PHYSICAL REVIEW D, VOLUME 63, 016002

Extra dimensions at the one loop levelZ—bb and B-B mixing
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We study, at the one loop level, the dominant new physics contributions from extra dimensibasbii,
as well asB-B andK-K mixing. We use a model with one extra dimension containing fermions which live in
four dimensions, and gauge bosons and one scalar doublet propagating in five dimensions. We find that the
effect of the infinite tower of Kaluza-Klein modes &—bb is finite and gives a negative correction Ry
=TIy /Ty, which is used to set a lower bound of 1 TeV on the compactification $¢aleOn the other hand,
we show that the box diagrams contributingBeE andK-K mixing are divergent and, after proper regular-
ization, we find that they increase the value of the funcgr,) which governs this mixing. The obtained
value is perfectly compatible with available data.
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I. INTRODUCTION computing tree level processes, one encounters sums of the
type
In the last years there has been a revival of interest in new .
physics scenarios in which the ordinary four dimensional 1 (1.1)
standard modelSM) arises as a low energy effective theory nyn == n24n2+ - +nd’ .

of models defined in five or more dimensions. Apart from the

fact that these types of models arise naturally in string scewhere § is the number of extra dimensions. The above sum
narios, there are various reasons for this renewed interest divergent if >1. Notice that this type of behavior is
Probably the most exciting one is the realization that the sizelifferent from conventional non-renormalizable theories
of the extra dimensions can be amazingly large without conwhere, at least at tree level, all processes are finite. Then, if
tradicting present experimental ddte—4]. This opens the §>1 one readily assumes that the theory should be cut off at
door to the possibility of testing these models in the neaisome scale above the compactification scale. In practice this
future. In fact, a general feature of models with large extras implemented by truncating the tower of KK modesnat

dimensions is the presence of a tower of Kaluza-KI&K) ~100. Such a truncation mechanism is dynamically realized
states which, if light enough, could be produced in the nexin the context of some string theories, where an exponential
generation of acceleratotsee for instancg5—7)). In addi- ~ dumping factor suppresses the couplings of the KK modes to

tion, models based on large extra dimensions can be used @dinary matterf4]. Models with only one extra dimension
shed light on a variety of problems. First of all, by introduc- (6=1) are especially interesting because the above sum is
ing a new scale close to the electroweak scale the hierarctfPnvergent. Therefore, the tree level predictions of five di-
problem is pushed by a few orders of magnit(ides]. Fur- mensional models are_part|cularly stable with respect to the
thermore, by resorting to extra dimensions one might gair?cale of any new physics beyond the compactification scale.
new insights into the size of the cosmological constan owever, as commented before, even such models are not

[9,10]. In addition, supersymmetry breaking could be eX_renormaIiza}bIe, and one expects .that their bad high energy
plfllined in the con,text of such theorigkl]. Moreover, the behavior WI|| ev_entually mann‘(_ast |tse_lf _al_so at the level of

i . f i btai ' di d'I .ththe four dimensional theory with an infinity of KK modes.
IN€ar running ot gauge couplings obtain€d In Moaels Withyy, ¢ s g interesting to study the behavior of these types of
extra dimensions can be used to lower the scale of gauge,qels at the one loop level and investigate to what extent
coupling unification(see for instanc¢12,13)). Finally, by

L ’ . 3 ! their good tree level behavior is maintained. We will show in
assigning fermions to different configurations of the extragec. |11 that the effect of summing the infinite tower of KK

dimensions one hopes to reproduce the hierarchical patteiodes amounts to changing the propagator of the particle
of fermion massesgsee for instancg¢l4—18). having KK modes by a propagator which behaves like 1/
Models with compact extra dimensions are in general notor |argek, instead of the canonical k¥ behavior. This ulti-
renormalizable, and one should regard them as low energmately will trigger the non-renormalizability even of models
manifestations of some more fundamental theory, perhapgith only one extra dimension. In spite of that the integrals
string theory. The effects of the extra dimensions are cominvolving only one summation over KK modes are as well
municated to the four dimensional world through the presbehaved as their counterparts in the origitzero-mode
ence of infinite towers of KK modes, which modify qualita- renormalizable four dimensional theory; they too will there-
tively the behavior of the low energy theory. In particular, fore give rise to finite results.
the non-renormalizability of the theory is found when sum- Models with extra dimensions are also interesting from
ming the infinite tower of KK states. Indeed, already whenthe phenomenological point of view because they are very
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predictive once the spectrum and the symmetries have been Il. THE LAGRANGIAN
specified (e.g., which fields live in four dimensions and
which fields live in the extra dimensiond-or instance, five du

dimensional extensions of the SM or the minimal SUPersymy, -osses which are known to be sensitive to radiative cor-
metric standard modéMSSM) contain only one additional rections even in the absence of KK modes. In the SM the

parameter, the compactification radié,or its inverse, the 65t important loop effects are those enhanced due to the

compactification scal& .= 1/R. In principle the theory also d d the h top- Kk mass:ibb [20—2
depends on the cutoff scale of the thedy<100M . ; how- geger:i;:;e[ 2(;3 a: q tﬁzvyp:rzg::?e:r mass:bb [ 3
- , 0 _

ever, for models with a single extra dimension this scale doe . = X ) . .
If fermions live in four dimensions, as is the case in the

not appear at tree level and, as we will see, many one-loo . ; ;
PP Y Cfnodel we consider, there are no KK modes associated with

results are also rather insensitive to it. On the other han e top quark: therefore, there are no additional one-loop
mode_:ls W|th_more_t_han one extra dimension can dependjorrections to thep parameter enhanced by the top-quark
heavily on this additional parameter. , . mass. On the other hand, in models with gauge bosons living
In this paper we study a model with only one extra di-j, e extra dimensions the parameter is already modified
mension at the one loop level following the bottom-up ap-5¢ tree level, because the KK modes of gauge bosons mix
proach. Specifically, we will build a four-dimensional quan- uith the standard zero-mode gauge bosons, a fact which pro-

tum field theory(QFT) containing an infinite tower of KK \;qeq interesting constraints on the compactification scale
modes, derived from a five dimensional model. In this frameI25_29 7. We will therefore focus on the remaining two

work we will study some of the theoretical issues that ariseprocesses mentioned above.
when keeping the infinite tower of KK modes, as well as In the SM the dominant contributions & bb andB-B.

some of their phenomenological consequences. mixing come from diagrams with the charged scaléhe
There are many different types of models with large extra 9 9 o 9
ould-be Goldstone bosonsunning in the loop, because

dimensions depending on the fields they contain and the e heir counlings are proportional to the top-auark mass. One
act location of these fieldfR2]. For our purposes we will piing prop P-q :

adopt the simplest generalization of the SM, namely the soc2n easily establish this in the Feynman or in the Landau

called 5DSM with fermions living in four dimensions and gauges. The contributions from the exchange of gauge

2 - .
gauge bosons and a single scalar doublet propagating in fi\%OSOnS are suppressed by powersmg,{m,)” and vanish in

dimensiongd19]. This simple model will allow us to explore . € gauge-less limitg—0) or in the large top-quark mass
mit. However, because the top quark mass is not so heavy,

the behavior of the theory at the one loop level and, at thi"‘ fth ion is rather 28] and th
same time, to extract some phenomenological constraints d 1€ convergence of the expansion IS rather and the
omplete calculation is needed in order to match the experi-

rived from one loop processes which are enhanced due {© . - .
their strong dependence on the top-quark mass,Thus, in mental accuracy against the SM prediction. In spite of that,

Sec. Il we derive the relevant four dimensional Lagrangianthe dominant large top-quark mass approximation is good

containing the tower of KK modes from the five dimensional eigzugfhcfgr: trr?gﬁloﬁgrggf:"sﬁiw pffgtrlrfurg/thr? nSi?;’Umatmg the
one. At energies much smaller than the compactificatior? 9 PNYSICS.

scale the tower of KK modes can be integrated out. Thisrisg ::2 tscfvz\j/“earro(:o}glslr?oltljveessv:/ri]tr?\\/(iSémgncséznﬁr:t ;V'”rc?“ger_
gives rise to a four-fermion interaction, which is also derived piings prop

. — tional to the top-quark mass. Therefore, we expect the con-
in Sec. II. In Sec. Il we use the procegs-bb as a labora-  ipions from diagrams containing these couplings to be
tory to study the effect of the KK tower of charged scalar nmerically dominant. If the scalar doublet lives in four di-

fields at the one-loop level. This process is also phenomengyansions there could still be important contributions coming
logically interesting because it is very well measured ant;gm the exchange of the KK modes of the gauge bosons, but

because it is sensitive to the presence of additional scalqﬁey are not enhanced by the top-quark mass. Therefore, we
fields with couplings proportional ton;. We find that the i only consider the coupling of a scalar doublet living in
scalar KK modes give rise to a finite contribution, and dis-fiye dimensions to fermions living in four dimensions.

cuss the reason for that. The theoretical prediction thus ob- The relevant pieces of the five dimensional Lagrangian
tained, combined with the existing precise experimental o (=0,1,2,3 are four dimensional
value of Ry, is used to set stringent bounds on the compac—
tification scale. Section IV is devoted to the study of two

related processes, namédyK andB-B mixing, induced by B 5 oM — 5

box diagrams involving the exchange of two scalar towers of == | X{me' "¢ —[QLY Urpd(X°) +H.C.J+ - -],

KK modes. These diagrams are also enhanced by the top (2.1
guark mass and are interesting from the phenomenological _ o o
point of view. Contrary to the case @—bb, the presence vv_herecp_(x"") is theSU(2) scalar doublet which lives in five
of two towers of KK modes renders these diagrams diverdimensionsQ, (x*) andug(x*) are the standard left-handed
gent. Introducing the cutoff of the theoryl, we estimate

their contribution and compare it with the available experi-

mental data. Finally in Sec. V we collect and discuss the !Following the standard notation we label the fifth component as
results. 5, even though we started at 0.

When studying the dominant radiative corrections in-
ced by the exchange of KK modes, it is natural to focus on

indices and
0,1,2,3,5 are five dimensional ongs
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guark doublets and right-handed singlets, respectively, which m [ dsb

live in four dimensions. They carry additional flavor and [, =— \/5— > t tre' O+ > fLfothoﬁf)JrH.c. ,
color indices which have been supprességare 3<3 ma- U n=1 f

trices in the flavor space. We have not written the Yukawa (2.9

interaction of the down quarks because it is proportional to . . .
the down quark masses which are small. Of course thesihere Vy |s(gr)1e Cabzkzt))o—Kobayashl-Maskav(lﬁKM) ma-
interactions are present and necessary for generating dovif*: While ¢ and ¢, " are the neutral and charged com-
quark masses and mixings. We have also omitted the kinetigonents of the KK scalar doublets, respectively. Notice the
terms of fermions, as well as gauge boson interactionsadditional factor/2 in the coupling of the KK modes, which
which will not be relevant in our approximation. The role of comes from the normalization of the zero mode in the Fou-
8(x®) is to force the fermions to live in four dimensions. As M€l €xpansion.

usual, one assumes that the fifth dimensidris compacti- In the low energy limit one can integrate out the KK
fied on a circle of radiuR with the pointsx® and —x° modes(by using the equations of motion, for instane@ad

identified (that is, an orbifoldSY/Z,). Fields even under the OPtain the following four fermion interactiofin the weak

7., symmetry will have zero modes which will be present in Pasis:

the low energy theory. Fields odd undés will only have

KK modes and will disappear from the low energy spectrum. (mR)? — — ot

One chooses the scalar doublet to be even undéef,tisgm- Le=—3(QLYuUr) (URYyQL), 2.9
metry in order to have a standard zero mode Higgs field.

Following the standard Kaluza-Klein construction, we Fou-which can be expressed in terms of the mass eigenstates
rier expand the scalar fields as folloifeom now onx refers  (keeping only terms proportional tm,).

only to the four dimensional coordinat®s):

(mR2Zm[ _ . 94sP _
S e Lo=—2— — | Attt + 2 (' R (tafVi Vi |
@XM X) = 2 cOS - n(X4). (2.2 3 v i

(2.7
Substituting this expression into the fifth dimensional La-The above Lagrangian provides, for instance, a four fermion

grangian, Eq(2.1), and integrating over the fifth component jnteraction p,tg)(tgb,) [and also §.tg)(tgs.) and
leads to the four dimensional Lagrangian for the KK modes(atR)(t—RdL)] which much in the spirit of Ref[30] can

¢en(X). The kinetic terms, however, are not canonical, and we

need to perform the following redefinitions of fields and cou-CoﬂtribUte at one loop level to the decZy-bb as well to

plings in order to cast them into canonical form: B-B andK-K mixing. However, if we use the effective four-
fermion interaction, the loop integral in Fig. 2 is divergent
and following Ref.[30] one can only compute in this way
1 1 the dominant logarithmic contributions. To obtain the non-
Po(X)— \/ﬁ%(x)’ en(X)— \/ﬁ%(x)' (n#0), logarithmic parts one should calculate the one-loop matching
with the complete theory. One of the advantages of models
with large extra dimensions is that they provide this full
Y,—\27RY,. (2.3  theory, which will allow us, as we will immediately show, to
compute not only the logarithmic corrections but also the
finite parts. In order to accomplish this, one has to maintain

Then, we arrive at the following four dimensional Lagrange ; . .
g grang all KK modes as dynamical particles. Therefore, in what fol-

density: ' ? ) - !
y lows we will use the interactions given in EQ.5).
L£=3,050" 00— (QLY Ureot H.C.) . Z—bb
i ‘ n? ‘ _ 3 In the SM there are many diagrams contributing to the
+n:1 au‘PnaM‘Pn_Ezq’n@n_(QLYuuR 2¢ntH.C) |, vertex corrections taZ—bb. In the Feynman or in the

Landau gauges the dominant contribution for langes cap-
(24 tured by diagrams such as the one shown in Fig. 1, with a
charged would-be Goldstone boson running in the loop. In
which will be used in our calculations. Fermions obtain theirthe unitary gauge these corrections originate from the longi-
masses when the neutral component of the zero mode Higgadinal parts of the gauge boson propagators. In general there
field, <pg°>, acquires a vacuum expectation vaKuﬁ)obzv. are strong cancellations among vertex diagréasshe graph
Mass matrices are diagonalized in the standard way, and, &f Fig. 1) and diagrams with self-energies in the external
we only keep terms proportional to the top quark mass wdermion legs in such a way that the dominant contribution is
obtain the following Yukawa interaction between the masdfinite. By far the easiest way to compute these corrections is
eigenstates and the KK modes of scalar fields: to resort to the equivalence theor¢gi1—34, i.e., to use the
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1 1 Y ” 1
- = -
£ ki n=1kZ+n?R?
” 1 coth ke R
R ke ), (3.)
Ke

= :7T
n==e kZ+n?/R?

wherekg= \/EE

Notice the behavior of this propagator: for smajl it
reduces to the standard Goldstone propagator plus, if ex-
panded at leading order, an additional constant which fur-
nishes the contact interaction derived above, (Bd). How-
ever, for largekg it goes as Wi ; as a result the ultraviolet
(UV) behavior of this theory is worse than in the SM by one
spower of kg, a fact which will eventually trigger the non-
renormalizability of the theory. However, since in the large
ke limit only even powers okg contribute in standard QFT

Ward identities[35—39 that relate theZ-bb vertex to the integrals, this worse UV behgvior of the non-standard propa-
GO%bb vertex . whereG® denotes the would-be Goldstone gator does not create additional problems, as long as only
boson associa’ted to tgauge boson one such propagator is inserted into a convergent graph. For

In the model we are considering, there are additional conStance, the dominant SM contribution to théb vertex,

tributions enhanced by that arise from the presence of the F19- 1. i convergent because the integrand behaves@s 1/

charged scalar KK modes, with interactions governed by E \{vhen we use the non-standard propagator this behavior will

(2.5), which give rise to the diagram of Fig. 1. If the gauge AP t© 1kg, which still leads to a convergent result.
bosons also possess KK modes there will be additional dia- To see how this works in detail we parametrize the effec-
grams, such as the one shown in Fig. 1, in which the KKlive Zbb vertex as

modes of the scalars will be replaced by the corresponding

KK modes of thew-gauge bosons. Even though their contri- g—

bution is formally suppressed by a factonf,/m,)?, we will . 0Y“(9LPL+OrPRIDZ,, (3.2
estimate it at the end of this section. In such a case it is w
important to realize that the KK modes of the charged scalar@herePL
appearing inside the loop are not the would-be Goldston
bosons of the KK modes of the gauge bosons. In fact th
mass of the KK modes associated to the gauge bosons Is
given by their fifth componentsThis distinction becomes
clear if one uses the unitary gauge for the KK modes of the
gauge bosons. In this case the fifth components of the five
dimensional gauge bosons are completely absorbed by the
KK modes of the gauge bosons, i.e., there are not graphs
containing would-be Goldstone bosons, while the KK modes
of the scalars remain in the spectrum of physical particles;
i.e., the diagram of Fig. 1 persists.

Again, the easiest way to calculate the contribution of theln the above equations thel/2+ s\z,\,/3 ands\z,\,/3 are the tree
scalar KK modes is to resort to the equivalence theorem folevel contributions g™ and 5g°™ denote higher order cor-
the externalZ and compute the diagram of Fig. 1 with the  rections within the SM, wherea&gfp and 59’CIP parametrize
replaced by the5(®). Since the couplings of the KK modes the contributions coming from new physics. Notice that, in
to fermions are universal, summing all scalar contributionsgeneral gy only receives sub-dominant correctiom®t pro-
amounts to replacing the propagator of the SM would-beyortional to the top quark masi both the SM and in most
Goldstone boson bfor Euclidean momenta, which we will new physics scenarios. In particular, the dominant SM con-
use in the momentum integrals after the Wick rotation tribution comes from the Goldstone boson diagrams running

in the loop, Fig. 1, and it is given by

FIG. 1. Diagram contributing t&—bb if the scalar doublet
lives in five dimensions. The tower of KK modes of charged scalar
is represented by the dashed double line.

=(1—vy5)/2 andPr=(1+ v5)/2 are, respectively,
fhe left and right chirality projectorss,=1—s2,=m2/m2,

1 1
OL=— 5+ gSwt a9+ gl

1
gR=§s\2N+ 693+ SR’ . (3.3

try; therefore they do not have zero modes. Masses for the zero- 595“"% \/EGmei =
mode gauge bosons should be provided by the usual Higgs mecha- 2m* (K¥=mH2k?  (4m)?
nism, while masses for non-zero-mode gauge bosons are provided (3.9
by their fifth components. Thus, only the zero mode scalars play the

role of Goldstone bosons. Therefore, adding the KK modes we obtain

2Fifth components of gauge bosons are odd undefjhgymme- f d4k 1 \/EG,:mZ
t
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sg1'"~8ge(F(a)— 1), (35 b
wherea=7Rm, and
Z —
dkekZcoth kewR) dkeke b
F(a)=mR f 2., 2\2 f 2., 22
(kg+mp) (kg+mp) FIG. 2. Effective field theory diagram used in the computation
of the leading logarithmic corrections induced by four fermion in-
2 teractions.
o X
=2aj dx————coth(ax 3.6 ) , )
0 (1+x?)? h(ax) 36 together with Eqs(3.4), (3.5), (3.9), and(3.9), one immedi-

ately finds that~=(a)— 1= —0.24+0.31. However, as com-
is the ratio of the non-standard to the standard intedials mented beforeF(a) is always larger than 1 since correc-
the Euclideahn F(a) is, as expected, perfectly convergent. It tions from extra dimensions are always positive. In this case
can be expanded for smal| yielding one should be especially careful when estimating confidence
levels(CL) for the bounds orr(a) — 1. For this purpose we
1 4 2 used the prescription of Ref40], which provides more re-
F(a)~1+a2( —=——{"(2)— —Iog(a/w)) liable limits than other approaches, and found the following
3 a? 3 95% CL limit of F(a)—1<0.39. After evaluation of the
integral (3.6) the previous limit translates into an upper

2 bound ona, a<0.56, which amounts to the following lower
~1+a? 0.80979- §Iog(a) , 3.7 bound on the compactification scal; :
where/’ is the derivative of the Riemann zeta function. As M.>1 TeV. (3.10

commented before, the logarithmic contribution can be ob- o ) )
tained easily by using the four-fermion interaction at the loop!f only 68% CL limits are required we obtaifr(a)—1
level and then cutting off the integrals &t~1/a. This <0.11,a<0.26, andV.>2 TeV. Quite mterestmgly, these
model, in addition to the logarithmic contribution, provides ©ne-loop bounds are comparable to those obtained from tree
also the non-logarithmic piece, and the result reported abov€Vvel processef25-29,7. _
result is that the additional contribution from the KK modesthe effects of the gauge boson KK modes because their con-
is always positive, a fact which will be of particular impor- tribution is suppressed by n{,/m)?® However, since
tance in the following phenomenological analysis. (mw/my)®~1/4, such contributions, even though formally
A shift in theZbEcoupIings gives a shift iR, =T, /T, suppressed, could become numerically relevant and affect
— . the obtained bounds. In addition, those contributions are
[herel’,=I'(Z—bb) andl'y=I'(Z— hadrons)] given by present even if the scalar doublet lives in four dimensions
and, as a consequence, has no KK modes. Therefore, we will
1+ 5?5 provide an estimate of their size.
Rp= RSMW, (3.9 At energies below the compactification scale one can in-
1+ Ry py tegrate the KK modes of the gauge bosons and obtain the
following four-fermion interaction for the third generation

where (in the eigenvalue basis and neglecting CKM mixings

(mR)? g?

oI’y 9L
NP__ ~ NP__ NP — —
700U~ 4600 (39 Loage~ 5 5 (BLyto(toy*by), (310

VIrEM S92+ (gR)

gives the relative change tB,, due to vertex corrections to be compared with the contribution from scalar modes ob-
coming from new physicd;,=T "+ 6T, . Here, quantities tained from Eq.(2.7) (again neglecting CKM mixings
with superscript SM denote standard model values including
complete radiative corrections. Note that non-vertex correc-
tions are universal for all quarks and cancel in the r&jo

In recent years there has been a significant controversy
surroundingRy,, because for some time its measured value
was more than two standard deviations away from the onéds commented above and discussed in [R], one can use
predicted in the SM. However, the present experimentathese effective Lagrangians to obtain the leading logarithmic
value is perfectly compatible with the SNI39: RE®  corrections taZz—bb. In order to achieve that we compute
=0.2164+0.00073, whiIeRE""=O.2157‘_F 0.0002, although the divergent part of the diagram shown in Fig. 2, where the
the central value is still somewhat higher. Using these valuesymbol® denotes the insertion of any of these four-fermion

(7RZm;
L:Ytb:T ?(bLtR)(tRbL)- (3.12
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b a UV divergent. On the other hand, the insertion of only one
modified propagator still yields a finite result.
.4 K We write the correction t&(x,) as
n
n t n
] n
1 1 Xt
O ' S(x)=S(x)swt 8S(x),  6S(x) =7 (G(a)~1),
n m
y ? 4.2
1] [}
" t " where the functionG(a) is again the ratio of the non-
* *—= standard to standard box integrals
B B dkekEcoth( kEn-R) dkeke
. _— - _ 2
FIG. 3. Box diagram contributing tB-B andK-K mixings. The G(a)=(7R) J’ K2 f K2
tower of KK modes is represented by the dashed double lines. (kg+ mt (kg+ mt

operators. It turns out that the different Lorentz structure of
the two four-fermion interactions in E¢3.11) and Eq.(3.12 =232 f dx coti‘?(ax) (4.3
gives an additional factor 2 in the former case. Therefore,
up to non-logarithm corrections, one can include the effect of
the exchange of KK modes of gauge bosons by multiplyingwhich is clearly divergent for x—co. In order to estimate this
the effect of the scalar KK modes by a factor 1 integral, we split coth(ax)—(1/ax)(1+ax coth(ax)—1) and
+2(my,/m)?, which gives a non-negligible correction. No- rewrite G (a) as —
tice that due to the positive relative sign, inclusion of this
correction would lead to a 20% improvement in the bound
on M.. Moreover, this correction will remain even in the X
absence of scalar KK modes; in that case one can still place G(a)=2f0 dxm{1+2[axcotr(ax)— 1]
a bound onM of about 0.7 TeV.

+[axcothiax)—1]%

IV. BOX CONTRIBUTIONS TO K-K AND B-B MIXING
AND THE DIVERGENCES =1+2(F(a)—1)

In the SM, the mixing between thB® meson and its " X
anti-particle is also completely dominated by the top-quark +2f dx————[axcothax)—1]2. (4.4
contribution. The explicitm, dependence of the box dia- 0o (1+x?)?2
grams is given by the loop functidi24]
The divergence is contained in the last term. To evaluate it
we cut off the integral ax~ng/a, whereng is related to the

5 Xy 9 6 6x;log(x,) scale at which new physics enters to regulate the five dimen-
(XY)SM_Z P T ez 1wz | sional theory. In particulai ;~ngM. andng>1. Then, af-
t (=% (1=x%) . X
ter a change of variablg=ax the last term can be re-written
as
m2
X=—5, (4.
M zfns y 2
2a dy———=[ycothly)—1
. y(a2+y2)2[y hy)—1]

which contains the hardh? term, i.e.,x/4, induced by the
longitudinal W exchanges. The same function controls the

top-quark contribution to thK-K mixing parameteey . The
measured top-quark massy,=175 GeV, impliesS(x;) gu
~25 ~2a’[ —1.38136r log(ng)], (4.5

The KK modes of the charged components of the doublet
also contribute to this box diagram. The total dominant con-
tribution, SM plus KK modes, can be obtained by substitut- 3\otice that, even though the SM box integral is given exactly by
ing the propagato3.1) in the box diagram, Fig. 3. However, the same expression as that of the SM vertex integral in the previ-
as discussed in the previous section, the modified propagateus section, their original structures are rather different. In particu-
behaves as Rk{ for largekg, and therefore, the insertion of lar, the box diagram contains two scalar propagators whereas the
two propagators of this type turns this modified diagram intovertex diagram only contains one.

~2a2 [ "d E —172
y—[ycothly)—1]
o y®
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where in the second expression we have assuaret], and, V. CONCLUSIONS
in addition, in the last expression we have also takgn 1.

Combining this result with Eq4.4) and Eq.(3.7) we obtain We have studied, at the one loop level, the minimal ex-

tension of the SM with one extra dimension compactified in
S'/7,. Fermions live in 4 dimensions, while gauge bosons
G(a)~1+a?| —1.14314 flog(a)+2|og(ns) . and the scalar doublet live in 5 dimensions and therefore
3 give rise to a tower of KK modes. In the case of a single

(4.6) extra dimension the contribution of the infinite tower of KK

We have checked that the coefficients of the two logarithms"0des leads to finite tree level predictions. We have inves-

log(a) and logfy), can also be obtained by performing first tigated whether this feature persists at the one loop level, by
the convergent momentum integrals and subsequently trufgonsidering two amplitudes which are enhanced by the top-
cating the divergent double series -aing. However, this quark mass, namely,—bb andB-B mixing.

latter method is technically far more complicated than the The infinite tower of KK modes enters in the calculation

one presented here. of Z—bb by modifying the propagator of the charged sca-
~ For moderate values @~ 0.2 andns~10 the new phys- |ars running in the vertex diagram. This can be effectively
ics correction is only about 0.2. For more extreme val#®s  axen into account by using a modified propagator for the
instancea~0.6 andns~100), we find that the contribution - gcaiars which for largé behaves as &/ instead of the ca-
from extra dimensions to the functidB(a) is about 3. No-  5nica| hehavior of 2. In spite of that the effect is finite

| i . §Ad calculable. The result, when compared with precise ex-
of diagrams with gauge boson KK modes could modify theperimental data oR,=T', /T, is used to place stringent

0 .
bounds orM . by a factor of about 20%. However, given the limits on the compactification scal¥]., M;>1 TeV at the

uncertainty in the calculation of the box diagrams due to the, _, : .
dependence on the scale,, estimating such effects seemsegsm CL, which are comparable to the bounds obtained from
tree-level processes.

superfluous. The important point, however, is that the contri- _ _
bution from extra dimensions to the functi§x,) is always The box diagrams contributing #8-B andK-K mixings
positive. contain two propagators of KK modes. The double sum over
We can use the measur&}-BS mixing to infer the ex- KK modes amounts to the replacement of b_oth_propagators
perimental value 08(x,) and, therefore, to set a limit on the by the afor_ementlone(_j softer ones, a fact which increases t_he
8S(x,) contribution. The explicit dependence on the quark-UV behavior of the diagram by two powers, and renders it

mixing parameters can be resolved by Combining the Condivergent. ThUS, due to such contributions the theory be-
straints fromAMgo, &, and I'(b—u)/T'(b—c). In Ref. ~ comes non-renormalizable already at the one-loop level. To
d

[30] a complete analysis of the allowed values $6x,) was estimate their size one has to assume that the model is em-
! bedded in a more complete theory which would provide an

performed by varying all parameters in their allowed regions.

The final outcome of such an analysis is t8at,) could take effective cutoff at scales larger thah. . In practice, this can
values within a rather large interval, namely be realized either by cutting off the infinite integrals at mo-

menta of order oM, the scale where new physics enters to
47 regularize the five dimensional theory, or by truncating the
' sum of KK modes at some value of, ng~Mg /M., with
Since most of the errors come from uncertainties in theoretds €xpected to be order-100 or less. This way we can
ical calculations, it is rather difficult to assign confidenceestimate the correction induced by the extra dimension to the
levels to the bounds quoted above. The lower limit is veryfunction S(x;) which parametrizes the short distance physics

stable under changes of parameters, while the upper limih B-B and K-K mixings. A phenomenological analysis

could be modified by a factor of 2 by simply doubling some ghows that ¥ S(x,) < 10, while the SM value i$(x,) = 2.5.

of the errors. . This suggests that moderapesitive extra contributions to
Given that the standard model value f&(x) is  g(x,) are still allowed. Since within the model we consider

S(x;) sw= 2.5, positivecontributions can be comfortably ac- the contributions t&(x,) from KK modes is always positive

commodated, whereas negative contributions are more coRng moderate in size, no interesting bounds can be obtained

strained. As we have seen, extra dimensions respogitive  fom this process. However, if in the future a valueSgk,)

contributions toS(x;); in fact one can obtain values that |arger than the SM value is found, extra dimensions could
could approach the upper limit &(x;) only for rather small  gasjly accommodate fit.

values of the compactification scdlé. and large values of
the scale of new physicdfl;. It seems therefore that, at
present, the above bounds do not provide good limit&lgn

On the other hand, if future experiments combined with the-
oretical improvements were to furnish a value &f{ix;) ex- This work has been funded by CICYT under the Grant
ceeding that of the SM, our analysis shows that such a disAEN-99-0692, by DGESIC under the Grant PB97-1261 and
crepancy could easily be accommodated in models wittby the DGEUI of the Generalitat Valenciana under the Grant
large extra dimensions. GV98-01-80.

1<S(x,)<10.
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