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Gravitational wave damping of neutron star wobble
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We calculate the effect of gravitational wav@W) back reaction on realistic neutron stdlS’s) under-
going torque-free precession. By “realistic” we mean that the NS is treated as a mostly fluid body with an
elastic crust, as opposed to a rigid body. We find that GW’s damp NS wobble on a timergeale
X1 yr [1077/(Al4/10)1?(kHz/vs)*, wherevs is the spin frequency andll 4 is the piece of the NS’s inertia
tensor that “follows” the crust’s principal axis opposed to its spin axidVe give two different derivations
of this result: one based solely on energy and angular momentum balance, and another obtained by adding the
Burke-Thorne radiation reaction force to the Newtonian equations of motion. This problem was treated long
ago by Bertotti and Anile, but their claimed result is wrong. When we convert from their notation to ours, we
find that theirr, is too short by a factor of- 10° for the typical cases of interest and even has the wrong sign
for Al4 negative. We show where their calculation went astray.
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I. INTRODUCTION the asymmetry due to some other mechanism, such as strain
in the solid crust. Taking\ |, to be(roughly) the asymmetry

This paper calculates the effect of gravitational waveexpected for a rotating fluid according tal/I
(GW) back reaction on the torque-free precession, or wobbles0.3(v,/kHz)?, we would then have a damping time of
of realistic, spinning neutron statslS’s). By “realistic” we merely 0.6 yr (kHzbg)[1077/(Al4/1)](10*gcnf/l). De-
mean the NS is treated as a mostly fluid body with an elastigpjte the fundamental beauty of this problem and its potential
crust, as opposed to a rigid bodydowever, we do not in-  5sirophysical significance, their remarkable claim—that in
clude any superfluid effects in our analysisFreely pre-  qgjistic NS’s, GW damp wobble with amazing efficiency—
cessing neutron stars are a possible source for the laser if;, o apparently little knowr(A citation index search showed

terferometer GW  detectors [Laser Interferometer : :
o that Bertotti and Anilg 2] had been referenced by other au-
Gravitational Wave Observatof{LIGO), VIRGO, and GEO thors only four times in the last 27 years.

under construction, TAMA already operatiofialt IS the We will show that the Bertotti-Anile result for elastic
prospect of gravitational wave astronomy that motivated ou S's i h For tvpical £ int ;
study. Also, the first clear observation of free precession in oj; S 1S VErywrong, however. or typical cases of Interest,
pulsar signal was reported very recerftyl, with a modula- ~ 11€ir GW time scaler, is too short by a factor of- 10°.
tion period consistent with the free precession model outMoreover, their calculation even gives the wrong sigm-
lined in this paper, making this investigation all the morePonential growth instead of dampinghenAl 4 is negative:
timely. In contrast, we find that GW always act to damp the wobble
The effect of GW back reaction on wobbling, axisymmet—i” realistic NS's, just as for rigid bodies. While in nature the
ric rigid bodies was first derived 27 years ago in an imprestypical case will beAl positive, Al4<0 can also occur in
sively early calculation by Bertotti and Ani[@]. They found ~ principle. We call attention to this case not because it is
(correctly that for rigid bodies, GW back reaction damps common, but because it highlights how much our result dif-
wobble on a time scalé¢for small wobble angle) /9@  fers from Bertotti and Anilg2] and because, in fact, their
=1.8x10Pyr  [1077/(Al/1,)]3(kHz/v)*(10*®gcent/l,),  implicit prediction of exponential wobble growth for this
where v is the spin frequency andl=(I;—1,) (with I,  case provided our initial impetus to look more closely at this
=l,#13). problem.
In the same paper, Bertotti and An{l2] went on to cal-
culate the effect of GW back reaction on wobble for the
more realistic case of aelastic NS. When cast into our IActually, Bertotti and Anile[2] never claim in words that they

nota’gon, the'r4 claimed GwW _t'me scale IS find unstable growth of the wobble angle wh&hy<0, but that is
Slyc 112G (2mvs) _AIQ.AId]v WhereAI.Q is the asymmetry  what is found if one just takes their formulas and converts from
in the moment of inertia due to centrifugal forces aidi is  their notation to ours, as above. Moreover, we have repeated their
(flawed calculation, including their one crucial error, and seen that
it does lead to a prediction of exponential wobble growth Ady
*Email address: cutler@aei-potsdam.mpg.de negative. The conversion from their notation to ours is simply
TEmail address: dij@maths.soton.ac.uk (811 = 8,1)(cog y— ; Sir? y)—Alg and 8,1 — Al .
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The organization of this paper is as follows. In Sec. Il wewhereAl=I13;—1, and
derive the GW damping time scale for rigid-body wobble, o
using the mass quadrupole expressions for the energy and J=E/¢. (2.2
angular momentum radiated to infinityThis derivation is
actually Exercise 16.13 in the textbook by Shapiro and Teutt follows from differentiation of('j;:Jll , that
kolsky [3].) We give another derivation of, in Sec. Ill,
this time by adding the Burke-Thorne radiation reaction . 2G Al2. 5 _
force directly to the Newtonian equations of motion. This ¢=- @T‘ﬁ Sir’ (16 sirf 9+ cos' 6). (2.3
latter approach was how Bertotti and Anil2] first calcu-
lated (correctly) the GW damping time for wobblingigid  To calculate the rate of change of the wobble angle, re-
bodies. arrange

In Sec. IV we review standard material on the torque-free
precession of elastic bodies, in the absence of viscous terms dE JE
or GW back reaction. In Sec. V we derive the GW damping at o
time scaler, in the elastic case, using energy and angular
momentum balance. In Sec. VI we give a second derivation, give
of 7, in the elastic case, using the Burke-Thorne radiation
reaction force to evolve the elastic body’s free precession. { =

J

dJ+(9E
N TT

de

— 2.4
Jdt

ad

This was also the strategy of Bertotti and Anil, and we

show where they went wrong. Briefly, they did not realize =
that in addition to torquing the NS, the radiation reaction JE
force also perturbs the NS’s shafia particular, its inertia 20
tensoj. When solving for the evolution of the wobble angle,

we show that the “perturbed shape” term in the equations of, hqre Eq.(2.2) has been used. The energy of the body is
motion almost entirely cancels the GW torque term that theysimply its kinetic energy
do include.(Of course, by definition there is no “perturbed

shape” term in the rigid-body case, which is probably why J2

they forgot this term when adapting that calculation to the E= TN
elastic case. In Sec. VIl we describe how to include the 1
effects of a fluid core in the radiation reaction calculation.
Finally, in Sec. VIII we conclude by commenting briefly on

0

: (2.5

J

1—cog 0?} (2.6)
3

and so

the astrophysical implications of our result. JE J Al
We will work in cgs units. —| =—|1-cog 66—/, 2.7
aJl, I I3
II. RADIATION REACTION FOR A RIGID SE 2 Al
BODY: ENERGY AND ANGULAR MOMENTUM _Y Loaat
BALANGCE T J—Ilcosﬁsmals. (2.8
The derivation of the wobble damping rate for realistic,_ . .
; : : This gives
NS’s, using energy and angular momentum balance, is rather
similar to the corresponding derivation for rigid bodies. Here 2G A2
we briefly review the solution to the rigid-body problem, as a o= — 55 ¢* cosOsin (16 sirf 6+ co< 6). (2.9
1

warm-up for tackling the realistic case.

Consider an axisymmetric rigid body with principal axes
X1,%X5,%3 and principal moments of inertigy=1,#15. Let
the body have angular momentudn misaligned fromgs.
Define the wobble anglé by J-X;=J cosé. It is a standard

We can construct time scales on which the spin-down and
alignment occur:

result from classical mechanics that the absence of exter- riga_ _ fz 5¢° 1 1y 1 (2.10
nal torque} the body axisks precesses arountwith (iner- ¢ b 2G 4t A2 sir? (16 sirf 0+coL 0) "
tial frame precession frequency=J/1,, with # constant
[4]. Tog_ether, the pairé_(, ®) completel)_/ specify the free i sing  5¢5 1 I, 1
precessiorimodulo a trivial constant of integration specify- 7,2%=— =T - .
ing ¢ att=0). We wish to calculate the evolution of these Esine 2G @* Al? cos 6(16sirf 6+ cos’ )
two parameters using thene-averagediuxes E,J). dt

Straightforward application of the mass quadrupole for- (2.1)

malism[6] gives .
G The radiation reaction causes baghand sind to decrease,
-_ P56 5 . regardless of whether the body is oblate or prolate. Note that
E 505(75 (A1)®sir? f(cos' 6+ 16 sirf ), (2.1 in the limit of small wobble angle the inertial precession
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frequency remains almost constan{ﬂdem), while 6 de-
creases exponentially on the time scale

B 1 1y
Aod " — - (2.12) n
126G g4 Al ¢

Parametrizing,

107)2(kHz)4( 10*gcen?

ngid: 1.8X 106 yr (m
1

Vs Iy

(2.13

In the limit of vanishingly small wobble angle, the partial
derivative on the left-hand sidé&HS) of Eq. (2.7) becomes
what we conventionally call the “spin frequency(} of the
body[5]. Equation(2.5) then shows tha# is proportional to
the difference between the inertial precession frequeﬁcy FIG. 1. For the rigid body the gravitational radiation reaction
and the spin frequenc§). This difference remains finite as torqueT lies in the reference plane. It acts perpendicular to the
9—0 according to¢—9=(AI/I DO[1+O( 02)]_ Thus for symmetry axis, i.e., along the direction of unit vector, .

a prolate body 41<0), such as an American football, the

body precesses slower than it spins, while for an oblate body a_2G Lnc d®+c
. . . . . . T = 5€ 'l'bd—S' (35)
the inertial precession frequency is higher than the spin fre- 5c dt

quency. Since the denominator in EQ.5 is also propor-
tional to Al, the wobble angle decreases regardless of thlaking use of Eq(3.4) it is straightforward to calculate this
sign of this factor. This viewpoint will be useful when we torque for the free precessional motion. We find
consider the radiation reaction problem for an elastic body.
T—EAI2¢5sin0(l6sir? 6+ co< 6)n (3.6
Ill. RADIATION REACTION FOR RIGID - 5¢° Lng '
BODIES: LOCAL FORCE
) ) ) _ _acting always in the plane containing the angular momentum
We will now rederive the spin-down and al!gnment t|m_e and the symmetry axigs, and perpendicular toyg, i.e.,
scales by adding the Burke-Thorne local radiation reacuorgﬂong the direction oﬁmd shown in Fig. 1. We will refer to

force to the equations of motion. .
this plane as theeference plane

, T_he Burke-Thorne radiation reaction potential at a paint The evolution equations can be calculated without going
's given by[6] to the trouble of writing down Euler's equations. Differen-

G dsL tiation of ¢=J/1, gives
RR_ — yayb ab
D XX (3.2 '

.
where +,, denotes the trace-reduced quadrupole moment d’_ﬁ’ 3.7
tensor:

. and so
'I‘ab: J’Vp< XaXp— § abxz) dv. (32) . Tsing

P=— L (3.8
Note that this is related to the moment of inertia tensor ac-
cording to DefineJ, ,, as the component of the angular momentum per-

> pendicular to the symmetry axis. Then differentiation of the
Fap=—lap— 3 5abfvpx2d\/' (3.3 trivial relation
, Jin
with the result that sing= 3 (3.9
A|E|3_I1:_(+3_4—1). (34)
leads to

The radiation reaction forcéon a particle of unit magss
FRR=— 9®RR/9x3. The instantaneougnot time-averaged _ T, Tcosd (3.10
torque on a body can easily be shown to be J J ’
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whereT | ; is the component of the torque perpendiculaito =bAl,, where Alpar and Pinef9] estimateb~ 10" ° for a
Equations(3.8) and(3.10 show that the action of the torque primordial (cold catalyzed crust. The maximum value for
breaks down neatly into two parts. The component aldng Al4/I is therefore of order- 10" °. The parameteb (which
acts to change the inertial precession freque}jpwh”e the arises from internucleon Coulomb forgesales like the av-
component perpendicular tbacts to chang®. Substitution erageZ?/A of the crustal nuclei. Since crusts of accreted
of Eq. (3.6) into Egs.(3.8) and (3.10 then reproduces the Mmatter(as in LMXB'’s) have smalleZ nuclei[10], their b
spin-down and alignment of Eq&2.3) and(2.9), so the two  factor is correspondingly smaller, by a factor e2-3. Us-
methods of calculation agree. As this torque formulationing Alg/I~0.3(vs/kHz)?>, we would therefore estimate
makes cleafby combining Eqs(3.8) and(3.10], the prod- Al4/1~10"7 for a NS with a relaxed, accreted crust and

uct ¢ cosé remains constant, so that if a body is set into free’s™ 300 Hz, while for the Crab Nebula one would expect

. . : . - "Alg/1~3x10"° (again, assuming its crust is almost re-
precession described by, ¢o), it tends to a nonprecessing laxed. For the freely precessing pulsar reported in Stairs

motion aboutxs with (inertial framé angular velocityé et 4. [1], where the body-frame precession period~i€

=cos€o¢0. X 10° times the rotation period, E@4.15 below (valid for
elastic bodiek yields Al4/1=5x10"°. For b=10"° this
IV. TORQUE-FREE PRECESSION OF ELASTIC BODIES corresponds to a reference oblateness wflB 4. This is

consistent with the star’s crust having solidified when it was
We now review the theory of the free precession of anspinning at about 40 Hz, assuming that neither glitches nor
elastic body. This problem was first addressed in the conteX|astic flow have modified its shape sinf@/hen the effects
of the Earth’s own motion. A rigorous treatment of the meth-of crust-core Coup"ng are taken into account, giving Eq.
ods employed can be found in Munk and MacDongldl  (7.5), this initial frequency reduces to 12 Hz. See Jofrig
The terrestrial analysis was extended to neutron stars bir a review of pulsar free precession observatipns.
Pines and Shahaf8]. The energy loss due to gravitational  Precession occurs wher andng, are not aligned. Below
waves was considered by Alpar and Pife we describe the precessional motion when there is no damp-
Following the latter authors, we will model a star ConSiSt-ing_ This ana|ysis is quite genera]: it app“es to any star
ing of a centrifugal bulge andsingleadditional deformation  whose inertia tensor is described by F411), independent of
bulge. Alpar and Pines wrote an inertia tensor for the elastigyhat causes the deformation bulge. In the case of several

body of the form equally important sources of deformation along different
axes, extra terms must be added to &ql) and the analysis
| =158+ Al g(ngng— 1/36) + Al y(ngng— 1/36), (4.1))  would become more complex.

To proceed it is necessary to use E4.1) to form the
where é is the unit tensof1, 1, 1], ng is the unit vector angular momentund of the body. However, as we are not
along the star’s angular veloci®, andng is the unit vector modeling a rigid body, we must take care to allow for the
along the body’s principal deformation axiexplained be- relative motion of one part with respect to another. Follow-
low). The Iys and Al pieces ofl together represent the ing [7] we will write the velocity of some point in the body
inertia tensor for the correspondimpnrotating star. The as the sum of a rotational velocity with angular velocidy
Aly term is just the nonspherical piece of this tengap-  and a small velocity relative to this rotating frame. We will
proximated as axisymmetjiclf the star were a perfect fluid, call the frame that rotates & the body framealthough it is
Al4 would vanish, but in real star@nd the EarthAly is  only in the rigid-body limit that the body’s shape is fixed
nonzero due to crustal shear stresses and magnetic fields. TWéh respect to this frame. In other words, the velocity of
termAl, (>0 and«<Q? for small Q) represents the increase some particle making up the body is the sum of the body-
in the star's moment of inerticompared to the nonrotating frame velocityQ2Xr at that pointr plus the velocityu of the
case due to centrifugal forces. Since the crust of a rotatingpoint relative to the body frame. Then
NS will tend to “relax” towards its oblate shape, having
Al4>0 is surely the typical case in natut&.g., if one could Ja= 100+ hy, (4.2)
slow the Earth down to zero angular velocity without crack-
ing its crust, it would remain somewhat oblate: the crust's here th iblv time- . t of inertia is defined
“relaxed, zero-strain” shape is oblate, and after centrifugalw ere he possibly ime-varying moment ot inertia IS detine
forces are removed, the stresses that build up in the crust will! the usual way,
act to push it back towards that relaxed shap@ut a nega-

tive Al is also possible in principle. We say the deformation _ J ce
bulge aligned withny is “oblate” if Al4>0 and “prolate” lap VP(XCX Oab ™ XaXp)dV, “.3
if Al4<0.

YVhat is a typical magnitude f(_)AId.in real, spinning while h, is the angular momentum of the bodglative to
NS’s? Let us assumAly is due primarily to crustal shear this frame:

stressegas opposed to stresses in a hypothetical solid core,

extremely strongB fields, or pinned superfluid vortices

T_h_en _for a relaxed crug{i.e., a crust yvhqse reference ellip- ha:f pEabCXbUch- (4.4)
ticity is very close to its actual ellipticily we haveAlq %
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J J Now introduce standard Euler angles to describe the
i i body’s orientation, with the polar axis alodg Let # and ¢
denote the polar and azimuthal coordinates of the deforma-
tion axis, while ¢ represents a rotation about this axis. We
refer to # as thewobble angle Taking the ratio of compo-

Q 0 nentsJ; andJ; using Egs(4.7) and(4.9) at an instant when
Q,=0, we obtain

ng Ng
I
tany= |—3tan 0, (4.10
1
wherey denotes the @,n,) angle. See Fig. 2.
g ~y We will label the angle betweehand Q as 6:
Oblate g Prolate Q =y—0. (4.11

\ This angle is much smaller thaf) as can be seen by linear-
izing Eq.(4.10 in Al andAl4 to give
FIG. 2. This shows the reference plane, which contains the de-

formation axisng, the angular velocity vectof?, and the fixed -~ Alg

angular momentund. The vectoray and() rotate around at the 0= Fsm&cosﬁ. (4.12
inertial precession frequenay. The terms “oblate” and “prolate”

refer to the deformation bulge. Note that according to our conventions, when the deforma-

tion bulge is oblateAl 4 and 9 are positive, but when the

deformation bulge is prolateyl 4 and & are negative.
We can decompose the angular velocity according to

We will neglect theh; term when constructing a free preces-
sional motion, as it can be shown thatis small in a well-
defined sensgll]. Therefore we will simply write

J,= 1,00, (4.5 Q= $ny+yng. (4.13
Having formulated the problem in this manner, it is S_ubstituting this into Eq(4.6) and resolving along; andng

straightforward to show that the free precession of an elasti€!Ves
body is similar to that of a rigid one. First, write down the

angular momentum using Eqgt.1) and (4.5). Referring all J=1,9, (4.14
of our tensors to the body frame, with the three-axis along Al
Nd» y=——20s,, (4.15

J:(|0,8+ 2/3A|Q_ 1/3A|d)Q+A|dQ3nd. (46)
where J denotes the magnitude of the angular momentum.

This shows thatl, £, andny are coplanar. As the angular Note that whenAl,=0 the above formulas reduce to the
momentum is constant, this plane must rotate alodts in  familiar rigid-body equations.

the rigid-body case, we will refer to this as theference Thus the motion is simple. As viewed from the inertial
plane See Fig. 2. Taking the components of E4.6), Wwe  fame the deformation axis rotates at a rétén a cone of

obtain half-angle6 about the angular momentum vector. This angu-
_ _ lar velocity is sometimes called thigertial precession fre-
=(lgst2/3A1o—1/3A1 ) Q21=1,Q 4. .
J1=(lost2/38 10 = I3 =110, 4.9 quency The centrifugal bulge rotates around the angular mo-
Jp=(los+2/3A o — 1/3A1 ) Q,=1,0,, (4.9 mentum vector also, but—for 0b|f;lte deformations—on the
opposite side 0f, making an anglé= y— @ with J. Super-
Jz=(lgst2/3A1 o+ 2/3A1 ) Q3=130Q5. (4.9 imposed upon this is a rotation about the deformation axis at

) ) o a ratey, known as thebody-frame precession frequenoy
These equations show that despite the triaxialityl the  sometimes simply therecession frequencyrhis frequency

angular momentum components themselves are structurall¥ negative for an oblate distortion and positive for a prolate
equivalent to those of a rigid symmetric top. The equationgne.

of motion of the body(i.e., Euler's equationsinvolve only
the components of and(). Therefore Eqs(4.7)—(4.9) show
that the free precession of the triaxial body is formally
equivalent to that of a rigid symmetric top. We can think of

V. RADIATION REACTION FOR AN ELASTIC
BODY: ENERGY AND ANGULAR MOMENTUM

. f . . . BALANCE
the elastic body as having agffectivemoment of inertia
tensor diafi,,l1,13]. Note that theeffective oblateness;| Here we derive the wobble damping timg for elastic
—1, is equal toAly. bodies, based on energy and angular momentum balance.
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3

Once fully underway, the derivation is just a couple lines. J? [ (md)(z 2”
—|— , (5.9

But to understand it, it is useful to carry along a simple, Ekin:T
physical model for the deformed crusktlowever, our deri- 0s
vation will actually be completely genergl. Here is the where we have used the small wobble angle redyit:

model: take some nonrotating, spherical NS, and stretch 621‘](1_; 6?). From Eq.(5.4 we immediately read off the
rubber band around some great circle on the crust. We Shaxlllalues éfB andF e in expansion(5.1):
refer to this great circle as the NS’s equator. Obviously the o

IO,S

effect of the rubber band is to make the NS slightly prolate 2 Al
(but still axisymmetri¢. To get an oblate shape, you can B=Ia§ 1--—¢ ,
instead imagine sewing compressed springs into the surface 3 los

of the crust at the equator. For definiteness, let the potential )

energy of the bandor springs be V=1 €l?, wherel is its Fe=Alg/(log)" (5.5
length. Soe is positive for the rubber bangrolate deforma-
tion, Al4<0) and negative for the springsblate deforma-
tion, Al14>0). Now give the NS angular momentuirabout

and obtain the partial derivative

some axis that is not quite perpendicular to the equator. We JE :\129&2' (5.6)
now have our deformed, wobbling NS. We consider the 90| (los)

equation of state of the star and the vai® be fixed once
and for all, and consider how the energy of the systemlo compute the partial derivative in the numerator of Eqg.
(star+band) varies as a function of its total angular momen+2.5), it is sufficient to consider th@—0 limit [5] so that

tum J and the wobble anglé (the angle betweed and the

perpendicular to the equajoi.e., we consideE(J, 6). We _dE
will be concerned with small wobble angle, so let us expand Q_E
E(J,60) as a Taylor series id and 6

1
=BJ+ -~ CJ°, (5.7
6=0 6

1 1 1 where () denotes the spin frequency in the axisymmetric
E(J,0)=Ey+ EBJ2+ ZlCJ4+ E|:602J2+... ) limit. It is related to the inertial precession frequency by
(5.1 Q=p(1-Aly/lyg). (5.9

Here E, is defined to be the energy of the (stdrand) at
zeroJ, andB, C, andF are some expansion coefficients that
in principle depend on the physical properties of the

The final physics inputs we need are

2
(star+band. Fortunately, we will soon see that there are - _ Eﬂ 6 92 (5.9
simple relations betweeB, C, andF and previously defined 5¢° los '
physical parameters, such ad,. Our ultimate goal is to
obtain the two partial derivatives on the right-hand side of E=¢J. (5.10

Eq. (2.5, whereE now denotes théotal energy.
First, to see that no lower order terrfsich as), 6J, 62, Equations(5.9) and (5.10 follow from the quadrupole for-
or #J? termg can appear in the expansiéB 1), note that the malism in the same way as for the rigid bodly.
J=0 configuration corresponds to the minimum of the po- The necessary pieces have been gathered; substituting
tential energy of the (starband) system. Displacements of into Eq. (2.5 gives
the (star-band) are first order id?, so changes in the po-

tential energy of (starband) are®(J%). Thus terms in . j|gs(¢_g)

E(J,0) that arexJ? are kinetic energy pieces. These terms 0= W AL (5.1

with a J? in them are clearly jus} (1, %)2%3,J,, wherel3® d

is defined to be the inertia tensor of the (sthand) atJ 2G [Al.\2

=0. [Corrections to the star's®” first enter the energy at == ﬁ(l—ﬂ losh™0. (5.12
0,S

03%.] We write 13 as

1 This is simply the same spin-down rate as for a rigid body,

ngng— 3 5ab) , (5.2 with the replacementXI/l;)— €4 . This is much longer than
the time scale claimed by Bertotti and An(l2] by a factor

of Al /Aly, which is typically ~10° or higher.

Finally, the spin-down rateé> can be obtained in the same

Anb_ l5ab 53 way as for a rigid body, i.e., _by diﬁerentigtin@zJ/l 1 and
dd™ 3 ' : using Eqs(5.9 and(5.10. Strictly, there will also be a term
in 1., but this correction will be down by a factor of order
where a term ofO(Al9) has been neglected. The kinetic (€/€Q,,,)2. We then obtain the same spin down as for a rigid
energy part o is [up to terms ofO(Alﬁ) and O3] body, again with the replacemefi — Al 4:

|8b=|0‘85ab+A|d

wherel 5 represents the “spherical part” dﬁb. Then

m

52—
I 0S

1
(|8l)ab=—
|0,S
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. . 1 1
p=——% — Pp°6°. (5.13 _592(5@_ n?)n?z)xaxb:—§QZX2+A?)bXaXb-
(6.2
VI. RADIATION REACTION FOR AN ELASTIC
BODY: LOGAL FORCE whereA2P=1 02(n3nf — % 6°°). For smallQ) the perturbed

inertia tensor isA12°=Al,(n3nf— 3% 82°), so the constant

- - - Cis just 2Al/Q2.
We now give a second derivation of the wobble damping L0 . . .
The radiation reaction potential for the freely precessing

rate for an elastic star, by directly adding the GW radiation X o o
reaction force to the Newtonian equations of motion. Beside§IaStIC body pan_be found by subsﬂtutmg the radiation reac-
being a satisfying consistency check on the calculation ifion free motion into Eq(3.1) to give

Sec. IV, by doing this second derivation correctly we can

show where Bertotti and Anilg2] went astray. RR=— _ Exaxb Al d—s(n Ngp) + Al —S(n Nop)
As was the case for the rigid body, the Burke-Thorne 5c® dg¢> " datidb Qged ' ealian/
potential will exert a torque on the spinning star. However, (6.3

this is not the only effect of the radiation reaction force: It

will distort the shape of the NS and thus its moment ofThe first term is the potential caused by the motion of the

inertia. The equation describing the precession is then of thdeformation bulge, the second by the centrifugal bulge. The

form differentiations of the unit vectors are straightforward. In the
case wheref<1 we can approximat@y~n;+ 6n, ; and

E[(|N+ Slgn)Q]=T, 6.) No~ny— f_9nu., wheren, ; is the unit vector in the reference
dt plane which lies perpendicular tb and points towards.

. . We then find
wherely denotes the Newtonian part of the moment of iner-

tia tensor, élgt the perturbation in this tensor due to the G

Burke-Thorne force, andl the. Burke-Thorne torque. It was DRR= — — 5[ Al 46— Al o 6](Vanyp+ N3alp).
the Sl g1 terms that were not included by Bertotti and Anile. S¢C

Fortunately, these can also be calculated explicitly, as we (6.4)

show below. R ) ) o
Here?¥ denotes a unit vectar;X n, ;. Using the prescription

A. Effect of ®RR on the NS's shape described above, these radiation reaction potentials can be

] o o ) converted immediately into perturbations of the moment of
It is perhaps surprising that orean explicitly determine  nertia tensor:

the effect of®RR on the NS’s moment of inertia, since the

answer would seem to depend on the NS’'s mass and the G . A

details of its equation of state; i.e., one might worry that 5|BT=—@¢3[A|dA|90—(A|Q)20](\7nJ+ n;v).
extra parameters must be specified even to make the problem

well defined. However, the point is thétom symmetry ar- (6.5
guments the perturbationAl;; depends only on a&ingle

physical parameter, and this parameddneady appears in B. Adding ®RR to the equations of motion

our Newtonian equations of motion. That parameter is It ins t te the torqleusing Eq.(3.5)
Al /Q?, the amount of oblateness caused “per unit cen- now remains to compute the torqueusing £q.(5.95).
trifugal force.” We obtain four terms, corresponding to the expansion of the

The point is thaboth the centrifugal and radiation reac- product of+ with its fifth time derivative. Again linearizing

tion forces have the very special property that they grovx)N'th respect tof we obtain

linearly with distance from the center of the star. This fact, .

coupled with symmetry arguments, is enough to determine T=—— ¢ [AI30—Al4Al o0+ AlgAlo60—A126]N, ;.

Aljj in terms of Al 4 /Q?; no new physical parameters have 5¢ 6.6

to be introduced. :
Let ®* be some external potential of the ford”

= A%_x,, whereA ,, is some trace-free tensor. Allow this

otential to act on the nonrotatinignd so spherically sym- . o . .
b e b y sy We are now in a position to write down the equation for

metric NS; it will induce a perturbatiomd12” in the NS’s . . )
inertia tensor. Since the background is spherically symmetg(l'\‘ﬂ)/dt' Using Eq.(6.9 and the Newtonian motion to

ric, the only possibility(to first order in the perturbations computed[(él er) 2]/dt and neglecting terms of ordef”,
that A12P=CA2°, whereC is some constari.e., indepen- V¢ find that Eq/(6.1) reduces to
dent of A2P).

We can determin€ as follows. Decompose the centrifu-
gal potential into a spherically symmetric and a trace-free ?Note our definition ofe,, differs by a factor of 2/3 froni9], who
piece: seteg=5 Alg/lys.

Define eq=Al /15 and eg=Al4/1o5.2 Then the terms
on the RHS of Eq(6.6) stand in the raticey/eq :€q4:1:€q .
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d G.. I whereAl denotes the difference between the one and three
GiUnD)+ 5570 AlaAl0 0= (Alg)"0]n, principal moments of inertia of thehole body not just the
shell.
G.. . > - - We now wish to calculate the alignment rate of such a
=55 P TAIGI—AlgAlg 0+ AlgAl o 0—AlG 01N, ;. body due to gravitational radiation reaction. The averaged

energy and angular momentum fluxes, as well as the instan-
(6.7 taneous torque, depend only upon the orientation of the mass
quadrupole of the body and so are exactly the same as if the
We see that the last two terms on the RHS are canceled yody were rigid: i.e., Eq42.1), (2.2), and(3.6) apply. Equa-
terms on the LHS. This leaves tions giving the kinetic energy and angular momentum of the
body are given in Lampl2]. These can be used to obtain the

i(l Q)—§¢S[AI20—AI Al #]n 6.9 partial derivatives that appear in EQ.5). Explicitly, we find
at\'nY =55 d dAloln, ;. .

JE .
—| =Q=¢+y (7.2
The problem is reduced to a rigid-body Newtonian one, with adl,
the two torque terms indicated on the right-hand side. The
terms stand in the ratio &; . In fact, the dominant term is and
the same as that obtained in the rigid-body case with the JE
changeAl —Aly. —| = #29Al 7.3
. . ¢°OAl. (7.3
We therefore find that the alignment rate as calculated 701,

using the local Burke-Thorne formalism agrees with the ] o

flux-at-infinity method. The previous force-based calculation(See Jonefl1] for a detailed derivatiop. _

of Bertotti and Anile[2] failed to include the deformation ~ These lead to an alignment time scale thatl ig/!
Slgr, so that the cancellations in E¢6.7) described above shorter than that of Eq2.13. This result is confirmed using

did not occur. the local torque formulation, where

Finally, it is easy to show that even when the approxima- -
tions A<1, e4<<1 arenot employed, the effective torques h=— =3 (7.4)
due to thedlgy terms are still perpendicular td, so the | crust

spin-down ¢ using this local formalism is necessarily the

. e In the realistic case where both crustal elasticity and core
same as in the flux-at-infinity method.

fluidity are taken into account, we can combine the above
arguments as described by Smith and DahlES]; i.e., we

VIl. ALLOWANCE FOR A LIQUID CORE can take the rigid result and put-1,, and Al—Aly to
We have successfully described the effects of gravita-glve
tional radiation reaction on an elastic precessing body. We CAlg
will now briefly describe how to extend this result to the ==, (7.9
realistic case where the star consists of an elastic $thll crust
crush containing a liquid core. The Earth itself is just such a 2G Al2
. . , : q-

body, and the form of its free precession was considered long =—— 4 (7.6)
ago. We will base our treatment on that of Lafi®], who 3C” lerust
considered a rigid shell containing an incompressible liquid
of uniform density. To make the problem tractable the mo- VIIl. CONCLUSIONS

tion of the fluid was taken to be one of uniform vorticity. We o )
will assume that the ellipticity of the shell and, also, the e have shown that the GW damping time for wobble in
ellipticity of the cavity in which the fluid resides are small. réalistic NS's has the same form as for rigid bodies, but with
Then the small-angle free precession of the combined systefie replacement|?/1;— Alg/l . This given an alignment
can be found by means of a normal mode analysis of théime scale of
equations of motiofi12]. 5 4
The key points are as follows: The fluid’s angular ve-  _ _1 gy 1¢P yr( | crust )(10389(;”‘2) (kHZ) _
locity vector does not significantly participate in the free 0 10*gcnt Aly Vs
precession. Instead, it remains pointing along the system’s 8.9

total angular momentum vector. The shell precesses abo}[or the Crab Nebula, takings~3x10"°, this givesr,~5

this axis in a cone of constant half-angle. The fluid exerts 10t hi than th £ th . F
force on the shell such that the shell’'s body frame precessio yr—rmuch fonger 7a7m € age ot Ine universe. For an
accreting NS witheq~10" " and »s~300Hz, we estimate

frequency is increased in magnitude, so that

To~2X 1P yr.
Our basic conclusion, then, is that the GW back reaction
ip: —¢ Al 7 (7.1) is sufficiently weak thabther sources of dissipation prob-
crust ably dominate. Unfortunately, even for the Earth the dissipa-
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tion mechanisms are not well understd@dl Early estimates damps wobble fopblate deformations, we expect that inter-
of Chau and Henrikseh14], which considered dissipation nal dissipation causes the wobble angleirtoreasein the
within the neutron star crust, suggested that wobble would berolate A13<0) case.

damped in around fOfree precession periods, i.e., over a A study of the gravitational wave detectability of realistic
time interval of 16/(eqvs). A more recent study of Alpar neutron stars undergoing free precession, including a discus-
and Sauld15] argued that the dominant dissipation mecha-sion of other astrophysical mechanisms which might affect
nism will be due to imperfect coupling between the crust andhe evolution of the motion, will be presented elsewhere
superfluid core. They estimate that the free precession will bEL6].

damped in(at mos} 10* free precession periods. In contrast,

according to Eq(8.1), the GW damping time is in excess of ACKNOWLEDGMENTS

108 (kHz/v,)® free precession periods. On the basis of these
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