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Adiabatic and entropy perturbations from inflation
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We study adiabatic~curvature! and entropy~isocurvature! perturbations produced during a period of cos-
mological inflation that is driven by multiple scalar fields with an arbitrary interaction potential. A local
rotation in field space is performed to separate out the adiabatic and entropy modes. The resulting field
equations show explicitly how on large scales entropy perturbations can source adiabatic perturbations if the
background solution follows a curved trajectory in field space, and how adiabatic perturbations cannot source
entropy perturbations in the long-wavelength limit. It is the effective mass of the entropy field that determines
the amplitude of entropy perturbations during inflation. We present two applications of the equations. First, we
show why one in general expects the adiabatic and entropy perturbations to be correlated at the end of inflation,
and calculate the cross correlation in the context of a double inflation model with two non-interacting fields.
Second, we consider two-field preheating after inflation, examining conditions under which entropy perturba-
tions can alter the large-scale curvature perturbation and showing how our new formalism has advantages in
numerical stability when the background solution follows a non-trivial trajectory in field space.
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I. INTRODUCTION

A period of accelerated expansion — inflation — in t
early universe has become the standard model for the o
of structure in the universe. Inhomogeneities in the pres
matter distribution can be traced back to quantum fluct
tions in the fields driving inflation which are stretched b
yond the Hubble scale during inflation. In the simplest mo
els of inflation driven by a single scalar field, the
fluctuations produce a primordial adiabatic spectrum wh
amplitude can be characterized by the comoving curva
perturbationR, which remains constant on super-Hubb
scales until the perturbation comes back within the Hub
scale long after inflation has ended.

As soon as one considers more than one scalar field,
must also consider the role of non-adiabatic fluctuatio
This can have important consequences, both in affecting
evolution of the curvature perturbation~often referred to as
the ‘‘adiabatic perturbation’’! and also in the possibility o
seeding isocurvature~or ‘‘entropy’’ ! perturbations after in-
flation.

Previous studies have demonstrated that non-adiab
pressure perturbations can alter the curvature perturbatio
super-Hubble scales either during inflation@1,2# or after
@3–5#. A general formalism to evaluate the curvature pert
bation at the end of inflation in multiple field models w
developed in Ref.@6#. In the presence of non-adiabatic flu
tuations, one must follow the evolution of perturbed fields
super-Hubble scales, in particular tracking the perturba
in the integrated expansion@7,6,8–10,5#, in order to evaluate
the large-scale curvature perturbation at late times@11–
13,1,6,8,9,14,15#.

However no similar formalism has been developed so
to evaluate the isocurvature perturbation in the general c
Instead, isocurvature perturbations have been studied
0556-2821/2000/63~2!/023506~11!/$15.00 63 0235
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number of particular models of inflation@16,11,12#. These
fluctuations typically arise as baryon modes~e.g. @17#! or
cold dark matter modes@18#, but neutrino isocurvature
modes have also been considered@19#. Recently, it has been
pointed out @20,21# that it is rather natural to expect th
curvature and isocurvature perturbations to be correla
which yields distinctive observational results@22#, in con-
trast to the isocurvature perturbations usually tested aga
observations@23#.

In this paper we will develop a general formalism to stu
the evolution of both curvature and isocurvature pertur
tions in a wide class of multi-field inflation models by d
composing field perturbations into perturbations along
background trajectory in field space~the adiabatic field per-
turbation!, and orthogonal to the background trajectory~the
entropy field!. We allow an arbitrary interaction potential fo
the fields, and, although we concentrate upon the case of
scalar fields, the general approach can be easily extende
N fields, where there will beN21 entropy fields orthogona
to the background trajectory. This was done for a spec
assisted inflation model in Ref.@24#. We will work in the
metric based approach of Bardeen@25# in order to define
gauge-invariant cosmological perturbations, but our form
ism can also be applied to the study of multiple scalar fie
in other approaches@26–28,9#.

We begin by reviewing the standard results obtained
single field models, emphasizing the suppression of n
adiabatic fluctuations on large-scales. We then extend
analysis to general two-field models, defining an adiaba
field and an entropy field, whose fluctuations, though unc
related on small scales, may develop correlations through
subsequent evolution. We present two specific models
two-field inflation, one with non-interacting fields, the oth
a model of interacting fields which undergo preheating a
inflation.
©2000 The American Physical Society06-1
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II. PERTURBATION EQUATIONS FOR MULTIPLE
SCALAR FIELDS

We considerN scalar fields with the Lagrangian densit

L52V~w1 , . . . ,wN!2
1

2 (
I 51

N

gmnw I ,mw I ,n , ~1!

and minimal coupling to gravity. In order to study the ev
lution of linear perturbations in the scalar fields, we make
standard splittingw I(t,x)→w I(t)1dw I(t,x). The field equa-
tions, derived from Eq.~1! for the background homogeneou
fields, are

ẅ I13Hẇ I1Vw I
50, ~2!

whereVx5]V/]x, and the Hubble rate,H, in a spatially flat
Friedmann-Robertson-Walker~FRW! universe, is deter-
mined by the Friedman equation:

H25S ȧ

a
D 2

5
8pG

3 FV~w I !1
1

2 (
I

ẇ I
2G , ~3!

with a(t) the FRW scale factor.
Consistent study of the linear field fluctuationsdw I re-

quires that we also consider linear scalar perturbations of
metric, corresponding to the line element1

ds252~112A!dt212aB,idxidt1a2

3@~122c!d i j 12E,i j #dxidxj , ~4!

where we have not at this stage specified any partic
choice of gauge@29,25,30#.

Scalar field perturbations, with comoving wavenumbek
52pa/l for a mode with physical wavelengthl, then obey
the perturbation equations

d ẅ I13Hd ẇ I1
k2

a2
dw I1(

J
Vw IwJ

dwJ

522Vw I
A1ẇ IF Ȧ13ċ1

k2

a2
~a2Ė2aB!G . ~5!

The metric terms on the right-hand side, induced by the s
lar field perturbations, obey the energy and momentum c
straints

3H~ ċ1HA!1
k2

a2
@c1H~a2Ė2aB!#524pGdr, ~6!

ċ1HA524pGdq.
~7!

1We follow the notation of Ref.@29#, apart from our use ofA
rather thanf as the perturbation in the lapse function.
02350
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The total energy and momentum perturbations are given
terms of the scalar field perturbations by

dr5(
I

@ẇ I~d ẇ I2ẇ IA!1Vw I
dw I # ~8!

dq,i52(
I

ẇ Idw I ,i . ~9!

These two equations can be combined to construct a ga
invariant quantity, the comoving density perturbation@25#

em[dr23Hdq

5(
I

@ẇ I~d˙w I2ẇ IA!2ẅ Idw I #, ~10!

which is sometimes used to represent the total matter pe
bation.

Because the anisotropic stress vanishes to linear orde
scalar fields minimally coupled to gravity, we have a furth
constraint on the metric perturbations:

~a2Ė2aB!•1H~a2Ė2aB!1c2A50. ~11!

The coupled perturbation equations~5!–~9! and ~11! are
probably most often solved in the zero-shear~or longitudinal
or conformal Newtonian! gauge, in whicha2Ėl2aBl50
@29#. The two remaining metric perturbation variables whi
appear in the scalar field perturbation equation,Al5F and
c l5C, are then equal in the absence of any anisotro
stress by Eq.~11!.

Another useful choice is the spatially flat gauge, in whi
cQ50 @30,26#. The scalar field perturbations in this gaug
are sometimes referred to as the Sasaki or Mukhanov v
ables@31#, which have the gauge-invariant definition

QI[dw I1
ẇ I

H
c. ~12!

The shear perturbation in the spatially flat gauge is sim
related to the curvature perturbation,C, in the zero-shear
gauge:

a2ĖQ2aBQ5a2Ė2aB1
1

H
c5

1

H
C. ~13!

The energy and momentum constraints, Eqs.~6! and ~7!, in
the spatially flat gauge thus yield

k2

a2
C524pGem , ~14!

HAQ524pGdqQ , ~15!

where em is given in Eq.~10!, and from Eq.~9! we have
dqQ52( I ẇ IQI .
6-2
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The equations of motion, Eq.~5!, rewritten in terms of the
Sasaki-Mukhanov variables, and using Eqs.~14! and~15! to
eliminate the metric perturbation terms in the spatially fl
gauge, become@32#

Q̈I13HQ̇I1
k2

a2
QI1(

J
FVw IwJ

2
8pG

a3 S a3

H
ẇ I ẇJD •GQJ50.

~16!

A. Curvature and entropy perturbations

The comoving curvature perturbation@33,34# is given by

R[c2
H

r1p
dq

5H(
I S ẇ I

(
J

ẇJ
2D QI . ~17!

This can also be given in terms of the metric perturbation
the longitudinal gauge as@29#

R5C2
H

Ḣ
~Ċ1HF!. ~18!

For comparison we give the curvature perturbation
uniform-density hypersurfaces,

2z[c1H
dr

ṙ
, ~19!

first introduced by Bardeen, Steinhardt and Turner@35# as a
conserved quantity for adiabatic perturbations on large sc
@36,5#. It is related to the comoving curvature perturbation
Eq. ~17! by a gauge transformation

2z5R1
2r

3~r1p! S k

aHD 2

C, ~20!

where we have used to the constraint equation~14! to elimi-
nate the comoving density perturbation,em . Note thatR and
2z thus coincide in the limitk→0.

Both R and 2z are commonly used to characterize t
amplitude of adiabatic perturbations as both remain cons
for purely adiabatic perturbations on sufficiently large sca
as a direct consequence of local energy-momentum con
vation @5#, allowing one to relate the perturbation spectru
on large scales to quantities at the Hubble scale cros
during inflation in the simplest inflation models@35,37#.

A dimensionless definition of the total entropy perturb
tion ~which is automatically gauge-invariant! is given by

S5HS dp

ṗ
2

dr

ṙ
D , ~21!

which can be extended to define a generalized entropy
turbation between any two matter quantitiesx andy:
02350
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Sxy5HS dx

ẋ
2

dy

ẏ
D . ~22!

The total entropy perturbation in Eq.~21! for N scalar fields
is given by

S5

2S V̇13H(
J

ẇJ
2D dV12V̇(

I
ẇ I~d ẇ I2ẇ IA!

3S 2V̇13H(
J

ẇJ
2D(

I
ẇ I

2
,

~23!

where the perturbation in the total potential energy is giv
by dV5( IVw I

dw I .

The change inR on large scales~i.e., neglecting spatia
gradient terms! can be directly related to the non-adiaba
part of the pressure perturbation@1,5,38#

Ṙ'23H
ṗ

ṙ
S. ~24!

We will thus now consider the evolution of the adiabatic a
entropy perturbations in both one- and two-field models
inflation.

B. Single field

Perturbations in a single self-interacting scalar field ob
the gauge-dependent equation of motion

d ẅ13Hd ẇ1S k2

a2
1VwwD dw

522VwA1ẇF Ȧ13ċ1
k2

a2
~a2Ė2aB!G , ~25!

subject to the energy and momentum constraint equat
given in Eqs.~6!–~9!.

The scalar field perturbation in the spatially flat gauge h
the gauge-invariant definition, Eq.~12!,

Qw[dw1
ẇ

H
c. ~26!

For a single field this is directly related to the curvatu
perturbation in the comoving gauge, where the moment
dq52ẇdw, vanishes

R5c1
H

ẇ
dw5

H

ẇ
Qw . ~27!

It is not obvious that the intrinsic entropy perturbation f
a single scalar field, obtained from Eq.~23!,

S5
2Vw

3ẇ2~3Hẇ12Vw!
@ẇ~d ẇ2ẇA!2ẅdw#, ~28!
6-3
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should vanish on large scales. Because the scalar field o
a second-order equation of motion, its general solution c
tains two arbitrary constants of integration, which can d
scribe both adiabatic and entropy perturbations. HoweveS
for a single scalar field is proportional to the comoving de
sity perturbation given in Eq.~10!, and this in turn is related
to the metric perturbation,C, via Eq. ~14!, so that@39#

S52
Vw

6pGẇ2@3Hẇ12Vw#
S k2

a2
C D . ~29!

In the absence of anisotropic stresses,C must be of order
AQ , by Eq. ~11!, and hence the non-adiabatic pressure
comes small on large scales@6,39,10#. The amplitude of the
asymptotic solution for the scalar field at late times~and
hence large scales! during inflation thus determines the am
plitude of an adiabatic perturbation.

The change in the comoving curvature perturbation
given by

Ṙ5
H

Ḣ

k2

a2 C, ~30!

and hence the rate of change of the curvature perturba
given byd ln R/d ln a;(k/aH)2, becomes negligible on larg
scales during single-field inflation.

C. Two fields

In this section we will consider two interacting scal
fields, f[w1 and x[w2. The analysis developed her
should be straightforward to extend to include additional s
lar fields, but we do not expect to see any qualitatively n
features in this case, so for clarity we restrict our discuss
here to two fields.

In order to clarify the role of adiabatic and entropy pe
turbations, their evolution and their inter-relation, we defi
new adiabatic and entropy fields by a rotation in field spa
The ‘‘adiabatic field,’’ s, represents the path length alon
the classical trajectory, such that

ṡ5~cosu!ḟ1~sinu!ẋ, ~31!

where

cosu5
ḟ

Aḟ21ẋ2
, sinu5

ẋ

Aḟ21ẋ2
. ~32!

This definition, plus the original equations of motion forf
andx, give

s̈13Hṡ1Vs50, ~33!

where

Vs5~cosu!Vf1~sinu!Vx . ~34!

As illustrated in Fig. 1,ds is the component of the two-field
perturbation vector along the direction of the backgrou
02350
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fields’ evolution. Conversely, fluctuations orthogonal to t
background classical trajectory represent non-adiabatic
turbations, and we define the ‘‘entropy field,’’s, such that

ds5~cosu!dx2~sinu!df. ~35!

From this definition, it follows thats5const along the clas
sical trajectory, and hence entropy perturbations are a
matically gauge-invariant@40#. Perturbations inds, with
ds50, describe adiabatic field perturbations, and this is w
we refer tos as the ‘‘adiabatic field.’’

The total momentum of the two-field system, given
Eq. ~9!, is then

dq,i52ḟdf ,i2ẋdx ,i52ṡds ,i , ~36!

and the comoving curvature perturbation in Eq.~17! is given
by

R5c1HS ḟdf1ẋdx

ḟ21ẋ2 D
5c1

H

ṡ
ds. ~37!

This expression, written in terms of the adiabatic field,s, is
identical to that given in Eq.~27! for a single field.

We can also write Eq.~37! as

R5~cos2u!Rf1~sin2u!Rx , ~38!

where we define the comoving curvature perturbation
each of the original fields as

RI[c1
H

ẇ I

dw I5
H

ẇ I

QI . ~39!

FIG. 1. An illustration of the decomposition of an arbitrary pe
turbation into an adiabatic (ds) and entropy (ds) component. The
angle of the tangent to the background trajectory is denoted bu.
The usual perturbation decomposition, along thef and x axes, is
also shown.
6-4
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However, even fields with no explicit interaction will in gen
eral have non-zero intrinsic entropy perturbations on la
scales in a multi-field system due to their gravitational int
action, so thatRI for each field is not conserved. Althoug
the intrinsic entropy perturbation for each field is still of th
form given by Eq.~28!, it is no longer constrained by Eq
~14! to vanish ask→0. This is in contrast to the case o
non-interacting perfect fluids, where it is possible to defin
constant curvature perturbation for each fluid on large sc
@5#.

The comoving matter perturbation in Eq.~10! can be writ-
ten as

em5ṡ~d ṡ2ṡA!2s̈ds12Vsds, ~40!

which acquires an additional term, compared with the sing
field case, due to the dependence of the potential upos,
where

Vs5~cosu!Vx2~sinu!Vf . ~41!

The perturbed kinetic energy ofs has no contribution to first-
order as in the background solutionṡ50, by definition.

The total entropy perturbation, Eq.~23!, for the two fields
can be written as

S5
2

3ṡ2~3Hṡ12Vs!

3$Vs@ṡ~d ṡ2ṡA!2s̈ds#13Hṡ2u̇ds%. ~42!

Combining Eqs.~14!, ~40! and ~42!, we can write

S52
Vs

6pGṡ2@3Hṡ12Vs#
S k2

a2
C D 2

2Vs

3ṡ2
ds. ~43!

Comparing this with the single-field result given in Eq.~29!,
we see that the entropy perturbation on large scales is
solely to the relative entropy perturbation between the t
fields, described by the entropy fieldds.

The change in the comoving curvature perturbation giv
by @1,38#

Ṙ5
H

Ḣ

k2

a2
C1

1

2
HS df

ḟ
2

dx

ẋ
D d

dt S ḟ22ẋ2

ḟ21ẋ2D , ~44!

which can be expressed neatly in terms of the new variab

Ṙ5
H

Ḣ

k2

a2
C1

2H

ṡ
u̇ds, ~45!

where

u̇52
Vs

ṡ
. ~46!

The new source term on the right-hand-side of this equat
compared with the single-field case, Eq.~30!, is proportional
02350
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to the relative entropy perturbation between the two fiel
ds. Clearly, there can be significant changes toR on large
scales if the entropy perturbation is not suppressed and if
background solution follows a curved trajectory, i.e.,u̇Þ0,
in field space@10#. This can then produce a change in t
comoving curvature on arbitrarily large scales~i.e., even in
the limit k→0) @1,39#.

Equations of motion for the adiabatic and entropy fie
perturbations can be derived from the perturbed scalar fi
equations~5!, to give

d s̈13Hd ṡ1S k2

a2
1Vss2 u̇2D ds

522VsA1ṡF Ȧ13ċ1
k2

a2
~a2Ė2aB!G12~ u̇ds!•

22
Vs

ṡ
u̇ds, ~47!

and

d s̈13Hd ṡ1S k2

a2
1Vss2 u̇2D ds

522
u̇

ṡ
@ ṡ~d ṡ2ṡA!2s̈ds#, ~48!

where

Vss5~sin2u!Vxx1~sin 2u!Vfx1~cos2u!Vff , ~49!

Vss5~sin2u!Vff2~sin 2u!Vfx1~cos2u!Vxx . ~50!

When u̇50, the adiabatic and entropy perturbatio
decouple.2 The equation of motion fords then reduces to
that for a single scalar field in a perturbed FRW spacetim
as given in Eq.~25!, while the equation fords is that for a
scalar field perturbation in anunperturbedFRW spacetime.

The only source term on the right-hand-side in Eq.~48!
for the entropy perturbation comes from the intrinsic entro
perturbation in thes-field. From Eqs.~14! and~40! we have

ṡ~d ṡ2ṡA!2s̈ds52ṡu̇ds2
k2

4pGa2 C, ~51!

and hence we can rewrite the evolution equation for the
tropy perturbation as

2If we employ the slow-roll approximation for the backgroun

fields, ḟ.2Vf/3H and ẋ.2Vx/3H, we obtain u̇.0. This re-
flects the fact that the rate of change ofu is slow – instantaneously
it moves in an approximately straight line in field space. But t
integrated change inu cannot in general be neglected. Even wor
ing within the slow-roll approximation, fields do not in gener
follow a straight line trajectory in field space.
6-5
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d s̈13Hd ṡ1S k2

a2
1Vss13u̇2D ds5

u̇

ṡ

k2

2pGa2 C. ~52!

Note that this evolution equation is automatically gaug
invariant and holds in any gauge. On large scales the in
mogeneous source term becomes negligible, and we ha
homogeneous second-order equation of motion for the
tropy perturbation, decoupled from the adiabatic field a
metric perturbations. If the initial entropy perturbation
zero on large scales, it will remain so.

By contrast, we cannot neglect the metric back-react
for the adiabatic field fluctuations, or the source terms du
the entropy perturbations. Working in the spatially fl
gauge, defining

Qs5dsQ5ds1
ṡ

H
c, ~53!

and using

AQ54pG
ṡ

H
Qs , ~54!

we can rewrite the equation of motion for the adiabatic fi
perturbation as

Q̈s13HQ̇s1F k2

a2
1Vss2 u̇22

8pG

a3 S a3ṡ2

H
D •GQs

52~ u̇ds!•22S Vs

ṡ
1

Ḣ

H D u̇ds. ~55!

When u̇50, this reduces to the single-field equation of m
tion, but for a curved trajectory in field space, the entro
perturbation acts as an additional source term in the equa
of motion for the adiabatic field perturbation, even on lar
scales.

In order for small-scale quantum fluctuations to produ
large-scale~super-Hubble! perturbations during inflation, a
field must be ‘‘light’’ ~i.e., overdamped!. The effective mass
for the entropy field in Eq.~52! is ms

25Vss13u̇2. For ms
2

. 3
2 H2, the fluctuations remain in the vacuum state and fl

tuations on large scales are strongly suppressed. The
tence of large-scale entropy perturbations therefore requ

ms
2[Vss13u̇2,

3

2
H2. ~56!

III. APPLICATION TO ENTROPY-ADIABATIC
CORRELATIONS FROM INFLATION

Equations~52! and~55! are the key equations which gov
ern the evolution of the adiabatic and entropy perturbati
in a two field system. Together with constraint equatio
~51! and~54! for the metric perturbations, they form a close
set of equations. They allow one to follow the effect on t
adiabatic curvature perturbation due to the presence of
02350
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tropy perturbations, absent in the single field model. This
turn will allow us to study the resulting correlations betwe
the spectra of adiabatic and entropy perturbations produ
on large scales due to quantum fluctuations of the fields
small scales during inflation.

A useful approximation commonly made when studyi
field perturbations during inflation, is to split the evolution
a given mode into a sub-Hubble regime (k.aH), in which
the Hubble expansion is neglected, and a super-Hubble
gime (k,aH), in which gradient terms are dropped.

If we assume that both fieldsf andx are light~i.e., over-
damped! during inflation, then we can take the field fluctu
tions to be in their Minkowski vacuum state on sub-Hubb
scales. This gives their amplitudes at Hubble crossingk
5aH) as

QI uk5aH5
Hk

A2k3
eI~k!, ~57!

whereI 5f,x, Hk is the Hubble parameter when the mo
crosses the Hubble radius~i.e., Hk5k/a), andef andex are
independent Gaussian random variables satisfying

^eI~k!&50, ^eI~k!eJ* ~k8!&5d IJ d~k2k8!, ~58!

with the angled brackets denoting ensemble averages. It
lows from our definitions of the entropy and adiabatic p
turbations in Eqs.~31! and ~35! that their distributions at
Hubble crossing have the same form:

Qsuk5aH5
Hk

A2k3
es~k!, dsuk5aH5

Hk

A2k3
es~k!, ~59!

wherees andes are Gaussian random variables obeying
same relations given in Eq.~58!, with I ,J5s,s.

Super-Hubble modes are assumed to obey the equa
of motion given in Eqs.~55! and ~52!, which we will write
schematically as

Ôs~Qs!5Ŝs~ds!, ~60!

Ôs~ds!50, ~61!

whereÔs(Qs) andÔs(ds) are obtained by settingk50 on
the left-hand side of Eqs.~55! and ~52! respectively, and
Ŝs(ds) is given by the right-hand side of Eq.~55!. As re-
marked before, there is no source term fords appearing on
the right-hand side of Eq.~52! once we neglect gradien
terms. The general super-Hubble solution can thus be wri
as

Qs5A1 f 1~ t !1A2 f 2~ t !1P~ t !, ~62!

ds5B1g1~ t !1B2g2~ t !, ~63!

where the real functionsf 6 and g6 are the growing or de-
caying modes of the homogeneous equations,Ôs( f 6)50
6-6
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andÔs(g6)50, andP(t) is a particular integral of the ful
inhomogeneous equation~60!. Note that the growing-mode
solution f 1}ṡ/H.

Henceforth we shall consider only slow-roll inflatio
where the evolution can be approximated by first-order eq

tions @droppingd s̈ andQ̈s in Eqs.~52! and~55!#, so that we
have3

Qs.A f~ t !1P~ t !, ~64!

ds.Bg~ t !. ~65!

We can, without loss of generality, takef 515g and P50
whenk5aH, so that the amplitudes of the growing modes
Hubble-crossing are given by Eqs.~59! as

A~k!5
Hk

A2k3
es~k!, B~k!5

Hk

A2k3
es~k!. ~66!

From Eq. ~60!, we see that the amplitude of the particul
integralP(t) at later times will be correlated with the ampl
tude of the entropy perturbation,B, and we can writeP(t)
5BP̃(t), where P̃(t) is a real function independent of th
random variableses ,es .

In order to quantify the correlation, we define

^x~k!y* ~k8!&[
2p2

k3 Cxy d~k2k8!. ~67!

The adiabatic and entropy power spectra are given by

PQs
[CQsQs

.S Hk

2p D 2

@ u f 2u1uP̃2u#, ~68!

Pds[Cdsds.S Hk

2p D 2

ug2u, ~69!

while the dimensionless cross correlation is given by

CQsds

APQs
APds

.
gP̃

Ag2Au f 2u1uP̃2u
. ~70!

Note that the adiabatic power spectrum at late times is
ways enhanced if it is coupled to entropy perturbations@i.e.,
P(t)Þ0, in Eq. ~64!#, as the entropy field fluctuations a
Hubble-crossing provide an uncorrelated extra source.

As an illustration, we consider the correlations in the ad
batic and entropy perturbations at the start of the radia
era, produced after double inflation, as studied in Ref.@20#.
The double-inflation potential for two non-interacting b
massive scalar fields is

3We note that in non-slow-roll scenarios the effect of decay
modes may not be negligible on super-Hubble scales, which c
affect the correlations between adiabatic and entropy perturbat
02350
a-

t

l-

-
n

V5
1

2
mf

2 f21
1

2
mx

2x2. ~71!

Following @11#, it is possible to parametrize the backgrou
scalar field trajectory in polar coordinates when both fie
are slow rolling:

x.A N

2pG
sina, f.A N

2pG
cosa, ~72!

whereN52 ln(a/aend) is the number of e-folds until the en
of inflation. The background trajectory can then be expres
as

N.N0

~sina!2/(R221)

~cosa!2R2/(R221)
, ~73!

whereR5mx /mf . The scalar field position angle,a, can be
related to the scalar field velocity angle,u, which we used to
define the adiabatic and entropy perturbations:

tanu.2
mx

2

3Hṡ
A N

2pG
tana. ~74!

The scalar fieldx is assumed to decay into cold da
matter while the scalar fieldf decays into radiation. The
entropy-isocurvature at the start of the radiation-domina
era is described by

Srad[
drc

rc
2

3

4

drg

rg
. ~75!

In Ref. @20#, it is shown how the super-Hubble perturbatio
in the radiation era can be determined in terms of the per
bations during the inflationary era. The fluctuations in bothf
andx fields can contribute to both the adiabatic and entro
perturbations. The adiabatic component comes directly fr
the comoving curvature perturbation,R, at the end of infla-
tion, and is given by

Rrad.2A4pGANk

k3Hk@~sinak!ex~k!1~cosak!ef~k!#.

~76!

The isocurvature perturbation at the start of the radiati
dominated era is related to the entropy perturbation betw
the two fields at the end of inflation@12#

Srad.2
2

3
mx

2 1

H S dx

ẋ
2

df

ḟ
D , ~77!

which yields

Srad.2A4pGANk

k3Hk@R4secak1cosecak#es~k!,

~78!

and

g
ld
s.
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Rrad.A4pGANk

k3Hk

R2tanaksinak

AR2tan2ak11

3H F 1

R2tan2ak

11Ges~k!1F 12R2

R2tanak
Ges~k!J .

~79!

The entropy perturbation during the radiation era only
pends on the entropy perturbation at Hubble-crossing du
the inflationary era, while the adiabatic perturbation dur
the radiation era depends on both the adiabatic and ent
perturbations at Hubble-crossing. This is consistent with E
~52! and~47!, showing that the entropy perturbation sourc
the adiabatic perturbation on super-Hubble scales, but
vice versa.

As both Eqs.~78! and~79! depend on the random variab
es , the adiabatic and entropy perturbations will be cor
lated, and we find

CRradSrad

APRrad
APSrad

.
~R221!sin 2ak

2AR4sin2ak1cos2ak

. ~80!

This correlation is investigated fully in@20# in terms of the
usual scalar field perturbation variables. An interesting po
that can easily be seen from Eq.~79! is thatRrad will depend
only on es if R[mx /mf51. Thus, there will be no corre
lation if R51. As can be seen from Eq.~73!, a will be
constant forR51 and thus so willu; a straight-line back-
ground trajectory will be obtained forR51. This is consis-
tent with Eq. ~47!, where it can be seen that the entro
component only sources the adiabatic component on la
scales ifu̇Þ0.

IV. APPLICATION TO PREHEATING AFTER INFLATION

In this section we use the entropy-adiabatic decomp
tion of the perturbation equations to investigate the dynam
of super-Hubble perturbations during a period of prehea
at the end of inflation. We consider three models, enco
passed by the general effective potential

V5
1

2
m2f21

l

4
f41

1

2
g2f2x21g̃2f3x. ~81!

The essence of preheating lies in the parametric amplifi
tion of field perturbations due to the time dependence of th
effective mass, e.g.,mx

2[Vxx5g2f2. In the simplest cases
the inflatonf simply oscillates at the end of inflation.

Preheating typically amplifies long-wavelength mod
preferentially. As discussed in@41,42,39#, amplification of
super-Hubble modes does not lead to a violation of causa
due to the super-Hubble coherence of the inflaton osc
tions set up by the prior inflationary phase. IfR is amplified
on super-Hubble scales, this will alter the resulting impr
on the anisotropies of the cosmic microwave backgrou
~CMB!, and break the simple link between CMB observ
tions and inflationary models.
02350
-
g
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We consider first the case where the inflaton is mass
(mÞ0) and neglect its self-interaction (l50). The tradi-
tional resonance parameter for the strength of preheatin
the end of inflation is

q5
g2f0

2

4m2
. ~82!

In the massive case, where modes move through the r
nance bands of the Mathieu chart, and for inflation at h
energies where the expansion of the universe is very vig
ous, q needs to be much larger than one if the parame
resonance is to be efficient@43#. It is possible to have largeq
even for small coupling,g2!1, asm!f0;MPl . We can
write the effective mass of thex during inflation as

mx
2

H2
'

3q

p

MPl
2

f0
2

, ~83!

wheref0 is the initial value off at the beginning of pre-
heating. It then follows from Eq.~83! that x must be heavy
during inflation for this simple potential if efficient prehea
ing is to be obtained.

Any change in the curvature perturbationR on very large
scales must be due to the presence of non-adiabatic pe
bations. In@44,45#, it was shown how, ifmx

2@mf
2 during

inflation with l505g̃, then thex field and hence any non
adiabatic perturbations on large scales are exponentially
pressed during inflation, and no change toR occurs before
backreaction ends the resonance.

However, wheng̃Þ0, the x field will have a nonzero
vacuum expectation value~vev! during inflationeven along
the valley of the potential. In the slow-roll limit for f, this
vev is determined byVx50, which gives

x'2
g̃2

g2
f. ~84!

The g̃ coupling has the effect of rotating the valley of th
potential — which the attractor trajectory approximately fo
lows — from x50, through an angle

u'2
g̃2

g2
, ~85!

where, to ensure that the chaotic inflation scenario is
drastically altered, we assume@46#

g̃

g
!1. ~86!

The effect ofg̃ is to change the attractor for bothx and
dx during inflation, since thex anddx equations of motion
gain inhomogeneous driving terms proportional tog̃2f3.
This does not necessarily imply thatR will be amplified by
preheating at the end of inflation as purely adiabatic per
bations along the slow-roll attractor now have a compon
6-8
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alongx as well asf. In order to determine whether or no
the evolution of the comoving curvature perturbation,R, on
super-Hubble scales is affected, we need to follow the e
lution of the entropy field perturbation,4 defined by Eq.~35!,
which gives

ds'dx1
g̃2

g2
df. ~87!

In the limit g̃/g→0 we recoverds→dx. Crucially, the evo-
lution equation~52! for the entropy perturbation hasno in-
homogeneous terms in the long-wavelength (k→0) limit,
even forg̃Þ0, and entropy perturbations will only be non
negligible on super-Hubble scales if the entropy field is lig
during inflation.

In the slow-roll limit and on large scales, the evolutio
equation~52! for the entropy perturbation has the appro
mate solution@47#

ds}a23/2S k

aHD 2n

, ~88!

where

n25
9

4
2

ms
2

H2
, ~89!

and the effective mass of the entropy field,ms is defined in
Eq. ~56!. The power spectrum of entropy perturbations is

P ds}H3S k

aHD 322Re(n)

. ~90!

The real part ofn vanishes forms
2/H2.9/4, leaving a steep

k3 blue spectrum, which is exponentially suppressed w
time.

Using Eqs.~50!, ~81!, ~85!, and~86!, one finds that

ms
2

H2
'F124qS g̃

g
D 4S f

f0
D 2G21

3qMPl
2

pf0
2

, ~91!

ms
2/H2 has a local minimum forg̃50. Thus the additionalg̃

term in Eq.~81! serves toincreasethe entropy mass relativ
to the Hubble parameter, and so does not avoid the supp
sion of the entropy perturbation. Theg̃ term therefore does
not significantly alter the spectral index of the spectrum
entropy perturbations, which remains steep ifq@1. The
strongly blue spectrum implies that non-linear backreact
is dominated by small-scale modes, which go nonlinear lo

4From Eq.~45! we see thatu̇ds must be non-zero to changeR on

large scales. Becauseu̇'0, from Eq. ~85!, the entropy remains
decoupled from the adiabatic perturbation during slow-roll inflat

in this model. But at the end of inflation, during preheating,u̇
Þ0.
02350
o-

t

h

es-

f

n
g

before the cosmological modes, implying that resona
ends beforeR changes@43,44#.

We have also integrated the field equations numerically
avoid relying on any slow-roll-type approximations. To n
merically evaluate the entropy perturbation, one could sim
late the original perturbation variablesdf anddx, using Eq.
~5!, and then work outds algebraically via Eq.~35!. How-
ever, this approach is prone to numerical instability when
entropy perturbation is suppressed. To illustrate this, we t
g̃5831023g and q53.83105. After about 60 e-folds of
inflation, one can see analytically thatds;10240. Numeri-
cally, dx cosu;df sinu;1028 during inflation. So in order
to obtain a high enough accuracy to model the suppressio
ds, we require thatdx cosu anddf sinu have to be simu-
lated to a relative accuracy of;1028/10240510232. This
means approximately 32 significant figures are need
which is beyond the capability of standard numerical or
nary differential equation integration routines.

If instead we use the new adiabatic and entropy field p
turbations and integrate Eqs.~52! and~55!, then this numeri-
cal instability doesnot occur, since one no longer needs
find the difference between two nearly equal quantiti
Simulation results using these equations are compared
the results using the old field perturbation equations~5! in
Fig. 2. The simulations show that the growth inR is driven
by ds, in concordance with Eq.~45!. As can be seen, the
numerical result using the field perturbation equations fa
to track the exponential decay of the entropy during inflat
and thus underestimates the delay in the growth ofR.

FIG. 2. Numerical simulations of the entropy and comovi
curvature perturbations during inflation and preheating, withl

50, g5231023, g̃5831023 g andm51026M pl . The ‘‘new’’
prefix indicates that the field perturbations were evaluated by
merically integrating Eqs.~52!, and ~55!, while the ‘‘old’’ prefix
indicates that the perturbations were evaluated by integrating
original field equations~5!. We have not included any higher-orde
corrections such as back reaction from small-scale perturbat
which would shut down the resonant amplification ofds at some
point.
6-9
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In practice, we find a similar instability if we try to con
struct the gauge-invariant metric perturbation,C, required in
Eq. ~52! in terms of the constraint Eq.~51!. This includes the
intrinsic entropy perturbation in thes field, which does be-
come small at late times or large scales, but results from
diminishing difference between finite terms. It is more sta
numerically to follow the value ofC at late times using the
evolution equation

Ċ1S H2
Ḣ

H
DC54pGṡQs , ~92!

which can be obtained from the definition ofC given in Eq.
~14! and the metric constraint equations~7! and ~11!.

Note that the adiabatic-entropy decomposition becom
ill-defined if ṡ50, i.e. both fields stop rolling, and this ca
cause numerical instability during preheating if the traject
is confined to a narrow valley. This can occur, for instan
wheng̃50 and only thef field oscillates. The original field
perturbationsdf and dx remain well-defined, although th
comoving curvature perturbationR, defined in Eq.~37! be-
comes singular whenṡ50 @3#. This does not happen for th
simulation results shown in Fig. 2 withg̃Þ0 where the fields
oscillate in a two-dimensional potential well.

The massive inflaton potential (mÞ0) safeguards the
conservation ofR by a bootstrap effect: if preheating
strong,q@1, then the entropy perturbation is heavy duri
inflation; on the other hand, if the entropy is light durin
inflation, thenq<1 and preheating is very weak. This is n
altered by a rotation of the trajectory in field space (g̃Þ0) as
can be most quickly seen by noting, from Eqs.~49! and~50!,
that

Vss1Vss5Vff1Vxx . ~93!

Thus if thex field is very massive (Vxx@H2), we must have
Vss1Vss@H2. For slow-roll inflation we requireVss!H2

and henceVss@H2.
This situation does not hold if the entropy mass dur

inflation is not linked to the entropy mass during preheat
@46#, or in massless (m50) self-interacting (lÞ0) inflation
models @48,38,49#. This latter class of models are almo
conformally invariant, allowing analytical results from Flo
quet theory to be applied. The Floquet index,mk , which
determines the rate of exponential growth, can reach
maximum ask/aH→0, when g2/l52n2 for integer n,
thereby implying maximum growth for the longes
wavelength perturbations. Assuming slow-roll inflatio
driven by V'lf4/4, we see from Eq.~93! that Vss1Vss
.Vxx5g2f2 and thus that the entropy field is massi
(Vss.9H2/4) whenever

g2

l
.8p

f2

MPl
2

. ~94!

However, we can have resonance at large scales forn51
andg2/l52, when the entropy field need not be heavy d
02350
e
e

s

y
,

g
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-

ing inflation and no exponential suppression takes place
that the subsequent growth ofR is explosive @48#. The
growth of R occurs before backreaction can shut off t
resonant growth of the entropy perturbationsds
@48,38,50,49#. Although the region of parameter spac
aroundg2/l52 is thus ruled out, the same does not hold
g2/l@1, since the entropy field is then heavy during infl
tion andds is again suppressed.

V. CONCLUSIONS

We have introduced a new formalism in which to follo
the evolution of adiabatic and entropy perturbations dur
inflation with multiple scalar fields. We decompose arbitra
field perturbations into a component parallel to the ba
ground solution in field space, termed theadiabatic pertur-
bation, and a component orthogonal to the trajectory, term
the entropyperturbation. We have rederived the field equ
tions in terms of these rotated fields in Eqs.~52! and ~55!.
These show that the adiabatic perturbation on large sc
can be driven by the entropy perturbation, while the entro
perturbation itself obeys a homogeneous second-order e
tion on super-Hubble scales. There can only be signific
change in the large-scale comoving curvature perturbatio
there is a non-negligible entropy perturbation,and if the
background trajectory in field space is curved.

Our formalism can be applied to evaluate the correlat
between the adiabatic and entropy perturbations at the en
inflation. As an example we considered the example of t
non-interacting fields in double inflation, calculating th
cross correlation between the adiabatic and entropy pertu
tions.

The effect of preheating on the large-scale curvature p
turbation can also be addressed within our formalism. T
mass of the entropy field during inflation is a crucial qua
tity. If the entropy field is heavy, then any fluctuations o
large scales are suppressed to negligible values at the b
ning of preheating. This squeezing of the entropy pertur
tion is most accurately modeled numerically using our e
lution equation for the entropy perturbation. If it is estimat
from the usual field equations, it may contain large nume
cal errors when there is a non-trivial background trajectory
field space.

Note added.After completing this work we became awa
of related work by Hwang and Noh@51# who also study
entropy perturbations in multiple field inflation. They fin
that the adiabatic and entropy modes decouple on su
horizon scales when the effect of curvature of the traject
in field space is neglected, but we have shown that this c
not in general be assumed, even in models of slow-roll
flation.
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