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Quantization of the Taub model with extrinsic time
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The paper addresses the quantization of cosmological models, with application to the Taub model. By
reducing the model with extrinsic time, a formalism is developed in order to define a conserved Schro¨dinger
inner product in the space of solutions of the Wheeler-DeWitt equation. A quantum version of classical
canonical transformations is introduced for connecting the solutions of the Wheeler-DeWitt equation with the
wave functions of the reduced system. Once this correspondence is established, boundary conditions on the
space of solutions of the Wheeler-DeWitt equation are obtained to directly select the physical subspace.
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I. INTRODUCTION

General relativity is an example of a parametrized syst
i.e., a system whose action is invariant under changes o
integrating parametert ‘‘reparametrization,’’ this invariance
being a consequence of the covariance of the theory. T
means that in general relativity there is no privileged tim
variable. On the contrary, in the ordinary formulation
quantum mechanics there is a time parameter besides the
degrees of freedom, and the inner product remains conse
in the time evolution of the system. This difference betwe
general relativity and quantum mechanics, known as
problem of time@1–3#, is one of the main obstacles for find
ing a quantum theory of gravity.

The evolution of a dynamical system is characterized
the way in which its dynamical variables evolve as a fun
tion of time. In this formulation, time is a relevant physic
parameter, clearly distinct from the dynamical variabl
There is nevertheless an alternative formulation of dynam
~parametrized systems! in which time is mixed with the dy-
namical variables@4#. A parametrized system can be o
tained from an actionS(qm,pm) which is not invariant under
reparametrizations by raising the time to the rank of a
namical variable. Let us start with an action of the form

S@qm,pm#5E
t1

t2
pmdqm2h~qm,pm ,t !dt m51, . . . ,n.

~1!

By identifying q0[t, p0[2h one can rewrite the integran
as pidqi5pi(dqi /dt)dt, i 50, . . . ,n. In this way the ex-
tended set of variables are left as functions of some ph
cally irrelevant parametert. The set$qi ,pi% can be indepen-
dently varied provided that the definition ofpt is
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incorporated to the action as a constraintH5p0
1h(qm,pm ,t)50, so yielding the following action:

S@qi~t!,pi~t!,N~t!#5E
t1

t2S pi

dqi

dt
2NH~q,p! Ddt, ~2!

whereN is the Lagrange multiplier whose variation assur
that the constraint does hold. This action is invariant un
reparametrizationst→t1«(t). The time variablet satisfies
the Poisson brackets

$t,H%51. ~3!

Once the system has been parametrized, it can be red
using any time variable provided that it satisfies Eq.~3!.
These kinds of time variables are called global times@5#. In
order to generalize this restriction let us suppose that
know a globally well defined time variablet̃ 5 t̃ (qi ,pi)
which satisfies

$ t̃ ,H%uH505 f ~q,p!.0. ~4!

The important fact is thatf has a definite sign on the
constraint surface~it could also be negative!. In this case the
variable t̃ is a global time associated with the Hamiltonia
H̃[ f 21(q,p)H.

The constraintH̃50 could also be expressed in a set
variables in which the HamiltonianH does not have the form
H5p01h. In fact we can perform a canonical transform
tion

$qi ,pi%5$qo5t, p052h,qm,pm%→$Qi ,Pi%

where now the time is hidden among the rest of the va
ables. In other words, a constraint of the formH5p01h can
be disguised by scaling it or by performing canonical tra
formations.

One of the main properties of the Hamiltonian formul
tion of general relativity is that the Hamiltonian is con
©2000 The American Physical Society02-1
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strained to be zero, making manifest that general relativit
a parametrized system. In cases like this, in which the the
is an already parametrized system, the invariance under
arametrizations means that there is no privileged time v
able. To reduce the system means to select among the
namical variables a proper global time, i.e., a variable wh
monotonically increases along any dynamical trajectory
work as a physical clock. In this way we can express
evolution of the canonical variables as a function of t
physical clock. The first step to reduce the system is thu
perform a canonical transformation in order to find a set
variables$qi ,pi% where the variablesq05t is a global time.
The Hamilton equations are

dt

dt
5N f ,

dqm

dt
5N f

]h

]pm
,

dpm

dt
52N f

]h

]qm
.

The dynamics of the system is thus undetermined un
one fixes a gauge, i.e., unless one chooses a physical c
Choosing the gauget5t means choosing

N~t!5
1

f @qm~t!,pm~t!#
.

One of the main approximations for quantizing gene
relativity begins by reformulating it under a Hamiltonian fo
mulation @Arnowitt-Deser-Misner ~ADM formalism @6##.
Within the framework of this canonical formalism o
geometrodynamics it is supposed that the Lorentzian sp
time manifoldsM are diffeomorphic toR3S whereS repre-
sents a collection of spacelike hypersurfacesS parametrized
by a real time parametert ~foliation!. The Riemannian metric
gi j of one of these hypersurfacesS play the role of the
configuration variable. The analogous of the configurat
spaceRn is the space of all the Riemannian metricsgi j called
superspace. The conjugated momentap i j are directly related
with the way in which the hypersurfaceS is embedded in the
manifold M, i.e., with the extrinsic curvature of the hype
surfaceS. The covariance of the theory under general co
dinate transformations is reflected, within this formalism,
the presence of four constraints per each point of space-t
The so-called Hamiltonian constraint assures the invaria
of the theory under a changing of the foliation, while t
momenta constraints assure the invariance under a chan
the spatial coordinates used to represent the spatial geom
of each hypersurface. The states of the corresponding q
tum theoryC@gi j # are functionals of the spatial metricgi j
which satisfy the quantum version of the classical constra
in accordance with the Dirac method. The quantum vers
of the momenta constraints implies that the wave funct
depends on the geometry3g of the hypersurface but not o
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the particular metric tensorgi j used to represent it. The quan
tum version of the Hamiltonian constraint is the so-call
Wheeler-DeWitt equation.

Many of the tentatives for quantizing general relativi
began addressing the analogy between the Wheeler-De
equation and the Klein-Gordon equation. In fact both s
tems have Hamiltonian constraints which are hyperbolic
the momenta. The constraint associated with the motion
particle in a pseudo-Riemannian geometry has the form

Hparticle5gi j ~qk!pi pj2m250. ~5!

The space of solutions of the Klein-Gordon equation can
turned into a Hilbert space with a positive definite inn
product only if the background is stationary. In this case
Hilbert space of the physical states will be the subspace
positive norm, this being equivalent to consider just one
the sheets of the hyperbolic constraint surface. Choosing
coordinates in a way thatgm050 (⇒g005g00

21) and calling
gmn[2g00g

mn we can write Eq.~5! in the form

Hparticle5g00~p0p02gmnpmpn2g00m
2!

5g00~p02Agmnpmpn1g00m
2!

3~p01Agmnpmpn1g00m
2!. ~6!

It is thus necessary to find a temporal Killing vector of t
supermetric which also should be a symmetry of the pot
tial term ~this property could be relaxed to a conformal Kil
ing vector!. In this case the proper time variable to reduce
system is the parameter of the Killing vector. Otherwi
there would be pair creation. In order to build a good an
ogy with the relativistic particle, it is also necessary to ha
a positive definite potential term for playing the role of th
mass term. If the potential is positive definite, the moment
p0 does not go to zero on the constraint surfaceH50. This
means that the Poisson bracket$q0 ,H%52g00p0 has a defi-
nite sign on each sheet of the constraint surface. If we cho
p01Agmnpmpn1g00m

250, the momentumpo , and so
$q0 ,H%, will be negative on this sheet~provided thatg00

.0). The other factor has then a definite sign on this sh
playing the role of the functionf defined in Eq.~4!. In this
casef will be negative, being this the reason for$q05t,H%
,0. But t is still the variable which monotonically increase
on any dynamical trajectory because$t,H̃%51 where

H̃5
H

g00~p02Agmnpmpn1g00m
2!

.

The quantum physical states can be obtained by solvin
Schrödinger equation with a positive definite operatorĥ as-
sociated with the Hamiltonian of the reduced syste
Agmnpmpn1g00m

2. As it was said before, to fix the gaug
t5t implies to chooseN51/f . The relation between prope
time and the time variable chosen to represent the hyper
faces of simultaneity isdT5 f 21dt whereT is the proper
time, this being a consequence of the way in which
space-time interval is expressed in the ADM formalism.
2-2
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QUANTIZATION OF THE TAUB MODEL WITH . . . PHYSICAL REVIEW D 63 023502
geometrodynamics there is a conformal Killing vector of t
supermetric@7#, but this vector is not as well a symmetry o
the potential term. This potential term is the spatial curvat
@6#, which can be negative in some regions of the configu

tion space. Thus it is not possible to associate an operatĥ
with the square root, as one effectively does for the relati
particle.

There are two main approaches for achieving this qua
zation program. One possibility is to quantize the syst
without reducing it. The resulting Wheeler-DeWitt equati
is a hyperbolic equation while the Schro¨dinger equation as
sociated with the reduced system is a parabolic one.
former has then more solutions than the latter, so being n
essary to define boundary conditions in order to select
physical solutions. It is not clear in this approach how
define a conserved inner product without having reduced
system, i.e., without knowing which variable plays the ro
of time. Another proposal is to perform a canonical transf
mation in order to find a Hamiltonian of the form~5! with a
positive definite potential term independent of the varia
q0. The formalism of the relativistic particle can then b
applied usingq0 as a proper time variable. The system c
thus be quantized by means of the corresponding Sc¨-
dinger equation associated with one of the sheets of the
straint surface. The Hilbert space of the quantum states
be endowed with the natural inner product associated w
the Schro¨dinger equation. This approach has the probl
that different choices of global time variables can lead
different quantum theories.

II. PROPOSED FORMALISM

In this work we will address the quantization of minis
perspace cosmological models. The quantization prog
will be as follows. We will start with a Hamiltonian con
straint such that none of the variables is a global time.
will suppose that it is possible to perform a coordinate tra
formation so that a subsystem depending on just one pa
canonical variables$q1 ,p1% is separated in the Hamiltonia
constraint

Hq5hq1
~q1 ,p1!2hqm

~qm ,pm! m52, . . . ,N ~7!

where the Hamiltonianhq1
(q1 ,p1) has the form

hq1
~q1 ,p1!5

4

@d ln V/dq1#2
p1

21V~q1! ~8!

with V(q1).0 andhqm
.0. In order to find a global time

one should look for another canonical transformat
$qi ,pi%→$Qi ,Pi% i 51, . . . ,N such that
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Q15t5t~q1 ,p1!,

P15pt5@hq1
~q1 ,p1!#1/2,

Qm5qm ,

Pm5 pm ,

m52, . . . ,N. ~9!

In this way we could separate an extrinsic timet, i.e., a
global time variable which is a function of both origina
canonical coordinates and momenta. The generator func
for the canonical transformation and the corresponding m
menta are

F1~q1 ,t !52sinh~ t !@V~q1!#1/2,

pt5
]F1

]t
52cosht@V~q1!#1/2,

pq1
5

]F1

]q1
52 1

2 sinht@V~q1!#21/2
dV

dq1

52 1
2 sinht@V~q1!#1/2

d~ ln V!

dq1
~10!

so that

4

@d ln V/dq1#2
pq1

2 1V~q1!5V~q1!sinh2 t1V~q1!

5V~q1!cosh2 t5pt
2 .

The Hamiltonian in the new set of variables has the form

HQ5pt
22hqm

~qm ,pm!. ~11!

Thus, when the Hamiltonianhqm
(qm ,pm) is positive definite

and independent of timet one gets a constraint such that th
analogy with the relativistic particle does hold, and one c
quantize the reduced model by means of the parabolic Sc¨-
dinger equation associated with one of the sheets of the
straint surface.

Once the system was reduced and quantized we wan
find out what kind of boundary conditions should be impos
on the solutions of the Wheeler-DeWitt equation expres
in the original set of variables. As was pointed out, the h
perbolic Wheeler-DeWitt has twice the number of indepe
dent solutions than the parabolic Schro¨dinger equation. It is
then necessary to impose proper boundary conditions for
lecting the physical solutions. In order to do that we w
follow the lines of work used in Ref.@8#. Knowing the clas-
sical canonical transformation for reducing the model,
analogue in the quantum level can be defined. In Ref.@9# the
conditions for relating the wave functions corresponding t
pair of quantum-mechanical systems whose classical Ha
tonians are canonically equivalent are studied. If one has
arbitrary Hamiltonians related at the classical level by a
2-3
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GABRIEL CATREN AND RAFAEL FERRARO PHYSICAL REVIEW D63 023502
nonical transformation corresponding to the generating fu
tion F1(q,Q), the main issue is to find out what kind o
integral transforms can be defined in order to relate the w
functions corresponding to each quantum-mechanical
tem. Generalizing the Fourier transform, a relationship of
following kind is proposed

QE~q!5N~E!E
2`

1`

dQeiF (q,Q)FE~Q! ~12!

where F(q,Q) is not in general the generating functio
F1(q,Q) for the classical canonical transformation. In R
@9# it is shown, however, that this function coincides in fa
with the generating function for the classical canonical tra
formation when the Hamiltonian operators satisfy the con
tion

HqS 2 i
]

]q
,qDeiF (q,Q)5HQS i

]

]Q
,QDeiF (q,Q) ~13!

where some proper boundary conditions in the integra
limits are also assumed. If the canonical transformation c
not be represented by means of a generating function of
first kind, analogous integral transforms and conditions
be defined using the corresponding generating function.
inverse of the integral transform~12! is

FE~Q!5NE
2`

1`

dqU]2F~q,Q!

]q]Q Ue2 iF (q,Q)QE~q!. ~14!

The canonical transformation defined by Eq.~10! does sat-
isfy the condition~13!. The functionF(q,Q) coincides then
with the generating functionF1(q,Q). Once defined, this
‘‘canonical quantum transformation’’ the physical solutio
of the Wheeler-DeWitt equation can be found by transfor
ing the solutions of the Schro¨dinger equation. Finally the
question of defining proper boundary conditions for the
lutions of the Wheeler-DeWitt equation without knowin
how to reduce the system will be addressed.

III. APPLICATION TO THE TAUB MODEL

A. Reduction

We will study the application of the formalism displaye
in the previous section to the particular case known as T
model. In Bianchi cosmological models@10# the minisuper-
space is a three dimensional manifold parametrized by
parameters (b1 ,b2) measuring the spatial anisotropy and
parametera measuring the volume of the Universe~Misner
parametrization!. The Hamiltonian constraint for minisupe
space models has the form

H5e3a$2pa
21p1

2 1p2
2 1e24a@V~b1 ,b2!21#% ~15!

where (pa ,p1 ,p2) are the momenta canonically conjuga
to (a,b1 ,b2) and the potentialV(b1 ,b2) depends upon
the particular Bianchi model.
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The Taub model is a particular case of the Bianchi ty
IX model for b250, p250. For this case the resultin
Hamiltonian constraint~scaled with the factore23a) is

H52pa
21p1

2 112p2e24V~e28b124e22b1!. ~16!

If we define the variablesu andv by

a5v22u,

b15u22v ~17!

the resulting Hamiltonian is~scaled with a constant!

H5 1
6 ~pv

2136p2e12v!2 1
6 ~pu

21144p2e6u!. ~18!

So, this coordinate transformation separates a subsys
depending on just one pair of canonical variables, which w
work as a clock for the other subsystem. The canonical tra
formation~10! provides a global time and its conjugated m
mentum:

t5Arc sinhS 2
pv

6p
e26vD , ~19!

pt
25 1

36 ~pv
2136p2e12v!. ~20!

The generator of this transformation is

F1~v,t !52pe6v sinht. ~21!

The Hamiltonian in the new variables results to be

H56pt
22 1

6 ~pu
21144p2e6u!. ~22!

This expression can be factorized in order to obtain
Hamiltonian linear inpt , so giving

H5S A6pt1
1

A6
Apu

21p2e6uD
3S A6pt2

1

A6
Apu

21144p2e6uD . ~23!

The constraintH50 is fulfilled if one of the factors is
null on the constraint surface. The other factor has, on
constraint surface, a definite sign, so playing the role of
factor f defined before. The scaled Hamiltonian is

H̃5
H

A6 f
5pt1

1
6 Apu

21144p2e6u5pt1hu ~24!

with

f 5S A6pt2
1

A6
Apu

21144p2e6uD ~25!

beinghu the Hamiltonian of the reduced system.
2-4
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B. Quantization

In order to quantize the reduced system we will make
substitutionpt→2 i ]/]t, pu→2 i ]/]u and impose the con
straint ĤC(t,u)50 yielding the following Schro¨dinger
equation

i
]C~ t,u!

]t
5ĥuS u,2 i

]

]uDC~ t,u!. ~26!

Inserting solutions of the formC(t,u)5f(u)e2 iA«t we ob-
tain a modified Bessel equation for the functionf(u). The
solutions of this equation are the modified Bessel functio

f~u!5CK2iA«~4pe3u!1DI 2iA«~4pe3u!. ~27!

The functions I 2iA«(4pe3u) should be discarded becau
they diverge whenu→` ~classically forbidden zone!. The
solutions corresponding to the quantization of the redu
system are therefore

C~ t,u!5Ce2 iA«tK2iA«~4pe3u!. ~28!

On the other hand the Wheeler-DeWitt equation associa
with the Hamiltonian~18! is

1

6 F S 2
]2

]v2
136p2e12vD 2

1

6 S 2
]2

]u2
1144p2e6uD Gw~v,u!

50 ~29!

whose solutions are

w~v,u!5@AKiA«~pe6v!1BIiA«~pe6v!#

3@CK2iA«~4pe3u!1DI 2iA«~4pe3u!#. ~30!

The functionsI 2iA«(4pe3u) should be discarded becau
of the same reason as before. Nevertheless it would no
correct to impose the same kind of boundary conditions u
to discard these functions to the functions of the variablev.
v is not a dynamical variable, but rather the variable ass
ated with the clock of the system. It is by no means obvio
that the physical solutions associated with this varia
should go to zero in the classical forbidden zone.

In order to select the physical solutions we will try
apply the ‘‘quantum canonical transformations’’ defined
Eq. ~14! to the solutions of the Wheeler-DeWitt equatio
The physical solutions will be those whose transform
functions are the solutions of the Schro¨dinger equation
e2 iA«t. We will begin by transforming the functions whic
go to zero in the classically forbidden zone, i.e., the fu
tions Q(v)5KiA«(pe6v). The transformed functions are
02350
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F~ t !5NE
2`

1`

dv6pe6v coshteipe6v sinh tKiA«~pe6v!

5
pN

4 sinh~pA«/2!cosh~pA«/2!

3@epA«/2eiA«t2e2pA«/2e2 iA«t#. ~31!

In this way it is manifest that the transformation of the fun
tions Q(v)5KiA«(pe6v) do not give the solutions of the
Schrödinger equatione2 iA«t. On the contrary they corre
spond to a combination of positive and negative ene
states

KiA«~pe6v!↔ pN

4 sinh~pA«/2!cosh~pA«/2!

3@epA«/2eiA«t2e2pA«/2e2 iA«t#.
~32!

By transforming the right side of Eq.~32! one should recover
the original functionQ(v)5KiA«(pe6v), so one obtains the
factor N51/Ap, which does not depend on the energy.

As the functionsQ(v)5KiA«(pe6v) are not definite en-
ergy states, we will apply the transformation~14! to the other
subspace of solutions, i.e., to the functionsI 6 iA«(pe6v),
which diverge in the classically forbidden zone. The resu
ing integral has the form

F~ t !5
1

Ap
E

2`

1`

dv6pe6v coshteipe6v sinh tI 6 iA«~pe6v!.

~33!

This integral diverges unless one gives an imaginary parh
to t. Replacingt→t1 ip/2 in Eq. ~33! one can actually per-
form the integration. Replacingt→t2 ip/2 in the result of
the integral one can go back to the original real time va
able, obtaining the correspondence

I 6 iA«~pe6v!↔F~ t !5
i

Ap
e7A«p/2e7 iA«t. ~34!

The functionsI iA«(pe6v) andI 2 iA«(pe6v) do represent then
the positive and negative energy states respectively.1 In this
way we could establish which subspace of the whole sp

1This result can be verified by testing the consistence of Eq.~33!
with Eq. ~31! and the expression@11#

Kv~z!5
p

2

I2v~z!2Iv~z!

sin~vp!
. ~35!

In fact, transforming the right side of Eq.~34! using Eq.~33! one
does obtain the right side of Eq.~31!, verifying in this way the
coherence of the found correspondences~31! and~33! between both
representations.
2-5
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GABRIEL CATREN AND RAFAEL FERRARO PHYSICAL REVIEW D63 023502
of solutions of the Wheeler-DeWitt equation is the physi
one. It is remarkable that the functions in the selected s
space do not decay in the classically forbidden zone.
solutions to the Wheeler-DeWitt equation with the prop
boundary conditions imposed are thus

w~v,u!5AIiA«~pe6v!K2iA«~4pe3u!. ~36!

C. Boundary conditions

It would be interesting if one could define certain boun
ary conditions which would not rely on the fact that o
knows how to reduce the system, and which would select
same physical functions imposed by the quantization of
reduced system. Let us start by considering the follow
Hamiltonian

H5p1
21V~q1!2hqm

~qm ,pm!, m52, . . . ,N, ~37!

and suppose thatw(q1 ,qm)5Q(q1)f(qm) is the solution of
the Wheeler-De Witt equation associated with this Ham
tonian. Instead of performing a canonical transformation
that the new Hamiltonian is quadratic in the new moment
pt , we will study the wave functions obtained by solving t
Wheeler-DeWitt equation associated with the Hamilton
~37! in the regionL whereV(q1) tends to zero. In this region
the Hamiltonian is

H5p1
22hqm

~qm ,pm!. ~38!

The solutions of the quantum-mechanical system co
sponding to the sheet in whichp1 is negative~positive en-
ergy solutions! will be combinations of w(q1 ,qm)
5f(qm)e2 iA«q1. One would expect that these solutions
coincide with the asymptotic expressions in the regionL of
the functionsw(q1 ,qm)5Q(q1)f(qm), i.e., it would be nec-
essary that

Q~q1!→e2 iA«q1,

q1→L. ~39!

The definite energy solutions will thus be those functio
Q(q1) which do behave in the asymptotic region like a pla
wave, ingoingor outgoing. This criterium relies on the fac
that in the asymptotic region, time is~modulus a sign! the
variableq1.

In order to test this criterium in the case of the Ta
model let us see the behavior of the Bessel functions in
region wherev→2` @V(q1)→0#. The asymptotic expres
sions are
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I v~z!;
~ 1

2 z!v

G~v11!
, ~40!

Kv~z!;
p

2 sin~vp!
F ~ 1

2 z!2v

G~2v11!
2

~ 1
2 z!v

G~v11!
G . ~41!

The asymptotic expression forKv(z) was obtained by us-
ing the formula ~35!. The asymptotic expressions for th
Taub model are thus

I iA«~pe6v!;
~36p2! iA«/2

~12! iA«G~ iA«11!
eiA«6v ~42!

KiA«~pe6v!;
p

2 sin~vp! F ~36p2!2 iA«/2

~12!2 iA«G~2 iA«11!

3e2 iA«6v2
~36p2! iA«/2

~12! iA«G~ iA«11!
eiA«6vG .

~43!

In this way we confirm that the functionsKiA«(pe6v) do
correspond to a combination of positive and negative ene
states. The functionsI 6 iA«(pe6v) do correspond to states o
positive or negative energy respectively. The proposed cr
rium establishes boundary conditions with the definite me
ing of selecting the positive energy states. The space of
lutions of these positive energy states can be endowed
the positive definite Schro¨dinger inner product. It is remark
able that the proposed boundary conditions coincides w
the criterium proposed by Wald@12,13#.

IV. CONCLUSIONS

In this work we addressed the question of quantiz
minisuperspace models by studying the particular c
known as the Taub model. The main two problems wh
arise in the canonical approach are the boundary condit
to be imposed on the solution of the Wheeler-DeWitt eq
tion and the inner product to be defined in the correspond
Hilbert space. In the Taub model it is possible to perform
coordinate transformation in order to separate in the Ham
tonian constraint a subsystem depending on just one pa
canonical variables. In this new set of variables the Ham
tonian has thus the formH5hq1

(q1 ,p1)2hqm
(qm ,pm)

where the subsystemhq1
will work as the clock of the model.

Performing a canonical transformation it is possible to tra
form the subsystemhq1

in a free systemht5pt
2 . This kind of

time variables are known as ‘‘extrinsic time’’ because th
are associated not only with the coordinates but also with
momenta@1,14#. Extrinsic times are specially important i
quantum gravity because it is not possible to reduce the
tem by identifying an intrinsic time, i.e., a global time var
able in the configuration space, as it happens for the rela
istic particle. The new HamiltonianH5pt

22hqm
(qm ,pm)
2-6
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can be factorized in two disconnected sheets. In orde
satisfy the constraintH50 it is necessary that one of thes
factors goes to zero on the constraint surface. The other
has a definite sign on the constraint surface, therefore
possible to scale the Hamiltonian constraint in order to fin
Hamiltonian linear in the new momentumpt . This Hamil-
tonian can be quantized by means of an ordinary Schro¨dinger
equation. The canonical transformation used to reduce
system satisfies the necessary conditions to define the
gral transforms which relate the wave functions correspo
ing to the quantization of both Hamiltonian systems. Thu
is possible to transform the positive energy solutions of
parabolic Schro¨dinger equation in order to find out thos
solutions of the hyperbolic Wheeler-DeWitt equation whi
are the physical ones. Armed with the knowledge of
ce

-

02350
to

ne
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te-
-

it
e

e

physical solutions, we tried to define a criterion to sele
those solutions without using the fact that the reduced sys
is known. In order to do that, it was studied in the asympto
behavior of the solutions of the Wheeler-DeWitt equation
the zone whereV(q1)→0. We argue that in that area th
time is ~modulo a sign! the variableq1. It is thus necessary
that the functionsF(q1) behave as an outgoingor ingoing
plane wave, i.e., as definite energy states. The wave fu
tions satisfying this criterion do coincide with the physic
functions selected by reducing the system.
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