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Gauge fixing and the Hamiltonian for cylindrical spacetimes
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~Received 11 August 2000; published 14 December 2000!

We introduce a complete gauge fixing for cylindrical spacetimesin vacuothat, in principle, do not contain
the axis of symmetry. By cylindrically symmetric we understand spacetimes that possess two commuting
spacelike Killing vectors, one of them rotational and the other one translational. The result of our gauge fixing
is a constraint-free model whose phase space has four field-like degrees of freedom and that depends on three
constant parameters. Two of these constants determine the global angular momentum and the linear momentum
in the axis direction, while the third parameter is related with the behavior of the metric around the axis. We
derive the explicit expression of the metric in terms of the physical degrees of freedom, calculate the reduced
equations of motion and obtain the Hamiltonian that generates the reduced dynamics. We also find upper and
lower bounds for this reduced Hamiltonian that provides the energy per unit length contained in the system. In
addition, we show that the reduced formalism constructed is well defined and consistent at least when the linear
momentum in the axis direction vanishes. Furthermore, in that case we prove that there exists an infinite
number of solutions in which all physical fields are constant both in the surroundings of the axis and at
sufficiently large distances from it. If the global angular momentum is different from zero, the isometry group
of these solutions is generally not orthogonally transitive. Such solutions generalize the metric of a spinning
cosmic string in the region where no closed timelike curves are present.

DOI: 10.1103/PhysRevD.63.024005 PACS number~s!: 04.20.Fy, 04.20.Ex
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I. INTRODUCTION

Vacuum cylindrical spacetimes have received intens
study in general relativity. The reasons for this interest c
be found in the fact that cylindrical symmetry allows for
rich variety of physical phenomena while considerably si
plifying Einstein’s equations, so that one can obtain no
trivial exact solutions@1#. The first family of time-dependen
cylindrical spacetimesin vacuoseems to have been found b
Beck in the 1920’s@2#. This family was rediscovered te
years later by Einstein and Rosen, in a systematic invest
tion of all cylindrically symmetric solutions that describ
linearly polarized radiation@3#. The most general solution
corresponding to cylindrical gravitational wavesin vacuo
~without the condition of linear polarization! was analyzed
by Ehlers and collaborators, and independently
Kompaneets@4#. By studying the dynamical equation
Thorne@5# succeeded in constructing a covariant vector t
satisfies a conservation law and provides a notion of ene
for these cylindrical spacetimes. ThisC energy, which is
positive and localizable, is in fact an energy density per u
length along the axis of symmetry. In the 1970’s, Kuchˇ
discussed the canonical formalism for Einstein-Rosen wa
in the context of quantum gravity@6#. More recently, cylin-
drical gravitational waves have been considered as a par
lar case of spacetimes that possess a translational spac
Killing field @7,8#. This class of spacetimes can be reduced
three dimensions using their symmetry. In this way, As
tekar and Varadarajan showed that cylindrical waves adm
well-defined Hamiltonian formalism and that the Ham
tonian that generates asymptotic time tanslations at sp
infinity is not exactly the~total! C energy, but a non-
polynomial function of it which, in addition to being pos
tive, turns out to be bounded also from above@7,9#. The
same conclusion about the value and bounds of the Ha
0556-2821/2000/63~2!/024005~12!/$15.00 63 0240
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tonian was obtained from a purely four-dimensional persp
tive by Romano and Torre@10# and, for the particular case o
Einstein-Rosen waves, also by analyzing the asympt
structure at null infinity of the three-dimensional Killing re
duction of the system@8#.

The wave solutionsin vacuoanalyzed in all these works
are obtained by adopting a definition of cylindrical symme
that might be considered too restrictive. In addition to t
existence of a translational and a rotational Killing field, it
assumed that the spacetime manifold contains at least pa
the axis of cylindrical symmetry, namely, the set of fixe
points of the axial Killing field@11#. Under such hypotheses
the geometry must be regular at the axis, and it is then p
sible to show that the isometry group generated by the
Killing vectors is Abelian@11# and orthogonally transitive
@12–14#; i.e., the Killing orbits admit orthogonal surface
Obviously, the assumption of regularity eliminates intere
ing possibilities that have found applications in astrophys
and cosmology. This is the case, e.g., of straight cos
strings, namely, one-dimensional topological defects wit
linear energy density that introduce a conical singularity
the axis and, therefore, a deficit angle in the geometry@15#.
Orthogonal transitivity~a consequence of the regularity
the axis! precludes as well the existence of a global rotat
@13# which is present, for instance, in spinning string so
tions @16,17#. These solutions have axial singularities pr
duced by string-like defects that carry a non-zero angu
momentum per unit length in the axis direction and, in pr
ciple, may have vanishing energy density. In the absenc
gravitational radiation, the energy content and angular m
mentum due to a cosmic string were analyzed from a thr
dimensional viewpoint by Deser, Jackiw, and ’t Hooft@16#
and also by Henneaux@18#. On the other hand, a propos
has been recently made to extend the concept of energy
Einstein-Rosen waves to orthogonally transitive spacetim
©2000 The American Physical Society05-1
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that contain a non-spinning cosmic string@19#. This pro-
posal, nevertheless, is not based on a Hamiltonian analy

The purpose of the present work is to generalize the st
of the Hamiltonian structure and physical degrees of freed
of vacuum cylindrical solutions to the case in which the a
of symmetry is not included in the spacetime, so that sin
larities can appear there. In more detail, we will assume
there exists an Abelian two-dimensional group of isometr
generated by an axial and a translational spacelike Kill
field, but we will not suppose that the axis belongs to
vacuum spacetime or that the isometry group is orthogon
transitive. Our aim is to introduce a complete gauge-fix
procedure and analyze the dynamics of the resulting redu
system. We want to investigate whether such a reduced
namics admits a well-defined Hamiltonian formalism and
the answer is in the affirmative, determine whether the e
tence of upper and lower bounds for the Hamiltonian s
holds when the assumption of regularity at the axis
dropped.

The rest of the paper is organized as follows. In Sec.
we develop a complete gauge fixing for cylindrical spa
times in vacuo. For the momentum constraints that corr
spond to the Killing fields, the gauge freedom is fixed in S
II A. Section II B introduces a convenient change of met
variables, suitable for the study of cylindrical spacetim
The gauge freedom associated with the remaining mom
tum constraint is removed in Sec. II C. Finally, we elimina
the Hamiltonian constraint in Sec. II D. The reduced syst
attained in this way is analyzed in Sec. III. Using the sy
plectic structure induced from general relativity, we find
Sec. III A a Hamiltonian that, at least formally, generates
dynamics of the reduced model. The explicit expression
the line element in terms of the four field-like degrees
freedom of the phase space of the system is presented in
III B. We also include there the dynamical equations th
dictate the evolution of the reduced model. In Sec. IV
prove that, when the reduced Hamiltonian is well defined,
range is bounded both from below and above. In Sec. V
discuss the conditions that ensure that the reduced Ha
tonian formalism is mathematically consistent and study
possible divergences of the metric at the axis. Section
summarizes the main results of the work and includes so
further comments. Finally, boundary conditions on o
physical fields leading to an acceptable Hamiltonian form
ism are presented in the Appendix.

II. GAUGE FIXING

Our starting point is the Hamiltonian formulation of ge
eral relativity. We assume that the spacetime is globally
perbolic, so that it admits a 311 decomposition in section
of constant timet. In addition, we suppose that there ex
two commuting spacelike Killing vector fields, one of the
axial and the other one translational. Since the isome
group is Abelian~with non-null orbits!, it is possible to
choose spatial coordinatesxi5$z,u,u% ( i 51,2,3) such that
]z and ]u are the translational and rotational Killing field
respectively, and the spacetime metric is independentz
and u @1,13#. As a consequence of this independence,
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integral *dzrdu appears as a global factor in the gravit
tional action and in the symplectic structure of general re
tivity. We absorb the numerical value of*dz in Newton’s
constant~by renormalization ifz has infinite length@20#! and
call G the effective gravitational constant obtained in th
manner. In addition, we normalize the coordinateu so that it
belongs to the unit circleS1 ~hence,rdu52p) and adopt
units such that 4G5c51. As for the spatial coordinateu, we
choose its domain of definition equal to the real line. Th
choice is always compatible with the fact that]u is rotational
if one accepts that the axis of symmetry is not included
our spacetime~think, e.g., of the changeu5 ln r if r is a
radial coordinate!.

Our system has the symplectic form

V5E
R
du dP i j `dhi j , ~2.1!

whered and` denote the exterior derivative and product.
terms of the induced metrichi j and its extrinsic curvature
Ki j , the canonical momenta can be written@21#

P i j 5
1

2
h1/2~hikhjl 2hi j hkl!Kkl , ~2.2!

with h andhi j being the determinant and the inverse of t
three-metrichi j . The non-vanishing Poisson brackets d
rived from the above symplectic form are

$hi j ~u!,Pkl~ ū!%5d i
(kd j

l )d~u2ū!. ~2.3!

Here, d j
i and d(u) are the Kronecker delta and the Dira

delta, and the indices in parentheses are symmetrized. C
ing H̃ the densitized Hamiltonian constraint~i.e., the product
of the Hamiltonian constraint byh1/2) andHi the momentum
constraints, the time derivative of any functionF on phase
space is then given by the formula

Ḟ5] tF1H F,E
R
du~N> H̃1NiHi !J , ~2.4!

where the overdot denotes the time derivative,] t is the par-
tial derivative with respect to the explicit time dependen
Ni is the shift vector, andN> 5h21/2N is the densitized lapse
(N being the lapse function! @21#.

A. Momentum constraints for the Killing fields

Let us first fix the gauge freedom associated with the m
mentum constraints of the two coordinatesxa5$z,u%
(a,b51,2 from now on!. Remembering the independence
the metric on these coordinates, one can check@13,20# that,
in our system of units,

Ha522~haiP
iu!8. ~2.5!

Here, the prime denotes the derivative with respect tou and
we have introduced the alternative notationu for the spatial
index i 53. It is then possible to remove the correspondi
gauge freedom by demanding that, when restricted to
5-2
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GAUGE FIXING AND THE HAMILTONIAN FOR . . . PHYSICAL REVIEW D 63 024005
sections of constant time~and only then!, the action of the
isometry group be orthogonally transitive, namely, th
hau50. It is easily seen that these gauge conditions are
ond class with the momentum constraints that we wan
eliminate@20#. In order to arrive at a consistent gauge fixin
we therefore must only find values for the shift compone
Na such that the conditionshau50 are stable in the evolu
tion. Using the fact that the solution to the momentum co
straintsHa50 is given in our gauge byPau5habcb/4, with
ca(t) being two real functions of the time coordinate,
trivial calculation leads to the conclusion that the stabil
condition ḣau50 implies

Na~u!5E
u

`

N> huuh
abcb . ~2.6!

Two additive ~time-dependent! integration constants hav
been removed fromNa by imposing that these componen
of the shift vanish in the limitu→` or, equivalently, by a
suitable redefinition of the coordinatesxa.

On the other hand, employing Eq.~2.4!, it is possible to
check that the dynamical evolution leaves invariant the v
ablesPa

u , so that the functionsca54Pa
u are in fact con-

stants. Furthermore, using relation~2.2!, one can show tha
ca5ugu21/2h̃gmns (1)Xm

(2)Xn
(a)Xs;g @13,22#, whereg is the

determinant of the four-metric, the semicolon stands for
variant derivative, Greek letters denote spacetime indi
h̃gmns is the totally antisymmetric Levi-Civita` tensor den-
sity, and (a)X are the two Killing fields,]z (a51) and]u
(a52). It therefore follows that the orbits of these Killin
fields admit orthogonal surfaces if and only ifca50 @1,12#.
It is clear that the constantsca are intimately related to glo
bal properties of the spacetime. Whenever they are diffe
from zero, the geometry cannot be regular at the axis and
sections of constant time of the vacuum spacetime can
have the topology ofR3. Since we are not assuming orthog
nal transitivity, we will not impose thatca vanish. Neverthe-
less, although we will allow for the presence of non-ze
constantsca in our calculations, they will be treated as p
rameters that determine different sectors of the cylindr
reduction of general relativity, and not as physical degree
freedom of the theory.

B. Change of metric variables

After the above partial gauge fixing, we will introduce
change of metric variables that leads to a much more con
nient expression for the line element of our spacetimes w
two commuting Killing fields, namely,

ds25e2w1y@2 f 2N> 2dt21~du1Nudt!2#1eyf 2

3~du1Nudt!21e2y@dz2vdu1~Nz2vNu!dt#2.

~2.7!

The new metric variables that replacehuu and the symmetric
two-metric hab are q[$ f ,v,y,w%. The restriction to~in-
equivalent! positive definite three-metricshi j requires thatf
be ~e.g.! strictly positive whereas the rest of metric variabl
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must be real. The momentapq canonically conjugate to the
metric variablesq can be easily found:pq5Puu]qhuu
1Pab]qhab . Then, the reduced symplectic form of ou
gauge-fixed model isV15*dudpq`dq. On the other hand
the two constraints that remain on the system can be wri

H̃5
~y8 f !2

4
1

~v8!2

4
e22y1py

21pv
2f 2e2y2 f pwpf

1 f ~ f 92 f 8w8!1
e2w

4 f 2
@~cu1czv !21cz

2f 2e2y#,

~2.8!

Hu52pw8 1pf f 81pvv81pww81pyy8. ~2.9!

Notice that, whencz5cu50, these formulas reproduce th
results obtained for spacetimes that are regular at the
@10,23,24#. Finally, it is possible to check that the equatio
of motion obtained from Eq.~2.4! for the degrees of freedom
of our gauge-fixed model coincide in fact with those gen
ated in our reduced system by the Hamiltonian*du(N> H̃
1NuHu).

C. Radial momentum constraint

Our next step in the process of gauge fixing consists
eliminating the gauge freedom associated with the mom
tum constraintHu . This can be done, e.g., by imposing th
the metric variablef be a fixed, strictly increasing function o
only the coordinateu, so that, once the value off is known,
the coordinateu is totally determined. We note that, from
expression~2.7!, f 2 is just the determinant of the metric o
Killing orbits. In particular, this metric degenerates iff van-
ishes. The set of points wheref 50, which are in principle
excluded from our spacetime, would then correspond to
axis of symmetry. Thus, by introducing a change of coor
nates that replacedu with f, we could interpretf as a kind of
radial coordinate~recall thatf is positive!. We will return to
this point in Sec. III B.

Let us hence impose the conditionf 5r (u), wherer (u) is
a fixed function that is strictly positive and increasing, so th
r (u).0 andr 8(u).0 everywhere. Although the expressio
of r (u) is given once and for all, we will not specify i
explicitly; instead, we will treatr (u) as an abstract fixed
function. It is clear that our gauge-fixing condition does n
commute under Poisson brackets with the constraintHu50.
So our gauge fixing will be acceptable if we can find a va
for the shift componentNu such that our choice of gauge
stable, namely, such thatḟ 50 on our gauge section. One ca
see@20# that this requirement implies thatNu5N> pw /( ln r)8.
On the other hand, substitutingf 5r (u) in Eq. ~2.9!, it is
easy to find the expression forpf that solves the constrain
Hu50. After removing the degrees of freedomf andpf from
the system, we arrive at a reduced phase space with sym
tic form

V25E
R
du~dpv`dv1dpw`dw1dpy`dy!. ~2.10!
5-3
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GUILLERMO A. MENA MARUGÁN PHYSICAL REVIEW D 63 024005
The system has only one constraint, the densitized Ha
tonian constraint~2.8! evaluated on our gauge section, whi
we will also call H̃. One can check that the smeared co
straint*duN> H̃ generates the reduced dynamics via the P
son brackets obtained fromV2.

D. Hamiltonian constraint

In order to complete our gauge fixing, we must remo
the gauge freedom corresponding to the densitized Ha
tonian constraint. One can use this freedom to impose
the metric induced on the reference surfaces with coordin
t andu be diagonal. Sincegtu5guuN

u and, according to our
results,Nu is proportional topw , it will suffice to demand
that pw vanish. It is not difficult to check that the conditio
pw50 is second class with the constraintH̃50. On the other
hand, the stability of our gauge fixing~i.e., ṗw50) implies
that @ ln(N> rr 8)#852e2wG/r8, where

G5
1

2r 3
@~cu1czv !21cz

2r 2e2y#. ~2.11!

The above differential equation provides then a unique va
for N> under the condition that the lapseN be asymptotically
unity, namely, that lim

u→`
N51.

In addition, the constraintH̃50 leads to a non-linear an
inhomogeneous first-order differential equation forw that, in
spite of the apparent complication, can be solved exac
The solution for vanishingpw is

e2w5

~r 8!2expS E
u0

u

H D
~r 08!2e22w02E

u0

u

dûr 8G expS E
u0

û
H D . ~2.12!

Here, u0 is a fixed point, used as the end point in all o
integrations~which are over the dependence on the coor
nateu), w0(t)5w(u5u0 ,t), and

H5
2

rr 8
F ~ry8!2

4
1

~v8!2

4
e22y1py

21pv
2r 2e2yG . ~2.13!

Employing this solution, together with the boundary con
tion lim

u→`
N51, it is not difficult to integrate the differen

tial equation satisfied by the densitized lapse. One obtai

N> 5A`

r 8

r
e22wexpS 2E

u

`

H D , ~2.14!

with

A`5
ew`2y`/2

r 8̀
, ~2.15!

w` , y` , andr 8̀ being the limits ofw, y, andr 8, respectively,
whenu→`. It is worth noting that, in order thatw be real,
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the denominator in Eq.~2.12! has to be positive for all rea
values ofu. We will discuss this point in detail in Sec. IV.

In the rest of our discussion, we will fixu0 at minus
infinity and callw0(t)5 lim

u→2`
w(u,t). Furthermore, in or-

der to suppress any explicit time dependence in the solu
for e2w given above, we will suppose thatw0 is actually
constant. The assumptionẇ050 introduces then some con
sistency conditions in our system. Employing the fact th
*duN> H̃ generates the time evolution before one perfor
the gauge fixing discussed in this subsection, one can
that, on our gauge section,

d~e2w!

dt
52A`expS 2E

u

`

H D ~pvv81pyy8!. ~2.16!

Let us now suppose thatẇ0(t)5 lim
u→2`

ẇ(u,t). This com-

mutation of the limitu→2` and the time derivative should
occur at least for sufficiently smooth solutionsw(u,t) if no
material sources are present at minus infinity that might
validate the vacuum equation of motion forw. Besides, let us
admit thatA` is finite and that, in the sector of phase spa
under consideration,H is integrable over the real line. Then
the requirement thatw0 be constant implies that

lim
u→2`

~pvv81pyy8!50. ~2.17!

In the following, we assume that this condition is satisfie
Actually, we will see in Sec. V and in the Appendix that,
least in certain situations, Eq.~2.17! is satisfied once one
imposes suitable boundary conditions on the physical
grees of freedom of the system.

Finally, after the gauge fixing explained here, the sy
plectic form induced on phase space is

V35E
R
du~dpv`v1dpy`dy!. ~2.18!

The system is free of constraints and its physical degree
freedom are the canonically conjugate pairs of fields (v,pv)
and (y,py).

III. REDUCED MODEL

In this section, we will study the constraint-free syste
obtained with our gauge fixing. We first show in Sec. III
that there exists a reduced Hamiltonian that~at least for-
mally! generates the time evolution. The explicit form of th
spacetime metric in terms of the physical degrees of freed
is given in Sec. III B. There, we employ the functionr (u) as
a radial coordinate, instead of the spatial coordinateu. We
also obtain the dynamical equations for the reduced mo
and show that, in order to eliminate a physical ambigu
coming from the freedom in the choice of origin fory, one
can fix the value ofy` equal to zero.
5-4
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GAUGE FIXING AND THE HAMILTONIAN FOR . . . PHYSICAL REVIEW D 63 024005
A. Reduced Hamiltonian

The equations of motion satisfied by the physical degr
of freedom of our model can be deduced by recalling th
before fixing the gauge associated with the Hamiltonian c
straint, the dynamics is generated by the Hamilton
*duN> H̃ via the Poisson brackets determined by the sy
plectic form ~2.10!. Once the time derivatives ofv, y, and
their momenta have been computed in this way, one
evaluate them atpw50 and substitute the values ofw andN>
given in Eqs.~2.12! and~2.14!. The results are the dynamica
equations that dictate the evolution in our reduced syst
Remarkably, it turns out that such equations can be dire
obtained in the constraint-free system, endowed with
bracket structure provided by the symplectic formV3, if one
employs as reduced Hamiltonian the following function
phase space:

HR52r 8̀ e2w`2y`/21const. ~3.1!

Note that, assuming thaty` is fixed by the boundary condi
tions, the only phase-space dependence ofHR is through
w` , which is obtained from expression~2.12! in the limit
that u→`. As for the additive constant appearing in E
~3.1!, it seems natural to fix it so that the Hamiltonian of fl
Minkowski spacetime vanishes. We will come back to th
point later in this section.

The simplest way to show thatHR provides a reduced
Hamiltonian is to check that it leads to the correct equati
of motion. Actually, this can be done after a lengthy b
trivial calculation. It is important to remember that, in th
constraint-free system, all degrees of freedom commute
der Poisson brackets withw0, because we have supposed th
this quantity is a fixed constant. Had we not imposed t
restriction, w0 could have contained a non-trivial phas
space dependence.

An alternative proof thatHR is the Hamiltonian that gen
erates the reduced dynamics is the following. Let us callx1
the densitized Hamiltonian constraint andx2 the gauge-
fixing conditionpw50, and letc( lm)(u,ū) be the matrix that
satisfies

E
R
dûc( lm)~u,û!$xm~ û!,xn~ ū!%P

5dn
l d~u2ū!

5E
R
dû$xn~u!,xm~ û!%Pc(ml)~ û,ū!. ~3.2!

Here, the Poisson brackets$ , %P are those corresponding t
the symplectic structure~2.10!, i.e., before our choice o
gauge for the Hamiltonian constraint. The indicesl, m, andn,
on the other hand, can take the values 1 or 2. Then, a
completing the gauge fixing, the brackets of the physi
degrees of freedom$j%[$v,pv ,y,py% with w are @25#

$j~u!,w~ ū!%52E
R
dûE

R
dǔ$j~u!,x1~ û!%Pc(1m)~ û,ǔ!

3$xm~ ǔ!,w~ ū!%P , ~3.3!
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where we have used$j,w%P5$j,pw%P50.
The right-hand side of the above formula must be eva

ated on our gauge section once all Poisson brackets h
been computed. On that section, Eq.~3.2! is solved by the
matrix c(11)5c(22)50 and

c(12)~u,ū!52c(21)~ ū,u!5
Q~ ū2u!N> ~u!

N> ~ ū!r ~ ū!r 8~ ū!
, ~3.4!

up to the addition of a function of time to the Heavisid
function Q(ū2u). Such an arbitrary function of time is se
in fact equal to zero by the condition thatw0 commute with
the physical degrees of freedom, namely, that the right-h
side of Eq.~3.3! vanish in the limitū→2`. Remember that
the Heaviside functionQ(x) is unity for x.0 and zero oth-
erwise, and that the densitized lapse is given by expres
~2.14!. Substituting the above value forc(12) in Eq. ~3.3!,
taking the limit ū→` and recalling thatN> rr 8 tends to
e2w`2y`/2r 8̀ , whereas

j̇~u!5E
R
dûN> ~ û!$j~u!,H̃~ û!%P , ~3.5!

we arrive at the desired resultj̇5$j,HR%. In doing so, we
have also used the fact thatr 8̀ is a constant given by ou
gauge fixing and assumed thaty` is fixed as a boundary
condition.

Taking into account that, apart from a fixed factor,e2w`

generates the reduced dynamics and thatw, determined by
expression~2.12!, is explicitly time independent, we also se
that the quantityw` is in fact a constant of motion: its valu
remains constant in the classical evolution, although it m
vary from one classical solution to another. Of course,
same result applies to the reduced HamiltonianHR , whose
value is thus conserved by the dynamics of the reduced
tem.

In arriving at this result, the fact thatw0 can be set equa
to a fixed constant plays a fundamental role: otherwise,w`

would generally display a non-trivial explicit dependence
time. Remember that, in the absence of external sources
could affect the value ofẇ at minus infinity, the assumption
that w0 is constant~and w smooth! amounts to condition
~2.17!. In a similar way, assuming that there exist no exter
sources at infinity that could modify the value ofẇ whenu
→`, the constancy ofw` turns out to introduce an addi
tional requirement in our system. Arguments like those p
sented when deducing Eq.~2.17! lead to the conclusion

lim
u→`

~pvv81pyy8!50. ~3.6!

As happens to be the case with the analogous conditio
minus infinity, it is seen in Sec. V~and in the Appendix! that,
at least in certain situations, this requirement is satisfied
consequence of the boundary conditions imposed on
physical fields.
5-5
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B. Metric and equations of motion

Let us now summarize the results obtained so far,
performing a change of coordinates fromu to the positive,
strictly increasing functionr introduced in Sec. II C. Notice
that, since the new coordinater is positive and equal to the
determinant of the metric on Killing orbits, it is possible
interpret it as a radial coordinate. We will denote the lim
of r (u) whenu tends to minus and plus infinity, respectivel
by r 0 andr ` . Obviously, we have 0<r 0,r ` and the range
of r is (r 0 ,r `). The axisr 50 is in principle excluded from
our manifold. The phase space of the reduced model has
symplectic form

V̄5E
r 0

r `
dr~dPv`dv1dPy`dy!, ~3.7!

wherePv5pv /r 8 andPy5py /r 8. Thus, the system has fou
physical degrees of freedom, which are given by the can
cal fields$v,Pv ,y,Py%.

From our discussion in Sec. II, the spacetime metric
be expressed in terms of these fields as

ds25e2w̄1y@2N̄2dt21dr2#1eyr 2~du1Nudt!2

1e2y@dz2vdu1~Nz2vNu!dt#2. ~3.8!

Here

e2w̄5
e2w

~r 8!2
5

E@r #

E@r 0#e22w̄02E
r 0

r

dr̂GE@ r̂ #

, ~3.9!

E@r #5expS 2E
r

r `
H̄ D , ~3.10!

H̄5
2

r F ~r ] ry!2

4
1

~] rv !2

4
e22y1Py

21Pv
2r 2e2yG , ~3.11!

N̄5A`e22w̄E@r #, ~3.12!

with A`5ew̄`2y`/2, e2w̄05r 08e
2w0, andG being defined in

Eq. ~2.11!. All integrals are over the dependence on the
dial coordinater and ] r denotes the partial derivative wit
respect tor. In addition, the shift vector is given by

Nz5A`E
r

r ` dr̂

r̂ 3
~cuv1czv

21czr̂
2e2y!E@ r̂ #,

Nu5A`E
r

r ` dr̂

r̂ 3
~cu1vcz!E@ r̂ #. ~3.13!

The equations of motion that dictate the dynamics of
reduced system can be deduced, e.g., from Eq.~3.5!. One
finds
02400
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v̇52A`Pvre2y22w̄E@r #,

ẏ52A`

Py

r
e22w̄E@r #,

Ṗv5A`] r S ] rv
2r

e22y22w̄E@r # D2A`

cz

2r 3
~vcz1cu!E@r #,

Ṗy5A`] r S ] ry

2
re22w̄E@r # D2

A`

2r
e22w̄E@r #

3@cz
2e2y12w̄14Pv

2r 2e2y2~] rv !2e22y#. ~3.14!

On the other hand, in the absence of sources that co
modify the time variation ofw̄ at the end points of the do
main of definition ofr, the requirement thatw̄ remain con-
stant at those points@or, strictly speaking, thate2w̄ does; see
Eq. ~2.16!# leads to the condition

lim
r→r 0 ,r `

~Pv] rv1Py] ry!50, ~3.15!

which is the analogue of Eqs.~2.17! and ~3.6!.
From the above equations of motion, it is easy to see

the Minkowskian solution with boundary conditio
limr→r `

y5y` is obtained by settingv5Pv5Py and y5`

when the parameterscz , cu , andw̄0 vanish. Using then this
flat spacetime as the solution with respect to which one m
sures the value of the reduced Hamiltonian, one getsHR

5e2y`/2(12e2w̄`).
Several comments are in order at this stage of our disc

sion. First, we remark that Minkowski spacetime is a so
tion of our reduced system only if the constantscz , cu and
w̄0 are equal to zero. These constants are supposed t
parameters of the system, and not physical degrees of f
dom. So, strictly speaking, Minkowski spacetime cannot
considered a background solution unless the above pa
eters vanish in our model. Nevertheless, we can always
cide to measure the value of the reduced Hamiltonian
referred to its Minkowskian value. What we are doing in th
way is to employ a universal reference for all of the reduc
models that are obtained with different choices of the para
eterscz , cu , andw̄0.

Second, we note that, with the boundary conditi
limr→r `

y5y` , the asymptotic norm of the Killing field]z

generally differs from unity. The normalized translation
Killing field is given by ey`/2]z instead. This fact must be
taken into account if one wants to define quantities
asymptotic unit length in the axis direction~such as, e.g., a
linear energy density!. In fact, it suffices to redefine the sys
tem of units so that 4Gey`/251, whereG is the effective
gravitational constant introduced in Sec. II. One can ch
that, for all practical purposes, the only important con
quence of this redefinition is the introduction of a shift in t
5-6
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origin of y that makes the boundary valuey` equal to zero.
An equivalent way to see that the value taken byy` is physi-
cally irrelevant, so that it can be set to vanish, is the follo
ing. It is not difficult to check from the expression of th
metric that an additive constant in the fieldy can always be
absorbed by a constant scaling of the coordinatesz andr, the
fields v and Pv , and the constantscz and cu . All four-
geometries related by a shift iny and these scaling transfo
mations are thus equivalent. In order to eliminate this red
dancy, one can then simply fix the value ofy at r ` . For
convenience, we will hence take

y`50, A`5ew̄`. ~3.16!

So the Hamiltonian that generates the dynamics of the
duced model can now be written in the form

HR512e2w̄`. ~3.17!

Finally, we notice that, when the constantscz , cu , andw̄0
vanish, the formulas given above for the spacetime me
and reduced Hamiltonian reproduce the results obtaine
the literature for cylindrical waves that are regular at the a
@10,23,26#.

IV. ENERGY BOUNDS

Let us now show that the linear energy density contain
in our system, which is given by the value of the reduc
Hamiltonian, is bounded both from above and below, like
the case with regular axis@7#. In doing this, we will only
assume that the Hamiltonian formalism is well defined in o
reduced model.

In the real phase space of our model, the spacetime m
~3.8! describes the 311 decomposition of a Lorentzia
spacetime with time coordinatet if and only if w̄ @given by
Eq. ~3.9!# is real. In particular, the reduced Hamiltonian w
not generate time evolution unlessw̄` is real. Soe2w̄` must
be strictly positive. As a consequence, we conclude that
Hamiltonian HR is bounded from above by unity,HR,1.
Here, we have ruled out the possibilitye2w̄`50 by requiring
that metric~3.8! be well defined.

In order to find a lower bound for the Hamiltonian, let u
first note that the quantitiesG andH̄ that enter the expressio
of w̄ are positive functions on the real phase space, as ca
easily seen from their definitions, taking into account that
radial coordinater is positive. It is then straightforward to
check thate2w̄ is a strictly increasing function ofr, provided
that w̄ is actually real. Obviously, this implies thatw̄`>w̄0.
Therefore, for each fixed value of the constant parameterw̄0,
the reduced Hamiltonian is also bounded from belo
HR>(12e2w̄0).

When the axis of symmetry is regular, so thatw̄0 van-
ishes, we recover the result 1.HR>0 @7#. Furthermore, as-
suming as a boundary condition~see Sec. V and the Appen
dix for a detailed discussion! thatv is much smaller than the
unit function in the limit thatr tends tor ` and remembering
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that the shift vector vanishes asymptotically, one can
that, in this asymptotic region, metric~3.8! describes a coni-
cal geometry with deficit angle equal to 2pHR ~and possibly
non-zero angular momentum!. Imposing that the deficit
angle be positive amounts thus to demanding positivity
the energy. From our discussion above, this positivity co
be ensured, e.g., by restricting the constant parameterw̄0 to
be non-negative, because thenew̄`>ew̄0>1.

Finally, let us notice that, sincee2w̄ is strictly increasing
with r ~as far as it is positive! and can be seen to change si
at most once in the positive real axis, the requirement thaw̄
be real in the domain of definition ofr is satisfied if and only
if ew̄`.0. This last condition is stable under dynamical ev
lution, becauseew̄` is a constant of motion. On the othe
hand, using formula~3.9! and recalling thatew̄` must be
finite, we can rewrite the considered condition as

E@r 0#e22w̄0.E
r 0

r `
drGE@r #. ~4.1!

The above inequality can be understood as a restriction
the acceptable values of the phase space variables for
fixed value of w̄0. In the case thatcz and cu vanish, the
inequality is trivially satisfied, becauseG is then equal to
zero.

In conclusion, condition~4.1! implies the reality of the
metric functionw̄ everywhere in spacetime and guarante
that the range of the reduced Hamiltonian is contained

@12e2w̄0,1), regardless of the specific values taken by
parameterscz andcu of the model.

V. CONSISTENCY OF THE FORMALISM AND SPINNING
SOLUTIONS

To some extent, the analysis presented in the previ
sections is only formal. The emphasis has been put on
moving all the gauge freedom and finding the expression
the reduced metric and Hamiltonian, rather than on prov
that such expressions are well defined. Our aim in this s
tion is to show that, at least in certain situations, the redu
formalism that we have discussed is in fact fully consiste

Let us summarize the conditions that are necessary for
consistency of the model. First, the metric expression~3.8!
must be meaningful everywhere. This implies that the in
gral

I @r #5E
r 0

r

dr̂GE@ r̂ # ~5.1!

and those that appear inE@r #, Nz, andNu must converge for
all r P(r 0 ,r `). In addition, one must demand thatI @r `# be
finite, so thate2w̄` is well defined. Remember also that th
constant of motion has to be positive if the induced metric
positive definite and the reduced Hamiltonian real. This l
condition is equivalent to requirement~4.1!, which can be
interpreted as a dynamically stable restriction on phase sp
5-7
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and implies, in particular, thatE@r 0#.0. On the other hand
in order for the Hamiltonian formalism to be well define
the reduced Hamiltonian must not only be real and finite,
also differentiable on phase space, i.e., with respect to va
tions of the fieldsv, Pv , y, andPy . Other consistency con
ditions that must be satisfied are those given in Eq.~3.15!
~which guarantee thatw̄ is constant atr 0 andr `) and thaty`

can be kept equal to zero. Finally, note that these requ
ments must hold at all instants of time; i.e., the impos
conditions must be stable.

A. General case

We will first consider the possibility 0,r 0,r `,`. As-
suming that all fields are sufficiently smooth, the integr
that determine the metric components are then converg
because they contain no singularities and the interval of
tegration is bounded. As for the differentiability of the r
duced Hamiltonian, a detailed calculation shows that
variation ofHR includes two types of contributions. The fir
type consists of integrals overr P(r 0 ,r `) that converge be-
cause of the reasons explained above. The second typ
surface terms that arise in the integration by parts of
variations of] rv and ] ry. These terms must vanish if th
Hamiltonian is differentiable. Notice that the derivatives] rv
and ] ry appear inHR only via the phase-space dependen
of H̄, Eq. ~3.11!, and that there is no functional dependen
on ] r Pv and] r Py . At least for variations ofv andy that are
proportional to the Hamiltonian variationsv̇ and ẏ at r 0 and
r ` , a careful analysis proves that the considered surf
terms vanish as a consequence of Eqs.~3.15!. In this sense,
in order to guarantee that the reduced formalism is rigorou
defined, one would only need to impose inequality~4.1! at a
certain instant of time and conditions~3.15! and y`50 for
all values oft, so that these last requirements are stable.

However, there is no obvious way in which conditio
y`50 and Eqs.~3.15! can be satisfied and preserved in t
evolution. Of course, one could assume that there exist
ternal sources acting on the boundaries of the spacetime
invalidate the applicability of the reduced equations of m
tion ~3.14! at r 5r 0 and r 5r ` . The possibility of regaining
consistency in this way will not be explored here. There s
exists another situation in which our consistency conditio
can be satisfied, namely, in solutions whose fieldsv and y
are constant~both with respect tot and r ) outside a certain
region of the formr P(r 1 ,r 2), where r 0,r 1<r 2,r ` . Of
course, we require that the value ofy` vanish. Using the
dynamical equations~3.14!, one can easily construct solu
tions of this type provided that the constantcz is equal to
zero: it suffices to assume that the momenta vanish forr in
(r 0 ,r 1#ø@r 2 ,r `). Note, nevertheless, that such solutions c
always be extended to the whole regionr P(0,̀ ) by keeping
the fields$v,Pv ,y,Py% constant outside (r 1 ,r 2).

We are thus naturally led to consider the caser 050 and
r `5`, either because otherwise we cannot ensure the
sistency of the formalism or because the only interesting
lutions whenr has a bounded domain of definition can
trivially extended to the semiaxis (0,`). We will first ana-
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lyze models with non-vanishing parametercz . The discus-
sion for cz50 will be presented in the next subsection.

WhenczÞ0, the conditions thatI @`# be finite andE@0#
positive imply

`.
I @`#

E@0#
>E

0

` dr

2r 3
cz

2F S v1
cu

cz
D 2

1r 2e2yG . ~5.2!

In the last inequality, we have used thatE@r # increases with
r, sinceH̄ is a positive function on phase space. The conv
gence of the last integral would require that

lim
r→0,̀

ey5 lim
r→0,̀

czv1cu

r
50, ~5.3!

where the limits are taken both at zero and at infini
Clearly, the first of these conditions cannot be satisfied~re-
member, in particular, that we have assumedy`50). This
means that there exist divergences in the metric functi
whencz does not vanish. More explicitly, the denominator
e2w̄ diverges. Furthermore, it is not difficult to realize th
the divergent terms inI @r #/E@r 0# when r 0→0 cannot actu-
ally be absorbed by a kind of renormalization of the const
parametere22w̄0 that appears in Eq.~3.9!, because those
terms depend on the behavior of the fieldsv andy around the
axis r 50 and vary, in general, from one solution to anoth

B. CaseczÄ0

Let us now consider the only remaining possibility, i.e
the case in which the domain of definition ofr is the whole
semiaxis (0,̀ ) and the constant parametercz vanishes. Us-
ing Eq.~2.5! and a line of reasoning similar to that discuss
in Refs.@7,18#, it is easy to show that 2Pa

u5ca/2 ~where we
have used the notation of Sec. II A! is precisely the value of
the surface term that must be added to the smeared mom
tum constraint*duNiHi in order to make it differentiable on
phase space when the shift vectorNi equalsda

i (a51 or 2!
in the asymptotic regionu@1 and vanishes foru!21.
Therefore, with our choice of units,cu/2 and cz/2 are the
values per unit length of the angular momentum and
linear momentum in thez direction, respectively. The solu
tions that we are going to study can thus be regarded
spacetimes with a possibly singular axis of symmetry, a v
ishing linear momentum in the direction of this axis and,
general, a non-zero angular momentum.

If we now analyze the behavior ofI @r # when r 0 ap-
proaches the origin, we easily see that this integral still
verges, like whencz differed from zero. However, the lead
ing term in I @r #/E@r 0# is now the same for all solutions in
our model and can be absorbed in the denominator ofe2w̄ by
a renormalization of the constante22w̄0. Moreover, if one
assumes boundary conditions such that

lim
r→0

H̄

r 11e
50 ~5.4!
5-8
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for a certain numbere.0, one can check that the only d
vergent term inI @r #/E@r 0# when r 0 tends to zero has th
form cu

2/(4r 0
2) and is thus universal. So this term can

removed by redefininge22w̄05D1cu
2/(4r 0

2) and taking the
limit r 0→0, whereD is a constant parameter. Expressi
~3.9! can then be rewritten

e2w̄5
4Ē@r #r 2

cu
214Dr 222cu

2r 2E
0

r

dr̂ r̂ 23~Ē@ r̂ #21!

, ~5.5!

Ē@r #5
E@r #

E@0#
5expS E

0

r

H̄ D . ~5.6!

Several comments are in order at this point. First, no
that Ē@r # is a strictly increasing function ofr that is always
equal or greater than unity, becauseH̄ is positive. In addi-
tion, assuming that the fieldsv, Pv , y, and Pv are suffi-
ciently smooth in the region 0,r ,`, condition~5.4! guar-
antees that the integrals appearing inĒ@r # and in the
denominator ofe2w̄ are well defined and convergent fo
r P@0,̀ ). On the other hand, the condition thatE@0# be
positive amounts to requiring thatĒ@`# be finite. This is
ensured, e.g., when there exists a strictly positive num
d.0 such that

lim
r→`

r 11dH̄50. ~5.7!

Imposing this asymptotic behavior, it is straightforward
check thate2w̄` is well defined and positive if

D.cu
2E

0

` dr

2r 3
~Ē@r #21!. ~5.8!

This requirement replaces Eq.~4.1!, owing to the redefinition
of w̄0. In particular, sinceĒ@r #>1, it is necessary thatD be
positive. We will thus restrict our discussion to the ca
D.0 from now on. Note also that, sincee2w̄` is a constant
of motion, inequality~5.8! is preserved in the evolution.

Concerning the shift vector, the integrals in Eq.~3.13! are
meaningful for allr P(0,̀ ) if v has a finite limit at infinity,
which we will assume to vanish~so that the asymptotic met
ric describes a conical geometry with possibly a non-z
angular momentum!. Hence, all metric functions are we
defined everywhere in spacetime. Furthermore, from E
~5.4! and ~3.11!, it follows that ] rv is much smaller than
r 11e/2 close to the origin. Then, supposing thatv is smooth
enough in that region, it is not difficult to check th
Nz2vNu has a finite limit whenr→0. On the other hand
we can rewriteNu as

Nu5ew̄`E@0#cuH 1

2r 2
1E

r

` dr̂

r̂ 3
~Ē@ r̂ #21!J , ~5.9!
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so that this shift component diverges at the axisr 50. From
expressions~3.8! and~3.12! we then see that the only poten
tially divergent terms in the four-metric whenr→0 are in-
cluded in the diagonalt component, and are given by

2ey$e2w̄`e22w̄~E@r # !22r 2~Nu!2%. ~5.10!

Nevertheless, taking into account that condition~5.4! guar-
antees thatE@r #2E@0# is much smaller thanr 21e for
r→0, one can check that the value obtained from Eqs.~5.5!
and ~5.9! for these presumably divergent terms is in fa
finite when r vanishes. Thus, in our coordinate system, t
metric components are well defined even in the limit
which one reaches the axis of symmetry.

So far we have already proved that, whencz50 and
cuÞ0, there is no problem with the expressions of the me
and the reduced Hamiltonian, assuming that conditions~5.4!,
~5.7!, and~5.8! are satisfied andv andy vanish at infinity. In
addition, the consistency of our formalism implies Eq
~3.15! and the differentiability of the reduced Hamiltonia
Finally, all these conditions must be stable. In the Append
we present boundary conditions on the fields$v,Pv ,y,Py% at
the axis and at infinity that ensure that all these requireme
are satisfied. Nonetheless, in order to demonstrate the
evance of the reduced model, it actually suffices to show
the set of acceptable solutions is infinite dimensional.

In fact, this last statement can be easily proved. As
have already commented, whencz50, the dynamical equa
tions ~3.14! admit sufficiently smooth~evenC`) solutions in
which all fields are constant outside a bounded interval for
of the form (r 1 ,r 2), wherer 1 and r 2 satisfy 0,r 1<r 2,`
but are otherwise arbitrary. Besides, outside (r 1 ,r 2) the mo-
mentaPv andPy vanish. The fieldsv andy are set equal to
zero in the interval@r 2 ,`), so that the condition that thes
fields vanish asymptotically is satisfied. To avoid topologic
complications on the sections of constant time in the nei
borhood of the axis, we will also assume thatv vanishes in
the regionr P(0,r 1#. Finally, y will take a constant, finite
valuey0 in that region. For this infinite family of solutions i
is straightforward to see that all the conditions necessary
consistency are satisfied, including stability, except ma
the differentiability of the reduced Hamiltonian and E
~5.8!. The differentiability of the Hamiltonian can b
checked following a line of reasoning similar to that e
plained in the beginning of Sec. V A. The surface terms t
appear in the variation of the Hamiltonian vanish because
do $] rv,Pv ,] ry,Py% at the axis and at infinity. The remain
ing terms are integrals that converge because they ge
contribution outside the bounded region (r 1 ,r 2), where all
integrands are sufficiently smooth. Hence, the variation
well defined and the reduced Hamiltonian differentiable. W
are only left with condition~5.8!, which must be regarded a
a restriction on phase space which is satisfied always in
evolution if so is at a single instant of time.

It is easy to see that, for any strictly positive constantD,
there exists an infinite dimensional set of initial values
our fields$v,Pv ,y,Py% such that inequality~5.8! holds. Ac-
tually, the minimum of the right-hand side in that inequali
is just zero and is reached whenH̄ vanishes. Given expres
5-9
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GUILLERMO A. MENA MARUGÁN PHYSICAL REVIEW D 63 024005
sion ~3.11! and thaty`5v`50, this occurs only for the so
lution with vanishing fields. This flat solution can be taken
a background for our model with fixed parameterscu and
D.0. The background metric adopts the expression

ds252dt21
cu

AD
dtdu1r 2du21dz21

4r 2dr2

cu
214Dr 2

,

~5.11!

which is precisely the line element originated by a spinn
cosmic string, restricted to the region where causality is p
served and there exist no closed timelike curves~CTC’s!
@16,17#. A more familiar form for this metric, which can b
continued to the region2cu

2/(4D),r 2<0 at the cost of in-
troducing CTC’s, is obtained with the change of coordin
Dr25r 21cu

2/(4D). Condition ~5.8! is clearly satisfied by
our background solution, and one can check that it is sa
fied as well at least in a certain region of phase space aro
the origin v5Pv5y5Pv50. Therefore, the set of admis
sible spinning solutions is infinite dimensional.

Finally, let us note that, whencz50, the lower bound
obtained for the reduced Hamiltonian in Sec. IV can be i
proved. From Eq.~5.5! and the fact thatĒ@r #>1, one gets
e22w̄`<D. We then conclude that the value of the reduc
Hamiltonian, which provides the energy per unit length
the axis direction, is always contained in the interv
@12AD,1). On the other hand, as we have commented
metric ~3.8! describes in the asymptotic region a conical g
ometry with angular momentum proportional tocu and defi-
cit angle equal to 2pHR . Hence, positivity of the energy an
the deficit angle can be ensured, e.g., by simply restric
the parameterD so that 1>D.0.

VI. CONCLUSIONS AND FURTHER COMMENTS

We have proposed a gauge-fixing procedure that remo
all the non-physical degrees of freedom in vacuum cylind
cal spacetimes. Our definition of cylindrical symmetry is le
restrictive than that usually employed in the literature, in
sense that we have assumed the existence of two comm
spacelike Killing fields, one of them rotational and the oth
one translational, but we have not imposed the condition
the spacetime contain the axis of rotational symme
namely, the set of points where the metric on Killing orb
degenerates. This relaxation of the conditions for cylindri
symmetry has allowed us to include in our discussion spa
times whose Killing orbits are not surface orthogonal, so t
the line element cannot be written, in general, in bloc
diagonal form using two-metrics. The price to be paid
this generalization is that now the axis of symmetry, which
located in principle outside the manifold, may actually
singular and contain linear sources.

Our gauge fixing leads to a reduced midisupersp
model that is totally free of constraints and depends on th
constant parameters. Two of these parameters, namelcz
and cu , determine, respectively, the constant values of
linear momentum in the axis direction and the angular m
mentum of the system. The third parameter,w̄0, is the fixed
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limit when one approaches the axis (r→r 0) of w̄, the metric
function that appears in the radial component of the l
element~3.8!. The phase space of the reduced model is in
nite dimensional and can be described using the set of
nonically conjugate fields$v,Pv ,y,Py%. We have obtained
the general expression of the four-metric in terms of th
physical degrees of freedom and found the equations of
tion that govern the evolution of these independent fiel
Moreover, we have proved that the dynamics of the mode
in fact generated by a reduced Hamiltonian, given
12e2w̄`. Here,w̄` is the limit of the metric functionw̄ at
large distances from the axis (r→r `). The value of this
Hamiltonian is a constant of motion that provides the amo
of energy that is present in the system per unit length in
axis direction. The origin of energy has been chosen to v
ish for flat, Minkowski spacetime.

One might wonder whether the expression of the redu
Hamiltonian could also have been obtained from the Hilbe
Einstein action supplemented with boundary terms via a
duction process. Actually, the answer turns out to be in
affirmative, but only if the surface terms are suitably chos
One can start with the Hamiltonian form of the gravitation
action corrected with the standard surface terms that ap
when the manifold has a timelike boundary@27#. In our case,
this boundary consists of two disconnected parts: an inte
boundary atr 5r 0 and an external one atr 5r ` ~if necessary,
one can take the limitsr 0→0 and r `→` after completing
all calculations!. It is then possible to show that, if one on
includes the surface terms that correspond to the exte
boundary, the reduction explained in Sec. II leads to

SR5E dtFe2w̄`211E
r 0

r `
dr~Pvv̇1Pyẏ!G , ~6.1!

which is in fact the action expected for the reduced syste
The integral overr determines the sympletic structur
whereas the other factors provide the reduced Hamilton
Note that we have normalized the action so that it vanis
for Minkowski spacetime. In the case that the axis of sy
metry is regular, which happens only ifcz , cu , andw̄0 van-
ish, the surface terms atr 050 that have been obviated are
fact spurious, because the internal boundary does not e
But in the general, singular case, we really need to excl
those surface corrections in order to arrive at the corr
reduced action. Since the action obtained after reduction
pends on the choice of boundary terms, it is clear that
symmetric criticality principle does not generally hold in th
system@24#.

We have also analyzed in detail the conditions that gu
antee that the reduced formalism is consistent. In particu
we have discussed under what circumstances the metric
pressions are always well defined and the reduced Ha
tonian is real, finite and differentiable on phase space.
addition, we have checked whether one can safely imp
that, at all instants of time, the fieldsy andv vanish asymp-
totically and Eqs.~3.15! hold. These equations are necessa
to ensure that the parameterw̄0 and the value of the reduce
Hamiltonian are constant. We have proved that, when
5-10
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radial coordinater is defined over the whole semiaxis (0,`)
and there is no linear momentum in the direction of the sy
metry axis, all the consistency requirements are satisfied
vided that the fields$v,Pv ,y,Py% are subject to appropriat
boundary conditions. We have then particularized our st
to models withr P(0,̀ ) and cz50 but, in general, with
non-vanishing angular momentum,cuÞ0.

For such models, the only apparent problem is a div
gence in the denominator ofe2w̄ in Eq. ~3.9! when r 0→0.
We have shown, however, that this divergence can be
sorbed by a redefinition of the constante22w̄0. We have
called D the renormalized constant, which must be stric
positive. After this redefinition of parameters, the met
functions are not only well defined everywhere in spacetim
in addition, with our choice of coordinates, all metric com
ponents turn out to have a finite limit when the axis of sy
metry is approached. Assuming boundary conditions l
those given in the Appendix, the reduced formalism is fu
consistent. Besides, the reduced Hamiltonian, which de
mines the linear energy density contained in the system
then bounded both from above and below, like in the c
with a regular axis of symmetry@7#. More explicitly, in each
of the models with constant parameterscu and D ~with
cz50), the range of the reduced Hamiltonian is included
the semi-open interval@12AD,1). Furthermore, if the defici
angle in the asymptotic regionr @1 is positive, so must be
the energy density per unit length along the axis.

In the models withr P(0,̀ ) and cz50 but, possibly, a
non-vanishing angular momentum, a particularly interest
set of solutions is provided by the following family. W
consider a bounded interval (r 1 ,r 2), with 0,r 1<r 2,`,
and fields that, at a certain instant of timet5t0, satisfy the
conditions that~1! v, Pv , andPv vanish outside the region
r P(r 1 ,r 2), ~2! y be constant forr in (0,r 1# and vanish in
@r 2 ,`), ~3! Eq. ~5.8! be satisfied, and~4! the fields be suffi-
ciently smooth as functions ofr ~let us sayC`). These re-
quirements on the fields are in fact stable in the evoluti
One can then check that all conditions necessary for the
sistency of the reduced formalism are satisfied on these
lutions.

Note that we can regard the values of$v,Pv ,y,Py% at
t5t0 just as initial data that can be evolved by integrati
~e.g., by numerical methods! the dynamical equations~3.14!.
As we have commented, the result of this integration i
solution satisfying conditions~1!–~4! at all instants of time.
In this way, one can actually obtain an infinite number
solutions whose isometry group is not orthogonally transit
~unlesscu50).

In addition, it is possible to show@28# that, at short dis-
tances from the axis,r !1, all of these solutions approac
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the line element corresponding to a spinning cosmic str
with angular momentum per unit length equal tocu/2 and
deficit angle given by 2p(12AD). Indeed, the metric of this
string in the region where no CTC’s are present can be
tained by simply setting the fields$v,Pv ,y,Py% equal to zero
@see Eq.~5.11!#. As a consequence, one can view the me
of the spinning cosmic string as a flat background for
considered family of solutions in the model with consta
values of the parameterscu andD.
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APPENDIX

In this appendix, we present suitable boundary conditio
for the fields$v,Pv ,y,Py% of the reduced model with van
ishing parametercz andr P(0,̀ ). The proof that these con
ditions are stable under dynamical evolution and that th
ensure the consistency of the reduced Hamiltonian formal
will be given elsewhere@28#.

The conditions at infinity,r→`, are that the fieldv van-
ish and that

Pv5O~r 21!, y5O~1!, Py5O~1!.

The notationf 5O(g) means that there exists a strictly pos
tive number«.0 such that the functionf is much smaller
than r 2«g in the asymptotic region, i.e., lim

r→`
r « f /g50.

Note that the above conditions imply, in particular, th
y`50.

On the other hand, if the constant parametercu vanishes,
we can impose the following conditions in the vicinity of th
axis r 50:

v5o~r 2!, Pv5o~r !, y5y0~ t !1o~r 2!, Py5o~r !.

Here,y0(t) is a time-dependent function, we have assum
that v vanishes at the axis, and the notationf 5o(g) is em-
ployed for functions whose quotientf /g has a finite limit
when r→0. Finally, in the case with non-vanishing glob
angular momentum,cuÞ0, an appropriate behavior aroun
the axisr 50 is

v5o~r 4!, Pv5o~r 5!, y5y0~ t !1o~r 6!, Py5o~r 3!.
nz
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