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Extra dimensions at the one loop level:Z\bb̄ and B-B̄ mixing
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We study, at the one loop level, the dominant new physics contributions from extra dimensions toZ→bb̄,

as well asB-B̄ andK-K̄ mixing. We use a model with one extra dimension containing fermions which live in
four dimensions, and gauge bosons and one scalar doublet propagating in five dimensions. We find that the

effect of the infinite tower of Kaluza-Klein modes inZ→bb̄ is finite and gives a negative correction toRb

5Gb /Gh , which is used to set a lower bound of 1 TeV on the compactification scaleMc . On the other hand,

we show that the box diagrams contributing toB-B̄ andK-K̄ mixing are divergent and, after proper regular-
ization, we find that they increase the value of the functionS(xt) which governs this mixing. The obtained
value is perfectly compatible with available data.
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I. INTRODUCTION

In the last years there has been a revival of interest in n
physics scenarios in which the ordinary four dimensio
standard model~SM! arises as a low energy effective theo
of models defined in five or more dimensions. Apart from t
fact that these types of models arise naturally in string s
narios, there are various reasons for this renewed inte
Probably the most exciting one is the realization that the s
of the extra dimensions can be amazingly large without c
tradicting present experimental data@1–4#. This opens the
door to the possibility of testing these models in the n
future. In fact, a general feature of models with large ex
dimensions is the presence of a tower of Kaluza-Klein~KK !
states which, if light enough, could be produced in the n
generation of accelerators~see for instance@5–7#!. In addi-
tion, models based on large extra dimensions can be use
shed light on a variety of problems. First of all, by introdu
ing a new scale close to the electroweak scale the hiera
problem is pushed by a few orders of magnitude@2,8#. Fur-
thermore, by resorting to extra dimensions one might g
new insights into the size of the cosmological const
@9,10#. In addition, supersymmetry breaking could be e
plained in the context of such theories@11#. Moreover, the
linear running of gauge couplings obtained in models w
extra dimensions can be used to lower the scale of ga
coupling unification~see for instance@12,13#!. Finally, by
assigning fermions to different configurations of the ex
dimensions one hopes to reproduce the hierarchical pa
of fermion masses~see for instance@14–18#!.

Models with compact extra dimensions are in general
renormalizable, and one should regard them as low ene
manifestations of some more fundamental theory, perh
string theory. The effects of the extra dimensions are co
municated to the four dimensional world through the pr
ence of infinite towers of KK modes, which modify qualita
tively the behavior of the low energy theory. In particula
the non-renormalizability of the theory is found when su
ming the infinite tower of KK states. Indeed, already wh
0556-2821/2000/63~1!/016002~8!/$15.00 63 0160
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computing tree level processes, one encounters sums o
type

(
n1 ,n2 ,•••52`

1`
1

n1
21n2

21•••1nd
2

, ~1.1!

whered is the number of extra dimensions. The above s
is divergent if d.1. Notice that this type of behavior i
different from conventional non-renormalizable theori
where, at least at tree level, all processes are finite. The
d.1 one readily assumes that the theory should be cut o
some scale above the compactification scale. In practice
is implemented by truncating the tower of KK modes atni
;100. Such a truncation mechanism is dynamically realiz
in the context of some string theories, where an exponen
dumping factor suppresses the couplings of the KK mode
ordinary matter@4#. Models with only one extra dimensio
(d51) are especially interesting because the above sum
convergent. Therefore, the tree level predictions of five
mensional models are particularly stable with respect to
scale of any new physics beyond the compactification sc
However, as commented before, even such models are
renormalizable, and one expects that their bad high ene
behavior will eventually manifest itself also at the level
the four dimensional theory with an infinity of KK modes
Thus, it is interesting to study the behavior of these types
models at the one loop level and investigate to what ex
their good tree level behavior is maintained. We will show
Sec. III that the effect of summing the infinite tower of K
modes amounts to changing the propagator of the par
having KK modes by a propagator which behaves like 1k
for largek, instead of the canonical 1/k2 behavior. This ulti-
mately will trigger the non-renormalizability even of mode
with only one extra dimension. In spite of that the integra
involving only one summation over KK modes are as w
behaved as their counterparts in the original~zero-mode!
renormalizable four dimensional theory; they too will ther
fore give rise to finite results.

Models with extra dimensions are also interesting fro
the phenomenological point of view because they are v
©2000 The American Physical Society02-1
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predictive once the spectrum and the symmetries have b
specified ~e.g., which fields live in four dimensions an
which fields live in the extra dimensions!. For instance, five
dimensional extensions of the SM or the minimal supersy
metric standard model~MSSM! contain only one additiona
parameter, the compactification radius,R, or its inverse, the
compactification scaleMc51/R. In principle the theory also
depends on the cutoff scale of the theoryMs,100Mc ; how-
ever, for models with a single extra dimension this scale d
not appear at tree level and, as we will see, many one-l
results are also rather insensitive to it. On the other ha
models with more than one extra dimension can dep
heavily on this additional parameter.

In this paper we study a model with only one extra
mension at the one loop level following the bottom-up a
proach. Specifically, we will build a four-dimensional qua
tum field theory~QFT! containing an infinite tower of KK
modes, derived from a five dimensional model. In this fram
work we will study some of the theoretical issues that ar
when keeping the infinite tower of KK modes, as well
some of their phenomenological consequences.

There are many different types of models with large ex
dimensions depending on the fields they contain and the
act location of these fields@2#. For our purposes we wil
adopt the simplest generalization of the SM, namely the
called 5DSM with fermions living in four dimensions an
gauge bosons and a single scalar doublet propagating in
dimensions@19#. This simple model will allow us to explore
the behavior of the theory at the one loop level and, at
same time, to extract some phenomenological constraints
rived from one loop processes which are enhanced du
their strong dependence on the top-quark mass,mt . Thus, in
Sec. II we derive the relevant four dimensional Lagrang
containing the tower of KK modes from the five dimension
one. At energies much smaller than the compactificat
scale the tower of KK modes can be integrated out. T
gives rise to a four-fermion interaction, which is also deriv
in Sec. II. In Sec. III we use the processZ→bb̄ as a labora-
tory to study the effect of the KK tower of charged sca
fields at the one-loop level. This process is also phenome
logically interesting because it is very well measured a
because it is sensitive to the presence of additional sc
fields with couplings proportional tomt . We find that the
scalar KK modes give rise to a finite contribution, and d
cuss the reason for that. The theoretical prediction thus
tained, combined with the existing precise experimen
value ofRb , is used to set stringent bounds on the comp
tification scale. Section IV is devoted to the study of tw
related processes, namelyK-K̄ andB-B̄ mixing, induced by
box diagrams involving the exchange of two scalar towers
KK modes. These diagrams are also enhanced by the
quark mass and are interesting from the phenomenolog
point of view. Contrary to the case ofZ→bb̄, the presence
of two towers of KK modes renders these diagrams div
gent. Introducing the cutoff of the theory,Ms , we estimate
their contribution and compare it with the available expe
mental data. Finally in Sec. V we collect and discuss
results.
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II. THE LAGRANGIAN

When studying the dominant radiative corrections
duced by the exchange of KK modes, it is natural to focus
processes which are known to be sensitive to radiative
rections even in the absence of KK modes. In the SM
most important loop effects are those enhanced due to
dependence on the heavy top-quark mass:Z→bb̄ @20–23#,
B-B̄ mixing @24#, and ther parameter.

If fermions live in four dimensions, as is the case in t
model we consider, there are no KK modes associated w
the top quark; therefore, there are no additional one-lo
corrections to ther parameter enhanced by the top-qua
mass. On the other hand, in models with gauge bosons liv
in the extra dimensions ther parameter is already modifie
at tree level, because the KK modes of gauge bosons
with the standard zero-mode gauge bosons, a fact which
vides interesting constraints on the compactification sc
@25–29,7#. We will therefore focus on the remaining tw
processes mentioned above.

In the SM the dominant contributions toZ→bb̄ andB-B̄
mixing come from diagrams with the charged scalars~the
would-be Goldstone bosons! running in the loop, becaus
their couplings are proportional to the top-quark mass. O
can easily establish this in the Feynman or in the Land
gauges. The contributions from the exchange of ga
bosons are suppressed by powers of (mW /mt)

2 and vanish in
the gauge-less limit (g→0) or in the large top-quark mas
limit. However, because the top quark mass is not so hea
the convergence of the expansion is rather slow@21# and the
complete calculation is needed in order to match the exp
mental accuracy against the SM prediction. In spite of th
the dominant large top-quark mass approximation is go
enough for many purposes, in particular when estimating
size of contributions stemming from new physics.

If the scalar doublet lives in five dimensions it will giv
rise to a tower of KK modes with Yukawa couplings propo
tional to the top-quark mass. Therefore, we expect the c
tributions from diagrams containing these couplings to
numerically dominant. If the scalar doublet lives in four d
mensions there could still be important contributions com
from the exchange of the KK modes of the gauge bosons,
they are not enhanced by the top-quark mass. Therefore
will only consider the coupling of a scalar doublet living
five dimensions to fermions living in four dimensions.

The relevant pieces of the five dimensional Lagrang
are (m50,1,2,3 are four dimensional indices andM
50,1,2,3,51 are five dimensional ones!

L5E d5x$]Mw†]Mw2@Q̄LYuuRwd~x5!1H.c.#1•••%,

~2.1!

wherew(xM) is theSU(2) scalar doublet which lives in five
dimensions.QL(xm) anduR(xm) are the standard left-hande

1Following the standard notation we label the fifth component
5, even though we started at 0.
2-2
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EXTRA DIMENSIONS AT THE ONE LOOP LEVEL:Z . . . PHYSICAL REVIEW D63 016002
quark doublets and right-handed singlets, respectively, wh
live in four dimensions. They carry additional flavor an
color indices which have been suppressed.Yu are 333 ma-
trices in the flavor space. We have not written the Yuka
interaction of the down quarks because it is proportiona
the down quark masses which are small. Of course th
interactions are present and necessary for generating d
quark masses and mixings. We have also omitted the kin
terms of fermions, as well as gauge boson interactio
which will not be relevant in our approximation. The role
d(x5) is to force the fermions to live in four dimensions. A
usual, one assumes that the fifth dimensionx5 is compacti-
fied on a circle of radiusR with the pointsx5 and 2x5

identified ~that is, an orbifoldS1/Z2). Fields even under the
Z2 symmetry will have zero modes which will be present
the low energy theory. Fields odd underZ2 will only have
KK modes and will disappear from the low energy spectru
One chooses the scalar doublet to be even under theZ2 sym-
metry in order to have a standard zero mode Higgs fie
Following the standard Kaluza-Klein construction, we Fo
rier expand the scalar fields as follows~from now onx refers
only to the four dimensional coordinatesxm):

w~xm,x5!5 (
n50

`

cos
nx5

R
wn~xm!. ~2.2!

Substituting this expression into the fifth dimensional L
grangian, Eq.~2.1!, and integrating over the fifth compone
leads to the four dimensional Lagrangian for the KK mod
wn(x). The kinetic terms, however, are not canonical, and
need to perform the following redefinitions of fields and co
plings in order to cast them into canonical form:

w0~x!→ 1

A2pR
w0~x!, wn~x!→ 1

ApR
wn~x!, ~nÞ0!,

Yu→A2pRYu . ~2.3!

Then, we arrive at the following four dimensional Lagran
density:

 L5]mw0
†]mw02~Q̄LYuuRw01H.c.!

1 (
n51

` S]mwn
†]mwn2

n2

R2
wn

†wn2~Q̄LYuuRA2wn1H.c.!D ,

~2.4!

which will be used in our calculations. Fermions obtain th
masses when the neutral component of the zero mode H
field, w0

(0) , acquires a vacuum expectation value^w0
(0)&[v.

Mass matrices are diagonalized in the standard way, an
we only keep terms proportional to the top quark mass
obtain the following Yukawa interaction between the ma
eigenstates and the KK modes of scalar fields:
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LY52A2
mt

v
(
n51

` S t̄ LtRwn
(0)1 (

f

d,s,b

f̄ LVt f* tRwn
(2)1H.c.D ,

~2.5!

whereVt f is the Cabibbo-Kobayashi-Maskawa~CKM! ma-
trix, while wn

(0) and wn
(2) are the neutral and charged com

ponents of the KK scalar doublets, respectively. Notice
additional factorA2 in the coupling of the KK modes, which
comes from the normalization of the zero mode in the F
rier expansion.

In the low energy limit one can integrate out the K
modes~by using the equations of motion, for instance! and
obtain the following four fermion interaction~in the weak
basis!:

Leff5
~pR!2

3
~Q̄LYuuR!~ ūRYu

†QL!, ~2.6!

which can be expressed in terms of the mass eigens
~keeping only terms proportional tomt).

Leff5
~pR!2

3

mt
2

v2 F ~ t̄LtR!~ t̄RtL!1(
f,f8

d,s,b

~f 8̄LtR!~ t̄RfL!VtfVtf8
* G.

~2.7!

The above Lagrangian provides, for instance, a four ferm
interaction (b̄LtR)( t̄ RbL) @and also (s̄LtR)( t̄ RsL) and
(d̄LtR)( t̄ RdL)] which much in the spirit of Ref.@30# can
contribute at one loop level to the decayZ→bb̄ as well to
B-B̄ andK-K̄ mixing. However, if we use the effective four
fermion interaction, the loop integral in Fig. 2 is diverge
and following Ref.@30# one can only compute in this wa
the dominant logarithmic contributions. To obtain the no
logarithmic parts one should calculate the one-loop match
with the complete theory. One of the advantages of mod
with large extra dimensions is that they provide this f
theory, which will allow us, as we will immediately show, t
compute not only the logarithmic corrections but also t
finite parts. In order to accomplish this, one has to maint
all KK modes as dynamical particles. Therefore, in what f
lows we will use the interactions given in Eq.~2.5!.

III. Z\bb̄

In the SM there are many diagrams contributing to t
vertex corrections toZ→bb̄. In the Feynman or in the
Landau gauges the dominant contribution for largemt is cap-
tured by diagrams such as the one shown in Fig. 1, wit
charged would-be Goldstone boson running in the loop.
the unitary gauge these corrections originate from the lon
tudinal parts of the gauge boson propagators. In general t
are strong cancellations among vertex diagrams~as the graph
of Fig. 1! and diagrams with self-energies in the extern
fermion legs in such a way that the dominant contribution
finite. By far the easiest way to compute these correction
to resort to the equivalence theorem@31–34#, i.e., to use the
2-3
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Ward identities@35–38# that relate theZ-bb̄ vertex to the

G0-bb̄ vertex , whereG0 denotes the would-be Goldston
boson associated to theZ gauge boson.

In the model we are considering, there are additional c
tributions enhanced bymt that arise from the presence of th
charged scalar KK modes, with interactions governed by
~2.5!, which give rise to the diagram of Fig. 1. If the gaug
bosons also possess KK modes there will be additional
grams, such as the one shown in Fig. 1, in which the
modes of the scalars will be replaced by the correspond
KK modes of theW-gauge bosons. Even though their cont
bution is formally suppressed by a factor (mW /mt)

2, we will
estimate it at the end of this section. In such a case i
important to realize that the KK modes of the charged sca
appearing inside the loop are not the would-be Goldst
bosons of the KK modes of the gauge bosons. In fact
mass of the KK modes associated to the gauge boson
given by their fifth components.2 This distinction becomes
clear if one uses the unitary gauge for the KK modes of
gauge bosons. In this case the fifth components of the
dimensional gauge bosons are completely absorbed by
KK modes of the gauge bosons, i.e., there are not gra
containing would-be Goldstone bosons, while the KK mod
of the scalars remain in the spectrum of physical partic
i.e., the diagram of Fig. 1 persists.

Again, the easiest way to calculate the contribution of
scalar KK modes is to resort to the equivalence theorem
the externalZ and compute the diagram of Fig. 1 with theZ
replaced by theG(0). Since the couplings of the KK mode
to fermions are universal, summing all scalar contributio
amounts to replacing the propagator of the SM would
Goldstone boson by~for Euclidean momenta, which we wil
use in the momentum integrals after the Wick rotation!

2Fifth components of gauge bosons are odd under theZ2 symme-
try; therefore they do not have zero modes. Masses for the z
mode gauge bosons should be provided by the usual Higgs me
nism, while masses for non-zero-mode gauge bosons are prov
by their fifth components. Thus, only the zero mode scalars play
role of Goldstone bosons.

FIG. 1. Diagram contributing toZ→bb̄ if the scalar doublet
lives in five dimensions. The tower of KK modes of charged sca
is represented by the dashed double line.
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kE
2
→ 1

kE
2

12(
n51

`
1

kE
21n2/R2

5 (
n52`

`
1

kE
21n2/R2

5pR
coth~kEpR!

kE
, ~3.1!

wherekE5AkE
2.

Notice the behavior of this propagator: for smallkE it
reduces to the standard Goldstone propagator plus, if
panded at leading order, an additional constant which
nishes the contact interaction derived above, Eq.~2.6!. How-
ever, for largekE it goes as 1/kE ; as a result the ultraviole
~UV! behavior of this theory is worse than in the SM by o
power of kE , a fact which will eventually trigger the non
renormalizability of the theory. However, since in the lar
kE limit only even powers ofkE contribute in standard QFT
integrals, this worse UV behavior of the non-standard pro
gator does not create additional problems, as long as o
one such propagator is inserted into a convergent graph.
instance, the dominant SM contribution to theZbb̄ vertex,
Fig. 1, is convergent because the integrand behaves as 1kE

6 ;
when we use the non-standard propagator this behavior
drop to 1/kE

5 , which still leads to a convergent result.
To see how this works in detail we parametrize the eff

tive Zb̄b vertex as

g

cW
b̄gm~gLPL1gRPR!bZm , ~3.2!

wherePL5(12g5)/2 andPR5(11g5)/2 are, respectively,
the left and right chirality projectors,cW

2 512sW
2 5mW

2 /mZ
2 ,

and

gL52
1

2
1

1

3
sW

2 1dgL
SM1dgL

NP

gR5
1

3
sW

2 1dgR
SM1dgR

NP. ~3.3!

In the above equations the21/21sW
2 /3 andsW

2 /3 are the tree
level contributions,dgL

SM anddgL
SM denote higher order cor

rections within the SM, whereasdgL
NP anddgL

NP parametrize
the contributions coming from new physics. Notice that,
general,gR only receives sub-dominant corrections~not pro-
portional to the top quark mass! in both the SM and in mos
new physics scenarios. In particular, the dominant SM c
tribution comes from the Goldstone boson diagrams runn
in the loop, Fig. 1, and it is given by

dgL
SM'A2GFmt

4i E d4k

~2p!4

1

~k22mt
2!2k2

5
A2GFmt

2

~4p!2
.

~3.4!

Therefore, adding the KK modes we obtain

o-
ha-
ed
e

s
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dgL
NP'dgL

SM
„F~a!21…, ~3.5!

wherea5pRmt , and

F~a!5pRE dkEkE
2coth~kEpR!

~kE
21mt

2!2 YE dkEkE

~kE
21mt

2!2

52aE
0

`

dx
x2

~11x2!2
coth~ax! ~3.6!

is the ratio of the non-standard to the standard integrals~in
the Euclidean!. F(a) is, as expected, perfectly convergent.
can be expanded for smalla, yielding

F~a!'11a2S 2
1

3
2

4

p2
z8~2!2

2

3
log~a/p!D

'11a2S 0.809792
2

3
log~a! D , ~3.7!

wherez8 is the derivative of the Riemann zeta function. A
commented before, the logarithmic contribution can be
tained easily by using the four-fermion interaction at the lo
level and then cutting off the integrals atkE'1/a. This
model, in addition to the logarithmic contribution, provid
also the non-logarithmic piece, and the result reported ab
is valid for any value ofa. One important point about thi
result is that the additional contribution from the KK mod
is always positive, a fact which will be of particular impo
tance in the following phenomenological analysis.

A shift in the Zbb̄ couplings gives a shift inRb5Gb /Gh

@hereGb5G(Z→bb̄) andGh5G(Z→hadrons)] given by

Rb5Rb
SM

11dbV
NP

11Rb
SMdbV

NP
, ~3.8!

where

dbV
NP5

dGb

Gb
SM

'2
gL

~gL!21~gR!2
dgL

NP'24.6dgL
NP ~3.9!

gives the relative change toGb due to vertex corrections
coming from new physics,Gb5Gb

SM1dGb . Here, quantities
with superscript SM denote standard model values includ
complete radiative corrections. Note that non-vertex corr
tions are universal for all quarks and cancel in the ratioRb .

In recent years there has been a significant controv
surroundingRb , because for some time its measured va
was more than two standard deviations away from the
predicted in the SM. However, the present experimen
value is perfectly compatible with the SM@39#: Rb

exp

50.216460.00073, whileRb
SM50.215760.0002, although

the central value is still somewhat higher. Using these val
01600
-
p

ve

g
c-

sy
e
e
l

s

together with Eqs.~3.4!, ~3.5!, ~3.8!, and~3.9!, one immedi-
ately finds thatF(a)21520.2460.31. However, as com
mented before,F(a) is always larger than 1 since corre
tions from extra dimensions are always positive. In this c
one should be especially careful when estimating confide
levels~CL! for the bounds onF(a)21. For this purpose we
used the prescription of Ref.@40#, which provides more re-
liable limits than other approaches, and found the followi
95% CL limit of F(a)21,0.39. After evaluation of the
integral ~3.6! the previous limit translates into an upp
bound ona, a,0.56, which amounts to the following lowe
bound on the compactification scaleMc :

Mc.1 TeV. ~3.10!

If only 68% CL limits are required we obtainF(a)21
,0.11, a,0.26, andMc.2 TeV. Quite interestingly, these
one-loop bounds are comparable to those obtained from
level processes@25–29,7#.

In the above discussion we have not taken into acco
the effects of the gauge boson KK modes because their
tribution is suppressed by (mW /mt)

2. However, since
(mW /mt)

2;1/4, such contributions, even though formal
suppressed, could become numerically relevant and af
the obtained bounds. In addition, those contributions
present even if the scalar doublet lives in four dimensio
and, as a consequence, has no KK modes. Therefore, we
provide an estimate of their size.

At energies below the compactification scale one can
tegrate the KK modes of the gauge bosons and obtain
following four-fermion interaction for the third generatio
~in the eigenvalue basis and neglecting CKM mixings!,

Lgauge52
~pR!2

3

g2

2
~ b̄LgmtL!~ t̄ LgmbL!, ~3.11!

to be compared with the contribution from scalar modes
tained from Eq.~2.7! ~again neglecting CKM mixings!:

LYtb5
~pR!2

3

mt
2

v2
~ b̄LtR!~ t̄ RbL!. ~3.12!

As commented above and discussed in Ref.@30#, one can use
these effective Lagrangians to obtain the leading logarith
corrections toZ→bb̄. In order to achieve that we comput
the divergent part of the diagram shown in Fig. 2, where
symbol ^ denotes the insertion of any of these four-fermi

FIG. 2. Effective field theory diagram used in the computati
of the leading logarithmic corrections induced by four fermion
teractions.
2-5
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operators. It turns out that the different Lorentz structure
the two four-fermion interactions in Eq.~3.11! and Eq.~3.12!
gives an additional factor22 in the former case. Therefore
up to non-logarithm corrections, one can include the effec
the exchange of KK modes of gauge bosons by multiply
the effect of the scalar KK modes by a factor
12(mW /mt)

2, which gives a non-negligible correction. No
tice that due to the positive relative sign, inclusion of th
correction would lead to a 20% improvement in the bou
on Mc . Moreover, this correction will remain even in th
absence of scalar KK modes; in that case one can still p
a bound onMc of about 0.7 TeV.

IV. BOX CONTRIBUTIONS TO K-K̄ AND B-B̄ MIXING
AND THE DIVERGENCES

In the SM, the mixing between theB0 meson and its
anti-particle is also completely dominated by the top-qu
contribution. The explicitmt dependence of the box dia
grams is given by the loop function@24#

S~xt!SM5
xt

4 F11
9

12xt
2

6

~12xt!
2

2
6xt

2log~xt!

~12xt!
3 G ,

xt[
mt

2

MW
2

, ~4.1!

which contains the hardmt
2 term, i.e.,xt/4, induced by the

longitudinal W exchanges. The same function controls t
top-quark contribution to theK-K̄ mixing parameter«K . The
measured top-quark mass,mt5175 GeV, impliesS(xt)SM
;2.5.

The KK modes of the charged components of the dou
also contribute to this box diagram. The total dominant c
tribution, SM plus KK modes, can be obtained by substit
ing the propagator~3.1! in the box diagram, Fig. 3. Howeve
as discussed in the previous section, the modified propag
behaves as 1/kE for largekE , and therefore, the insertion o
two propagators of this type turns this modified diagram i

FIG. 3. Box diagram contributing toB-B̄ andK-K̄ mixings. The
tower of KK modes is represented by the dashed double lines.
01600
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UV divergent. On the other hand, the insertion of only o
modified propagator still yields a finite result.

We write the correction toS(xt) as

S~xt!5S~xt!SM1dS~xt!, dS~xt!5
xt

4
„G~a!21…,

~4.2!

where the functionG(a) is again the ratio of the non
standard to standard box integrals3

G~a!5~pR!2E dkEkE
3coth2~kEpR!

~kE
21mt

2!2 YE dkEkE

~kE
21mt

2!2

52a2E
0

`

dx
x3

~11x2!2
coth2~ax!, ~4.3!

G~a!52E
0

`

dx
x

~11x2!2
$112@ax coth~ax!21#

1@ax coth~ax!21#2%

5112~F~a!21!

12E
0

`

dx
x

~11x2!2
@ax coth~ax!21#2. ~4.4!

The divergence is contained in the last term. To evaluat
we cut off the integral atx'ns /a, wherens is related to the
scale at which new physics enters to regulate the five dim
sional theory. In particular,Ms;nsMc andns@1. Then, af-
ter a change of variabley5ax the last term can be re-writte
as

2a2E
0

ns
dy

y

~a21y2!2
@y coth~y!21#2

'2a2E
0

ns
dy

1

y3
@y coth~y!21#2

'2a2@21.381361 log~ns!#, ~4.5!

3Notice that, even though the SM box integral is given exactly
the same expression as that of the SM vertex integral in the pr
ous section, their original structures are rather different. In part
lar, the box diagram contains two scalar propagators whereas
vertex diagram only contains one.
2-6
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where in the second expression we have assumeda!1, and,
in addition, in the last expression we have also takenns@1.
Combining this result with Eq.~4.4! and Eq.~3.7! we obtain

G~a!'11a2S 21.143142
4

3
log~a!12log~ns! D .

~4.6!

We have checked that the coefficients of the two logarith
log(a) and log(ns), can also be obtained by performing fir
the convergent momentum integrals and subsequently t
cating the divergent double series at;ns . However, this
latter method is technically far more complicated than
one presented here.

For moderate values ofa;0.2 andns;10 the new phys-
ics correction is only about 0.2. For more extreme values~for
instancea;0.6 andns;100), we find that the contribution
from extra dimensions to the functionG(a) is about 3. No-
tice also that, as discussed at the end of Sec. III, the pres
of diagrams with gauge boson KK modes could modify t
bounds onMc by a factor of about 20%. However, given th
uncertainty in the calculation of the box diagrams due to
dependence on the scaleMs , estimating such effects seem
superfluous. The important point, however, is that the con
bution from extra dimensions to the functionS(xt) is always
positive.

We can use the measuredBd
0-B̄d

0 mixing to infer the ex-
perimental value ofS(xt) and, therefore, to set a limit on th
dS(xt) contribution. The explicit dependence on the qua
mixing parameters can be resolved by combining the c
straints fromDMB

d
0, «K , and G(b→u)/G(b→c). In Ref.

@30# a complete analysis of the allowed values forS(xt) was
performed by varying all parameters in their allowed regio
The final outcome of such an analysis is thatS(xt) could take
values within a rather large interval, namely,

1,S~xt!,10. ~4.7!

Since most of the errors come from uncertainties in theo
ical calculations, it is rather difficult to assign confiden
levels to the bounds quoted above. The lower limit is ve
stable under changes of parameters, while the upper l
could be modified by a factor of 2 by simply doubling som
of the errors.

Given that the standard model value forS(xt) is
S(xt)SM52.5, positivecontributions can be comfortably ac
commodated, whereas negative contributions are more
strained. As we have seen, extra dimensions result inpositive
contributions toS(xt); in fact one can obtain values tha
could approach the upper limit ofS(xt) only for rather small
values of the compactification scaleMc and large values o
the scale of new physics,Ms . It seems therefore that, a
present, the above bounds do not provide good limits onMc .
On the other hand, if future experiments combined with t
oretical improvements were to furnish a value forS(xt) ex-
ceeding that of the SM, our analysis shows that such a
crepancy could easily be accommodated in models w
large extra dimensions.
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V. CONCLUSIONS

We have studied, at the one loop level, the minimal e
tension of the SM with one extra dimension compactified
S1/Z2. Fermions live in 4 dimensions, while gauge boso
and the scalar doublet live in 5 dimensions and theref
give rise to a tower of KK modes. In the case of a sing
extra dimension the contribution of the infinite tower of K
modes leads to finite tree level predictions. We have inv
tigated whether this feature persists at the one loop level
considering two amplitudes which are enhanced by the t

quark mass, namely,Z→bb̄ andB-B̄ mixing.
The infinite tower of KK modes enters in the calculatio

of Z→bb̄ by modifying the propagator of the charged sc
lars running in the vertex diagram. This can be effective
taken into account by using a modified propagator for
scalars which for largek behaves as 1/k, instead of the ca-
nonical behavior of 1/k2. In spite of that the effect is finite
and calculable. The result, when compared with precise
perimental data onRb5Gb /Gh , is used to place stringen
limits on the compactification scale,Mc , Mc.1 TeV at the
95% CL, which are comparable to the bounds obtained fr
tree-level processes.

The box diagrams contributing toB-B̄ andK-K̄ mixings
contain two propagators of KK modes. The double sum o
KK modes amounts to the replacement of both propaga
by the aforementioned softer ones, a fact which increases
UV behavior of the diagram by two powers, and renders
divergent. Thus, due to such contributions the theory
comes non-renormalizable already at the one-loop level.
estimate their size one has to assume that the model is
bedded in a more complete theory which would provide
effective cutoff at scales larger thanMc . In practice, this can
be realized either by cutting off the infinite integrals at m
menta of order ofMs , the scale where new physics enters
regularize the five dimensional theory, or by truncating t
sum of KK modes at some value ofns , ns;Ms /Mc , with
ns expected to be order;100 or less. This way we can
estimate the correction induced by the extra dimension to
functionS(xt) which parametrizes the short distance phys

in B-B̄ and K-K̄ mixings. A phenomenological analysi
shows that 1,S(xt),10, while the SM value isS(xt)52.5.
This suggests that moderatepositive extra contributions to
S(xt) are still allowed. Since within the model we consid
the contributions toS(xt) from KK modes is always positive
and moderate in size, no interesting bounds can be obta
from this process. However, if in the future a value ofS(xt)
larger than the SM value is found, extra dimensions co
easily accommodate it.
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