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Adiabatic and entropy perturbations from inflation
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We study adiabati¢curvaturg and entropy(isocurvaturg perturbations produced during a period of cos-
mological inflation that is driven by multiple scalar fields with an arbitrary interaction potential. A local
rotation in field space is performed to separate out the adiabatic and entropy modes. The resulting field
equations show explicitly how on large scales entropy perturbations can source adiabatic perturbations if the
background solution follows a curved trajectory in field space, and how adiabatic perturbations cannot source
entropy perturbations in the long-wavelength limit. It is the effective mass of the entropy field that determines
the amplitude of entropy perturbations during inflation. We present two applications of the equations. First, we
show why one in general expects the adiabatic and entropy perturbations to be correlated at the end of inflation,
and calculate the cross correlation in the context of a double inflation model with two non-interacting fields.
Second, we consider two-field preheating after inflation, examining conditions under which entropy perturba-
tions can alter the large-scale curvature perturbation and showing how our new formalism has advantages in
numerical stability when the background solution follows a non-trivial trajectory in field space.
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I. INTRODUCTION number of particular models of inflatiol6,11,13. These
fluctuations typically arise as baryon modgsg. [17]) or

A period of accelerated expansion — inflation — in the cold dark matter mode$18], but neutrino isocurvature
early universe has become the standard model for the origimodes have also been considef&fl]. Recently, it has been
of structure in the universe. Inhomogeneities in the presenpointed out[20,21] that it is rather natural to expect the
matter distribution can be traced back to quantum fluctuaeurvature and isocurvature perturbations to be correlated,
tions in the fields driving inflation which are stretched be-which yields distinctive observational resu[2], in con-
yond the Hubble scale during inflation. In the simplest mod-trast to the isocurvature perturbations usually tested against
els of inflation driven by a single scalar field, theseobservation$23].
fluctuations produce a primordial adiabatic spectrum whose In this paper we will develop a general formalism to study
amplitude can be characterized by the comoving curvaturéne evolution of both curvature and isocurvature perturba-
perturbation’®, which remains constant on super-Hubbletions in a wide class of multi-field inflation models by de-
scales until the perturbation comes back within the Hubbleeomposing field perturbations into perturbations along the
scale long after inflation has ended. background trajectory in field spa¢the adiabatic field per-

As soon as one considers more than one scalar field, ortarbatior), and orthogonal to the background trajectGitye
must also consider the role of non-adiabatic fluctuationsentropy field. We allow an arbitrary interaction potential for
This can have important consequences, both in affecting thine fields, and, although we concentrate upon the case of two
evolution of the curvature perturbatidoften referred to as scalar fields, the general approach can be easily extended to
the “adiabatic perturbation)’and also in the possibility of N fields, where there will b&—1 entropy fields orthogonal
seeding isocurvaturér “entropy”) perturbations after in- to the background trajectory. This was done for a specific
flation. assisted inflation model in Ref24]. We will work in the

Previous studies have demonstrated that non-adiabatimetric based approach of Bardegb] in order to define
pressure perturbations can alter the curvature perturbation @rauge-invariant cosmological perturbations, but our formal-
super-Hubble scales either during inflatiph,2] or after ism can also be applied to the study of multiple scalar fields
[3-5]. A general formalism to evaluate the curvature pertur-in other approachd®6-28,9.
bation at the end of inflation in multiple field models was We begin by reviewing the standard results obtained in
developed in Ref{6]. In the presence of non-adiabatic fluc- single field models, emphasizing the suppression of non-
tuations, one must follow the evolution of perturbed fields onadiabatic fluctuations on large-scales. We then extend our
super-Hubble scales, in particular tracking the perturbatiomnalysis to general two-field models, defining an adiabatic
in the integrated expansidi,6,8—10,%, in order to evaluate field and an entropy field, whose fluctuations, though uncor-
the large-scale curvature perturbation at late timg&$—  related on small scales, may develop correlations through the
13,1,6,8,9,14,1p subsequent evolution. We present two specific models of

However no similar formalism has been developed so fatwo-field inflation, one with non-interacting fields, the other
to evaluate the isocurvature perturbation in the general casa.model of interacting fields which undergo preheating after
Instead, isocurvature perturbations have been studied in iaflation.
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Il. PERTURBATION EQUATIONS FOR MULTIPLE The total energy and momentum perturbations are given in
SCALAR FIELDS terms of the scalar field perturbations by
We considemN scalar fields with the Lagrangian density o _
\ Sp=2 [@1(001= @A) +V,, 501] ®
1
£:_V((P1, ---y(PN)_EIZl gMV(Pl,,Lchl,V7 (1)
80,= =20 91901, ©)

and minimal coupling to gravity. In order to study the evo-
lution of linear perturbations in the scalar fields, we make the ) )
standard splittingp, (t,X) — @, (t) + 8¢, (t,x). The field equa- Thes_ca two equations can be _comblne.d to construct a gauge-
tions, derived from Eq(1) for the background homogeneous Invariant quantity, the comoving density perturbat{@3]
fields, are
em=0p—3HJq
¢ +3He +V,, =0, (2) L )
=2 [@1(0 ¢1=91A) =~ @11], (10
whereV, = dV/dx, and the Hubble ratd, in a spatially flat
Friedmann-Robertson-Walke(FRW) universe, is deter- \yhich is sometimes used to represent the total matter pertur-
mined by the Friedman equation: bation.
2 Because the anisotropic stress vanishes to linear order for
H2— a _87G 3 scalar fields minimally coupled to gravity, we have a further
“lal] 3 ! 3 constraint on the metric perturbations:

1 .
V(<P|)+§EI 99|2

with a(t) the FRW scale factor. (azE—aB)'Jr H(aZE— aB)+¢—A=0. (11
Consistent study of the linear field fluctuation®, re- _ .
quires that we also consider linear scalar perturbations of the The coupled perturbation equatio®—(9) and (11) are

metric, corresponding to the line element probably most often solved in the zero-shé&arlongitudinal
) _ 5 or conformal Newtoniah gauge, in whicha’E,—aB,=0
ds’=—(1+2A)dt*+2aB;dx'dt+a [29]. The two remaining metric perturbation variables which

appear in the scalar field perturbation equatiés=® and
Y=V, are then equal in the absence of any anisotropic
ess by Eq(11).

Another useful choice is the spatially flat gauge, in which
o=0 [30,26. The scalar field perturbations in this gauge
are sometimes referred to as the Sasaki or Mukhanov vari-
ables[31], which have the gauge-invariant definition

X[(1—2¢) 8+ 2E ;;JdX dX, 4

where we have not at this stage specified any particula?tr
choice of gaug¢29,25,30Q.

Scalar field perturbations, with comoving wavenumker
=2qal\ for a mode with physical wavelengi then obey
the perturbation equations

N s ®
Sei+3HS @+ — o+ > V., ¢, Q=det v (12
a J 173

K2 The shear perturbation in the spatially flat gauge is simply
= -2V, A+ o| A+ 3ip+—2(a2E—aB) . (5) related to the curvature perturbatioW, in the zero-shear
a gauge:

The metric terms on the right-hand side, induced by the sca- iy iy
lar field perturbations, obey the energy and momentum con- a’Eq-aBg=a’E—-aB+ py=g V. (13
straints

The energy and momentum constraints, E§s.and (7), in

2 the spatially flat gauge thus yield

3H(y+ HA)+k—2[¢+ H(a’E—aB)]=—47Gdp, (6)
a

k2
, —¥=-47Gen, (14
y+HA=—-47Goq. a
(7
HAq=—4mGdqq, (15

We follow the notation of Ref[29], apart from our use oA Whereen is given in Eq.(10), and from Eq.(9) we have
rather thang as the perturbation in the lapse function. 6qQ= —2,¢9,Q.
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The equations of motion, E5), rewritten in terms of the 5x 8y
Sasaki-Mukhanov variables, and using E(<l) and(15) to Syy= H(.—— —.
eliminate the metric perturbation terms in the spatially flat Xy
gauge, becomg32]

(22

The total entropy perturbation in E(R1) for N scalar fields

. . k2 8wG|as. . is given by
Q+3HQ+ Qi+ [V o= —5- ﬁ%%) Q.=
a J a . - . . )
(16) 2 v+3H§ 3 5v+2v$ @(8¢— @A)
S: 1
A. Curvature and entropy perturbations 3| ov+ 3H2 ¢§) El o>
The comoving curvature perturbatip83,34 is given by (23)
R=y— H 59 where the perturbation in the total potential energy is given
p+p by 5V:2|V<P|5(,D|.
. The change iR on large scalesi.e., neglecting spatial
—H> Al Q. (17) 9radient termscan be directly related to the non-adiabatic
[ S 2 part of the pressure perturbatiph,5,3§
> b, _
. p
This can also be given in terms of the metric perturbations in R~—-3H=S. (29)
the longitudinal gauge d29] p
Y We will thus now consider the evolution of the adiabatic and
R=W— —(V+HD). (18) entropy perturbations in both one- and two-field models of
H inflation.
For comparison we give the curvature perturbation on B. Single field
uniform-density hypersurfaces, ) ) ] ) ) ]
Perturbations in a single self-interacting scalar field obey
Sp the gauge-dependent equation of motion
- gE lﬂ‘l‘ H -, (19)
p . : k2
Se+3HSp+ _2+V<pqo S¢
first introduced by Bardeen, Steinhardt and Tur85] as a a

conserved quantity for adiabatic perturbations on large scales

[36,5]. It is related to the comoving curvature perturbation in =2V A+
. I ¢

Eqg. (17) by a gauge transformation

2

Kk
A+3y+—(a’E—aB)|, (29
a

2
v, (20)

k
aH

2p

. subject to the energy and momentum constraint equations
7 3(ptp)

given in Eqgs.(6)—(9).

The scalar field perturbation in the spatially flat gauge has
where we have used to the constraint equatiioh to elimi-  the gauge-invariant definition, E¢L2),
nate the comoving density perturbatien,. Note thatR and
— thus coincide in the limik—0. ©

Both R and —¢ are commonly used to characterize the Q«pE‘S‘PJFﬁ ¥. (26)
amplitude of adiabatic perturbations as both remain constant
for purely adiabatic perturbations on sufficiently large scalesor a single field this is directly related to the curvature
as a direct consequence of local energy-momentum consgperturbation in the comoving gauge, where the momentum,
vation [5], allowing one to relate the perturbation spectrum sq— — ¢, 55 vanishes
on large scales to quantities at the Hubble scale crossing
during inflation in the simplest inflation mod€l35,37].

-

A dimensionless definition of the total entropy perturba- R=y¢+ .ﬂ&pz H—Qq,. (27)
tion (which is automatically gauge-invarians given by ¢ ¢
sp & ) It is not obvious that the intrinsic entropy perturbation for
S=H|———], (21)  asingle scalar field, obtained from E@3),
p p
: ' . 2V S .
which can be extended to define a generalized entropy per- S=— = [e(So—eA)—@dp], (28
turbation between any two matter quantitieandy: 3¢*(3He+2V,)
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should vanish on large scales. Because the scalar field obeys X
a second-order equation of motion, its general solution con- ox.

tains two arbitrary constants of integration, which can de-
scribe both adiabatic and entropy perturbations. However
for a single scalar field is proportional to the comoving den-
sity perturbation given in Eq10), and this in turn is related
to the metric perturbationy’, via Eq. (14), so that[39]

Ve

667G 3He+2V,]

k2
;\P). (29
In the absence of anisotropic stress#smust be of order background trajectory
Aq, by Eq.(11), and hence the non-adiabatic pressure be-
comes small on large scalg$,39,10. The amplitude of the

asymptotic solution for the scalar field at late tim@sd ¢

hence large scalgsluring inflation thus determines the am- FIG. 1. An illustration of the decomposition of an arbitrary per-

plitude of an adiabatic perturbation. . turbation into an adiabaticdg) and entropy §s) component. The

The change in the comoving curvature perturbation ISangle of the tangent to the background trajectory is denoted. by

given by The usual perturbation decomposition, along #hand y axes, is
2 also shown.
R H v (30)
T fgat’ fields’ evolution. Conversely, fluctuations orthogonal to the

background classical trajectory represent non-adiabatic per-
and hence the rate of change of the curvature perturbatiomirbations, and we define the “entropy fields, such that
given byd In R/d In a~(k/aH)?, becomes negligible on large
scales during single-field inflation. 6s=(cosf) ox—(sinh)dg. (35

C. Two fields From this definition, it follows thas=const along the clas-
. . ) . . i sical trajectory, and hence entropy perturbations are auto-
In this section we will consider two interacting scalar matically gauge-invarianf40]. Perturbations insc-, with

fields, ¢=¢;, and xy=¢,. The analysis developed here ss_q describe adiabatic field perturbations, and this is why
should be straightforward to extend to include additional scaye refer too as the “adiabatic field.”

lar fields, but we do not expect to see any qualitatively NnewW e total momentum of the two-field system, given by
features in this case, so for clarity we restrict our discussiontq_ (9), is then
here to two fields. ’
In order to clarify the role of adiabatic and entropy per-
turbations, their evolution and their inter-relation, we define
new adiabatic and entropy fields by a rotation in field space . L o
The “adiabatic field,” o, represents the path length along g;d the comoving curvature perturbation in Ey) is given
the classical trajectory, such that

80, =— ¢S i—xSxi=—0d0,, (36)

o=(cosh) ¢+ (sinh)y, (31) R=y+ H( ¢é¢+é(5)(
¢*+x°

where

H
=Y+ —do. (37)
C0Sf= ———, Sinf= (32 o

X
V2 +x? Vg2 +x? . o o
This expression, written in terms of the adiabatic field,is

This definition, plus the original equations of motion f¢r  identical to that given in Eq27) for a single field.

andy, give We can also write Eq.37) as

o+3Ho+V,=0, (33 R=(COSO)Ry+(SIFOHR,, (39
where where we define the comoving curvature perturbation for

each of the original fields as
V,=(cosO)V,+(sing)V,. (34
H H

As illustrated in Fig. 150 is the component of the two-field Ri=y+ —8¢=—0Q,. (39
perturbation vector along the direction of the background i @i
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However, even fields with no explicit interaction will in gen- to the relative entropy perturbation between the two fields,
eral have non-zero intrinsic entropy perturbations on largess. Clearly, there can be significant changesimn large
scales in a multi-field system due to their gravitational inter-scales if the entropy perturbation is not suppressed and if the

action, so thafk, for each field is not conserved. Although background solution follows a curved trajectory, i.e+0,

the intrinsic entropy perturbation for each field is still of the j field space[10]. This can then produce a change in the
form given by Eq.(28), it is no longer constrained by EQ. comoving curvature on arbitrarily large scalg., even in
(14) to vanish ask—0. This is in contrast to the case of the limit k—0) [1,39)].

non-interacting perfect fluids, where it is possible to define a Equations of motion for the adiabatic and entropy field
constant curvature perturbation for each fluid on large scalegerturbations can be derived from the perturbed scalar field

[5]. _ o _ equationg5), to give
The comoving matter perturbation in E4.0) can be writ-
ten as . . k2 .
o So+3HSa+| = +V,,— 67| 60
em=0(80—0A)— 08+ 2V5s, (40) a
2
which acquires an additional term, compared with the single- =— 2V, A+o| A+3y+ k—(azE—aB) +2(06s)
field case, due to the dependence of the potential tgon o a?
where
V,.
Vs=(cosh)V,—(sinh)V,. (41 —2-—06s, (47
g
The perturbed kinetic energy stas no contribution to first- q
order as in the background solutiss 0, by definition. an
The total entropy perturbation, E@3), for the two fields _ K2
can be written as Ss+3HSs+ ( — + Vs ;92) 5s
a
2 .
S=— - o . - . .
30%(3Ho+2V,) =—2—-[0(o—0cA)—0odo], (48
g
X{V,[o(So—0A)—ado]+3Ha?08s}. (42
where
Combining Eqgs(14), (40) and (42), we can write
Vo= (SIPOV ,, +(SIN20)V 4, + (COS OV 44, (49
V, k2 R
=- : - —V|—-—=56s (43 =(si —(si
6mGoZ[3Ha1 2V ] | a2 ) 3,7 (43 V= (SirPO)V 4= (siN20)V 4 + (COSHV,, . (50)

Comparing this with the single-field result given in Eg9), ~ When 6=0, the adiabatic and entropy perturbations
we see that the entropy perturbation on large scales is dugecouplé. The equation of motion fobo then reduces to
solely to the relative entropy perturbation between the twdhat for a single scalar field in a perturbed FRW spacetime,

fields, described by the entropy fielis. as given in Eq(25), while the equation fo®s is that for a
The change in the comoving curvature perturbation giverfcalar field perturbation in amnperturbed=RW spacetime.
by [1,38] The only source term on the right-hand-side in E4f)

for the entropy perturbation comes from the intrinsic entropy

d perturbation in ther-field. From Eqs(14) and(40) we have

dt

P2 32
H a2 :

b x ) dtl g2y

which can be expressed neatly in terms of the new variables:

. HK? 1 (8¢ &
R= \II+EH(—¢— X (44

2
o(8o—0oA)—ad5=20085— iczV (52)

and hence we can rewrite the evolution equation for the en-

2
R= E k_q, +£955 (45  tropy perturbation as
H a? T
where 2f we employ the slow-roll approximation for the background
Vv fields, ¢=—V,/3H and y=—V,/3H, we obtain #=0. This re-
h=— —. (46) flects the fact that the rate of changetbis slow — instantaneously

it moves in an approximately straight line in field space. But the

integrated change ifl cannot in general be neglected. Even work-
The new source term on the right-hand-side of this equatioring within the slow-roll approximation, fields do not in general
compared with the single-field case, E80), is proportional  follow a straight line trajectory in field space.
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. ) K2 _ b K2 tropy perturbations, absent in the single field model. This in
0s+3Hos+| — + Vot 362 | 8s=— W\P. (520 turn will allow us to study the resulting correlations between
a o cmoa the spectra of adiabatic and entropy perturbations produced

on large scales due to quantum fluctuations of the fields on

Note that this evolution equation is automatically gauge-ma)l scales during inflation.

invariant and holds in any gauge. On large scales the inho- A | ;seful approximation commonly made when studying

mogeneous source term becomes negligible, and we haver,q perturbations during inflation, is to split the evolution of

homogeneous second-order equation of motion for the eny given mode into a sub-Hubble regime>aH), in which
tropy perturbation, decoupled from the adiabatic field and,a Hubble expansion is neglected, and a super-Hubble re-
metric perturbations. If the initial entropy perturbation is gime (k<aH), in which gradient terms are dropped.

zerg on large scales, it wil remlaln Sr?' ic back . If we assume that both fields and y are light(i.e., over-
y contrast, we cannot neglect the metric back-reactiony, 5e4 during inflation, then we can take the field fluctua-
for the adiabatic field fluctuations, or the source terms due Qs to be in their Minkowski vacuum state on sub-Hubble

the entropy perturbations. Working in the spatially flatg.qjes This gives their amplitudes at Hubble crossikg (
gauge, defining =aH) as

o
=80q= 080+ S ¢, 53 Hi
Qu=0d0q=d0+ i 63 QI|k=aH:Wel(k)v (57)
and using
wherel = ¢, x, Hy is the Hubble parameter when the mode
p crosses the Hubble radidise., H,=k/a), ande, ande, are
AQ:47TGﬁQU, (54  independent Gaussian random variables satisfying

we can rewrite the equation of motion for the adiabatic field (&(k)=0, (e(kjej(k))=a,k-k"), (58

erturbation as . .
P with the angled brackets denoting ensemble averages. It fol-

2 37 2\" lows from our definitions of the entropy and adiabatic per-
.. . k . 87G|a‘c . ; L
Q,+3HQ,+| —=+V,,— 0*— —5|—] |Q., turbations in Eqs(31) and (35) that their distributions at
a? a H Hubble crossing have the same form:
=2(86s) —2| =2+ — | 85s. (55) L TR I K. (59
o H Qo’|k—aH W o'( )1 |k—aH W S( ’

When 6=0, this reduces to the single-field equation of mo-yheree, ande, are Gaussian random variables obeying the
tion, but for a curved trajectory in field space, the entropysame relations given in E¢58), with |,J=0,s.

perturbation acts as an additional source term in the equation gyper-Hubble modes are assumed to obey the equations
of motion for the adiabatic field perturbation, even on largeof motion given in Egs(55) and (52), which we will write

scales. . schematically as
In order for small-scale quantum fluctuations to produce

large-scale(super-Hubblg perturbations during inflation, a ol —39(5s 60
field must be “light” (i.e., overdamped The effective mass Qo) (8), (60)
for the entropy field in Eq(52) is u2=Vst+362. For u?
>32H2, the fluctuations remain in the vacuum state and fluc-
tuations on large scales are strongly suppressed. The exis-

tence of large-scale entropy perturbations therefore require¥n€re07(Q,) andO®(ds) are obtained by setting=0 on
the left-hand side of Eqg55) and (52) respectively, and

5 - 5 S7(8s) is given by the right-hand side of E¢55). As re-
ps=Vsst30°<5H" (56)  marked before, there is no source term &srappearing on
the right-hand side of Eq(52) once we neglect gradient

terms. The general super-Hubble solution can thus be written
Ill. APPLICATION TO ENTROPY-ADIABATIC as

CORRELATIONS FROM INFLATION

O%(8s)=0, (61)

Equationg52) and(55) are the key equations which gov- Qo=A+fL(O+AT_(O+P(1), (62

ern the evolution of the adiabatic and entropy perturbations

in a two field system. Together with constraint equations 0s=B.g.(1)+B_g_(1), (63
(51) and(54) for the metric perturbations, they form a closed . )

set of equations. They allow one to follow the effect on thewhere the real functions.. andg.. are the growing or de-
adiabatic curvature perturbation due to the presence of ercaying modes of the homogeneous equatidd$(f.)=0
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and (A)S(gi)zo, andP(t) is a particular integral of the full 1 1
. . . V:_m2¢2+_m2 2 (71
inhomogeneous equatid®0). Note that the growing-mode 2 2 ThX
solutionf , = a/H. _ - _ _

Henceforth we shall consider only slow-roll inflation Following [11], it is possible to parametrize the background
where the evolution can be approximated by first-order equascalar field trajectory in polar coordinates when both fields

tions[droppingds andQ,, in Egs.(52) and(55)], so that we are slow rolling:

havé \/T N
Q,=Af(t)+P(1), (64) X=Ngggsine  ¢=\ 5 goosa, (72

Ss=Bg(t). (65) whereN= —In(a/ag, is the number of e-folds until the end
of inflation. The background trajectory can then be expressed

We can, without loss of generality, take=1=g andP=0 as
whenk=aH, so that the amplitudes of the growing modes at RE-1)
Hubble-crossing are given by Eq&9) as N=N (sina) (79
0 (COSa)ZRZ/(RZ—l) !
Hy K
Alk)= Wea(k)* B(k)= Wes( k). (66)  \whereR= m, /m, . The scalar field position angle, can be
related to the scalar field velocity angl, which we used to

From Eq.(60), we see that the amplitude of the particular d€fine the adiabatic and entropy perturbations:

integral P(t) at later times will be correlated with the ampli- )
tude of the entropy perturbatioB, and we can writeP(t) My N
- =7 o tang= —\/ 5 —<tanc. (74)
=BP(t), whereP(t) is a real function independent of the 3Ho Y 27G
random variableg,, ,e;.
In order to quantify the correlation, we define The scalar fieldy is assumed to decay into cold dark
matter while the scalar fieldp decays into radiation. The
. 2 , entropy-isocurvature at the start of the radiation-dominated
(x(K)y* (k")) =~ 3 Cuy S(k—K). (67 erais described by
The adiabatic and entropy power spectra are given by — % _§ % 7
Sud= 7, (75)
c b
Hi\? ~
PQUECQUQU:(Z—;) [f2]+]P?[], (68)  In Ref.[20], it is shown how the super-Hubble perturbations

in the radiation era can be determined in terms of the pertur-
H.\2 bations during the inflationary era. The fluctuations in béth
= =X 2 and y fields can contribute to both the adiabatic and entropy
Pss=Cssss 19, (69) ) ) . .
2m perturbations. The adiabatic component comes directly from

_ ) ) o the comoving curvature perturbatioR, at the end of infla-
while the dimensionless cross correlation is given by tion, and is given by

Co ss [ N .
20 (70 Rear=—VA7G \[ 3HL(sinar)e, (K)+ (cosa)ey(k)].

gP
VPo,VPas  g?\|2|+[P? (76)

Note that the adiabatic power spectrum at late times is alThe isocurvature perturbation at the start of the radiation-
ways enhanced if it is coupled to entropy perturbatipres,  dominated era is related to the entropy perturbation between
P(t)#0, in Eq. (64)], as the entropy field fluctuations at the two fields at the end of inflatio 2]
Hubble-crossing provide an uncorrelated extra source.
As an illustration, we consider the correlations in the adia- 2 .1
. X o _ 2
batic and entropy perturbations at the start of the radiation Srad™= — §mxﬁ
era, produced after double inflation, as studied in R&0).
The double-inflation potential for two non-interacting but
massive scalar fields is

- : (77
X ¢

Sy 5¢)

which yields

N
S — VATG\/ k—?'fH [ R*seca,+ cosear, Jeq(k),

3We note that in non-slow-roll scenarios the effect of decaying (79
modes may not be negligible on super-Hubble scales, which could
affect the correlations between adiabatic and entropy perturbationgnd
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N, R2anasina, We consider first the case where the inflaton is massive

Ria= VA47TG \/FHKZ— (m#0) and neglect its self-interactiol\ €0). The tradi-
VR*tarfay+1 tional resonance parameter for the strength of preheating at

_R? the end of inflation is
X{|—=——=—+1|e(k)+| ——|eik) ;.
| R%tarfa, R%anay| 9%}
q= > (82
(79 4m

The entropy perturbation during the radiation era only dedn the massive case, where modes move through the reso-
pends on the entropy perturbation at Hubble-crossing duringance bands of the Mathieu chart, and for inflation at high
the inflationary era, while the adiabatic perturbation duringenergies where the expansion of the universe is very vigor-
the radiation era depends on both the adiabatic and entrofus, d needs to be much larger than one if the parametric
perturbations at Hubble-crossing. This is consistent with Eqgiesonance is to be efficief#3]. It is possible to have largg
(52) and(47), showing that the entropy perturbation sourceseven for small couplingg?<1, asm<¢,~Mp. We can
the adiabatic perturbation on super-Hubble scales, but nowrite the effective mass of the during inflation as
vice versa. _ 5 5
As both Eqs(78) and(79) depend on the random variable m,  3q Mp,
es, the adiabatic and entropy perturbations will be corre- w2 w2 (83)
: H b
lated, and we find
where ¢, is the initial value of¢ at the beginning of pre-
CRaSra (R?—1)sin 2a (80 heating. It then follows from Eq83) that y must be heavy
= . : during inflation for this simple potential if efficient preheat-
\/PRrad\/Psrad 2Rsirf ay +cos ey ing isgto be obtained. Pep ’
Any change in the curvature perturbati@on very large

This correlati(_)n Is investigated fu_IIy if20] in terms O_f the ._scales must be due to the presence of non-adiabatic pertur-
usual scalar_fleld perturbation vangbles. An mt_erestmg po'nbations. In[44,45, it was shown how, ifm2sm2 during
that can easily be seen from Eg9) is thatR,,qwill depend | ) ) ~ ) X= ¢
only one, if R=m /m,=1. Thus, there will be no corre- mfl_atlon_ with )\=0=_ 0, then they field and hence any non-
lation if R=1. As can be seen from Eq73), a will be adiabatic perturpanons on large scales are exponentially sup-
constant forR=1 and thus so willg; a straight-line back- Pressed during inflation, and no changeRooccurs before
ground trajectory will be obtained f&k=1. This is consis- Packreaction ends the resonance.
tent with Eq. (47), where it can be seen that the entropy ~However, wheng#0, the x field will have a nonzero
component only sources the adiabatic component on largéacuum expectation valu@ev) during inflationeven along
scales if§£0. the yalley of t-he potentialn thg slovy-roll limit for ¢, this

vev is determined by, =0, which gives

IV. APPLICATION TO PREHEATING AFTER INFLATION ~2

-2 (84)
In this section we use the entropy-adiabatic decomposi- X~ 92 -
tion of the perturbation equations to investigate the dynamics

of super-Hubble perturbations during a period of preheating—he”é coupling has the effect of rotating the valley of the

at the end of inflation. We consider three models, encompqtential — which the attractor trajectory approximately fol-
passed by the general effective potential lows — from y=0, through an angle

Cl

1 A 1 ~ 2
— 22 pA L T N2 422 243
g

The essence of preheating lies in the parametric amplifica- . . .
tion of field perturbations due to the time dependence of thei}c’j\’here’ TIO elnsurg that the chaotic inflation scenario is not
effective mass, e.gm’=V,,=g?¢?. In the simplest cases, rastically altered, we assurfié6]
the inflaton¢ simply oscillates at the end of inflation. ~

Preheating typically amplifies long-wavelength modes 9<1_ (86)
preferentially. As discussed if¥1,42,39, amplification of
super-Hubble modes does not lead to a violation of causality, ~
due to the super-Hubble coherence of the inflaton oscilla- The effect ofg is to change the attractor for boghand
tions set up by the prior inflationary phaseRfis amplified ~ dx during inflation, since thg and 5x equations of motion
on super-Hubble scales, this will alter the resulting imprintgain inhomogeneous driving terms proportional gé¢>.
on the anisotropies of the cosmic microwave background his does not necessarily imply th&t will be amplified by
(CMB), and break the simple link between CMB observa-preheating at the end of inflation as purely adiabatic pertur-
tions and inflationary models. bations along the slow-roll attractor now have a component
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along x as well as¢. In order to determine whether or not L B B B AL B AL |

the evolution of the comoving curvature perturbati®, on ol @9_
super-Hubble scales is affected, we need to follow the evo-  1© p—— by
lution of the entropy field perturbatidhdefined by Eq(35), — old 5s g
which gives x newR ¢

?

62
8~ Sx+ = 6¢. (87)
¢

In the limit g/g— 0 we recoverss— Sy. Crucially, the evo-
lution equation(52) for the entropy perturbation haw in-
homogeneous terms in the long-wavelengki-0) limit,

even forg#0, and entropy perturbations will only be non-
negligible on super-Hubble scales if the entropy field is light
during inflation.

In the slow-roll limit and on large scales, the evolution
equation(52) for the entropy perturbation has the approxi-
mate solutio47]

Ssca 32 (88) curvature perturbations during inflation and preheating, with

=0, g=2x10 % g=8x10 ° g andm=10 °M ;. The “new”
where prefix indicates that the field perturbations were evaluated by nu-
merically integrating Eqs(52), and (55), while the “old” prefix
9 MZ indicates that the perturbations were evaluated by integrating the
2~ _ _S, (89) original field equationg5). We have not included any higher-order
4 Ry2 corrections such as back reaction from small-scale perturbations
which would shut down the resonant amplification & at some
and the effective mass of the entropy field, is defined in  point.
Eq. (56). The power spectrum of entropy perturbations is

)V FIG. 2. Numerical simulations of the entropy and comoving

before the cosmological modes, implying that resonance
3-2Re@) ends beforeR changeg43,44.

(90 We have also integrated the field equations numerically to
avoid relying on any slow-roll-type approximations. To nu-

. 2142 . merically evaluate the entropy perturbation, one could simu-
> C ) . .
The real part ofv vanishes fofus/H">9/4, leaving a steep late the original perturbation variablég and dy, using Eq.

k® blue spectrum, which is exponentially suppressed with(s)’ and then work outs algebraically via Eq(35). How-

time. . ; L =
. ) ever, this approach is prone to numerical instability when the
Using Eqs.(50), (81), (85), and(86), one finds that entropy perturbation is suppressed. To illustrate this, we take

k

7D(SSOCHs aH

2 314 2] t3qm2 g=8x103%g and q=3.8x10°. After about 60 e-folds of
Bs 1—4q(9) (_) } i (91)  inflation, one can see analytically thas~10~*°. Numeri-
H2 9/ \¢o Thy cally, 5y cosé~ 84 sin6~10"8 during inflation. So in order

to obtain a high enough accuracy to model the suppression of
w?/H? has a local minimum fog=0. Thus the additionaj ds, we require thaty cosé and §¢ sin have to be simu-
term in Eq.(81) serves tdncreasethe entropy mass relative lated to a relative accuracy of 10°8/10"*°=10"% This
to the Hubble parameter, and so does not avoid the suppregeans approximately 32 significant figures are needed,

sion of the entropy perturbation. Tiieterm therefore does Which is beyond the capability of standard numerical ordi-
not significantly alter the spectral index of the spectrum of1@ry differential equation integration routines. _
entropy perturbations, which remains steepqif1. The If mstead we use the new adiabatic and entropy fleld_ per-
strongly blue spectrum implies that non-linear backreactiorfju"Pations and integrate Eq&2) and(55), then this numeri-

is dominated by small-scale modes, which go nonlinear long@! instability doeshot occur, since one no longer needs to
ind the difference between two nearly equal quantities.

Simulation results using these equations are compared with
_ the results using the old field perturbation equati@sin
“From Eq.(45) we see that'ss must be non-zero to changeon  Fig. 2. The simulations show that the growth7nis driven
large scales. Becausg~0, from Eq.(85), the entropy remains by s, in concordance with Eq45). As can be seen, the
decoupled from the adiabatic perturbation during slow-roll inflationnumerical result using the field perturbation equations fails
in this model. But at the end of inflation, during preheatiy,  to track the exponential decay of the entropy during inflation
#0. and thus underestimates the delay in the growtiR of
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In practice, we find a similar instability if we try to con- ing inflation and no exponential suppression takes place, so
struct the gauge-invariant metric perturbatidh, required in ~ that the subsequent growth @@ is explosive[48]. The
Eq. (52 in terms of the constraint E¢51). This includes the growth of R occurs before backreaction can shut off the
intrinsic entropy perturbation in the field, which does be- resonant growth of the entropy perturbationss
come small at late times or large scales, but results from thp48,38,50,49 Although the region of parameter space
diminishing difference between finite terms. It is more stablearoundg?/\ =2 is thus ruled out, the same does not hold for
numerically to follow the value of at late times using the g?/A>1, since the entropy field is then heavy during infla-

evolution equation tion and ds is again suppressed.
. H . V. CONCLUSIONS
v+ H_ﬁ V=47GoQ,, (92
We have introduced a new formalism in which to follow

the evolution of adiabatic and entropy perturbations during
inflation with multiple scalar fields. We decompose arbitrary
Note that the adiabatic-entropy decomposition becomege'd perturb§t|ons into a component pargllel to the back-

ground solution in field space, termed thdiabatic pertur-

ill-defined if =0, i.e. both fields stop rolling, and this can paiion and a component orthogonal to the trajectory, termed
cause numerical instability during preheating if the trajectory;, o entropyperturbation. We have rederived the field equa-
is confined to a narrow valley. This can occur, for instanceyions in terms of these rotated fields in Ed52) and (55).
wheng=0 and only thes field oscillates. The original field These show that the adiabatic perturbation on large scales
perturbationsd¢ and 5y remain well-defined, although the can be driven by the entropy perturbation, while the entropy
comoving curvature perturbatioR, defined in Eq(37) be-  perturbation itself obeys a homogeneous second-order equa-
comes singular whear=0 [3]. This does not happen for the tion on super-Hubble scales. There can only be significant
simulation results shown in Fig. 2 witl# 0 where the fields ¢hange in the large-scale comoving curvature perturbation if
oscillate in a two-dimensional potential well. there is a non-negligible entropy perturbatiamd if the
The massive inflaton potentialn(#0) safeguards the Packground trajectory in field space is curved. _

conservation ofR by a bootstrap effect: if preheating is Our formallsr_n can be applied to evaluate_: the correlation
strong,g>1, then the entropy perturbation is heavy during _betw_een the adiabatic and entropy perturbations at the end of
inflation: on the other hand, if the entropy is light during inflation. As an example we considered the example of two

inflation, theng=<1 and preheating is very weak. This is not non-interacting fields in double inflation, calculating the
’ cross correlation between the adiabatic and entropy perturba-

tions.
The effect of preheating on the large-scale curvature per-
turbation can also be addressed within our formalism. The
V. 4+V.=V. . +V (93) mass of the entropy field during inflation is a crucial quan-
oo TssT e T Txx tity. If the entropy field is heavy, then any fluctuations on
Thus if they field is very massive\(,,>H?), we must have large scales are suppressed to negligible values at the begin-
V,,+VsH2. For slow-roll inflation we requird/,,<H?  hing of preheating. This squeezing of the entropy perturba-
and hence/,H?2. tion is most accurately modeled numerically using our evo-
This situation does not hold if the entropy mass duringlution equation for the entropy perturbation. If it is estimated
inflation is not linked to the entropy mass during preheatingrom the usual field equations, it may contain large numeri-
[46], or in masslessni=0) self-interacting X #0) inflation ~ cal errors when there is a non-trivial background trajectory in
models [48,38,49. This latter class of models are almost field space. S
conformally invariant, allowing analytical results from Flo- ~ Note addedAfter completing this work we became aware
quet theory to be applied. The Floquet indgy,, which ~ Of related work by Hwang and Nofb1] who also study
determines the rate of exponential growth, can reach it§ntropy perturbations in multiple field inflation. They find
maximum ask/aH—0, when g%x=2n? for integer n, that the adiabatic and entropy modes decouple on super-
thereby implying maximum growth for the longest- horizon scales when the effect of curvature of the trajectory
wavelength perturbations. Assuming slow-roll inflation I field space is neglected, but we have shown that this can-
driven by V~\ ¢*/4, we see from Eq(93) thatV,,+V.,  Not in general be assumed, even in models of slow-roll in-
>V,,=g°¢? and thus that the entropy field is massive flation.
(Vss>9H?/4) whenever

which can be obtained from the definition ¥f given in Eq.
(14) and the metric constraint equatiot¥® and(11).

altered by a rotation of the trajectory in field spaget(0) as
can be most quickly seen by noting, from E¢9) and(50),
that
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