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Cosmic string lens phenomenology: Model of Poisson energy distribution
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We present a novel approach for investigating lens phenomenology of cosmic strings in order to elaborate
detection strategies in galaxy deep field images. To account for the complexity of the projected energy
distribution of string networks we assume their lens effects to be similar to those of a straight string carrying
a random energy distribution. In such a model we show that, unlike the case of uniform strings, critical
phenomena naturally appear. We explore the properties of the critical lines and caustics. In particular, assum-
ing that the energy coherence length along the string is much smaller than the observation scale, we succeed in
computing the total length of critical lines per unit string length and find it to be 4/A3E(3/4). The length of the
associated caustic lines can also be computed to be 16/(pA3)E(3/4). The picture we obtain here for the
phenomenology of cosmic string detection is clearly at variance with common lore.

DOI: 10.1103/PhysRevD.63.023005 PACS number~s!: 98.62.Sb, 98.80.Cq, 98.80.Es, 98.80.Hw
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I. INTRODUCTION

Although the current results on large-scale structure
mation favor models with initial adiabatic scalar perturbati
@1#, the formation of cosmic strings is general enough
merit further investigations@2#. It is in particular not ex-
cluded that strings may form after an inflationary phase@3#.
We are interested here in the phenomenological aspec
cosmic strings for lens distortion effects whereas most of
previous investigations have been focused on string detec
from multiple quasar images@4,5# or cosmic microwave
background fluctuations@6#. With the advance of new gen
eration of large CCD cameras the best direct evidence
cosmic string relics is however likely to be obtained fro
distortion effects they induce on background objects such
galaxies.

In a companion paper we insist on the generic proper
expected for cosmic strings as far as lens effects are
cerned: string lens effects are equivalent to those induce
an energy distribution localized on a line. This effective e
ergy distribution should obviously take into account the le
energy density, its tension, as well as kinetic energy t
might result from rapid movements or energy currents alo
the string@7#.

The explicit computation of string induced lens effec
has been done in various cases, for long strings@2#, circular
loops in plane transverse to the line of sight@8#, or small
loops with a multipole expansion approach@4#. However,
much more complex situations have been explored so
with numerical experiments only@9#. In particular the study
presented in Ref.@10# suggests a quite different lens ph
nomenology for the images of background galaxies but la
analytical insights. Having in mind such phenomenologi
effects, we try in this paper to get more quantitative resu
by introducing a simplified description of strings. In Sec.
we present the model of ‘‘Poisson’’ energy distribution w
use. In Sec. III general phenomenological properties
0556-2821/2000/63~2!/023005~10!/$15.00 63 0230
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served in such a model are presented. Section IV is dev
to more precise calculations on the properties of the crit
lines and caustics for such a model of strings and finally
evoke observational aspects.

II. STRING MODEL

A. General formalism

In general lens effects are encoded in an amplificat
matrix A, which describes the way the angular positions
the image plane are transformed to those in the source p
~see Ref.@11# for a comprehensive description of lens phy
ics!. It is usually written in terms of the convergence fieldk
and the shear field (g1 ,g2):

A5S 12k2g1 2g2

2g2 12k1g1
D , ~1!

that are directly related to the projected energy density. T
remarkable property for lens effects are obtained when
of the eigenvalues ofA is crossing or getting close to zero
The difficulty, however, is that these features are neither
cal nor linear in the energy density and location of the stri
The fact that the projected density is likely to fluctuate su
stantially, because of local velocities, wiggles, longitudin
motions, etc., has somehow to be incorporated in the desc
tion.

In case of cosmic strings, the elements of the deforma
matrix can be derived from the effective projected poten
w(x,y) which can formally be written in terms of the angul
positions (x,y) @e.g., Eq.~37! of Ref. @12## as

w~x,y!54G
DLS

DOS
E dsm@xstr~s!,ystr~s!#

3 log~@x2xstr~s!#21@y2ystr~s!#2!1/2, ~2!
©2000 The American Physical Society05-1
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where@xstr(s),ystr(s)# are the angular string coordinates f
the angular curvilinear positions, m@xstr(s),ystr(s)# is the
projected energy density at those positions,G is the Newton
constant, andDLS /DOS is the ratio of the angular distanc
between the string and the source-plane to the one betw
the observer and the source plane in the thin lens1 approxi-
mation @12#. The projected energy density is a combinati
of the projectedT00, T0z , andTzz components of the stress
energy tensor of the string if the line-of-sight is along thez
direction. The displacement field is then given by

j i52] iw~x,y! ~3!

and the elements of the deformation matrix can be written

g15~]x
22]y

2!w~x,y!, ~4!

g252]x]yw~x,y!, ~5!

the local convergence being zero except on the string its

B. The Poisson string model

It seems very difficult to take into account all the featur
that must be included: the string are far from being strai
lines with uniform energy distribution@9#. We choose to de-
scribe the energy fluctuation in a simple manner, assum
that the string follows a straight line, but with local ener
fluctuations. This fluctuations are assumed to account for
various changes of shape, density of the strings, for poss
nonstandard equation of states, or for the existence of
rents along the string. We therefore assume the string to
straight along they direction

xstr~s!50, ystr~s!5s ~6!

and m(s) to be a random field. Note that it does not me
however that the string is actually orthogonal to the line-
sight. It simply means that the string~or rather the section o
string we are interested in! appears roughly straight on th
sky. To specify our model we still need to explicit the st
tistical properties of them field. In general the results ar
going to depend on the chosen global statistical propertie
m and not only on its two-point function, for instance.
particular one question to ask is whether there is a fin
correlation length along the string or not. Let us assume
the string can be described by the following properties:

^m~s!&5m0 , ~7!

^m~s1!m~s2!&c5c2m0
2 expF2

us12s2u
s0

G , ~8!

1The thin lens approximation is appropriate if one is interested
only a fraction of a string spanning at most a few degrees on
sky. This would not be appropriate for apparent string crossings
instance.
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^m~s1! . . . m~sp!&c5cpm0
p expF2

max$sp%2min$sp%

s0
G

~9!

so thatm(s) has a finite coherence lengths0, and m(s) is
essentially uniform with typical valuem0 at scales smaller
thans0. The statistical properties of the displacement field
of the elements of the amplification matrix are then describ
by the ones ofm. For instance,

^g i
p~x!&c5cpGp

DLS
p

DOS
p

m0
p

3E
2`

1`

ds1•••E
2`

1`

dspGi~x,s1!•••Gi~x,sp!

3expF2
max$sp%2min$sp%

s0
G , ~10!

with

G1~x,y!54
y22x2

~y21x2!2 , ~11!

G2~x,y!528
xy

~y21x2!2 . ~12!

The general expressions of these integrals are complica
but they can be computed at leading order ins0 /x. First of
all we can notice that

^g1&5^g2&50. ~13!

At leading order ins0 /x the computation of the results ca
be obtained by an expansion ofGi(x,sj ) with respect tosj in
the vicinity of s1 ~for instance! as

Gi~x,sj !5(
p

~sj2s1!p

p!

]pGi

]sp ~x,s1!. ~14!

It leads to

^g i
2&'8c2G2

DLS
2

DOS
2

m0
2E

2`

1`

ds1Gi~x,s1!

3E
0

1`

ds2Gi~x,s11s2!exp~2s2 /s0! ~15!

'8c2G2
DLS

2

DOS
2

m0
2s0E

2`

1`

dsGi
2~x,s!. ~16!

A similar computation can be performed for the third cum
lant,

^g i
3&548c3G3

DLS
3

DOS
3

m0
3s0

2E
2`

1`

dsGi
3~x,s!. ~17!
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COSMIC STRING LENS PHENOMENOLOGY: MODEL OF . . . PHYSICAL REVIEW D 63 023005
One can further notice that for parity reasons^g2
3&50. For

the first component of the shear we, have, however,

^g1
2&58c2s0G2

DLS
2

DOS
2

m0
2 4p

x3 , ~18!

^g1
3&5248c3s0

2G3
DLS

3

DOS
3

m0
3 8p

x5 . ~19!

One can notice that the dimensionless skewness^g1
3&/^g1

2&3/2

is given by

^g1
3&

^g1
2&3/2

52
6

A8p
S s0

x D 1/2 c3

c2
3/2

. ~20!

The ratioc3 /c2
3/2 being a priori finite ~and surely the one

point probability distribution function ofm has no reason to
obey Gaussian statistics!, it implies that the reduced skew
ness vanishes at distance much larger than the correla
lengths0 from the string. This is a natural expectation sin
at finite distance and fors0→0 such quantities as the she
are obtained as sums of infinite number of sources. So,
generically, whatever may be the statistical properties ofm,
we expect that locally, all quantities follow Gaussian sta
tics as soon asx@s0.

In the following we will thus assume to be in this regim
that is we assume that the energy distribution along the st
has a vanishing coherence length. In this case the expo
tial factor can be replaced by a Dirac delta function so t
the two-point correlation function ofm can be written

^m~s1!m~s2!&52c2s0m0
2dDirac~s12s2! ~21!

and the other correlation functions are then not relevant
the description of the distortion properties.~It does not mean
that the probability distribution function ofm is assumed to
be Gaussian distributed.! Obviously, this result does not de
pend on the details of the small scale correlation proper
of m. One can see that in this limit only one extra parame
is required to describem, that isc2s0. Since it is not a priori
possible to distinguish between the coherence lengths0 and
c2, in the following we use Eq.~21! assuming thatc251/2.

Together with Eq.~6! we call this model of strings, the
Poisson string model. We are aware of the dramatic simpl
fications we have adopted to describe the outcome of
a priori very complicated physics. Still we think that some
the basic properties of lens phenomenology can be capt
by such a model in a much more realistic way than a sim
straight string with a uniform distribution.

III. ELEMENTARY PHENOMENOLOGY
OF ‘‘POISSON STRING’’

In Fig. 1 we depict an example of numerical implemen
tion of such a cosmic string, showing various features as
ciated with this lens system. It is obviously beyond the sco
of this article to present the general theory of gravitatio
lenses~see Ref.@13#!. The aim of this section is to give som
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model of energy distribution.

The gray levels show the variation of amplification give
by the determinant ofA 21. Along the brightest areas th
amplification is infinite; these locations form the critic
lines. This is where the most dramatic lens effects could
detected: giant arcs, merging of images, etc. Note that s
lines simply do not exist for strings with uniform densit
The critical lines are mainly made of two long lines runnin
along the string without crossing it. This latter property
due to the fact that whatever the local value ofm the dis-
placement field has always an infinite gradient at the str
position. This point will be quantified more precisely in th
next section.

Such a system of critical lines is associated with cau
lines in the source plane. These caustic lines are show
Fig. 1 as thick solid lines: the left one for instance is obtain
by applying the displacement field to the right side long cr
cal line. If a background object happens to lie on this line
will appear as a highly deformed object~with formally infi-
nite magnification! on the image plane. The caustic lines a
also directly related to the possibility of having multiple im
age of background objects. Each time one is crossing
caustic lines the number of associated images is change
2: at large distance the number of image is one; after
crossing it has 3~in other words if an object is located i
between the two caustic lines, it has 3 images!, after 2 cross-

FIG. 1. Numerical experiment showing the amplification ma
i.e. 1/det(A), of a ‘‘Poisson string.’’ The brightest pixels corre
spond to infinite magnification: they form the critical lines. Th
darkest pixels correspond to a magnification close to zero. The s
lines correspond to the caustics, positions of the critical lines in
source plane. The external dashed lines are the counter imag
the critical lines.
5-3
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FRANCIS BERNARDEAU AND JEAN-PHILIPPE UZAN PHYSICAL REVIEW D63 023005
ings it has either 1 again or 5~this is the case for the caust
lines associated to the inner critical lines!, etc.

Thus, in general, on the image plane the critical lines
betrayed by dramatic lens effects such as merging of
images of background objects. It is then worth noting that
are here generically in a regime of 3 images in the vicinity
the string~except in rare cases where it can be 5! instead of
2 as for a strictly uniform string. The dashed lines show
locations of the counter images of the critical lines. It deli
its the region, in the image plane, within which multip
images can be found. It can be noted, however, that the
plification rapidly decreases in the vicinity of the string,
that central images~i.e., the ones situated in between the tw
infinite critical lines! are expected to be strongly deamplifie
except when they are close to one of the critical lines.

Moreover, the examination of Fig. 4 shows that numero
small images generically appear along the string. The p
ence of these images are due to the fluctuating small s
structure of the string. They are associated with an infin
number of critical lines~and caustics! near the string, that are
only partially exhibited on Fig. 1 due to the finite resolutio
of our simulation. In a realistic string these images wou
appear down to scales corresponding to the coherence
s0. One aim of the next section is again to quantify mo
precisely this aspect. We have checked that, in the limi
the resolution of this simulation, the global feature we s
here do not depend on the shape of the one-point probab
distribution function ofm neither on the actual resolution.

IV. STATISTICAL PROPERTIES

The aim of this section is to quantify some aspects of
results described in the previous part. Indeed, in general
tems of critical lines depend non-trivially on the lens stren
and also on the optical bench configuration. So, at this po
it is not clear how typical is the plot presented on Fig. 1, a
whether it depends or not on the parameter choice. O
aspects that may be difficult to grasp with a simple numer
experiment are the mathematical properties of the crit
lines. Since the string has an infinite number of substructu
~when the coherence length is assumed to vanish! the prop-
erties of the critical and caustic lines may not be numerica
stable. In particular there seem to be a large number of s
critical lines close to the string. So we do not knowa priori
whether those lines form a fractal like structure, or whet
their total length is finite.

In the following we want in particular to locate the pos
tion of the critical lines, compute their average length~per
unit string length!, as well as the length of their counterpar
in the source plane, the caustic lines. And quite surprisin
what in general would be an impossible task~because critical
lines form complex patterns that depend nonlinearly a
nonlocally on the energy distribution! turns out to be com-
putable to a large extent for this model.

The calculations are primarily based on the fact that
local quantities obey Gaussian statistics and can thus be
tirely described by their second moments. This property
valid because we assume to be in a regime of an infini
small coherence length on the string. This would not ha
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been the case otherwise, and not only should the correla
effects ofm along the string be taken into account but al
the fact thatm(s) itself is nota priori Gaussian distributed
The calculations of the moments of the displacement,
shear components and the shear gradients are the req
ingredients and are given first.

A. Correlation matrices

1. Displacement field

Not surprisingly we can check that

^j1~x!&52j0 sgn~x!, ~22!

^j2~x!&50, ~23!

where

j0[4pG
DLS

DOS
m0 , ~24!

which corresponds to the case of a uniform cosmic stri
We introduce the angular variablej0 that defines the averag
energy scale of the string. The second moment of the
placement field is given by

^j i~x!j j~x!&5
8p

x
s0m0

2d i j 5
1

2px
s0j0

2d i j . ~25!

One can note that the displacement fluctuations have
same amplitude in directions along the string and perp
dicular to the string~we have no convincing physical inter
pretation for that!. A consequence of these results is th
angular pair separations is no more fixed~and given by 2j0);
they may fluctuate along the string, and the amplitude of
fluctuations is all the more large that the images are clos
the string. The image pairs may also not be strictly ortho
nal to the string direction. The amplitude of these fluctu
tions depend on the dimensionless ratios0 /j0. The larger it
is, the larger the relative fluctuations are.

Such effects can be observed on Figs. 4, where pairs
be clearly identified, but distances and orientations ind
fluctuate from pair to pair.

2. Amplification matrix

As we already stressed, the main novel effect compare
a uniform straight string is the emergence of complex dist
tion features. The latter are related to the value of the lo
shear. For a uniform string the shear components are alw
zero. A reminder of this property is given by the avera
values of the elements of the amplification matrix that
vanish.

The shear components are explicitly given by

g158G
DLS

DOS
E dsm~s!

~y2s!22x2

@~y2s!21x2#2 , ~26!

g25216G
DLS

DOS
E dsm~s!

~y2s!x

@~y2s!21x2#2 . ~27!
5-4
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COSMIC STRING LENS PHENOMENOLOGY: MODEL OF . . . PHYSICAL REVIEW D 63 023005
Their second moments can be calculated.2 They depend on
the distance to the string and are given by

^g i~x!g j~x!&5
1

px3 s0j0
2d i j . ~28!

For completeness we can also compute the cross-correl
terms

^g i~x!j j~x!&52
1

4px2 s0j0
2d i j , ~29!

with the displacement field. These results allow us to g
some insights into this system. For instance, one can c
pute that the local shear distribution function. It is given

P~g!dg5expF2
g2

2sg
2Ggdg

sg
2

~30!

where

sg
25^g1

2&5^g2
2&. ~31!

Since the local convergence vanishes, the local amplifica
m51/detA is given by

m5
1

12g2 , ~32!

and the critical lines are the locations whereg51. From the
relation ~30!, we can compute the probability that a point
a given location is within the critical zone (g.1) or out
(g,1). This probability is given by

Pcrit.~x!5E
1

`

P~g!dg5expF2
1

2sg
2~x!

G
5expF2

px3

2s0j0
2G . ~33!

This probability has a very simple shape. It reaches un
nearby the string. This expresses the fact that the string i
is always in the critical region: no critical lines can actua
cross the string, and there must always exist two infin
critical lines running on each side of the string. The situat
observed on Fig. 1 is thus completely generic in this resp

This expression also indicates the behavior of typi
critical line distance to the string. It must scale somehow
(s0j0

2)1/3 since this is the only distance that intervenes in E
~33!. The exact calculation of such a quantity cannot, ho
ever, be obtained from the mere distribution of the she
The number of intersection points between the critical lin
and any horizontal lines, for instance, is also not containe
the probability. Somehow the spatial correlations of the sh

2It is actually possible to also compute analytically the two-po
correlation functionŝ g i(x,y)g j (x8,y8)&, but it has no use in the
following.
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have to be taken into account. We will see in the followi
that the statistical properties of the shear gradients allow
computation of such quantities.

3. Shear gradients

They area priori four different shear gradient compo
nents. However, since the local convergence is zero, th
are simple relations that relate these components togeth

]xg25]yg1 , ~34!

]yg252]xg1 , ~35!

so that only two quantities have to be considered. We
furthermore define a pseudovectordW asdW [(]xg1 ,]yg1). The
calculations of its statistical properties can be done in a si
lar way as previously, and one gets

^d i~x!d j~x!&5
3

px5 s0j0
2d i j , ~36!

^g i~x!d j~x!&52
3

2px4 s0j0
2d i j , ~37!

from which we deduce that the correlation coefficientr with
the shear field is given by

r[
^g1d1&

A^d1
2&^g1

2&
5

^g2d2&

A^d2
2&^g2

2&

52
A3

2
'20.86. ~38!

As a result we can explicitly write the joint probabilit
distribution of the local shear and shear gradients

P~gW ,dW !d2gW d2dW

5expF2
1

2~12r 2! S g2

sg
2

1
d2

sd
2

2
2rgW •dW

sgsd
D G

3
1

~12r 2!~2p!2

d2gW

sg
2

d2dW

sd
2

, ~39!

wherer is given by Eq.~38!, sg is defined in Eq.~31! andsd

is given bysd
25^d1

2&5^d2
2&.

B. Properties of the critical lines

1. Where are the critical lines?

As mentioned previously we are now in position to a
dress issues related to the critical and caustic lines. F
thing that can be considered is the number density,n̄crit(x),
of intersection point between the critical line and any ho
zontal axis. This function will allow us to compute not on
the typical number of such intersection points but also
average distance between the critical lines and the string,
its fluctuations. The method we introduce here will also
employed in the next paragraph to derive the total length
the critical lines.

t

5-5
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If xi denote the locations where det(A)50 ~which is
equivalent tog51 whenk50) on a given horizontal axis
the local number density of intersecting points is

ncrit~x!5(
i

dDirac~x2xi !, ~40!

where eachxi is an implicit function of the random variable
m(s). Such a quantity is actually a random quantity th
depends in particular on they position. But what we really
want is the average number density of these points,
would be measured as a geometrical average overy position,

n̄crit~x!5
1

LE0

L

dy ncrit~x!, ~41!

in the limit of a largeL. If we assume this system to b
ergodic, then the geometrical average of Eq.~41! can be
replaced by an ensemble average over the positionsxi ~that
are random quantities depending on the variables,gW , dW , etc.!
as

n̄crit~x!5E P~gW ,dW , . . . !d2gW d2dW •••(
i

dDirac~x2xi !.

~42!

To perform such an average, one needs to make a chan
variable fromxi to local parametersgW anddW . This is possible
since we need to do this change of variable only in the
cinity of xi ~we follow here the same line of computation
what has been done in 3D or 2D Gaussian fields for com
tations of number density of maxima@14#!. The constraint
(x2xi)50 can then be replaced by a constraint on the r
dom variablesgW anddW . Since at first order in (x2xi),

g~x!'11~x2xi !]xg~xi ! ~43!

we obtain that

n̄crit~x!5E P~gW ,dW !d2gW d2dW dDirac~g21!u]xgu, ~44!

with

]xg5
1

2
~g1d11g2d2!5

1

2
gW •dW . ~45!

The integral~44! can then be easily computed explicitly u
ing the expression~39!. It leads to

n̄crit~x!5A3x

2
e22px3

1
3

2
px2 ErfSA3p

2
x3/2D e2px3/2,

~46!

when x is taken in units of (s0j0
2)1/3. As shown on Fig. 2

where we have depictedn̄crit(x), the intersections mostly
take place at a distance of about 0.75(s0j0

2)1/3. The average
number of intersection points~on one side of string! is then
02300
t

at

of

i-

u-

-

n̄5E
0

1`

dx ncrit~x!5
2

A3
'1.155. ~47!

The number of intersection points being an odd number
means that the critical line crosses one horizontal line m
than once in at most 7% of the cases. It supports the fact
we are dominated by the two long critical lines located
each side of the string. In rare cases, inner critical lines
give rise to complex multiple image systems.

The typical distance of the critical lines to the string c
also be computed. It is given by

dcrit5

E
0

1`

dx xn̄crit~x!

E
0

1`

dx n̄crit~x!

'0.70~s0j0
2!1/3 ~48!

whereas the scatter of this distance is about

Ddcrit50.31~s0j0
2!1/3. ~49!

One recovers the scaling behavior suggested in prev
paragraph. Remarkably the average distance and the sc
of the distance follow the same scaling law. It suggests t
the critical line system is somehow universal, in the se
that it does not depend on the dimensionless ratios0 /j0.
This idea is further supported in the next paragraph where
compute the total length of the critical lines.

2. Length of the critical lines

The length of the critical lines~per unit string lengthL) is
a priori given by

Lcrit52E
0

`

dx E
0

L

dy dDirac~x2xc ,y2yc!, ~50!

where (xc ,yc) describes the running position of the critic
lines in the (x,y) plane and the factor 2 accounts to the fa
that we take into account both sides of the string. To co

FIG. 2. Shape of the functionn̄crit(x) as a function of the dis-
tance from the string in units of (s0j0

2)1/3.
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plete this calculation one can perform a change of variab
from (x,y) to (uc ,vc) whereuc andvc are the coordinates o
a point in a basis given by (nW , tW), normal and tangentia
vectors to the critical line at (xc ,yc) position. Then the inte-
gral ~50! reads

Lcrit52E ducdvcdDirac~uc!. ~51!

As previously thedDirac function can be replaced by a con
straint ong. In this case the modulus of the gradient alo
the x direction is replaced by the one along thenW direction
which is u¹gu by construction. Finally one gets, returning
the x andy variables,

Lcrit52E
0

`

dx E
0

L

dy E P~gW ,dW !d2gW d2dW u¹gudDirac~g21!.

~52!

This can also be computed straightforwardly by noting th

¹g5
1

2
~g1d11g2d2 ,g1d22g2d1! ~53!

so that

u¹gu5gd. ~54!

The integral overy is then straightforward and gives a fact
L. The integral overd can be performed without too muc
difficulty and gives

Lcrit5L2A6p2E
0

`

dx x7/2I 0S 2
3px3

4 DexpS 2
5px3

4 D ,

~55!

where I 0 is the Bessel function. Finally, using an integr
representation ofI 0, one finds

Lcrit5
4

A3
E S 3

4DL'2.80L, ~56!

where E is the complete elliptic integral. Remarkably th
coefficient is independent of the parameter of the model
particular it does not depend on the dimensionless r
s0 /j0. Because this integral is finite, it also proves that
closed critical lines have a finite total length despite the f
that they are in infinite number.

C. Properties of the caustic lines

If one wants to detect such a string with distortion effec
the efficiency of such a detection will be directly propo
tional to the length of thecaustic lines which are the loca
tions on the source plane where the background objects
significantly distorted.

The calculation of the length of the caustic lines isa pri-
ori a much more difficult task since it is related to quantit
in the source plane. One can actually circumvent this pr
lem. The idea is that a length elementdW l crit on the critical
02300
s

t

n
io
e
t

,

re

-

line is going to be transformed in a length element on
caustic lined lWcausaccording to the amplification matrix lin
ear transformation

d lWcaus5A•d lWcrit . ~57!

We are interested here only in the change of lengthud lWcritu to
ud lWcausu. It depends locally on the eigenvalues and eigen
rections ofA. On the critical line the eigenvalues ofA are 0
and 2~one is necessarily 0 by construction, the other is giv
by the trace of the matrix, that is 2, sincek50 everywhere!.
As a result we deduce that

ud lWcausu52ud lWcrit•eW2u ~58!

whered lWcrit•eW2 is the component ofd lWcrit on the eigendirec-
tion associated with the eigenvalue 2. The eigenvector a
ciated with this eigenvalue is

eW25
1

A2~11g1!
S 2g2

11g1
D . ~59!

If we set

gW 5g~cosc,sinc! ~60!

and

¹g5gd~cosf,sinf! ~61!

we deduce that

ud lWcausu

ud lWcritu
5

2

A2~11g1!
ucos~f2c!1coscu. ~62!

The shear field has no preferred direction and thus it is p
sible to integrate overc with a flat distribution to get

ud lWcausu

ud lWcritu
5E

2p

p dc

2p
A 2

A~11g1!
ucos~f2c!1coscu5

4

p
~63!

~this can be obtained by the change of variable,c52t).
Remarkably this result is independent off so that we di-
rectly conclude that

Lcaus5
4

p
Lcrit'3.56L. ~64!

From an observational point of view we have obtained w
this result some insights into the detectability of such a str
from large distortion effects. The cross section of a Pois
string of lengthL can be estimated to be about 3.6L times
typical galaxy sizes, if galaxies are the objects that one u
to reveal the distortion effects.

D. Cusps number density

One could pursue these investigations by computing
number density of cusps along the critical lines, that is poi
5-7
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corresponding to the merging of 3 images. These points
characterized by the property that the critical line is loca
along the eigenvector associated with the eigenvalue equ
zero. Technically it corresponds to the cases whereud lWcausu
vanishes in previous calculations. Since the detailed calc
tion of such a quantity requires one further derivatives of
shear, we do not present it here. We can, however, a
from simple scaling arguments that

ncusps}~s0j0
2!21/3. ~65!

E. Scaling laws

Note that for our description to be valid, the typical di
tance of the critical line to the string (s0j0

2)1/3 must be larger
than the coherence length along the strings0 ~assumingc2 to
be finite!. This is the case when the average displacemenj0
is larger thans0.

Changing the position of the source plane is equivalen
changing the amplitude ofj0 while keepings0 constant. It
acts indeed as a normalization factor@see Eq.~24!#. If this
amplitude is multiplied byl, the angular distance of th
critical line to the string scales as,

dcrit}l2/3. ~66!

But still the total length of the critical lines remains u
changed. In Fig. 3 we illustrate this effect by changing
amplitude ofj0. We see that the critical lines~thick lines on
the right side! are drifting away from the string. Howeve
they tend to get stuck on points where the local shear v
ishes~dark patches on the figure! creating invaginations to
wards the string position. Whenj0 gets large enough th
critical line is disconnected and leaves a small inner clo
critical line aroundg50 points. This effect can be observe
in particular in the central part of the figure. As a result t
critical line has larger position fluctuations, but over a larg
scale along the string, so that its total length is kept const
One consequence of this mechanism is that there are l
tions on the image plane~close to points whereg50) which
correspond to quasisuperposition of critical lines from ma
different source planes. That should make them more lik
to be detected.

At the same time the caustic lines are sweeping over
source plane; their distance to the critical line, and to
string, increases asl, if the typical displacement is large
than (s0j0)1/3. In this case we can also observe that the s
of the multiple image region is determined by the displa
ment amplitude and thus scales asl ~positions of the thin
lines on the right side!.

V. DISCUSSIONS

This investigation provides a new description of the ph
nomenological properties of lens physics for cosmic strin
The model of ‘‘Poisson string’’ we present is based on g
eral results which state that the lens effects of string are th
obtained from linear energy density. We think such a mo
must have captured most of the generic properties expe
for string lens phenomenology as the resemblance with
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results of numerical experiments~see Fig. 3 of Ref.@10#!
strongly suggests it. We are, however, aware that the vali
of the description we adopted has not been demonstr
~numerical simulations of string networks lack the necess
resolution for describing correctly the small scale structu
of strings!. It is clear, for instance, that the projected positi
of a string on the sky does not follow a straight line. W
have checked that the results we found are not strongly
fected if a nonzero curvature radius is introduced, as long
this radius is larger than the other quantities involved in t
problem, i.e.,j0 and (s0j0

2)1/3.
The results we have obtained suggest novel strategies

detecting strings: multiple images are still present, but i
ages can have undergone significant distortions; small
ages of background objects can be found in large numb
The most adapted strategy depends however, on the re
tion of the imaging apparatus and on the energy scale of
string. In Fig. 4 we show an example of an HST deform
image. In this case the energy scale of the string expresse
units of j0 is similar to the angular scale of a galaxy. F
GUT strings,j0 would be of the order of a few arcsec
which is indeed a typical galaxy size in deep surveys. T
probability of observing such an event depends obviously
the survey coverage. The expected angular length of str

FIG. 3. From the same numerical experiment we show the va
tion of the location of the critical~right side! and caustic~left side!
lines when the source plane is displaced. The gray levels show
the amplitude of the shear field. We see that the critical lines ten
stick around points whereg vanishes~and the points where it hap
pens are independent on the source plane distance!. The thin lines
show the variation of the position of the counter image of the ca
tic lines.
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FIG. 4. Example of a deformed image by a Poisson string. The field corresponds to an external region of cluster A2218~taken by the
Hubble space telescope!. If such a field was put atz51, then an intercepting string atz;0.8 along the line-of-sight would produce multipl
images as observed on the 2 pictures~the typical pair separation is about 5 arcsec!. The right panel shows this system with a resolution
about 0.5 arcsec, whereas the left panel shows the same image with sub 0.1 arcsec resolution. In this case the distortions of the
galaxies are clearly exhibited. Note also that a number of small images appear along the string. In high resolution images, that mi
most effective way of detecting strings.
e
d
re
h
n

of
ds
to be present within redshift unity has been estimated in R
@15# and is such that on average one string is expecte
cross a 100 deg2 survey. But even though such surveys a
within reach in the near future, the probability with whic
one can detect a string~or conversely the rejection one ca
o,
mo
9

ts

02300
f.
to
put on the existence of strings with a given energy scale! still
deserves further investigations in particular on the effects
multisource planes~the amplitude of the lens effects depen
on the position of the source plane! that may partly blur the
searched effects.
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