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Triangle anomaly in triple-Regge limits

Alan R. White*
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~Received 10 May 2000; published 6 December 2000!

Reggeized gluon interactions due to a single quark loop are studied in the full triple-Regge limit and in
closely related helicity-flip helicity-pole limits. Triangle diagram Reggeon interactions are generated that
include local axial-vector effective vertices. It is shown that the massless quark triangle anomaly is present as
a chirality-violating infrared divergence in the interactions generated by maximally nonplanar Feynman dia-
grams. An asymptotic dispersion relation formalism is developed which provides a systematic counting of
anomaly contributions. The asymptotic amplitude is written as a sum over dispersion integrals of triple dis-
continuities, one set of which is unphysical and can produce chirality transitions. The physical-region anomaly
appears in the generalized real parts, determined by multi-Regge theory, of the unphysical discontinuities. The
amplitudes satisfy a signature conservation rule that implies color parity is not conserved by vertices containing
the anomaly. In the scattering of elementary quarks or gluons the signature and color parity of the exchanged
Reggeon states are such that the anomaly cancels. At lowest order, it cancels in individual diagrams after the
transverse momentum integrations are performed.
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I. INTRODUCTION

Multi-Regge limits within QCD have the virtue that the
are,a priori, close to perturbation theory at large transve
momentum while in the infrared transverse momentum
gion very strong constraints imposed by analyticity a
t-channel unitarity must also be satisfied@1,2#. Many calcu-
lations@3–9# have shown that if gluons and quarks are giv
a mass via spontaneous symmetry breaking the unitarity
straints are satisfied perturbatively, in an elegant and m
mal manner, by Reggeon diagrams containing o
Reggeized gluons and quarks. If there are circumstance
which the symmetry breaking can be removed smoothly
may hope to see an accompanying transition to Regg
diagrams containing hadrons and the Pomeron with, idea
a connection to perturbation theory maintained at large tra
verse momentum.

The purpose of this paper is to demonstrate that w
quarks are massless high-order Reggeized gluon interac
of a particular kind contain an infrared divergence that c
be understood as the infrared appearance@10# of the U~1!
quark anomaly. Although, of course, QCD contains on
vector interactions, in multi-Regge limits effective vertic
are generated by quark loops which involve products
g-matrices. The full triple-Regge limit1 is sufficiently intri-
cate~as are the helicity-flip helicity-pole limits that we als
study! that both the axial-vector couplings and the orthog
nal momenta needed to generate the triangle anomaly
present. Since the triple-Regge vertices involved appea
essential components in the Reggeon diagrams@13# that de-
scribe the formation and scattering of bound states, this

*Email address: arw@hep.anl.gov
1This is a limit of three-to-three scattering amplitudes@11#, not to

be confused with the incorrectly named ‘‘triple-Regge’’ limit of th
one-particle inclusive cross section that is actually a ‘‘non-fl
helicity-pole’’ limit.
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new manifestation of the U~1! anomaly which we believe
plays a crucial dynamical role in producing a transition
hadron and Pomeron Reggeon diagrams.

We present direct calculations2 showing that the anomaly
is present in the triple-Regge six-Reggeon interaction ve
obtained from the ‘‘maximally non-planar’’ Feynman dia
grams that appear in three-to-three quark scattering. The
Reggeon interaction that appears in elastic scatte
Reggeon diagrams~and in the inclusive cross-sectio
helicity-pole limit! has been studied previously by a numb
of authors in the context of looking for Balitskiı˘-Fadin-
Kuraev-Lipatov~BFKL! Pomeron interactions@12#. In this
case, however, only helicity non-flip interactions are
volved and there is no possibility for the anomaly to appe

The diagrams we study contain a single quark loop a
the anomaly appears in the limit~s! we study because an un
physical singularity combination in which every qua
propagator in the loop is on-shell approaches the asymp
region. The configuration in which one quark in the loo
carries zero momentum and undergoes a chirality transi
produces the~infrared! anomaly. There are, however, man
obvious possibilities for a cancellation. We have to sum o
the different choices for the quark that carries zero mom
tum, over all diagrams of this kind, and finally, over all oth
kinds of diagrams as well. While non-planar quark loop d
grams provide the essential analytic structure of Regge
couplings, other diagrams are needed for the Reggeon W
identity cancellations@13# that ~indirectly! reflect the under-
lying gauge invariance.A priori such cancellations might b
expected to include cancellation of the anomaly. Howev
the Reggeon Ward identities include gluon self-interact
contributions that cannot produce the chirality transition

2In a companion paper@14# we present an abbreviated version
the central calculation together with a very brief overview of oth
arguments in this paper.
©2000 The American Physical Society07-1



o
re
g

by
ta
on
a

de
ti

un
p
th
t
d

is
rt
on
e
e
ha
ac
e

he

d
th
ed
fli
th
ca
y

-t
ve
n-
o

t t
in
n

ve

e

s
nt
l-
li
in
p

la
s-
le
is
e
e

m
e

nce
of
the

cial
r-

ig-

be
ly,
aly

lies
ei-
ion,
m-

tary
es
r, it
en-

the
pli-
tes

rity
ns to
on.

by
ev-
aly
ce to

e
e

red
ra-

of
aly

par-
f

a

e
aly

tive
had-

a
d so

ber

ALAN R. WHITE PHYSICAL REVIEW D 63 016007
volved in the anomaly divergence. As a result, Regge
Ward identities are violated by the anomaly and do not p
vent its occurrence.~In an Abelian theory the correspondin
Ward identities do produce a cancellation.!

Chirality transitions are well known to be produced
non-perturbative interactions, such as those due to ins
tons. From the point of view of the dispersion theory
which we ultimately base our analysis, the anomaly appe
in the generalized real parts that multi-Regge theory provi
for perturbatively calculated unphysical asymptotic discon
nuities. It is just because the multiple discontinuities are
physical that they can contain chirality transitions. Our ho
is to eventually show that, in appropriate circumstances,
chirality violating processes dominate the soft background
a hard scattering process and, in doing so, provide a fun
mental origin for the parton model outside of leading-tw
perturbation theory. However, a more immediate prope
that must first be established is that the chirality violati
produced by a single Reggeon interaction cancels in elem
tary scattering processes where it clearly should not app
This certainly includes helicity conserving processes t
have only elementary perturbative QCD ingredients for
companying interactions and may well extend to any proc
where the chirality violation cannot be linked to~Reggeized!
gluon configurations with the quantum numbers of t
winding-number current.

Since multi-Reggeon ‘‘states’’ are virtual, exchange
configurations that do not directly produce particle states,
chirality and Reggeon Ward identity violation associat
with the anomaly does not produce any fundamental con
that requires a cancellation within a Reggeon vertex. Ra
such cancellations are secondary effects within the full s
tering process that have to be traced. The number of Fe
man diagrams contributing to even the lowest-order three
three quark scattering processes of the kind we study is
large @O(100)# and some diagrams, the maximally no
planar diagrams in particular, produce several anomaly c
tributions. Therefore, even though we make no attemp
calculate the full Reggeon interaction vertex, understand
diagrammatically when the anomaly occurs and how a
when the necessary cancellations take place would be
difficult.

Fortunately, we are able~in principle at least! to system-
atically count all anomaly contributions by using th
asymptotic dispersion relation formalism developed in@2#
and @15#. In this formalism the full asymptotic amplitude i
constructed as a relatively simple sum over dispersion i
grals of multiple discontinuities. Multi-Regge theory then a
lows the multiple discontinuities to be converted to amp
tudes containing generalized real parts by introduc
appropriate signature factors and, for the lowest-order am
tudes we consider, the signature factors have a particu
trivial form. A very important feature of the asymptotic di
persion relation we use, which is not present in the simp
case of multi-Regge production processes, is that there
set of unphysical triple discontinuities that contribute. Inde
we find that the anomaly appears only in the amplitud
given by multiple discontinuities of this kind obtained fro
the maximally non-planar diagrams and, also, the clos
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related diagrams required by Reggeon Ward identities. O
the discontinuities involved have been isolated, the study
cancellations reduces to a discussion of signature and
symmetry properties of color factors.

The amplitudes that contain the anomaly have spe
analytic properties. In particular, they satisfy a very impo
tant signature conservation rule.~Although we do not discuss
it in this paper, we expect this rule to lead to the even s
nature of the Pomeron in hadronic Reggeon diagrams.! The
signature rule implies that the anomaly chirality transition
accompanied by a color parity violation and, most like
requires that all Reggeon states coupling to the anom
carry anomalous color parity~not equal to the signature!. For
color zero Reggeon states, anomalous color parity imp
the quantum numbers of the winding-number current for
ther the complete state or a sub-component. In addit
color parity violation by the anomaly vertex requires a sy
metric d-tensor and so requires at least SU~3! for the gauge
group. When the external scattering states are elemen
quarks ~or gluons! anomalous color parity Reggeon stat
cannot appear and the anomaly cancels. At lowest-orde
cancels in individual diagrams after the transverse mom
tum integrations are performed.

Far more important, of course, is determining when
anomaly does not cancel. For high-order multi-Regge am
tudes that have clusters of particles in initial and final sta
~that potentially form bound states! there is, as we briefly
elaborate in Sec. VII, no reason for anomalous color pa
Reggeon states and the anomalous Reggeon interactio
cancel and they are likely to be a pervasive phenomen
However, the infrared divergences are then suppressed
Ward identity zeros of the accompanying interactions. N
ertheless, the associated ultra-violet effects of the anom
should not be suppressed and we expect the consequen
be a power~rather than a logarithmic! violation of unitarity
bounds.

Avoiding the violation of unitarity by the anomaly is, w
believe, the core problem in finding the full multi-Regg
S-matrix of QCD. Our proposal, outlined in@2#, is that this
can be achieved by enhancing the anomaly in the infra
region so that the ultra-violet effects are dominated by inf
red divergences that can be absorbed into the definition
Reggeon states. To achieve this is very subtle. The anom
does produce infrared divergences if an anomalous color
ity ‘‘Reggeon condensate’’~with the quantum numbers o
the winding-number current3! is introduced. In the program
outline we gave previously@13# we demonstrated that in
color superconducting phase of QCD@with the gauge sym-
metry broken from SU~3! to SU~2!# such a condensate can b
consistently reproduced in all Reggeon states by anom
infrared divergences. We also showed how the perturba
Reggeon diagrams are replaced by diagrams containing
rons and a Reggeon field theory~RFT! supercritical Pomeron

3This ‘‘condensate’’ is actually a ‘‘wee-parton’’ contribution in
physical Reggeon state, rather than a vacuum condensate an
need not be parity violating, as a true vacuum winding-num
condensate surely would be.
7-2
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TRIANGLE ANOMALY IN TRIPLE-REGGE LIMITS PHYSICAL REVIEW D 63 016007
@2#, with restoration of the full SU~3! symmetry producing,
in principle, the RFT critical Pomeron@16#.

In @13# we assumed the existence of the anomaly. Wh
the properties we assumed were essentially correct there
significant differences. Having understood the full structu
of the anomaly we hope to implement our previously o
lined program in detail in future papers. If we successfu
obtain a unitary~Reggeon! S-matrix as we hope, it will be
very close to perturbation theory, and the connection w
the parton model should be clear. In effect, the no
perturbative properties of confinement and chiral symme
breaking will be obtained as a consequence of regulating
anomaly so that unitarity is satisfied in the Regge region

In this paper, apart from brief discussions in Secs. II a
VII, we will not enlarge on what we believe to be the d
namical role of the anomaly divergences. Instead we w
focus entirely on the technical problem of studying t
asymptotic behavior of Feynman diagrams, setting up
necessary multi-Regge formalism, and isolating the occ
rence of the anomaly. We have organized the paper
manner that we hope will allow a reader to extract so
general understanding of our results without necessarily
sorbing all of the underlying multi-Regge theory. Section
is a general outline of the purpose of the paper and a s
mary of its contents that, as far as possible, avoids techn
language. Section III describes the triple-Regge and rela
helicity-pole limits in terms of light-cone variables. Sectio
IV is devoted to the calculation, using light-cone c
ordinates, of triple-Regge contributions from three spec
diagrams. This allows us to illustrate how the anomaly
curs as an infrared divergence of Reggeon vertices. We
centrate on the kinematic structure of diagrams and ign
color factors until we have set up the necessary machiner
discuss cancellations. We study one diagram that obvio
does not contain the anomaly, one that might have anom
contributions but actually does not and one, a maxima
non-planar diagram, that does. At the end of the section
discuss how the anomaly contributions from maximally no
planar diagrams cancel. In Sec. 5 we develop the asymp
dispersion relation and multi-Regge formalism that u
mately allows us to systematically discuss all anomaly c
tributions. In Sec. VI we study the complete set of dou
discontinuities and conclude that only those originating fr
maximally non-planar diagrams, and diagrams closely
lated by Reggeon Ward identities, give amplitudes that c
tain the anomaly. We finally discuss the role of color facto
in cancellations in Sec. VII. We then briefly discuss d
grams which give anomaly contributions that we do not
pect to be canceled.

II. OUTLINE AND SUMMARY

The triple-Regge limit~and closely related helicity-flip
helicity-pole limits4! can be formulated as the high-energ
near-forward, scattering of three particles carrying light-li

4A helicity-pole limit isolates the leading helicity amplitude th
ultimately gives a physical particle amplitude.
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momentaP1 , P2, and P3 whose spacelike components a
orthogonal to each other. This limit~defined precisely in the
next section! is discussed in@13# for some simple diagrams
but otherwise has not been discussed in QCD. In this pa
we will study Feynman diagrams of the kind illustrated
Fig. 1 in which the three particles scatter via gluon intera
tions involving a single quark loop—the solid circle. In mo
of our discussion the scattering particles will be sing
quarks and the couplingsG1 , G2, andG3 will be the lowest-
order elementary couplings. However, in discussing anom
cancellations we will also allow these couplings to have
more general properties associated with bound-state sca
ings.

The quark loop initially contains a sufficiently large num
ber of quark propagators that there are no ultra-violet div
gences. At finite momentum, this loop also has no infra
divergences, even when the quark mass is zero. If the glu
are massive, the gluon loops also have no divergence p
lems. For most of our analysis we will, for simplicity, set th
gluon mass to zero. This means that the diagrams we s
will formally have infrared divergences at zero gluon tran
verse momentum, just where the anomaly divergence occ
Ultimately the interplay between these divergences is cru
and has to be discussed in detail.~It is well known that the
gluon infrared divergences cancel for Reggeon states ca
ing zerot-channel color but do not produce confinement.! In
Sec. IV we will briefly mention using gluon mass~es! to
avoid anomaly cancellations. In the main body of the pa
we simply ignore the divergences due to the zero mass of
gluon.

In the limits we consider the most important contributio
come from regions of the gluon loop integrations where
number of the propagators in the quark loop and the sca
ing quark systems are either on-shell or close to on-shell.
will be particularly interested in diagrams for which, wit
appropriate quantum numbers in thet i (5Qi

2) channels, all
the relevant quark lines are precisely on-shell in the lead
contribution. ~We discuss below which propagators are
volved.! If the propagator poles are used to carry out lig
cone longitudinal momentum integrations the integrals o
gluon loop momenta reduce to two-dimensional ‘‘transve
momentum’’ integrals. The leading contribution then has
form

FIG. 1. The class of Feynman diagrams studied.
7-3
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~Note that, in contrast to simpler multi-Regge limits, t
transverse momenta in eacht-channel can not be taken to b
in a common plane.!

Provided thata i511O(g2), i 51,2,3 we can write

P11P21P31;S12
1/2S23

1/2S31
1/2

5~s13!
(a11a32a2)/2~s23!

(a21a32a1)/2

3~s12!
(a11a22a3)/21O~g2!, ~2.2!

whereSi j 5(Pi1Pj )
2. This is the lowest-order triple-Regg

behavior for the amplitudes that interest us~and, in particu-
lar, potentially contain the anomaly!. Consequently, the
transverse momentum integrations, together with the gl
propagators and the external couplingsGi , are straightfor-
wardly interpreted as the leading-order contribution of mu
Reggeon states in which each gluon is regarded as a low
order Reggeon. As illustrated in Fig. 2
R(Q1 ,Q2 ,Q3 ,k11,k21,•••) can then be extracted as
‘‘Reggeon interaction vertex.’’ In general, the lowest-ord
contribution to this vertex will survive as higher-order co
rections add Reggeization effects to the exchanged glu
and modify theGi couplings. In particular if there is an
infrared divergence in the lowest-order vertex this wou
also be expected to survive as higher-order effects are ad

Since one propagator in the quark loop is placed on-s
for each gluon loop integration, only three of the origin
loop propagators are off-shell. The effective vertices p
duced by the longitudinal integrations contain, in gene
both local and non-local components. By~our! definition, the
local components are products ofg matrices that in some
cases reduce tog5g couplings. Clearly, if there is an od
number ofg5’s then, a priori, the U~1! triangle anomaly
could be present in the reduced loop. Intrinsically, Regg
diagrams are most unambiguously defined at low transv
momentum. Therefore, we look for the infrared manifes
tion of the anomaly as a divergence that is present when
quark mass vanishes@10#. This divergence occurs when th
remaining three off-shell quarks go on-shell~producing a
complete loop of on-shell quarks!. We will not be able to
identify the full Lorentz structure but we will find the cha
acteristic chirality violation.

FIG. 2. Generation of a Reggeon vertex.
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Gauge-invariance relates diagrams of the form of Fig. 1
other diagrams involving the triple-gluon coupling. We w
make brief references to such diagrams in the contex
Reggeon Ward identity cancellations. However, we do
attempt to calculate Reggeon vertices corresponding to
diagrams of a fixed-order. Rather we concentrate on dem
strating the presence of the anomaly in contributions fr
particular diagrams and on determining when and how s
contributions cancel. The infrared divergence we are look
for requires@10# a quark triangle Landau singularity and s
diagrams of the kind we have isolated are the important on
Most of our discussion will be concerned with the lowe
order diagrams, illustrated in Fig. 3, in which the scatteri
states are quarks and there are just two-gluons exchang
each t-channel. This simplest set already containsO(100)
diagrams and so counting all possibilities will be a very d
ficult thing to do unless we have a very systematic pro
dure.

Two conceptually distinct calculational methods can
used to arrive at Eq.~2.1!. The arguments for placing propa
gators on-shell are related but differ in important ways t
we want to emphasize. The most popular calculatio
method is applied directly to Feynman diagrams and utili
light-cone co-ordinates~or Sudakov parameters!. The large
light-cone momenta are routed through a diagram and
large momentum is carried by a propagator it must be
shell, or close to on-shell, if it is not to~power! suppress the
asymptotic behavior. If there is no corresponding interme
ate state in which the propagator is on-shell then, in
leading-log calculation, only the close to on-shell configu
tion contributes and a real logarithm is generated. In hi
orders a careful discussion of the closing of longitudinal
tegration contours in the complex plane is required, to m
sure that the propagator pole involved cannot be avoided
the distortion of an integration contour. In general, the co
tribution of a real, close to on-shell, configuration reflects
presence of a cross-channel branch cut.

The second, much less intuitive, calculation method e
ploys a dispersion relation@3# which contains discontinuities
in which the relevant lines are specifically on-shell. Re
amplitudes involving logarithms corresponding to close
on-shell configurations in a particular channel are reprodu
by dispersion integrals over the intermediate states in
cross channel that they are related to. The dispersion rela

FIG. 3. Quark scattering diagrams with two gluons in ea
t i-channel.
7-4
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formalism generally has the advantage~particularly in a
gauge theory! that fewer diagrams need to be calculated.
higher orders, in principle, dispersion relations for produ
tion amplitudes must also be introduced. However,
simple relationship between the signature factors and dis
tinuities for Regge amplitudes can be exploited@8# to short-
cut, at least part of, such calculations. The dispersion rela
approach sometimes has the disadvantage that a cancel
which manifests itself via the closing of a contour in t
direct diagrammatic approach can appear as a more elab
cancellation between discontinuities, dependent on signa
and quantum number properties. For our purposes, howe
the crucial feature of the dispersion relation method is t
the ambiguity of which on-shell configurations contribute
resolved by the unambiguous process of taking the neces
discontinuities.

As we already implied, because we are interested in
low-order behavior of a large number of relatively comp
cated diagrams we will not attempt a complete diagramm
analysis. In fact, although there are three distinct large m
menta to be routed through diagrams, in the configura
that interests us the crucial quark loop carries finite mom
tum. This makes the ambiguity as to which quark propa
tors should be placed on-shell particularly serious. Fo
nately, the asymptotic dispersion relation formalis
developed in@2# and @15# provides a fundamental basis fo
calculating triple discontinuities and assembling them
form the complete asymptotic amplitude. We will see th
the structure of multiple discontinuities, although involvin
subtleties crucial for the emergence of the anomaly, is r
tively simple and that the problem of counting contributio
from all diagrams becomes straightforward. Indeed, wh
the amplitude is Regge-behaved, the relationship betw
discontinuities and the full amplitude is such that Regge
interaction vertices can be extracted from multiple disco
nuities directly. The most important subtlety, for our pu
poses, is that the dispersion relation includes unphysical
continuities that can contain the chirality transitio
necessary for the anomaly to appear. In fact this feature
be regarded as the main consequence of the increased
plexity of the triple-Regge limit, compared to the mult
Regge limits previously studied.

To illustrate the general idea behind using multi-Reg
theory to obtain amplitudes from multiple discontinuities w
note that when the leading-order amplitude has the form
Eq. ~2.1!, discontinuities can be taken trivially using E
~2.2!, e.g.,

@Disc#s12
;~s12!

1/22~e22p is12!
1/252~s12!

1/2. ~2.3!

Indeed if Eq.~2.1! were derived5 as an asymptotic multiple
discontinuity ins12, s23, ands31 and the momentum behav
ior interpreted using Eq.~2.2!, the asymptotic result has
trivial extension away from the discontinuity by includin

5This particular multiple discontinuity is forbidden by the Stei
mann relations, but for pedagogical reasons we ignore this for
moment.
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the phases due to the square-root branch cuts in each ofs12,
s23, ands31. In particular the amplitude can be extended
negative values of the invariants where the amplitude is
and there are no discontinuities. Of course, Eq.~2.2! is only
one possible way to write the large momentum fac
(P11P21P31) in terms of large invariants. To justify this
particular choice it is necessary to calculate higher-order c
rections and see the appropriate Reggeization effects ap
The asymptotic dispersion relation provides a sum over
allowed possibilities and multi-Regge theory incorpora
the higher-order corrections and generalizes the extensio
the amplitude away from the discontinuities via the introdu
tion of phases and signature factors.

As part of our effort to organize the paper to provid
some benefit for a general reader we begin, in Sec. III,
formulating the triple-Regge limits we discuss in terms
light-cone kinematics. As a result, in Sec. IV we are able
initially discuss some diagrams directly in terms of ligh
cone co-ordinate calculations without developing the m
tiple discontinuity formalism. This allow us to illustrate ho
the anomaly occurs. We study all three diagrams shown
plicitly in Fig. 3. The first diagram, fairly obviously, does no
contain the anomaly since it generates only vector effec
vertices. The second diagram contains ag5 effective vertex,
but the necessary light-like momentum cannot flow throu
the diagram. The third diagram of Fig. 3 actually gives mo
than one Reggeon interaction contribution containing
anomaly. When this diagram is redrawn as in Fig. 4,
‘‘maximally non-planar’’ property is apparent.~The cou-
plings to the quark loop by the two gluons in the sam
t-channel are separated, in both directions around the lo
by couplings to gluons in the other twot-channels.! As we
already alluded to above, this non-planarity property ensu
that such diagrams unambiguously contribute to Regge
vertices. When the hatched lines are placed on-shell by
gluon loop longitudinal integrations a triangle diagra
Reggeon interaction is generated as shown. The local c
pling component is shown in Fig. 5. In obtaining these lo
couplings we have used the special light-cone co-ordina
discussed in Appendix B. It is straightforward to show th
the necessaryg5 couplings are present within the products
g-matrices shown.

To illustrate how the appropriate momentum configu
tion for the anomaly appears we first define the light-li
vector

n lc5~1,cosu lc ,sinu lc ,0! ~2.4!
e

FIG. 4. A diagram with an anomaly contribution.
7-5



to

er

e
il

io
n

in
nn
a

ed
s
f
o

for

are

t
na-

re
the
ap-
, its
le
e

e
a

nd
on
ies
n
am
eon
el-
le
of

s in
mi-

an
by

ne
s
of

lus-

ALAN R. WHITE PHYSICAL REVIEW D 63 016007
and the orthogonal space-like vector

n lc'5~0,2sinu lc ,cosu lc ,0!. ~2.5!

We then take

q11k11q21k25O~q!n lc'

q22k21q31k35 l n lc1O~q!n lc' ~2.6!

q12k11q32k352 l n lc1O~q!n lc' .

We also take the loop momentumk;O(q) and let q→0
with

~q12k1!→22l ~1,1,0,0!, ~q22k2!→2l ~1,0,1,0!,
~2.7!

and

q3→ l ~0,121,0!, k3→ l ~0,122 cosu lc ,122 sinu lc ,0!.
~2.8!

In the limiting configuration the momenta corresponding
the hatched lines of Fig. 4 are on-shell. Also

q1
25q2

25k1
25k2

2 ~2.9!

and only the lightlike momentumklc5 l n lc flows through
the triangle graph of Fig. 5. As a result, the anomaly div
gence appears and gives

G6;
~12cosu lc2sinu lc!2l 2

q
. ~2.10!

The physical scattering process corresponding to the mom
tum configuration~2.7! and~2.8! is discussed in more deta
in Sec. IV.

In Sec. V we describe the asymptotic dispersion relat
that holds in the triple-Regge limit. The physical-regio
triple discontinuities that appear are relatively simple. Us
tree diagrams in which an internal line represents a cha
discontinuity, the triple discontinuities are of three kinds,
illustrated in Fig. 6. There are 24 of the first kind, illustrat
in Fig. 6~a!, that are related to one-particle inclusive cro
sections~via optical theorems!. There are 12 contributions o
the form of Fig. 6~b!. The asymptotic dispersion relation als
contains 12 triple discontinuities of the form of Fig. 6~c!
which, unlike those of Figs. 6~a! and 6~b!, do not occur in
any of the physical regions. However, they contribute in

FIG. 5. A triangle diagram Reggeon interaction.
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crucial way to the asymptotic behavior and are essential
the appearance of the anomaly.

The multi-Regge Sommerfeld-Watson representations
quite different for the triple discontinuities of Fig. 6~a! and
those of Figs. 6~b! and 6~c!. The 24 combinations of the firs
kind form signatured amplitudes with three possible sig
tures. Each of the sets of Figs. 6~b! and 6~c! provide only
four distinct signatured amplitudes leading to a ‘‘signatu
conservation’’ rule. This rule is superficially the same as
usual Gribov signature rule for the triple-Regge vertices
pearing in elastic scattering Reggeon diagrams. However
origin is quite different. We anticipate that this signature ru
will ultimately lead to the even signature property of th
Pomeron when we finally extract the physicalS-matrix from
Reggeon diagrams.

Section VI has a very simple purpose and result. W
study all contributions of diagrams of the form of Fig. 3 to
particular particular physical region double discontinuity a
look for the anomaly in the contributions to six-Regge
interactions. We show that only the double discontinuit
originating from a maximally non-planar diagram give a
amplitude that contains the anomaly, apart from the diagr
that is closely related to the non-planar diagram by Regg
Ward identities. This implies that to fully discuss the canc
lation of the anomaly we only have to add a relatively simp
discussion of color factors to our discussion at the end
Sec. IV. This we do in Sec. VII. We also discuss processe
which the anomaly does not cancel but rather gives predo
nant ultra-violet effects.

III. KINEMATICS: TRIPLE-REGGE LIMITS

In order to extract the asymptotic behavior of Feynm
diagrams using familiar light-cone techniques, we begin
formulating the triple-Regge limits we study using light-co
momenta. In Sec. V we will relate this formulation of limit
to the usual description of multi-Regge limits in terms
angular variables.

A. Light-cone description of the triple-Regge limit

We consider the three-to-three scattering process il
trated in Fig. 7~a! and define momentum transfersQ1 , Q2,
andQ3 as in Fig. 7~b!. Consider first the ‘‘full triple-Regge
limit’’ in which each of P1 , P2, and P3 are taken large
along distinct light-cones, withQ1 , Q2, andQ3 fixed, i.e.

P1→P1
15~p1 ,p1,0,0!, p1→` Q1→~ q̂1 ,q̂1 ,q12,q13!

FIG. 6. Tree diagrams for triple discontinuities.
7-6
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P2→P2
15~p2,0,p2,0!, p2→` Q2→~ q̂2 ,q21,q̂2 ,q23!

~3.1!

P3→P3
15~p3,0,0,p3!, p3→` Q3→~ q̂3 ,q31,q32,q̂3!.

Momentum conservation requires that

q̂11q̂21q̂350, q̂11q211q3150,

q̂21q121q3250, q̂31q131q2350 ~3.2!

and so there are a total of five independentq variables which,
along with P1 , P2, and P3, give the necessary eight var
ables. ~Obviously Pi 85Pi2Qi , i 51,2,3. Also we omit
light-cone components of both thePi and theQi that go to
zero asymptotically, but are necessary to put the initial a
final particles on mass-shell.!

In terms of invariants, writingsi j 5(Pi1Pj )
2, si j 85(Pi

2Pj 8)
2 andsi 8 j 85(Pi 81Pj 8)

2, the limit ~3.1! gives

s12;s1828;2s128;2s182→2p1p2 ,
~3.3!

s23;2s283→2p2p3 , s31;s381→2p3p1 ,

FIG. 7. Three-to-three scattering.
re

-
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-
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while for invariants of the forms12285(P11Q2)25(P1
1P22P28)

2

s1228;2P1•Q2→2p1~ q̂22q21!,

s1338;2P1•Q3→2p1~ q̂32q31!, ~3.4!

s2338→2p2~ q̂32q32!, s3118→2p3~ q̂12q13!, . . . .

Note that there is no constraint on the relative magnitude
the Qi . They can lie in either a spacelike plane (s2s in the
notation of @11# and of Appendix D! or in a plane with a
timelike component (s2t in the same notation!.

B. Light-cone description of helicity-flip helicity-pole limits

We can take a ‘‘helicity-flip helicity-pole limit,’’ in addi-
tion to the triple-Regge limit, by also taking

s31

s1338s3118

;
1

~ q̂32q31!~ q̂12q13!
→ ` ~3.5!

s32

s2338s3228

;
1

~ q̂32q32!~ q̂22q23!
→ `. ~3.6!

Introducing the notation of Appendix B, this limit is there
fore equivalent to taking

q2125q̂22q215q312q̂3→0 ~3.7!

q1225q̂12q125q322q̂3→0. ~3.8!

With this additional limit taken
P1→P1
15~p1 ,p1,0,0!, p1→` Q1→~q1122 ,q1122 ,q1122 ,q13!

P2→P2
15~p2,0,p2,0!, p2→` Q2→~q2122 ,q2122 ,q2122 ,q23! ~3.9!

P3→P3
15~p3,0,0,p3!, p3→` Q3→~q33,q33,q33,q33!
de-
le
where now the constraints of momentum conservation a

q11221q21221q3350, q131q231q3350 ~3.10!

giving three independentq variables. As our notation indi
cates, the helicity-flip limit is naturally expressed in terms
the light-cone variables introduced in Appendix B.

We can obviously also define additional helicity-pole lim
its by taking

q3225q̂32q325q232q̂1→0 ~3.11!

q2325q̂22q235q132q̂1→0 ~3.12!
f

or

q1325q̂12q135q232q̂2→0 ~3.13!

q3125q̂32q315q212q̂2→0 ~3.14!

corresponding to further sets of light-cone co-ordinates
fined as in Appendix B. Note that for all three helicity-po
limits, the Qi must lie in thes2s region, i.e., a spacelike
plane in which the Euclidean constraint

uQi u1uQj u>uQku ; i , j ,k ~3.15!
7-7
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ALAN R. WHITE PHYSICAL REVIEW D 63 016007
is satisfied. This is necessary for the helicity-flip limit to be
physical region limit. In fact theQi lie in the s2s region
provided only thatqi j 2 are sufficiently small.

IV. CALCULATION OF FEYNMAN DIAGRAMS

In this section we calculate directly contributions to t
triple-Regge limit from selected diagrams. We will not a
tempt to be complete in our discussion and will not inclu
color factors. The counting of all contributions from all di
grams has to be done via the multiple discontinu
asymptotic dispersion relation formalism that we develop
Sec. V. In anticipation of this formalism we first look fo
on-shell configurations that form intermediate states in
scattering and extract the corresponding Reggeon interac
We will show that the necessary axial triangle diagram
pears in the contributions of a maximally non-planar d
gram.

A. The simple planar diagram

We begin with the first diagram of Fig. 3, which is als
discussed in@13#. This planar diagram~almost obviously!
contains no anomaly and, as we discuss shortly, will
contribute at all to the six-Reggeon interaction if all-orde
Reggeization of quarks and gluons is exploited. Nevert
less, we begin with it since it is the simplest to evaluate a
to use to illustrate our general methods. The notation we
is illustrated in Fig. 8.

We will not specify the direction of the quark line bu
rather sum over both possibilities in the diagrams we disc
Because we are interested in infrared contributions from
central quark loop we can suppose that large momenta do

FIG. 8. The simple planar diagram.

FIG. 9. A physical scattering process.
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flow through this loop. We can then use directly, for ea
scattering quark, arguments~reviewed in Appendix C! that
apply when a fast quark scatters off a slow system.

We begin by reducing each loop integral involving gluo
propagators to a ‘‘transverse momentum’’ integral by car
ing out longitudinal integrations. For a general diagram th
will be an ambiguity as to which light-cone co-ordinates
use and also which quark propagators to use to perform
gitudinal integrations. For Fig. 8, however, each gluon lo
momentum naturally passes through only one line of
quark loop and there is no ambiguity as to how to proce

If we draw Fig. 8 as describing a physical scattering p
cess with time in the upward vertical direction, as in Fig.
it is clear that each of the quark propagators marked wit
hatch can be naturally close to mass-shell and contribut
intermediate states as part of the scattering process. Sinc
are only looking for interesting contributions in this sectio
we will not give a complete contour-closing argument as
whether a particular on-shell configuration is definitive
present asymptotically. Rather if propagators are close
mass-shell during a scattering process we will take this a
indication that a leading asymptotic contribution may be o
tained if these propagators are put on-shell by perform
corresponding longitudinal momentum integrations. Ea
loop integral has the formI i illustrated in Fig. 10.Ri

D de-
notes the remainder of the diagram besides the two gl
propagators shown. We choose a combination of conv
tional light-cone co-ordinates for each loop, i.e.~in the nota-
tion of Appendix B! kii 1, kii 2, and ki' , i 51,2,3. In the
limit Pi 1→`, we can use Eqs.~C2!–~C7! to approximate
the initial and final state spinors byp” i i 1 /m and so write each
of the threeI i ~in Feynman gauge! in the form

I i5g2E d4kiFp” i i 1

m Ggm@p” i2k” i1m#21gn

3Fp” i i 1

m GFgma

ki
2 GF gnb

~Qi2ki !
2GRiab

D

→g2
pi 1

m E d4kid„kii 22~kii'
2 2m2!/2pii 1…

3
1

ki
2 ~Qi2ki !

2Rii 2,i 2
D . ~4.1!

As discussed above, we have replaced the hatched q
propagator of Fig. 10 by ad-function. Using thisd-function
to perform thekii 2 integration we obtain

FIG. 10. The one loop integralI i .
7-8
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I i5g2
pii 1

m E d2kii' dkii 1

1

kii'
2 ~Qii'2kii'!2

Rii 2,i 2
D

~4.2!

where we have usedkii 2;1/pii 1→0, together withQii 2

50, to eliminate the longitudinal momentum components
the gluon propagators.

For Fig. 8 the remainingkii 1 integrations can be per
formed very simply. As illustrated in Fig. 11, the two gluon
in I i are separated by the single quark line withinRi

D that
carries the only dependence onkii 1. We again replace the
hatched propagator for this line by the correspond
d-function and use it to carry out thekii 1 integration, i.e. we
write

FIG. 11. Ri 2,2
D for Fig. 8.
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E dkii 1 Ri 2,2
D 5g2E dkii 1 d„~ki1k!22m2

…g i 2

3@g•~ki1k!#g i 2R̃i
D

5g2E dkii 1 d„kii 1ki 21ki 1ki 2

2~ki'1kii'!22m2
…g i 2

3@g i 1•ki 21•••#g i 2R̃i
D

5g2g i 2g i 1g i 2R̃i
D5g2g i 2R̃i

D . ~4.3!

Using Eqs.~4.1!–~4.3! for each of theki integrations, Fig.
8 gives the asymptotic amplitude

g12
p111p221p331

m3
J1~Q1

2!J1~Q2
2!J1~Q3

2!G122232
v

3~Q1 ,Q2 ,Q3! ~4.4!

whereJ1(Q2) is the familiar two-dimensional integral~C9!
andG122232

v (Q1 ,Q2 ,Q3) can be identified with a particula
component of the tensor that the triangle diagram contribu
to the three-point function of three vector currents, i.e.
G122232
v

~Q1 ,Q2 ,Q3 ,m!5 i E d4k Tr$g12~k”1m!g22~k”1Q” 21m!g32~k”1Q” 11m!%

~k22m2!~@k1Q2#22m2!~@k1Q1#22m2!
. ~4.5!
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Note that Eq.~4.4! has been derived in the full triple Regg
limit ~3.1! in which the Qi do not lie entirely in theki'
plane. While theJ1 factors depend only on the correspondi
Qi

2 , the triangle diagram factorĜ122232
v (Q1 ,Q2 ,Q3 ,m)

will have a dependence on the light-like momentaq̂1 , q̂2,
and q̂3 of Eq. ~3.1!. In the helicity-pole limit~3.9! the mag-
nitudes of the light-like momenta are identified with one
the spacelike components of theQi . This limit can clearly be
taken smoothly withinĜv.

A priori, it is straightforward to choose the quantum nu
bers of theQi-channels so that the lowest-order contributi
is associated with two-Reggeon exchange in each cha
~color zero would be the simplest!. In this case, theJ1(Qi

2)
factors would be associated with the two-Reggeon st
However, as we remarked at the beginning of this s
section, since Fig. 8 is planar, we expect that if Reggeiza
effects are added it ultimately does not provide a coupl
for two-Reggeon states. We can briefly describe how
happens for Fig. 8 as follows.

We performed thek111-integration by using the hatche
propagator contained inR12,2

D as illustrated in Fig. 11. This
integration can instead be written as an integral over
‘‘missing mass’’ cross-energy

M25~k11Q2!2. ~4.6!
f

-

el

e.
-
n
g
is

e

The singularities ofR12,2
D are all on the positive axis in the

M2-plane and so the contour integration overM2 could be
closed to zero if the largeM2 behavior were appropriate. In
the lowest-order diagram we are discussing this is provi
by quark-antiquark exchange which is just divergent enou
to prevent the contour closing. Therefore, the Reggeon
tex can be written as an integral at infinity and its main ro
will be to provide contributions that cancel less planar d
grams and produce Reggeon Ward identity zeroes at
transverse momentum points. It is well-known from stud
@17# of QED that planar diagrams give contributions wi
very little analytic structure that, typically, can be written
contour integrals at infinity or equivalently as a subtracti
in a dispersion relation. The presence of the planar diag
contributions can, in fact, be deduced by studying the n
planar contributions and demanding that the Ward iden
constraints of gauge invariance be satisfied.

In higher-orders the quark-antiquark Reggeization illu
trated in Fig. 12 will appear. If the Reggeization effects a
summed to all orders~which does not destroy the validity o
the low-order approximation! the reduced power behavio
will allow the closing of theM2 contour to give zero. Con-
sequently the analytic structure of the triangle Reggeon
teraction we have extracted will disappear as higher-or
contributions are included~in parallel with the well-known
7-9
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AFS cancellation@18#!. We anticipate that only diagram
with sufficient non-planarity to prevent any possible conto
closing will survive as Reggeization effects are include
The Reggeon Ward identities will appear as properties
these diagrams that follow from the shifting of integrati
variables that becomes allowed once Reggeization effects
included.

The presence of the anomaly would, of course, be
pected to interfere with integration shifts and could be fou
in the ultra-violet region this way. However, it is just b
cause we expect this to be a very subtle issue that we h
focussed on finding the anomaly in the infrared regio
While Eqs. ~4.4! and ~4.5! demonstrate how, as a lowes
order approximation, the full four-dimensional triangle di
gram can appear as an effective interaction in the trip
Regge limit, since only vector couplings, i.e. theg i 2, appear
there is no possibility for the anomaly infrared divergenc

We must proceed further to find diagrams that genera
Reggeon interaction containing the effectiveg5 coupling
necessary to produce the anomaly. For the next diagram
study ag5 coupling does appear. However, we then find t
the correct tensor and momentum structure for the
anomaly divergence is still absent.

B. A diagram with some nonplanarity

In all other diagrams besides that of Fig. 8~apart from
those that are simply twisted versions of this diagram! one or
more of the gluon loop momenta flows through more th
one line of the quark loop. This introduces an extra compl
ity in carrying out the integrations over the longitudin
gluon momenta. The next diagram we consider, the sec
shown in Fig. 3, introduces the minimal complexity of th
kind. This diagram can be redrawn as in Fig. 13~a!, or as in
Fig. 13~b!. There is just one gluon loop momentum, i.e.k3,
that flows through more than one line of the internal qu
loop. Thek1 andk2 longitudinal integrations are straightfo
ward and can be performed in the same way as we did for
longitudinal integrations of Fig. 8. Fork3 there are two pos-

FIG. 12. Quark-antiquark Reggeization.

FIG. 13. ~a! A diagram with some nonplanarity.~b! The same
diagram redrawn.
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sible routes. The first is shown in Fig. 13~a!. The second
would be that shown in Fig. 13~b! if the external momentum
flow was kept as in Fig. 8~a!.

If we routek3 as in Fig. 13~a!, then there are two possibl
quark propagators, each marked with a dot, that could
used to perform thek31-integration. If the time-ordering of
the scattering process is essentially represented by Fig. 1~a!,
then it would appear that only the lower dotted propaga
gives a quark state that can be part of an on mass-shel
termediate state. The upper dotted propagator appears t
scribe a virtual exchange that will be a long way from ma
shell. However, when the diagram is redrawn as in F
13~b!, in the scattering process now described, the role of
two propagators is interchanged. It is now the lower pro
gator that is virtual and far from mass-shell. Clearly the tw
contributions obtained by using the two possible propaga
to perform thek31-integration must be added.

Consider first the contribution of the upper dotted prop
gator in Fig. 13~a!. After the longitudinalk1 andk2 integra-
tions have been performed we will be left with the bo
diagram integral illustrated in Fig. 14. Thek332 integration
can be done by again utilizing the evaluation of Fig. 10. W
the dotted propagator replaced by ad-function, the relevant
factors in thek331 integration are

E dk331 d„~k31k1Q3!22m2
…g22

3„~k31k1Q3!•g1m…g32

5E dk331 d„~k321Q332!k3311•••…g22

3„~k321Q332!•g311•••…g32

5g22g31g321•••

52~g02g22g3!12ig5g11••• ~4.7!

where, in the last line, we have used the identity

gagbgl5gabgl1gblga2galgb1 i emabggmg5 . ~4.8!

The omitted terms generate only what we call ‘‘non-loc
couplings.’’ As elaborated in Appendix C, a non-local co
pling is generated whenever the momentum dependenc
the integrated propagator does not simply scale out of
integral, as it does for the part of Eq.~4.7! that we have
written explicitly.

Focussing on theg5-interaction produced by Eq.~4.7!, the
asymptotic amplitude, with all longitudinal integrations pe
formed, can be written as

FIG. 14. The box and triangle diagrams generated by Fig. 1
7-10



n

s, Eq.

TRIANGLE ANOMALY IN TRIPLE-REGGE LIMITS PHYSICAL REVIEW D 63 016007
g12
p111p221p331

m3 E d2k11'

k11'
2 ~Q12k11'!2E d2k22'

k22'
2 ~Q22k22'!2E d2k33'

k33'
2 ~Q32k33'!2

3E d4k
Tr$g12~k”1Q” 11m!g5g1~k”1k” 31m!g32~k”1m!%

~k2m2!~@k1Q1#22m2!~@k1k3#22m2!
1••• ~4.9!

where k33250 and k331 is determined from thed-function used in Eq.~4.7!, and that part of the amplitude not writte
explicitly now contains either a vector coupling or a non-local coupling in place of theg5g1 coupling. If we again remove the
kii' integrations, the gluon propagators, and thepii 1 dependence that are all associated with the three two-Reggeon state
~4.9! gives a six-Reggeon interaction containing the triangle diagram of Fig. 14, i.e.

Ga~Q1 ,Q3 ,k33'!5E d4k
Tr$g12~k”1Q” 11m!g5g1 ~k”1k” 31m!g32~k”1m!%

~k2m2!~@k1Q1#22m2!~@k1k3#22m2!
1••• ~4.10!
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where we still havek33250 andk331 is to be determined by
the mass-shell constraint of Eq.~4.7!, thus giving the
Q3-dependence of Eq.~4.10!.

Since Ga(Q1 ,Q3 ,k33') contains ag5 coupling, it is
straightforward to identify it with a component of the tr
angle diagram tensor for an axial current and two vec
currents. However, the maximal singularity associated w
the anomaly requires specific momenta and tensor com
nents to be present. We must have two tensor compon
that can project on to the same light-cone component—
would have to beg12 andg5g1. The third vertex must then
carry spacelike momentum ofO(q)→0, implying that we
should takek3;q→0. Finally a finite light-like momentum
parallel ton12 must enter at theg5 vertex. But the light-cone
component ofQ1 is orthogonal ton12. This conflict implies
that a kinematical configuration producing the maxim
anomaly divergence cannot occur.

C. Alternative light-cone coordinates
and absence of the anomaly

We can give a direct argument that there is no anomal
the full Reggeon interaction produced by Fig. 13~a!. This
argument will be important for the general analysis of d
continuities in Sec. VI.

In Appendix B we have shown that light-cone c
ordinates and associatedg-matrices can be introduced usin
any two light-like momenta whose space components
orthogonal. The Regge limit calculations of Appendix
demonstrate that equivalent results are obtained using
co-ordinates and we use various co-ordinates of this fo
elsewhere in the paper~including the discussion of helicity
pole limits in the previous section.! In particular let us repea
our evaluation of Fig. 13~a!, with k3 routed as shown, but fo
thek3 longitudinal integration use co-ordinates in whichn21

and n31 are the basic light-like momenta. Ourk3 co-
ordinates are now
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k3325k302k33, k3225k302k32, k31,

k̃235k321k332k30. ~4.11!

Thek332 integration can again be performed using the eva
ation of Fig. 10. However, instead of Eq.~4.7!, the k322

integration of the upper dotted propagator of Fig. 13~a! gives

E dk322 d„~k31k1Q3!22m2
…g22

3„~k31k1Q3!•g1m…g32

5E dk322 d„~k321Q332!k3221•••…g22

3„~k321Q332!•g221•••…g32

5g22g22g321•••

501•••. ~4.12!

Now no local terms appear. Only omitted ‘‘non-local’’ term
are generated. Evaluation of the contribution from the low
dotted propagator in Fig. 13~a! will similarly give no local
terms. While a distinction between the contributions of loc
and non-local couplings may be difficult to maintain in ge
eral ~after integration!, if we assume that the anomaly ca
appear only when an appropriate localg5 coupling is
present, then we have demonstrated its absence in the
gram of Fig. 13.

D. A maximally nonplanar diagram

Finally we study the third diagram of Fig. 3. In this ca
there will be clear anomaly contributions which, when ge
eral external couplings are present, cancel only after all d
grams of this kind are summed. As illustrated in Fig. 4, th
diagram has a ‘‘maximally non-planar’’ property—whic
produces a ‘‘maximal complexity’’ in terms of evaluatin
the longitudinal gluon momentum integrations.
7-11
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ALAN R. WHITE PHYSICAL REVIEW D 63 016007
The first point we note is that there is no natural cho
for routing the gluon loop momenta through the intern
quark loop. Each momentum flows through three qu
propagators no matter in which direction we send it. As
which combinations of propagators can be simultaneou
close to mass-shell, we note that if we draw the scatterin
in Fig. 15~a! then the hatched propagators can obviously
simultaneously close to mass-shell and produce intermed
states. However, if we redraw the diagram as in Fig. 15~b!,
an alternative set of hatched lines is naturally chosen. I
easy to check that the second set corresponds to the
loop propagators not hatched in Fig. 15~a!. ~These two con-
tributions were already recognized in Sec. II.! Note that the
hatched lines in Fig. 15~a! correspond to taking a doubl
discontinuity ins13 ands2838 while the hatched lines in Fig
15~a! correspond to taking a double discontinuity ins23 and
s1838 . This will be an important distinction in the following

There are further scattering processes described by
diagram we are discussing that involve interchanging in
ing and outgoing particles. For example, the processe
Fig. 16. Such contributions will be included separately in
multiple discontinuity formalism of the next two sections.~In
the language of the next section, one maximally non-pla
Feynman diagram contains discontinuities associated
several different hexagraphs.! In this sub-section we will dis-
cuss only the contribution of Fig. 15~a! in detail. After we
have discussed Fig. 15~a!, it will be obvious that the discus
sion immediately extends to Fig. 15~b! and that it also gen-
eralizes to the corresponding contributions from the d
grams of Fig. 16.

FIG. 16. Further scattering processes described by the diag
of Fig. 4.

FIG. 15. Two scattering processes described by the diagram
Fig. 4.
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For reasons that will become apparent, it will be desira
to keep as much symmetry as possible in our kinem
analysis, even at the cost of using a more complicated la
ing for momenta flowing along the quark loop lines. Ther
fore, we label the momentum flow into the internal qua
loop of Fig. 15~a! as in Fig. 17, where theg matrices that
contribute in the triple-Regge limit are also shown. This tim

we use the light-cone co-ordinates (ki12,ki22,k̃i') to per-
form thek1 andk2 integrations and to evaluate theg-matrix
trace associated with the quark loop. For thek3 integration
we use conventional light-cone co-ordinates. The evalua
of the integralI i of Fig. 10 can be used to perform thek112,
k222, andk32 integrations.

The remaining longitudinal integrations have to be carr
out usingd-functions for propagators belonging to the inte
nal quark loop.A priori there are six different options fo
choosing the longitudinalki to be used to put the hatche
lines in Fig. 17 on-shell. These possibilities are indica
schematically in Fig. 18.

We consider first which of the possibilities in Fig. 18 ca
generate the necessary local couplings. For thed-function
assignment of Fig. 18~b!, we note that both thek122 and the
k212 integrations will be analagous to Eq.~4.12! in that the
potential point-coupling, involving theg-matrix ~within the
numerator of the on-shell quark! that is multiplied by the
momentum scaling thed-function momentum, is eliminated
by one of the adjacentg-matrices. Hence no local coupling i
produced. For Fig. 18~c! the k212 integration similarly pro-
duces no local coupling. For Fig. 18~d! it is thek122 and the
k212 integrations, for Fig. 18~e! the k122 integration, and for
Fig. 18~f! both thek122 and k212 integrations, that produce
no local coupling. Consequently, with the light-cone c
ordinates we have chosen, only thed-function assignment of
Fig. 18~a! gives a contribution with local couplings from a
three integrations.

For thed-function assignment of Fig. 18~a! we route mo-
menta through the quark loop of Fig. 17 as illustrated in F
19. We calculate the local couplings generated as follow

m

FIG. 17. The quark loop in Fig. 15~a!.

FIG. 18. Possible choices ofd-function integrations for Fig. 17.

of
7-12
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E dk122 d„~k11k2q1!22m2
…g32„~k11k2q1!•g1m…g125E dk122 d~k12k1221••• !g32~k12•g221••• !g12

5g32g22g121••• ~4.13!

E dk212 d„~k22k2q2!22m2
…g22„~k22k2q2!•g1m…g325E dk212 d~k22k2121••• !g22~k22•g121••• !g32

5g22g12g321••• ~4.14!

E dk331 d„~k31k1k12k2!22m2
…g12„~k31k1k12k2!•g1m…g22

5E dk331 d„~k321k1322k232!k3311•••…g12„~k321k1322k232!•g311•••…g22

5g12g31g221•••. ~4.15!

In each case the dots indicate the contribution of additional non-local couplings. We defer the evaluation of thed-functions for
the moment. The triangle diagram structure of the local couplings is illustrated in Fig. 20,

With all longitudinal integrations performed, the asymptotic amplitude obtained from Fig. 15~a! can be written as

g12
p111p221p31

m3 E d2k1121

~q11k1121!2~q12k1121!2E d2k212

~q21k2121!2~q22k2121!2E d2k33'

~q31k33'!2~q32k33'!2

3E d4k
Tr$ĝ12~k”1k” 11q” 21k” 31m!ĝ31~k”1m!ĝ23~k”2k” 21q” 11k” 31m!%

~@k1k11q21k3#22m2!~k22m2!~@k2k21q11k3#22m2!
1••• ~4.16!
e

ia

a

the

on

.

where

ĝ315g32g22g12, ĝ235g22g12g32, ĝ125g12g31g22

~4.17!

andk1125k2225k33250, with k122, k212, andk331 still to
be determined byd-function constraints. That part of th
amplitude not shown explicitly in Eq.~4.16! contains non-
local couplings at one, or more, vertices of the triangle d
gram.

Before extracting a Reggeon interaction from Eq.~4.16!
we first separate out a potential anomaly generating p
Using, again, the identity~4.8!, we can write

ĝ315g2,1,21 ig2,2,2g5 ~4.18!

FIG. 19. Momentum flow for thed-function assignment of Fig
18~a!.
01600
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rt.

ĝ235g1,2,21 ig2,2,2g5 ~4.19!

ĝ125g2,2,22 ig2,2,1g5 ~4.20!

where

g6,6,65gm
•nm

6,6,6 , n6,6,6m5~1,61,61,61!.
~4.21!

To obtain the divergence~A6! whenm50, we must have a
component of the axial-vector triangle diagram tensorGmnl

with m5n having a lightlike projection andl having an
orthogonal spacelike projection. Sinceĝ31 and ĝ23 have the
sameg5 component, this requirement is met if we choose
g5 component from all three of theĝ i j . The finite light-like
momentum involved must simply have a projection
n2,2,2m. ~We will discuss how this occurs shortly.! n2,2,1m

FIG. 20. Local couplings generated by thed-function assign-
ment of Fig. 18~a!.
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provides a distinct spacelike component in then3 direction.
The anomaly infrared divergence~like the ultra-violet
anomaly! is also present in the corresponding tensor com
nent of the triangle diagram for one axial and two vec
currents. Since the vector part ofĝ12 is identical to theg5

component ofĝ31 andĝ23, the requirements for this case a
e

b

as

ts

e

01600
-
r

partially met when we take theg5 part of eitherĝ31 or ĝ23

together with the vector parts of the remaining twoĝ i j .
However, the necessary distinct spacelike component in
n3 direction is not present.

The threeg5 couplings give the (m50) Reggeon interac-
tion
G6~q1 ,q2 ,q3 ,k̃1 ,k̃2 ,k3',0!5E d4k
Tr$g5g2,2,1~k”1k” 11q” 21k” 3!g5g2,2,2k”g5g2,2,2~k”2k” 21q” 11k” 3!%

~k1k11q21k3!2k2~k2k21q11k3!2
1•••

~4.22!
s

on
where, again, we note thatk1125k2225k33250 and that
k122, k212, and k331 remain to be determined by th
d-functions of Eqs.~4.13!–~4.15!. Equation ~4.22! corre-
sponds to the triangle diagram illustrated in Fig. 21.

To see the maximal anomaly divergence we must be a
to take the limit

~k11q21k3!2;~q11q21k11k2!2

;~k21q12k3!2;q2→0 ~4.23!

of Eq. ~4.22! with a finite light-like momentum flowing
through the diagram that has a projection onn2,2,2m. This
momentum flow must also be consistent with the three m
shell constraints determiningk122, k212, and k331 respec-
tively, i.e.

~k2q11k1!250 ~4.24!

~k1q22k2!250 ~4.25!

~k1k12k21k3!250. ~4.26!

To find momenta satisfying all of the required constrain
we first consider the limiting configuration in whichq50
and ask whether this can be realized with the loop mom
tum k;q50 ~as discussed in Appendix A!. It will be
straightforward to subsequently add momenta that areO(q).

We identify Fig. 21 with Fig. 44 by identifyingq11k2
2k3 with q1 andq11q21k11k2 with q2. This requires that
~in the limit q→0)

q11q21k11k250. ~4.27!

To satisfy Eqs.~4.24! and ~4.25! we take q12k1 and q2
2k2 lightlike, i.e.

q12k15~2l 22,2l 22,0,0!, q22k25~2l 12,0,2l 12,0!

5.q11215k1121 , q21215k2121 ~4.28!

~using again the co-ordinates of Appendix B!. Since the
light-cone components ofq11k1 andq21k2 cannot cancel,
satisfying Eq.~4.27! requires that
le

s-

,

n-

q12252k1225 l 22, q21252k2125 l 12q112152q2121 .
~4.29!

We then have

q352~q11q2!52~ l 221 l 12,l 22,l 12,0! ~4.30!

and so forq3 to have the form~3.1!, we must have

l 2252 l 125 l 5.Q3
254q3

2528l 2. ~4.31!

We choosel to be positive, we will discuss the implication
of this shortly.

The most general light-cone momentum form forq11k2
2k3 that has a projection onn2,2,2m and is orthogonal to
n3 is

q11k22k3;n lc5~1,cosu lc ,sinu lc ,0! ~4.32!

whereu lc is arbitrary. Sinceq11211k212150, this requires
that

~ l ,l ,0,0!1~ l ,0,l ,0!2~k331,k31,k32,k331!;nlc

5.k35 l ~0,122 cosu lc ,122 sin u lc ,0!

~4.33!

so that

~q32k3!254q3
2~12cosu lc!,

~q31k3!254q3
2~12sinu lc!. ~4.34!

Finally, we must satisfy the last mass-shell conditi
~4.26!. Writing

k12k21k352q12k21k312q1121 ~4.35!

and using Eq.~4.32! together with Eq.~4.33! we obtain

k12k21k3522l ~1,cosu lc ,sinu lc,0!12q1122~1,1,1,0!

12q13~0,0,0,1! ~4.36!

and so Eq.~4.26! becomes
7-14
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2lq1122~12cosu lc2sinu lc!52q1
25q1121

2 5q1122
2 1q13

2

~4.37!

or, equivalently,

~q11k1!254q1
25Q1

25~q21k2!2

54q2
25Q2

2528lq1122~12cosu lc2sinu lc!.

~4.38!

Note that asQ3
2; l 2→0 then also (q11k1)2;(q21k2)2

→0.
Equation~4.37! can apparently be satisfied for arbitra

q1
2 by choosingq1122 andq13 appropriately. However, ther

is a subtlety. To give light-like intermediate states in whi
the scattering takes place as in Fig. 15~a! we must takel
.0. The time component ofk12k21k3, i.e.

22l 12q1122 ~4.39!

should also be positive. This requiresq1122. l .0, but then
Eq. ~4.37! can only be satisfied if

q1122,2l ~cosu lc1sinu lc21!,2l ~A221!, l
~4.40!

so that Eq.~4.39! cannot be positive. We conclude that if th
mass-shell constraints that we have imposed are to be a
ciated with taking discontinuities, then the anomaly can o
occur simultaneously if the scattering process takes plac
an unphysical region. As we will discuss at length in the n
section, there is indeed an unphysical region where the m
shell constraints can give discontinuities and the anom
can occur. That unphysical scattering processes must pl
fundamental role in the occurrence of the anomaly sho
not be a surprise because of the chirality transition that ha
be involved.

FIG. 21. The triangle diagram corresponding To Eq.~4.22!.
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In fact, for l ,0 the momentum configuration we have
arrived at does describe the scattering illustrated in Fig
22~a!, if this is interpreted as a space-time diagram with time
directed up the page. This is the process already illustrated
Fig. 6~a! and it clearly is physical. The dashed lines carry
light-like momentum while the open line is the quark carry-
ing zero momentum (k50) in the anomaly configuration—
this is the quark that, as explained in Appendix B, undergoe
the chirality transformation.l .0 gives the process illus-
trated in Fig. 22~b! which, however, is unphysical in that a
spacelike gluon appears for longer than on-shell particles.

The hatched lines in Fig. 22~a! are again on-shell and are
the same lines that are hatched in Fig. 15~a!. However, the
on-shell lines cannot give discontinuities in this configura
tion. Rather the asymptotic amplitude has to be interpreted
extrapolated away from wherever the discontinuities wer
taken, as discussed briefly in Sec. II.

To explicitly see the anomaly divergence we add a spac
like momentum ofO(q) orthogonal to bothnlc andn3 and
let q→0 with l fixed. For fixednlc we can choose

q;6nlc'56~0,2sinu lc ,cosu lc ,0!. ~4.41!

It is the component ofq11q21k11k2 in this direction that
contributes (k3 can also have a component, but it does no
contribute!. To evaluate the form of the Reggeon interaction
~4.22! with q→0 as in Eq.~4.41!, we work in the frame in
which the light cone momentum~4.32! can be identified with
q1

1 in Eq. ~A5!. Projecting each of theg2,2,2m on nlc gives
a factor

~12cosu lc2sinu lc!2 ~4.42!

and so using Eq.~A6! we obtain

FIG. 22. Physical scattering processes involving the anomaly.
G6;
~12cosu lc2sinu lc!2l 2~q11q21k11k2!•n lc'

q2
;

Q3
2

q
~4.43!
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ALAN R. WHITE PHYSICAL REVIEW D 63 016007
which manifestly changes sign whennlc'→2nlc' with nlc
fixed.

Since contributions with both signs fornlc' are present in
the integral~4.16! of the Reggeon interaction, the cruci
question is whether there is a cancellation. It is fundame
that, since we integrate overu lc , the two possibilities are
related by a parity transformation interchanging the 1 an
axes. The two possibilities are also related by reversing
space component innlc and keeping Eq.~4.41! as the or-
thogonal spacelike momentum. As we discuss in Appen
A, from either perspective the result is the same, the sign
the anomaly contribution is reversed.

In the lowest-order diagrams we have discussed the tr
verse momentum integrations are sufficient to produce a
cellation. We first integrate overk3 so that there is a sym
metry underk3↔2k3. For lÞ0 this is not sufficient to
produce a symmetry undernlc'→2nlc' . However, if we
also integrate overk1 and k2 then since the external cou
plings are simple constants there will also be symmetry
der qi1ki↔qi2ki , i 51,2. If we then add the two contri
butions we have discussed from Figs. 15~a! and 15~b! then
all contributions to the amplitude, apart from the anoma
will be completely symmetric under 1↔2. The antisymme-
try of the anomaly then requires that it cancel.

In higher-orders the external Reggeon couplin
Gh(qi ,ki) aquire non-trivial momentum dependence. F
fixed helicityh these couplings need not be symmetric un
qi1ki↔qi2ki . To discuss cancellations in this case it
necessary to add the contributions from the twisted diagr
of Fig. 23 and also to discuss the signature properties of
Reggeon states. If the external couplings have sufficie
asymmetric transverse momentum dependence as migh
expected, for example, if they contain the chirality violati
produced by an instanton interaction, then the anomaly n
not cancel. We will reserve a more extensive discussion
this for Sec. VII. Here we simply remark that, for elementa
quark scattering, both the color factors and all three of
ki-integrations are symmetric also in higher-orders when
sum over all diagrams of this form and so the anomaly c
cellation continues to hold.

Finally, we note that a relatively trivial way to break th
transverse momentum symmetries that cancel the anoma
an individual diagram would be to introduce masses
some, or all, of the gluons. In particular, it would be suf
cient if one of each of the pairs of gluons were massive
the other massless. The cancellation would be restored
the summation over all the diagrams of Fig. 23 unless
two gluons were distinguished by additional quantum nu
bers besides their mass. Introducing a gluon mass, of cou

FIG. 23. Twisted diagrams.
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requires spontaneous symmetry breaking which would
tend our analysis considerably. In fact, the symmetry bre
ing of the QCD gauge symmetry from SU~3! to SU~2!, dis-
cussed at several points in this paper, does introduc
massive SU~2! singlet gluon and the required transverse m
mentum asymmetry is produced when this combines,
with a single massless gluon, but with three massless glu
carrying the quantum numbers of the winding-number c
rent.

V. MULTI-REGGE THEORY

In this section we describe the asymptotic dispersion
lation formalism, together with the multi-Regge theory bas
on it, that is needed to systematically study the contribut
of quark loops to triple-Regge vertices in QCD. There w
be some overlap with Sec. IV of@13#. However, the treat-
ment we gave in@13# is missing several crucial elements th
we discuss here. As a result, we have made the follow
essentially self-contained.

A. Angular variables: s- and t-channel physical regions

We begin with the introduction of the angular variabl
that provide the link between asymptotic limits taken in
direct, or ‘‘s-channel,’’ and partial-wave analysis in variou
‘‘cross-channels’’ or ‘‘t-channels.’’ We use the variable
z1 ,z2 ,z3 ,u12,u23 andu31 corresponding to the ‘‘Toller dia-
gram’’ of Fig. 24. The definition of these variables via sta
dard Lorentz frames as well as complete expressions for
variant variables in terms of them, is given in Appendix
We discuss their definition in threet-channel physical re-
gions where thet i are positive and in fours-channel physical
regions where thet i are negative. The variables introduced
the different regions are related by analytic continuation. T
zi ~and thet i) are independent variables but sinceui j 5eiv i j

5ei (n i2n j ) where eachn i is an azimuthal angle in the
t i-channel, we have

u12u23u315ei (n12n2)ei (n22n3)ei (n32n1)51. ~5.1!

Choosing any two of theui j , together with thet i and thezi ,
gives the appropriate eight independent variables. In the
lowing we will take u31 and u325u23

21 as our independen
variables and, for simplicity, relabel them asu15u31 and
u25u32. Equation~5.1! then gives

FIG. 24. A Toller diagram for the six-particle amplitude.
7-16
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u125
u2

u1
. ~5.2!

This choice ofui j variables is appropriate for discussing t
particular multiple discontinuities or, in the classification w
introduce below, the particular hexagraphs that we focus
in the following. As we will indicate, the alternative choice
are appropriate for other hexagraphs.

In principle, since we will be considering the scattering
particles with spin~i.e. quarks! we should add additiona
azimuthal angles to describe the rotation of helicities. Ho
ever, as we already saw in the last section, for the low
order quark-gluon couplings there is (s-channel! helicity-
conservation. It is trivial to carry out helicity projections an
show that the lowest-order couplings are also helic
independent. In discussing anomaly cancellations at the
of the last section we saw that the higher-order helicity
pendence of these couplings is important. However, we
y

a-
on

01600
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discuss the consequences of this only qualitatively in S
VII. To keep our discussion in this section as simple as p
sible we will treat the scattering quarks kinematically as
they were scalar particles. Also, since this section will
concerned with abstract kinematics and analyticity prop
ties, we will continue to ignore color~and any other! quan-
tum numbers. In Sec. VII, both color quantum numbers a
the existence of two helicities will be important when w
discuss discreteC, P, andT transformations on amplitudes
In this section we will refer only to theCPT combination.
Nevertheless the presence of both helicity and color sho
be kept in mind.

As we show in Appendix D, all invariants are polynomi
functions of thezi5cosui , the sinui and the cosvij (ui j
5eiv i j ). The following approximations give the leading b
havior when all thezi are large and are easily derived fro
Eqs. ~D17! and ~D18!. These approximations will be suffi
cient for us to describe the behavior of invariants in the li
its we discuss:
s1228;s18383;2s18228;2s1383→2S t124m2

t1
D 1/2

l1/2~ t1 ,t2 ,t3!z1

;z1 ~5.3!

s2338;s28181;2s28338;2s2181→2S t224m2

t2
D 1/2

l1/2~ t1 ,t2 ,t3!z2

;z2 ~5.4!

s3118;s38282;2s38118;2s3282→2S t324m2

t3
D 1/2

l1/2~ t1 ,t2 ,t3!z3

;z3 ~5.5!

s13;s1838;2s138;2s183→24~ t124m2!1/2~ t324m2!1/2F ~12z1
2!1/2~12z3

2!1/2S u11
1

u1
D1

t31t12t2

At1At3

z1z3G
;z1z3u1F11OS 1

u1
D G ~5.6!

s23;s2838; 2s238;2s283→24~ t224m2!1/2~ t324m2!1/2F ~12z2
2!1/2~12z3

2!1/2S u21
1

u2
D1

t31t22t1

At2At3

z2z3G
;z2z3u2

21@11O~u2!# ~5.7!

s12;s1828;2s128;2s182→24~ t124m2!1/2~ t224m2!1/2F ~12z1
2!1/2~12z2

2!1/2S u1

u2
1

u2

u1
D1

t32t12t2

At1At2

z1z2G
;z1z2~u1 /u2!@11O~u2 /u1!#. ~5.8!
ll

er
l(t1 ,t2 ,t3) is the familiar triangle function defined explicitl
in Eq. ~D7!. The branch-points atl(t1 ,t2 ,t3)50 in Eqs.
~5.3!–~5.5! play an important role when analytic continu
tion is discussed, both between the different physical regi
 s

and within a fixeds-channel physical region. Note that a
invariants are unchanged whenu1→1/u1 ,u2→1/u2.

In each of the threet-channels t i5Qi
2.4m2 and

l(t1 ,t2 ,t3).0. Also, in the particular channel that we ref
7-17
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ALAN R. WHITE PHYSICAL REVIEW D 63 016007
to as thet i channel

uQi u.uQj u1uQku. ~5.9!

The choice of signs in Eqs.~5.3!–~5.5! is a convention which
is irrelevant in thet-channels since

21<zi<1, uui u51 ~5.10!

i.e. thezi take both positive and negative values. Note, ho
ever, that the sign convention can be reversed by, for
ample, interchanging the role ofQ1 andQ2 when introduc-
ing the variables via standard frames defined in
t3-channel. This is discussed in Appendix D.

In each s-channel physical region there are four su
regions @11# distinguished by the relative value of thet i .
There are three ‘‘s2t ’’ regions in whichl(t1 ,t2 ,t3).0 and
one of the threet-channel constraints~5.9! is satisfied. The
‘‘ s2s’’ region is the remaining part of the physical region
which l(t1 ,t2 ,t3),0. The relationship between the thre
t-channels and the sub-regions of ones-channel is illustrated
topographically in Fig. 54. For our analysis of anomaly ca
cellations it is important that a change of sign of all thezi is
equivalent to a change of sign ofl1/2(t1 ,t2 ,t3). This is ap-
parent from Eqs.~5.3!–~5.8!.

Each of the threes2t sub-regions of the fours-channel
physical regions also has two distinct parts, in one of wh
thezi each have a certain sign and the other in which they
have the opposite sign. This removes the antisymmetry
the signs in Eqs.~5.3!–~5.5!. Which part of the physica
region corresponds to a particular set of signs of thezi is a
convention determined by the choice of sign f
l1/2(t1 ,t2 ,t3). When thet i satisfy thes2t sub-region con-
straint the fours-channel physical regions are

~ i! z1 ,z2 ,z3>1, z1 ,z2 ,z3<21, uui u51

the initial particles carry momentaP1 , P2, andP3

~ ii ! 2z1 ,z2 ,z3>1, 2z1 ,z2 ,z3<21, uui u51

the initial particles carry momentaP18 , P2, andP3 ~5.11!

~ iii ! z1 ,2z2 ,z3>1, z1 ,2z2 ,z3<21, uui u51

the initial particles carry momentaP1 , P28, andP3

~ iv! z1 ,z2 ,2z3>1, z1 ,z2 ,2z3<21, uui u51

the initial particles carry momentaP1 , P2, andP38 . We will
encounter subtleties associated with the doubling of
range of thezi in individual physical regions at several poin
in the following. The physical region~i! is that in which the
limits of Sec. II are defined and in which the diagramma
analysis of the last section is carried out. That the disco
nuities apparently evaluated in Fig. 15~a! are no longer
present in the region where the anomaly occurs is a partic
consequence of the separation of the physical region into
distinct parts.

In the s2s sub-region the physical range of thezi andui
in the same four physical regions is
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~ i! 2`, izi,`, 0<u1 ,u2,`

~ ii ! 2`, izi,`, 0<2u1 ,u2,`

~5.12!
~ iii ! 2`, izi,`, 0<u1 ,2u2,`

~ iv! 2`, izi,`, 0<2u1 ,2u2,`.

Clearly the kinematic structure of thes-channel physical re-
gions is quite complicated. This is reflected in the variety
kinematic limits that can be taken. Nevertheless, all the l
its are described by the same multi-Regge theory.

B. Definition of limits via angular variables

The full triple-Regge limit is defined to be

z1 ,z2 ,z3→`, t1 ,t2 ,t3 ,u1 ,u2 fixed. ~5.13!

Helicity-pole limits are those in which one or two of theui j
are taken either large or small. This can be, but need not
combined with taking one or more of thezi large.

We will distinguish two distinct helicity-pole limits in-
volving u1 andu2. The first is

z3 ,u1 ,u2→` ~or u1 ,u2→0! t1 ,t2 ,t3 ,z1 ,z2 fixed.
~5.14!

When applied to the relevant discontinuity~with P1 andP2,
and P18 and P28 , respectively identified! this limit coincides
with the familiar ~incorrectly named! ‘‘triple-Regge’’ limit
of the one-particle inclusive cross section. The seco
helicity-pole limit is

z3 ,u1 ,u2
21→` ~or u1 ,u2

21→0! t1 ,t2 ,t3 ,z1 ,z2 fixed.
~5.15!

For reasons that will soon become apparent, we refer to
limit ~5.14! as the ‘‘non-flip limit’’ and the limit~5.15! as the
‘‘helicity-flip limit.’’ The helicity-pole limits are formulated
in terms of theui j variables we have chosen and, as w
discuss further below, they are controlled by singularities
corresponding complex helicity planes directly related to
gular momentum plane Regge singularitites. Clearly we
define corresponding limits for any choice of theui j .

In an s2t part of ans-channel physical region the triple
Regge limit is a physical limit but the helicity-pole limits ar
not. In thes2s region both the triple-Regge limit and th
helicity-pole limits are physical. With the approximation
~5.3!–~5.8! the inter-relation between the helicity-pole limi
~5.14! and ~5.15! and the triple-Regge limit~5.13! is appar-
ent. It is also straightforward, using~3.4!, to identify the
triple-Regge limit~5.13! and the light-cone formulated limi
~3.1!. Clearly

P1;z1 , P2;z2 , P3;z3 . ~5.16!

For the helicity non-flip limit ~5.14! we have, from Eqs.
~5.3!–~5.8!,

s12;s1828;2s128;2s182→” ` ~5.17!
7-18
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s23;2s283;z3u2, s31;s381;z3u1 ~5.18!

s1228 ,s1338 ,s2338→” `, s3118;s38228;z3 . ~5.19!

Becauses12→” ` we cannot reproduce the non-flip lim
~5.14! with the light-cone variables of Eq.~3.1!. However,
for the helicity limit ~5.15!, the behavior~5.17! is replaced
by

s12;s1828;2s128;2s182;u1u2
21. ~5.20!

Therefore, we can formulate the helicity-flip limit in terms
the variables of Eq.~3.1! as

P1;u1 , P2;u2
21 , P3;z3 ~5.21!

together with

q1225q̂12q125q322q̂3→0,
~5.22!

q2125q̂22q215q312q̂3→q̂12q13→” 0, q̂22q23→” 0.

We can also take the helicity-flip limit~5.15! in conjunc-
tion with the triple-Regge limit so that

z1 ,z2 ,z3 ,u1u2
21→`, t1 ,t2 ,t3 , fixed. ~5.23!

Note, from Eqs.~5.6!–~5.8!, that in this last limit

s23;z3u2
21 , s31;z3u1 , s12;z1u1z2u2

21 ~5.24!

and so ifz1;z2;z3 then

s23,s13!s12. ~5.25!

It is important to keep account of thet1 and t2 depen-
dence in Eqs.~5.3!–~5.8! when the limit~5.23! is taken with
t1 ,t2;0. Therefore, using Eqs.~3.5! and~3.6! we can write
~for small q212,q122)

u1At11O~1!;
s13

s1338s3118

5.u1;
1

At1q212

~5.26!

u2
21At21O~1!;

s23

s2338s3228

5.u2
21;

1

At2q122

.

~5.27!

As we will see below, the helicity-flip limit selects lead
ing ~flipped! helicities from the full triple-Regge vertex.~The
non-flip limit similarly selects non-flipped leading helicities!
Equations~5.26! and~5.27! imply that while the helicity-flip
is directly expressed as

q122,q212→0, t15q1
2 ,t25q2

2 , fixed ~5.28!

this limit is also reached if

q1
2 ,q2

2→0, q122,q212,t3 fixed. ~5.29!
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C. Dispersion theory and asymptotic cut structure

A fundamental ingredient for our multi-Regge analysis
the existence@2,15# of an ‘‘asymptotic dispersion relation’
that breaks the full triple-Regge asymptotic amplitude
into components that each have a distinct set of asympt
cuts. The dispersion relation is written inz1 , z2, andz3 with
t1 ,t2 ,t3 ,u1 andu2 kept fixed. It is initially written with all
the t i,0 and withl(t1 ,t2 ,t3).0 so that physical contribu
tions are obtained from ans2t region of each of the four
s-channels. However, we expect the form of the dispers
relation to remain unchanged as we continue betw
s-channel sub-regions and also to thet i-channels.

The most important feature@2,15# is that the asymptotic
cut structure of multiple discontinuities can be treated a
there were only normal threshold cuts satisfying the Ste
mann relations, i.e. no double discontinuities in overlapp
channels. This asymptotic structure, in turn, matches n
rally with the asymptotic formulas obtained from mult
Regge theory. At a fundamental level, this match is presu
ably a consequence of the close relationship between m
Regge analyticity and the primitive analyticity domains
field theory, i.e. the simple off-shell analyticity properties
field theory survive asymptotically on-shell@19#. In physical
regions the asymptotic validity of the Steinmann relatio
can be derived withinS-matrix theory by showing that the
‘‘bad boundary-values’’ in which a variety of complication
due to higher-order singularities appear, are hidden in mu
Regge limits. In the particular dispersion relation that we u
in this paper an additional fundamental complication ari
in that there are essential contributions from non-phys
triple discontinuities.

The discontinuities involved are physical in two-four sca
tering processes, but not in the three-three processes we
cuss. As a matter of principle, the presence of discontinui
outside the physical region, as well as their explicit form, c
not be discussed directly from anS-matrix starting-point.
However, as we alluded to above, the dispersion relation
also be based on the field theory formalism of generali
retarded functions, by starting with spacelike masses and
lizing the primitive analyticity domains@19,20#. The
asymptotic structure of the dispersion relation should per
straightforwardly on-shell, with the standard discontinu
formulas holding. The triple discontinuities that are unphy
cal in our problem will appear directly in the field theor
formulation just because they satisfy the Steinmann re
tions. As we will see, these discontinuities are manifes
present in Feynman diagrams and they are esssential to
tain consistent multi-Regge behavior. In fact, as we ha
already noted several times, they are crucial for the app
ance of the anomaly.

The dispersion relation gives the leading triple-Regge
havior ~up to powers! as a sum over triple discontinuity con
tributions allowed by the Steinmann relations, i.e. we c
write

M ~P1 ,P2 ,P3 ,Q1 ,Q2 ,Q3!

5(C
M C~P1 ,P2 ,P3 ,Q1 ,Q2 ,Q3!1M0. ~5.30!
7-19
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ALAN R. WHITE PHYSICAL REVIEW D 63 016007
M0 contains all non-leading triple-Regge behavior, doub
Regge behavior, etc. and the sum is over all tripletsC of
three non-overlapping, asymptotically distinct, cuts. For e
triplet C of cuts in invariants, sayC5(s1 ,s2 ,s3), we write

M C~P1 ,P2 ,P3 ,Q1 ,Q2 ,Q3!

5
1

~2p i !3E ds18 ds28 ds38
DC~ t>,u> ,s18 ,s28 ,s38!

~s182s1!~s282s2!~s382s3!

3$si.si0 ,; i % ~5.31!

whereDC is the triple discontinuity

DC~ t>,u> ,s1 ,s2 ,sn23!

5(
e

~21!eM ~ t>,w> ,s16 i0,s26 i0,s36 i0!. ~5.32!

The sum overe is over all combinations of1 and2 signs in
Eq. ~5.32! and (21)e is positive when the number of1
signs is even. The integration region in Eq.~5.31! is bounded
by finite, but arbitrary, valuessi0 of thesi and the asymptotic
relation between thezi , and si has to be used to chang
variables from thezi back to thesi . Because of the validity
of the Steinmann relations,DC can be expressed in terms
normal phase-space integrals. Therefore, we can take
tiple discontinuities simply by putting appropriate lines
mass-shell.~For the low-order Feynman diagrams we discu
the subtlety of the boundary values for the amplitudes in
discontinuity formulas@15# will not appear.!

D. Triple discontinuities

As we discussed in Sec. II, the triple discontinuities are
three kinds corresponding to the tree diagrams of Figs. 6~a!,
6~b!, and 6~c!. These are the distinct possibilities consiste
with the Steinmann relations. If we consider only thezi de-
pendence, the asymptotic relations~5.3!–~5.8! reduce to

s1228;s18383;2s18228;2s1383;z1

s2338;s28181;2s28338;2s2181;z2

s3118;s38282;2s38118;2s3282;z3

s13;s1838;2s138;2s183;z1z3

s23;s2838;2s238;2s283;z2z3

s12;s1828;2s128;2s182;z1z2 . ~5.33!

A triple discontinuity of the Fig. 6~a! kind is

Ca5~s13,s2838 ,s1183!. ~5.34!

From Eq.~5.33!, the invariants ofCa are large and positive
when

z1z3 ,z2z3 ,z3@1↔z1 ,z2 ,z3@1 ~5.35!
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giving a unique product of~asymptotic! zi half-axes lying in
the first part of the~i! physical region in Eq.~5.11!. All
triplets of the Fig. 6~a! kind similarly correspond to a uniqu
product of ~asymptotic! zi half-axes. There are 6 possib
combinations of initial and final subenergies so there ar
triple discontinuities of this kind in each physical regio
three in each part, making a total of 24.

A triplet having the form of Fig. 6~b! is

Cb5~s13,s2838 ,s123!. ~5.36!

Since

s1235s311s121s2323m2 ~5.37!

~wherem is the mass of the scattering particles! the cut in
s123 will be distinguished from the asymptotic cuts ins31 and
s23 only whens12 is large. Consequently, the contribution
thes123 cut, as a distinct asymptotic cut, is effective as a
in s12 ~particularly in the helicity-pole limit discussed belo
in which s12@s13,s23). In the following, therefore, we will
use Eq.~5.8! also as an approximation fors123. In this case,
the invariants ofCb are large and positive when

z1z3 ,z2z3 ,z1z2@1↔z1 ,z2 ,z3@1, z1 ,z2 ,z3!21.
~5.38!

Now there are two regions for each triplet, one in each p
of the relevant physical region. A closely related complic
tion is that the invariants in the triplet

Cb85~s1838 ,s23,s182838! ~5.39!

are also real and positive in the two regions of Eq.~5.35!.
The two sets of cutsCb andCb8 both satisfy the Steinmann
relations. Since they are asymptotically equivalent the mu
Regge representations we derive will not be able to dis
guish between them.~Their existence, however, is anoth
feature that is crucial for the potential appearance of
anomaly.! If we start from Feynman graphs each triple d
continuity has to be computed separately and added to
dispersion relation. All triple discontinuities of this kin
similarly occur in equivalent pairs and also appear in b
parts of the physical region involved. Since each triplet
again characterized by an initial and final subenergy there
24 in total, or twelve equivalent pairs—three in each phy
cal region.

A triplet of the Fig. 6~c! kind is

Cc5~s13,s2838 ,s182!. ~5.40!

These three invariants are not all positive in any physi
region. However, they are all positive if

z1z3 ,z2z3 ,2z1z2@1↔2 iz1 ,2 iz2 ,iz3@1,
~5.41!

iz1 ,iz2 ,2 iz3!21.

Therefore each triplet of this kind gives two unphysical r
gion contributions~on the asymptotic imaginary axes! to the
7-20
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FIG. 25. Hexagraphs relate
by cyclical rotation of the
t i-channels.
t
s

n

hi

o
e

nt

s
n

i-
or
be

l
o

li

a

t
to
nt
s

ar
w

e

de
-

-

ia-
os-
-
ith

es.
a-
di-

e

ca-
he
t of

m
n-

an
g
tly

e
he

of

se

e
h of

by
25

of

lar
l

-
ci-
is
en-

the
e-

he

r,
lti-
asymptotic dispersion relation. For the discontinuities
have physical intermediate states, the invariants should
isfy one of the constraints

s13>~As28381As182!2, s2838>~As131As182!2,

s182>~As28381As13!
2. ~5.42!

This separates the triple discontinuity~5.40! into three com-
ponents in each of the physical regions. This separatio
clearly well-defined in the~helicity-pole! limit in which one
of the invariants is much larger than the other two and t
will be sufficient for our purposes. The triplet

Cc85~s1838 ,s23,s128! ~5.43!

is asymptotically equivalent to the tripletCc . Indeed, apart
from their occurrence in unphysical regions, the triplets
the Fig. 6~c! kind share all the doubling and pair-wis
equivalence properties of the Fig. 6~b! kind. We will see that
the two kinds have closely related asymptotic represe
tions.

Each of the asymptotic equivalences we have discus
identifies initial and final state discontinuities. Such disco
tinuities typically arise from distinct contributions in ind
vidual Feynman graphs. However, the multi-Regge the
we will develop requires the multiple discontinuities to
closely related. Note that when the physical range for thezi
is pure imaginary, in ans2s sub-region, each unphysica
triple discontinuity region asymptotes to the real axes
which a physical region appears in thes2t subregions. This
will mean that the standard definition of signatured amp
tudes can be applied for the unphysical triplets in thes2s
regions.

E. Hexagraph notation for triple discontinuities

To develop our multi-Regge analysis we introduce
‘‘hexagraph’’ notation@2,15# for classifying the triple dis-
continuities. The hexagraphs link each triple discontinuity
a particular t-channel and determines its contribution
asymptotic behavior via a Sommerfeld-Watson represe
tion. Our inclusion of the unphysical triple discontinuitie
will involve conventions that may appear somewhat arbitr
but it will be clear that the asymptotic representations
eventually obtain for both the Fig. 6~b! and the Fig. 6~c!
triple discontinuities are essentially independent of how th
are mapped onto the hexagraph formalism.

The full sum over triple discontinuities in Eq.~5.30! is
broken up into partial sums forming a hexagraph amplitu
Each hexagraph amplitudeMH contains a sum of triple dis
continuity integrals, i.e.
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MH5(CeH
M C~P1 ,P2 ,P3 ,Q1 ,Q2 ,Q3!, ~5.44!

where the sum is over all tripletsC of asymptotic cuts in
which each cut is an ‘‘allowable discontinuity’’ of the hexa
graph H.

The hexagraphs associated with a particular Toller d
gram are obtained by redrawing the tree diagram in all p
sible ways~in a plane! with the internal lines drawn as hori
zontal lines and the internal vertices drawn separately, w
relative angles of 120°, and joined to the horizontal lin
For the Toller diagram of Fig. 24 we draw an initial hex
graph, say the first graph of Fig. 25, and then form the ad
tional graphs of Fig. 25 by cyclical rotation of th
t i-channels.

Hexagraphs have many uses in addition to the classifi
tion of discontinuities that we describe below. One of t
simplest is that, as we noted above, an independent se
angular variables~and their conjugate angular momentu
and helicity variables! can be put in one-to-one correspo
dence with the lines of the graph.6 Thezi ~and conjugateJi)
variables can be associated with the horizontal lines while
independent set of theui j can be associated with the slopin
lines. Helicity-pole limits can then also be associated direc
with a hexagraph. For the first hexagraph of Fig. 25~and all
those of Fig. 26! the u1 and u2 variables used above ar
naturally associated with the sloping lines, while for t
other two graphs in Fig. 25 one of the alternative choices
the ui j is appropriate.

We form a further set of hexagraphs from each of tho
shown in Fig. 25 by making twists~of one half of the graph
relative to the other! about each of the horizontal lines of th
graph. In Fig. 26 we have shown again the first hexagrap
Fig. 25 together with the seven hexagraphs related to it
twisting. Twisting also the other two hexagraphs in Fig.
gives a total of (2323258)33524 which is the total
number of hexagraphs associated with the Toller diagram
Fig. 24.

The multiple discontinuities associated with a particu
hexagraph all appear in~or, in the case of the unphysica
discontinuities, are associated with! the same part of a par
ticular s-channel physical region, which we therefore asso
ate directly with the graph. The physical region involved
obtained by regarding the external scattering particles as
tering from the bottom of the hexagraph and exiting at
top. ~In a loose way, the hexagraph represents a tim
ordering in the scattering with the time axis vertical on t

6Although we will make only minimal reference to it in this pape
this correspondence plays a vital role in all aspects of the mu
Regge theory for a general multiparticle amplitude.
7-21
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FIG. 26. Eight hexagraphs re
lated by twisting.
ula
ap
nt
of
e

wi
-

e
s
s

n
a

of
e
is

r

th
th
is
n
re

at
wi
g
an

o
e
n

of
1
a-
e
le
-
cel-

fol-
the
-
nt

-
aph
e-
al

on-
op-
-
of

ps,

y
re-
e

of
ph

n

page.! Each hexagraph is also associated with a partic
t-channel. This channel is obtained by interpreting the gr
as representing a scattering in which external particles e
from the left of the hexagraph and exit to the right. A twist
a hexagraph produces a change ofs-channel, but leaves th
t-channel unchanged.

Each of the three hexagraphs in Fig. 25 is associated
the same part of the sames-channel which, with the conven
tions we have chosen, isz1 ,z2 ,z3>1, i.e. the first part of
region ~i! of Eq. ~5.11!. The first is associated with th
t-channel in whichuQ3u . uQ1u1uQ2u, as are all the graph
of Fig. 26. The second and third graphs in Fig. 25 are as
ciated, repectively, with thet-channels in whichuQ2u.uQ1u
1uQ3u and uQ1u.uQ3u1uQ2u. Twisting similarly generates
all the other graphs associated with theset-channels giving,
finally, 3 hexagraphs for each part of eachs-channel and 8
hexagraphs for eacht-channel.

The partial-wave analysis that follows this sub-sectio
introducing complex angular momenta and helicities, is c
ried out in thet-channel. A twist gives a change of sign
thezi ~and, if it exists, theui) associated with the chosen lin
and so is associated with signature. We do not distingu
scattering processes related by aCPT transformation which
interchanges all incoming particles with all outgoing pa
ticles. We could equally well regard thes-channel scattering
particles as entering from the top of the diagram and
t-channel scattering particles as entering from the right of
diagram. ~Although, as we noted at the beginning of th
section, it is important to note that there are helicities a
color quantum numbers that distinguish the amplitudes
lated by aCPT transformation.!

In Fig. 26 we have also shown theCPT reversed version
of the last hexagraph to emphasize that the associ
s-channel is the same as that of the first hexagraph, but
the 1 and 2t-channels interchanged. As a result, althou
our choice of an initial hexagraph appears to treat the 1
2 channels differently, this distinction is removed~up to a
sign convention! once we have formed the complete set
graphs. That the combination of twists in all three chann
does not result in a news-channel is the same phenomeno
already noted, that~in ans2t sub-region! there are two dis-
tinct zi-plane regions in eachs-channel in Eq.~5.11!. A
change of the sign of all threezi is equivalent to remaining in
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the same physical region and changing the sign
l1/2(t1 ,t2 ,t3) or, equivalently, interchanging the role of
and 2 in thet3-channel associated with this set of hex
graphs.@In ans2s sub-region, the effect is equivalent to th
~parity! transformation of inverting, in space, the triang
formed byQ1 , Q2, andQ3. This is the same parity trans
formation that we discussed as relevant for anomaly can
lations in the previous section.#

The rules for associating cuts with hexagraphs are as
lows. A cut of a hexagraph is any path drawn through
graph ~along internal lines!, that enters and exits only be
tween non-horizontal lines. This cut defines an invaria
channel corresponding to all the particles emitted above~or
absorbed below! the cut. An asymptotic cut is an ‘‘allowable
discontinuity’’ of a hexagraph if it is asymptotically equiva
lent to a cut of the hexagraph. The cuts of the first hexagr
of Fig. 26 are shown in Fig. 27, together with the corr
sponding allowable discontinuities. To include unphysic
discontinuities in the hexagraph formalism we adopt the c
vention that a cut passing through a vertex via only the sl
ing lines~the last cut in Fig. 27! induces a reversal of incom
ing and outgoing particles on one or other of the two parts
the cut separated by the vertex.~We believe this convention
will generalize appropriately to more complicated hexagra
but we have not studied this in detail.!

To form a tripletC the three cuts must be ‘‘asymptoticall
distinct’’ from each other and also satisfy the Steinmann
lations. A first triplet formed from the cuts of Fig. 27 is th
setCa in Eq. ~5.34! above and a second triplet isCb in Eq.
~5.36!. The asymptotically equivalent tripletCb8 is also
present, as are the tripletCc involving the unphysical cuts182
and the asymptotically equivalent tripletCc8 . Up to
asymptotic equivalence one of each of the three kinds
triplets identified in Fig. 6 is associated with the hexagra
we have chosen. ForCb andCb8 we associate only the triple
discontinuity in regionz1 ,z2 ,z3.1 with the hexagraph.~The
triple discontinuity inz1 ,z2 ,z3,21 is associated with the
hexagraph obtained by three twists.! For Cc andCc8 we as-
sociate only the triple discontinuity in the regio
Im z1 ,Im z2 ,2Im z3.1 with the hexagraph~with the triple
discontinuity in Imz1 ,Im z2 ,2Im z3,21 associated with
the hexagraph obtained by three twists.!

If we now consider the last hexagraph of Fig. 26~associ-
7-22
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FIG. 27. Cuts and allowable discontinuities for the first hexagraph of Fig. 26.
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ated with the regionsz1 ,z2 ,z3<21 and Imz1 ,Im z2 ,
2Im z3,21) the tripletCa is replaced by

Ca85~s1838 ,s23,s11838!. ~5.45!

The tripletsCb ,Cb8 ,Cc andCc8 again appear. However, as w
stated above, we keep only the triple discontinuities
z1 ,z2 ,z3,21 and Imz1 ,Im z2 ,2Im z3,21. With the con-
vention that we have adopted for the unphysical discontin
ties, the initial and final state double discontinui
(s13,s2838) characterizes all three kinds of triplets and c
therefore be used to identify the hexagraph. We will use
01600
n

i-

is

identification in the next section. Consequently, if t
hatched lines of Fig. 15~a! are placed on-shell by taking dis
continuities in (s13 ands2838) then the amplitude obtained i
associated with the hexagraph of Fig. 27.

In summary, there are three asymptotically distinct sets
cuts uniquely associated with each hexagraph. The tri
having the form ofCa determines the product ofzi axes to be
associated with the hexagraph~the si jk 8 invariant involved
must be positive! and also the invariants used to describe
remaining cuts. The remaining cuts are each pairwise equ
lent and appear in two parts of a physical region. Con
quently, from the total of 24 hexagraphs there are 48 asy
totically distinct triple discontinuities contributing to th
dispersion relation.

For M Ca we can write straightforwardly
us
next
M Ca5
1

~2p i !3E ds138 ds2838
8 ds1183

8 DCa~ t>,u> ,s138 ,s2838
8 ,s1183

8 !

~s138 2s13!~s2838
8 2s2838!~s1183

8 2s1183!
~5.46!

where the integration region can be taken as$z1 ,z2 ,z3.z0%. It follows from the representation~5.46! that for smalls13,s28,38
ands1183 , M Ca can be expanded as

M Ca5 (
m,n,r 50

`

cmnr
a s13

ms2838
n s123

r ~5.47!

where thecmnr
a are functions of theui and t i only. The analogues ofM Ca for each of the hexagraphs have analago

representations and expansions. The expansion~5.47! places an important constraint on our partial-wave analysis in the
sub-section.

For M Cb we can write

M Cb5
1

~2p i !3E ds138 ds2838
8 ds1238 DCb~ t>,u> ,s138 ,s2838

8 ,s1238 !

~s138 2s13!~s2838
8 2s2838!~s1238 2s123!

~5.48!
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but the integration region has two components, ($z1 ,z2 ,z3
.z0%) contributing to one hexagraph and ($z1 ,z2 ,
z3,2z0%) contributing to the other. For sma
s13,s2838 ,s123, Eq. ~5.48! gives the expansion

M Cb5 (
m,n,r 50

`

cmnr
b s13

ms2838
n s1183

r . ~5.49!

This expansion has strong implications for the partial-wa
expansions that we discuss next.M Cb8 has an identical
representation toM Cb. M Cc and M Cc8 have analagous repre
sentations to Eq. ~5.48! but with the integration
regions $Im z1 ,Im z2 ,2Im z3.Im z0% and $Im z1 ,Im z2 ,
2Im z3,2Im z0%. The expansions corresponding to E
~5.49! will have the same strong implications.

F. Partial-wave expansions

To develop the multi-Regge theory associated with
Toller diagram of Fig. 24 we begin by writing a partial-wav
expansion for each set of hexagraph amplitudes that are
lated by twisting and, therefore, have the samet-channel. For
the set of amplitudes corresponding to the hexagraphs of
26 we write

(
H

MH~z1 ,z2 ,z3 ,u1 ,u2!

5 (
J1 ,J2 ,J350

un1u<J1 ,un2u<J2
un11n2u<J3

`

d0,n1

J1 ~z1!d0,n2

J2 ~z2!d2n12n2,0
J3 ~z3!

3u1
n1u2

n2aJ> ,n> . ~5.50!

Our analysis will be focused on the sub-series in Eq.~5.50!
with n1 ,2n2.0 andn2 ,2n1.0. In our notationn1 and
2n2 are center-of-mass helicities in thet3-channel. There-
fore, if n1 and n2 have opposite signs, this corresponds
same sign ‘‘t-channel’’ helicities and therefore~at ‘‘zero
mass’’ [t1 or t250) to opposite sign ‘‘s-channel’’ helici-
ties. For this reason, we will refer to amplitudes with opp
site signs forn1 andn2 as ‘‘helicity-flip’’ amplitudes.

Writing Eq. ~5.50! for M Ca we can compare the expansio
obtained with the expansion~5.47!. In the same leading
power approximation that gives Eqs.~5.3!–~5.8!, we can
write

d0,n1

J1 ~z1!d0,n2

J2 ~z2!d2n12n2,0
J3 ~z3!u1

n1u2
n2;z1

J1z2
J2z3

J3u1
n1u2

n2

5~z1z3u1!J1~z2z3u2
21!J2z3

J32J12J2u1
n12J1u2

J22n2 .

~5.51!

Using Eqs.~5.3!–~5.7! we can therefore write

d0,n1

J1 ~z1!d0,n2

J2 ~z2!d2n12n2,0
J3 ~z3!u1

n1u2
n2

;~s13!
J1~s2838!

J2~s1183!J32J12J2ca~u1 ,u2!. ~5.52!
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Since we must have a non-negative power ofs1183 to obtain
a term in the expansion~5.47!, we see that we must have

J3>J11J2 . ~5.53!

We can repeat this last discussion forM Cb by rewriting
Eq. ~5.51! as

d0,n1

J1 ~z1!d0,n2

J2 ~z2!d2n12n2,0
J3 ~z3!u1

n1u2
n2

;~z1z3u1!(J31J12J2)/2~z2z3u2
21!(J31J22J1)/2

3~z1z2u1u2
21!(J11J22J3)/2u1

n12J1u2
J22n2

;~s13!
(J31J12J2)/2~s2838!

(J31J22J1)/2~s123!
(J11J22J3)/2

3cb~u1 ,u2! ~5.54!

where we have used Eq.~5.8! for s123 (;s12) instead of Eq.
~5.5!. Now the requirement of a non-negative power fors123
implies that terms in Eq.~5.49! can contribute only to those
terms in Eq.~5.50! with

J3<J11J2 . ~5.55!

Since the invariants inM Cc have the same asymptotic form
~apart from a sign! as those inM Cb this last argument applie
directly to M Cc. We see, therefore, that the asymptotic co
tributions of the triple discontinuitiesM Cb and M Cc (M Cb8

andM Cc8) appear in a distinct part of the partial-wave expa
sion ~5.50! to that of M Ca. As a result, the Sommerfeld
Watson representation discussed in the next sub-sectio
very different in the two cases.

An additional requirement for Eq.~5.54! to correspond to
a term in Eq.~5.47! is that the powers of the invariants in Eq
~5.54! must be integer. This places a further restriction on
partial-waves thatM Cb andM Cc can contribute to. In fact, if
we constrainJ11J22J3 to be an even integer, then no fu
ther constraint on theJi is required~other than that they be
positive integers!. This is equivalent to the signature con
straint

t1t2t351 ~5.56!

where at this staget i561 whenJi is even/odd. For this
signature constraint on partial-wave amplitudes to
matched by the definition of signature via triple discontin
ties that we give below, it must be that sum of the trip
discontinuitiesM Cb and M Cb8 is symmetric with respect to
the two parts of the physical region where they appear. Si
larly the sum ofM Cc and M Cc8 must be symmetric with re-
spect to the two regions in which they appear.

Note that if we consider leading helicity physical amp
tudes~i.e. with uni u5Ji , i 51,2) then ifn1 ,n2.0, necessar-
ily

J3>n11n25J11J2 . ~5.57!

ConsequentlyJ3,J11J2 is only possible for ~leading!
helicity-flip amplitudes. It was observed by Detar and We
@21#, in their study many years ago of the dual-model trip
Regge vertex, that the terms in the vertex with~essentially!
7-24



-

im

ro

ng
-

e
ll
,

of
in
d

th

re
a
m
tl
d

pl
e
n

a

te
ed
e
is
is
u

ne
pl
a
n

a

se,

er-
ig-

ill
he

a
-
to
ave
o-

e

q.

ig.
rst

to
ave

ci-

TRIANGLE ANOMALY IN TRIPLE-REGGE LIMITS PHYSICAL REVIEW D 63 016007
the sets of cutsM Cb andM Cc contribute to partial-wave am
plitudes satisfying inequalities of the form~5.55!. However,
the S-W formalism that we use was not developed at the t
of the Detar and Weis paper.

G. Signature and the Sommerfeld-Watson representations

As in elementary Regge theory, it is necessary to int
duce signature before making Froissart-Gribov~F-G! con-
tinuations of partial-wave amplitudes and introduci
Sommerfeld-Watson~S-W! representations. We define sig
natured hexagraph amplitudes

MH,t>5MH,(t1 ,t2 ,t3)

5
1

8
@MH1t1M T1H1t2M T2H1t3M T3H1t1t2M T1T2H

1t2t3M T2T3H1t3t1M T3T1H1t1t2t3M T1T2T3H#

~5.58!

wheret i561 , andTiH is the hexagaph obtained from th
hexagraphH by a twist about the ith horizontal line. The fu
amplitude, or rather the sum over hexagraph amplitudes
recovered as a sum over signatured amplitudes, i.e.

(
t>

MH,t>5MH1M T1H1M T2H1M T3H1M T1T2H1M T2T3H

1M T3T1H1M T1T2T3H. ~5.59!

For hexagraph amplitudes of the formM Ca and M Cb, Eq.
~5.58! is a simple generalization of the analytic definition
signature for elastic scattering amplitudes, where comb
tions of amplitudes with right and left-hand cuts are forme
For M Cc amplitudes it becomes the standard definition in
s2s region.

In writing the initial dispersion relation~5.30! we are, of
course, assuming a generalization of the usual crossing
tion that there is a single analytic function that connects
the physical region amplitudes. When quark quantum nu
bers and helicities are involved, there are additional sub
ties in the crossing relation. These subtleties are resolve
we assume that our analytic definition of signatured am
tudes in Eq.~5.58! is equivalent to the following alternativ
‘‘group-theoretic’’ definition of signature. Beginning with a
N-point amplitude in a particulars-channel, we form the
positive~or negative! signatured amplitude, with respect to
particular internal line of a Toller diagram, by adding~or
subtracting! the amplitude obtained by making a comple
CPT transformation on all external particles connect
~through the diagram! to one end of the internal line. Th
fully signatured amplitude is formed by carrying out th
procedure for all internal lines of the Toller diagram. In th
way, signature is introduced at the amplitude level witho
introducing spectral components. It is an operation defi
directly on the external states and so is often easier to im
ment. Although the equivalence of the two definitions h
only been proven in the simplest cases, we have no reaso
doubt that the equivalence is true in general. To underst
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the implications of signature for phases, etc. it is, of cour
essential to utilize the analytic formulation.

In a t-channel the twisting process does not involve int
changing incoming and outgoing particles. Therefore, a s
nature twist becomes aCP rather than aCPT transforma-
tion. The charge conjugation part of the transformation w
eventually be very important for our discussion of t
anomaly. However, if we ignore quantum numbers then
signature twist is effectively at-channel parity transforma
tion of the final state relative to the initial state. In order
have three independent parity transformations, we must h
a dependence on invariants that involve directly the m
menta at the central vertex, i.e. theQi . In Fig. 27, onlys1183
has this property. This is why only triplets of theCa kind
produce three independent signatures.

The S-W transform of Eq.~5.50! is obtained by convert-
ing the sums overn1 ,n2 , and J3 to integrals. Initially this
process is carried out withz1 andz2 small, although we will
then use the representation to discuss largez1 and z2. The
conversion of sums overn1 ,n2 , to integrals effectively rep-
resents most of the asymptotic cuts as cuts in theu1 andu2
planes and therefore is most naturally carried out in ths
2s region where largeu1 and u2 is part of the physical
regions.

The treatment of that part of the expansion satisfying E
~5.53! is straightforward. This containsM Ca together with the
corresponding contribution from all the hexagraphs of F
26. To illustrate the structure of the S-W transform we fi
omit the complications due to signature and~effectively! as-
sume a F-G continuation can be made forM Ca alone. Be-
cause the definition ofdn,0

J changes non-analytically atn
50 we must make separate continuations forn1 ,n2 ,n1
1n2 :0. Forn1 ,2n2 ,n11n2>0, we can write

M Ca5
1

~2p!3E
.

dn1~u1!n1

sinpn1
E

,

dn2~u2!n2

sin pn2

3 (
N15J12un1u50
N25J22un2u50

` E
CN11N2

dJ3 dn11n2,0
J3 ~z3!

sin p~J32n11n2!

3d0,n1

J1 ~z1!d0,n2

J2 ~z2!aCa,J> ,n> ,.>
~5.60!

where each integration contour is asymptotically parallel
the imaginary axis and chosen to reproduce the partial-w
sum when closed in the appropriate half-plane~because of
the symmetry underu1→u1

21 ,u2→u2
21, n1<0,n2>0 gives

an identical contribution!. The contourCN11N2
imposes Eq.

~5.53! i.e.

J11J25N11n11N22n2<J3 ~5.61!

and so has the form shown in Fig. 28. The. and, labels
for the ni integrals indicate that they reproduce the asso
ated positive-negative helicity sums.

For small zi , i 51,2, a twist in thei th channel corre-
sponds toui→2ui andzi→2zi . For smallzi , and integer
j i2uni u5Ni ,
7-25
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d0,ni

Ji ~2zi !5~21!Ji2nid0,ni

Ji ~zi !. ~5.62!

Consequently forM Ca we can adapt Eq.~5.60! to represent
the sum over amplitudes involving twists in the 1 and
channels by making the replacement

~ui !
nid0,ni

Ji ~zi !→~ui !
nid0,ni

J1 ~zi !1t i~2ui !
nid0,ni

Ji ~2zi !

i 51,2. ~5.63!

A twist in the 3 channel is more complicated sin
dn 1n ,0

J3 (z3) depends onn1 andn2 as well asJ3. For ampli-

FIG. 28. The contour in theJ3 plane.
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01600
tudes that already have specifict1 andt2 signatures, we can
introduce signature forz3→2z3 by writing

dn11n2,0
J3 ~z3!→dn11n2,0

J3 ~z3!

1t3t1t2~21!N11N2dn11n2,0
J3 ~2z3!. ~5.64!

Of course, we also write

aCa,J> ,n> ,.> →aCa,J> ,n> ,.> ,t> . ~5.65!

The construction of signatured F-G continuationsaCa,J> ,n> ,.> ,t>

that are equal to the physical partial-waves at ‘‘righ
signature’’ points ~i.e. Ji5 even/odd for t i51/2, i
51,2,3) is described in detail in@2#.

The S-W transform of that part of the expansion~5.50!
that satisfies Eq.~5.55!, and so contains bothM Cb andM Cc,
requires extra discussion. When Eq.~5.55! is satisfied at
physical points,n1 andn2 will generally have opposite signs
~For leading helicities this must be the case, as we no
above.! Consider that part of Eq.~5.50! with n1 ,2n2 ,n1
1n2>0. Equation~5.55! becomes

N11n11N22n22J35even integer>0. ~5.66!

Temporarily ignoring the full signature problem, we ca
write
M Cb5
1

~2p!3E dn1 dn2~u1!n1~u2!n2 (
N1 ,N250

N11N2 even

`

d0,n1

N11n1~z1! d0,n2

N22n2~z2!

3E
CJ3

dJ3 dn11n2,0
J3 ~z3!

sinp~n11n2!sin
p

2
~J32n12n2!sin

p

2
~n12n22J3!

aCb,J> ,n> ,.> . ~5.67!
Eq.
w-
tor
-
red
e

-G
y
red
es

si-
~The symmetry underu1→u1
21 ,u2→u2

21 implies that n1
<0,n2>0 gives an identical contribution.! The integration
contours are again asymptotically parallel to the imagin
axis and the contourCJ3

is as shown in Fig. 29. This contou
now imposes Eq.~5.66!. Poles at negative integern2 are
produced when the poles atJ32n11n22N12N2
5even integer,0 collide with those at J32n12n2
5even integer>0. As always the.> labels onaCbJ> ,n>.> ,t> refer
to distinct F-G continuations made for distinct combinatio
of helicity signs.

Equation~5.67! gives both even and odd values ofn1 and
n2. Consequently Eq.~5.63! can again be used to introduc
y

s

signature in the 1 and 2 channels. Since we must impose
~5.56!, we need not add any further signature effects. Ho
ever, we note that the arguments of two of the denomina
sine factors in Eq.~5.67! are already restricted to even inte
ger physical values. Therefore, each term in the signatu
form of Eq.~5.67! could be modified by a phase factor of th
form (21)E whereE is ~equivalently! either of these sine
function arguments. In principle the uniquenes of the F
continuation resolves this anbiguity. We will resolve it b
determining the appropriate asymptotic phases of signatu
Regge pole amplitudes. We will find that this phase provid
the crucial distinction between the contribution of the phy
7-26
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cal region discontinuities of theM Cb ~andM Cb8) kind and the
unphysical region discontinuities of theM Cc ~andM Cc8) kind.

H. Regge behavior

The Steinmann relations imply that for the hexagraph a
plitudes with physical region asymptotic cuts, these cuts
completely represented by signatured S-W integrals. Co
quently, for M Ca and M Cb the sums overN15J12n1 and
N25J22un2u should be uniformly convergent in the Regg
asymptotic region with the limits and sums in the S-W re
resentations liberally interchangeable. For the anomaly to
pear in a physical region in the configuration of Fig. 22~a!
then it has to be due a physical region singularity appea
in an amplitude that has cuts only in a cross-channel or
physical region. As we elaborate further below, the anom
can appear in this way inM Cc ~andM Cc8) amplitudes, where
it has to produce a divergence of theN1 and N2 sums.A
priori , it would appear that the anomaly could also appea
the M Cb ~andM Cb8) amplitudes, since they are so similar
theM Cc amplitudes. However, we will give arguments belo
that this is not the case.

For fixedN1 andN2, the integrals overn1 andn2 can be
treated as integrals over eithern1 andn2 or J1 andJ2. Con-
sequently asymptotic expansions can be obtained as e
z1 ,z2→` or asu1 (u1

21),u2 (u2
21)→` by pulling contours

to the left ~right! in the complex plane in the convention
manner. In this way, each of the triple-Regge and helic
pole limits defined above can be studied. The replacemen
the dn,0

J by second-type representation functions proceed
direct parallel with elementary Regge theory.~This is a tech-
nical necessity to ensure that a genuine asymptotic expan
is obtained but we will not describe it here. For our purpo
it is sufficient to assume that we simply pick up the lead
power behavior of thedn,0

J (z) of the formzJ, as contours.!
The most important point for studying limits via the S-W

transform is that~by analytically continuingt-channel unitar-
ity equations in all complex angular momentum and helic
planes! it can be shown that the Regge singularities
aC ,J> ,n> ,.> 5aC,.> (J3 ,n1 ,n2 ,N1 ,N2 ,t1 .t2 ,t3) occur at fixed
values of the Ji . In particular, Regge poles atJi5a i
5a(t i) occur inaC,.,.(J3 ,n1 ,n2 ,N1 ,N2 ,t1 .t2 ,t3) ~the F-G
continuation made fromn1 ,n2.0) at

n15a12N1 , n25a22N2 , J35a3 . ~5.68!

In aC,.,,(J3 ,n1 ,n2 ,N1 ,N2 ,t1 .t2 ,t3) ~the continuation from
n1 ,2n2.0) the Regge singularities occur at

n15a12N1 , 2n25a22N2 , J35a3 ~5.69!

etc. We will first study the contributions of Regge poles
the S-W integral and then discuss the~minor! differences
when the Regge poles are replaced by Regge cuts.

In the triple-Regge limit, Regge poles give contributio
to each of the terms in the double sums in Eqs.~5.60! and
~5.67!. We initially omit the denominator sine factors sinc
they are modified by the introduction of signature. We c
then write the triple Regge pole contribution toM Ca via Eq.
~5.60! as
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M Ca ;
z1 ,z2 ,
z3 ,→`

z1
a1z2

a2z3
a3

3 (
N1 ,N250

`

@u1
a12N1u2

a22N2ba1 ,a2 ,a3 ,N1 ,N2

a

1u1
2a11N1u2

a22N2b2a1 ,a2 ,a3 ,N1 ,N2

a

1u1
a12N1u2

2a21N2ba1 ,2a2 ,a3 ,N1 ,N2

a

1u1
2a11N1u2

2a21N2b2a1 ,2a2 ,a3 ,N1 ,N2

a # ~5.70!

where ba1 ,a2 ,a3 ,N1 ,N2

a is the Regge-pole residue of th

‘‘non-flip’’ F-G amplitude aC,.,.(J3 ,n1 ,n2 ,N1 ,N2 ,t1
•t2 ,t3) at Ji5a i , i 51,2,3 and ni5Ji2Ni , i 51,2 and
b2a1 ,a2 ,a3 ,N1 ,N2

a is the corresponding residue of th

‘‘helicity-flip’’ F-G amplitude aC,,,.(J3 ,n1 ,n2 ,N1 ,N2 ,t1
•t2 ,t3). Because of the symmetry underu1→1/u1 ,u2
→1/u2, the first and last sums in Eq.~5.70! can be identified,
as can the second and third. When the hexagraph contai
M Ca is part of a larger hexagraph this symmetry is, in ge
eral, not present.

The contribution of Regge poles toM Cb ~andM Cb), in the
triple-Regge limit, has less structure than Eq.~5.70!. From
Eq. ~5.67! we obtain

M Cb ;
z1 ,z2 ,
z3 ,→`

z1
a1z2

a2z3
a3

3 (
N11N2even

@u1
2a11N1u2

a22N2b2a1 ,a2 ,a3 ,N1 ,N2

b

1u1
a12N1u2

2a21N2ba1 ,2a2 ,a3 ,N1 ,N2

a #. ~5.71!

Again the symmetry underu1→1/u1 ,u2→1/u2 implies that
~in this case! the two terms in Eq.~5.71! can be identified.
M Cc has an identical contribution but with, of cours
b6a1 ,6a2 ,a3 ,N1 ,N2

b →b6a1 ,6a2 ,a3 ,N1 ,N2

c .

To obtain the behavior of the full amplitude in the triple
Regge limit we addM Ca, M Cb and M Cc M Cb8 and M Cc8, to-

FIG. 29. TheCJ3
contour.
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gether with the analagous contributions corresponding to
additional hexagraphs illustrated in Fig. 25. These contri
tions will have the same form as Eqs.~5.70! and ~5.71! but
with the indices 1, 2, and 3 cyclically rotated. Finally, th
twisted graphs also have to be added by incorporating sig
ture factors. Before discussing signature in detail, it will
useful to first discuss the contribution of Regge poles
helicity-pole limits.

The non-flip helicity-pole limit~5.14! picks out only the
first term of the first~and identical third! sum in Eq.~5.70!
i.e.

M Ca ;
u1 ,u2 ,
z3 ,→`

~z1u1!a1~z2u2!a2z3
a3ba1 ,a2 ,a3,0,0

a . ~5.72!

There is no triple-Regge contribution fromM Cb or M Cc in
this limit. In the helicity-flip limit each ofM Ca, M Cb, and
M Cc give contributions, i.e.
01600
e
-

a-

n

M Ca,b,c ;
u1,1/u2 ,
z3 ,→`

~z1u1!a1~z2u2
21!a2z1

a3ba1 ,2a2 ,a3,0,0
a,b,c .

~5.73!

We see that distinct leading helicity amplitudes, i.e. no
flip and flip, contribute in the distinct helicity-pole limits
while the complete series of both amplitudes contribute
the full triple-Regge limit. This explains why we refer t
Eqs. ~5.14! and ~5.15! respectively as non-flip and helicity
flip limits. Note that in both limits the dependence on bothz1
and z2 is determined by theu1 and u2 dependence. This is
necessary for the amplitudes to be directly expressible
terms of invariants, as we see in the next sub-section.

I. Asymptotic analytic structure

We can now discuss how the cuts ofM Ca, M Cb, andM Cc

are represented asymptotically in triple-Regge formul
Again we discuss Regge poles in detail. We will then illu
trate how the discussion generalises to Regge cuts. Simi
to the rewriting of Eq.~5.51! in the form~5.52!, we can use
Eqs.~5.3!–~5.7! to write
e
s by

s
q.

.

mit.
ba1 ,a2 ,a3,0,0
a ~z1u1!a1~z2u2!a2z3

a35ba1 ,a2 ,a3,0,0
a ~z1z3u1!a1~z1z3u2!a2~z3!a32a12a2

;ba1 ,a2 ,a3,0,0
a ~s13!

a1~s2838!
a2~s1183!a32a12a2 ~5.74!

showing how Eq.~5.72! represents the cuts ofM Ca in both the non-flip helicity-pole limit and the full triple-Regge limit. Th
non-leading helicity terms in Eq.~5.70! that contribute in the triple-Regge limit are represented in terms of invariant
writing

u1
2N1u2

2N2;S s1338 s3118
s13

D N1S s28338 s38228
s23

D N2

. ~5.75!

The result is a power series expansion in terms of the invariantss1338 ,s3118 ,s28338 ,s38228 in which the Steinmann relation
determine there are no singularities. Therefore this series is convergent and the cut structure is fully represented by E~5.74!.
Similarly to Eq.~5.74! we can write

ba1 ,2a2 ,a3,0,0
a ~z1u1!a1~z2u2

21!a2z3
a35ba1 ,2a2 ,a3,0,0

a ~z1z3u1!a1S z2z3

u2
D a2

~z3!(a32a12a2)

;ba1 ,2a2 ,a3,0,0
a ~s13!

a1~s2838!
a2~s1183!a32a12a2 ~5.76!

to see the cuts ofM Ca also represented in the helicity-flip limit and in helicity-flip contributions to the triple-Regge limit
For the helicity-flip contribution fromM Cb we utilize Eq.~5.8! and write

ba1 ,2a2 ,a3,0,0
b ~z1u1!a1~z2u2

21!a2z3
a35ba1 ,2a2 ,a3,0,0

b ~z1z3u1!(a11a32a2)/2S z2z3

u2
D (a21a32a1)/2S z1z2u1

u2
D (a11a22a3)/2

;ba1 ,2a2 ,a3,0,0
b ~s13!

(a11a32a2)/2~s2838!
(a21a32a1)/2~s123!

(a11a22a3)/2 ~5.77!

showing how the cuts ofM Cb are represented in the helicity-flip limit and in helicity-flip contributions to the triple-Regge li
For M Cc we write, in close analogy,

ba1 ,2a2 ,a3,0,0
c ~z1u1!a1~z2u2

21!a2z3
a3;ba1 ,2a2 ,a3,0,0

c ~s13!
(a11a32a2)/2~s2838!

(a21a32a1)/2~s182!(a11a22a3)/2. ~5.78!

To add signature factors to Eq.~5.74! note that forJi2uni u5Ni50
7-28
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~ui !
nid0,ni

J1 ~zi !1t i~2ui !
nid0,ni

Ji ~2zi !

sinpni
;

ui ,zi→`

uuizi uJiF11t ie
ipJi

sinpJi
G ~5.79!

and

dn11n2,0
J3 ~z3!1t3t1t2dn11n2,0

J3 ~2z3!

sinp~J32J12J2!
→

z3→`

uz3uJ3F11t1t2t3eip(J32J12J2)

sinp~J32J12J2! G . ~5.80!

Therefore the signatured form of the S-W representation~5.67! will give Eq. ~5.74! multiplied by a factor

F11t1eipa1

sinpa1
GF11t2eipa2

sinpa2
GF11t1t2t3eip(a32a12a2)

sinp~a32a12a2! G ~5.81!

giving

ba1 ,a2 ,a3,0,0
a F ~s13!

a11t1~2s13!
a1

sinpa1
GF ~s2838!

a21t2~2s2838!
a2

sinpa2
GF ~s1183!a32a12a21t1t2t3~2s1183!a32a12a2

sinp~a32a12a2! G . ~5.82!

This expression now represents the leading helicity~non-flip! triple-Regge contribution of the sum of amplitudes correspo
ing to the eight hexagraphs appearing in Fig. 26.

Each hexagraph can be identified with a term in Eq.~5.82!, with the phase appropriately representing the cut structur
is therefore straightforward to take discontinuities in Eq.~5.82! and to recover a single hexagraph amplitude~5.74!, e.g.

@Disc#s13
52ba1 ,a2 ,a3,0,0

a ~s13!
a1F ~s2838!

a21t2~2s2838!
a2

sinpa2
GF ~s1183!a32a12a21t1t2t3~2s1183!a32a12a2

sinp~a32a12a2! G ~5.83!

@Disc#s13
@Disc#s2838

54ba1 ,a2 ,a3,0,0
a ~s13!

a1~s2838!
a2F ~s1183!a32a12a21t1t2t3~2s1183!a32a12a2

sinp~a32a12a2! G ~5.84!

@Disc#s13
@Disc#s2838

@Disc#s1183
58ba1 ,a2 ,a3,0,0

a ~s13!
a1~s2838!

a2~s1183!a32a12a2. ~5.85!

Note that for a Reggeized gluon witha i511O(g2)

sinpa2; sinp~a32a12a2!;O~g2! ~5.86!

and sincet i521; i , each discontinuity reduces the amplitude byO(g2). With two Reggeon states in each channelt i5
21; i . In this case the leading terms in each of the square brackets in Eq.~5.81! cancel and taking discontinuities does n
introduce extra powers ofg2.

Moving on to the contributions toM Cb obtained from the signatured form of Eq.~5.67!. As we noted earlier, for the
signature constraint~5.56! to also emerge from the hexagraph definition of signature, then it has to be that the sum
amplitudesM Cb andM Cb8 is equal in the two physical regions in which they appear, as must also be the amplitudesM Cc and
M Cc8. As we emphasized, the Regge amplitudes we discuss cannot distinguish the contribution of asymptotically eq
cuts. In the following, therefore, we identifyM Cb with the sum ofM Cb andM Cb8.

Since we only have two signature factors to add, Eq.~5.81! is replaced by

@11t1eipa11t2eipa21t1t2eip(a11a2!]

Fsinp~a12a2!sin
p

2
~a21a32a1!sin

p

2
~a11a22a3!G . ~5.87!

After adding the term corresponding to Eq.~5.67! from n11n2,0, we obtain the factor

@11t1eipa11t2eipa21t1t2eip(a11a2!]

Fsin
p

2
~a11a32a2!sin

p

2
~a21a32a1!sin

p

2
~a11a22a3!G . ~5.88!

The interpretation of the phases in terms of cut structure is now more subtle. Thet1 twist of the hexagraph containingM Cb

sendss123→2s123 in addition tos13→2s13. The corresponding triple-Regge behavior should therefore be
016007-29
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~2s13!
(a11a32a2)/2~s2838!

(a21a32a1)/2~2s123!
(a11a22a3)/25eipa1~s13!

(a11a32a2)/2~s2838!
(a21a32a1)/2~s123!

(a11a22a3)/2

~5.89!

which is the phase-factor corresponding to thet1 term in Eq.~5.88!. This phase is due to the contribution of two cuts rath
than the conventional single cut, as was the case forM Ca. Thet2 twist gives the analagous result and explains thet2 term in
Eq. ~5.88!. Because of the signature constraint~5.56! we havet1t2[t3. We can obtain the corresponding phase for thet1t2
term if we multiply byeip(a32a12a2). The presence or absence of a phase of this kind is the ambiguity in Eq.~5.67! that we
discussed at the end of Sec. V E. Invoking this phase, we can write the analogue of Eq.~5.82! as

ba1 ,2a2 ,a3,0,0
b @~s13!

(a11a32a2)/2~s2838!
(a21a32a1)/2~s123!

(a11a22a3)/2

1t1~2s13!
(a11a32a2)/2~s2838!

(a21a32a1)/2~2s123!
(a11a22a3)/2

1t2~s13!
(a11a32a2)/2~2s2838!

(a21a32a1)/2~2s123!
(a11a22a3)/2

1t3~2s13!
(a11a32a2)/2~2s2838!

(a21a32a1)/2~s123!
(a11a22a3)/2#Y Fsin

p

2
~a11a32a2!sin

p

2
~a21a32a1!

3sin
p

2
~a11a22a3!G ~5.90!

which is now the sum of the leading helicity-flip triple-Regge contributions of cuts of the form ofM Cb in the hexagraphs o
Fig. 26.~Note that we can assign thet i factors in many different ways using the relationst1t2t351 andt i

251, i 51,2,3.) If
we assume thatba1 ,2a2 ,a3,0,0

b is real then the phases of the four terms in Eq.~5.90! naturally represent the four possible c

structures. There are only four terms because of the equalities leading to the signature constraint.
Taking discontinuities in Eq.~5.90! ~bearing in mind asymptotic equivalence!

@Disc#s13
@Disc#s2838

52ba1 ,2a2 ,a3,0,0
b ~s13!

(a11a32a2)/2~s2838!
(a21a32a1)/2

~s123!
(a11a22a3)/2

sin
p

2
~a11a12a3!

~5.91!

and the triple discontinuity is

@Disc#s13
@Disc#s2838

@Disc#s123
58ba1 ,2a2 ,a3,0,0

b ~s13!
(a11a32a2)/2~s2838!

(a21a32a1)/2~s123!
(a11a22a3)/2. ~5.92!

Note that because

sin
p

2
~a i1a j2ak!5sin

p

2
„11O~g2!…511O~g4! ~5.93!

taking discontinuities, in lowest-order, simply introduces factors of 2 as in Eq.~2.3!. This simplicity holds for the leading
helicity amplitude and~because the azimuthal angle sums are convergent! also for the full triple-Regge amplitude. Using E
~2.2! we see that in lowest-order each of the amplitudes in Eq.~5.90! is pure imaginary.

Finally we come to the unphysical triplets of the formM Cc. The Regge behavior obtained fromM Cc has to have essentiall
the same form as that obtained fromM Cb. However, with the appropriate choice of the phase ambiguity in Eq.~5.67! we can
obtain, instead of Eq.~5.90!, the triple-Regge amplitude

ba1 ,2a2 ,a3,0,0
c @~s13!

(a11a32a2)/2~s2838!
(a21a32a1)/2~2s12!

(a11a22a3)/2

1t1~2s13!
(a11a32a2)/2~s2838!

(a21a32a1)/2~s12!
(a11a22a3)/2

1t2~s13!
(a11a32a2)/2~2s2838!

(a21a32a1)/2~s12!
(a11a22a3)/2

1t3~2s13!
(a11a32a2)/2~2s2838!

(a21a32a1)/2~2s12!
(a11a22a3)/2#Y Fsin

p

2
~a11a32a2!sin

p

2
~a21a32a1!

3sin
p

2
~a11a22a3!G . ~5.94!

Again we have only four terms because of the signature constraint.
016007-30
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Note that both Eqs.~5.90! and~5.94! are symmetric with respect toa1 , a2, anda3 and that more generally the breakin
of cyclic symmetry by our choice of hexagraphs has been restored. Full expansions of the form of Eq.~5.71! still reflect the
hexagraphs used in their derivation. However, this is no more than a choice of variables to expand in. Also, neither E~5.90!
nor Eq. ~5.94! has anyt-channel poles when any of thea i pass through integer values. Indeed, any relationship betw
analytic structure and the hexagraph formalism used has essentially been lost. The asymptotic structure of theM Cb andM Cc

amplitudes has no preference for thet-channel in which the partial-wave analysis is carried out. Ultimately this goes ba
the constraint~5.55! which, in fact, is satisfied symetrically. Note, however, that the denominator in both Eqs.~5.90! and~5.94!
does appear to produce unphysical poles in thea i . TheM Cb andM Cc amplitudes have to combine to cancel these poles. T
is a consistency condition which clearly requires the presence of the unphysical triple discontinuities in the dispersion

J. Regge cuts

Equations~5.82! and ~5.90! contain the contribution of Regge poles only. To replace a Regge pole by the Regg
corresponding to a two-Reggeon state is straightforward in principle but in practice can be quite complicated. Howe
odd-signature Reggeized gluons witha;1 it is relatively simple to describe the first-order approximation. For exam
replacing the Regge pole in the 1 channel in Eq.~5.82! by an even signature two-Reggeon state gives

F ~s13!
a11~2s13!

a1

sinpa1
G→E d2k

sinpa~k2!sinpa„~Q12k!2
…

F ~s13!
[a(k2)1a(Q12k)221]1~2s13!

[a(k2)1a(Q12k)221]

sinp@a~k2!1a~Q12k!221#
G

;E d2k

~k2!~Q12k!2 @s13#@11O~g2!#;J1~Q1
2!@s13#@11O~g2!#. ~5.95!

Similarly

@Disc#s13
→E d2k

sinpa~k2!sinpa„~Q12k!2
…

~s13!
[a(k2)1a(Q12k)221];J1~Q1

2!@s13#@11O~g2!#. ~5.96!

Analagous changes occur if we replace any of the other Regge pole contributions in the foregoing by Regge cuts. The
power behavior corresponding to a Regge pole is replaced by a continuum integral of the power behavior involved
with a corresponding replacement of signature factors. Apart from this, all the above discussion of hexagraph contr
analytic structure of triple-Regge, helicity-flip, and helicity non-flip, amplitudes goes through in complete parallel for
tudes containing general multi-Reggeon states in eacht-channel.

To give another specific example that is directly relevant for our discussion of anomaly amplitudes, we consider
term in Eq.~5.94!. If each of the Regge poles is replaced by a two-Reggeon state we obtain

)
i
E d2ki

sinpa~ki
2!sinpa„~Qi2ki !

2
…

3b [a(k
1
2)1a„(Q12k1)2

…21],2[a(k
2
2)1a„(Q22k2)2

…21],[a(k
3
2)1a„(Q32k3)2

…21],0,0
c

~k1 ,k2 ,k3 ,Q1 ,Q2 ,Q3!

3@~s13!
[a(k1

2)1a„(Q12k1)2
…1a(k3

2)1a„(Q32k3)2
…2a(k2

2)2a„(Q22k2)2
…21]/2

3~s2838!
[a(k3

2)1a„(Q32k3)2
…1a(k2

2)1a„(Q22k2)2
…2a(k1

2)2a„(Q12k1)2
…21]/2

3~2s12!
[a(k1

2)1a„(Q12k1)2
…1a(k2

2)1a„(Q22k2)2
…2a(k3

2)2a„(Q32k3)2
…21]/2#Y Fsin

p

2
@a~k1

2!1a„~Q12k1!2
…1a~k3

2!

1a„~Q32k3!2
…2a~k2

2!1a„~Q22k2!2
…#sin

p

2
@a~k3

2!1a„~Q32k3!2
…

1a~k2
2!1a„~Q22k2!2

…2a~k1
2!1a„~Q12k1!2

…#sin
p

2
@a~k1

2!1a„~Q12k1!2
…1a~k2

2!1a„~Q22k2!2
…2a~k3

2!

1a„~Q32k3!2
…#G ;

g2→0

~s13!
1/2~s2838!

1/2~s182!1/2)
i
E d2ki

ki
2~Qi2ki !

2b1,21,1,0,0
c ~k1 ,k2 ,k3 ,Q1 ,Q2 ,Q3!. ~5.97!
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The last line can be identified directly with the gene
Reggeon diagram amplitude ~2.1! so that
b1,21,1,0,0

c (k1 ,k2 ,k3 ,Q1 ,Q2 ,Q3) is identified with the
Reggeon vertexR(k1 ,k2 ,k3 ,Q1 ,Q2 ,Q3). More specifically,
the last line of Eq.~5.97! can also be identified with Reggeo
diagram amplitudes such as Eq.~4.16! discussed in the las
section. From Eqs.~5.96! and~5.97! it is clear that the simple
leading order properties of discontinuities that follows fro
Eq. ~5.93! hold for Regge cut as well as Regge pole amp
tudes.

In general, as we have already emphasized, we ex
amplitudes containing Regge cuts~i.e. multi-Reggeon states!
in any channel to have the non-planarity properties neces
to produce simultaneous right and left hand cuts in integra
invariants. This will lead to closely related right and le
hand cuts in external invariants. Comparing Eqs.~5.90! and
~5.94! we see that for fixeds13 and s2838 the two contribu-
tions provide right and left-hand cuts in thes182;z1z2 plane.
We anticipate, and in the next section will find, that amp
tudes containing Regge cuts in each channel will h
closely related cuts of this kind and so if they contribute
M Cb they will typically contribute also toM Cc. Indeed, in
many respects theM Cc amplitudes provide the additiona
four amplitudes that would need to be added to theM Cb

amplitudes to obtain a complete set of signatured amplitu
with no signature constraint. However, the analytic relatio
ship between the asymptotic cuts and the angular invari
in which signature properties are necessarily determined
vents such a relationship. Also we will see that the anom
can consistently appear in theM Cc amplitudes but not the
M Cb amplitudes.

K. Dimensions of Reggeon interactions

Next we note a crucial difference between Eqs.~5.76! and
~5.77! that is vital for the appearance of the triangle anoma
First we set

a15a25a351 ~5.98!

corresponding to the contribution of~multi-!gluon Reggeon
states. We then compare the momentum dimension of
~5.76! and ~5.77!. For Eq.~5.76! we obtain

~s13!
a1~s2838!

a2~s1183!a32a12a2[@s#111215@s#
~5.99!

while for Eq. ~5.77! we obtain

~s31!
(a11a32a2)/2~s23!

(a21a32a1)/2~s12!
(a11a22a3)/2

[@s#1/211/211/25@s#3/2. ~5.100!

Since the contribution of any multi-Reggeon state alwa
carries the same transverse dimension

E d2k1d2k2•••d2~Q2k12k22••• !

k1
2k2

2
•••

[@Q#22

~5.101!
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the difference in dimensions of Eqs.~5.99! and~5.100! has to
be compensated by a difference in the transverse momen
dimension of the accompanying Reggeon vertex. If we
ticipate that~as is the case! the dimension of the vertex ac
companying Eq.~5.99! is the normal@Q#2 for a Reggeon
vertex in QCD, then the vertex accompanying Eq.~5.100!
will have the ‘‘anomalous dimension’’ of@Q#. This anoma-
lous dimension allows the Reggeon interaction vertices g
erated byM Cb or M Cc to potentially contain the anomaly o
the four-dimensional triangle diagram—which is linear in
momentum dimension and is independent of any other sc

L. Multi-Regge amplitudes and the anomaly

Note that the amplitude for the process given by F
22~a!, that contains the anomaly, has no initial (s13) or final
(s2838) state discontinuities. If we suppose that externalGi
couplings can be chosen such that the anomaly in an am
tude of this kind does not cancel then the amplitude mus
reproduced by a triple-Regge amplitude with the anomaly
the six-Reggeon vertex. In QCD we will find that a quantu
number~color parity! prevents the anomaly from appearin
in the triple-Regge amplitude unless it effectively appe
already in theGi couplings, so that they violate color parity
If it does appear as a physical region singularity in the trip
Regge amplitude, as in Fig. 22~a!, we know from the last
section~and will see explicitly in the next section! that it has
to appear in anM Cc and/or anM Cb amplitude. It, therefore,
has to appear in the Regge cut analogue of the last term
Eq. ~5.94! and/or the last term of Eq.~5.90! since these are
the only terms without (s13) or (s2838) discontinuities. But,
since the anomaly has to appear in a Reggeon vertex,
appears in any of the terms in Eq.~5.94! or Eq.~5.90! then it
must appear in all of them. Since the multi-Regge behav
in the first term of Eq.~5.90! already represents the max
mum set of physical region cuts allowed by the Steinma
relations, it cannot contain the anomaly. Consequently it c
not appear in any of the terms in Eq.~5.90!. However, it can
consistently appear in all four terms of Eq.~5.94!, since all
four represent unphysical triple discontinuities that can c
tain chirality transitions.

VI. MULTIPLE DISCONTINUITIES

In this section we study the lowest-order diagrams
evaluating multiple discontinuities and looking for th
anomaly in Reggeon interactions via the multi-Regge f
malism of the last section. The writing of an asymptotic d
persion relation, without subtractions, depends@2,15# on the
feature that all asymptotic behavior originates from mu
Regge singularities and our analysis implicitly assumes
all asymptotic contributions of a Feynman graph can be
signed to multi-Regge amplitudes of some form.

A. Double discontinuities in the simplest diagrams

From the previos Section we know that the anomaly c
only appear in triple-Regge amplitudes of theM Cc form with
triple discontinuities corresponding to tree diagrams of
form illustrated in Fig. 6~c!. In studying the lowest-orde
7-32
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FIG. 30. Double discontinui-
ties with two gluons in each
t-channel.
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graphs below we first consider initial and final state dou
discontinuities ~associated with a particular hexagraph!.
However, we then find that a non-trivial third discontinui
cannot be obtained by putting further propagators on-sh
The additional discontinuity appears only as additional g
ons are added and Reggeization effects appear—as in
~5.96! and~5.97!. An additional discontinuity can be trivially
taken by using the equivalent of Eq.~2.3! but to justify this
requires calculating the same Reggeization effects. Th
fore, to carry out a complete study of triple discontinuiti
we must necessarily go to higher orders of perturbat
theory. To avoid this we will, after evaluating a double d
continuity, check diagrammatically that appropriate ad
tional discontinuities do indeed appear as additional glu
are added. We will then appeal to Eqs.~5.91!–~5.93!, as
applied to Eq.~5.97!, and extract the Reggeon interactio
directly from the double discontinuity—in effect simply u
ing Eq. ~2.3!.

A double discontinuity requires a minimum of two gluon
exchanged in eacht-channel. To obtain the double discon
nuity in s13 and s2838 that is associated with the first hex
graph of Fig. 25 we consider the diagrams of Fig. 30, w
the hatched quark lines on-shell. If we ignore gluon se
interactions, we can argue that these diagrams are a com
set as follows. The initial scattering process producing
s13 intermediate state is necessarily the production o
quark-antiquark pair and without loss of generality we c
draw this process as in the bottom part of Fig. 30~a!, pro-
vided we do not distinguish a quark direction on the e
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changed quark line. Similarly thes2838 intermediate state is
associated with the reverse of this production process.
quark loop obtained by joining the amplitudes for these i
tial and final scatterings is either planar, as in the first
diagrams of Fig. 30, or it has a twist in it, as in the second
diagrams. The six diagrams of each kind are obtained
attaching the two gluons that do not participate in either
initial or final scattering process, in all possible ways.

Apart from the need to sum over the direction of t
quark line around the loop, the diagrams of Fig. 30 are al
the lowest-order diagrams with both ans13 and ans2838 dis-
continuity. We evaluate diagrams in the full triple Reg
limit ~3.1! in which thePi become lightlike in distinct direc-
tions and theQi have the general form given in Eq.~3.1!. In
each case, the double discontinuity provides a suffici
number ofd-functions to perform all longitudinal integra
tions.

B. The diagram of Fig. 30„a…

We have already discussed this diagram at length in S
IV A. Indeed the hatched lines of Fig. 30~a!, that are placed
on-shell to obtain the double discontinuity, are the same
those of Fig. 9. Our previous analysis is, therefore, suffici
to determine that the anomaly is not present. There is, h
ever, an important point concerning further discontinuit
that we referred to above and applies to our analysis of
the remaining diagrams.

A priori, there is an additionals1183 discontinuity which
we can take by putting the only unhatched vertical line
7-33
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ALAN R. WHITE PHYSICAL REVIEW D 63 016007
shell. If we repeat our evaluation of Fig. 9 but instead u
co-ordinates for thek1 andk2 integrations in whichn11 and
n21 are the basic lightlike momenta, the longitudinal integ
tions will lead to theg-matrix couplings shown in Fig. 31. I
the middle quark line is to put be put on-shell and give
leading contribution, then it must be helicity-conserving w
respect to both the upper and lower on-shell states. Howe
this is clearly not possible since both options give a prod
of g-matrices that is zero.

This last point applies generally to all the double disco
tinuities of Fig. 30. The triple-Regge behavior we are loo
ing for is inconsistent with taking a discontinuity through
remaining uncut quark line. For the diagram under disc
sion we note that while we cannot introduce ans1183 discon-
tinuity without cutting the forbidden quark line, we can a
parently introduce an unphysicals182 discontinuity by
adding an extra gluon. As illustrated in Fig. 32, a sing
gluon in the original diagram is then replaced by the o
loop contribution to the Reggeization of this gluon. How
ever, to properly discuss unphysical discontinuities it is
sufficient to simply put cut lines on-shell~as it is for physical
region discontinuities!. When a cut-line contributes to mor
than one discontinuity it is necessary to discuss whether
i e prescriptions involved are compatible. We will do this
a subsequent paper.

The existence of thes182 discontinuity would imply that
the Reggeon interaction obtained from Fig. 30~a! will appear
in the triple Regge amplitude associated with the tripletCc
discussed in the last section. However, since only one se
cuts appears, we expect the arguments of Sec. IV to be v
in that the six-Reggeon interaction computed from Fig. 30~a!
will be zero when all-orders Reggeization effects are
cluded.

C. Isolating the anomaly

In all of the remaining diagrams of Fig. 30, one or mo
of the ki loop momenta flow through more than one line

FIG. 31. g-matrix couplings for Fig. 30~a!.

FIG. 32. An s182 discontinuity introduced by adding an extr
gluon.
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the internal quark loop. Consequently, as we already saw
Sec. IV, the reduction of theki integrations to two dimen-
sions is not as straightforward as it was for Fig. 30~a!. The
internal quark loop and the remaining two-dimensionalki
integrations are not, in general, coupled only by an effect
point-coupling and the Reggeon vertices generated are
complicated. As we have said already, we will not attemp
obtain complete expressions for the vertices generated by
remaining diagrams in Fig. 30. Rather we will concentrate
isolating contributions that might contain the anomaly.

Our search for the anomaly will, as in Sec. IV, be bas
on the discussion of Appendix A. We will look for effectiv
vector-like point-couplings for the three vertices of a qua
triangle diagram with an odd number of axial couplings. W
will also look for the appropriate flow of a light-like momen
tum through the Reggeon vertex. We will assume that
anomaly, if present in a diagram, can be found using any
the possible sets of light-cone variables discussed in App
dix B, provided we consider all choices for assigning p
ticular quark propagators to particular longitudinalki inte-
grations. As will become clear, the appropriate choice
variables will often enable us to see immediately whethe
local coupling occurs or whether only non-local couplin
arise.

D. The diagram of Fig. 30„b…

At first sight this diagram has ans123 discontinuity ob-
tained by cutting the remaining uncut vertical line in Fi
30~b!. However, there are again two on-shell scatterings
which it is impossible to choose helicities such that both g
the leading behavior. Instead we can introduce either ans123
discontinuity or an unphysicals128 discontinuity by adding
an extra gluon. As anticipated in the previous section,
two discontinuities are closely related. Using the additio
gluon loop to provide the Reggeization of the gluon, t
appropriate Reggeon vertex is that given by the original d
gram of Fig. 30~b! ~apart from a normalization factor that w
are not attempting to determine anyway!.

The momentum flow through the internal quark loop
Fig. 30~b! and theg matrices involved are shown in Fig. 33
As in our discussion of diagrams in Sec. IV, we use t
light-cone co-ordinates (ki12,ki22,k̃i') introduced in Appen-
dix B to perform thek1 andk2 integrations and to evaluat
theg-matrix trace associated with the quark loop. For thek3
integration, the choice of co-ordinates is not critical. For si
plicity, we choose conventional light-cone co-ordinat
(k31,k32,k3'). Our evaluation of the integralI i of Fig. 10

FIG. 33. The quark loop in Fig. 30~b!.
7-34
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can be repeated to perform thek112,k222 and k32 integra-
tions using thed-function associated with the correpondin
external quark line.

To perform the remaining longitudinal integrations w
first route theki momenta along the shortest path through
quark loop. This matches a unique on-shell~hatched-line!
d
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propagator in the loop with eachki . As before, to look for a
potentialg-matrix point-coupling, we look for that momen
tum factor within the numerator of the on-shell quark that
multiplied by the same momentum that is scaling the lon
tudinal momentum integrated over via thed-function. In par-
ticular thek122 integration has the form
E dk122d„~k11k1Q1!22m2
…g12„~k11k1Q1!•g2m…g223 •••

5E dk122d„~k1121k121Q112!k1221•••…g12„~k1121k121Q112!•g221•••…g223•••

5g12g22
2

1•••

501•••. ~6.1!
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In this case the potential point-coupling from the (k112

1k121Q112)g22 term in the quark numerator is eliminate
by one of the adjacentg-matrices@cf. our evaluation of Fig.
15~a! in Sec. IV C#. Since thek212 integration has the sam
structure as thek122 integration, performing each of thes
integrations will produce couplings of the form~C19! rather
than the point couplings necessary to produce the anom
In any alternative momentum flow and assignment
d-functions, it is straightforward to show that either thek122

or thek212 integration gives an analagous result to Eq.~6.1!,
i.e. only non-local couplings remain.~Note that our choice of
light-cone co-ordinates has enabled us to reach this con
sion rather simply.!

E. The diagrams of Figs. 30„c… and 30„d…

Because of the number of lines put on-shell by taking
s13 ands2838 discontinuities, there are not three quark lin
off-shell in either of these diagrams. As a result there is
possibility to generate the anomaly divergence in the co
sponding Reggeon interaction.

F. The diagram of Fig. 30„e…

This diagram is similar to that of Fig. 15~a! @which can be
identified with Fig. 30~f! discussed next# and can be ana
lyzed similarly. In fact, as we discussed in Sec. II and disc
further below, the Reggeon vertices obtained from Fi
30~e! and 30~f! are related by Reggeon Ward identities a
so must have similar properties. We route theki momenta
through the~unique! shortest path combination and again u

the light-cone co-ordinates (ki12,ki22,k̃i') together with
conventional light-cone co-ordinates (k31,k32,k3'). Inte-
grating the longitudinal momenta and keeping local co
plings produces theg matrix assignment of Fig. 34~a!. Com-
paring with Fig. 20 and the following analysis we see th
the threeg5 couplings generated are identical to those g
ly.
f

lu-

e

o
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s
.

-

t
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erated by Fig. 15~a! and Fig. 30~f!. A momentum configura-
tion for Fig. 30~e! that parallels Fig. 22~a! is shown in Fig.
34~b!.

As in Fig. 22~a!, the scattering process containing th
anomaly takes place in a part of the physical region wh
the original discontinuities used to evaluate the Reggeon
teraction vertex are no longer present. This is consistent w
the discussion at the end of the last section, provided
anomaly is associated with an unphysical triple disconti
ity. Considering discontinuities obtained by cutting gluo
lines we find that the unphysicals182 discontinuity is indeed
the only one that can be taken.

A priori, we might suspect that the contribution of Fi
30~e! will not persist if all-orders Reggeization effects a
included. The lack of additional discontinuities can be trac
to the essential planarity of the coupling to thet3-channel
gluon exchanges. As discussed in Sec. IV, this would
expected to allow a contour closing that will give zero
higher-order Reggeization effects are added. However, as
discuss briefly in the next section, the anomaly produ
both ultra-violet and infrared effects. If it is not canceled
the sum of all diagrams its ultra-violet effects could preve
such contour closing arguments. Alternatively, if the conto

FIG. 34. ~a! g-matrices and~b! anomaly momentum configura
tion for Fig. 30~e!.
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ALAN R. WHITE PHYSICAL REVIEW D 63 016007
closing arguments can be carried through it would imply t
all properties of the anomaly and its relationship to Regg
Ward identity zeroes would be contained in the maxima
non-planar diagram.

G. The diagram of Fig. 30„f…

This diagram has already appeared extensively in e
sections, as the maximally non-planar diagram of Figs. 2
4, and in Fig. 15~a! with the hatched lines put on-shell just a
in Fig. 30~f!. The extensive discussion in Sec. IV show
that the anomaly is present although, very importantly,
momentum configuration in which it appears occurs in a p
of the physical region distinct from that in which the disco
tinuities are evaluated. In the previous section we conclu
that this is resolved by associating the anomaly with an
physical triple discontinuity. In fact it is straightforward t
see thats123 ands182 discontinuities can be obtained by cu
ting gluons. According to the argument of the last secti
the anomaly has to go into the Reggeon interaction ve
associated with the unphysicals182 discontinuity.~In fact, to
determine that the necessary chirality violation is present
triple discontinuity in which all discontinuities involve cu
gluons has to be considered. This will be discussed i
subsequent paper.!

H. The diagrams of Figs. 30„g…–30„j …

The diagrams of Figs. 30~g! and 30~h! also appear in Fig.
13, except that an extra line is now on-shell. In Sec. IV
argued that such diagrams do not give Reggeon interact
that contain the anomaly. With the extra line on-shell
again have only two quark lines off-shell and so clearly th
is no triangle anomaly.

I. The diagrams of Figs. 30„k… and 30„l…

The diagrams of Figs. 30~k! and 30~l! both haves123 and
unphysicals182 discontinuities that can be taken through
gluon line. Figure 30~l! is simply obtained from Fig. 30~k!
by time reversal of the scattering process and so has an
gous properties. Therefore our discussion below of F
30~k! will immediately extend to Fig. 30~l!.

We can repeat much of the discussion of Figs. 30~e! and
30~f! for Fig. 30~k!. We do this briefly as follows. For rea
sons that will soon become apparent we reverse the sig
k2 and obtain the internal quark loop contribution shown
Fig. 35. If we take the shortest routes for each of theki
momenta then we find that, in parallel with our discussion
Fig. 30~b!, neither thek122 nor the k212 integrations give

FIG. 35. The quark loop in Fig. 30~k!.
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local couplings. The onlyd-function assignment giving loca
couplings at all vertices is that shown in Fig. 36~a!, with the
corresponding momentum flow shown in Fig. 36~b!. The cal-
culation of local couplings proceeds as usual. The coupli
generated differ from those of Fig. 20 only in that

ĝ315g32g22g12→ĝ135g12g22g325g2,1,22 ig2,2,2g5
~6.2!

and so the threeg5 couplings needed for the anomaly a
again present.

At this point we note that the momentum flow and co
plings in the corresponding triangle diagram are identica
Fig. 21, apart from a shift of the internal momentum

k→k2q22k1. ~6.3!

We would then expect the anomaly to appear in the lim
~4.23!, with (q11q21k11k2)50 and (q21k11k3) light-
like in the limiting configuration. However, if the shift~6.3!
is made, k1 is routed along a different path and th
d-function assignment of Fig. 35~a! can no longer be made
Therefore, the shift cannot be made and, if the anomaly i
be generated, in the limiting configuration we must also ha

k5q21k1 ~6.4!

and must combine this with the mass-shelld-constraints de-
termining k122, k212, and k331 that replace Eqs.~4.24!–
~4.26!. Imposing Eq.~6.4!, these constraints give

~k31q11k2k1!25~k32q3!250 ~6.5!

~k1k11k2!25~q21k212k1!25~k12q1!250 ~6.6!

~k1k32q22k2!25~k31k12q2!250. ~6.7!

From Eq.~6.5! we see immediately that the anomaly dive
gence associated with Fig. 30~k! can only coincide with that
of Fig. 30~f! at (q32k3)250.

J. Reggeon Ward identities

It is not an accident that the diagram of Fig. 30~k! con-
tains the sameg-matrix structure as that of Fig. 30~f!. In fact
a Reggeon Ward identity determines that it has to contrib

FIG. 36. Another~a! d-function assignment and~b! momentum
flow for Fig. 35.
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TRIANGLE ANOMALY IN TRIPLE-REGGE LIMITS PHYSICAL REVIEW D 63 016007
equally~and, when color factors are appropriate, with opp
site sign! at a zero momentum point, such as (q32k3)2

50. Consider the two sets of amplitudes formings13 discon-
tinuities as in Fig. 37. The upper set gives Fig. 30~f! while
the lower set gives Fig. 30~k!. The two lower production
amplitudes that distinguish the diagrams are related by
Reggeon Ward identity illustrated in Fig. 50. Therefo
when the central quark-antiquark pair carries zero color,
two diagrams must cancel at the zero momentum point. F
ure 30~l! is similarly related to Fig. 30~f! via final state am-
plitudes satisfying a Reggeon Ward identity.

As we noted above, Fig. 30~e! is also related to Fig. 30~f!
by a Reggeon Ward identity. In this case the unphysicals182
discontinuity has to be considered. The triple gluon diagr
of Fig. 50 ~the third diagram! cannot contribute when th
quark exchange in the first two diagrams involves a z
momentum chirality transition, as is the case in the anom
divergence. Therefore, when the quark-antiquark pair~in-
volved in the s182 discontinuity! carries octet color the
anomaly contributions in Figs. 30~e! and 30~f! will not can-
cel and there will be no triple gluon contribution. Th
Reggeon Ward identity will necessarily be violated when
light-cone momenta corresponding to the anomaly
present. That a Reggeon Ward identity could fail for a qu
loop in which all lines are on-shell was emphasized in@13#.

The Reggeon Ward identity is, however, sufficient to e
sure that if the anomaly in maximally non-planar diagra
cancels then so must the contribution of all diagrams hav
the form of Fig. 30~e!. Note that for the contribution of the
maximally non-planar diagram of Fig. 4 to other hexagrap
~such as that associated with the scattering processes o
16!, the Feynman diagram corresponding to Fig. 30~k! actu-
ally plays the role of Fig. 30~e!. We conclude, therefore, tha
we can focus only on Fig. 30~f! in Fig. 30. To discuss
whether the anomaly cancels we have to consider only
sum of the double discontinuities of the form of Fig. 30~f!,
each of which is associated with a separate hexagraph
Sec. IV, we have already discussed the kinematical sym
tries that will produce a cancellation. We enlarge this with
discussion of color factors in the next section.

K. Feynman diagrams versus multiple discontinuities

At the end of the previous section we explained how it
that the anomaly can occur in physical region moment

FIG. 37. Formings13 discontinuities.
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configurations where the discontinuities associated with
propagators that are put on-shell are no longer present. T
clear we would like to reiterate the logic that we are emplo
ing. As we outlined in Sec. II, in principle we can stud
Feynman diagrams directly and look for propagators that
placed on-shell~or close to on-shell! by the triple-Regge
limit. In part this is what we did in Sec. IV. The very larg
number of diagrams, as well as their complexity, makes
essentially impossible to apply this procedure to all d
grams. We have instead proceeded by using the multi-Re
theory of the previous section which tells us that the anom
could appear in specific multi-Regge amplitudes which ha
the discontinuities that we have calculated directly. We th
extract the Reggeon vertices calculated from the disconti
ties and insert them back into the multi-Regge formulas.
this way we obtain amplitudes that describe triple-Reg
scattering away from the discontinuities. If the anomaly
vergence then occurs in a physical region within the mu
Regge formula, for consistency it should occur in a cor
sponding way in some Feynman diagram. This is what
demonstrate when we show space-time scattering diagr
such as those of Fig. 22 and Fig. 34~b!.

VII. COLOR FACTORS, CANCELLATIONS AND
DIVERGENCES

We have narrowed down a discussion of the cancella
of the anomaly, at lowest-order, to contributions from dou
~or triple! discontinuities occurring in Feynman diagrams
the maximally non-planar type. In Sec. IV we already d
cussed the kinematical symmetries that can produce a
cellation. As a result we need give only a minimal discuss
of the role played by color quantum numbers and signat
properties.

When signatured amplitudes are formed the two-Regg
state appears only in even signature channels. The Reg
interactions containing the anomaly that we have discus
couple two Reggeized gluons in eacht i-channel and so al
three channels havet i51. Therefore the signature rule o
Sec. V is immediately satisfied. To obtain an amplitude
which all signatures are positive we add the contributio
from all eight of the hexagraphs in Fig. 26. This requires t
we add the contributions of the twisted diagrams of the fo
of Fig. 23 to the untwisted contributions of Figs. 15~a! and
15~b!.

To begin our discussion of color factors we first consid
the external coupling of two gluons~or Reggeons! to a scat-
tering quark. The color factor that appears can be written
shown diagrammatically in Fig. 38.f i jk and di jk are the
usual antisymmetric and symmetric tensors for SU~3! color.

FIG. 38. Color factors for two gluons coupling to two quarks
7-37
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ALAN R. WHITE PHYSICAL REVIEW D 63 016007
In lowest order, theGh have no momentum dependence a
so, in the even signature amplitude, only the symmetricd i j
and di jk couplings survive. Therefore, the~two-gluon! two-
Reggeon state has to be in either a color zero state,
‘‘symmetric octet’’ (8s) state. At this order it is obvious tha
a single scattering quark does not couple to an ‘‘an
symmetric octet’’ (8a) two-Reggeon state.

It will be important to discuss the color parity of Regge
states. Color charge conjugation on gluon fields is defined
the transformation of gluon color matrices

Aab
i →2Aba

i . ~7.1!

For SU~3! we can chooseAi;l i so that

Ai→2Ai i 51,3,4,6,8, Ai→Ai i 52,5,7. ~7.2!

For a trace of gluon matrices the color charge conjuga
reverses the trace order. In particular, in a space-time p
ordered integral of gluon fields it reverses the direction of
path integration. For gauge-invariant states involving su
integrals there may be an inter-relation between color pa
and space-time symmetry properties.

We consider the minus sign in Eq.~7.1! as defining the
negative color parity of the gluon. The odd-signatu
Reggeized gluon then has a color parity equal to its sig
ture. Color-zero combinations of color matrices also hav
definite color parity, e.g.

d i j A
iAj→d i j A

iAj , f i jkAiAjAk→ f i jkAiAjAk,

di jkAiAjAk→2di jkAiAjAk ~7.3!

i.e. thed-tensor provides a ‘‘color parity violating’’ coupling
for gluon fields. Ultimately our main interest is in color ze
multi-Reggeon states and these can immediately be assi
a color parity. Also since

f i jkAjAk/Ai→ f i jkAjAk/Ai ,
~74!

di jkAjAk/Ai→2di jkAjAk/Ai

we can assign negative and positive color parities, resp
tively, to the 8a and 8s states discussed above. We can a
assign color parities to multi-Reggeon states with color f
tors containing combinations off- and d- tensors. Any
Reggeon state, and in particular an even-signature 8a two-
Reggeon state, has ‘‘anomalous color parity’’ if it has a co
parity not equal to its signature. We will argue below that,
general, anomalous color parity Reggeon states do
couple to a scattering quark.

Color charge conjugation invariance implies color cha
parity conservation and so, after summing over quark dir
tions, the quark loop color factor must contain an even nu
ber of d-tensors. Given the color structure of the extern
couplings, the possible color couplings for theG6 Reggeon
interaction extracted from the lowest-order diagrams
those shown in Fig. 39. In lowest-order, therefore, both
color factors and the remainingki-integrations are symmetri
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with respect to the two Reggeons in each of thet i channels.
From Sec. IV we know that this implies the anomaly is ca
celed.

In higher-orders, helicity conserving couplingsGh(qi ,ki)
that appear within multiple discontinuities, need not be sy
metric underki↔2ki . Therefore, the 8a two-Reggeon state
could appear. However, as explained in Sec. V, a posi
signatured amplitude can be obtained either by adding he
graph amplitudes or by adding full amplitudes related by
CPT transformation applied selectively to external stat
For an external~left-handed! scattering quarkqL , the second
procedure gives directly that the full signatured coupling
as shown in Fig. 40. Because of helicity conservation,
two vertices in Fig. 40 are also related by aCP transforma-
tion. Therefore, sinceCP is conserved, their equality in
lowest-order must extend to all orders. Consequently,
two-Reggeon coupling remains symmetric to all orders a
the 8a state does not couple.

More generally, even signature implies that the exter
‘‘state’’ formed by the initial and final scattering particles
even underCPT. Therefore, the internal two-Reggeon sta
must similarly be even. Since the Reggeon state lies enti
in the transverse plane, it is independent of theT transforma-
tion. Therefore, it must be even underCP. ~The same con-
clusion could be reached by working in thet-channel.! The
antisymmetry in theki integrations required for the anoma
is equivalent to requiringP521 for the two-Reggeon state
which must, therefore carry anomalous color parity, i.e.C
521.

A priori, the necessary parity antisymmetry for the tw
Reggeon state could appear if there is helicity no
conservation. If we consider scattering gluons then helic
flip vertices coupling a Reggeized gluon do appear in ne
to-leading order@6#. However, parity conservation, applie
when the Reggeized gluon goes on-shell, implies there
change of sign when the gluon helicity is reversed. This
termines that the ‘‘anomalous color parity’’ 8a two-Reggeon

FIG. 39. Color factors for the lowest-order Reggeon interacti

FIG. 40. The signatured two-Reggeon coupling to a quark
7-38
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TRIANGLE ANOMALY IN TRIPLE-REGGE LIMITS PHYSICAL REVIEW D 63 016007
state again decouples in all orders. More generally, we
ticipate that no Reggeon states with anomalous color pa
couple to scattering quarks~or gluons!. By appealing to in-
stanton interactions we could introduce hypothetical exte
couplings that are helicity non-conserving and that viol
CP conservation. However, our belief is that the anom
will ultimately force a choice of scattering states in order
satisfy unitarity. Therefore, we wish to first determin
whether there is a level at which the anomaly does cau
problem if we use the quark and gluon states of perturba
theory.

Parity asymmetric couplings can also be obtained if
add an extra particle~or particles! to the initial or final state
as in Fig. 41.~This coupling can be directly studied in th
two-to-four amplitude@15# where the novel signature prop
erties produced by an imbalance between discontinuitie
well-known.! Clearly bound-state couplings will, in genera
also have parity asymmetric components in their couplin
Nevertheless, even if all three external couplings have
required asymmetry, a triple-Regge amplitude containing
anomaly still cannot exist, because of the conservation
color parity. An equivalent way of stating this is to say th
for the anomaly to appear in the coupling of three 8a two-
Reggeon states, ad-tensor coupling is required that violate
color parity conservation. Unless the external couplings
two-Reggeon states violate color parity conservation~or,
equivalently, an analogue of the anomaly appears in the
ternal couplings! overall color parity conservation will force
the cancellation of the triple-Regge anomaly amplitude.

We can outline how we anticipate the anomaly does
pear in amplitudes as follows, although more explicit ver
cation is clearly required. In a ditriple Regge limit Regge
diagrams, of the form illustrated in Fig. 42, containing tw
anomaly vertices can appear. A singled-coupling can be
present for each anomaly vertex while the full amplitu
conserves color parity. It is then important to note that
external coupling will have Reggeon Ward identity zer

FIG. 41. A two-Reggeon coupling with an additional final sta
gluon.

FIG. 42. A ditriple-Regge limit amplitude.
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@13# ~which follow from gauge invariance!. For example, the
coupling of Fig. 41 has a zero when eitherk1 or k2→0. The
anomaly divergence occurs at just such points. If the co
sponding zeros are present in all four of the external c
plings of Fig. 42, the linear divergence of the anomaly w
always be compensated by at least two Ward identity~linear!
zeros and this will be sufficient to prevent an infrared div
gence of the full amplitude.~The logarithmic divergences
due to zero mass gluon propagators do not affect this a
ment.!

We anticipate that all Reggeon states coupling to anom
vertices will have anomalous color parity to compensate
the antisymmetric parity properties of the anomaly. In ge
eral multi-Regge limits, Reggeon diagrams containing a
number of pairs of anomalous vertices will similarly appe
@13#. Even though infrared divergences will not appear,
ulltraviolet presence of the anomaly~that must accompany
its infrared appearance! most likely still causes problems
We expect the large momentum region of the triangle gra
to produce a powerlike enhancement of the asymptotic
havior that ultimately conflicts with unitarity. In@13# we pro-
posed to avoid this conflict by introducing large~but finite!
mass fermion Pauli-Villars regulators at finite~but small!
physical quark mass. If the ‘‘physical’’ Reggeon S-matrix
obtained, as we anticipate, by taking the quark mass to z
and extracting infrared divergent contributions from anom
amplitudes, the regulator fermions will not appear. To p
duce infrared divergent amplitudes, however, we have to
troduce external Reggeon couplings that produce a Regg
condensate. This is essentially equivalent to introducing
anomaly directly in external couplings. This is the progra
mentioned in the Introduction, that is outlined at length
@13# and that we plan to return to in succeeding papers.

Essentially the correct phenomenon is outlined in@13#.
However, there are some differences. In particular, beca
of the signature conservation for anomalous amplitud
there is no triple anomalous odderon vertex, as we assum
Instead, the anomaly divergence occurs within the prim
momentum carrying interactions of a Reggeon diagram
not just in accompanying vertices as was suggested in@13#.
This is possible because, as we now understand, the ano
divergence occurs when only some of the interact
Reggeized gluons carry zero transverse momentum. As
noted above, a very important consequence of the signa
rule is that it promises to explain the even signature of
Pomeron—a property that previously we had not clearly s
the origin of.
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APPENDIX A: THE INFRARED TRIANGLE ANOMALY
AND CHIRALITY VIOLATION

It has been known@24# for a long time that the triangle
anomaly is not only an ultraviolet phenomena but is a
7-39
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ALAN R. WHITE PHYSICAL REVIEW D 63 016007
manifest in the infrared region when the fermions involv
are massless. This was elaborated in detail by Coleman
Grossman@10# in the context of establishing ’t Hooft’s@25#
anomaly matching condition for confining theories. Close
related results were also obtained in@26#. In the body of the
paper we use the infrared properties of the anomaly to es
lish its presence in particular Reggeized gluon interactio
The Coleman and Grossman analysis establishes that the
tex function for three axial vector currents has a singula
when the quark fields involved are massless.

In the notation of Fig. 43,Ja is the axial current and the
three current vertex functionGmnl can be decomposed i
terms of invariant amplitudes as follows:

Gmnl~q1 ,q2!5Aenlabq1aq2bq1
m1•••1Bemnlaq1a1•••.

~A1!

The omitted terms are obtained from those shown explic
by appropriate permutations. The crucial result from@10# is
that the anomaly equation

q1mGmnl~q1 ,q2!5Ãenlabq1aq2b ~A2!

implies that, whenq1
2;q2

2;(q11q2)2;q2→0 the invariant

amplitudeA has a pole atq1
250 with the coefficientÃ given

by the anomaly. Therefore, asq2→0 we have

Gmnl~q1 ,q2!5Ãenlab
q1aq2bq1

m

q1
2

1•••. ~A3!

The ultra-violet anomaly appears also in the vertex funct
for one axial current and two vector currents and in Ref.@26#
it is shown how the corresponding Ward identities simila
imply the presence of the divergence~A3! when the quarks
involved are massless. We also refer to this result in
discussion of Reggeon vertices.

If the chiral symmetry associated with the axial currentJm
a

is spontaneously-broken by a quark condensate, the po
q1

250 is associated with the corresponding Goldstone bos
For the U(1) current, Eq. ~A2! is invalidated by non-
perturbative, topological, gluon field configurations
instantons in particular.7 However, our initial purpose is to
first discover a ‘‘perturbative’’ contribution of the anoma
within Reggeon diagrams and only later determine its

7In ’t Hooft’s solution @22,23# of the U~1! problem, instantons
produce a quark interaction~anh8 mass term! that moves the ‘‘per-
turbative’’ h8 pole away fromq1

250. In our Regge limit analysis, i
is not clear how such an interaction could contribute.

FIG. 43. The three-point function.
01600
nd

b-
s.
er-
y

y

n

r

at
n.

-

namical significance. In this case we can use a divergenc
the form ~A3! as a signal of the anomaly.

If we simply take all components ofq1 and q2 to scale
with q then Eq.~A3! gives the~dimensional! result

Gmnl ;
q→0

. ~A4!

We obtain more singular behavior as follows. First, choosem
to be a light-cone index ‘‘1 ’’ and choose

q1
m5q1

15q125p→” 0, q1
25q1150. ~A5!

Choosingq2, and all spacelike momenta flowing through th
diagram, to beO(q) and to lie in a spacelike plane orthogo
nal to the space component ofq1

1 , we obtain from Eq.~A3!

G11l~q1 ,q2! ;
q2→0

Ãe1l2b
q2bq12q1

1

q2
;Ãq2

b p2

q2
;Ã

p2

q
.

~A6!

Note that if we leave the spacelike momenta unchanged
instead choose

q1
m5q1

25q115p→” 0, q1
15q1250 ~A7!

then we obtain

G22l~q1 ,q2! ;
q2→0

Ãe2l1b
q2bq11q1

2

q2
;2Ã

p2

q
. ~A8!

The change of sign compared to Eq.~A6! has very important
consequences for our discussion of the cancellation of
anomaly in Secs. IV and VII. Clearly we could equally we
have changed the sign ofq2b while keeping the same light
cone space component. In either case there is a form of p
transformation involved and the antisymmetry of t
anomaly is a direct consequence of the chirality violati
discussed below. Note that the structure of the anomaly
vergence involves each of the four dimensions of Minkow
space in distinct roles. This is, in part, why a triple-Reg
limit which fully utilizes all four dimensions is necessary
see the anomaly appear.

The infrared behavior~A6! arises directly from a combi-
nation of normal thresholds and the Landau triangle sin
larity ~or anomalous threshold! in the quark triangle diagram
shown in Fig. 44, i.e.

FIG. 44. The triangle diagram.
7-40
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Gmnl~q1 ,q2!5 i E d4k Tr$g5gm~k” !g5gn~q”21k” !g5gl~2q”11k” !%

k2~q21k!2~k2q1!2
. ~A9!
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The triangle diagram singularity can be thought of as due
a space-time scattering as indicated by the arrows in Fig.
q2 is a spacelike momentum transfered by theJan current
andq1 has the light-like component necessary to produce
initial pair of massless particles. Therefore, the vertic
where the lightlike momenta enters and leaves are res
tively associated with the production and annihilation o
pair of massless fermions.

When the helicities of the fermions are determined@10# it
is found that the situation is symmetric in that in both inte
mediate states~the produced and annihilated states! there is a
net fermion chirality, i.e. a fermion-antifermion state wi
the same sign center-of-mass helicities~opposite sign spin
components!. The axial-vector coupling implies that the tw
possible alignments for the helicities involved give contrib
tions that add rather than cancel, as they would do fo
vector coupling. Since the spacelike currentJal flips the he-
licity of the fermion that it scatters, the unscattered ferm
must also flip its helicity. This is only possible if this fermio
carries strictly zero momentum so that its helicity is und
fined ~as is indeed the case@10#!. The finite light-like mo-
mentum is carried by the scattered fermion. That the uns
tered fermion carries zero momentum implies that b
propagator poles are involved in producing Eq.~A6!, thus
allowing the chirality transition. In effect, this is the essen
of the infrared occurrence of the anomaly. It is the chiral
transition that produces the pseudotensorial asymmetry
respect to light-cone components discussed above. It is
the ‘‘chirality violation’’ that we refer to often in the main
text.

Coleman and Grossman also argued for the infra
equivalent of the ‘‘non-renormalization’’ theorem that hol
for the ultraviolet manifestation of the anomaly. They argu
that Feynman diagrams with a Landau singularity and he
ity structure other than that of the triangle diagram with
chirality transition, cannot reproduce the behavior~A6!. In
our case the Reggeon vertices we obtain will not contain
full Lorentz tensor amplitude~A9! but rather will contain
only particular light-cone related momenta andg-matrix
components. We will show, however, that we do have all
necessary components to produce the infrared diverge
~A6!. The argument of Coleman and Grossman then de
mines that the infrared divergence we find cannot be c
celed by the contribution of other diagrams to the Regg
vertices we discuss.

It will also be important for our analysis to discuss t
momentak involved in generating the pole atq250 in Eq.
~A9!. The numerator in Eq.~A9! gives directly the numerato
in Eq. ~A6! and so we can write

G11l~q1 ,q2! ;
q2→0

Ãe1l2bq2bq1
2 E d4k

k4~k22q1k2!
.

~A10!
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Superficially this integral depends onq1 and so might be
expected to beO(1/qq1). However, it is straightforward to
make the scaling

k1→Lk1 , k2→L21k2 ~A11!

so that

E d4k

k4~k22q1k2!
5E dk1dk2d2k'

k4~k22q1k2!

→E d4k

k4~k22q1k2 /L!
~A12!

showing that the integral is independent ofq1 . ~In the limit
L→` the q1 dependence can be scaled out of the integ
altogether, the only trace being the location of the integrat
contour.! Therefore we can write

E d4k

k4~k22q1k2!
;E d4k

k6 ;
1

q2
~A13!

and take all components ofk to beO(q).

APPENDIX B: LIGHT CONE KINEMATICS

Regge limits are conventionally related to light-cone m
menta by writing a general 4-momentumpm

5(p0 ,p1 ,p2 ,p3) in the form

pm5 1
2 p11n111 1

2 p12n121p1' ~B1!

wheren115(1,1,0,0) andn125(1,21,0,0) are andp1' is a
two-dimensional ‘‘transverse momentum’’ orthogonal
both n11 andn12. It is simple to determine that

p115p01p1 , p125p02p1 , p1'5~p2 ,p3!.
~B2!

We regardn11 as Euclidean vectors and form Minkows
space products by introducing

pm5 1
2 p11n121 1

2 p11n122p1' . ~B3!

The Euclidean productpmpm then, as usual, gives th
Minkowski product. Clearly we can similarly defin
p21,p22,p2' and p31,p32,p3' by, respectively, projecting
on vectorsn215(1,0,1,0) andn225(1,0,21,,0) or vectors
n315(1,0,0,1) andn325(1,0,0,21,).

In this paper we make use of alternative, but forma
parallel, decompositions of the form

pm5p22n111p12n211p121 ~B4!
7-41
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ALAN R. WHITE PHYSICAL REVIEW D 63 016007
wherep121 is now a two-dimensional vector orthogonal
both n11 andn21. This determines that

p1215p122n1211p3n3 , p1225p11p22p0 ~B5!

wheren1215(1,1,1,0) andn35(0,0,0,1) are again Euclid
ean vectors. We can also write

pm5p22n121p12n221p122n1222p3n3 ~B6!

where n125(1,21,0,0), n225(1,0,21,0), and n122

5(1,21,21,0). pmpm is, of course, again the Minkowsk
product and ifq is a second four-momentum

p•q5pmqm5p12q221p22q122p122q1222p3q3 .
~B7!

The analagous decomposition to Eq.~B4! for g-matrices
is

gm5g22n111g12n211g121

5g22n111g12n211g122n1221g3n3 ~B8!

where

g125g02g1 , g225g02g2 ,

g1225g11g22g0 . ~B9!

Similarly

gm5g22n121g12n221g122n1222g3n3 . ~B10!

The g-matices introduced in this way then satisfy

g12
2

5g22
2

50, g122
2 5g3

2521,

g12g221g22g1252, g3g121g12g350,

g3g221g22g35g122g121g12g12250, ~B11!

g122g221g22g1225g122g31g3g12250.

Clearly all the usual algebraic properties of both fou
momenta andg-matrices in terms of conventional light-con
coordinates are the same in the ‘‘new light-cone coor
nates.’’

For our discussion of the anomaly it is useful to note t
the e-tensor can also be expressed in the new co-ordina
i.e. we can write

emngdPmQnRgSd5p22q12r 122s32p12q22r 122s31•••

where there is a term corresponding to each permutatio
(22,12,122,3), with the sign determined by the usual an
symmetry property of thee-tensor.

Finally we note that we can use any two~non-parallel!
light-cone momenta and introduce appropriate ‘‘light-co
co-ordinates.’’ In particular we can obviously choosen11

andn31, or n21 andn31, instead ofn11 andn21, and trivi-
ally repeat all of the above discussion.
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APPENDIX C: REGGE LIMIT CALCULATIONS

In this appendix we discuss some simple Regge limit c
culations using the light-cone variables introduced in the p
vious Appendix. We consider first two quarks scattering
single gluon exchange as illustrated in Fig. 45.

We consider the Regge limit in which

P1→P115p122n11, p122→`

P2→P215p212n21, p212→` ~C1!

Q→Q121 .

This is, perhaps, a counter-intuitive way to discuss hig
energy forward scattering. Nevertheless, we can procee
complete parallel with conventional calculations.

The spinorc(P) for an on-shell quark satisfies

mc~P!5~p22g121p12g222p121•g121!c~P!

→
P→P11

p22g12c~p!. ~C2!

Therefore the vertex for such a fast quark to couple to
single gluon carrying momentum transferQ121 is given by

p22g12

m
gm

~p22g122Q121•g121!

m

5
p22g12

m S p22

m
d22,m2

gmQ121•g121

m D
5

p22

m
d22,m„11O~1/p22!… ~C3!

where we have used the formulas of Appendix B and h
reused Eq.~C2! to obtain the last equality. Using this resu
for the P1 vertex and the analagous result for theP2 vertex,
we obtain the familiar result for the full amplitude

A~s,t ! ;
s→`

p122g22,12
p212

Q2
;

s

t
. ~C4!

Moving on to the two-gluon exchange diagram illustrat
in Fig. 46, we calculate the imaginary part by first writing

E d4k5E dk12dk22d2k121 . ~C5!

Then, for the internal quark propagator along whichP1
flows, we write

FIG. 45. Single gluon exchange.
7-42
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g•~P1k!1m

~P1k!22m2 ;
p22→`

g12p221•••

2p22k122k121
2 2m2

[
g1210~1/p22!

@k122~k121
2 2m2!/p22#

. ~C6!

Putting this quark on-shell by performing thek12 integra-
tion, the vertex for two gluons to couple to the fast quark
then

p122g12

m
~gmg12gn!

p122g12

m
5

p122

m
d22,md22,n ~C7!

where we have again used Eq.~C2!. The essential feature
here, is that the infinite momentum limit leads to the e
change of gluons that will couple to a second scatter
quark with ag12-coupling only. Note that this feature woul
be the same if we had used conventional light-cone
ordinates~or, in fact, any other light-cone co-ordinates!.

Using the analagous result forP2→P21, to perform the
k22 integration, the kinematic part of the full result, is

p122d22,md22,ngmagnbda,12db,12p8212

3E d2k121

k121
2 ~k1211Q121!2

5sE d2k121

k121
2 ~k1211Q121!2

~C8!

showing that the familiar tranverse momentum integral
simply replaced by an integral over the new ‘‘transverse m
mentum’’ k121 . Since

E d2k121

k121
2 ~k1211Q121!2

5J1~Q2!5E d2k

k2~k1Q!2

~C9!

this is a relatively trivial modification. Nevertheless it is im
portant for the arguments made in the body of the paper
the same result is clearly obtained whatever light-cone
ordinates are used.

It is also interesting to calculate the Regge limit of Fig.
keepingP2 finite. In this case the choice of ‘‘light-cone co
ordinates’’ is not determined by the large momenta in
problem, since there is only one. We can equally well use
conventional choice~B3!, or the novel co-ordinates utilize
above. In either case we can arrive rapidly at the corr
answer by arguing as follows. We again use Eq.~C6! to
perform one longitudinal momentum integration (k12). The
two exchanged gluons then couple to theP2 quark via

FIG. 46. Two gluon exchange.
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g12

g•~P22k!

~P22k!22m2g125g12

g11~P22k!121•••

k11~P22k!121•••

g12

5
g12

~k111••• !

5g12

g22~P22k!121•••

k22~P22k!121•••

g12

5
g12

~k221••• !
~C10!

or in either case, we use this last pole to carry out a sec
longitudinal momentum integration (k11 or k22) and obtain
the corresponding two-dimensional transverse integ
~Whetherk11 or k22 is used, the exchanged gluon propag
tors become independent of this variable asP1→P11 .) We
then use the Dirac equation, as in Eq.~C2!, to write either

g125g12

g•p

m
5p11 /m1••• ~C11!

or

g125g12

g•p

m
5p12 /m1••• ~C12!

and argue that only the first term, shown explicitly, is c
pable of forming a Lorentz invariant with the momentum
the fast quark. The result is then either the conventio
transverse momentum integral or Eq.~C8!. We conclude that
when a fast quark scatters off a quark carrying finite mom
tum we can calculate using any light-cone co-ordinates. T
result will be the same, but will be expressed in terms
transverse momenta that depend on the co-ordinates cho

We consider next some double-Regge and triple-Re
amplitudes. The main results are not used directly in the
but they are instructive and some of the intermediated res
are used. We briefly discuss the kinematics of single part

FIG. 47. Double Regge kinematics.

FIG. 48. Quark-antiquark production in the double-Regge lim
7-43



er

nt
-

ig
ge
e
n

e
a

tr

gh

n
a
E

In
ple

air
-

ms

ms
ge
k-
and
in-
ird
pe-

di-
-

lied

n
opa-
lso

-
51

rs

ALAN R. WHITE PHYSICAL REVIEW D 63 016007
~gluon! production first. We can parallel our elastic scatt
ing discussion using the notation of Fig. 47. We takeP1
→P11 andP2→P21 as before and also

Q1→~q112,q122,q1122 ,q13![~q,0,q̃,q13!

~C13!
Q2→~q212,q222,q2122 ,,q23![~0,q,2q̃,q23!

with P05Q11Q2. In this notation we have six independe
variables,p22,p128 ,q,q̃,q13 and q23. The necessary reduc
tion to five variables is achieved by puttingP0 on mass-shell.
This determinesq in terms ofq13 andq23.

Consider now the double-Regge amplitude shown in F
48 for producing a quark-antiquark pair via gluon exchan
We definek to be the four-momentum flowing along th
exchanged quark propagator and use the same notatio
Q1 and Q2 as in Eq. ~C13!, except that we takeq112

Þq222 . We can then fix both ofq112 and q222 by putting
both produced particles on shell.

By applying Eq.~C2! to the fast particles we determin
that, as illustrated, the gluons couple to the quark-antiqu
pair via g12 and g22 couplings. This implies that only the
transverse part of the exchanged quark propagator con
utes, i.e.

g12

k•g2m

k22m2
g225g12

2k2121•g1212m

k22m2
g22.

~C14!

The full amplitude for Fig. 48 is then

A~p122,p212,q̃,q13,q23,k121 ,k12k22!

5
p122p212g12~2k121•g1212m!g22

m2~ q̃21q13
2 !~ q̃21q23

2 !~k22m2!
. ~C15!

As must be the case, the amplitude is a function of ei
independent variables.

To extract an amplitude expressed in terms of invaria
consider, in particular, the case in which the produced qu
and antiquark spin dependence contributes similarly to
~C2!, i.e. we write

mc̄~Q12k!5k12g22c̄~Q12k!1•••

FIG. 49. An alternative gluon coupling.
01600
-

.

.

for

rk

ib-

t

ts
rk
q.

mc~Q21k!5k22g12c~Q21k!1•••

and keep only the spinor components shown explicitly.
this case the production amplitude of Fig. 48 has the sim
form

ss8

m2Q1
2Q2

2

2k121•g1212m

~k22m2!
. ~C17!

Note that with the polarizations of the produced p
given by Eq.~C16!, the diagram of Fig. 49 does not contrib
ute.

A Reggeon Ward identity requires that when all diagra
are summed the central Reggeon amplitude@contained in the
square brackets of Eq.~C17!# should vanish when eitherQ1
or Q2 vanish. This is achieved by adding the three diagra
of Fig. 50. The third diagram involves an effective Reg
limit vertex @7# rather than the gauge coupling. The quar
antiquark state can be written as a sum of symmetric
antisymmetric combinations that, when color factors are
troduced, respectively carry zero and octet color. The th
diagram appears only in the color octet channel. For the s
cial polarizations given by Eq.~C16! it directly cancels the
first whenQ1 or Q2→0.

Consider next the diagram of Fig. 51 in which an ad
tional gluon is exchanged in theQ2 channel. We can calcu
late the discontinuity ins1, or simply carry out two longitu-
dinal integrations, by repeating the analysis that we app
to Fig. 46, we obtain

A~p122,p212,q̃,q13,q23,k̃' ,k12k22!

5
p122p2128

m2Q2
2 E d2k1121

k1121
2 ~k11212Q121!2

3
g12~2k121•g1212m!g22

~k22m2!

5
p122p212

m2Q2
2

J1~Q1
2!

g12~2k121•g1212m!g22

~k22m2!
.

~C18!

Comparing with Eq.~C15!, we see that the additional gluo
has simply replaced one gluon transverse momentum pr
gator by a transverse momentum integral. The integral a
has ag12 ‘‘point-coupling’’ to the central vertex. The point
like nature of this coupling is, of course, essential if Fig.
is to be added to Fig. 47 and theJ1(Q1

2) is to produce the
Reggeization of the gluon in theQ1

2 channel. However, there
will also be a pointlike coupling when the quantum numbe
r

~C16!

FIG. 50. Diagrams required fo
the Reggeon Ward identity.
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in the Q2 channel are such that each of the two gluons
volved in the loop integral in Fig. 51 Reggeize separat
and the two Reggeon cut appears.

If the additional gluon is attached to the outgoing quark
in Fig. 52~rather than to the antiquark as in Fig. 51! then we

FIG. 51. An additional gluon exchanged.
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no longer obtain a point-coupling for the two-gluon e
change in theQ1 channel. The contribution of the on mas
shell hatched quark line and the adjacentg-couplings to the
k1 integral is now

FIG. 52. An additional gluon exchange giving no point co
pling.
E dk122d„~k11k1Q2!22m2
…g22„~k11k1Q2!•g2m…g12

5E dk122d„k122~k11k1Q2!12•••…g22„2~k11211k1211Q2121!•g1212m…g12

5
g22„2~k11211k1211Q2121!•g1212m…g12

~k11k1Q2!12

. ~C19!
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We do not obtain a point-like coupling because@unlike in
Eq. ~C10!, for example# the argument of thed-function con-
tains an integrated longitudinal momentum multiplied by
momentum factor that does not multiply ag-matrix appear-
ing in the numerator of the propagator. The relevant par
the propagator numerator is eliminated by the surrounding
matrices.

APPENDIX D: ANGULAR VARIABLES

To introduce angular variables for a six-particle amplitu
it is necessary to define a set of six standard Lorentz fra
F1 ,F2 ,F3 ,F̃1 ,F̃2 ,F̃3. These frames are associated with t
vertices of the Toller diagram, as indicated in Fig. 53,
requiring that the momenta meeting at a vertex take a s
dard form. For each internal vertex there are three frame
each of which one of the momenta lies either along thet-axis
or the z-axis. As we will see, once the standard frames
defined, the angular variables parametrize ‘‘little grou
Lorentz transformations between the frames.

Not surprisingly, the definition of the standard frame
together with the little groups involved~and their parametri-
zation! depend on the physical region discussed. Since
multi-Regge theory we develop in Sec. V effectively mov
backwards and forwards between varioust and s-channels
we need to determine how the variables introduced in dif
ent channels are analytically related. For this purpose
explicitly calculate below, expressions for invariants in ter
of angular variables in each of the channels we discuss.
take the mass of all external particles to bem. We can then
f

es

n-
in

e
’

,

e
s

r-
e

s
e

distinguish the threet-channels and fours-channels that we
study as follows. In thet i-channel (i 51,2,3), uQi u>uQj u
1uQku ( iÞ j Þk) with Qj

2 ,Qk
2>4m2. In the s-channels the

t i5Qi
2 are all negative. The four channels are that in wh

the particles with momentaP1 , P2, and P3, scatter, with
final momentaP18 , P28, and P38 respectively, and those in
which one of thePi8 is exchanged with the correspondin
Pi .

In Fig. 54 we have shown~topographically! the three
t i-channels and one of thes-channels. In this figure, we hav
also indicated that a singles-channel breaks up into fou
distinct sub-regions. There are three ‘‘s2t ’’ sub-regions in
which one of the transverse momenta has longer length
the sum of the other two. In these regions the plane cont
ing theQi must have a timelike component. In the ‘‘s2s’’
sub-region theQi satisfy euclidean inequalities and can

FIG. 53. Special frames.
7-45



ALAN R. WHITE PHYSICAL REVIEW D 63 016007
FIG. 54. Physical regions.
us
b

taken to have only spacelike components. We will disc
how the variables introduced in all regions are related
analytic continuation.

We consider first thet3-channel, illustrated in Fig. 53, in
01600
s
y
which two initial state particles, 3 and 38, scatter into four
final state particles 2,28,3,38. In this case Q1

2 ,Q2
2

>4m2,; i , and uQ3u>uQ1u1uQ2u. The frames Fi , i
51,2,3, can be defined by requiring that
Qi5~Qi ,0,0,0!
Pi5~m coshj i ,0,0,m sinhj i !

Pi85~m coshj i ,0,0,2m sinhj i !
~D1!

where coshji5Qi/2m. Clearly we could easily interchange the roles ofPi andPi8 by settingj i→2j i; i . As long as the theory

is parity invariant, amplitudes cannot depend on this choice. For frameF̃1 we require that

Q15~Q1,0,0,0!
Q25~Q2 coshz21,0,0,Q2 sinhz21!

Q35~Q3 coshz31,0,0,Q3 sinhz31!
~D2!

where

coshz215
Q3

22Q2
22Q1

2

2Q1Q2
, coshz315

Q3
21Q1

22Q2
2

2Q1Q3
. ~D3!

For the framesF̃2 and F̃3 we make the analagous requirements so that inF̃3, for example,

Q35~Q3,0,0,0!
Q15~Q1 coshz13,0,0,Q1 sinhz13!

Q25~Q2 coshz23,0,0,Q2 sinhz23!
~D4!

where

sinhz1352sinhz315S ~Q3
21Q1

22Q2
2!224Q1

2Q3
2

4Q1
2Q2

2 D 1/2

52
l1/2~ t1 ,t2 ,t3!

2At1At3

~D5!

and
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sinhz235
l1/2~ t1 ,t2 ,t3!

2At1At3

~D6!

wherel(t1 ,t2 ,t3) is the familiar function

l~ t1 ,t2 ,t3!5t1
21t2

21t3
222t1t222t2t322t3t15~At11At21At3!~At12At22At3!~2At11At22At3!~2At12At21At3!.

~D7!

Clearly we have to take opposite signs forl1/2(t1 ,t2 ,t3) in defining sinhz13 and sinhz23. Conversely we can reverse this sig
by interchanging the form ofQ1 andQ2 in the t3-channel standard frames. In the next paragraph we will discuss furthe
ambiguity in making this choice, together with the remaining ambiguity in fixing the framesFi and the framesF̃i . It is linked,
of course, to the ambiguity in the choice of the sinhji .

F̃1 andF1 are related by a Lorentz transformationg1 that leavesQ1 unchanged, i.e.g1 belongs to the little group ofQ1,
which is SO(3). We canparametrizeSO(3) in the form

g15uz~m1!ux~u1!uz~n1! 0<u,p, 0<n, m<2p ~D8!

whereuz andux are, respectively, rotations about thez andx axes. If we takeg1 to transform fromF1 to F̃1 , g2 to transform
from F2 to F̃2 andg3 to transform fromF3 to F̃3, then we can absorb theuz(m i) in our definition of the framesFi so that,
effectively, we setm i50, i 51,2,3. Apart from the choice of sign for sinhji , this removes the remaining ambiguity in th
definition of theFi frames after Eq.~D1! is satisfied. Because theuz(n i) commute with the boostsaz(z i j ) along thez-axis,
invariants can depend only on differences between the threen i—so that only two parameters are actually involved. If we ins
on both the parametrization~D8! and this last commutativity property then theF̃i frames are determined up to a reflection—
overall sign change for all the sinhzij . Again, amplitudes cannot depend on this choice of sign because of parity invar
Nevertheless, the parity transformation that produces this overall sign change plays an important role in the discussio
V.

In general, to calculate invariants we transform all the momenta involved from frames in which they take a simple
a common frame where the invariant is most easily evaluated. For example, we transformP1 from F1 to F3 via F̃1 andF̃3 as
follows. In F̃1

P15~m5 coshj1 ,2m sinh j1 sin u1 sin n1 ,2m sinh j1 sin u1 cosn1 ,m sinhj1 cosu1!. ~D9!

In F̃3

P15~m coshj1 coshz312m sinh j1 cosu1 sinh z31,2m sinh j1 sin u1 sin n1 ,

2m sinh j1 sin u1 cosn1 ,m sinh j1cosu1coshz312m coshj1 sinh z31!. ~D10!

In F3

P15~m coshj1 coshz312m sinh j1 cosu1 sinh z31,m sinh j1 sin u1 sin~n12n3!,m sinh j1 sin u1 cos~n12n3!cosu3

2m sinh j1 cosu1 coshz31 sin u32m coshj1 sinh z31 sin u3 ,2m sinh j1 sin u1 cos~n12n3!sin u3

1m sinh j1 cosu1 coshz31 cosu32m coshj1 sinh z31 cosu3!. ~D11!

Alternatively we can transformP1 to F̃2 and toF2 as follows. InF̃2

P15~m coshj1 coshz212m sinh j1 cosu1 sinh z21,2m sinh j1 sin u1 sin n1 ,

2m sinh j1 sin u1 cosn1 ,m sinh j1 cosu1 coshz212m coshj1 sinh z21!. ~D12!

In F2

P15~m coshj1 coshz211m sinh j1 cosu1 sinh z21,2m sinh j1 sin u1 sin~n12n2!,m sinh j1 sin u1 cos~n12n2!cosu2

1m sinh j1 cosu1 coshz21 sin u22m coshj1 sinh z21 sin u2 ,2m sinh j1 sin u1 cos~n12n2!sin u2

1m sinh j1 cosu1 coshz21 cosu22m coshj1 sinh z21 cosu2!. ~D13!
016007-47
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From the above expressions forP1 we can already calculate several invariants. InF̃1, for example,Q3 has the form~D2!
and so

P1•Q35mQ3@coshj1 coshz312sinh j1 sinh z31 cosu1#. ~D14!

In F3, similarly, P3 has the form~D1! and so

P1•P35m2@coshj1 coshj3 coshz312sinh j1 coshj3 sinh z31 cosu12sinh j1 sinh j3 sin u1 sin u3 cos~n12n3!

2sinh j1 sinh j3 coshz31 cosu1 cosu31coshj1 sinh j3 sinh z31 cosu3# ~D15!

while, in F2 , P2 has the form~D1! and so

P1•P25m2@coshj1 coshj2 coshz212sinh j1 coshj2 sinh z21 cosu12sinh j1 sinh j2sin u1 sin u2 cos~n12n2!

2sinh j1 sinh j2 coshz21 cosu1 cosu21coshj1 sinh j2 sinh z21 cosu2#. ~D16!

Equations~D15! and~D16! differ only by the interchange of 1 and 2. It is straightforward to calculate all other invarian
a similar manner. If we writezi5cosui andui j 5ei (n i2n j ) then we can take any two of theui j , together with thezi and thet i ,
as eight independent variables.

We see from the above formulas that a change of sign of sinhj1 is equivalent to a change of sign of both cosu1 and sinu1
(u→u1p). A change of sign of the sinhzij is equivalent to a change of sign of all the cosui which, in turn, is equivalent to
a change of sign of all the sinhji . It is also interesting to write Eqs.~D14! and~D15! explicitly in terms of thet i andz1, i.e.

4P1•Q35t31t12t22S t124m2

t1
D 1/2

l1/2~ t1 ,t2 ,t3!z1 ~D17!

and

8P1•P35t31t12t22l1/2~ t1 ,t2 ,t3!F ~ t124m2!1/2

At1

z12
~ t324m2!1/2

At3

z3G
2~ t124m2!1/2~ t324m2!1/2F ~12z1

2!1/2~12z3
2!1/2S u11

1

u1
D1

t31t12t2

At1At3

z1z3G . ~D18!

From these expressions we see that we will encounter analytic continuation problems at the thresholdst i54m2, at t i50, and
at l(t1 ,t2 ,t3)50. In particular, whent i,0 and alsol(t1 ,t2 ,t3),0 the real relationship between thezi and the invariants is
necessarily lost.

Consider now thes-channel in which 1, 2, and 3 are the three initial state particles and consider thes2t region in which
Qi

2,0,; i and uQ3u>uQ1u1uQ2u. The framesFi , i 51,2,3 are now defined by requiring that

Qi5~0,0,0,qi !
Pi5~m coshj i ,0,0,m sinhj i !

Pi85~2m coshj i ,0,0,m sinhj i !
~D19!

where sinhji5qi/2m andqi5uQi u5@2t i #
1/2 @so that sinhji[i coshji if we consider the analytic continuation of coshji defined

by Eq. ~D1!#. The obvious redefinition of the frameF̃1 is to require

Q15~0,0,0,q1!
Q25~q2 sinh z21,0,0,q2 coshz21!

Q35~q3 sinh z31,0,0,q3 coshz31!
~D20!

where

coshz215
q3

22q2
22q1

2

2q1q2
, coshz315

q3
21q1

22q2
2

2q1q3
. ~D21!

These last expressions are simple analytic continuations of the expressions given in Eq.~D3!. The framesF̃2 and F̃3 are
redefined analagously. Note, however, that there is again an overall ambiguity in the choice of sign for the sinhzij . Now the
reflection involved is not a parity transformation since it applies to the time axis. If any of theQi were timelike and associate
with a particle state~as in a normal multi-Regge production process! this sign would be determined. In the present case we
see that we must use both signs to fully cover the physical region.
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F̃i andFi are again related by a Lorentz transformationgi that leavesQi unchanged, but nowgiPSO(2,1). Since theQi
triangle has a timelike component it is simplest to use the parametrization ofSO(2,1) that is closely related to that used abo
for SO(3), i.e.

g15uz~m1!ax~b1!uz~n1! 2`<b,` 0<n,m<2p ~D22!

whereax(b1) is a boost along thex-axis. With this parametrization, we can again choose theFi such thatm i50, i 51,2,3 and
the uz(n i) commute with the boostsaz(z i j ).

Repeating the transformation ofP1 from F1 to F3 gives the following. InF̃1

P15~m coshj1 coshb1 ,m coshj1 sinh b1 cosn1 ,2m coshj1 sinh b1 sin n1 ,m sinh j1!. ~D23!

In F̃3

P15~m coshj1 coshb1 coshz312m sinh j1 sinh z31,m coshj1 sinh b1 cosn1 ,

2m coshj1 sinh b1 sin n1 ,m sinh j1 coshz312m coshj1 coshb1 sinh z31!. ~D24!

In F3

P15@m coshj1 coshb1 coshb3 coshz312m sinh j1 sinh z31 coshb32m coshj1 sinh b1 sinh b3 cos~n12n3!,

2m coshj1 coshb1 sinh b3 coshz31m sinh j1 sinh z31 sinh b31m coshj1 sinh b1 coshb3 cos~n12n3!,

2m coshj1 sinh b1 sin~n12n3!,m sinh j1 coshz312m coshj1 coshb1 sinh z31#. ~D25!

Calculating inF̃1, we now obtain

P1•Q35mq3@coshj1 sinh z31 coshb12sinh j1 coshz31# ~D26!

and inF3 @arranging terms to compare with Eq.~D15!#

P1•P35m2@2sinh j1 sinh j3 coshz311coshj1 sinh j3 sinh z31 coshb12coshj1 coshj3 sinh b1 sinh b3 cos~n12n3!

1coshj1 coshj3 coshz31 coshb1 coshb32sinh j1 coshj3 sinh z31 coshb3#. ~D27!

Comparing Eqs.~D26! and ~D27! with Eqs.~D14! and ~D15! we see that, if we identify cosui↔coshbi5zi , the two sets of
formulas are directly related by analytic continuation. All terms have changed sign as a result of coshji /sinhji
→i sinhji /coshji and Qi→ iQi , apart from that containing sinu1 sinu2, which contains an extra minus sign via sinui
→i sinhbi .

In this last discussion we have effectively made the analytic continuation choice that the sinhzij do not change sign, yet we
have emphasized that there is an overall sign ambiguity for these quantities. To see the significance of this ambiguity
that ~calculating in frameF̃3 for simplicity!

P3•Q15mq1@coshj3 sinh z13 coshb32sinh j3 coshz13# ~D28!

and

P3•Q25mq2@coshj3 sinh z23 coshb32sinh j2 coshz23# ~D29!

where if we choose sinhz13 to be positive then we must choose sinhz23 to be negative. This in turn will imply that, for larg
coshb3, P3•Q1 is positive, whileP3•Q2 is negative. However, the part of the physical region we are discussing is comp
symmetric with respect to 1 and 2. Therefore, to cover the full physical region, we must take both sign conventions
sinhzij . This would appear to prevent the full description ofs-channel physical regions using angular variables defined
analytic continuation from thet i-channels since it implies, in particular, that we must choose both signs forl1/2(t1 ,t2 ,t3) z1
in Eq. ~D17!. Fortunately, as we remarked earlier, and can be seen directly from Eqs.~D26!, ~D27!, ~D28!, and ~D29!,
changing the sign of the sinhzij is equivalent to changing the sign of the threezi5coshbi . Therefore, to cover thes2t part
of thes-channel that we are discussing, usingzi variables defined by anaytic continuation from at-channel, we must use bot
z1 ,z2 ,z3 ,>1 andz1 ,z2 ,z3 ,<21. This is a very important point for the discussion of dispersion theory and signature
body of the paper.

Finally we consider thes2s region of the sames-channel. In this case the threeQi lie entirely in a spacelike plane so tha
Qi

2,0,; i and uQi u<uQj u1uQku; i , j ,k. TheFi frames are again defined so that
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Qi5~0,0,0,qi !
Pi5~m coshj i ,0,0,m sinh j i !

Pi85~2m coshj i ,0,0,m sinh j i !
~D30!

with sinhji5qi/2m. However, the frameF̃1 is now defined so that

Q15~0,0,0,q1!
Q25~0,0,q2 sin z21,q2 cosz21!

Q25~0,0,q3 sin z31,q3 cosz31!
~D31!

where

cosz215
q2

21q1
22q3

2

2q1q2
, cosz315

q3
21q1

22q2
2

2q1q3
. ~D32!

Now there is a change of sign of cosz21 compared to the definition of coshz21 in Eq. ~D3!. Also the ambiguity in the choice
of sign for the sinzij5il1/2(t1 ,t2 ,t3)/2qiqj persists. The framesF̃2 and F̃3 are redefined analagously.

F̃i andFi are again related by a Lorentz transformationgiPSO(2,1). However, to proceed as in the previous cases,
have to use a different parametrization ofSO(2,1), i.e.

gi5uz~m i !ay~b i !ax~g i ! 2`,b i ,g i,` 0<m i<2p ~D33!

where ax and ay are boosts in thex2t and y2t planes respectively. With this parametrization~provided we takegi to
transform fromFi to F̃i) we can once again absorb theuz(m i) in our definition of the framesFi and also have theax(g i)
commute with the rotationsux(z21) andux(z31).

Repeating, for a final time, the calculation ofP1 in the various frames.

In F̃1

P15~m coshj1 coshb1 coshg1 ,m coshj1 coshb1 ,m coshj1 sinh b1 sinh g1 ,m sinh j1!. ~D34!

In F̃3

P15~m coshj1 coshb1 coshg1 ,m coshj1 coshb1 sinh g1 ,m cosz31 coshj1 sinh b1

2m sin z31 sinh j1 ,m sin z31 coshj1 sinh b1 sinh g12m cosz31 sinh j1!. ~D35!

In F3

P15@m coshj1 coshb1 coshb3 cosh~g12g3!2m sinh b3 cosz31 coshj1 sinh b1

1m sinh b3 sin z31 sinh j1 ,m coshj1 coshb1 sinh~g12g3!,2m coshj1 coshb1 sinh b3 cosh~g12g3!

1mcoshb3 cosz31 coshj1 sinh b12m coshb3 sin z31 sinh j1 ,m sin z31 coshj1 sinh b12m cosz31 sinh j1#.

~D36!

The evaluation of invariants now gives, usingF̃1,

P1•Q35mq3@2sin z31 coshj1 sinh b12cosz31 sinh j1# ~D37!

and inF3,

P1•P35m2@coshj1 coshj3 coshb1 coshb3 cosh~g12g3!2coshj1 coshj3 cosz31 sinh b3 sinh b1

1m sinh j1 coshj3 sin z31 sinh b32coshj1 sinh j3 sin z31 sinh b11sinh j1 sinh j3 cosz31#. ~D38!

Now we see some more significant changes. Comparing Eq.~D37! with Eqs.~D14! and~D26! we see that coshb1 has been
replaced by sinhb1 ~in conjunction with sinhz31→sinz31). We recognize that the change of sign ofl(t1 ,t2 ,t3) produced by
going from thes2t to the s2s region has, as anticipated, destroyed the real relationship between thezi defined in thet i
channels and invariants of the formPi•Qj , so that nowzi↔ i sinhbi . In Fig. 55 we have shown the location of the releva
physical regions in thezi-planes, for the various values of thet i . The s2s part of one physical region fills the comple
imaginary axis in each of thezi planes. However, the invariants also depend on coshbi5Azi

221, which should change sign
as we go from ones-channel physical region to a crossed physical region. This implies that, in thes2s region, there are two
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physical sheets for eachzi-plane separated by branch-cuts connecting the branch-points atzi561. Crossing an incoming
particle into an outgoing particle takes us from one sheet to the other in the correspondingzi plane. Note that the same crossin
can also be achieved by changing the sign ofui j anduik , while leavingAzi

221 unchanged. Therefore the secondzi-planes can
alternatively be identified as the originalzi-plane but with a change of sign forui j and uik . ~Note that if we have chosen
u15u315u13

21 andu25u23 as independent variables then changing the sign ofu13 andu125u2 /u1 corresponds to changing th
sign ofu1 but notu2.! This is important, of course, for the introduction of signature for complex helicity continuations. Fi
we note that changing the signs of all the sinzij again corresponds to changing the signs of all the coshbi .

As we stated in Sec. V, the asymptotic dispersion relation that we use should be initially written in ans2t region of the
s-channels. It is straightforward to continue it directly to any of thet i channels. In thes2s region it corresponds to using
combination of the upper and lowerzi half-planes~from the two sheets!. Of course, that thes2s physical region lies along the
imaginaryzi-axes is very important for discussing the phases obtained from the S-W representation, particularly since i
in this region that limits in which theui j are taken large~whether or not thezi are large! are physical region limits.

FIG. 55. Physical regions in thezi-planes.
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