of the
acceleration of the corresponding observer. Therefore,the
origin r 50 of the coordinates inEq. ~10! is accelerating in
a de Sitter universe with uniform acceleration A. This uni-
formly accelerated trajectory corresponds to the motion
two distinct pointson the de Sitter hyperboloid, one in eac
of the two causally disconnected static regions. WhenA.0
the coordinate singularityr 50 is located atQ050 so that
Z45R0.0, whereas whenA,0 it is located atQ05p so
thatZ452R0,0. It may further be noted that all observe
having arbitrary constant values ofr, u and F also move
with uniform acceleration~generally different fromA).

The character of these coordinates can be further un
stood by expressing them in terms of the global coordina
~6! by

12
r 2

a25
sin2h2sin2x

@A11a2A2 sinh2aA sinx cosQ#2
,

r sinu5
a sinx sinQ

A11a2A2 sinh2aA sinx cosQ
,

tanhS T

aD57
cosh

cosx
. ~12!

Notice again thatr 50 implies both Eq.~8! and Q50 ~or
Q5p for A,0). These coordinates cover the region I or
according to the two signs ofZ1 in Eqs. ~9!. This is illus-
trated in the conformal diagram of de Sitter space~Fig. 2!. It
may be observed thatr 50 is represented bytwo world-lines
located in regions I and III. The cosmological horizon occu
when r 5a. The coordinater in Eq. ~10! can in fact be ex-
tended through this horizon into the nonstatic regions II a

FIG. 2. The conformal diagram for de Sitter space such t
each point represents a hemisphere. The shaded area indicat
region I covered by the new coordinates of~10! for 0<r<a. The
complete space repeats this area in region III and includes the
gions II and IV beyond the cosmological horizons. Thusr 50 rep-
resents two uniformly accelerating points on causally disconne
opposite sides of the universe.
02400
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IV, where it becomes timelike. However, other coordina
charts are required there sinceTP(2`,`) covers only re-
gions I and III betweenr 50 and the cosmological horizon
These are obtained by replacingAa22r 2 in Eqs. ~9! by
Ar 22a2.

Note that theexplicit spherical symmetry of the coordi
nate system has been removed to accommodate a descr
of uniform acceleration. However, this introduces difficulti
in describing the de Sitter timelike and null infinity given b
h50,p ~or R5`) using the coordinates of Eq.~10!. It may
be observed from Eqs.~11! that points in regions II and IV in
Fig. 2 with R.A11a2A2/A can only be reached for a lim
ited range of the coordinateu. Moreover, infinity can be
reached at afinite value of the timelike coordinater such that
r cosu52A11a2A2/A at which the conformal factor in Eq
~10! is unbounded. Only in the ‘‘equatorial plane’’u5p/2
doesr 5` correspond toR5`.

IV. GENERALIZED C METRIC

Let us now consider the Einstein space described by
line element

ds25
1

~p1q!2 S dp2

P 1
dq2

Q 1Pds22Qdt2D , ~13!

where

P~p!5A22p212mp32e2p4,

Q~q!52
L

3
2A21q212mq31e2q4.

~14!

This is contained in the large family of solutions given b
Plebanski and Demianski@2# @see Eq.~6.3! and also@4–6##
in which the ‘‘rotation’’ vanishes. We note that the linea
terms have been removed in Eqs.~14! using the shiftp→p
1c0 andq→q2c0, wherec0 is a constant. Also, the coef
ficients of the quadratic terms have been set to unity b
rescaling of coordinates.~The possibility of different signs
for the quadratic terms has been considered in@7#.!

When the cosmological constant in Eqs.~14! vanishes,
Eq. ~13! reduces to the well-knownC metric which has been
interpreted@3# as describing two black holes, each of massm
and chargee, which move in opposite directions relative to
Minkowski background with accelerationA under the action
of some conical singularities. We will argue below that t
metric in the form~13!, ~14! can be considered as the mo
natural generalization of theC metric which includes a cos
mological constantL.

Note that in Eqs.~14! the acceleration parameterA is
introduced in a different form to that considered previou
~e.g. @1#!. We use a different scaling, and also adapt
constant terms so thatL appears explicitly inQ only. We
will demonstrate below that this is more convenient f
physical interpretation.

In order to maintain the correct space-time signature, i
necessary thatP.0. This places a restriction on the range
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p. However, there is no restriction on the sign ofQ which
may describe both static and nonstatic regions, with horiz
occurring whenQ50.

Let us assume that there is a finite range ofp, bounded by
rootsp1 andp2(.p1), in whichP>0. This spans the space
time which we wish to investigate. However, it is convenie
to introduce the parameterz by p5Az, so thatz1<z<z2,
wherez i5pi /A.

Now, let us perform the coordinate transformation

r 52A11a2A2/q,

u5E
z1

dz

A12z212mAz32e2A2z4
,

F5As/c

T5A11a2A2t, ~15!

wherec is a constant which can be specified later. With th
the metric~13! becomes

ds25
1

@A11a2A22A r z~u!#2

3H dr 2

F~r !
1r 2~du21G2~u!c2dF2!2F~r !dT2J , ~16!

where

F~r !512
r 2

a2 2A11a2A2
2m

r
1~11a2A2!

e2

r 2 ,

G2~u!512z2~u!12mAz3~u!2e2A2z4~u!, ~17!

andz(u) is the inverse function ofu(z) given by the integral
in Eqs.~15!. It may be seen that, either whenA50 or when
both m50 and e50, we have z(u)52cosu so that
G(u)5sinu. Otherwise these can be expressed in terms
Jacobian elliptic functions. For example, whenG2(z) has
four distinct real rootsz1,z2,z3,z4,

z~u!5
z1~z42z2!1z4~z22z1!sn2~nuuk!

~z42z2!1~z22z1!sn2~nuuk!
, ~18!

where sn is the Jacobian elliptic function~see@8#!, with

n5
1

2
A~z32z1!~z42z2!, k5

~z22z1!~z42z3!

~z32z1!~z42z2!
.

The possible ranges of the coordinatesp andq are illus-
trated in Fig. 3. Assuming thatP(p) and Q(q) both have
four real roots, there are six possible static space-time
gions for all permitted values. These are bounded by h
zons ~roots of Q) or coordinate singularities~roots of P).
Attention is concentrated here on the space-time for wh
02400
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t
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p1,p,p2 and p1q,0. This covers two static and two
nonstatic regions separated by a cosmological horizon
by inner and outer black hole horizons. However, these
gions are not entirely covered by the coordinatesr andu, as
is also illustrated.

It may be observed that, although ther ,u coordinates ap-
propriately describe the black hole regions and even the
mological horizon, they are not well suited to investigati
timelike or null infinity. The restrictionr .0 corresponds to
q,0, Eqs.~15!, and it is immediately obvious from Fig. 3
that the space-time boundaryp1q50 @where the conformal
factor in Eq.~16! is unbounded# can only be reached for par
of the range ofu, and then for finite values ofr.

It may also be observed that the regionp3,p,p4 ,
p1q.0 in Fig. 3 represents the same space-time with
replacementsp→2p, q→2q andm→2m.

V. PHYSICAL INTERPRETATION

It is obvious that, whenA50 andc51, Eq. ~16! imme-
diately reduces to the familiar form of the Reissne
Nordström–de Sitter black hole solution in which the param
etersm ande have the usual interpretation and the curvatu
singularity is located atr 50. Moreover, whenAÞ0, c51
and m505e, the metric ~16! is identical to Eq.~10! in
which r 50 corresponds to two uniformly accelerating poin
relative to the de Sitter background. Whenm ande are small,
Eq. ~16! can naturally be regarded as a perturbation of E
~10!. In this way, the metric~16! can be interpreted as de
scribing a pair of charged black holes uniformly accelera
ing in a de Sitter universe. However, for a finite acceleration
A, it follows from Eqs. ~17! that the effective mass an

FIG. 3. In the full ranges ofp and q, space-times only occu
when p lies between the rootsp1 and p2, or betweenp3 and p4.
These include six possible static space-time regions which are
cated by the shaded areas. Attention is focused here on the s
time spanned byp1,p,p2 and q,2p. This contains two static
and two nonstatic regions separated by a cosmological hor
~CH! and inner and outer black hole horizons~IBH and OBH!.
Apart from a region near conformal infinity, this space-time is a
covered by the coordinatesr andu which span the regions indicate
by the area within the bold lines.
6-4
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charge of each black hole are given respectively
A11a2A2 m andA11a2A2 e.

The space-times considered here possess the ‘‘boost’’
‘‘rotation’’ symmetries associated with the Killing vectors]T

and ]F . In the 5-dimensional representation~1! of the
de Sitter background, these are given byZ0]Z1

1Z1]Z0
and

Z2]Z3
2Z3]Z2

which are the analogues of those described

@10# for L50.
Killing horizons ~where the norm of the Killing vector]T

vanishes! between static and radiative regions of these spa
times occur whenF50. Generally,F(r ) can have up to four
real roots, one of which must be negative. However, tak
r>0, F can have at most three positive real roots. In t
case, the space-time will include the familiar inner and ou
black hole and cosmological horizons, although it may
noted that their geometrical properties are altered by
presence of acceleration. Cases describing accelerating
treme black holes and naked singularities~in which the roots
are repeated or complex! are also included in Eqs.~16! and
~17! for specific ranges of the parameters.

When the acceleration vanishes, the conformal diagra
of all the possible~spherically symmetric! cases are known
~see@9#!. It is interesting that these diagrams also descr
the global structure of Eq.~16! in the planez50 ‘‘orthogo-
nal’’ to the direction of the acceleration, even in the ca
when AÞ0. On this planer 5` corresponds to de Sitter–
like infinity.

For nonzero acceleration, the complete global structur
very complicated. For smallm ande, these space-times ca
be considered as perturbations of a de Sitter universe a
lustrated in Figs. 1 and 2. In this context, these figures sho
be regarded as useful schematic pictures rather than co
mal diagrams sincer 50 is now a curvature singularity an
other horizons occur. In particular, it may be observed t
the space-time describes the motion of two black holes
celerating in the de Sitter background.

As pointed out in Sec. III, for some range ofu, the de
Sitter infinity is reached at a finite value of the coordinatr
~which is timelike in this region! given by r z(u)
5A11a2A2/A. For this value, the conformal factor in Eq
~16! is unbounded@corresponding top1q50 in Eq. ~13!#.
For the coordinates of Eq.~16!, this apparent angular depen
dence at infinity is clearly illustrated in Fig. 3 as discussed
Sec. IV. However, it can be shown that theproper time
required to reach this boundary is always unbounded.

Let us finally investigate the nature of the singularities
p5p15Az1 and p5p25Az2, whereP(pi)50, i.e. G50.
It follows from Eqs.~15! that the singularity atz5z1 corre-
sponds tou50, andz5z2 to u52K, whereK is the ‘‘quar-
ter period’’ @the complete elliptic integral of the first kin
related to Eqs.~15!# which is p/2 when eitherA50 or
m505e.

Consider 2-dimensional spacelike surfaces on whichr and
T are constants anduP@0,2K#, FP@0,2p). By comparing
the circumference of a small circle~fixed u) around the pole
u50 with its ‘‘radius’’ ~segment with fixedF), we find that
in general there is a deficit angle
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d152pF12 lim
u→0

cG~u!

u G
52p@12cG8~0!#

52p@11c~z123mAz1
212e2A2z1

3!#.
~19!

This is finite and also independent ofr and T. Thus, the
singularityp5p1 represents acosmic string of constant ten
sionalong the ‘‘semi-axis’’u50. However, for any value of
m, e, A and L, this axis can always be made regular
putting c51/G8(0). In particular, ifA50 or if m ande are
both zero,G5sinu and the axis is regular whenc51 as
required for the spherically symmetric Reissne
Nordström–de Sitter space-time or for the de Sitter unive
in accelerating coordinates.

For the alternative poleu52K, the deficit angle of a cos
mic string in the opposite direction is given by

d252pF12 lim
u→2K

cG~u!

2K2uG
52p@11cG8~2K !#

52p@12c~z223mAz2
212e2A2z2

3!#. ~20!

This could be removed by settingc521/G8(2K). How-
ever, it is not possible in general to remove the strings
both directions simultaneously unlessG8(0)52G8(2K).
This condition is identically satisfied form505e or A50
with c51. However, for smallmA, a linear perturbation
aboutz1521 andz251 indicates that the two strings can
not be removed simultaneously. It follows that a physica
reasonable (e,m) accelerating black hole in a de Sitte
background must be connected to at least one conical si
larity which may be considered to ‘‘cause’’ the acceleratio
This has been observed previously@1# using a less appropri
ate coordinate system.

We have already argued that, relative to a de Sitter ba
ground, the space-times contain two accelerating black ho
These are connected by at least one string, localized
u50 and/oru52K. Since each point in Fig. 1 represents
2-dimensional compact subspace spanned byu and F, the
strings may be located on either of the two ‘‘antipoda
points on all of these ‘‘2-spheres’’ and thus connects o
black hole to the other.

In the interpretation@11# of the C metric with L50, it
was convenient to express the metric in the Weyl form. H
it is also possible to transform Eq.~16! to the analogous
Lewis-Papapetrou form, at least within each static region,
puttingr5r01*dr /rAF(r ), wherer0 is a suitable constant
However, since this applies only in disconnected regions
the space-time, it appears to be less convenient for a gl
interpretation of these solutions. In fact, the structure of
two cases with zero or nonzeroL are very different. It is
therefore not surprising that there is no simple reduction
Eq. ~16! to theC metric asL→0. Nevertheless, it is again
possible to perform a coordinate transformation
6-5
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r5 1
2 b~j21t22c2!,

u2K5bjAc22t2,

T56a arctanh~ t/c!, ~21!

b5const, with which the metric becomes

ds25Fdj21GdF21F~cdc2tdt !2

c22t2
2H~ tdc2cdt !2

~c22t2!2
,

~22!

where

F5
b2r 2~r!~j21c22t2!

@A11a2A22Ar~r!z~u!#2
,

G5
c2r 2~r!G2~u!

@A11a2A22Ar~r!z~u!#2
,

H5
a2F~r ~r!!

@A11a2A22Ar~r!z~u!#2
.

02400
The form~22! exhibits the ‘‘boost-rotational’’ symmetry ex
plicitly. It is similar to the analogous form forL50. It also
enables a natural extension of the static Lewis-Papape
metric to regions withutu.ucu.

Note finally that some interesting new features occ
when LÞ0. These arise since the universe is now clos
and expanding. For example, a cosmic string starting at
black hole must extend to the other. Then, proceeding fr
the opposite pole of the second black hole, a second~pos-
sible! string eventually returns to the first black hole from t
opposite direction. As a second observation, we note that
acceleration of any object can have both positive and ne
tive signs simultaneously. This arises since a point mov
away in one direction is also approaching from the oppo
side of the universe.
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