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Uniformly accelerating black holes in a de Sitter universe

J. Podolsky
Institute of Theoretical Physics, Charles University, V Holé&ach 2, 18000 Prague 8, Czech Republic

J. B. Griffiths
Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
(Received 11 September 2000; published 14 December)2000

A class of exact solutions of Einstein’s equations is analyzed which describes uniformly accelerating
charged black holes in an asymptotically de Sitter universe. This is a generalization ©frtle¢ric which
includes a cosmological constant. The physical interpretation of the solutions is facilitated by the introduction
of a new coordinate system for de Sitter space which is adapted to accelerating observers in this background.
The solutions considered reduce to this form of the de Sitter metric when the mass and charge of the black

holes vanish.
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[. INTRODUCTION in a 5-dimensional Minkowski space. In the familiar param-
etrization by static coordinates,
It has recently been suggestgt] that pair creation of .
black holes is possible in a background with a cosmological Zy=a*—R’sinh(T/a),
constant as this supplies the necessary negative potential en-
ergy. To investigate this process, an exact solution of Ein- Z;=% Va?—R? cosh{T/a),
stein’s equations is required which represents a pair of black
holes which accelerate away from each other in a de Sitter Z,=Rcos0,

background. In fact, a general class of such solutions is avail-
able[2] (and used if1]) which includes mass and charge
parameters as well as a cosmological constantWhen
A =0, these solutions include the well-know@ metric
which describes two black holes which uniformly acceleratgpe metric is
in a Minkowski background under the action of conical sin-
gularities[3]. However, forA #0, the physical, geometrical dr?
and global properties of the space-tif@d have not been ds?= =2 +R?(dO?+sir® dcbz)—(l
investigated thoroughly even at the classical level. 1- —

It is the purpose of the present paper to provide a physical a
interpretation for this family of exact solutions. We will ()
shpw that indeed it_rep_reser(tms_sibly charge)dblac_k holes with Re[0a], Te(—»,%), ®c[0,7], ®<[0,27). The
un!formly acce_zleratlng in a de_ Sitter universe. This interpre~,, o maps given by Eqg2) cover two causally disconnected
tation is obtained after first introducing a new coordinate :

S . . areasZ,>0 andZ;<0 of the manifold.

system which is adapted to the motion (@fvo) uniformly Now, let us consider the timelike world-lineg(7):
accelerating test particles in de Sitter space. We will then ’ '
show that, for small mass and charge parameters, some of the _ _ _ _ 2_p2
Plebanski-Demianski solutiohg] can be regarded as pertur- R=Ro, ©=0,, ®=®,, T=ar/ya’~R; (4

bations of de Sitter space in these coordinates. This enablggere R),0, and ®, are constants. The 4-velocity is

the physical meaning of the parameters to be determined. u”=(0,0,0a/ \/ﬁg) and the 4-acceleration is
u“=Du*/dr=u*u”=(—R,/a%0,0,0). Obviouslyr is the

Z,=Rsin® cosd,

Z3=RsinO sind, (2

R2
o 2
az)dT ,

Il. UNIFORMLY ACCELERATING OBSERVERS proper time sincel,,u“=—1, and the 4-acceleration is con-
IN de SITTER SPACE stant with modulus
It is well known that de Sitter space can be represented as _ Ro
a 4-hyperboloid A= Ut = —. (5)
2,92, 52 52, 52_ 2 . . . . .
—Zot 2yt 25+ 23t Zi=at=3IA (D) sinceu,u#=0, this constant value 4| is identical to the

modulus of the 3-acceleration measured in the natural local
orthonormal frame of the observer.
*Email address: podolsky@mbox.troja.mff.cuni.cz The world-lines(4) therefore represent the motion wrhi-
"Email address: j.b.griffiths@Iboro.ac.uk formly accelerating observers in a de Sitter universe. When
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FIG. 1. The conformal diagram for de Sitter space indicating
trajectories of observers with uniform acceleratidbnEach point
represents a complete 2-sphere.

Ro=0 the world-line is a geodesic with zero acceleration.
On the other hand, wheRy=a, the acceleratior is un-
bounded and motion is along the null cosmological horizon.
In general, these uniformly accelerated trajectories are given
by constant values af,, Z; andZ, on the de Sitter hyper-
boloid, and coincide with the orbits of the isometry gener-
ated by the Killing vectow .

It is also instructive to visualize these accelerated observ-
ers in the standard global coordinate representation of de
Sitter space:
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alA|

siny=
+a°A?

sin 7,

()

and indicated in Fig. 1.

IIl. NEW ACCELERATING COORDINATES
FOR de SITTER SPACE

We now introduce a new coordinate system which is par-

ticularly well suited for studying uniformly accelerating
point sources in de Sitter space. This is given by the follow-
ing parametrization of Eq.1):

, VaZ—r?sinh(T/a)
O 1+a’A?+Arcosh’

- Ja’—r?coshT/a)
YT 1+a?A?+Arcost’

. J1+a?A?r cosh+a’A
Y 1+a?AZ+Arcosh |

r sin @ cos®

Z = 1
2 [1+a?AZ+Arcosd

r singsin®

Z,= .
¥ [1+a?AZ+Arcosd

C)

With re[0a], Te(—«,»), #c[0,7], ®[0,27), this

cosny
a— ,
Sinny

0=

again covers two causally disconnected areas of the de Sitter
manifold. In these coordinates, the de Sitter space is repre-

sented in the form

cosy
Z,=a——,
Siny

siny
Z,=a——=C0s0,
siny

siny .
Z,=a——-sin® cosP,
siny

i 1 dr?
S frd
[V1+a’A+Ar cosh]? 1_f
a2
I’2
+r2(d@?+sirf 6 dd?)— 1—52 dr? (10

This new static metric is conformal to the standard fq8n

siny .
Zz=a———-=sin® sind, (6)
Sinny
wherene[0,7], x €[0,7]. With this, the metric is
a2
dsz=sinz77[d)(2+sin2)((2+sin2® dd?)—d»n?]. (7)

This immediately leads to the familiar conformal diagram of
de Sitter spacdFig. 1). Comparing expressions fa, in
Egs.(2) and(6), it can be seen that the trajectories of accel-
erated observers are given by
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to which it reduces wheA=0. The transformation between
Egs.(3) and(10) is given by relating, 6 to R,® as

2_ 472
2 2 r a

—a‘= ,
[V1+a?AZ+Ar cosf]?

rsing

J1+aZAZ+Arcosh’

V1+a®A?r cosf+a’A
J1+a2AZ+Arcosh

Rsin®=

Rcos® = (11
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R=o00 R=o0 IV, where it becomes timelike. However, other coordinate
charts are required there sin€e= (—,%) covers only re-
L>d Lod gions | and Ill betweem=0 and the cosmological horizon.
Ri0 I Ri 1 These are obtained by replacing?—r? in Egs. (9) by
il I i 01 w7 NP an . . .
" Note that theexplicit spherical symmetry of the coordi-
v r7a IV pXg nate system has been removed to accommodate a description
5= = of uniform acceleration. However, this introduces difficulties
in describing the de Sitter timelike and null infinity given by
R=o0 R=o0 7n=0,7 (or R=») using the coordinates of E¢L0). It may
Z,<0 Z,>0 be observed from Eq$l1) that points in regions Il and IV in
n>0>mn2 m2>0>0 Fig. 2 with R>\/1+a?A?/A can only be reached for a lim-

FIG. 2. The conformal diagram for de Sitter space such thafted range (_)f_the CoordlnatQ: M(_)reover, |_nf|n|ty can be
each point represents a hemisphere. The shaded area indicates {ﬁgched at éinite value of the. timelike coordlnailesuch- that
region | covered by the new coordinates(f) for 0<r<a. The r COSﬂz— v1+a®A%/A at Wh'Ch the conformal factor in Eq.
complete space repeats this area in region Il and includes the ré10) is unbounded. Only in the “equatorial planef/= /2
gions Il and IV beyond the cosmological horizons. Thus0 rep- ~ doesr = correspond tdR=cc.
resents two uniformly accelerating points on causally disconnected

opposite sides of the universe. IV. GENERALIZED C METRIC

Let us now consider the Einstein space described by the

which can be obtained by comparing E¢®). with Eqgs.(9). )
line element

It is obvious that the origim=0 of the coordinate$10)
corresponds tdRy=a?|Al|//1+a’A% and Z,=0=Z,. Sub-
stituting the above value d?, into Eq.(5), we conclude that ds?=
the parameteA in the metric(10) is exactly the value of the
acceleration of the corresponding observer. Thereftire,
origin r =0 of the coordinates irEq. (10) is accelerating in
a de Sitter universe with uniform acceleration Fhis uni-
formly accelerated trajectory corresponds to the motion of
two distinct pointson the de Sitter hyperboloid, one in each
of the two causally disconnected static regions. WAen0
the coordinate singularity=0 is located a®,=0 so that
Z,=Ry>0, whereas whei<O0 it is located at®,= so (14)
thatZ,= —Ry<<0. It may further be noted that all observers
having arbitrary constant values of # and ® also move
with uniform acceleratiorigenerally different fromA).

The character of these coordinates can be further unde
stood by expressing them in terms of the global coordinate

(6) by

1 [dp? dg?
W %'f’%‘F'PdO'Z—QdTZ , (13)

where

P(p)=A?=p?+2mp*—e?p’,

A
Q(q)=— §—A2+ g*+2mq*+e’qt.

This is contained in the large family of solutions given by
Plebanski and Demiansk2] [see Eq.6.3) and also[4—6]]
'|J_1 which the “rotation” vanishes. We note that the linear
ferms have been removed in E@$4) using the shiffp—p
+¢o andq—qg—cq, Wherecy is a constant. Also, the coef-
ficients of the quadratic terms have been set to unity by a

2 Lo rescaling of coordinategThe possibility of different signs

r sirfp—sinfy : :
1- —= _ _ , for the quadratic terms has been considerefin
a® [y1+a’A’sinp—aAsiny cos®]? When the cosmological constant in Ed44) vanishes,

Eq. (13) reduces to the well-know@& metric which has been
interpreted 3] as describing two black holes, each of mass
and charges, which move in opposite directions relative to a
Minkowski background with acceleratioh under the action
of some conical singularities. We will argue below that the
i I‘(T _ _Cosy metric in the form(13), (14) can be considered as the most
anh —| =% ——. 12 e . >

a cosy natural generalization of th€ metric which includes a cos-

mological constant\.

Notice again that =0 implies both Eq.8) and® =0 (or Note that in Egs.(14) the acceleration parametér is
0= for A<0). These coordinates cover the region | or Il introduced in a different form to that considered previously
according to the two signs dt; in Eqgs.(9). This is illus-  (e.g.[1]). We use a different scaling, and also adapt the
trated in the conformal diagram of de Sitter spdeig. 2). It  constant terms so that appears explicitly inQ only. We
may be observed that=0 is represented byvo world-lines  will demonstrate below that this is more convenient for
located in regions | and IIl. The cosmological horizon occursphysical interpretation.
whenr=a. The coordinate in Eqg. (10) can in fact be ex- In order to maintain the correct space-time signature, it is
tended through this horizon into the nonstatic regions Il andhecessary tha®>0. This places a restriction on the range of

asiny sin®
J1+a2AZsinp—aAsiny cos®

r sinf=
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p. However, there is no restriction on the sign @fwhich ST
may describe both static and nonstatic regions, with horizons
occurring when@=0.

Let us assume that there is a finite rang@,ddounded by
rootsp, andp,(>p,), in which?=0. This spans the space- %
time which we wish to investigate. However, it is convenient
to introduce the parametérby p=A/{, so that{;<{<{,,
where;=p;/A.

Now, let us perform the coordinate transformation

r=—+1+a’Aq,

(=)

R

I

=

12 D, Dy P,

d¢
0: 1
le— PH2mA—e’APt

|
8 o

d=Ac/c FIG. 3. In the full ranges op and g, space-times only occur
whenp lies between the rootp, and p,, or betweenp; and p,.
These include six possible static space-time regions which are indi-
T=\1+a%AZr, (15 0 " y

cated by the shaded areas. Attention is focused here on the space-
time spanned by;<p<p, andq<-—p. This contains two static

wherec is a constant which can be specified later. With th|s,an d two nonstatic regions separated by a cosmological horizon

the metric(13) becomes (CH) and inner and outer black hole horizoi8H and OBH.
Apart from a region near conformal infinity, this space-time is also
) 1 covered by the coordinatesand 6 which span the regions indicated
ds°= by the area within the bold lines.
[V1+a?A’—Ar{(6)]? Y
dr2 p.:<p<p, and p+q<0. This covers two static and two
X m+r2(d02+ G2(6)c?d®?) —F(r)dT?}, (16) nonstatic regions separated by a cosmological horizon and

by inner and outer black hole horizons. However, these re-
gions are not entirely covered by the coordinatesd 6, as
is also illustrated.
.2 om o2 It may be obsc_erved that, although ﬂj,e9 coordinates ap-
F(r)=1——— J1+alA? =+ (1+a2A%)—, proprle_xtely de;crlbe the black hole regions and_even .the.cos—
a r r mological horizon, they are not well suited to investigating
5 5 5 52 timelike or null infinity. The restrictiomr >0 corresponds to
G(0)=1—{%(0)+2mAL*(0) —e ALY 0), (17 g<0, Egs.(15), and it is immediately obvious from Fig. 3
that the space-time boundapy- g=0 [where the conformal
factor in Eqg.(16) is unboundetican only be reached for part
of the range ofd, and then for finite values af
It may also be observed that the regiga<<p<p,,
+0g>0 in Fig. 3 represents the same space-time with the
replacementp— —p, g— —g andm— —m.

where

and{(#6) is the inverse function ofi({) given by the integral
in Egs.(15). It may be seen that, either whén=0 or when
both m=0 and e=0, we have {(6)=—cosf so that
G(60)=sin#. Otherwise these can be expressed in terms ob
Jacobian elliptic functions. For example, wh&%({) has
four distinct real roots ;< {,<{3<{a,

51(§4—§2)+§4(§2—§1)sr12(n0| K) V. PHYSICAL INTERPRETATION

(o= (La— L)+ (L= 1) STR(NOK) ’ (18) It is obvious that, whelA=0 andc=1, Eq.(16) imme-
diately reduces to the familiar form of the Reissner—
where sn is the Jacobian elliptic functi¢see[8]), with Nordstran—de Sitter black hole solution in which the param-
etersm ande have the usual interpretation and the curvature

1 ($2=L)(La—E3) singularity is located at=0. Moreover, wherA+0, c=1

n= E‘/(§3_§1)(§4_ fa), k= (La— () (La—Co) and m=0=e, the metric(16) is identical to Eq.(10) in

whichr=0 corresponds to two uniformly accelerating points
The possible ranges of the coordinafeandq are illus-  relative to the de Sitter background. Wherande are small,
trated in Fig. 3. Assuming tha®P(p) and Q(q) both have Eq. (16) can naturally be regarded as a perturbation of Eq.
four real roots, there are six possible static space-time reg-10). In this way, the metri@l6) can be interpreted as de-
gions for all permitted values. These are bounded by horiscribinga pair of charged black holes uniformly accelerat-
zons (roots of Q) or coordinate singularitiegroots of P). ing in a de Sitter universeHowever, for a finite acceleration
Attention is concentrated here on the space-time for whicl, it follows from Egs. (17) that the effective mass and
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charge of each black hole are given respectively by
J1+a?A?m and1+a%AZe. 01=2m
The space-times considered here possess the “boost” and
“rotation” symmetries associated with the Killing vectars =27[1-cG'(0)]
and dg. In the 5-dimensional representatidd) of the
de Sitter background, these are given&yf +Z,dz, and =2nm[1+c(Z,—3mAL2+2e?A23)].
Z307,— Z3dz, which are the analogues of those described in (19
[10] for A=0.
Killing horizons (where the norm of the Killing vectat;
vanishegbetween static and radiative regions of these spac

times occur wher=0. GenerallyF(r) can have up to four m e A and A, this axis can always be made regular by
real roots, one of which must be negative. However, takin%l;tti,ngc=1/G”(O) In particular, ifA=0 or if m ande are

r=0, F can have at most three positive real roots. In thisboth zer0,G=sinf and the axis is regular whep=1 as
case, the space-time will include the familiar inner and outerrequired ' for the spherically symmetric Reissner—

black hole and cosmological horizons, although it may bey,gstrgn—_de Sitter space-time or for the de Sitter universe
noted that their geometrical properties are altered by the, accelerating coordinates.

presence of acceleration. Cases describing accelerating ex- por the alternative polé= 2K, the deficit angle of a cos-
treme black holes and naked singularitizswhich the roots  mjc string in the opposite direction is given by
are repeated or complgare also included in Eq$16) and

cG(o
1 im &Y
6—0 0

This is finite and also independent ofand T. Thus, the
es_ingularityp= p; represents aosmic string of constant ten-
sionalong the “semi-axis”’8=0. However, for any value of

(17) for specific ranges of the parameters. S.=2m 1— lim cG(9)
When the acceleration vanishes, the conformal diagrams 2 9ok 2K— 0
of all the possiblegspherically symmetriccases are known ,
(see[9)). It is interesting that these diagrams also describe =2m[1+cG'(2K)]
the global structure of Eq16) in the plane/=0 “orthogo- :277[1—c(§2—3mA§§+2e2A2§§)]. (20)

nal” to the direction of the acceleration, even in the case
when A#0. On this plane = corresponds to de Sitter— This could be removed by setting=—1/G’(2K). How-

like infinity. ) ever, it is not possible in general to remove the strings in
For nonzero acceleration, the complete global structure i§ih directions simultaneously unle€' (0)=—G'(2K).
very complicated. For smath ande, these space-times can Thjs condition is identically satisfied fan=0=e or A=0

be considered as perturbations of a de Sitter universe as ilgjth c=1. However, for smalimA, a linear perturbation

lustrated in Figs. 1 and 2. In this context, these figures shoulgpouts, = —1 andZ,=1 indicates that the two strings can-
be regarded as useful schematic pictures rather than confafipt be removed simultaneously. It follows that a physically
mal diagrams since=0 is now a curvature singularity and reasonable é<m) accelerating black hole in a de Sitter
other horizons occur. In particular, it may be observed thabackground must be connected to at least one conical singu-
the space-time describes the motion of two black holes adarity which may be considered to “cause” the acceleration.
celerating in the de Sitter background. This has been observed previougly using a less appropri-

As pointed out in Sec. Ill, for some range 6f the de  ate coordinate system.

Sitter infinity is reached at a finite value of the coordinate We have already argued that, relative to a de Sitter back-
(which is timelike in this regiop given by r{(0) ground, the space-times contain two accelerating black holes.
=1+a%A?/A. For this value, the conformal factor in Eq. These are connected by at least one string, localized at
(16) is unboundedcorresponding tg+q=0 in Eq. (13)]. #=0 and/ord=2K. Since each point in Fig. 1 represents a
For the coordinates of Eq16), this apparent angular depen- 2-dimensional compact subspace spanned tand ®, the
dence at infinity is clearly illustrated in Fig. 3 as discussed instrings may be located on either of the two “antipodal”
Sec. IV. However, it can be shown that tipeoper time  points on all of these “2-spheres” and thus connects one
required to reach this boundary is always unbounded. black hole to the other.

Let us finally investigate the nature of the singularities at In the interpretatiorf11] of the C metric with A=0, it
p=p1=A¢; andp=p,=AZ,, whereP(p;)=0, i.,e.G=0.  was convenient to express the metric in the Weyl form. Here
It follows from Eqgs.(15) that the singularity at =, corre- it is also possible to transform E@l6) to the analogous
sponds to¥=0, and/=¢, to =2K, whereK is the “quar-  Lewis-Papapetrou form, at least within each static region, by
ter period” [the complete elliptic integral of the first kind puttingp=pq+ [dr/rF(r), wherep, is a suitable constant.
related to Eqgs.15)] which is /2 when eitherA=0 or  However, since this applies only in disconnected regions of
m=0=e. the space-time, it appears to be less convenient for a global

Consider 2-dimensional spacelike surfaces on whighd  interpretation of these solutions. In fact, the structure of the
T are constants anfle[0,2K], ® €[0,27). By comparing two cases with zero or nonzerd are very different. It is
the circumference of a small circléxed #) around the pole therefore not surprising that there is no simple reduction of
0= 0 with its “radius” (segment with fixedb), we find that Eq. (16) to the C metric asA —0. Nevertheless, it is again
in general there is a deficit angle possible to perform a coordinate transformation
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p=3b(E+t2—y?),
0—K=b&\y?—1t2,
T=*aarctanht/y), (21

b=const, with which the metric becomes

(ydy—tdt)*  (tdy—ydt)?
ds®= Fdé?+ Gdd 2+ 7 e —H )

(22

where
o DTR(E+ Pt
[Vi+a?A2—Ar(p)Z(6)]%
o c?r2(p)G2(6)
[Vi+a?AZ-Ar(p)i(6)]?

" a’F(r(p))
[V1+a2AZ=Ar(p)L(6)1?

PHYSICAL REVIEW D63 024006

The form(22) exhibits the “boost-rotational” symmetry ex-
plicitly. It is similar to the analogous form fok =0. It also
enables a natural extension of the static Lewis-Papapetrou
metric to regions witHt|>|].

Note finally that some interesting new features occur
when A#0. These arise since the universe is now closed
and expanding. For example, a cosmic string starting at one
black hole must extend to the other. Then, proceeding from
the opposite pole of the second black hole, a sedpog-
sible) string eventually returns to the first black hole from the
opposite direction. As a second observation, we note that the
acceleration of any object can have both positive and nega-
tive signs simultaneously. This arises since a point moving
away in one direction is also approaching from the opposite
side of the universe.

ACKNOWLEDGMENTS

We are grateful to J. Bak for some useful suggestions.
This work was supported by the Royal Society and, in part,
by grant GACR-202/99/0261 of the Czech Republic and
GAUK 141/2000 of Charles University.

[1] R.B. Mann and S.F. Ross, Phys. Rev5R 2254(1995.

[2] J.F. Plebanski and M. Demianski, Ann. Phys.Y.) 98, 98
(1976.

[3] W. Kinnersley and M. Walker, Phys. Rev. ) 1359(1970.

[4] B. Carter, Commun. Math. Phy0, 280 (1968.

[5] R. Debever, Bull. Soc. Math. Bel@3, 360 (197J.

[6] D. Kramer, H. Stephani, M. MacCallum, and E. HeHixact
Solutions of Einstein’s Field Equatioif€ambridge University

Press, Cambridge, England, 1980
[7] R.B. Mann, Class. Quantum Grai4, L109 (1997.
[8] Handbook of Mathematical Functionsedited by M.
Abramowitz and I. A. SteguiDover, New York, 1965
[9] D.R. Brill and S.A. Hayward, Class. Quantum Grdud, 359
(1994).
[10] J. Bicak and B. Schmidt, Phys. Rev. 80, 1827(1989.
[11] W.B. Bonnor, Gen. Relativ. Graviil5, 535(1983.

024006-6



