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Quantization of the Taub model with extrinsic time
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The paper addresses the quantization of cosmological models, with application to the Taub model. By
reducing the model with extrinsic time, a formalism is developed in order to define a conservedigpro
inner product in the space of solutions of the Wheeler-DeWitt equation. A quantum version of classical
canonical transformations is introduced for connecting the solutions of the Wheeler-DeWitt equation with the
wave functions of the reduced system. Once this correspondence is established, boundary conditions on the
space of solutions of the Wheeler-DeWitt equation are obtained to directly select the physical subspace.
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I. INTRODUCTION incorporated to the action as a constraitd=p,
+h(g*,p,,t)=0, so yielding the following action:

General relativity is an example of a parametrized system,
i.e., a system whose action is invariant under changes of the
integrating parameter “reparametrization,” this invariance
being a consequence of the covariance of the theory. This
means that in general relativity there is no privileged timewhereN is the Lagrange multiplier whose variation assures
variable. On the contrary, in the ordinary formulation of that the constraint does hold. This action is invariant under
quantum mechanics there is a time parameter besides the trueparametrizations— 7+ e(7). The time variable satisfies
degrees of freedom, and the inner product remains conservelde Poisson brackets
in the time evolution of the system. This difference between

: 2 dqi
S[Q'(T),pi(r),N(T)]=f (piE—NH(q,p) dr, (2)

71

general relativity and quantum mechanics, known as the {t,H}=1. ()]
problem of timg[1-3], is one of the main obstacles for find- _ )
ing a quantum theory of gravity. Once the system has been parametrized, it can be reduced

The evolution of a dynamical system is characterized by/Sing any time variable provided that it satisfies E8).
the way in which its dynamical variables evolve as a func-These kinds of time variables are called global tirf}s In
tion of time. In this formulation, time is a relevant physical order to generalize this resriction let us suppose that we
parameter, clearly distinct from the dynamical variablesknow a globally well defined time variablé=t(q',p;)
There is nevertheless an alternative formulation of dynamicghich satisfies
(parametrized system# which time is mixed with the dy- _
namical variabled4]. A parametrized system can be ob- {t,H}h=0="F(q,p)>0. (4)
tained from an actioi$(q*,p,) which is not invariant under ) _ o _
reparametrizations by raising the time to the rank of a dy- The important fact is that has a definite sign on the
namical variable. Let us start with an action of the form  constraint surfacét could also be negativeln this case the

variablet is a global time associated with the Hamiltonian
w2 . . B H= f %(q,p)H.

Sla%.p*l= . P.dg*—h(a*.p,.dt  p=1,...n. The constraintH=0 could also be expressed in a set of

' (1) variables in which the Hamiltoniad does not have the form
H=po+h. In fact we can perform a canonical transforma-

By identifying q‘?zt, po=—h one can rewrite the integrand tion
as p;dg'=p;(dg'/d7)dr, i=0,...n. In this way the ex- {q',pi}={q°=t, poz_h'qﬂypﬂ}_,{Qi’pi}
tended set of variables are left as functions of some physi-
cally irrelevant parameter. The set(q',p;} can be indepen- where now the time is hidden among the rest of the vari-
dently varied provided that the definition op; is  ables. In other words, a constraint of the forhs pg+h can
be disguised by scaling it or by performing canonical trans-

formations.
*Electronic address: gabrielcatren@hotmail.com One of the main properties of the Hamiltonian formula-
"Electronic address: ferraro@iafe.uba.ar tion of general relativity is that the Hamiltonian is con-
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strained to be zero, making manifest that general relativity ishe particular metric tensay;; used to represent it. The quan-

a parametrized system. In cases like this, in which the theorjum version of the Hamiltonian constraint is the so-called
is an already parametrized system, the invariance under ref¥heeler-DeWitt equation.

arametrizations means that there is no privileged time vari- Many of the tentatives for quantizing general relativity
able. To reduce the system means to select among the digegan addressing the analogy between the Wheeler-DeWitt
namical variables a proper global time, i.e., a variable whichequation and the Klein-Gordon equation. In fact both sys-
monotonically increases along any dynamical trajectory, tdems have Hamiltonian constraints which are hyperbolic in
work as a physical clock. In this way we can express thehe momenta. The constraint associated with the motion of a
evolution of the canonical variables as a function of thisparticle in a pseudo-Riemannian geometry has the form
physical clock. The first step to reduce the system is thus to

perform a canonical transformation in order to find a set of Hpamc|e=g”(qk)pi pj— m?=0. (5)
variables{q',p;} where the variablegy=t is a global time. _ . _
The Hamilton equations are The space of solutions of the Klein-Gordon equation can be
turned into a Hilbert space with a positive definite inner
dt product only if the background is stationary. In this case the
ar Nf, Hilbert space of the physical states will be the subspace of

positive norm, this being equivalent to consider just one of
the sheets of the hyperbolic constraint surface. Choosing the

a9, h coordinates in a way tha*°=0 (=g°°=gy4') and calling
dr ap*’ yH'=—gog"” we can write Eq(5) in the form
dpr o Hparticle= 9% PoPo— 7*"P.P,— GooM?)
dr " aq,’ =g%(Po—\¥"*"P.P,+ Goo”)
The dynamics of the system is thus undetermined unless X(Po+ V¥*"PuPyt dooM?). (6)

one fixes a gauge, i.e., unless one chooses a physical clock. i -
Choosing the gauge=t means choosing It is thus necessary to find a temporal Killing vector of the

supermetric which also should be a symmetry of the poten-
tial term (this property could be relaxed to a conformal Kill-
1 . ) X .
N(7)= ] ing vecto. In this case the proper time variable to reduce the
f[g,(7),p*(7)] system is the parameter of the Killing vector. Otherwise
there would be pair creation. In order to build a good anal-
One of the main approximations for quantizing generalogy with the relativistic particle, it is also necessary to have
relativity begins by reformulating it under a Hamiltonian for- a positive definite potential term for playing the role of the
mulation [Arnowitt-Deser-Misner (ADM formalism [6]]. mass term. If the potential is positive definite, the momentum
Within the framework of this canonical formalism or pg does not go to zero on the constraint surfeice 0. This
geometrodynamics it is supposed that the Lorentzian spaceaeans that the Poisson bracket,H}=29%p, has a defi-
time manifoldsM are diffeomorphic tdRX S whereSrepre-  nite sign on each sheet of the constraint surface. If we choose
sents a collection of spacelike hypersurfageparametrized  po+\y**p,p,+ Joom?>=0, the momentump,, and so
by a real time parameté((foliation). The Riemannian metric {q,,H}, will be negative on this shedprovided thatg®
gij of one of these hypersurfac@s play the role of the >0). The other factor has then a definite sign on this sheet
configuration variable. The analogous of the configuratiomplaying the role of the functiof defined in Eq.(4). In this
spaceR" is the space of all the Riemannian metrigscalled  casef will be negative, being this the reason faj,=t,H}
superspace. The conjugated momenmtaare directly related <0. Butt is still the variable which monotonically increases

with the way in which the hypersurfadeis embedded inthe  on any dynamical trajectory becauleH}=1 where
manifold M, i.e., with the extrinsic curvature of the hyper-

surface,. The covariance of the theory under general coor- B H
dinate transformations is reflected, within this formalism, in H=— = 5
the presence of four constraints per each point of space-time. 9" (Po— VY*'PuP,+ gooM?)

The so-called Hamiltonian constraint assures the invariance . ) )

of the theory under a changing of the foliation, while the The quantum physical states can be obtained by solving a
momenta constraints assure the invariance under a change $¢hralinger equation with a positive definite operatoas-

the spatial coordinates used to represent the spatial geometgciated with the Hamiltonian of the reduced system
of each hypersurface. The states of the corresponding quarejl«y”VpMpVJr JooM?. As it was said before, to fix the gauge
tum theoryW[g;;] are functionals of the spatial metrg;; t= 7 implies to choosé&N=1/f. The relation between proper
which satisfy the quantum version of the classical constraintime and the time variable chosen to represent the hypersur-
in accordance with the Dirac method. The quantum versioriaces of simultaneity isiT= f~'dt whereT is the proper

of the momenta constraints implies that the wave functiortime, this being a consequence of the way in which the
depends on the geometRg of the hypersurface but not on space-time interval is expressed in the ADM formalism. In
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geometrodynamics there is a conformal Killing vector of the Q,=t=t(qy,py),
supermetrid 7], but this vector is not as well a symmetry of

the potential term. This potential term is the spatial curvature P,= ptz[hql(ql,pl)]l’z,
[6], which can be negative in some regions of the configura-

tion space. Thus it is not possible to associate an opehator Q.=0,,

with the square root, as one effectively does for the relativist

particle. P.=Pu,

There are two main approaches for achieving this quanti-
zation program. One possibility is to quantize the system
without reducing it. The resulting Wheeler-DeWitt equation

is a hyperbolic equation while the Schifnger equation as- lobal time variable which is a function of both original

sociated with the reduced system is a parabolic one. Thganonical coordinates and momenta. The generator function

former has then more solutions than the latter, so being négg the canonical transformation and the corresponding mo-
essary to define boundary conditions in order to select theyenta are

physical solutions. It is not clear in this approach how to
define a conserved inner product without having reduced the F1(g.,t)=—sinh(t)[V(q,)]*2,
system, i.e., without knowing which variable plays the role

of time. Another proposal is to perform a canonical transfor- dFq
prop P pi="2 = —cosht[V(qy)]*2

m=2,...N. 9

In this way we could separate an extrinsic timei.e., a

mation in order to find a Hamiltonian of the for(g) with a ot
positive definite potential term independent of the variable
go- The formalism of the relativistic particle can then be Ik htTV _ypdV
applied usingg, as a proper time variable. The system can pql_o')_ql_ —3 sinht[V(qy)] do,
thus be quantized by means of the corresponding ‘Schro
dinger equation associated with one of the sheets of the con- 1l l/Zd(InV)
. : =—3 sinht[V(qy)] (10
straint surface. The Hilbert space of the quantum states can dg;

be endowed with the natural inner product associated with

the Schrdinger equation. This approach has the problent® that

that different choices of global time variables can lead to

different quantum theories. 2 +V(g)=V(d.)sinRt+V
[dInVidg, ]2 pg, tV(a)=V(a,) (a1)

—_ —_ 12
Il. PROPOSED FORMALISM =V(qy)costft=p;.

In this work we will address the quantization of minisu- The Hamiltonian in the new set of variables has the form

perspace cosmological models. The quantization program 9

will be as follows. We will start with a Hamiltonian con- Ho=pi—Nq,(Qu.Pu). (12)
straint such that none of the variables is a global time. We o ) . .
will suppose that it is possible to perform a coordinate trans- NUS: when the Hamiltoniah, (q,.,p,,) is positive definite
formation e} that a Subsystem depending on just one pair (ﬁnd independent of tim’eone getS a Constraint SUCh that the

canonical variable$q, ,p,} is separated in the Hamiltonian analogy with the relativistic particle does hold, and one can
constraint quantize the reduced model by means of the parabolic Schro

dinger equation associated with one of the sheets of the con-
straint surface.

Once the system was reduced and quantized we want to
find out what kind of boundary conditions should be imposed
on the solutions of the Wheeler-DeWitt equation expressed
o in the original set of variables. As was pointed out, the hy-
where the Hamiltoniamg (q;,p;) has the form perbolic Wheeler-DeWitt has twice the number of indepen-

dent solutions than the parabolic Scoflirmyer equation. It is
then necessary to impose proper boundary conditions for se-
lecting the physical solutions. In order to do that we will
—2p§+V(q1) (8)  follow the lines of work used in Ref8]. Knowing the clas-
[dinV/da,] sical canonical transformation for reducing the model, its
analogue in the quantum level can be defined. In FBfthe
conditions for relating the wave functions corresponding to a
with V(g,)>0 andhg >0. In order to find a global time, pair of quantum-mechanical systems whose classical Hamil-
one should look for another canonical transformationtonians are canonically equivalent are studied. If one has two
{qi,pi}—{Q;,P;} i=1,... N such that arbitrary Hamiltonians related at the classical level by a ca-

Hq:hql(qlipl)_hqﬂ(q,u’py) ,LLZZ, e !N (7)

hql(Ql’pl):
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nonical transformation corresponding to the generating func- The Taub model is a particular case of the Bianchi type
tion F1(q,Q), the main issue is to find out what kind of IX model for 3_=0, p_=0. For this case the resulting
integral transforms can be defined in order to relate the wavelamiltonian constrain(scaled with the factoe™3¢) is
functions corresponding to each quantum-mechanical sys-

tem. Generalizing the Fourier transform, a relationship of the H=—p2+p2+12r%e (e ®F+—4e 2F+). (16)

following kind is proposed
If we define the variables andv by

Oc@-NE | a0 9ag @) (12 a=v-2u

. . . . Bi=uU—2v (17)
where F(g,Q) is not in general the generating function

F1(q,Q) for the classical canonical transformation. In Ref. the resulting Hamiltonian igscaled with a constant
[9] it is shown, however, that this function coincides in fact

with the generating function for the classical canonical trans- H=2%(p?+36m%e'?)— t(p3+144m%€®). (18
formation when the Hamiltonian operators satisfy the condi-
tion So, this coordinate transformation separates a subsystem

depending on just one pair of canonical variables, which will
9 - 9 - work as a clock for the other subsystem. The canonical trans-
Hol —i--.q|eF@Q=Hg I%,Q ef@9 (13 formation(10) provides a global time and its conjugated mo-

1%
q mentum:
where some proper boundary conditions in the integration P
limits are also assumed. If the canonical transformation can- t=Arc sinl—( — 6—”e6"), (19
ko

not be represented by means of a generating function of the
first kind, analogous integral transforms and conditions can 5 1 o 5 12
be defined using the corresponding generating function. The Py =36(p, +36m°€ ). (20)
inverse of the integral transforii12) is . o

The generator of this transformation is

+

@@= dg

— o0

2
d ;q(g!QQ) e_iF(q'Q)®E(q)- (14) Fl(v,t):—’ﬂesv sinht. (21)

The Hamiltonian in the new variables results to be

The canonical transformation defined by E#fj0) does sat- 5 1, 2 » 6u
isfy the condition(13). The functionF(q,Q) coincides then H=6p; —5(py+ 144m"€™). (22)
with the generating functiorr,(q,Q). Once defined, this
“canonical quantum transformation” the physical solutions
of the Wheeler-DeWitt equation can be found by transform-
ing the solutions of the Schdinger equation. Finally the

This expression can be factorized in order to obtain a
Hamiltonian linear inp,, so giving

question of defining proper boundary conditions for the so- H=| V6p.+ i [0+ 72ebu
lutions of the Wheeler-DeWitt equation without knowing \/_pt J6 Pyme
how to reduce the system will be addressed.
1
X | \Bp;— —=vpi+ 144m2e® | 23
ll. APPLICATION TO THE TAUB MODEL Vo, V6 Pu @3

A. Reduction The constraintH=0 is fulfilled if one of the factors is

We will study the application of the formalism displayed null on the constraint surface. The other factor has, on the
in the previous section to the particular case known as Taubonstraint surface, a definite sign, so playing the role of the
model. In Bianchi cosmological mode]40] the minisuper- factor f defined before. The scaled Hamiltonian is
space is a three dimensional manifold parametrized by two
parameters 8., ,8_) measuring the spatial anisotropy and a - H .
parameterr measuring the volume of the Univerddisner H= ot =p+sVpyt144r°e®=p+h, (24
parametrization The Hamiltonian constraint for minisuper-
space models has the form

with
H=e{—pi+pi+p’+e *[V(B. ,B-)—1]} (15
= Bp— —=\p7+ 144n2e™ @5
where p,,p+,p_) are the momenta canonically conjugate J6
to (a,B, ,B_) and the potentia¥(B, ,8_) depends upon
the particular Bianchi model. beingh, the Hamiltonian of the reduced system.
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+ o

B. Quantization e
dv6me® coshte! ™" SMNK; —(7eb?)

<D(t)=NJ_

In order to quantize the reduced system we will make the
substitutionp,— —id/dt, p,— —idldu and impose the con-

straint H¥'(t,u)=0 vyielding the following Schrdinger _ 7N
equation 4 sint(m\/e/2)cosi{ m/e/2)
ov(t,u) . J B2 VBt _ B2~ i Bt
i—;t )=hu(u,—i%)qf(t,u). 26) X[em* e —e e . (3D

In this way it is manifest that the transformation of the func-
tions @(U):Ki\g(’ﬁe&)) do not give the solutions of the
Schralinger equatione™**!. On the contrary they corre-
spond to a combination of positive and negative energy
states

Inserting solutions of the form¥ (t,u)= ¢(u)e *' we ob-
tain a modified Bessel equation for the functigiu). The
solutions of this equation are the modified Bessel functions

$(u)=CKy (4me®) +Dly z(4me®).  (27) K, o we™) 7N
P ST «—
e 4 sini(m\/e/2)cost{ m/e/2)

The functionsl2i¢g(4we3“) should be discarded because
they diverge wheru—oo (classically forbidden zone The
solutions corresponding to the quantization of the reduced
system are therefore

X [e’”‘g’zei Vst_ = me/2gi Vegt]
(32

By transforming the right side of E§32) one should recover
. a the original function® (v) = Kiv‘g(’TTeﬁv), SO one obtains the
W(t,u)=Ce Ky z(4me™). (28 factor N=1/\/m, which does not depend on the energy.
As the functions® (v)= Ki\g(weﬁ") are not definite en-
On the other hand the Wheeler-DeWitt equation associate@rgy states, we will apply the transformati@i) to the other
with the Hamiltonian(18) is subspace of solutions, i.e., to the functiohs z(7e®),
which diverge in the classically forbidden zone. The result-
ing integral has the form

1 9 1 &
—|| ——=+367%? | — | — — + 14472 | |p(v,u)
6|\ a2 6\ gu? 1 [+ e si
d(t)=—| dv6me® coshte'™" S ~(7e®).
=0 29 V)
(29 33
whose solutions are This integral diverges unless one gives an imaginary part

to t. Replacingt—t+i7/2 in Eq.(33) one can actually per-
form the integration. Replacing—t—i=/2 in the result of
o(v,u)=[AK; 5(me®)+BI, (me®)] the integral one can go back to the original real time vari-

e e able, obtaining the correspondence
X[CKyi 5(4me™) +Dly 5(4me™)]. (30

The functionsl ,; z(47€%) should be discarded because |+ (me®) D ()= L g7 iR (34)
of the same reason as before. Nevertheless it would not be \/;
correct to impose the same kind of boundary conditions use
to discard these functions to the functions of the variable,
v is not a dynamical variable, but rather the variable associ
ated with the clock of the system. It is by no means obvioug"
that the physical solutions associated with this variable
should go to zero in the classical forbidden zone.

In order to select the physical solutions we will try to This result can be verified by testing the consistence of(&g).
apply the “quantum canonical transformations” defined inwith Eq. (31) and the expressiofi1]
Eq. (14) to the solutions of the Wheeler-DeWitt equation. 7l_,2—1,2

The physical solutions will be those whose transformed K@= 3 ~sinom) (35

functions are the solutions of the Sctioger equation i fact, transforming the right side of E¢34) using Eq.(33) one
e .. We will begin by transforming the functions which does obtain the right side of E¢31), verifying in this way the
go to zero in the classically forbidden zone, i.e., the funccoherence of the found corresponden@s and(33) between both
tions O (v) =K; z(7e®). The transformed functions are representations.

ﬁihe functiond; z(7e%) andl _; 5(7€®) do represent then
the positive and negative energy states respectiviiythis
ay we could establish which subspace of the whole space
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of solutions of the Wheeler-DeWitt equation is the physical (Lz)v
one. It is remarkable that the functions in the selected sub- 1,(2)~ 2 , (40)
space do not decay in the classically forbidden zone. The Flv+1)
solutions to the Wheeler-DeWitt equation with the proper
boundary conditions imposed are thus 1\—v 1\
K ™ (22) (32) a1
"D T eem | T(—o¥1) Tw+D)|' (42)
6v 3u
(v, ) =Al; G(me™) Kz (4me™). (36) The asymptotic expression f&,(z) was obtained by us-
ing the formula(35). The asymptotic expressions for the
C. Boundary conditions Taub model are thus

It would be interesting if one could define certain bound-
ary conditions which would not rely on the fact that one
knows how to reduce the system, and which would select the '1V¢
same physical functions imposed by the quantization of the
reduced system. Let us start by considering the following
Hamiltonian - (3672) 11512

(367T2)iv‘§/2
(12T (iVe+1)

(7766”) . ei Jebv (42)

e e®) ~ : = .
) Ki(me™) 2sinvm) | (12) 7T (—ie+1)
H=p1+V(q1)—th(qM,pM), u=2,...N, (37 -
IVe
—iE6y _ (_3§7T ) iVE6v
and suppose that(q,,q,) =0(q1) #(q,) is the solution of (1271 (i Je+1)
the Wheeler-De Witt equation associated with this Hamil- (43)

tonian. Instead of performing a canonical transformation so
that the new Hamiltonian is quadratic in the new momentum In this way we confirm that the function; (7€) do
p:, we will study the wave functions obtained by solving the correspond to a combination of positive and negative energy
Wheeler-DeWitt equation associated with the Hamiltonianstates. The functionstwg(weﬁv) do correspond to states of
(37) in the regionL whereV(q,) tends to zero. In this region positive or negative energy respectively. The proposed crite-
the Hamiltonian is rium establishes boundary conditions with the definite mean-
ing of selecting the positive energy states. The space of so-
lutions of these positive energy states can be endowed with
=p2—hg (0,,P,)- (3g)  the positive definite Schedinger inner product. It is remark--
able that the proposed boundary conditions coincides with
the criterium proposed by Wald 2,13.
The solutions of the quantum-mechanical system corre-
sponding to the sheet in whighy is negative(positive en- IV. CONCLUSIONS
ergy solutiony will be combinations of ¢(q;,d,)
=¢(q,)e” ed1 One would expect that these solutions do
commde with the asymptotic expressions in the redioof
the functionsp(qg,,9,)=©(q1) #(q,), i.e., it would be nec-
essary that

In this work we addressed the question of quantizing
minisuperspace models by studying the particular case
known as the Taub model. The main two problems which
arise in the canonical approach are the boundary conditions
to be imposed on the solution of the Wheeler-DeWitt equa-
tion and the inner product to be defined in the corresponding
—ivay Hilbert space. In the Taub model it is possible to perform a
0(q))—e d coordinate transformation in order to separate in the Hamil-

tonian constraint a subsystem depending on just one pair of
canonical variables. In this new set of variables the Hamil-
g,—L. (39 tonian has thus the forn1-|=hql(q1,p1)—hqﬂ(qM,p#)

where the subsystehh will work as the clock of the model.

The definite energy solutions will thus be those functionsPerforming a canonical transformation it is pOSSIb|e to trans-
®(q,) which do behave in the asymptotic region like a planeform the subsysteth,, in a free systenh,=p¢ . This kind of
wave, ingoingor outgoing. This criterium relies on the fact time variables are known as “extrinsic time” because they
that in the asymptotic region, time {snodulus a signthe  are associated not only with the coordinates but also with the
variableq;. momenta[1,14]. Extrinsic times are specially important in

In order to test this criterium in the case of the Taubquantum gravity because it is not possible to reduce the sys-
model let us see the behavior of the Bessel functions in théem by identifying an intrinsic time, i.e., a global time vari-
region wherev — — [V(qg,)—0]. The asymptotic expres- able in the configuration space, as it happens for the relativ-
sions are istic particle. The new Hamiltoniarh-l=pf—hqﬂ(qu,pﬂ)
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can be factorized in two disconnected sheets. In order tphysical solutions, we tried to define a criterion to select
satisfy the constraint =0 it is necessary that one of these those solutions without using the fact that the reduced system
factors goes to zero on the constraint surface. The other orig known. In order to do that, it was studied in the asymptotic
has a definite sign on the constraint surface, therefore it iBehavior of the solutions of the Wheeler-DeWitt equation in
possible to scale the Hamiltonian constraint in order to find @he zone wheré/(q;)—0. We argue that in that area the
Hamiltonian linear in the new momentum. This Hamil-  time is (modulo a sighthe variableq;. It is thus necessary
tonian can be quantized by means of an ordinary S6hger  that the functionsb(q,) behave as an outgoing ingoing
equation. The canonical transformation used to reduce thglane wave, i.e., as definite energy states. The wave func-

system satisfies the necessary conditions to define the intgons satisfying this criterion do coincide with the physical
gral transforms which relate the wave functions correspondfunctions selected by reducing the system.

ing to the quantization of both Hamiltonian systems. Thus it

is possible to transform the positive energy solutions of the This work was supported by Consejo Nacional de Inves-
parabolic Schrdinger equation in order to find out those tigacines Cienfiicas y Tenicas(CONICET), Universidad
solutions of the hyperbolic Wheeler-DeWitt equation whichde Buenos AiregProy. TX 64 and a grant from Fundaaio
are the physical ones. Armed with the knowledge of theAntorchas.
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