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Renormalization group flow with unstable particles
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The renormalization group flow of an integrable two-dimensional quantum field theory which contains
unstable particles is investigated. The analysis is carried out for the Virasoro central charge and the conformal
dimensions as a function of the renormalization group flow parameter. This allows us to identify the corre-
sponding conformal field theories together with their operator content when the unstable particles vanish from
the particle spectrum. The specific model considered is theSU(3)2-homogeneous sine-Gordon model.
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The study of two-dimensional quantum field theories~2D-
QFT! has turned out to be a fruitful venture for almost thr
decades. In particular, when exploiting integrability ma
nonperturbative methods have been developed over
years. In addition to the challenge to understand the un
lying mathematical structures and the intriguing physical
plications in two dimensions itself, e.g., to describe meas
able quantities of carbon nanotubes@1#, the ultimate goal is
to extrapolate ones findings to higher dimensions. In part
lar, for the celebratedc-theorem of Zamolodchikov@2#,
which originally describes the renormalization group traje
tory of a function which corresponds to the Virasoro cent
charge at the renormalization group fixed point, vario
counterparts have been developed in higher dimensions,
@3#.

Fairly recently a class of massive integrable quantum fi
theories, the homogeneous sine-Gordon models~HSG! @4#,
has been proposed, introducing the feature of possessing
stable particles inside its particle spectrum. Despite the
that theories containing resonances have been treated b
in the context of two-dimensional massive quantum fi
theories, e.g.,@5#, the HSG models are somewhat spec
since they constitute the first examples of theories wh
admit a well-defined Lagrangian description. In general
HSG models are associated with integrable perturbation
G-parafermions of levelk @6#, i.e., Weiss-Zumino-Novikov-
Witten ~WZNW! coset theories of the formGk /U(1)l with l
being the rank of a compact Lie groupG. As free parameters
the model containsl different mass scales andl 21 different
scales for the resonance parameters, which enters the Breit-
Wigner formula@7#. In general an unstable particle of typec̃
is described by complexifying the physical mass of a sta
particle by adding a decay widthG c̃ , such that it correspond
to a pole in theS-matrix as a function of the Mandelstam
variables at s5MR

25(Mc̃2 iG c̃/2)2 ~for a more detailed dis-
cussion see, e.g.,@8#!. As mentioned in@8#, wheneverMc̃
@G c̃ , the quantityMc̃ admits a clear cut interpretation of th
physical mass. However, since this assumption is only
quired for interpretational reasons we will not rely on it. A
is usual in this context, transforming froms to the rapidity
plane and describing the scattering of two stable particle
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type a andb with massesma andmb by anS matrix Sab(u)
as function of the rapidityu, the resonance pole is situated
uR5s2 i s̄. Identifying the real and imaginary parts of th
pole then yields

Mc̃
2
2

G c̃
2

4
5ma

21mb
212mamb coshs coss̄, ~1!

Mc̃G c̃52mamb sinhususins̄. ~2!

Eliminating the decay width from Eqs.~1! and ~2!, we can
express the mass of the unstable particlesMc̃ in the model as
a function of the masses of the stable particlesma ,mb , and
the resonance parameters. Assumings to be large gives

Mc̃
2
; 1

2 mamb~11coss̄ !eusu. ~3!

One recognizes the occurrence of the variablemeusu/2,
which was introduced originally in@9# in order to describe
massless particles, i.e., one may safely perform the limim
→0,s→`, and one might therefore be tempted to descr
flows related to Eq.~3! as massless flows. In@10# the relative
mass scales between the unstable and stable particles an
stable particles themselves were investigated by compu
the finite size scaling function from the thermodynam
Bethe ansatz~TBA!. A consistent physical picture was ob
tained for the overall identification of the flow between d
ferent coset models. It remained, however, an open ques
of how to identify the operator content. In general this qu
tion is left unanswered in the context of the TBA. For the
ries with certain properties, it is sometimes possible to de
mine at least the dimension of the perturbing operators
investigating periodicities in the so-calledY systems@11#.
Resorting to a different method, namely, by appealing to s
rules which are expressible in terms of correlation functio
the major part of the operator content was successfully id
tified for some of the HSG models@12#. The purpose of this
paper is, on one hand, to confirm and refine the TBA res
by the latter method, i.e., by investigating the renormali
tion group flow described by the Zamolodchikovc-function
@2#. We will precisely study the onset of the mass scale of
unstable particles and investigate how a particular co
©2000 The American Physical Society01-1
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flows to another one. On the other hand, we also study
flow of the operator content of one conformal field theory
another one by exploiting the flow provided by theD sum
rule of Delfino, Simonetti, and Cardy@13#.

Denoting by r the radial distance and byt5 ln r2 the
renormalization group parameter, the functionsc(t) and
D(t) were defined in@2# and @13#, respectively, obeying the
differential equations

dc~ t !

dt
52

3

4
e2t^Q~ t !Q~0!&, ~4!

dD~ t !

dt
5

1

^O~0!&
et^Q~ t !O~0!&. ~5!

The right-hand side of these equations involve the two-po
correlation functions of the trace of the energy-moment
tensorQ and an operatorO , which is a primary field in the
sense of@14#. In general these equations are integrated fr
t52` to t5`, and one consequently compares the diff
ence between the ultraviolet and the infrared fixed points
order to exhibit the quantitative onset of the mass scale of
unstable particles we instead integrate these equations
some finite valuet0 to infinity. Restricting our attention to
purely massive theories we use the fact that for those theo
the infrared central charges are zero, such that

c~r 0!5
3

2Er 0

`

dr r 3^Q~r !Q~0!&. ~6!

Instead of the integral representation, Eq.~6!, thec-function
is equivalently expressible in terms of a sum of correlat
also involving other components of the energy moment
tensor@2#. In deriving Eq.~4! these terms have been elim
nated by means of the conservation law of the energy
mentum tensor. We find Eq.~6! most convenient. The flow
of c(r 0) will surpass various steps: Starting withr 050 the
theory will leave its ultraviolet fixed point and at a certa
definite value, say,r 05r u , the unstable particle will becom
massive such thatc(r 0.r u) can be associated to a differe
conformal field theory. It appears natural to identify the ma
Mc̃ as the point at whichc(r 0) is half the difference betwee
the two coset values ofc. As a consequence of Eq.~3! we
may relate the masses of the unstable particles at diffe
values of the resonance parameters,s8 and expect
Mc̃(r u ,s)5Mc̃(r u8 ,s8). We will employ the latter equality
evaluated in the form~3! not only as a consistency require
ment, but also as a confirmation of the fact that the ren
malization group flow is indeed achieved bym→r 0m. In-
creasingr 0 further, the energy scale of the stable partic
will eventually be reached at, say, atr 05r a ,r b , . . . ,r n . De-
pending on the relative mass scales between the stable
ticles these points may coincide. Finally the flow will rea
its infrared fixed pointc(r 05r ir )50.

Likewise we can integrate Eq.~5!,

D~r 0!52
1

2^O~0!&Er 0

`

dr r ^Q~r !O~0!&, ~7!
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which allows us to keep track of the manner with which t
operator contents of the various conformal field theories
mapped into each other. We used the idea that all confor
dimensions vanish in the infrared limit. Fortunately, we ha
^Q(r )O(0)&;^O(0)& in many applications such that th
vacuum expectation valuêO(0)& cancels often. One shoul
note, however, that Eq.~7! is only applicable to those opera
tors for which its two-point correlator with the trace of th
energy momentum tensor is nonvanishing, such that one
not be in a position to investigate the flow of the ent
operator content by means of Eq.~7!.

In order to evaluate Eqs.~6! and~7! we have to compute
the two-point correlation functions in some way. In 2D-QF
this is probably most efficiently achieved by expanding th
in terms ofn-particle form factors, i.e., the matrix elemen
of some local operatorO(xW ) located at the origin between
multiparticle in-state and the vacuum denoted by

^0uO~0!uVm1
~u1!Vm2

~u2! . . . Vmn
~un!& in

5..Fn
Oum1 . . . mn~u1 , . . . ,un!.

Here theVm(u) are some vertex operators representing
particle of speciesm. Abbreviating the sum of the on-she
energies asE5( i 51

n mm i
coshui , one may write

^O~r !O8~0!&5 (
n51

`

(
m1 . . . mn

E
2`

` du1 . . . dun

n! ~2p!n

3e2rEFn
Oum1 . . . mn~u1 , . . . ,un!

3„Fn
O8um1 . . . mn~u1 , . . . ,un!…* . ~8!

Using this expansion we replace the correlation functions
the expression of thec-functionc(r 0) and the scaled confor
mal dimensionD(r 0) and perform ther integrations thereaf-
ter. Thus we obtain

c~r 0!53(
n51

`

(
m1 . . . mn

E
2`

` du1 . . . dun

n! ~2p!n

3e2r 0EuFn
Qum1 . . . mn~u1 , . . . ,un!u2

3
~616r 0E13r 0

2E21r 0
3E3!

2E4
~9!

and

D~r 0!52 (
n51

`

(
m1 . . . mn

E
2`

` du1 . . . dun

n! ~2p!n

~11r 0E!e2r 0E

2E2

3Fn
Qum1 . . . mn~u1 , . . . ,un!

3„Fn
Oum1 . . . mn~u1 , . . . ,un!…* /^O~0!&. ~10!

We will now analyze Eqs.~9!, ~10!, and ~3! for the
SU(3)2-HSG model. This model only contains two sel
conjugate solitons which we denote by1, 2, and one un-
1-2
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stable particle, which we callũ. The corresponding scatte
ing matrix was found @16# to be S66521,S67(u)
56tanh(u6s2ip/2)/2, which means the resonance pole
situated atuR57s2 ip/2. Stable bound states may not b
formed. Note that for the corresponding value ofs̄5p/2 and
arbitrarys, the conditionMũ@G ũ is not satisfied. However
as indicated above this condition only helps to obtain
clearer identification of the mass parameter. For the H
models this condition starts to hold when the level is lar
which indicates that in these types of models this interpre
tion is, in fact, a semiclassical one.

A huge class of form factors corresponding to vario
operators related to this model were constructed in@15,12#.
Labeling an operator by four quantum numbersm,n,t,t8,
the generaln-particle solution reads

F
2s1t,2t1t8

O
t,t8
m,n

uM1M2

~u1 , . . . ,un!

5H
2s1t,2t1t8

O
t,t8
m,n

uM1M2

detA2s1t,2t1t8
m,n

~s2s1t
1 !s2t1 ~t212n!/2

3~s2t1t8
2

!~11t2t82m/2 !2t)
i , j

F̂m im j~u i j !. ~11!

We used here a particular ordering by starting with 2s1t
(

i-
e

-

02170
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particles of the typem51 followed by 2s1t8 particles of
the type m52, collected in the setsM 65$6, . . . ,6%.
Once these expressions are known, all other form fac
related to it by permutations of the particles may be co
structed trivially by exploiting Watson’s equations@17# ~see
@15,12# for details concerning the HSG models!. The func-
tions F̂m im j for all combinations of them ’s are

FIG. 1. Renormalization group flow for the Virasoro centr
chargec(r 0) for various values of the resonance parameters.
F̂66~u!52 i /2 tanh
u

2
exp~7u/2!, ~12!

F̂67~u!521/4eip(171)/46u/42(G/p)2*0
`(dt/t)sin2[( ip2u7s) t/2p]/sinh t cosht/2, ~13!
the
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e
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with G50.91597 . . . being the Catalan constant. Thet
1s)3(t1s) matrix

~A2s1t,2t1t8
m,n

! i j 5H s2( j 2 i )1m
1 , 1< i<t

ŝ2( j 2 i )12t1n
2 , t, i<s1t

~14!

has as its entries elementary symmetric polynomials~see,
e.g.,@18# for properties! depending on different sets of var
ables. We use the notations6 when they depend on th
variablex5expu associated to the setsM 6 andŝ to indicate
that all variables are multiplied by a factorie2s. The overall
constant was computed to

H
2s1t,2t1t8

O
t,t8
m,n

uM1M2

5 i s(2t1t81n12)2s(2s22t2t82112t)

3ess(2t1t8)/2H
t,2t1t8

O
t,t8
m,n

, ~15!

where the value ofH
t,2t1t8

O
t,t8
m,n

is fixed by the lowest nonvan

ishing form factor. In particular we need
F2s,2t
Q 5s1~x1 , . . . ,xn!s1~x1

21 , . . . ,xn
21!F2s,2t

O2,2
1,1

. ~16!

Having assembled all the ingredients we can evaluate
expressions Eqs.~9! and ~10!. We carry out the integrals by
means of a Monte Carlo computation. Forc(r 0) we take
contributions up to the 4-particle form factor into accou
and we display our results in Fig. 1.

Following the renormalization group flow from the ultra
violet to the infrared, Fig. 1 illustrates the flow from th
SU(3)2 /U(1)2- to the SU(2)2 /U(1)^ SU(2)2 /U(1)-
coset when the unstable particle becomes massive.
qualitatively confirms the previous observation of the TB
analysis@10#. Here we also want to compare the value of t
mass of the unstable particle at different points of the re
nance parameters and t0 . Taking now the mass scales o
the stable particles to be the same, i.e.,m15m25m, we
compute the mass of the unstable particle according to
~3!, i.e.,Mũ(tu ,s);m/A2 exp„(usu1tu)/2…. This means for
different values of the resonance parameter we may still h
the same value for the mass of the unstable particle w
changingtu ; indeed, we find
1-3
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Mũ~230.8,30!5Mũ~220.8,20!5Mũ~210.8,10!. ~17!

Since the flow between the two cosets is smooth and ta
place over some range oft0 , we had to select one particula
point tu . As already indicated in general, it is convenient
identify Mũ as the point at whichc(t0) is half the difference
between the two coset values ofc. It is clear from Fig. 1 that,
since the overall shape of the curves between two valuesc
is identical for different values ofs, any other value in the
interval would lead to the same results in comparative c
siderations. This also means that when evaluating Eq~17!
the resulting value 0.47m, which apparently violates the en
ergetically necessary conditionMũ.ma1mb , should not be
taken too literally since the pointtu is only chosen because
is easy to fix. Equation~17! confirms our general assertion
outlined above.

For the evaluation of the scaled conformal dimension,
~10!, we proceed similarly. For the solutions correspond
to the operatorsO0,0

0,0, O0,2
0,1, andO2,0

1,0, whose conformal di-
mension in the ultraviolet limit was identified@12# to be
1/10, we take up to six-particle form factors into accou
For the former two operators our results are presented
Figs. 2 and 3.

We observe that the conformal dimension of the opera
O0,0

0,0 flows to the value 1/8, which is twice the conform
dimension of the disorder operatorm in the Ising model. The
factor two is expected from the mentioned coset structu
i.e., we find two copies ofSU(2)2 /U(1). Thenature of the
operator is also anticipated, since by construct

F
n

O0,0
0,0uM1M2

of the SU(3)2-HSG model coincides precisel
with Fn

m of the thermally perturbed Ising model when one

FIG. 2. Renormalization group flow for the conformal dime
sion D(r 0) of the operatorO0,0

0,0 for various values of the resonanc
parameters.
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the setsM 6 is empty. It is also clear that we could altern
tively obtain Eq.~17! from the analysis ofD(r 0).

Despite the fact that the explicit expressions for the fo
factors ofO0,2

0,1 andO2,0
1,0 differ, the values ofD(r 0) are hardly

distinguishable and we therefore omit the plots for the la
case. We also note the previously observed fact@12# that the
higher particle contributions for the latter operators are m
important than forO0,0

0,0, which explains the fact that the
starting point at the ultraviolet fixed point is not quite 0.
The operators also flow to the value 1/8, such that the
generacy of theSU(3)2-HSG model disappears surjective
when the unstable particles become massive.

In comparison with other methods it would be extreme
desirable to elaborate on the precise relationship betw
c(r 0) and the finite size scaling function of the thermod
namic Bethe ansatz. Also, the relation to the intriguing p
posal in@19# of a renormalization group flow between Vira
soro characters remains unclarified. The analog ofD(r 0) still
needs to be identified in the TBA as well as in the context
@19#. In addition one may pose the question whether th
exists higher dimensional counterparts of the functionD(r 0)
in an analogy to the results obtained in@3# for c(r 0). Con-
cerning the specific status of the HSG models it remain
challenge to extend the results to other Lie groups@20#.
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FIG. 3. Renormalization group flow for the conformal dime
sion D(r 0) of the operatorO0,2

0,1 for various values of the resonanc
parameters.
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