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We introduce a complete gauge fixing for cylindrical spacetimegcuothat, in principle, do not contain
the axis of symmetry. By cylindrically symmetric we understand spacetimes that possess two commuting
spacelike Killing vectors, one of them rotational and the other one translational. The result of our gauge fixing
is a constraint-free model whose phase space has four field-like degrees of freedom and that depends on three
constant parameters. Two of these constants determine the global angular momentum and the linear momentum
in the axis direction, while the third parameter is related with the behavior of the metric around the axis. We
derive the explicit expression of the metric in terms of the physical degrees of freedom, calculate the reduced
equations of motion and obtain the Hamiltonian that generates the reduced dynamics. We also find upper and
lower bounds for this reduced Hamiltonian that provides the energy per unit length contained in the system. In
addition, we show that the reduced formalism constructed is well defined and consistent at least when the linear
momentum in the axis direction vanishes. Furthermore, in that case we prove that there exists an infinite
number of solutions in which all physical fields are constant both in the surroundings of the axis and at
sufficiently large distances from it. If the global angular momentum is different from zero, the isometry group
of these solutions is generally not orthogonally transitive. Such solutions generalize the metric of a spinning
cosmic string in the region where no closed timelike curves are present.
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[. INTRODUCTION tonian was obtained from a purely four-dimensional perspec-
tive by Romano and Torrel 0] and, for the particular case of
Vacuum cylindrical spacetimes have received intensiveEinstein-Rosen waves, also by analyzing the asymptotic
study in general relativity. The reasons for this interest carstructure at null infinity of the three-dimensional Killing re-
be found in the fact that cylindrical symmetry allows for a duction of the systerf8].
rich variety of physical phenomena while considerably sim- The wave solutiongn vacuoanalyzed in all these works
plifying Einstein’s equations, so that one can obtain non-are obtained by adopting a definition of cylindrical symmetry
trivial exact solutiong1]. The first family of time-dependent that might be considered too restrictive. In addition to the
cylindrical spacetimem vacuoseems to have been found by existence of a translational and a rotational Killing field, it is
Beck in the 1920'92]. This family was rediscovered ten assumed that the spacetime manifold contains at least part of
years later by Einstein and Rosen, in a systematic investigahe axis of cylindrical symmetry, namely, the set of fixed
tion of all cylindrically symmetric solutions that describe points of the axial Killing field 11]. Under such hypotheses,
linearly polarized radiatiorj3]. The most general solution the geometry must be regular at the axis, and it is then pos-
corresponding to cylindrical gravitational wavés vacuo  sible to show that the isometry group generated by the two
(without the condition of linear polarizatioprwas analyzed Killing vectors is Abelian[11] and orthogonally transitive
by Ehlers and collaborators, and independently by12-14; i.e., the Killing orbits admit orthogonal surfaces.
Kompaneets[4]. By studying the dynamical equations, Obviously, the assumption of regularity eliminates interest-
Thorne[5] succeeded in constructing a covariant vector thatng possibilities that have found applications in astrophysics
satisfies a conservation law and provides a notion of energgnd cosmology. This is the case, e.g., of straight cosmic
for these cylindrical spacetimes. Th& energy, which is strings, namely, one-dimensional topological defects with a
positive and localizable, is in fact an energy density per unitinear energy density that introduce a conical singularity at
length along the axis of symmetry. In the 1970’s, Kucharthe axis and, therefore, a deficit angle in the geomjt5y.
discussed the canonical formalism for Einstein-Rosen wave®rthogonal transitivity(a consequence of the regularity at
in the context of quantum gravify6]. More recently, cylin- the axig precludes as well the existence of a global rotation
drical gravitational waves have been considered as a partic(i13] which is present, for instance, in spinning string solu-
lar case of spacetimes that possess a translational spacelitiens [16,17]. These solutions have axial singularities pro-
Killing field [7,8]. This class of spacetimes can be reduced taluced by string-like defects that carry a non-zero angular
three dimensions using their symmetry. In this way, Ash-momentum per unit length in the axis direction and, in prin-
tekar and Varadarajan showed that cylindrical waves admit aiple, may have vanishing energy density. In the absence of
well-defined Hamiltonian formalism and that the Hamil- gravitational radiation, the energy content and angular mo-
tonian that generates asymptotic time tanslations at spatiahentum due to a cosmic string were analyzed from a three-
infinity is not exactly the(total) C energy, but a non- dimensional viewpoint by Deser, Jackiw, and 't Hopf6]
polynomial function of it which, in addition to being posi- and also by Henneaux8]. On the other hand, a proposal
tive, turns out to be bounded also from abdwg9]. The has been recently made to extend the concept of energy from
same conclusion about the value and bounds of the HamiEinstein-Rosen waves to orthogonally transitive spacetimes
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that contain a non-spinning cosmic strifg9]. This pro- integral fdzfd# appears as a global factor in the gravita-
posal, nevertheless, is not based on a Hamiltonian analysigional action and in the symplectic structure of general rela-
The purpose of the present work is to generalize the studsivity. We absorb the numerical value ¢idz in Newton'’s
of the Hamiltonian structure and physical degrees of freedongonstantby renormalization iz has infinite lengthi20]) and
of vacuum cylindrical solutions to the case in which the axiscall G the effective gravitational constant obtained in this
of symmetry is not included in the spacetime, so that singumanner. In addition, we normalize the coordinétso that it
larities can appear there. In more detail, we will assume thabelongs to the unit circl&® (hence,$déd=21) and adopt
there exists an Abelian two-dimensional group of isometriesunits such that &=c=1. As for the spatial coordinatg we
generated by an axial and a translational spacelike Killingchoose its domain of definition equal to the real line. This
field, but we will not suppose that the axis belongs to thechoice is always compatible with the fact thitis rotational
vacuum spacetime or that the isometry group is orthogonallyf one accepts that the axis of symmetry is not included in
transitive. Our aim is to introduce a complete gauge-fixingour spacetime(think, e.g., of the change=Inr if r is a
procedure and analyze the dynamics of the resulting reduce@dial coordinate
system. We want to investigate whether such a reduced dy- Our system has the symplectic form
namics admits a well-defined Hamiltonian formalism and, if
the answer is in the affirmative, determine whether the exis-
tence of upper and lower bounds for the Hamiltonian still
holds when the assumption of regularity at the axis is
dropped. whered and/\ denote the exterior derivative and product. In
The rest of the paper is organized as follows. In Sec. literms of the induced metrib;; and its extrinsic curvature
we develop a complete gauge fixing for cylindrical spaceK;. , the canonical momenta can be writte]
times in vacua For the momentum constraints that corre-
spond to the Killing fields, the gauge freedom is fixed in Sec.
[l A. Section Il B introduces a convenient change of metric
variables, suitable for the study of cylindrical spacetimes. -
The gauge freedom associated with the remaining momerwith h andh" being the determinant and the inverse of the
tum constraint is removed in Sec. Il C. Finally, we eliminatethree-metrich;; . The non-vanishing Poisson brackets de-
the Hamiltonian constraint in Sec. I D. The reduced systentived from the above symplectic form are
attained in this way is analyzed in Sec. lll. Using the sym- _ _
plectic structure induced from general relativity, we find in {hij(u), T4} = 68 s(u—u). (2.3
Sec. lll A a Hamiltonian that, at least formally, generates the _
dynamics of the reduced model. The explicit expression oHere, §; and 5(u) are the Kronecker delta and the Dirac
the line element in terms of the four field-like degrees ofdelta, and the indices in parentheses are symmetrized. Call-
freedom of the phase space of the system is presented in Séeg # the densitized Hamiltonian constraiie., the product
lIIB. We also include there the dynamical equations thatof the Hamiltonian constraint biy*?) and; the momentum
dictate the evolution of the reduced model. In Sec. IV weconstraints, the time derivative of any functiénon phase
prove that, when the reduced Hamiltonian is well defined, itspace is then given by the formula
range is bounded both from below and above. In Sec. V we
discuss the conditions that ensure that the reduced Hamil-
tonian formalism is mathematically consistent and study the
possible divergences of the metric at the axis. Section VI
summarizes the main results of the work and includes som@here the overdot denotes the time derivatiggeis the par-
further comments. Finally, boundary conditions on ourtial derivative with respect to the explicit time dependence,
physical fields leading to an acceptable Hamiltonian formalN' is the shift vector, ant\=h"*?N is the densitized lapse
ism are presented in the Appendix. (N being the lapse functigrj21].

R

jo

1 e
HIJ:§h1/2(h'khl'—h”hk')Kk|, 2.2

'antF+{F,fRdu(Nﬂ+NiHi)], (2.4

Il. GAUGE FIXING A. Momentum constraints for the Killing fields

Let us first fix the gauge freedom associated with the mo-
mentum constraints of the two coordinates'={z, 6}
(a,b=1,2 from now on. Remembering the independence of
the metric on these coordinates, one can cjé8&2(Q that,
in our system of units,

Our starting point is the Hamiltonian formulation of gen-
eral relativity. We assume that the spacetime is globally hy
perbolic, so that it admits a-81 decomposition in sections
of constant timet. In addition, we suppose that there exist
two commuting spacelike Killing vector fields, one of them
axial and the other one translational. Since the isometry Ho=—2(hy ). (2.5
group is Abelian(with non-null orbitg, it is possible to
choose spatial coordinate$={z,6,u} (i=1,2,3) such that Here, the prime denotes the derivative with respeat &md
d, and d, are the translational and rotational Killing fields, we have introduced the alternative notatioffior the spatial
respectively, and the spacetime metric is independert of indexi=3. It is then possible to remove the corresponding
and 6 [1,13]. As a consequence of this independence, thggauge freedom by demanding that, when restricted to the
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sections of constant timeand only thep, the action of the must be real. The momentg, canonically conjugate to the
isometry group be orthogonally transitive, namely, thatmetric variablesq can be easily found:p,=I1"Y94h,,
h,,=0. It is easily seen that these gauge conditions are secr Habaqhab. Then, the reduced symplectic form of our
ond class with the momentum constraints that we want t@auge-fixed model i§); = [dudp,/\dg. On the other hand,
eliminate[20]. In order to arrive at a consistent gauge fixing, the two constraints that remain on the system can be written
we therefore must only find values for the shift components

N2 such that the conditions,,=0 are stable in the evolu- (y'f)? N (v')?

7 -2 2 22,2

tion. Using the fact that the solution to the momentum con- H= 4 2 ¢ Pyt Pt~ fpups
straintsH,=0 is given in our gauge by13'=h?3c,/4, with
c,(t) being two real functions of the time coordinate, a Y e e 2, 2622y
trivial calculation leads to the conclusion that the stability HI( = f'wi)+ F[(C(ﬁczv) +c;fe”],
conditionh,,=0 implies

au p 2.8

Na(“):fu Nhyh*c, (2.6 Hy=—Pot+pif +p,u +paw' +pyy’. 2.9

Notice that, wherc,=c,=0, these formulas reproduce the

results obtained for spacetimes that are regular at the axis

[10,23,24. Finally, it is possible to check that the equations

suitable redefinition of the coordinats. of motion obtained from Ec(2:4) for the degre'es of freedom
On the other hand, employing E€@.4), it is possible to of our gauge-fixed model coincide in fact with those gener-

check that the dynamical evolution leaves invariant the variated in our reduced system by the Hamiltoniagu(N7

ablesT1!, so that the functiong,=4I1¢ are in fact con- +N"Hy).

stants. Furthermore, using relati¢®2.2), one can show that

Caz|g|*1/277wwr(l)xM(Z)XV(a)XU;y [13,22, whereg is the C. Radial momentum constraint

determinant of the four-metric, the semicolon stands for co- Qur next step in the process of gauge fixing consists in

variant derivative, Greek letters denote spacetime indicesliminating the gauge freedom associated with the momen-
777 is the totally antisymmetric Levi-Civitdensor den- tum constraint,. This can be done, e.g., by imposing that
sity, and @X are the two Killing fields,7, (a=1) andd, the metric variablé be a fixed, strictly increasing function of
(a=2). It therefore follows that the orbits of these Killing only the coordinates, so that, once the value 6fis known,
fields admit orthogonal surfaces if and onlycif=0 [1,12].  the coordinateu is totally determined. We note that, from

It is clear that the constants, are intimately related to glo- expression(2.7), f2 is just the determinant of the metric on
bal properties of the spacetime. Whenever they are differerifilling orbits. In particular, this metric degenerated ¥an-
from zero, the geometry cannot be regular at the axis and thishes. The set of points whefe=0, which are in principle
sections of constant time of the vacuum spacetime canna@xcluded from our spacetime, would then correspond to the
have the topology oR®. Since we are not assuming orthogo- axis of symmetry. Thus, by introducing a change of coordi-
nal transitivity, we will not impose that, vanish. Neverthe- nates that replaceawith f, we could interpref as a kind of
less, although we will allow for the presence of non-zeroradial coordinatdrecall thatf is positivg. We will return to
constantsc, in our calculations, they will be treated as pa- this point in Sec. IlI B.

rameters that determine different sectors of the cylindrical Let us hence impose the conditibr:r (u), wherer (u) is
reduction of general relativity, and not as physical degrees o fixed function that is strictly positive and increasing, so that

Two additive (time-dependentintegration constants have
been removed fronlN? by imposing that these components
of the shift vanish in the limiu—o or, equivalently, by a

freedom of the theory. r(u)>0 andr’(u)>0 everywhere. Although the expression
of r(u) is given once and for all, we will not specify it
B. Change of metric variables explicitly; instead, we will treatr(u) as an abstract fixed

. - - function. It is clear that our gauge-fixing condition does not
After the above partial gauge fixing, we will introduce a ;0 jte under Poisson brackets with the constr&in 0.

change of metric variables that leads to a much more conves, o, 4auge fixing will be acceptable if we can find a value

nient expression for the line element of our spacetimes WltqOr the shift componenk! such that our choice of gauge is

two commuting Killing fields, namely, : .
9 9 Y stable, namely, such th&t0 on our gauge section. One can

ds?=e?""Y[ — £2N?dt?+ (du+ NYdt) %]+ evf? see[20] that this requirement implies th&t“=Np,,/(Inr)".
ps , P On the other hand, substitutinig=r(u) in Eq. (2.9), it is
X (d6+Ndt)*+e Y[dz—vdo+(N*—uN)dt]~ easy to find the expression fpg that solves the constraint

2.7 H.,=0. After removing the degrees of freeddrandp; from
the system, we arrive at a reduced phase space with symplec-
The new metric variables that replaeg, and the symmetric  tic form
two-metric h,, are q={f,v,y,w}. The restriction to(in-

equivalent positive definite three-metrids;; requires thaf QZ:J du(dp,/\dv +dp,,Adw+dp,/Ady). (2.10
be (e.g) strictly positive whereas the rest of metric variables R Y v Y
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The system has only one constraint, the densitized Hamilthe denominator in E¢2.12) has to be positive for all real
tonian constrain€2.8) evaluated on our gauge section, which values ofu. We will discuss this point in detalil in Sec. IV.

we will also call . One can check that the smeared con- In the rest of our discussion, we will fiw, at minus

straint duNT{ generates the reduced dynamics via the Poisi"finity and callwo(t)=lim __ w(u,t). Furthermore, in or-

son brackets obtained frof.,. der to suppress any explicit time dependence in the solution
for 2V given above, we will suppose that, is actually
D. Hamiltonian constraint constant. The assumptiomy= 0 introduces then some con-

In order to complete our gauge fixing, we must removeSiStenCy conditions in our system. Employing the fact that

the gauge freedom corresponding to the densitized HamilfduNH generates the time evolution before one performs
tonian constraint. One can use this freedom to impose thdhe gauge fixing discussed in this subsection, one can see
the metric induced on the reference surfaces with coordinate§at, on our gauge section,
t andu be diagonal. Sincg,,=g,,N" and, according to our
results,N" is proportional top,,, it will suffice to demand d(e?™) %
that p,, vanish. It is not difficult to check that the condition T =2Amexp< - fu H)(pvv’+pyy’)- (218
p,,=0 is second class with the constraftit=0. On the other
hand, the stability of our gauge fixinge., p,,=0) implies . . . .
that[ln(l}lrr’)]’z—yez""G/r’, ?Nhgre nge., p,=0) imp Let us now suppose thmo(t)=llmu_>_ww(u,t). This com-
mutation of the limitu— — o and the time derivative should
G 2. 22,2y 01 occur at least for sufficiently smooth solutiongu,t) if no
= F[(Cﬁczv) +egroe”]. (21D material sources are present at minus infinity that might in-
validate the vacuum equation of motion for Besides, let us
The above differential equation provides then a unique valu@dmit thatA., is finite and that, in the sector of phase space
for N under the condition that the lapsebe asymptotically ~under consideratiorl is integrable over the real line. Then,

unity, namely, that lim N=1 the requirement thaw, be constant implies that
il ) U— oo .
In addition, the constrairitl=0 leads to a non-linear and . , o
inhomogeneous first-order differential equationiothat, in ullr?w(pvv TPy =0. (217

spite of the apparent complication, can be solved exactly.

The solution for vanishing,, is ) . o -
In the following, we assume that this condition is satisfied.

L u Actually, we will see in Sec. V and in the Appendix that, at
(r')%ex f H least in certain situations, E@2.17) is satisfied once one
Ug - . s .
= . (2.12 imposes suitable boundary conditions on the physical de-
u . u
IN2a—2Wg _ , grees of freedom of the system.
(To)°e juodur Gexp( quH) Finally, after the gauge fixing explained here, the sym-
plectic form induced on phase space is

Here, ug is a fixed point, used as the end point in all our
integrations(which are over the dependence on the coordi-

eZw

nateu), wy(t)=w(u=ug,t), and ngf du(dp,/\v+dp,/\dy). (2.18
R
2 [(ry")? (v)* _
H= 'l 4 t—g ¢ P+ p§+ poree®|. (213 The system is free of constraints and its physical degrees of

freedom are the canonically conjugate pairs of fieldg()

Employing this solution, together with the boundary condi-2nd ¢.py)-
tion Iimu_mN=1, it is not difficult to integrate the differen-

tial equation satisfied by the densitized lapse. One obtains Ill. REDUCED MODEL
r - In this section, we will study the constraint-free system
NzAw—e‘ZWexr{ —f H), (2.19 obtained with our gauge fixing. We first show in Sec. Il A
' u that there exists a reduced Hamiltonian tiat least for-

mally) generates the time evolution. The explicit form of the
spacetime metric in terms of the physical degrees of freedom
is given in Sec. Il B. There, we employ the functiofu) as
A=— (2.15 @ radial coordinate, instead of the spatial coordinat&Ve
r. also obtain the dynamical equations for the reduced model
and show that, in order to eliminate a physical ambiguity
W.., Y.., andr, being the limits ofw, y, andr’, respectively, coming from the freedom in the choice of origin fgrone
whenu—oe. It is worth noting that, in order thaw be real, can fix the value of/.,. equal to zero.

with
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A. Reduced Hamiltonian where we have usefft,w}p={¢,py}p=0.

The equations of motion satisfied by the physical degrees The right-hand side of the above formula must be evalu-
of freedom of our model can be deduced by recalling thatatéd on our gauge section once all Poisson brackets have
before fixing the gauge associated with the Hamiltonian conbeen computed. On that section, Eg.2) is solved by the
straint, the dynamics is generated by the Hamiltoniarmatrix c*Y=c(??=0 and
fduNH via the Poisson brackets determined by the sym-
plectic form (2.10. Once the time derivatives af, y, and 12 21~
their momenta have been computed in this way, one can ¢ (u,u)=—c*(u,u)=
evaluate them gb,,=0 and substitute the values wfandN
given in Egs(2.12 and(2.14). The results are the dynamical . . ) .
equations that dictate the evolution in our reduced systentP to the addition of a function of time to the Heaviside
Remarkably, it turns out that such equations can be directljunction ® (u—u). Such an arbitrary function of time is set
obtained in the constraint-free system, endowed with thén fact equal to zero by the condition that commute with
bracket structure provided by the symplectic fafy, if one  the physical degrees of freedom, namely, that the right-hand
employs as reduced Hamiltonian the following function onsjde of Eq.(3.3) vanish in the limitu—s — 0. Remember that
phase space: the Heaviside functio® (x) is unity for x>0 and zero oth-

Vo erwise, and that the densitized lapse is given by expression
Hr=—rle "="¥-+ const, (3D (2.14. substituting the above value fa™? in Eq. (3.3,

Note that, assuming that, is fixed by the boundary condi- taking the limit u—c and recalling thatNrr’ tends to
tions, the only phase-space dependenceHgfis through e W="Y=/2r! whereas

w,,, which is obtained from expressig2.12 in the limit

that u—o. As for the additive constant appearing in Eq. . A —

(3.1), it seems natural to fix it so that the Hamiltonian of flat f(U):J duN(u){é(u),H(u)}p, (3.9
Minkowski spacetime vanishes. We will come back to this :

point later in this section. )

The simplest way to show thaty provides a reduced we arrive at the desired resuft={¢,Hg}. In doing so, we
Hamiltonian is to check that it leads to the correct equationdiave also used the fact thaet is a constant given by our
of motion. Actually, this can be done after a lengthy butgauge fixing and assumed thgt is fixed as a boundary
trivial calculation. It is important to remember that, in the condition.
constraint-free system, all degrees of freedom commute un- Taking into account that, apart from a fixed facter,"-
der Poisson brackets with,, because we have supposed thatgenerates the reduced dynamics and thatletermined by
this quantity is a fixed constant. Had we not imposed thisexpression(2.12), is explicitly time independent, we also see
restriction, wy could have contained a non-trivial phase- that the quantityv., is in fact a constant of motion: its value
space dependence. remains constant in the classical evolution, although it may

An alternative proof thaHg is the Hamiltonian that gen- vary from one classical solution to another. Of course, the
erates the reduced dynamics is the following. Let us gall same result applies to the reduced Hamiltortigg, whose
the densitized Hamiltonian constraint ang the gauge- value is thus conserved by the dynamics of the reduced sys-
fixing conditionp,,=0, and letc!™(u,u) be the matrix that ~t€m.
satisfies In arriving at this result, the fact thaty can be set equal
to a fixed constant plays a fundamental role: otherwige,
would generally display a non-trivial explicit dependence on
time. Remember that, in the absence of external sources that
| _ could affect the value ofv at minus infinity, the assumption

=6p6(u—u) that wy is constant(and w smooth amounts to condition
(2.17). In a similar way, assuming that there exist no external
=J du{xn(u), xm(Wpc™(U,u). (3.2  sources at infinity that could modify the value wfwhenu
R —oo, the constancy ofv,, turns out to introduce an addi-
Here, the Poisson brackelts }p are those corresponding to tional requirement ir_1 our system. Arguments like those pre-
the symplectic structuré2.10), i.e., before our choice of Seénteéd when deducing E(R.17) lead to the conclusion
gauge for the Hamiltonian constraint. The indita®, andn,
on the other hand, can take the values 1 or 2. Then, after lim (p,v" +pyy")=0. (3.6
completing the gauge fixing, the brackets of the physical U=
degrees of freedorfé}={v,p,,y,p,} with w are[25]

@ (u—u)N(u)

———— . (39
N(u)r(ur’(u)

Ld&c('m)(u,fJ){Xm(lAJ),Xn(U)}P

As happens to be the case with the analogous condition at
minus infinity, it is seen in Sec. Yand in the Appendixthat,

at least in certain situations, this requirement is satisfied as a
5 . consequence of the boundary conditions imposed on the
X{xm(w),w(u)}p, (3.3  physical fields.

{&(u),w(u)}=— fpd& fpdb{au),xl<a>}pc<lm><a.Eu)
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B. Metric and equations of motion v=2A. PUrGZy—ZWE[r],

Let us now summarize the results obtained so far, but
performing a change of coordinates framto the positive, p
strictly increasing functiom introduced in Sec. IIC. Notice — y=2A_ —ZWE[r]
that, since the new coordinates positive and equal to the
determinant of the metric on Killing orbits, it is possible to

interpret it as a radial coordinate. We will denote the limits v c,
of r (u) whenu tends to minus and plus infinity, respectively, P,=A..d (2—e23’ 2WE[r]) —(ve,+cy)E[r],
by ro andr... Obviously, we have &ry<r, and the range ' “or
of ris (rg,r oc) The axisr =0 is in principle excluded from
our manifold. The phase space of the reduced model has the 3,y A
symplectic form Py=A.d (Tre‘ZWE[r]) - —e‘ZWE[r]
. [
sz dr(dP,/\dv +dP,Ady), (3.7) X[ 26X 2+ 4P2r%e? — (9,v)% 2], (3.14
"o

On the other hand, in the absence of sources that could

whereP, =p, /r’ andPy=p, /r’. Thus, the system has four modify the time variation ofv at the end pomts of the do-

phy3|cal degrees of freedom which are given by the canoni-

cal fields{v,P,,y,Py}. main of definition ofr, the requirement thaw remain con-
From our discussion in Sec. ll, the spacetime metric carstant at those poin{®r, strictly speaking, thag?" does; see
be expressed in terms of these fields as Eg. (2.16] leads to the condition
ds?= eV — N2d 2+ dr2]+ e'r2(d 6+ N’dt)? lim (P,d,v+Pyd,y)=0, (3.19
r—ro,lo
+e Y[dz—vdo+ (N*—uvN?dt]> (3.9
which is the analogue of Eq§2.17) and(3.6).
Here From the above equations of motion, it is easy to see that
the Minkowskian solution with boundary condition
o2 vl B E[r] 39 lim,_,, y=y.. is obtained by set_ting:z P,=Py, andy=w
(r')? B i - A ' when the parameters,, c,, andwg vanish. Using then this
El[role “"o— } drGE[r] flat spacetime as the solution with respect to which one mea-
0 sures the value of the reduced Hamiltonian, one dts
. =e V=2(1—e W),
E[r]=exp( — f ﬁ), (3.10 Several comments are in order at this stage of our discus-
r sion. First, we remark that Minkowski spacetime is a solu-

tion of our reduced system only if the constanjs c, and

w, are equal to zero. These constants are supposed to be
(3.1 parameters of the system, and not physical degrees of free-
o _ dom. So, strictly speaking, Minkowski spacetime cannot be
N=A.e 2“E[r], (3.12 considered a background solution unless the above param-
eters vanish in our model. Nevertheless, we can always de-
cide to measure the value of the reduced Hamiltonian as
referred to its Minkowskian value. What we are doing in this
way is to employ a universal reference for all of the reduced
models that are obtained with different choices of the param-
etersc,, c,, andwy.
Second, we note that, with the boundary condition
o dr . = . L X
NZ=Amf (c.gv+czv +c,r2e¥)E[r], lim,_, y=y.., the asymptotic norm of the Killing field,
r generally differs from unity. The normalized translational
Killing field is given by /=29, instead. This fact must be
re df . taken into account if one wants to define quantities per
N?=A J =5 (Cotvc)E[r]. (3.13  asymptotic unit length in the axis directigeuch as, e.g., a
r linear energy densily In fact, it suffices to redefine the sys-
tem of units so that @e'=>=1, whereG is the effective
The equations of motion that dictate the dynamics of ourgravitational constant introduced in Sec. Il. One can check
reduced system can be deduced, e.g., from (Bd). One that, for all practical purposes, the only important conse-
finds quence of this redefinition is the introduction of a shift in the

T

e ¥+ PJ+PirZe?|,

_2[(roy)?  (9w)?
v TTa

with A, =e¥="Y=/2 e Wo=re Yo, and G being defined in
Eqg. (2.11. All mtegrals are over the dependence on the ra-
dial coordinater and ¢, denotes the partial derivative with
respect tar. In addition, the shift vector is given by
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origin of y that makes the boundary valye equal to zero. that the shift vector vanishes asymptotically, one can see
An equivalent way to see that the value takerybyis physi-  that, in this asymptotic region, metri8.8) describes a coni-
cally irrelevant, so that it can be set to vanish, is the follow-cal geometry with deficit angle equal tarP i (and possibly
ing. It is not difficult to check from the expression of the non-zero angular momentumImposing that the deficit
metric that an additive constant in the figlccan always be angle be positive amounts thus to demanding positivity of
absorbed by a constant scaling of the coordinatesdr, the  the energy. From our discussion above, this positivity could
fields v and P,, and the constants, and c,. All four-  pe ensured, e.g., by restricting the constant paramejeo
geometries related by a shift inand these scaling transfor- be non-negative, because thettr = eWo= 1
mations are thus equivalent. In order to eliminate this redun- _. o . v : :
Finally, let us notice that, since?” is strictly increasing

dancy, one can then simply fix the value pfat r... For with r (as far as it is positiveand can be seen to change sign

convenience, we will hence take _ - _ ]
_ at most once in the positive real axis, the requirementwhat
v,=0, A,=e"%. (3.1  berealin the domain of definition ofis satisfied if and only

if e¥=>0. This last condition is stable under dynamical evo-
So the Hamiltonian that generates the dynamics of the rfution, because"~ is a constant of motion. On the other

duced model can now be written in the form hand, using formula3.9) and recalling that"= must be

= finite, we can rewrite the considered condition as
Hr=1—e W=, (3.17

— - roc
Finally, we notice that, when the constanjs c,, andw, E[ro]e 2Vo> J drGE[r]. (4.1
vanish, the formulas given above for the spacetime metric fo

and reduced Hamiltonian reproduce the results obtained in

the literature for cylindrical waves that are regular at the axis| "€ @bove inequality can be understood as a restriction on
[10,23,28. the acceptable values of the phase space variables for each

fixed value ofv_vo. In the case that, and c, vanish, the
inequality is trivially satisfied, becausg is then equal to
zero.

Let us now show that the linear energy density contained In conclusion, condition4.1) implies the reality of the

in our system, which is given by the value of the reducedmetric functionw everywhere in spacetime and guarantees
Hamiltonian, is bounded both from above and below, like inthat the range of the reduced Hamiltonian is contained in

the case hwithhregular_l axigr]. fln doli_ng this, \;\II% V]‘c’.i" 3”_'3’ 1—e"0,1), regardless of the specific values taken by the
assume that the Hamiltonian formalism is well defined in ouf, -2 eterg. andc, of the model,
reduced model.

In the real phase space of our model, the spacetime metric
(3.8) describes the 31 decomposition of a Lorentzian V- CONSISTENCY OF THE FORMALISM AND SPINNING

spacetime with time coordinatef and only if w [given by SOLUTIONS

Eq.(3.9] is real. In particular, the reduced Hamiltonian will  To some extent, the analysis presented in the previous
not generate time evolution unless, is real. Soe™ "= must  sections is only formal. The emphasis has been put on re-
be strictly positive. As a consequence, we conclude that theoving all the gauge freedom and finding the expressions of
Hamiltonian Hg is bounded from above by unity4z<1. the reduced metric and Hamiltonian, rather than on proving
Here, we have ruled out the possibiléyww=0 by requiring  that such expressions are well defined. Our aim in this sec-
that metric(3.8) be well defined. tion is to show that, at least in certain situations, the reduced

In order to find a lower bound for the Hamiltonian, let us formalism that we have discussed is in fact fully consistent.

first note that the quantities andH that enter the expression Lgt us summarize the conqmons that are necessary for the
consistency of the model. First, the metric express@ig)

of w are positive functions on the real phase space, as can g st he meaningful everywhere. This implies that the inte-
easily seen from their definitions, taking into account that thegral

radial coordinater is positive. It is then straightforward to

check thae?" is a strictly increasing function of, provided ro R

thatw is actually real. Obviously, this implies that,=w,. I[r]= fr drGHr] CR)

Therefore, for each fixed value of the constant paramE@er ’

the reduced Hamiltonian is also bounded from below:ang those that appear E{r], N? andN? must converge for

Hr=(1—e "), allr e(rg,r»). In addition, one must demand that ..] be
When the axis of symmetry is regular, so th_eg van- finite, so thate®~ is well defined. Remember also that this

ishes, we recover the result-IHg=0 [7]. Furthermore, as- constant of motion has to be positive if the induced metric is

suming as a boundary conditigeee Sec. V and the Appen- positive definite and the reduced Hamiltonian real. This last

dix for a detailed discussigrthatv is much smaller than the condition is equivalent to requiremeft.1), which can be

unit function in the limit thatr tends tor,, and remembering interpreted as a dynamically stable restriction on phase space

IV. ENERGY BOUNDS
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and implies, in particular, th&[r,]>0. On the other hand, lyze models with non-vanishing parametgr. The discus-
in order for the Hamiltonian formalism to be well defined, sion forc,=0 will be presented in the next subsection.
the reduced Hamiltonian must not only be real and finite, but Whenc,#0, the conditions thalt[e] be finite andE[0]
also differentiable on phase space, i.e., with respect to varigsositive imply

tions of the fieldw, P, , y, andP,. Other consistency con-

ditions that must be satisfied are those given in &ql5 I[o0] _ [ ar ,
(which guarantee that is constant at, andr.,) and thaty., w>ﬁ/ 0 FCZ
can be kept equal to zero. Finally, note that these require-

ments must hold at all instants of time; i.e.,
conditions must be stable.

Cy\?
vt +r?e?|. (5.2

z

the |mposedm the last inequality, we have used tHgtr | increases with

r, sinceH is a positive function on phase space. The conver-
gence of the last integral would require that

A. General case

We will first consider the possibility €r,<r,<ow. As- lim e'= lim €2+ Cy =0 (5.3

suming that all fields are sufficiently smooth, the integrals r—0s r—oe T ’

that determine the metric components are then convergent,

because they contain no singularities and the interval of inwhere the limits are taken both at zero and at infinity.
tegration iS bounded. As fOI’ the d|ﬁerent|ab|l|ty Of the re- C|ear|y’ the ﬁrst of these Conditions cannot be Satisﬁ'ed
duced Hamiltonian, a detailed calculation shows that thenemper, in particular, that we have assunyed=0). This
variation ofH includes two types of contributions. The first means that there exist divergences in the metric functions
type consists of integrals overe (ro,r-.) that converge be- whenc, does not vanish. More explicitly, the denominator in
cause of the reasons.expllamed fibove. _The second type Y diverges. Furthermore, it is not difficult to realize that
surface terms that arise in the integration by parts of the[he divergent terms i r]/E[ro] whenr,—0 cannot actu-

varla.tlons. of.&rv_and ry.- These .terms must va_nlsh if the ally be absorbed by a kind of renormalization of the constant
Hamiltonian is differentiable. Notice that the derivativgs —ow, .
gQrarametere” =% that appears in Eq(3.9), because those

and g,y appear inHg only via the phase-space dependenc i ;

fﬁré pgl gth tyth . P ¢ t'p I P d terms depend on the behavior of the fieddandy around the
of H, Eq.(3.11), and that there IS no functional dependence, ;s — g gand vary, in general, from one solution to another.
ong,P, andd, P, . At least for variations ob andy that are

proportional to the Hamiltonian variationsandy atr, and
r.., a careful analysis proves that the considered surface
terms vanish as a consequence of Egsl5. In this sense, Let us now consider the only remaining possibility, i.e.,
in order to guarantee that the reduced formalism is rigorouslyhe case in which the domain of definition ofs the whole
defined, one would only need to impose inequalityl) at a  semiaxis (O¢) and the constant parameigy vanishes. Us-
certain instant of time and conditiort8.15 andy..=0 for  ing Eq.(2.5 and a line of reasoning similar to that discussed
all values oft, so that these last requirements are stable. in Refs.[7,18], it is easy to show thatI2}=c,/2 (where we
However, there is no obvious way in which condition have used the notation of Sec. I} & precisely the value of
y-=0 and Eqgs(3.19 can be satisfied and preserved in thethe surface term that must be added to the smeared momen-
evolution. Of course, one could assume that there exist etum constrainfduN'H; in order to make it differentiable on
ternal sources acting on the boundaries of the spacetime thﬁhase space when the shift vecNirequaIséL (a=1 or 2
invalidate the applicability of the reduced equations of mo-jn the asymptotic regioru>1 and vanishes fou<—1.
tion (3.14 atr=rqy andr=r.,. The possibility of regaining Therefore, with our choice of unitg,/2 andc,/2 are the
consistency in this way will not be explored here. There stillyg|es per unit length of the angular momentum and the
exists another situation in which our consistency conditionginear momentum in the direction, respectively. The solu-
can be satisfied, namely, in solutions whose fieldandy  tions that we are going to study can thus be regarded as
are ConStan(bOth with reSpeCt td and r) outside a certain Spacetimes W|th a possib|y Singu|ar axis Of Symmetry’ a van-
region of the formr e (ry,rp), wherero<r;<r,<r.. Of  jshing linear momentum in the direction of this axis and, in
course, we require that the value pf vanish. Using the general, a non-zero angular momentum.
dynamical equation$3.14), one can easily construct solu- If we now analyze the behavior dfir] whenr, ap-
tions of this type provided that the constantis equal to  proaches the origin, we easily see that this integral still di-
zero: it suffices to assume that the momenta vanish for  yerges, like where, differed from zero. However, the lead-
(ro.r1]Ulrz.r=). Note, nevertheless, that such solutions canng term inI[r]/E[r] is now the same for all solutions in
always be extended to the whole regioa(0=) by keeping our model and can be absorbed in the denominate?"gby

the fields{v,P, ,y,P,} constant outsider(,r»). . .
We arivthuvs ynatlﬁ}rally led to conside(rl thze)z cage 0 and a renormalization of the constaset 2"o. Moreover, if one
gassumes boundary conditions such that

r..=oo, either because otherwise we cannot ensure the co
sistency of the formalism or because the only interesting so- )
lutions whenr has a bounded domain of definition can be lim

trivially extended to the semiaxis (0). We will first ana- o rite

B. Casec,=0

=0 (5.4)
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for a certain numbee>0, one can check that the only di- so that this shift component diverges at the axis0. From
vergent term inl[r]/E[ry] whenrg tends to zero has the expression$3.8) and(3.12 we then see that the only poten-
form cf,/(4r§) and is thus universal. So this term can betially divergent terms in the four-metric when-0 are in-
removed by redefining2"o=D +c%(4r2) and taking the cluded in the diagonal component, and are given by

limit ro—0, whereD is a constant parameter. Expression

(3.9) can then be rewritten —e¥{e?-e " 2(E[r])?~r3(N%)?}. (5.10

— Nevertheless, taking into account that conditi&¥) guar-
20— AE[r]r (5.5 antees thatE[r]—E[0] is much smaller tharr2*< for

r ’ ' i

c§+4Dr2—Zc§r2f i -3(EF]1-1) ;;:jo(’SOQr;efg?Thcer]s(eeCk that the value obtained from E§$)

0 . presumably divergent terms is in fact
finite whenr vanishes. Thus, in our coordinate system, the
metric components are well defined even in the limit in

Erp1e Bl p(fr—> hich hes the axis of ¢
E[r]= = =ex HI. (5.6)  Which one reaches the axis of symmetry.
E[0] 0 So far we have already proved that, whep=0 and
cy# 0, there is no problem with the expressions of the metric
Several comments are in order at this point. First, noticeand the reduced Hamiltonian, assuming that condit{én,
thatE[r] is a strictly increasing function af that is always (Sdg)_,_and(?].S) are satisfied arf1d and]}/ vanils_h at _infir|1_it)’- |E
; i - . addition, the consistency of our formalism implies Egs.
Eggélazrsfrﬁ?;ertﬁgfl ?hgnggidg?cs:j??,s ;:; 'S:’eér? :‘:le (3.15) and the differer_wt_iability of the reduced Hamiltonian_.
ciently smooth in the region@r <, condition (5.4) guar- Finally, all these conditions must be stable. In the Appendix,

. . . we present boundary conditions on the figldsP, ,y,P,} at
antees that the integrals appearing Bjr] and in the the axis and at infinity that ensure that all these requirements

denominator ofe*” are well defined and convergent for gre satisfied. Nonetheless, in order to demonstrate the rel-
re[0). On the other hand, the condition thBfO] be  evance of the reduced model, it actually suffices to show that
positive amounts to requiring th&i[c] be finite. This is the set of acceptable solutions is infinite dimensional.

ensured, e.g., when there exists a strictly positive number In fact, this last statement can be easily proved. As we

6>0 such that have already commented, wheg=0, the dynamical equa-
tions (3.14) admit sufficiently smoottievenC™) solutions in
limritH=0. (5.77  Wwhich all fields are constant outside a bounded intervaf for
r—o of the form (4,r,), wherer; andr, satisfy 0<r,;<r,<w

but are otherwise arbitrary. Besides, outsidg,(,) the mo-
Imposing this asymptotic behavior, it is straightforward tomentaP, andPy vanish. The fields andy are set equal to
check thate?"~ is well defined and positive if zero in the interva[r,,»), so that the condition that these
fields vanish asymptotically is satisfied. To avoid topological
- dr complications on the sections of constant time in the neigh-
D>C§f —(E[r]-1). (5.8  borhood of the axis, we will also assume thavanishes in
rs the regionr € (0Or4]. Finally, y will take a constant, finite
valueyy in that region. For this infinite family of solutions it
This requirement replaces E@.1), owing to the redefinition is straightforward to see that all the conditions necessary for
of wy. In particular, sinc&E[r]=1, it is necessary thdd be  consistency are satisfied, including stability, except maybe
positive. We will thus restrict our discussion to the casethe differentiability of the reduced Hamiltonian and Eg.
D>0 from now on. Note also that, sin(eéwx is a constant (5.8. The dlffgrentlap|llty of the 'Ham!lto.nlan can be
of motion, inequality(5.8) is preserved in the evolution. checked following a line of reasoning similar to that ex-

Concerning the shift vector, the integrals in E8.13 are gla'gz(: 'Ir? :r?g‘ baerg;?'glr?%foghieljérzﬁb;gi S::i%egggrgsstlzg
meaningful for allr e (0) if v has a finite limit at infinity, ~2PPear N the vanat fitonian vani u

which we will assume to vanistso that the asymptotic met- %o{frlrjrhpv ’arry,iity} ?t Ith?ha)t(ls ar:]\;j <r’:1t Ingnlty. Thethremamt- )
ric describes a conical geometry with possibly a non-zerd"d '€rms are integrais tnat converge because they get no

angular momentum Hence, all metric functions are well contribution outside the bounded region, (), where all

defined h . time. Eurth r E g’ptegrands are sufficiently smooth_. Hence, the vgriation is
(ESeAIf;anezl?,e;ngv i?rgnlllgwssp?r?:t ';nf is %ucer:ms(r)rzzue:otnr:an q well defined and the reduced Hamiltonian differentiable. We
. . I r

r1+€2 close to the origin. Then, supposing thats smooth are only left with condition(5.8), which must be regarded as
enough in that region ' it is ’not difficult to check that & restriction on phase space which is satisfied always in the

N*~uN® has a finite limit wherr —0. On the other hand, evcI)tll?;IC)enalsf St% Izeaet f;;tm%(ra rlalmstasqzi:t: tImc()as:itive constant
we can rewriteN? as y , y yp n

there exists an infinite dimensional set of initial values for
- our fields{v,P, ,y,P,} such that inequality5.8) holds. Ac-
ﬂ(E[F]—l) (5.9 tually, the minimum of the right-hand side in that inequality
rs ' is just zero and is reached whéhvanishes. Given expres-

©

Ne: eWWE[O]Cg i + f
2r? r
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sion (3.11) and thaty..=v..= 0, this occurs only for the so- |imit when one approaches the axisr,) of w, the metric
lution with vanishing fields. This flat solution can be taken asfynction that appears in the radial component of the line
a background for our model with fixed parametegsand  element(3.8). The phase space of the reduced model is infi-

D>0. The background metric adopts the expression nite dimensional and can be described using the set of ca-
nonically conjugate field¢v,P,,y,P,}. We have obtained

2- 2, Co 2402+ d 22 4r?dr? the general expression of the four-metric in terms of these

ds’=—dt"+ \/—Bdtd0+r do“+dz"+ c§+4Dr2’ physical degrees of freedom and found the equations of mo-

(5.11) tion that govern the evolution of these independent fields.
' Moreover, we have proved that the dynamics of the model is

which is precisely the line element originated by a spinningn fact generated by a reduced Hamiltonian, given by
cosmic string, restricted to the region where causality is prel—e "=. Here,w,, is the limit of the metric functiorw at
served and there exist no closed timelike cur¢€3C'’s) large distances from the axig-Gr.). The value of this
[16,17]. A more familiar form for this metric, which can be Hamiltonian is a constant of motion that provides the amount
continued to the region- cgl(4D)<r2s0 at the cost of in-  of energy that is present in the system per unit length in the
troducing CTC’s, is obtained with the change of coordinateaxis direction. The origin of energy has been chosen to van-
Dp?=r2?+c?/(4D). Condition (5.9) is clearly satisfied by ish for flat, Minkowski spacetime.

our background solution, and one can check that it is satis- One might wonder whether the expression of the reduced

fied as well at least in a certain region of phase space arourfdamiltonian could also have been obtained from the Hilbert-
the originv=P,=y=P,=0. Therefore, the set of admis- Einstein action supplemented with boundary terms via a re-

sible spinning solutions is infinite dimensional. duction process. Actually, the answer turns out to be in the
Finally, let us note that, when,=0, the lower bound affirmative, but only if the surface terms are suitably chosen.

obtained for the reduced Hamiltonian in Sec. IV can be im-One can start with the Hamiltonian form of the gravitational
proved. From Eq(5.5 and the fact thaE[r]?l one gets action corrected with the standard surface terms that appear

oW, h lude that th | f th q when the manifold has a timelike bound#8y]. In our case,
e \D.' We then conclude that the value of the re UC‘_adthis boundary consists of two disconnected parts: an internal
Hamiltonian, which provides the energy per unit length 'nboundary at =r, and an external one at=r., (if necessary,

the axis direction, is always contained in the mtervalOne can take the limits,—0 andr..—oo after completing
[1—/D,1). On the other hand, as we have commented oy calculations. It is then possible to show that, if one only
metric (3.8) describes in the asymptotic region a conical ge-jnqjydes the surface terms that correspond to the external

ometry with angular momentum proportionaldpand defi- 5 ndary, the reduction explained in Sec. Il leads to
cit angle equal to Z2H . Hence, positivity of the energy and

the deficit angle can be ensured, e.g., by simply restricting
SRZJ dt

the parameteb so that Z=D>0. , (6.1

- r?[/ - -
e’Ww—1+f dr(P,v+Pyy)
"o

VI. CONCLUSIONS AND FURTHER COMMENTS which is in fact the action expected for the reduced system.

We have proposed a gauge-fixing procedure that removekhe integral overr determines the sympletic structure,
all the non_physica| degrees of freedom in vacuum Cy|indri_WhereaS the other factors prOVide the reduced Hamlltqnlan.
cal spacetimes. Our definition of cylindrical symmetry is lessNote that we have normalized the action so that it vanishes
restrictive than that usually employed in the literature, in thefor Minkowski spacetime. In the case that the axis of sym-
sense that we have assumed the existence of two commutimgetry is regular, which happens onlydj, c,, andw, van-
spacelike Killing fields, one of them rotational and the otherish, the surface terms a§=0 that have been obviated are in
one translational, but we have not imposed the condition thafact spurious, because the internal boundary does not exist.
the spacetime contain the axis of rotational symmetryBut in the general, singular case, we really need to exclude
namely, the set of points where the metric on Killing orbitsthose surface corrections in order to arrive at the correct
degenerates. This relaxation of the conditions for cylindricareduced action. Since the action obtained after reduction de-
symmetry has allowed us to include in our discussion spacepends on the choice of boundary terms, it is clear that the
times whose Killing orbits are not surface orthogonal, so thasymmetric criticality principle does not generally hold in the
the line element cannot be written, in general, in block-system[24].
diagonal form using two-metrics. The price to be paid for We have also analyzed in detail the conditions that guar-
this generalization is that now the axis of symmetry, which isantee that the reduced formalism is consistent. In particular,
located in principle outside the manifold, may actually bewe have discussed under what circumstances the metric ex-
singular and contain linear sources. pressions are always well defined and the reduced Hamil-

Our gauge fixing leads to a reduced midisuperspacéonian is real, finite and differentiable on phase space. In
model that is totally free of constraints and depends on threaddition, we have checked whether one can safely impose
constant parameters. Two of these parameters, narogly, that, at all instants of time, the fielgsandv vanish asymp-
and c,, determine, respectively, the constant values of thdotically and Eqs(3.15 hold. These equations are necessary

linear momentum in the axis direction ang the angular mo+tg ensure that the parameteg and the value of the reduced
mentum of the system. The third parametgs, is the fixed Hamiltonian are constant. We have proved that, when the
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radial coordinate is defined over the whole semiaxis€), the line element corresponding to a spinning cosmic string

and there is no linear momentum in the direction of the symwith angular momentum per unit length equaldg2 and

metry axis, all the consistency requirements are satisfied prateficit angle given by z(1— /D). Indeed, the metric of this

vided that the fieldv,P, ,y,P,} are subject to appropriate string in the region where no CTC'’s are present can be ob-

boundary conditions. We have then particularized our studyained by simply setting the fields,P, ,y,P,} equal to zero

to models withr € (0,») and c,=0 but, in general, with [see Eq(5.11)]. As a conseguence, one can view the metric

non-vanishing angular momentuiey,#0. of the spinning cosmic string as a flat background for the
For such models, the only apparent problem is a divereonsidered family of solutions in the model with constant

gence in the denominator @ in Eq. (3.9 whenr,—0. Vvalues of the parametecs, andD.

We have shown, however, that this divergence can be ab-

sorbed by a redefinition of the constamt?"o. We have ACKNOWLEDGMENTS
called D the renormalized constant, which must be strictly
positive. After this redefinition of parameters, the metric

functions are not only well defined everywhere in spacetimeﬁﬂblesdﬁc\ljiismfnsr imlj :c:olmm;r;;s.nl?e I‘T’haillsc\)/vgrrit?/r/m 0 J. M.
in addition, with our choice of coordinates, all metric com- "~ enoviila for heipiul comments. S Wo as sup-

ponents turn out to have a finite limit when the axis of Sym_ported by funds provided by DGESIC under the Research

metry is approached. Assuming boundary conditions IikePrOJeCtS No. PB97-1218 and No. HP1988-0040.
those given in the Appendix, the reduced formalism is fully
consistent. Besides, the reduced Hamiltonian, which deter- APPENDIX
mines the linear energy density contained in the system, is
then bounded both from above and below, like in the case,
with a regular axis of symmetry7]. More explicitly, in each
of the models with constant parametezg and D (with
c,=0), the range of the reduced Hamiltonian is included in
the semi-open intervagll — \/5,1). Furthermore, if the deficit
angle in the asymptotic regiaors1 is positive, so must be
the energy density per unit length along the axis.

In the models withr € (0,2) andc,=0 but, possibly, a
non-vanishing angular momentum, a particularly interesting _ -1 _ _
set of solutions is provided by the following family. We Py=0(r"D, y=0(1), Py=0(1).
consider a bounded intervalq(,r,), with 0<r;<r,<oo,
and fields that, at a certain instant of timet,, satisfy the
conditions that1) v, P,, andP, vanish outside the region
re(rq,rp), (2) y be constant for in (0r4] and vanish in
[ry,), (3) Eq. (5.9 be satisfied, an@) the fields be suffi- Note that the above conditions imply, in particular, that
ciently smooth as functions of (let us sayC”). These re- Y==0.
quirements on the fields are in fact stable in the evolution. ©On the other hand, if the constant parametgranishes,
One can then check that all conditions necessary for the cowe can impose the following conditions in the vicinity of the
sistency of the reduced formalism are satisfied on these s@xisr=0:
lutions.

Note that we can regard the values {of,P, ,y,P,} at v=0(r?), P,=o(r), y=yo(t)+o(r?), Py=o0(r).
t=tq just as initial data that can be evolved by integrating
(e.g., by numerical methogthe dynamical equation®.14.  Here,yo(t) is a time-dependent function, we have assumed
As we have commented, the result of this integration is ghatv vanishes at the axis, and the notatioro(g) is em-
solution satisfying condition§l)—(4) at all instants of time. ployed for functions whose quotierifg has a finite limit
In this way, one can actually obtain an infinite number ofwhenr—0. Finally, in the case with non-vanishing global
solutions whose isometry group is not orthogonally transitiveangular momentumg,+ 0, an appropriate behavior around
(unlessc,=0). the axisr=0 is

In addition, it is possible to sho\28] that, at short dis-
tances from the axis;<1, all of these solutions approach v=o(r%), P,=o(r®), y=yg(t)+o(r®, P,=o(r%).

The author is greatly thankful to N. Manojlovior valu-

In this appendix, we present suitable boundary conditions
the fields{v,P,,y,P,} of the reduced model with van-
ishing parametec, andr e (0,). The proof that these con-
ditions are stable under dynamical evolution and that they
ensure the consistency of the reduced Hamiltonian formalism
will be given elsewherg28].

The conditions at infinityyr — <, are that the field van-
ish and that

The notationf = O(g) means that there exists a strictly posi-
tive numbere >0 such that the functioi is much smaller
thanr~“g in the asymptotic region, i.e., lim _r®f/g=0.
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