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Spectrum of the U(1) staggered Dirac operator in four dimensions
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We compare the low-lying spectrum of the staggered Dirac operator in the confining phase of cofipact U
gauge theory on the lattice to predictions of chiral random matrix theory. The small eigenvalues contribute to
the chiral condensate similarly to the @Y and SU3) gauge groups. Agreement with the chiral unitary
ensemble is observed below the Thouless energy, which is extracted from the data and found to scale with the
lattice size according to theoretical predictions.
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[. INTRODUCTION theory is in the confinement phase, exhibiting a mass gap and
In recent years the spectrum of the Dirac operator in QCOmonopole excitation$6]. For 8> 8., the theory is in the
and related theories has been studied in great detail, wit@oulomb phase with a massless phof@h There are many
regard, in particular, to its relation to chiral random matrix interesting questions concerning the order of the transition
theory(RMT) [1] and, more recently, partially quenched chi- between the two phases and the possibility of a nontrivial
ral perturbation theor}2]. Both the distribution of the small continuum limit for 3— 8. [8]. Only the confinement phase
eigenvalues and the spectral correlations in the bulk of thexhibits chiral symmetry breaking, which has been addressed
spectrum are described by universal functions that can b a number of recent numerical studi€8—11. In the
computed analytically in these theories. Universal in thisstrong-coupling limit3—0, chiral symmetry breaking fol-
context means independent of dynamical details and onljows rigorously from infrared bound4.2] and has also been
dependent on certain global symmetriaad their spontane- calculated explicitlyf13]. The broken phase is characterized
ous breakiny The spectral correlations are only universalby a chiral condensate that is determined by the small eigen-
below a certain limiting energy, which is called the Thoulessvalues of the Dirac operator according to the Banks-Casher
energy[3] because of analogous situations first studied fofrelation[14].
disordered mesoscopic systems. This picture has been veri- In Sec. Il, we compute the Dirac spectrum in both phases,
fied numerically in great detail by lattice calculations for theand investigate in more detail the properties of the small
gauge groups S@) and SU3) in four and three dimensions, Dirac eigenvalues in the confinement phase. Section IlI dis-
and for the Schwinger model in two dimensions, see REf. cusses the Thouless energy that limits the universal regime
for a summary. described by chiral RMT, and conclusions are drawn in Sec.
In this paper we study the staggered lattice Dirac operatopy/.

in quenched 1) gauge theory in four Euclidean dimen-
sions. The bulk spectral correlations of this operator have II. SMALL DIRAC EIGENVALUES
been investigated earlier in R¢&]. Here, we concentrate on
the low-lying eigenvalues. We compare their distribution to The staggered Dirac operator is constructed from the
predictions of chiral RMT and estimate the Thouless energygauge fields according to
Our study is not done merely for the sake of completeness.

We are also motivated by the fact that, because of the differ- 1 E R
ent topological structure of (1), the physics governing the Dxyy=%a = [7,00Uu(X) 8y x1n—H-C], 2
small Dirac eigenvalues may be different from the non-
Abelian case. . . o wherea is the lattice spacing, which we shall set to unity in
The standard lattice action describing compadh)U  the following, and ther,, are the staggered phases. For the
gauge theory in 4D is given by purpose of comparing the spectrum Bfto RMT predic-
tions, we note thab is in the symmetry class of the chiral
S{U|}=ﬁ2 (1—cos,), (1) unitary ensembldchUE) of RM_T because |t_has complex
P matrix elements and no antiunitary symmetries.

The nonzero eigenvalues Bfcome in pairs ofti\,, with
where B=1/g? U =U, ,=explé,), and 6,=6,, real\,. Forconvenience, we refer to thg as the eigenval-
+ Oxsjv— Oxipu— Ox, fOr v#pu. For B<p.~1.01, the ues. The spectral density of the Dirac operator is given by
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where the average is over all gauge field configurations, =09 =11

weighted by exptS) in the quenched theory. If chiral sym- 200 | y_gs.g 200 - y_goxe
metry is spontaneously broken, the vacuum is characterize:

by a nonzero order parameter—the chiral conden&ate. oo r 1o
The Banks-Casher relatiqi4] states that 0 ! ! o — _.—"L-P—‘“‘I—ﬁ
0 0.1 A 0.2 0 0.1 A 0.2
=lvwil= ilToJlinwwp(g)/v’ (4) FIG. 1. Spectral density of the staggered Dirac operator on iden-

tical scales in the confinemefeft) and Coulomb(right) phase,

. ; Lo . respectively. The average is over 20 configurations. A nonzero
whereV is the four-volume. The order of the limits in this value of$, is supported only in the confinement phase.

equation is important. Note that the condensate is due to an

accumulation of Dirac elg_envalues closexts:0. The Dirac . A comparison of lattice data with these predictions is only
operator can also have eigenvalues equal to zero, but this Lnsible ifS>0; i.e., if there is a sufficiently strong accu-

not the case for the staggered Dirac operator at finite lattic?nulation of small Dirac eigenvalues in the vicinity of

spacing. =0. In Fig. 1 we have plotted the spectral density of the

unil\];etgzli?'r;gsi%icg#énsﬁorrgzgogﬂznt;e%nsaﬁfﬁtgﬁeiMTstaggered Dirac operator in this region, computed on &n 8
y PP ' X 6 lattice for3=0.9 (confinement phasendB=1.1(Cou-

the distribution of the smallest Dirac eigenvalues is de- . .
scribed by the microscopic spectral dengits] lomb phasg respectively. Clearly, a nonzero value Xfis

supported only in the confinement phase, and thus, the fol-

lowing analysis will be done only for this phase.

. Z=\V3. (5) In non-Abelian gauge theories, the accumulation of the
small Dirac eigenvalues is usually attributed to the presence
of instantons. The argument is that the degeneracy of the

The quantityps is a universal function that depends only on €xactly zero eigenvalues in the field of isolated instantons is

the number of masslegsr very light flavors N; and the lifted by interactions, leading to eigenvalue repulsion and a

topological charger, which is equal to the number of exact nonzero value ok. The topological structure of (@) gauge

zero modes oD that are stable under small perturbations oftheory in 4D is different, and evidence has been presented
the gauge field. The superscript)(in Eqg. (5) means that the [9] which suggests that magnetic monopoles account for chi-
average, according to E¢B), is only over the configurations ral symmetry breaking in the Abelian gauge theory. How-

with topological charges equal te. In our case, we have €Ver, it is not quite clear whether the monopoles are really

N;=0 since we studied the quenched theory. Furthermordhe driving mechanism, or if disorder alone would be suffi-

we take »=0 because we are using staggered fermion&ient, because it is difficult to disentangle disorder and

which do not have exact zero modes at finite lattice spacingonopole effects convincingly. Neither the rigorous argu-

[16]. This point has been discussed in R¢lZ,18, and the ~ Ments[12] nor the strong-coupling investigatia3] make

only situation where deviations from the result for 0 have ~ Use of any explicit mechanism.

been observed with staggered fermions is the Schwinger L€tus turn to the analysis of our data. We have computed

model in two dimensions at very weak couplifig]. On the  the eigenvalues of the Dirac operator on lattices of size 4

other hand, Neuberger's overlap Dirac operdd] allows 6" and &x6 using8=0.9 in the confinement phase. To

for exact topological zero modes on the lattice, and latticecompare the data to the RMT predictions, we determine the
simulations with this operator indeed find agreement with theParametei in Eq. (4) by extrapolating the spectral density

RMT predictions fory#0 [21]. many level spacings away from zero X&=0. This proce-

The microscopic spectral density can be computed angdure is completely independent of RMT. As a check, we
lytically. The prediction of the chUE of RMT for this quan- have also determinell via RMT. Using Eq.(7), the expec-

tity is, for Ny=v=0, [22] tation value of\ ,,;, is given by

Aminy =7/ (VE), (8)

which allows us to determing from the numerical value of

(Nmin)- Together with the numbers of configurations per pa-

where J denotes the Bessel function. We also consider thg;meter set, the values &f obtained from these two proce-
distribution of the smallest eigenvalue Bf, for which the 4 res are given in Table I. The two valuesDfare in ex-
RMT result forN;=»=0 reads23] cellent agreement, except for the smallest lattice size, where
) the agreement is not perfect but is still within error bars.
PO\ = (V)" Nmin o (VENiy2)? 7) In Fig. 2, we have plotted the microscopic spectral density
min 2 ' and the distribution of the smallest eigenvalue for all three

p(V)(Z)= Iimi p(V) i
s VY Vv,

V—oo

z 2 2
ps(2)=5[30o(2) +31(2) ], (6)
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TABLE | Summary of our Slmu|atI0nS agzog The param_ _|| T LR =T {II_ [ T LR | TT |||||§ i
eter, was obtained by two different procedures as described inthe 4 |- »4¢ 5, — 4 24 o5
text o | © 64 i o L ® 6 ]

’ o3 | <838 s 7 | S L o 8%x6 &

s [ L= 1 80 e ]

Vv COﬂfIg EBC ERMT 2 . o z ] 2 i: _

L S5 L ;-

4* 10,000 0.35(8) 0.3452) I RICCI i ]

6% 10,000 0.3504) 0.3532) 0 s 0 _

8°x6 3,745 0.358) 0.35323) L cnonl ol ) T R
0.1 1 10 0.001 001

0.1 1
u u/(LL,)
FIG. 3. The ratio of Eq(12) plotted versus (left) andu/(LgL,)
(right). The deviations of the ratio from zero, for very small values

of u, are well-understood artifacts of the finite lattice size and finite
statistic[ 27].

lattice sizes, along with the predictions of the chUE of RMT.
The lattice data folP(\,,,) agrees perfectly with Eq.7).
The microscopic spectral density, E&), is also described
well by RMT, Eq. (6), but the agreement breaks down for
large values of, with a critical value ofz that increases with

lattice size. This is ess‘?”“a”y the Thouless energy, to Whlcr(]jetermined by the requirement that the inverse mass of the
we now turn our attention.

pion is equal to the largest linear size of the box with volume
V=L3XL,, i.e., Im,~max(s,L;) [24]. This can be trans-
IIl. THOULESS ENERGY lated toE,~f2/(3L2) [25,26, wheref, is the pion decay
As mentioned earlier, the small Dirac eigenvalues aréonstant and, in our case, we hdvg=L,. A dimensionless
only described by universal functions for energies below £Stimate of the Thouless energy is obtained by expredsing

limiting scale—the Thouless energy. In QCD, this scale idn units of the mean level spacing at=0, given by A
—1/p(0)=m/(VS). This yields

py2) ] 40 - .
= . E 1
0.4 4 P £=09 1 —_C T ¢2
u . 30 L Vedt ] Ue A IR 9
03 7 i ]
02 E =0 ‘ — To test this prediction, we follow Ref27] and construct the
p=09 ] - 1 disconnected scalar susceptibility, defined on the lattice by
) 7 10 —
0.1 v=d+ ' 1
Py T N BT ol v 11 : dis _1 % 1
0 5 10 _15 20 0 0.02, 0.04 Xlatt m)_N =1 )G+ m)
puz) 1 a200F E 1 < 1 >
04 1 POLE £=09 1 -=l > : (10
1 1500 v=6+ N\ =1 Ierm
03 & r ]
] 100 F 3 wherem is a valence quark mass. The corresponding RMT
02 oo E C ] result for the quenched chUE with=0 readd28]
0.1 5;6; 3 50 .
[ ] i ] disc
:I vl b by |: P T R N R SR - XRMT(U)
O E T o .15 20 % 0005 , 001 V—22=u2[lg(u)—If(u)][Ki(u)—Kg(u)], (11)
E ] = ™
Pola) £ ] P(F))\::)E _,e 1 Whereu=mVX andl andK are modified Bessel and Hankel
0% F 1 400p g;ngs—Q functions. The quantity(° should be described by E€L1)
03 7 300 E for u<u,. The dimensionless Thouless energy can be ex-
1 c ] tracted by inspecting the ratj@7]
02 g 200 | =
01} oogmed 100 E ratio= (xfi— xan)/ X (12
Feci il iy, ] N R ]
% 5 10 _ 16 20 % 0002 , 0004 This quantity should be zero far<u., and deviate from

min

zero foru>u.. The data for this ratio, computed gt=0.9
FIG. 2. Microscopic spectral densit§eft) and distribution of for our three lattice sizes, are shown in Flg 3. Consider first
the smallest eigenvalugight) of the Dirac operator for three dif- the left plot. It is clear thati. increases with increasing lat-
ferent lattice sizes. The histograms represent lattice data, and thiice size. To test the scaling predicted by E9), the same
solid lines are the RMT predictions. data are shown in the right plot, but now plotted versus

014504-3



B. A. BERG, H. MARKUM, R. PULLIRSCH, AND T. WETTIG PHYSICAL REVIEW D63 014504

u/(LsL,). The data for different lattice sizes now fall on the  In the Coulomb phase, chiral symmetry is restored, so the
same curve, confirming the predicted scaling behavior of theritical value for the chiral phase transitiof,, cannot be
Thouless energy. larger thanB. . However, we know of no strict argument that
says confinement implies chiral symmetry breaking, so it is
IV. DISCUSSION possible, at least in principle, thAf <. . (In supersymmet-

c theories, one can have confinement without chiral sym-

. . rj
We have shown that in the confinement phase of Compa#]etry breaking[29].) Because the chiral condensate is di-
U(1) gauge theory on the lattice, the distribution of the small ectly related to the distribution of small eigenvalues, the

Dirac eigenvalues is described by universal functions thaj hiral phase transition can be studied by observing the dis-

can be computed n ch|raI.RMT. The limiting energy, abov.etribution of, say, the smallest positive eigenvalue {Br
which nonuniversal behavior emerges, scales with the lattice

. = B. [30]. This is another reason why it would be interest-

size as expected. L e s
The origin of the small eigenvalues in(1) gauge theory ing to study this limit in future works.

deserves further attention. The question may be less about a
mechanism in the strong-coupling limit, where it appears that
the disorder of the gauge fields could be sufficient. The im- This work was supported by the U.S. Department of En-
portant question is about a mechanism that could sustaisrgy under contracts DE-FG02-91ER40608 and DE-ACO02-
chiral symmetry breaking for a large correlation length,98CH10886, the RIKEN BNL Research Center, and the
eventually leading to a confined QED continuum theory forAustrian Science Foundation under project P11456. We
B— B . There, U1) monopoles could play a crucial role. thank C. Adam, T. S. BiroU. M. Heller, E.-M. ligenfritz, M.
Instantons appear to provide such a mechanism fof28U |I. Polikarpov, K. Rabitsch, W. Sakuler, S. Shatashvili, and J.
and SU3) non-Abelian gauge theories. J. M. Verbaarschot for helpful discussions.
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