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Cosmic string lens phenomenology: Model of Poisson energy distribution
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We present a novel approach for investigating lens phenomenology of cosmic strings in order to elaborate
detection strategies in galaxy deep field images. To account for the complexity of the projected energy
distribution of string networks we assume their lens effects to be similar to those of a straight string carrying
a random energy distribution. In such a model we show that, unlike the case of uniform strings, critical
phenomena naturally appear. We explore the properties of the critical lines and caustics. In particular, assum-
ing that the energy coherence length along the string is much smaller than the observation scale, we succeed in
computing the total length of critical lines per unit string length and find it to RBB(3/4). The length of the
associated caustic lines can also be computed to berdB)E(3/4). The picture we obtain here for the
phenomenology of cosmic string detection is clearly at variance with common lore.
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[. INTRODUCTION served in such a model are presented. Section IV is devoted
to more precise calculations on the properties of the critical
Although the current results on large-scale structure fordines and caustics for such a model of strings and finally we
mation favor models with initial adiabatic scalar perturbationevoke observational aspects.
[1], the formation of cosmic strings is general enough to

merit further investigation$2]. It is in.parti.cular not ex- Il. STRING MODEL
cluded that strings may form after an inflationary phg3e .
We are interested here in the phenomenological aspects of A. General formalism

cosmic strings for lens distortion effects whereas most of the |n general lens effects are encoded in an amplification

previous investigations have been focused on string detectiamatrix .4, which describes the way the angular positions in
from multiple quasar image$4,5] or cosmic microwave the image plane are transformed to those in the source plane
background fluctuationgs]. With the advance of new gen- (see Ref[11] for a comprehensive description of lens phys-

eration of large CCD cameras the best direct evidence fogs) |t is usually written in terms of the convergence field
cosmic string relics is however likely to be obtained from gnq the shear fieldy, y,):

distortion effects they induce on background objects such as
galaxies. l-k—7 — 2

In a companion paper we insist on the generic properties A= 1t | (1)
expected for cosmic strings as far as lens effects are con- 2 "

cerned: string lens effects are equivalent to those induced b)(1 ) ) )
an energy distribution localized on a line. This effective en-fhat are directly related to the projected energy density. The
ergy distribution should obviously take into account the leng€markable property for lens effects are obtained when one
energy density, its tension, as well as kinetic energy thaPf the eigenvalues afl is crossing or getting close to zero.
might result from rapid movements or energy currents alond € difficulty, however, is that these features are neither lo-
the string[7]. cal nor linear in the energy dens[ty a.md. location of the string.
The explicit computation of string induced lens effects The fact that the projected density is likely to fluctuate sub-
has been done in various cases, for long striiscircular ~ Stantially, because of local velocities, wiggles, longitudinal
loops in plane transverse to the line of sigBi, or small motions, etc., has somehow to be incorporated in the descrip-
loops with a multipole expansion approap#]. However, ~ton. o _
much more complex situations have been explored so far In.case of cosmic strings, the elem(_ants of.the deformat!on
with numerical experiments onfi@]. In particular the study Matrix can be derived from the _effec_tlve projected potential
presented in Ref[10] suggests a quite different lens phe- (p(x_,y) which can formally be written in terms of the angular
nomenology for the images of background galaxies but lack®0sitions &.y) [e.g., Eq.(37) of Ref.[12]] as
analytical insights. Having in mind such phenomenological

effects, we try in this paper to get more quantitative results D.s

by introducing a simplified description of strings. In Sec. Il (P(ny)=4GD—f dsu[Xsu(S),Ysul(S)]

we present the model of “Poisson” energy distribution we s

use. In Sec. Il general phenomenological properties ob- X1og([X—Xse(S) 1P+ [Y—VYs(9)1D)Y2, (2
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where[ X(S),Y«(S)] are the angular string coordinates for maxs,} —min{s,}

the angular curvilinear positios, u[Xs(S),Ys(S)] is the — (&(S1) ... m(Sp))c=Cpuh exr{— S

projected energy density at those positioBds the Newton 0 (9)
constant, and, s/Dqg is the ratio of the angular distance

between the string and the source-plane to the one betweed thatu(s) has a finite coherence lengsly, and u(s) is

the observer and the source plane in the thin‘iemproxi-  essentially uniform with typical valug, at scales smaller
mation[12]. The projected energy density is a combinationthans,. The statistical properties of the displacement field or
of the projectedloy, To,, andT,, components of the stress- of the elements of the amplification matrix are then described
energy tensor of the string if the line-of-sight is along the py the ones ofx. For instance,

direction. The displacement field is then given by

DP
&=—die(xy) @ (P00)e=e0 o ub
oS

and the elements of the deformation matrix can be written as too too
xf ds;- - f ds,Gi(x,81) - - Gi(X,8p)

1= (35— 3 e(x.y), @
max s} — min{s,}
V2= 20,0y 0(X.Y), (5) X eXF{ B S : (10
the local convergence being zero except on the string itselfwith
. . 2_ X2
B. The Poisson string model Gl(x,y)=4( 2+x2)2’ (11)
It seems very difficult to take into account all the features y
that must be included: the string are far from being straight Xy

lines with uniform energy distributiof8]. We choose to de- Gy(X,Y)= —8———. (12)
scribe the energy fluctuation in a simple manner, assuming (y=+x°)

that the string follows a straight line, but with local energy _ i i
fluctuations. This fluctuations are assumed to account for thén€ general expressions of these integrals are complicated,
various changes of shape, density of the strings, for possibleut they can be computed at leading ordesgitx. First of
nonstandard equation of states, or for the existence of cufll We can notice that
rents along the string. We therefore assume the string to be

straight along they direction (y1)=(v2)=0. (13

Xe(S)=0, Ye(S)=S5 (6) At leading order insy/x the computation of the results can
be obtained by an expansion@f(x,s;) with respect tes; in

and u£(s) to be a random field. Note that it does not meanthe vicinity of s, (for instancg as
however that the string is actually orthogonal to the line-of- _ o )P PG
sight. It simply means that the stririgr rather the section of Gi(x,5)=> (si=s)” —i(x sy). (14)
string we are interested )irappears roughly straight on the ne p p! gsP >

sky. To specify our model we still need to explicit the sta-

tistical properties of thew field. In general the results are It leads to

going to depend on the chosen global statistical properties of

w and not only on its two-point function, for instance. In e szs S [t

particular one question to ask is whether there is a finite (7)~=8cG pz. M), ds,Gi(x,81)

correlation length along the string or not. Let us assume that oS

the string can be described by the following properties: +o0
xf ds,Gi(x,s1tSy)exp —s,/sy) (15
0

(u(s))= po, ()
D? e
|s1— 5| ~80,G2—2 4425 f dsG(x,s). (16)
(1(81) 1(S2) )e=Copsf exr{— et (8) ? Dés'uo ) &
A similar computation can be performed for the third cumu-
lant,
The thin lens approximation is appropriate if one is interested in
only a fraction of a string spanning at most a few degrees on the Dﬁs 4o
sky. This would not be appropriate for apparent string crossings, for <%3> = 4803G3—3,ugsgf dsC—f’(x,S). a7
instance. Dos -
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One can further notice that for parity reasdng)=0. For
the first component of the shear we, have, however,

) 2DES AT
<71>=8(:ZSOG D2 ILLOFI (18)
0os
D .8m
(r)=- 48C353G3—3M8ﬁ- (19
DOS

One can notice that the dimensionless skewig3¥ ( y3)%?

is given by

(73) 6 (So) Y2 ¢q

()% VBwlx] ¢
The ratio c3/c§/2 being a priori finite (and surely the one-
point probability distribution function ofc has no reason to
obey Gaussian statisticat implies that the reduced skew-
ness vanishes at distance much larger than the correlation
lengthsy from the string. This is a natural expectation since
at finite distance and fasp— 0 such quantities as the shear
are obtained as sums of infinite number of sources. So, very
generically, whatever may be the statistical propertieg of
we expect that locally, all quantities follow Gaussian statis- FIG. 1. Numerical experiment showing the amplification map,
tics as soon ag>s;. i.e. 1/det(d), of a “Poisson string.” The brightest pixels corre-

In the following we will thus assume to be in this regime, spond to infinite magnification: they form the critical lines. The
that is we assume that the energy distribution along the stringarkest pixels correspond to a magnification close to zero. The solid
has a vanishing coherence length. In this case the exponepﬂes correspond to the caustics, positions of the critical lines in the
tial factor can be replaced by a Dirac delta function so thagource plane. The external dashed lines are the counter images of
the two-point correlation function gf can be written the critical lines.

(20

hints on the expected phenomena encountered for such a
(m(31) 1(S2)) = 2,505 Opirad 1~ S2) 2D model of energypdistribugion.
The gray levels show the variation of amplification given
E)y the determinant ofd ~1. Along the brightest areas the
amplification is infinite; these locations form the critical

. o . ; lines. This is where the most dramatic lens effects could be
be Gaussian distributedObviously, this result does not de- detected: giant arcs, merging of images, etc. Note that such

pend on the details of t_he s_ma_tll _scale correlation propertieﬁnes simply do not exist for strings with uniform density.
.Of M- Qne dctan dsee t'gat |{1htr;|§ limit oSn'Iy on.(te'extra: para}mgtenrhe critical lines are mainly made of two long lines running
IS required to describg, that ISC;Se. SInce 1Lis not a priori along the string without crossing it. This latter property is
posglble to dlst|ng|sh between the cohe.rence lesgitnd due to the fact that whatever the local value ofthe dis-

Cz, in the following we use Eq(21) assuming that,=1/2. o3 cement field has always an infinite gradient at the string

Together with Eq(6) we call this model of stri_ngs., the_ position. This point will be quantified more precisely in the
Poisson string modeWe are aware of the dramatic simpli- next section

fications we have adopted to describe the outcome of an Such a system of critical lines is associated with caustic

a priori very complicated physics. Still we think that some of ji,e¢ i the ‘source plane. These caustic lines are shown in
the basic properties of lens phenomenology can be capturgey 'y 5 thick solid lines: the left one for instance is obtained

by S.UCh a T“Ode! ina mgch more _real_lstlc way than a S'mpl%y applying the displacement field to the right side long criti-
straight string with a uniform distribution. cal line. If a background object happens to lie on this line, it
will appear as a highly deformed objegtith formally infi-
lll. ELEMENTARY PHENOMENOLOGY nite magnification on the image plane. The caustic lines are
OF “POISSON STRING” also directly related to the possibility of having multiple im-

In Fig. 1 we depict an example of numerical implementa-age of background objects. Each time one is crossing the
tion of such a cosmic string, showing various features assazaustic lines the number of associated images is changed by
ciated with this lens system. It is obviously beyond the scope: at large distance the number of image is one; after one
of this article to present the general theory of gravitationalcrossing it has 3in other words if an object is located in
lensegsee Ref[13]). The aim of this section is to give some between the two caustic lines, it has 3 imagedter 2 cross-

and the other correlation functions are then not relevant fo
the description of the distortion properti¢k.does not mean
that the probability distribution function gt is assumed to
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ings it has either 1 again or (his is the case for the caustic been the case otherwise, and not only should the correlation

lines associated to the inner critical lingstc. effects of u along the string be taken into account but also
Thus, in general, on the image plane the critical lines arehe fact thatu(s) itself is nota priori Gaussian distributed.

betrayed by dramatic lens effects such as merging of tw@he calculations of the moments of the displacement, the

images of background objects. It is then worth noting that weshear components and the shear gradients are the required

are here generically in a regime of 3 images in the vicinity ofingredients and are given first.

the string(except in rare cases where it can harstead of

2 as for a strictly uniform string. The dashed lines show the A. Correlation matrices

locations of the counter images of the critical lines. It delim-

its the region, in the image plane, within which multiple

images can be found. It can be noted, however, that the am- Not surprisingly we can check that

plification rapidly decreases in the vicinity of the string, so

1. Displacement field

that central imageé.e., the ones situated in between the two (§1(x)) = —&osgnx), (22
infinite critical lineg are expected to be strongly deamplified,
except when they are close to one of the critical lines. (&2(x))=0, (23

Moreover, the examination of Fig. 4 shows that numerous
small images generically appear along the string. The presvhere
ence of these images are due to the fluctuating small scale D
structure of the string. They are associated with an infinite 5054776_'-5’%, (24)
number of critical linegand causticsnear the string, that are Dos

only partially exhibited on Fig. 1 due to the finite resolution hich ds 1o th f i ic stri
of our simulation. In a realistic string these images would"/ich corresponds to e case of a uniform cosmic string.

A%e introduce the angular variabfg that defines the average
energy scale of the string. The second moment of the dis-

Sp. One aim of the next section is again to quantify more ) o
0 9 quantify lacement field is given by

precisely this aspect. We have checked that, in the limit of
the resolution of this simulation, the global feature we see 8 1
here do not depend on the shape of the one-point probability (6(X)&(x)= —SoMc2)5ij :_505(2)5” . (25)
distribution function ofu neither on the actual resolution. X 2mX

One can note that the displacement fluctuations have the
IV. STATISTICAL PROPERTIES same amplitude in directions along the string and perpen-
) ) o ) dicular to the stringwe have no convincing physical inter-
The aim of this section is to quantify some aspects of thgyretation for that A consequence of these results is that
results described in the previous part. Indeed, in general SYemgular pair separations is no more fixadd given by Z):
tems of critical Iines. depend non—triyially on the lens sf[rengththey may fluctuate along the string, and the amplitude of the
and also on the optical bench configuration. So, at this pointjctuations is all the more large that the images are close to
it is not clear how typical is the plot presented on Fig. 1, andhe string. The image pairs may also not be strictly orthogo-
whether it depends or not on the parameter choice. Othe{a| to the string direction. The amplitude of these fluctua-
aspects that may be difficult to grasp with a simple numericajgns depend on the dimensionless ratid&,. The larger it
experiment are the mathematical properties of the criticajs the larger the relative fluctuations are.
lines. Since the string has an infinite number of substructures gch effects can be observed on Figs. 4, where pairs can

(when the coherence length is assumed to vartt#h prop-  pe clearly identified, but distances and orientations indeed
erties of the critical and caustic lines may not be numericallyjyctuate from pair to pair.

stable. In particular there seem to be a large number of small
critical lines close to the string. So we do not knavpriori 2. Amplification matrix
whether those lines form a fractal like structure, or whether
their total length is finite.

In the following we want in particular to locate the posi-

As we already stressed, the main novel effect compared to
a uniform straight string is the emergence of complex distor-
tion features. The latter are related to the value of the local

tion of the critical lines, compute their average lengpler h E i tring the sh i |
unit string length, as well as the length of their counterparts shear. For a uniform string the shear components are always
zero. A reminder of this property is given by the average

:,U;Qte ir? Zlgrf :rglli\?oedIfjhgecgﬁsi:fplcl)r;iist;lQ?gbgggisss [:Fr)irtliilglgly\’/alu_es of the elements of the amplification matrix that all
lines form complex patterns that depend nonlinearly and’an'Sh' - :
nonlocally on the energy distributipriurns out to be com- The shear components are explicitly given by
putable to a large extent for this model. D

The calculations are primarily based on the fact that all 71=86£f dspu(s)
local quantities obey Gaussian statistics and can thus be en- Do [
tirely described by their second moments. This property is
valid because we assume to be in a regime of an infinitely =—16G%f ds u(s) (y—s)x @7
small coherence length on the string. This would not have Dos KT (y=9)2+x2]2"

(y—s)?—x?

=517+ 29
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Their second moments can be calculététhey depend on have to be taken into account. We will see in the following
the distance to the string and are given by that the statistical properties of the shear gradients allow the
1 computation of such quantities.

2
(7i(x) 'Yj(x)>:m50§05ij - (28) 3. Shear gradients

. They area priori four different shear gradient compo-
For completeness we can also compute the cross-correlau%ms_ However, since the local convergence is zero, there

erms are simple relations that relate these components together,
1 =
<')/i(X) g](x)> = msofgéij y (29) ax72 ay?’ly (34)
dyY2=—dxY1, (35

with the displacement field. These results allow us to gain » .
some insights into this system. For instance, one can coni0 that only two quantities have to be considered. We can

pute that the local shear distribution function. It is given by furthermore define a pseudovect®as 5= (dyy1,d,71). The
calculations of its statistical properties can be done in a simi-

5 )
¥* |ydy lar way as previously, and one gets
7)( ’}/)d’)/: EX[{ merire (30)
T (308,00) =5 5030, (39
i j 7TX5 050Yij »
where
2_ /. 2N_/.2 3
oy =(v)=(72)- 3D (%(X¥)8(X)) == 5—750£05; . (37)

Since the local convergence vanishes, the local amplificatio

w=1/detA is given by Prom which we deduce that the correlation coefficiemtith

the shear field is given by

1
p=1 (32) = (y101)  (7202)
— = =
DD ()
and the critical lines are the locations where 1. From the J3
relation (30), we can compute the probability that a point at =——~-0.86. (39)

a given location is within the critical zoney1) or out

(y<1). This probability is given by As a result we can explicitly write the joint probability

distribution of the local shear and shear gradients

o 1
Porit (X =f P(y)dy=expg — TR
Crlt.( ) 1 (7) Y F{ 20_3()() P(y,é)dzydzﬁ
X3 @3 1 e .\ 2 2ry-é
=exXp —-—=|- =exp — [ R
250£5 20-)\ g2 0% 0,05
This probability has a very simple shape. It reaches unity 1 d?y d2s
nearby the string. This expresses the fact that the string itself XW — T (39
) o, o

is always in the critical region: no critical lines can actually
cross the string, and there must always exist two infinitgynerer is given by Eq(38), o, is defined in Eq(31) anda
critical lines running on each side of the string. The situation given by02=(62>=(52). 7

observed on Fig. 1 is thus completely generic in this respect. ot 2

This expression also indicates the behavior of typical B. Properties of the critical lines
critical line distance to the string. It must scale somehow as -
(s0é3)Y? since this is the only distance that intervenes in Eq. 1. Where are the critical lines?

(33). The exact calculation of such a quantity cannot, how-  As mentioned previously we are now in position to ad-
ever, be obtained from the mere distribution of the sheardress issues related to the critical and caustic lines. First

The number of intersection points between the critical ”ne%ing that can be considered is the number dengigaﬁ(x)

and any horizontal lines, for instance, is also not contained iRyt jniersection point between the critical line and any hori-
the probability. Somehow the spatial correlations of the sheaf ,ia1 axis. This function will allow us to compute not only

the typical number of such intersection points but also the
average distance between the critical lines and the string, and
2lt is actually possible to also compute analytically the two-pointits fluctuations. The method we introduce here will also be
correlation functionsy;(x,y) y;(x",y’)), but it has no use in the employed in the next paragraph to derive the total length of
following. the critical lines.
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If x; denote the locations where dgf(=0 (which is L5[ ' : '
equivalent toy=1 whenx=0) on a given horizontal axis,
the local number density of intersecting points is

1.0F .
ncrit(X)ZEi Opirad X—Xi), (40) - -

Dopit,

where eaclx; is an implicit function of the random variables

u(s). Such a quantity is actually a random quantity that 0.5
depends in particular on theposition. But what we really

want is the average number density of these points, tha
would be measured as a geometrical average yppesition,

0.0 ] 1 1

0.0 0.5 1.0 1.5 2.0

_ 1L
Nerie(X) = Efo dy Neie(X), (41) x position in units of (s £,%)'/°

FIG. 2. Shape of the functioﬁcm(x) as a function of the dis-

in the limit of a largeL. If we assume this system to be Rt ) A
tance from the string in units ofsg&g) .

ergodic, then the geometrical average of E4l) can be
replaced by an ensemble average over the positipiithat

are random quantities depending on the variab]eeﬁ, etc) P J'de Ner(X) = £~1 155 (47)
- rit - =4 .
0

as \/§

— _ - 2 > 032 The number of intersection points being an odd number, it
ncm(x)—f P(y.6, ... )d%yds- - 2,: Oirac X Xi) means that the critical line crosses one horizontal line more
(42)  thanonce in at most 7% of the cases. It supports the fact that

we are dominated by the two long critical lines located on

To perform such an average, one needs to make a change edich side of the string. In rare cases, inner critical lines can

variable fromx; to local parameterg andd. This is possible ~ give rise to complex multiple image systems.

since we need to do this Change of variable 0n|y in the vi- The typiCﬁ' distance of the critical lines to the String can
cinity of x; (we follow here the same line of computation as also be computed. It is given by

what has been done in 3D or 2D Gaussian fields for compu- e

tations of number density of maxinfd4]). The constraint J' dX XNyie(X)
(x—x;)=0 can then be replaced by a constraint on the ran- 0

~ 2\1/3
dom variablesy and §. Since at first order inX—x;), 0.7Q(spé5) (48)

dcrit: to
f dx ncrit(x)
Y(X) =1+ (X=X;) A y(X;) (43) °

. whereas the scatter of this distance is about
we obtain that

Adeii=0.31so£5) "™ (49
— T NA25A42 3

ncm(x)—f Py, 9)d*yd*00piad y= Dl a0l (44 One recovers the scaling behavior suggested in previous
paragraph. Remarkably the average distance and the scatter
with of the distance follow the same scaling law. It suggests that
the critical line system is somehow universal, in the sense
that it does not depend on the dimensionless ragit,.
This idea is further supported in the next paragraph where we
compute the total length of the critical lines.
The integral(44) can then be easily computed explicitly us-

1 1. .
Iy= 5(7151"‘ 7252)257"5- (45)

ing the expressioni39). It leads to 2. Length of the critical lines
The length of the critical lineer unit string length.) is
- X omd, 3 > ST 32| -2 a priori given b
Nere(X) =\ 58 27+ S w2 Erf| \[5x%2 |e” ™, priort g y
(46)

o L
I—crit:2J‘O dXJO dy Spirad X—Xc,Y —Ye), (50)
when x is taken in units of ,£3)Y°. As shown on Fig. 2

where we have depicted.(x), the intersections mostly where &.,y.) describes the running position of the critical
take place at a distance of about 05&¢)*®. The average lines in the &,y) plane and the factor 2 accounts to the fact
number of intersection point®n one side of stringis then  that we take into account both sides of the string. To com-
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plete this calculation one can perform a change of variableBne is going to be transformed in a length element on the

from (x,y) to (u;,v.) whereu; andv are the coordinates of

a point in a basis given byﬁ(f), normal and tangential
vectors to the critical line atq;,y.) position. Then the inte-
gral (50) reads

I-critzzf ducdv ¢ Spjrad Ue) - (51

As previously thedp;,. function can be replaced by a con-

straint onvy. In this case the modulus of the gradient along

the x direction is replaced by the one along thalirection

which is|V y| by construction. Finally one gets, returning to

the x andy variables,

o L oo R N
I—critzzfO dx fo dyJ' P(y, 5)d27d25|v'y| Opirad Y~ 1).
(52

This can also be computed straightforwardly by noting that

1
V’Y:§(7151+ Y262,Y162— ¥201) (53

so that

[Vy|=vé. (54)

The integral ovey is then straightforward and gives a factor

L. The integral overd can be performed without too much

difficulty and gives
3mx3
2| -
(55)

5ax3
4 ’

Leit= L2\/5772J dx x4 o( —~
0

caustic lined[ ., saccording to the amplification matrix lin-
ear transformation

d IQcaus: A-d I_)crit - (57)

We are interested here only in the change of |erhgﬁgm| to
|dTeaud. It depends locally on the eigenvalues and eigendi-
rections of.A. On the critical line the eigenvalues gf are 0
and 2(one is necessarily 0 by construction, the other is given
by the trace of the matrix, that is 2, sinee=0 everywherg

As a result we deduce that

|d I_)causl. = 2| d I->crit' é)2| (59)

wheredl ;- €, is the component of [, on the eigendirec-

tion associated with the eigenvalue 2. The eigenvector asso-
ciated with this eigenvalue is

- 1 — 72
= . 59
2 21ty \ 147 59
If we set
)7= v(cosy,siny) (60)
and
Vy=vydé(cose,sing) (62
we deduce that
|drcau4 _ (62)

— = cog ¢— i)+ cosy|.
|d|crit| V2(1+71)| oy wl

where |, is the Bessel function. Finally, using an integral 1€ shear field has no preferred direction and thus it is pos-
representation of,, one finds sible to integrate ovey with a flat distribution to get

T2 e wrcosil=t
o mcos{qﬁ 7 COSlﬂ—ﬂ_

(63

4 |drcau4 _
L..=—E R

ot 3 T er
where E is the complete elliptic integral. Remarkably this i
coefficient is independent of the parameter of the model. Ii? X - .
particular it does not depend on the dimensionless rati er:parkabl?/ (tjhlsihretsult is independent éfso that we di-
So!/&p. Because this integral is finite, it also proves that the' €CHY conclude tha

closed critical lines have a finite total length despite the fact
that they are in infinite number.

(56)

3L280L
3|L—280L

his can be obtained by the change of variahjes 2t).

4
L ¢i~3.56L. (64)

Loi=—
caus T

C. Properties of the caustic lines From an observational point of view we have obtained with
If one wants to detect such a string with distortion effects,this result some insights into the detectability of such a string
the efficiency of such a detection will be directly propor- from large distortion effects. The cross section of a Poisson

tional to the length of theausticlines which are the loca- String of lengthL can be estimated to be about 8.6imes
tions on the source plane where the background objects af¥Pical galaxy sizes, if galaxies are the objects that one uses
significantly distorted. to reveal the distortion effects.

The calculation of the length of the caustic linesigri-
ori a much more difficult task since it is related to quantities
n the source plane. One can aCtuall)i clrcumvent thIS pl’Ob- One C0u|d pursue these investigations by Computing the
lem. The idea is that a length elemeafit,;; on the critical number density of cusps along the critical lines, that is points

D. Cusps number density

023005-7



FRANCIS BERNARDEAU AND JEAN-PHILIPPE UZAN PHYSICAL REVIEW D363 023005

corresponding to the merging of 3 images. These points are
characterized by the property that the critical line is locally
along the eigenvector associated with the eigenvalue equal to

zero. Technically it corresponds to the cases whele,,
vanishes in previous calculations. Since the detailed calcula-
tion of such a quantity requires one further derivatives of the
shear, we do not present it here. We can, however, argue
from simple scaling arguments that

r‘cuspsoc (3055) - 1/3- (65)

E. Scaling laws

Note that for our description to be valid, the typical dis-
tance of the critical line to the strings4£3)*®> must be larger
than the coherence length along the stspgassuming, to
be finite). This is the case when the average displacerignt
is larger thans,.

Changing the position of the source plane is equivalent to
changing the amplitude of, while keepings, constant. It
acts indeed as a normalization facfsee Eq.(24)]. If this
amplitude is multiplied by\, the angular distance of the
critical line to the string scales as,

dcritOc )\2/3- (66)

FIG. 3. From the same numerical experiment we show the varia-

But still the total length of the critical lines remains un- . . S . . _
- . . . f the | f th h I
changed. In Fig. 3 we illustrate this effect by changing thetlon of the location of the criticalright sidg and caustidleft side

; - ; 4 . lines when the source plane is displaced. The gray levels show here
amplitude of¢,. We see that the critical lingghick lines on P P gray

. . . . the amplitude of the shear field. We see that the critical lines tend to
the right side are drifting away from the string. However, gk around points wherg vanishesand the points where it hap-

they tend to get stuck on points where the local shear varens are independent on the source plane distafie thin lines
ishes(dark patches on the figurereating invaginations to-  show the variation of the position of the counter image of the caus-
wards the string position. Wheg, gets large enough the tic lines.

critical line is disconnected and leaves a small inner closed
critical line aroundy=0 points. This effect can be observed

in particular in the central part of the figure. As a result the

critical line has larger position fluctuations, but over a Iargerr(:s’mtsI of numetnc_?lvt\a/xpenmﬁn(see Fig. 3 OIthetfrElO]) lidit
scale along the string, so that its total length is kept constantH oNdly SUGQesIs it. YVe are, however, aware that the validity

One consequence of this mechanism is that there are locQ! the description we adopted has not been demonstrated
tions on the image planlose to points wherg=0) which (numerical simulations of string networks lack the necessary
correspond to quasisuperposition of critical lines from man esolution for describing correctly the small scale structures

different source planes. That should make them more likelff Strings. Itis clear, for instance, that the projected position
to be detected. of a string on the sky does not follow a straight line. We

At the same time the caustic lines are sweeping over th8ave checked that the results we found are not strongly af-
source plane; their distance to the critical line, and to thdected if a nonzero curvature radius is introduced, as long as
string, increases as, if the typical displacement is larger this radius is larger than the other quantities involved in this

: 15, . - 2\1/3
than (Go&) 3. In this case we can also observe that the sizdroblem, i.e.& and (op) ™ .
of the multiple image region is determined by the displace- The results we have obtained suggest novel strategies for

ment amplitude and thus scales Jagpositions of the thin detecting strings: multiple images are still present, but im-
lines on the right side ages can have undergone significant distortions; small im-

ages of background objects can be found in large numbers.
The most adapted strategy depends however, on the resolu-
tion of the imaging apparatus and on the energy scale of the
This investigation provides a new description of the phe-string. In Fig. 4 we show an example of an HST deformed
nomenological properties of lens physics for cosmic stringsimage. In this case the energy scale of the string expressed in
The model of “Poisson string” we present is based on gen-units of &, is similar to the angular scale of a galaxy. For
eral results which state that the lens effects of string are thosSBUT strings, §; would be of the order of a few arcsecs
obtained from linear energy density. We think such a modeWwhich is indeed a typical galaxy size in deep surveys. The
must have captured most of the generic properties expectqatobability of observing such an event depends obviously on
for string lens phenomenology as the resemblance with ththe survey coverage. The expected angular length of strings

V. DISCUSSIONS
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FIG. 4. Example of a deformed image by a Poisson string. The field corresponds to an external region of clustétak2ady the
Hubble space telescopéf such a field was put a=1, then an intercepting string at-0.8 along the line-of-sight would produce multiple
images as observed on the 2 pictuté typical pair separation is about 5 argsdte right panel shows this system with a resolution of
about 0.5 arcsec, whereas the left panel shows the same image with sub 0.1 arcsec resolution. In this case the distortions of the backgrounc
galaxies are clearly exhibited. Note also that a number of small images appear along the string. In high resolution images, that might be the
most effective way of detecting strings.

to be present within redshift unity has been estimated in Refput on the existence of strings with a given energy scstié

[15] and is such that on average one string is expected tdeserves further investigations in particular on the effects of
cross a 100 degsurvey. But even though such surveys aremultisource planeghe amplitude of the lens effects depends
within reach in the near future, the probability with which on the position of the source planiat may partly blur the
one can detect a strin@r conversely the rejection one can searched effects.
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