PHYSICAL REVIEW D, VOLUME 63, 017501

Critical mass of Wilson fermions: A comparison of perturbative and Monte Carlo results
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We calculate the critical value of the hopping parametgr, in lattice QCD with Wilson fermions, to two
loops in perturbation theory. This quantity is an additive renormalization; as such, it is characterized not only
by the standard caveats regarding the asymptotic nature of perturbative results, but also by a linear divergence
in the lattice spacing. Consequently, our calculation tests rather stringently the limits of applicability of
perturbation theory. We compare our results to non-perturbative evaluationscoiming from Monte Carlo
simulations. Finally, we apply a tadpole improvement technique to our results; this shifts them quite favorably
towards the nonperturbative values.
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In this paper we study the hopping parameter in lattice QCD with Wilson fermions on the lattice is described by
QCD with Wilson fermions. In particular, we compute its the following action(see, e.g., Ref4] notation:
critical value to two loops in perturbation theory.

Wilson fermions are the most straightforward and widely 1 N —
used implementation of fermionic actions on the lattice. This SL:ag X%y Tr1- UW(X)]+;1 XEY DY) i(y).
implementation circumvents the fermion doubling problem o ' 1)

by introducing a higher derivative term with a vanishing

classical continuum limit, to lift unphysical propagator polesUM(X) is the standard product of link variablek, , around

completely. At the same time, the action is strictly local, 3 plaquette in the direction— v, originating at pointx, and
which is very advantageous for numerical simulation. D(x,y) is given by

The price one pays for strict locality and absence of dou-
blers is well known: The higher derivative term breaks chiral 1
invariance explicitly. Thus, merely setting the bare fermionic D(X,y) =amgd, ,+ > 2 [7,(UxyOxsny— UxyOxy+i)
mass to zero is not sufficient to ensure chiral symmetry in the "
quantum continuum limit; quantum corrections introduce an 1 (UyyOusny— 28yt Uy ySuys i) 1. 2
additive renormalization to the fermionic mass, which must ’ ' ' .

then be fine-tuned to have a vanishing renormalized valueag usual,g, denotes the bare coupling constant arig the
Consequently, the hopping parameienwhich is simply re-  |attice spacing. The bare fermionic masg must be set to
lated to the fermion mass, must be appropriately shifted fronyerg for chiral invariance in the classical continuum limit.
its naive value, to recover chiral invariance. The higher derivative term, multiplied by the Wilson co-
By dimensional power counting, the additive mass renorfficientr, breaks chiral invariance. It vanishes in the classi-
malization is seen to be linearly divergent with the latticeca| continuum limit; at the quantum level, it induces nonzero
spacing. This adverse feature of Wilson fermions poses affayor-independent corrections to the fermion masses.
additional problem to a perturbative treatment, aside from Numerical simulation algorithms usually employ the hop-
the usual issues related to a lack of Borel summability. INping parameterx= 1/(2mga+8r), as a tunable quantity.
deed, our calculation serves as a check on the limits of aps critical value, at which chiral symmetry is restored, is
plicability of perturbation theory, by comparison with non- {ys 1/8 classically, but gets shifted by quantum effects.
perturbative results coming from Monte Carlo simulations.  The renormalized mass can be calculated in textbook
Starting from our two-loop results, we also provide im- fashion from the fermion self-energy. Denoting by
proved estimates of the critical value »f by performing a SL(p,mg,go) the one particle irreducible fermionic two-

resummation to all orders of cactus diagras These are  point function, we have, for the fermionic propagator,
tadpole-like diagrams which are gauge invariant and dress

the propagators and vertices in our calculation. This im- ° L 1
provement technique, among others, has so far been applied S(p)=[ip+m(p)—2%=(p.Mmg.go)] ©)
mostly to the one-loop multiplicative renormalization of

various operator$2,3]. It is interesting to explore to what Wnere

extent such methods lead to an improvement even in a sen- 1 o

sitive case such as the one at hand. We find that our im-; _ i “ _ < ; w
proved estimates compare quite well with Monte Carlo datap 2 G asm(ap ), mp)=mg+ a 2, sirf(ap'f2).
also in this case.

Requiring that the renormalized mass vanish leads one to
S 1(0)=0=mg=3(0,mg,go). The above is a recursive
*Email address: eduardo@dirac.ns.ucy.ac.cy equation formg, which can be solved order by order in
"Email address: haris@ucy.ac.cy perturbation theory.

0556-2821/2000/63)/0175014)/$15.00 63017501-1 ©2000 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW D 63 017501

TABLE I. Coefficientsc¥. r=1.

m i c®
1 ~0.15493339023106
1 2 2 ~0.00792366848Q)

FIG. 1. One-loop diagrams contributing B-. Wavy (solid)
lines represent gluongermions.

tors, must be evaluated together in order to obtain an
infrared-convergent result: these are diagrams$3¥9+10
+11, 12+13, 14+15+16+17+18, 19+20, 21+22+23.

The evaluation of the diagrams in this computation re-
quires very extensive analytical work. To this end, we use a
SMATHEMATICA package which we have developed for sym-

We write the loop expansion oE' as 3-(0,mg,go)
=23 M +gds@+.... Figure 1 shows the two diagrams
contributing to the 1-loop resul (Y. The fermion mass in-
volved in these diagrams must be set to its tree level valu

mB;’O' The |(“1‘)d|agram Ny contribution of the form i aninulations in lattice perturbation theaisee, e.g.,
[(N"—1)/N]c;™", wherecy,c; " are numerical constants.  pet 5)) Applied to the present case, this package allows us
(2'? total of 26 diagrams contribute to the 2-loop quantity {4 perform the following tasks: Contraction among the ap-
2%, shown in Fig. 2. Genuine 2-loop diagrams must again,rgpriate vertices; simplification of color and Dirac matrices:
be evaluated ang—0; in addition, one must include to this se of trigonometry and momentum symmetries for reduc-
order the 1-loop diagram containing élgp) mass counter-  tion to a more compact, canonical form; automatic genera-
term (diagram 23. The contribution of each diagram can be tion of highly optimizedFoRTRAN code for the loop integra-

written in the form tion of each type of expression.
5 ) , The integrals, typically consisting of a sum over a few
(N2=D)[c§+(c5PIN?) + (N¢/N) 5] (4)  hundred trigonometric products, are then performed numeri-

cally on lattices of varying finite size. Our programs per-
wherec$,c$?,c{?) are numerical constants. Certain sets ofform extrapolations of each expression to a broad spectrum
diagrams, corresponding to renormalization of loop propagaef functional forms of the typ&; ;e;(InL)/L', analyze the
quality of each extrapolation using a variety of criteria and
assign statistical weights to them, and finally produce a quite
reliable estimate of the systematic error. Takirg 28 leads
{:} to a sufficient number of significant digits in our results.
One important consistency check can be performed on
those diagrams which are separately IR divergent; taken to-
’ 8 gether in groups, as listed below Ed), they give a finite

P
S
3 6
e, and very stable extrapolation.
@ {j} @ We present below the numerical values of the constants
&k)j ctM,c?,c) ,cd). These constants depend only on the Wil-
9

T
&

son parameter; following common practice, we set=1.
10 1 12 13 14 Table | contains the contributions to the 1-loop quantity
3 (M) The total 1-loop result is

i Bt B
5}% PR B BN )Qk ﬁ XW=[(N*~1)/N][-0.16285705871R)]. (5

This result is known in the literaturesee, e.g., Refl6], p.
15 16 17 18 19 20 246, and references contained theyein
The contributions to the 2-loop quanti®(?) are pre-
sented in Table Il. The total 2-loop result is

3 (@)= (N?-1)[-0.0175373) + (1/N?)0.0165672)
% +(N¢/N)0.001186188)]. (6)

e
K
p
)
«
¢

21 22 23 24

In order to make a comparison with numerical simula-
tions, let us seN=3, N;=2 in the above; we obtain

\ﬂ{;ﬁi PV
SM(N=3N;=2)=—0.434285489895) 7)
27 28
FIG. 2. Two-loop diagrams contributing t8". Wavy (solid, S@(N=3N;=2)=—0.11925%3). (8)

dotted lines represent gluonffermions, ghosis Crosses denote ) ] (1) 2 (1)
vertices stemming from the measure part of the action; the solid In Table Ill we list the final results fom;~’=gg=*" and
circle is a fermion mass counterterm. m®=g23 M+ g8 @ in the quenched cas(=0), along
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TABLE II. Coefficientsc?, ¢$3, ¢@. r=1.

i cf? of? of)
3 0.002000362950707492 —0.0030005444260612375 0O
4 0.00040921361) —0.0006138204(®) 0
5 0 0 0
6 —0.000048889(B) 0.00009777@) 0
7+8+9+10+11 —0.0139213) 0.01452%2) 0
12+13 0 0 0.00079268)
14+15+16+17+18 —0.00575381) 0.00583287) 0
19+20 0 0 0.000393558)
21+22+23 0.00009676@) —0.000096768%) 0
24 0 0 0
25 0.0000776@) —0.000155243) 0
26 —0.000400005) 0 0
27 0 —0.00000652¢1) 0
28 0.0000078483) —0.000015696L) 0

with numerical simulation data at values & 6/g3 equal to ~ The diagrams that we propose to resum to all orders are the
5.7[7], 6.0[8], 6.1, 6.3[9]; in Table IV we compare our cactus diagrams made of vertices containf{g),. These
results atN;=2 with numerical simulation data g8=5.6  diagrams dress the transverse gluon propadatdeading to
[10] and 8=5.5[11]. Also included in these tables are the an improved propagatd?{), which is a multiple of the bare
improved results obtained with the method described in théransverse one:
following section. For easier reference, Table V presents our
results in terms of the critical hopping parametef PY=Pa/[1-wW(go)], (10
=1/(2m.a+8r). .

In order to obtain improved estimates from lattice pertur-Where the factow(go) will depend ong, andN, but not on
bation theory, one may perform a resummation to all orderéh® momentum. The functiow(go) can be extracted by an
of the so-called “cactus” diagramfl—3]. Briefly stated, appropriate algebraic eqyatlon that has b_een derived in Ref.
these are gauge-invariant tadpole diagrams which beconid] and that can be easily solved numerically; ®t(3),
disconnected if any one of their vertices is removed. ThéV(do) satisfies
original motivation of this procedure is the well known ob-

2
servation of “tadpole dominance” in lattice perturbation ue‘“’3[u2/3—4u+8]:292 u(go)EL.
theory. In the following we refer to Refl] for definitions 0 4[1-w(go)]
and analytical results. (1)

Since the contribution of standard tadpole diagrams is no . . .
gauge invariant, the class of gauge invariant diagrams we ar he vertices coming f“’“? the gluon part Of. the action, Eq.
considering needs further specification. By the Baker- ), get also dressed using a proc_edure similar to Fhe_ one
Campbell-Hausdorff((BCH) formula, the product of link leading to Eq(10) [1]. Vertices coming from the fermionic

: ; ; tion stay unchanged, since their definition contains no
variables along the perimeter of a plaguette can be written a&C . ' .
g P plaq plaquettes on which to apply the linear BCH formula.

One can apply the resummation of cactus diagrams to the
calculation of additive and multiplicative renormalizations of
B . 1) 20 () 4 lattice operators. Appl_ied to a number _of cases of interest
=exp{igoFy ., T195F; ., O(do)} (9 [1,2, this procedure yields remarkable improvements when

UX #Vz eigoAx,,ueigOAx-#,u,ye*igOAx+ v,,uefigOAx,v

TABLE Ill. m{Y andm® . N=3, N;=0, r=1.

B=5.7 B=6.0 B=6.1 B=6.3
m{® —0.457142620945) —0.43428548989B) —0.427166055636) —0.413605228473)
m{? —0.596283) —0.559863) —0.5486%3) —0.5275@2)
MM essed  —0.624018239510) —0.579221156426) —0.565793230028) —0.540845487886)
MPessed  —0.731266) —0.671625) —0.65395%5) —0.621404)
ams(q®)  —0.93 -0.78 -0.75 -0.70
ay(g¥) -1.12 -0.91 -0.86 -0.79
Simulation —1.042) -0.81812) —0.77464) —0.70664)
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TABLE IV. m(Y andm® . N=3, N;=2, r=1. TABLE V. «M and«®. N=3, N;=2, r=1.

B=5.5 B=5.6 B=55 B=5.6
m® —0.473765988978) —0.465305882038)  «M 0.1417943331148) 0.141454955736#)
m{? —0.615683) —0.602193) k?) 0.1477403) 0.1471543)
M ressed —0.658392965489) ~0.640695803682) k) ecceq 0.1496286052899) 0.148840346327)
MZressed ~0.763236) —0.739976) K essed 0.15447%6) 0.1533786)
Simulation —-0.89713) —0.84569) Simulation 0.1611@.5) 0.158507 45

compared with the available nonperturbative estimates. As not simply a multiple of its bare counterpgtee Appendix
regards numerical comparison with other improvemeniC of Ref.[1]). Once again, however, we are fortunate: this
schemedtadpole improvement, boosted perturbation theoryterm must be dropped, being precisely the one which has
etc) [12,13, cactus resummation fares equally well on all already been taken into account in dressing the 1-loop result,
the cases studigB]. while the remainder dresses in the same way as the 3-gluon

One advantageous feature of cactus resummation, in convertex. In conclusion, cactus resummation applied to the
parison to other schemes of improved perturbation theory, ig2-loop quantitys (?) leads to the following recipe:
the possibility of systematically incorporating higher loop , .
?J?Sri:a.lgmlp;]rgv?lesnﬁocvilculatlon best exemplifies this fea- mt(:zc)iressed_—z(l) J5 +(2(2)_2(2)b) Jo N

- as AR ’ 1-w(go) *P[1-w(go)]

Dressing the 1-loop result is quite straightforward: the
fermionic propagator and vertices stay unchanged, and onli=or the particular values of3 used in the tabless
the gluon propagator gets simply multiplied by(1l/ —-5556576.0,6.1,6.3, we obtain, from EqLy), 1
—W(go))- The resulting valuesn{esseq@nd i essed @€ —w(gy)=0.719579,0.726251,0.732579, 0.749775, 0.754986,
shown in Tables IV and V, respectively. It is worth noting 0.764738, respectively.
that these values already fare better than the much more In Table Il we present’ at various values ﬁfand Nf
cumbersome undressee-bop results. =0, our results fom, (at one and two loops, with and with-

We now turn to dressing the-doop results. Here, one oyt cactus dressing results taken from Ref{13] [corre-
must take care to avoid double counting: A part of diagramssponding to two different types of improvement, labeled
7 and 14 has already been included in dressing the 1-loop(q*) anday(q*)], and numerical simulation values. Our

result, and must be explicitly subtracted fram?) before
dressing. Fortunately, this pawe shall denote it b ) is
easy to identify, as it necessarily includes all of thi?part
in (2. A simple exercise in contraction &U(N) genera-
tors shows that3{) is proportional to (?—3)(N?

—1)/(3N?). There follows immediately that3Z)=

—0.016567(N2—3)(N?—1)/(3N?) [cf. Eq. (6)].

results forN;=2, mZ)ceseq@nd ) essea are included in
Tables IV and V. Comparing with the Monte Carlo esti-
mates, we see a definite improvement over non-dressed val-
ues. At the same time, a sizable discrepancy still remains, as
was expected from the start. This discrepancy sets a bench-
mark for lattice perturbation theory; multiplicative renormal-
izations, calculated to the same order and improved by cac-

A further complication is presented by gluon vertices.tus dressing, are expected to be much closer to their exact

While the 3-gluon vertex dresses by a mere factol bf

values. We hope to return to these calculations in a future

—w(gg) ], the dressed 4-gluon vertex contains a term whichpublication.

[1] H. Panagopoulos and E. Vicari, Phys. Rev.58, 114501
(1998.

[2] H. Panagopoulos and E. Vicari, Phys. Rev.59, 057503
(1999.

[3] H. Panagopoulos and E. Vicari, Nucl. Phys.(Broc. Supp).
83, 884(2000.

[4] H. J. Rothe Lattice Gauge Theories—An Introductiéworld
Scientific, Singapore, 1992

[5] C. Christouet al, Nucl. Phys.B525 387 (1998.

[6] 1. Montvay and G. Muster, Quantum Fields on a Lattice

(Cambridge University Press, Cambridge, England, 1994
[7] APE Collaboration, P. Baciliert al, Phys. Lett. B214, 115
(1988.

[8] JLQCD Collaboration, S. Aokét al., Phys. Rev. 062, 014506
(2000.

[9] JLQCD Collaboration, S. Aokét al., Phys. Rev. 060, 034511
(1999.

[10] SESAM Collaboration, N. Eickeet al, Phys. Rev. D59,
014509(1999.

[11] K. M. Bitar, R. G. Edwards, U. M. Heller, and A. D. Kennedy,
Nucl. Phys. B(Proc. Supp). 53, 225(1997.

[12] G. Parisi, inHigh-Energy Physics—198@dited by L. Durand
and L. G. Pondrom, AIP Conf. Proc. No. 68IP, New York,
198).

[13] G. P. Lepage and P. B. Mackenzie, Phys. Rev4® 2250
(1993.

017501-4



