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Renormalization group flow with unstable particles
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The renormalization group flow of an integrable two-dimensional quantum field theory which contains
unstable particles is investigated. The analysis is carried out for the Virasoro central charge and the conformal
dimensions as a function of the renormalization group flow parameter. This allows us to identify the corre-
sponding conformal field theories together with their operator content when the unstable particles vanish from
the particle spectrum. The specific model considered isStHE3),-homogeneous sine-Gordon model.
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The study of two-dimensional quantum field theoii2®-  typea andb with massesn, andm, by anS matrix S,,(6)
QFT) has turned out to be a fruitful venture for almost threeas function of the rapidity), the resonance pole is situated at
decades. In particular, when exploiting integrability many6g=oc—io. Identifying the real and imaginary parts of the
nonperturbative methods have been developed over thgole then yields
years. In addition to the challenge to understand the under-
lying mathematical structures and the intriguing physical ap- M2 F_
plications in two dimensions itself, e.g., to describe measur- c 4
able quantities of carbon nanotulds, the ultimate goal is
to extrapolate ones findings to higher dimensions. In particu- Mz[z=2m,mj sinH U|Sin;_ 2
lar, for the celebratedcc-theorem of Zamolodchikoy2],
which originally describes the renormalization group trajec-Eliminating the decay width from Eqs¢1) and(2), we can
tory of a function which corresponds to the Virasoro central€XPress the mass of the unstable partidlgsin the model as
charge at the renormalization group fixed point, various? function of the masses of the stable partictgsm,, and
counterparts have been developed in higher dimensions, e.§€ réesonance parameier Assumingo to be large gives
[3].

Fairly recently a class of massive integrable quantum field
theories, the homogeneous sine-Gordon moeBG) [4],

has been proposed, introducing the feature of possessing un; One recognizes the occurrence of the variaiole
prop ’ 9 P 9 Which was introduced originally if9] in order to describe

stable particles inside its particle spectrum. Despite the fa%assless particles, i.e., one may safely perform the limit

that theories containing resonances have been treated befoLeo’UHw, and one might therefore be tempted to describe

i?] the context of thwoﬁisnéensiodnaltl massive qUﬁntum ﬂ‘?lcljflows related to Eq(3) as massless flows. [10] the relative
t_eorlei, e.g.[5],.t € he f models arle SOTehW a.t speﬁ!a mass scales between the unstable and stable particles and the
since they constitute the first examples of theories whiClyi e Harticles themselves were investigated by computing

admit a well-defined Lagrangian description. In general thg e finite size scaling function from the thermodynamic
HSG models are associated with integrable perturbations Cgethe ansat#TBA). A consistent physical picture was ob-

G-parafermions of levek (6], i.e., We|ss—Zum|no-l\|loy|kov— tained for the overall identification of the flow between dif-
Witten (WZNW) coset theories of the for@,/U(1) with | forent coset models. It remained, however, an open question
being the rank of a compact Lie gro@ As free parameters ¢,y to jdentify the operator content. In general this ques-
the model containbdifferent mass scales amet 1 different i, is jeft unanswered in the context of the TBA. For theo-
scales for the resonance parametgwhich enters the Breit- e with certain properties, it is sometimes possible to deter-
Wigner formula[7]. In general an unstable particle of type mine at least the dimension of the perturbing operators by
is described by complexifying the physical mass of a stablénvestigating periodicities in the so-called systems[11].
particle by adding a decay widffg, such that it corresponds Resorting to a different method, namely, by appealing to sum
to a pole in theSmatrix as a function of the Mandelstam rules which are expressible in terms of correlation functions,
variables at s= M3= (Mz—iT'z/2)? (for a more detailed dis- the major part of the operator content was successfully iden-
cussion see, e.g[8]). As mentioned in8], wheneverMy tified for some of the HSG mode[42]. The purpose of this
>z, the quantityMz admits a clear cut interpretation of the paper is, on one hand, to confirm and refine the TBA results
physical mass. However, since this assumption is only reby the latter method, i.e., by investigating the renormaliza-
quired for interpretational reasons we will not rely on it. As tion group flow described by the Zamolodchikoxfunction

is usual in this context, transforming fromto the rapidity = [2]. We will precisely study the onset of the mass scale of the
plane and describing the scattering of two stable particles afinstable particles and investigate how a particular coset

2
c

=m2+m2+ 2m,m, cosho cosa, (1)

M§~ I m,my(1+coso)el?. (3)

all2

0556-2821/2000/62)/0217015)/$15.00 63021701-1 ©2000 The American Physical Society



RAPID COMMUNICATIONS

O. A. CASTRO-ALVAREDO AND A. FRING PHYSICAL REVIEW D63 021701R)

flows to another one. On the other hand, we also study therhich allows us to keep track of the manner with which the
flow of the operator content of one conformal field theory tooperator contents of the various conformal field theories are
another one by exploiting the flow provided by thesum  mapped into each other. We used the idea that all conformal
rule of Delfino, Simonetti, and Cardy3]. dimensions vanish in the infrared limit. Fortunately, we have
Denoting by r the radial distance and by=Inr? the (®(r)0(0))~(O(0)) in many applications such that the
renormalization group parameter, the functiood) and vacuum expectation valug)(0)) cancels often. One should
A(t) were defined irf2] and[13], respectively, obeying the note, however, that Eq7) is only applicable to those opera-
differential equations tors for which its two-point correlator with the trace of the
energy momentum tensor is nonvanishing, such that one may

de(t) 3 not be in a position to investigate the flow of the entire
dat Ze2t<®(t)®(0)>, () operator content by means of Eg).
In order to evaluate Eq$6) and(7) we have to compute
dA(t) 1 . the two-point correlation functions in some way. In 2D-QFT
—ar We (6(1)0(0)). (5)  this is probably most efficiently achieved by expanding them

in terms ofn-particle form factors, i.e., the matrix elements
The right-hand side of these equations involve the two-poindf some local operato®(x) located at the origin between a
correlation functions of the trace of the energy-momentunmultiparticle in-state and the vacuum denoted by
tensor® and an operato® , which is a primary field in the

sense of14]. In general these equations are integrated from (0]O(0)|V,, (1), () ...V, (6n))in
t=—o0 to t=c, and one consequently compares the differ- Olpy ... n
ence between the ultraviolet and the infrared fixed points. In =F, "(61, ... ,0n).

order to exhibit the quantitative onset of the mass scale of the )
unstable particles we instead integrate these equations frofiere theV,(¢) are some vertex operators representing a
some finite value, to infinity. Restricting our attention to Particle of specieg.. Abbreviating the sum of the on-shell
purely massive theories we use the fact that for those theorigd1€rgies aE:Einzlm,uiCOShgl , one may write

the infrared central charges are zero, such that

) ° do, .. dan
3% (ONo'0)=2, 2 T
C(ro)zzf drr <®(r)(0)> (6) n=1pug...un J—= nl(2m)

) Xe_rEFnO‘l‘l"'“n(ﬁl, Ca ,0n)

Instead of the integral representation, Eg), the c-function .

is equivalently expressible in terms of a sum of correlators ><(Ff19 |“l"'“”( 01, ...,.0)) . (8
also involving other components of the energy momentum

tensor[2]. In deriving Eq.(4) these terms have been elimi- Using this expansion we replace the correlation functions in
nated by means of the conservation law of the energy mothe expression of the-functionc(r,) and the scaled confor-
mentum tensor. We find E¢6) most convenient. The flow mal dimensionA(r,) and perform the integrations thereaf-
of c(rp) will surpass various steps: Starting with)=0 the  ter. Thus we obtain

theory will leave its ultraviolet fixed point and at a certain

definite value, say,o=r, the unstable particle will become - © df;...d6o,

massive such thai(r,>r,) can be associated to a different c(r0)=321 > T2

conformal field theory. It appears natural to identify the mass =Ly S nH(2m)

M7z as the point at whick(r ) is half the difference between Xe*roE“:‘/"l gL 0|2

the two coset values af. As a consequence of E(3) we "

may relate the masses of the unstable particles at different (6+6rE+3rjE2+r3E®)

values of the resonance parametetos’ and expect X 9)

4
M(ry,0)=Mg(r!,0’). We will employ the latter equality 2E

evaluated in the fornt3) not only as a consistency require- g
ment, but also as a confirmation of the fact that the renor-
malization group flow is indeed achieved by—rym. In-

- » d;...do, (1+roE)e oF
creasingr, further, the energy scale of the stable particles A(rg)=— >, >, L n (1+70F)
n=1 pq...pn

will eventually be reached at, say,f@t=r,,rp, ... f. De- —= nl(2m)" 2E?
pending on the relative mass scales between the stable par- S EOlL - p

ticles these points may coincide. Finally the flow will reach n (61, ... .0n)

its infrared fixed poinc(ry=r;;)=0. X(FnO|M1---Mn( 01, ...,0,))*1{O(0)). (10)

Likewise we can integrate E@5),

" We will now analyze Egs.(9), (10), and (3) for the
drr{(®(r)0(0)), (7)  SU(3),-HSG model. This model only contains two self-
0 conjugate solitons which we denote by, —, and one un-

1
Alro) == 3600 ),
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stable particle, which we call. The corresponding scatter-
ing matrix was found[16] to be S..=-1S.-(0)

= *tanh(@*=o—in/2)/2, which means the resonance pole is
situated atdg= * o—im/2. Stable bound states may not be

formed. Note that for the corresponding valuevsf /2 and

1.2
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1.0

0.8

arbitrary o, the conditionM>1'; is not satisfied. However,  c(t,)

as indicated above this condition only helps to obtain a
clearer identification of the mass parameter. For the HSG
models this condition starts to hold when the level is large,
which indicates that in these types of models this interpreta-
tion is, in fact, a semiclassical one.

A huge class of form factors corresponding to various
operators related to this model were constructefilin 12
Labeling an operator by four quantum numbersy, 7,7,
the generah-particle solution reads

0.6
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0.2

0.0
40
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FIG. 1. Renormalization group flow for the Virasoro central

chargec(rg) for various values of the resonance parameter

particles of the typeu= + followed by 2s+ 7’ particles of
the type u=—, collected in the setM*={=, ...

1

oMM 0 6.)
2s+r2t+ 7' ( 1r--+o"n
o IMTM~
_ ' MV + s—t+ (7—1-v)/2
H23+r,2t+r’ detA25+T,2t+T’(025+T)

X(02_t+7’)(1+T_T —,u/Z)—ti1;[j FMIM](alj)

We used here a particular ordering by starting with+2-

11

Once these expressions are known, all other form factors
related to it by permutations of the particles may be con-
structed trivially by exploiting Watson’s equatiofk7] (see
[15,12 for details concerning the HSG modglhe func-

tions F#i#i for all combinations of thex’s are

. 0
F==(0)=—il2 tanhi exp(F 6/2), (12)

E*7 ()= 214 m(171)/4 014~ (Glm) - [5dut)sin?[(im— 6% o) t/2m]/sinht cosht/2 (13)

with G=0.9159 . ..
+S) X (t+s) matrix

4 .

Y UZ(]’*i)+/,L’ 1=sist

(Ags+r,2+r’)ij: ~—

T2(j—i)+2t+v>

t<iss+t

being the Catalan constant. The (

14

1,1
02,2

~1
- Xn )F25,2t'

Foaa=01(X1, ... Xp)oi(xg .. (16)
Having assembled all the ingredients we can evaluate the
expressions Eq49) and(10). We carry out the integrals by
means of a Monte Carlo computation. Fofr,) we take

contributions up to the 4-particle form factor into account,

has as its entries elementary symmetric polynomiakse,
e.g.,[18] for properties depending on different sets of vari-

variablex= exp# associated to the seté” ando to indicate
that all variables are multiplied by a fact@™ °. The overall
constant was computed to

and we display our results in Fig. 1.

PETN Following the renormalization group flow from the ultra-
ables. We use the notatiom™ when they depend on the yjplet to the infrared, Fig. 1 illustrates the flow from the

SU(3),/U(1)*>- to the SU(2),/U(1)®@SU(2),/U(1)-
coset when the unstable particle becomes massive. This
qualitatively confirms the previous observation of the TBA

analysig 10]. Here we also want to compare the value of the

I,V g —
RO MM s(2rt o v+ 2) ps(25-2t— 7/ — 14+ 27)
2s+r2t+ 7’
1y  OF
XeSn’(ZH—T )/ZHT;t:LT; , (15)

mass of the unstable particle at different points of the reso-
nance parameter andty. Taking now the mass scales of
the stable particles to be the same, ira,,=m_=m, we
compute the mass of the unstable particle according to Eq.
(3), i.e., Mg(ty, o) ~m/y2 exp(|o|+t,)/2). This means for

o
where the value oH ~~
2t+ 7!

ishing form factor. In particular we need

is fixed by the lowest nonvan-

different values of the resonance parameter we may still have
the same value for the mass of the unstable particle when
changingt, ; indeed, we find
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FIG. 2. Renormalization group flow for the conformal dimen-  FIG. 3. Renormalization group flow for the conformal dimen-
sionA(rg) of the operatoOd for various values of the resonance sionA(ro) of the operato033 for various values of the resonance
parametei. parametetr.

the setsM = is empty. It is also clear that we could alterna-

tively obtain Eq.(17) from the analysis ofA(r).

Since the flow between the two cosets is smooth and tak bespite ghle fact E@at the explicit expressions for the form
lace over some range tf, we had to select one particular Tictors ofvhand Oy differ, the values ofl (1) are hardly

pla ge by, we -Cl partt distinguishable and we therefore omit the plots for the latter

pointt,. As already indicated in general, it is convenient t0 c535e "We also note the previously observed [fa2} that the

identify My, as the point at whicke(t) is half the difference  hjgher particle contributions for the latter operators are more

between the two coset valuesofitis clear from Fig. 1 that, important than for®%9, which explains the fact that the
since the overall shape of the curves between two values ofstarting point at the ultraviolet fixed point is not quite 0.1.

is identical for different values of-, any other value in the The operators also flow to the value 1/8, such that the de-
interval would lead to the same results in comparative congeneracy of thesU(3),-HSG model disappears surjectively
siderations. This also means that when evaluating(B]  when the unstable particles become massive.
the resulting value 0.47, which apparently violates the en- In comparison with other methods it would be extremely
ergetically necessary conditidviy>m,+m,, should not be desirable to elaborate on the precise relationship between
taken too literally since the poiry, is only chosen because it c¢(rp) and the finite size scaling function of the thermody-
is easy to fix. Equatioti17) confirms our general assertions namic Bethe ansatz. Also, the relation to the intriguing pro-
outlined above. posal in[19] of a renormalization group flow between Vira-
For the evaluation of the scaled conformal dimension, Eqsoro characters remains unclarified. The analo§(@f) still
(10), we proceed similarly. For the solutions correspondingne€ds to be identified in the TBA as well as in the context of
to the operator©39, 031, and 0%9, whose conformal di- [19]. In addition one may pose the question whether there
mension in the ultraviolet limit was identifief.2] to be ~ €XiSts higher dimensional counterparts of the functidin,)
1/10, we take up to six-particle form factors into account.N @n @nalogy to the results obtained|BJ for c(ro). Con-

.cerning the specific status of the HSG models it remains a
Eic;rsthzeaf:érger two operators our results are presented 'ﬁhallenge t0 extend the results to other Lie grof.

M-=(—30.8,30 = M(—20.8,20 = M7(— 10.8,10. (17)
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