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Critical mass of Wilson fermions: A comparison of perturbative and Monte Carlo results
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We calculate the critical value of the hopping parameter,kc , in lattice QCD with Wilson fermions, to two
loops in perturbation theory. This quantity is an additive renormalization; as such, it is characterized not only
by the standard caveats regarding the asymptotic nature of perturbative results, but also by a linear divergence
in the lattice spacing. Consequently, our calculation tests rather stringently the limits of applicability of
perturbation theory. We compare our results to non-perturbative evaluations ofkc coming from Monte Carlo
simulations. Finally, we apply a tadpole improvement technique to our results; this shifts them quite favorably
towards the nonperturbative values.
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In this paper we study the hopping parameter in latt
QCD with Wilson fermions. In particular, we compute i
critical value to two loops in perturbation theory.

Wilson fermions are the most straightforward and wide
used implementation of fermionic actions on the lattice. T
implementation circumvents the fermion doubling proble
by introducing a higher derivative term with a vanishin
classical continuum limit, to lift unphysical propagator pol
completely. At the same time, the action is strictly loc
which is very advantageous for numerical simulation.

The price one pays for strict locality and absence of d
blers is well known: The higher derivative term breaks chi
invariance explicitly. Thus, merely setting the bare fermio
mass to zero is not sufficient to ensure chiral symmetry in
quantum continuum limit; quantum corrections introduce
additive renormalization to the fermionic mass, which m
then be fine-tuned to have a vanishing renormalized va
Consequently, the hopping parameterk, which is simply re-
lated to the fermion mass, must be appropriately shifted fr
its naive value, to recover chiral invariance.

By dimensional power counting, the additive mass ren
malization is seen to be linearly divergent with the latti
spacing. This adverse feature of Wilson fermions poses
additional problem to a perturbative treatment, aside fr
the usual issues related to a lack of Borel summability.
deed, our calculation serves as a check on the limits of
plicability of perturbation theory, by comparison with no
perturbative results coming from Monte Carlo simulation

Starting from our two-loop results, we also provide im
proved estimates of the critical value ofk, by performing a
resummation to all orders of cactus diagrams@1#. These are
tadpole-like diagrams which are gauge invariant and dr
the propagators and vertices in our calculation. This
provement technique, among others, has so far been ap
mostly to the one-loop multiplicative renormalization
various operators@2,3#. It is interesting to explore to wha
extent such methods lead to an improvement even in a
sitive case such as the one at hand. We find that our
proved estimates compare quite well with Monte Carlo d
also in this case.
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QCD with Wilson fermions on the lattice is described b
the following action~see, e.g., Ref.@4# notation!:

SL5
1

g0
2 (

x,m,n
Tr@12Umn~x!#1(

i 51

Nf

(
x,y

c̄ i~x!D~x,y!c i~y!.

~1!

Umn(x) is the standard product of link variablesUx,y around
a plaquette in the directionm2n, originating at pointx, and
D(x,y) is given by

D~x,y!5amBdx,y1
1

2 (
m

@gm~Ux,ydx1m̂,y2Ux,ydx,y1m̂!

2r ~Ux,ydx1m̂,y22dx,y1Ux,ydx,y1m̂!#. ~2!

As usual,g0 denotes the bare coupling constant anda is the
lattice spacing. The bare fermionic massmB must be set to
zero for chiral invariance in the classical continuum limit.

The higher derivative term, multiplied by the Wilson co
efficient r, breaks chiral invariance. It vanishes in the clas
cal continuum limit; at the quantum level, it induces nonze
flavor-independent corrections to the fermion masses.

Numerical simulation algorithms usually employ the ho
ping parameter,k[ 1/(2mBa18r ), as a tunable quantity
Its critical value, at which chiral symmetry is restored,
thus 1/8r classically, but gets shifted by quantum effects.

The renormalized mass can be calculated in textb
fashion from the fermion self-energy. Denoting b
SL(p,mB ,g0) the one particle irreducible fermionic two
point function, we have, for the fermionic propagator,

S~p!5@ ip”̊1m~p!2SL~p,mB ,g0!#21 ~3!

where

p”̊5(
m

gm

1

a
sin~apm!, m~p!5mB1

2r

a (
m

sin2~apm/2!.

Requiring that the renormalized mass vanish leads on
S21(0)50⇒mB5SL(0,mB ,g0). The above is a recursive
equation formB , which can be solved order by order i
perturbation theory.
©2000 The American Physical Society01-1



s

lu

ity
ai
s

e

o
g

an

re-
e a

-

us
p-
s;

uc-
ra-

w
eri-

rum

nd
uite

on
to-

nts
il-

ity

la-

ol

BRIEF REPORTS PHYSICAL REVIEW D 63 017501
We write the loop expansion ofSL as SL(0,mB ,g0)
5g0

2S (1)1g0
4S (2)1•••. Figure 1 shows the two diagram

contributing to the 1-loop resultS (1). The fermion mass in-
volved in these diagrams must be set to its tree level va
mB→0. The i th diagram gives a contribution of the form
@(N221)/N#ci

(1) , wherec1
(1) ,c2

(1) are numerical constants.
A total of 26 diagrams contribute to the 2-loop quant

S (2), shown in Fig. 2. Genuine 2-loop diagrams must ag
be evaluated atmB→0; in addition, one must include to thi
order the 1-loop diagram containing anO(g0

2) mass counter-
term ~diagram 23!. The contribution of each diagram can b
written in the form

~N221!@c1,i
(2)1~c2,i

(2)/N2! 1~Nf /N! c3,i
(2)# ~4!

wherec1,i
(2) ,c2,i

(2) ,c3,i
(2) are numerical constants. Certain sets

diagrams, corresponding to renormalization of loop propa

FIG. 1. One-loop diagrams contributing toSL. Wavy ~solid!
lines represent gluons~fermions!.

FIG. 2. Two-loop diagrams contributing toSL. Wavy ~solid,
dotted! lines represent gluons~fermions, ghosts!. Crosses denote
vertices stemming from the measure part of the action; the s
circle is a fermion mass counterterm.
01750
e,

n

f
a-

tors, must be evaluated together in order to obtain
infrared-convergent result: these are diagrams 71819110
111, 12113, 14115116117118, 19120, 21122123.

The evaluation of the diagrams in this computation
quires very extensive analytical work. To this end, we us
MATHEMATICA package which we have developed for sym
bolic manipulations in lattice perturbation theory~see, e.g.,
Ref. @5#!. Applied to the present case, this package allows
to perform the following tasks: Contraction among the a
propriate vertices; simplification of color and Dirac matrice
use of trigonometry and momentum symmetries for red
tion to a more compact, canonical form; automatic gene
tion of highly optimizedFORTRAN code for the loop integra-
tion of each type of expression.

The integrals, typically consisting of a sum over a fe
hundred trigonometric products, are then performed num
cally on lattices of varying finite sizeL. Our programs per-
form extrapolations of each expression to a broad spect
of functional forms of the type( i , jei j (ln L)j/Li, analyze the
quality of each extrapolation using a variety of criteria a
assign statistical weights to them, and finally produce a q
reliable estimate of the systematic error. TakingL<28 leads
to a sufficient number of significant digits in our results.

One important consistency check can be performed
those diagrams which are separately IR divergent; taken
gether in groups, as listed below Eq.~4!, they give a finite
and very stable extrapolation.

We present below the numerical values of the consta
ci

(1) ,c1,i
(2) ,c2,i

(2) ,c3,i
(2) . These constants depend only on the W

son parameterr; following common practice, we setr 51.
Table I contains the contributions to the 1-loop quant

S (1). The total 1-loop result is

S (1)5@~N221!/N# @20.162857058711~2!#. ~5!

This result is known in the literature~see, e.g., Ref.@6#, p.
246, and references contained therein!.

The contributions to the 2-loop quantityS (2) are pre-
sented in Table II. The total 2-loop result is

S (2)5~N221!@20.017537~3!1~1/N2!0.016567~2!

1~Nf /N!0.00118618~8!#. ~6!

In order to make a comparison with numerical simu
tions, let us setN53, Nf52 in the above; we obtain

S (1)~N53,Nf52!520.434285489897~5! ~7!

S (2)~N53,Nf52!520.11925~3!. ~8!

In Table III we list the final results formc
(1)5g0

2S (1) and
mc

(2)5g0
2S (1)1g0

4S (2) in the quenched case (Nf50), along
id

TABLE I. Coefficientsci
(1) . r 51.

i ci
(1)

1 20.15493339023106
2 20.007923668480~2!
1-2



BRIEF REPORTS PHYSICAL REVIEW D 63 017501
TABLE II. Coefficientsc1,i
(2) , c2,i

(2) , c3,i
(2) . r 51.

i c1,i
(2) c2,i

(2) c3,i
(2)

3 0.002000362950707492 20.0030005444260612375 0
4 0.00040921361~1! 20.00061382041~2! 0
5 0 0 0
6 20.0000488891~8! 0.000097778~2! 0

71819110111 20.013927~3! 0.014525~2! 0
12113 0 0 0.00079263~8!

14115116117118 20.005753~1! 0.0058323~7! 0
19120 0 0 0.000393556~7!

21122123 0.000096768~4! 20.000096768~4! 0
24 0 0 0
25 0.00007762~1! 20.00015524~3! 0
26 20.00040000~5! 0 0
27 0 20.000006522~1! 0
28 0.0000078482~5! 20.000015696~1! 0
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with numerical simulation data at values ofb56/g0
2 equal to

5.7 @7#, 6.0 @8#, 6.1, 6.3@9#; in Table IV we compare our
results atNf52 with numerical simulation data atb55.6
@10# and b55.5 @11#. Also included in these tables are th
improved results obtained with the method described in
following section. For easier reference, Table V presents
results in terms of the critical hopping parameterkc
51/(2mca18r ).

In order to obtain improved estimates from lattice pert
bation theory, one may perform a resummation to all ord
of the so-called ‘‘cactus’’ diagrams@1–3#. Briefly stated,
these are gauge-invariant tadpole diagrams which bec
disconnected if any one of their vertices is removed. T
original motivation of this procedure is the well known o
servation of ‘‘tadpole dominance’’ in lattice perturbatio
theory. In the following we refer to Ref.@1# for definitions
and analytical results.

Since the contribution of standard tadpole diagrams is
gauge invariant, the class of gauge invariant diagrams we
considering needs further specification. By the Bak
Campbell-Hausdorff~BCH! formula, the product of link
variables along the perimeter of a plaquette can be writte

Ux,mn5eig0Ax,meig0Ax1m,ne2 ig0Ax1n,me2 ig0Ax,n

5exp$ ig0Fx,mn
(1) 1 ig0

2Fx,mn
(2) 1O~g0

4!%. ~9!
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The diagrams that we propose to resum to all orders are
cactus diagrams made of vertices containingFx,mn

(1) . These
diagrams dress the transverse gluon propagatorPA leading to
an improved propagatorPA

(I ) , which is a multiple of the bare
transverse one:

PA
(I )5PA/@12w~g0!# , ~10!

where the factorw(g0) will depend ong0 andN, but not on
the momentum. The functionw(g0) can be extracted by an
appropriate algebraic equation that has been derived in
@1# and that can be easily solved numerically; forSU(3),
w(g0) satisfies

ue2u/3@u2/324u18#52g0
2 , u~g0![

g0
2

4@12w~g0!#
.

~11!

The vertices coming from the gluon part of the action, E
~1!, get also dressed using a procedure similar to the
leading to Eq.~10! @1#. Vertices coming from the fermionic
action stay unchanged, since their definition contains
plaquettes on which to apply the linear BCH formula.

One can apply the resummation of cactus diagrams to
calculation of additive and multiplicative renormalizations
lattice operators. Applied to a number of cases of inter
@1,2#, this procedure yields remarkable improvements wh
TABLE III. mc
(1) andmc

(2) . N53, Nf50, r 51.

b55.7 b56.0 b56.1 b56.3

mc
(1) 20.457142620944~5! 20.434285489897~5! 20.427166055636~5! 20.413605228473~5!

mc
(2) 20.59628~3! 20.55986~3! 20.54865~3! 20.52750~2!

mc,dressed
(1) 20.624018239510~7! 20.579221156426~6! 20.565793230023~6! 20.540845487886~6!

mc,dressed
(2) 20.73126~6! 20.67162~5! 20.65395~5! 20.62140~4!

aMS(q!) 20.93 20.78 20.75 20.70
aV(q!) 21.12 20.91 20.86 20.79
Simulation 21.04~2! 20.8181~2! 20.7746~4! 20.7066~4!
1-3
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BRIEF REPORTS PHYSICAL REVIEW D 63 017501
compared with the available nonperturbative estimates.
regards numerical comparison with other improvem
schemes~tadpole improvement, boosted perturbation theo
etc.! @12,13#, cactus resummation fares equally well on
the cases studied@3#.

One advantageous feature of cactus resummation, in c
parison to other schemes of improved perturbation theory
the possibility of systematically incorporating higher loo
diagrams. The present calculation best exemplifies this
ture, as we will now show.

Dressing the 1-loop result is quite straightforward: t
fermionic propagator and vertices stay unchanged, and
the gluon propagator gets simply multiplied by 1/„1
2w(g0)…. The resulting values,mc,dressed

(1) and kc,dressed
(1) , are

shown in Tables IV and V, respectively. It is worth notin
that these values already fare better than the much m
cumbersome undressed 22loop results.

We now turn to dressing the 22loop results. Here, one
must take care to avoid double counting: A part of diagra
7 and 14 has already been included in dressing the 1-
result, and must be explicitly subtracted fromS (2) before
dressing. Fortunately, this part~we shall denote it bySsub

(2)) is
easy to identify, as it necessarily includes all of the 1/N2 part
in S (2). A simple exercise in contraction ofSU(N) genera-
tors shows thatSsub

(2) is proportional to (2N223)(N2

21)/(3N2). There follows immediately that Ssub
(2)5

20.016567(2N223)(N221)/(3N2) @cf. Eq. ~6!#.
A further complication is presented by gluon vertice

While the 3-gluon vertex dresses by a mere factor of@1
2w(g0)#, the dressed 4-gluon vertex contains a term wh

TABLE IV. mc
(1) andmc

(2) . N53, Nf52, r 51.

b55.5 b55.6

mc
(1) 20.473765988978~5! 20.465305882032~5!

mc
(2) 20.61568~3! 20.60219~3!

mc,dressed
(1) 20.658392965489~7! 20.640695803682~7!

mc,dressed
(2) 20.76323~6! 20.73997~6!

Simulation 20.897~3! 20.8456~9!
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is not simply a multiple of its bare counterpart~see Appendix
C of Ref. @1#!. Once again, however, we are fortunate: th
term must be dropped, being precisely the one which
already been taken into account in dressing the 1-loop re
while the remainder dresses in the same way as the 3-g
vertex. In conclusion, cactus resummation applied to
2-loop quantityS (2) leads to the following recipe:

mc,dressed
(2) 5S (1)

g0
2

12w~g0!
1~S (2)2Ssub

(2)!
g0

4

@12w~g0!#2 .

@For the particular values ofb used in the tables,b
55.5,5.6,5.7,6.0,6.1,6.3, we obtain, from Eq.~11!, 1
2w(g0)50.719579,0.726251,0.732579, 0.749775, 0.7549
0.764738, respectively.#

In Table III we present, at various values ofb and Nf
50, our results formc ~at one and two loops, with and with
out cactus dressing!, results taken from Ref.@13# @corre-
sponding to two different types of improvement, label
aMS(q!) andaV(q!)], and numerical simulation values. Ou
results for Nf52, mc,dressed

(2) and kc,dressed
(2) , are included in

Tables IV and V. Comparing with the Monte Carlo es
mates, we see a definite improvement over non-dressed
ues. At the same time, a sizable discrepancy still remains
was expected from the start. This discrepancy sets a be
mark for lattice perturbation theory; multiplicative renorma
izations, calculated to the same order and improved by c
tus dressing, are expected to be much closer to their e
values. We hope to return to these calculations in a fut
publication.

TABLE V. kc
(1) andkc

(2) . N53, Nf52, r 51.

b55.5 b55.6

kc
(1) 0.1417943331149~4! 0.1414549557367~4!

kc
(2) 0.147740~3! 0.147154~3!

kc,dressed
(1) 0.1496286052897~6! 0.1488403463277~6!

kc,dressed
(2) 0.154475~6! 0.153373~6!

Simulation 0.16116~15! 0.158507244
141
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