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Spectrum of the U„1… staggered Dirac operator in four dimensions
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We compare the low-lying spectrum of the staggered Dirac operator in the confining phase of compact U~1!
gauge theory on the lattice to predictions of chiral random matrix theory. The small eigenvalues contribute to
the chiral condensate similarly to the SU~2! and SU~3! gauge groups. Agreement with the chiral unitary
ensemble is observed below the Thouless energy, which is extracted from the data and found to scale with the
lattice size according to theoretical predictions.
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I. INTRODUCTION
In recent years the spectrum of the Dirac operator in Q

and related theories has been studied in great detail,
regard, in particular, to its relation to chiral random mat
theory~RMT! @1# and, more recently, partially quenched ch
ral perturbation theory@2#. Both the distribution of the smal
eigenvalues and the spectral correlations in the bulk of
spectrum are described by universal functions that can
computed analytically in these theories. Universal in t
context means independent of dynamical details and o
dependent on certain global symmetries~and their spontane
ous breaking!. The spectral correlations are only univers
below a certain limiting energy, which is called the Thoule
energy@3# because of analogous situations first studied
disordered mesoscopic systems. This picture has been
fied numerically in great detail by lattice calculations for t
gauge groups SU~2! and SU~3! in four and three dimensions
and for the Schwinger model in two dimensions, see Ref.@4#
for a summary.

In this paper we study the staggered lattice Dirac oper
in quenched U~1! gauge theory in four Euclidean dimen
sions. The bulk spectral correlations of this operator h
been investigated earlier in Ref.@5#. Here, we concentrate o
the low-lying eigenvalues. We compare their distribution
predictions of chiral RMT and estimate the Thouless ener
Our study is not done merely for the sake of completene
We are also motivated by the fact that, because of the dif
ent topological structure of U~1!, the physics governing the
small Dirac eigenvalues may be different from the no
Abelian case.

The standard lattice action describing compact U~1!
gauge theory in 4D is given by

S$Ul%5b(
p

~12cosup!, ~1!

where b51/g2, Ul5Ux,m5exp(iux,m), and up5ux,m
1ux1m̂,n2ux1 n̂,m2ux,n for nÞm. For b,bc'1.01, the
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theory is in the confinement phase, exhibiting a mass gap
monopole excitations@6#. For b.bc , the theory is in the
Coulomb phase with a massless photon@7#. There are many
interesting questions concerning the order of the transi
between the two phases and the possibility of a nontriv
continuum limit forb→bc

2 @8#. Only the confinement phas
exhibits chiral symmetry breaking, which has been addres
in a number of recent numerical studies@9–11#. In the
strong-coupling limitb→0, chiral symmetry breaking fol-
lows rigorously from infrared bounds@12# and has also been
calculated explicitly@13#. The broken phase is characterize
by a chiral condensate that is determined by the small eig
values of the Dirac operator according to the Banks-Cas
relation @14#.

In Sec. II, we compute the Dirac spectrum in both phas
and investigate in more detail the properties of the sm
Dirac eigenvalues in the confinement phase. Section III d
cusses the Thouless energy that limits the universal reg
described by chiral RMT, and conclusions are drawn in S
IV.

II. SMALL DIRAC EIGENVALUES

The staggered Dirac operator is constructed from
gauge fields according to

Dxy5
1

2a (
m

@hm~x!Um~x!dy,x1m̂2H.c.#, ~2!

wherea is the lattice spacing, which we shall set to unity
the following, and thehm are the staggered phases. For t
purpose of comparing the spectrum ofD to RMT predic-
tions, we note thatD is in the symmetry class of the chira
unitary ensemble~chUE! of RMT because it has comple
matrix elements and no antiunitary symmetries.

The nonzero eigenvalues ofD come in pairs of6 iln with
realln . For convenience, we refer to theln as the eigenval-
ues. The spectral density of the Dirac operator is given b
©2000 The American Physical Society04-1
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r~l!5K (
n

d~l2ln!L , ~3!

where the average is over all gauge field configuratio
weighted by exp(2S) in the quenched theory. If chiral sym
metry is spontaneously broken, the vacuum is character
by a nonzero order parameter—the chiral condensate^c̄c&.
The Banks-Casher relation@14# states that

S[u^c̄c&u5 lim
«→0

lim
V→`

pr~«!/V, ~4!

whereV is the four-volume. The order of the limits in thi
equation is important. Note that the condensate is due to
accumulation of Dirac eigenvalues close tol50. The Dirac
operator can also have eigenvalues equal to zero, but th
not the case for the staggered Dirac operator at finite lat
spacing.

If the Dirac spectrum corresponds to one of the RM
universality classes and supports a nonzero value ofS, then
the distribution of the smallest Dirac eigenvalues is d
scribed by the microscopic spectral density@15#

rs
(n)~z!5 lim

V→`

1

VS
r (n)S z

VS D , z5lVS. ~5!

The quantityrs is a universal function that depends only o
the number of massless~or very light! flavors Nf and the
topological chargen, which is equal to the number of exa
zero modes ofD that are stable under small perturbations
the gauge field. The superscript (n) in Eq. ~5! means that the
average, according to Eq.~3!, is only over the configurations
with topological charges equal ton. In our case, we have
Nf50 since we studied the quenched theory. Furtherm
we take n50 because we are using staggered fermi
which do not have exact zero modes at finite lattice spac
@16#. This point has been discussed in Refs.@17,18#, and the
only situation where deviations from the result forn50 have
been observed with staggered fermions is the Schwin
model in two dimensions at very weak coupling@19#. On the
other hand, Neuberger’s overlap Dirac operator@20# allows
for exact topological zero modes on the lattice, and latt
simulations with this operator indeed find agreement with
RMT predictions fornÞ0 @21#.

The microscopic spectral density can be computed a
lytically. The prediction of the chUE of RMT for this quan
tity is, for Nf5n50, @22#

rs~z!5
z

2
@J0

2~z!1J1
2~z!#, ~6!

whereJ denotes the Bessel function. We also consider
distribution of the smallest eigenvalue ofD, for which the
RMT result forNf5n50 reads@23#

P~lmin!5
~VS!2lmin

2
e2(VSlmin/2)2. ~7!
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A comparison of lattice data with these predictions is on
sensible ifS.0; i.e., if there is a sufficiently strong accu
mulation of small Dirac eigenvalues in the vicinity ofl
50. In Fig. 1 we have plotted the spectral density of t
staggered Dirac operator in this region, computed on an3

36 lattice forb50.9 ~confinement phase! andb51.1 ~Cou-
lomb phase!, respectively. Clearly, a nonzero value ofS is
supported only in the confinement phase, and thus, the
lowing analysis will be done only for this phase.

In non-Abelian gauge theories, the accumulation of
small Dirac eigenvalues is usually attributed to the prese
of instantons. The argument is that the degeneracy of
exactly zero eigenvalues in the field of isolated instanton
lifted by interactions, leading to eigenvalue repulsion an
nonzero value ofS. The topological structure of U~1! gauge
theory in 4D is different, and evidence has been presen
@9# which suggests that magnetic monopoles account for
ral symmetry breaking in the Abelian gauge theory. Ho
ever, it is not quite clear whether the monopoles are re
the driving mechanism, or if disorder alone would be su
cient, because it is difficult to disentangle disorder a
monopole effects convincingly. Neither the rigorous arg
ments@12# nor the strong-coupling investigation@13# make
use of any explicit mechanism.

Let us turn to the analysis of our data. We have compu
the eigenvalues of the Dirac operator on lattices of size4,
64, and 8336 usingb50.9 in the confinement phase. T
compare the data to the RMT predictions, we determine
parameterS in Eq. ~4! by extrapolating the spectral densi
many level spacings away from zero tol50. This proce-
dure is completely independent of RMT. As a check,
have also determinedS via RMT. Using Eq.~7!, the expec-
tation value oflmin is given by

^lmin&5Ap/~VS!, ~8!

which allows us to determineS from the numerical value of
^lmin&. Together with the numbers of configurations per p
rameter set, the values ofS obtained from these two proce
dures are given in Table I. The two values ofS are in ex-
cellent agreement, except for the smallest lattice size, wh
the agreement is not perfect but is still within error bars.

In Fig. 2, we have plotted the microscopic spectral dens
and the distribution of the smallest eigenvalue for all thr

FIG. 1. Spectral density of the staggered Dirac operator on id
tical scales in the confinement~left! and Coulomb~right! phase,
respectively. The average is over 20 configurations. A nonz
value ofS is supported only in the confinement phase.
4-2
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lattice sizes, along with the predictions of the chUE of RM
The lattice data forP(lmin) agrees perfectly with Eq.~7!.
The microscopic spectral density, Eq.~5!, is also described
well by RMT, Eq. ~6!, but the agreement breaks down f
large values ofz, with a critical value ofz that increases with
lattice size. This is essentially the Thouless energy, to wh
we now turn our attention.

III. THOULESS ENERGY

As mentioned earlier, the small Dirac eigenvalues
only described by universal functions for energies below
limiting scale—the Thouless energy. In QCD, this scale

TABLE I. Summary of our simulations atb50.9. The param-
eterS was obtained by two different procedures as described in
text.

V Config. SBC SRMT

44 10,000 0.352~8! 0.345~2!

64 10,000 0.352~4! 0.353~2!

8336 3,745 0.353~3! 0.352~3!

FIG. 2. Microscopic spectral density~left! and distribution of
the smallest eigenvalue~right! of the Dirac operator for three dif
ferent lattice sizes. The histograms represent lattice data, and
solid lines are the RMT predictions.
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determined by the requirement that the inverse mass of
pion is equal to the largest linear size of the box with volum
V5Ls

33Lt , i.e., 1/mp'max(Ls,Lt) @24#. This can be trans-
lated toEc; f p

2 /(SLs
2) @25,26#, where f p is the pion decay

constant and, in our case, we haveLs>Lt . A dimensionless
estimate of the Thouless energy is obtained by expressinEc
in units of the mean level spacing atl50, given by D
51/r(0)5p/(VS). This yields

uc[
Ec

D
;

1

p
f p

2 LsLt . ~9!

To test this prediction, we follow Ref.@27# and construct the
disconnected scalar susceptibility, defined on the lattice

x latt
disc~m!5

1

N K (
k,l 51

N
1

~ ilk1m!~ il l1m!L
2

1

N K (
k51

N
1

ilk1mL 2

, ~10!

wherem is a valence quark mass. The corresponding RM
result for the quenched chUE withn50 reads@28#

xRMT
disc ~u!

VS2
5u2@ I 0

2~u!2I 1
2~u!#@K1

2~u!2K0
2~u!#, ~11!

whereu5mVS andI andK are modified Bessel and Hanke
functions. The quantityx latt

disc should be described by Eq.~11!
for u,uc . The dimensionless Thouless energy can be
tracted by inspecting the ratio@27#

ratio5~x latt
disc2xRMT

disc !/xRMT
disc . ~12!

This quantity should be zero foru,uc , and deviate from
zero foru.uc . The data for this ratio, computed atb50.9
for our three lattice sizes, are shown in Fig. 3. Consider fi
the left plot. It is clear thatuc increases with increasing lat
tice size. To test the scaling predicted by Eq.~9!, the same
data are shown in the right plot, but now plotted vers

e

the

FIG. 3. The ratio of Eq.~12! plotted versusu ~left! andu/(LsLt)
~right!. The deviations of the ratio from zero, for very small valu
of u, are well-understood artifacts of the finite lattice size and fin
statistics@27#.
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u/(LsLt). The data for different lattice sizes now fall on th
same curve, confirming the predicted scaling behavior of
Thouless energy.

IV. DISCUSSION

We have shown that in the confinement phase of comp
U~1! gauge theory on the lattice, the distribution of the sm
Dirac eigenvalues is described by universal functions t
can be computed in chiral RMT. The limiting energy, abo
which nonuniversal behavior emerges, scales with the lat
size as expected.

The origin of the small eigenvalues in U~1! gauge theory
deserves further attention. The question may be less abo
mechanism in the strong-coupling limit, where it appears t
the disorder of the gauge fields could be sufficient. The
portant question is about a mechanism that could sus
chiral symmetry breaking for a large correlation leng
eventually leading to a confined QED continuum theory
b→bc

2 . There, U~1! monopoles could play a crucial role
Instantons appear to provide such a mechanism for SU~2!
and SU~3! non-Abelian gauge theories.
e

uc
.

v.

y

,

01450
e

ct
ll
t

e

t a
t
-
in
,
r

In the Coulomb phase, chiral symmetry is restored, so
critical value for the chiral phase transition,bc8 , cannot be
larger thanbc . However, we know of no strict argument th
says confinement implies chiral symmetry breaking, so i
possible, at least in principle, thatbc8,bc . ~In supersymmet-
ric theories, one can have confinement without chiral sy
metry breaking@29#.! Because the chiral condensate is d
rectly related to the distribution of small eigenvalues, t
chiral phase transition can be studied by observing the
tribution of, say, the smallest positive eigenvalue forb
→bc

2 @30#. This is another reason why it would be interes
ing to study this limit in future works.
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