PHYSICAL REVIEW D, VOLUME 63, 014502

One loop calculation of the SUSY Ward-Takahashi identity on the lattice with a Wilson fermion
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The one loop correction to the SUSY Ward-Takahashi identity is calculated on the lattice with a Wilson
fermion. The supersymmetry on the lattice is broken explicitly by the gluino mass and the lattice artifact. We
should fine-tune the parameters in the theory to the point given by the additive mass correction in order to
eliminate the breaking effect of the lattice artifact. It is shown that the additive mass correction appearing from
the SUSY Ward-Takahashi identity coincide with that from the aliiél )g symmetry, as suggested by Curci
and Veneziano. Two important symmetries of the super Yang-Mills theory can be recovered simultaneously in
the continuum with a single fine-tuning. The operator mixing of the supercurrent is also investigated. We find
that the supercurrent mixes only with a gauge-invariant curieptwhich is related to the gamma-trace
anomaly.
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[. INTRODUCTION ized on the lattice with the Wilson plaquette action for the
gluon and the Wilson fermion action for the gluino. The
There has been great progress in the nonperturbative useource of this symmetry breaking is classified into the intro-
derstanding of the low-energy behavior =1 supersym- duction of a gluino mass which cannot be forbidden in the
metric (SUSY) QCD [1]. The analysis is based on global Wilson fermion and the lattice artifacts of discretization.
symmetry and the holomorphy of the superpotential and wdhis explicit breaking effect of the lattice artifacts is given
can derive the nonperturbative form of the superpotentialby irrelevant operators in the Ward-Takaha@NT) identity
This is quite satisfactory when we investigate the vacuunand vanishes in the continuum at tree level. However, when
structure of the theory. However, when it is required to un-a quantum correction comes into play this term usually pro-
derstand the low-energy particle spectrum, including excitedluces an additive correction. It is required to fine-tune sev-
states or the influence of the Klar potential, this method is eral parameters of the theory in order to recover the symme-
insufficient and some other nonperturbative method is retry in the continuum. Although this fine-tuning should be
quired. performed independently for each symmetry, we have only
The lattice regularization when applied to a supersymmeteone parametefgluino masg in N=1 SYM which we can
ric theory breaks its supersymmetry explicitly. This is mainly freely tune. It was discussed by Curci and Venezigsjdahat
caused by the artifact of the lattice regularization itself andooth symmetries are restored simultaneously with a single
the fermion problem on the lattice. However the ability of fine-tuning of the gluino mass to the chiral Ugldymmetric
the lattice field theory to perform the path integration non-point. Several Monte Carlo studies of SYM theory have been
perturbatively with the Monte Carlo method is so fascinatingdone along this ling6—11] to reproduce the prediction of the
that several efforts have been made to resolve the difficultjow-energy effective theor{12,13.
of SUSY on the lattice. These attempts are classified into two In this paper we formulate the=1 SYM theory on lat-
types. One is to realize a SUSY on the lattice which corretices with the Wilson plaquette and the Wilson fermion ac-
sponds to the ordinary supersymmetry in the continuum limition according to Refi5]. We calculate the one loop correc-
[2—4]. Although this method is beautiful in construction and tion to the Ward-Takahashi identity of both the SUSY and
can extract a peculiar feature of the model due to supersymd(1)g symmetry perturbatively in the gauge-variant Green
metry before taking the continuum limit in principle, it is function. It is shown that the additive mass correction ap-
applicable only to the free Wess-Zumino model up to now.pearing from the SUSY WT identity coincides with that from
In order to treat theN=1 supersymmetric Yang-Mills the axial U(1k symmetry as was suggested. This means that
(SYM) theory, whose component fieldgluon and gluing  both symmetries of the super Yang-Mills theory can be re-
are forced to stay at different placélnks and sites on  covered simultaneously in the continuum with a single fine-
lattice to keep the gauge symmetry, we need the seconuining of the gluino mass. We also investigate the mixing
method. In this method we do not persist in the supersymbehavior of the supercurrent with the on-shell condition for
metry and discretize the theory straightforwardly making usegluino momentum and mass. The supercurrent mixes with
of the well-known actions on the lattice. The SUSY is recov-the gauge-invariant operat®y, as was predicted in Ref5].
ered only in the continuufB]. This restoration of supersym- This current is related to the gamma-trace anomaly of the
metry is not automatic and the discussion in Hé&f.is as  supercurrent. An extra mixing with gauge-variant operators
follows. occurs too. This is because we used the gauge-variant Green
The SYM theory has two important global symmetries infunction in our calculation. However, these extra mixings
the continuum. One is supersymmetry and the other is axialanish by setting the renormalized gluino mass to zero to-
U(1)r symmetry which is broken by the anomaly. Both gether with the on-shell condition.
symmetries are broken explicitly when the theory is regular- This paper is organized as follows. In Sec. Il we introduce
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the lattice SYM action and the Feynman rules relevant for €103~ 1. (2.6)

the one loop calculation. In Sec. lll we define the super

transformation on lattice and give the concerning SUSY WT  Weak-coupling perturbation theory is developed by writ-

identity. The WT identity forU(1)g symmetry is also given ing the link variable asJ, —eigA (x*+#12) and expanding it

in this section. Sections IV and V are devoted to the calcuin terms of gauge coupllng We adopt a covariant gauge

lation of quantum correction at one loop level for the axialfixing with a gauge parameter defined by

and SUSY Ward-Takahashi identity. Our conclusion is sum-

marized in Sec. VI. 1 a 1.
The physical quantities are expressed in lattice units and SGF:; 2a VAL Nt oM

the lattice spacin@ is suppressed unless necessary. We take

the SUN,) gauge group with the gauge coupliggthe gen-  we seta=1 in this paper. The ghosts do not contribute to
eratorT?, and the structure constafft’®. The normalization our present calculation at one loop level. The gluon propa-

2

2.7)

is given as trT2T?) =3 5. gator can be written as
II. ACTION AND FEYNMAN RULE ab 4 Sian/Z sinp,/2
. . L. ,uv(p): E 5/.“/_(1_ (X) . ab
The SYM theory is given as a minimally gauge coupled 4 sirf p/2 4 sirf p/2

massless adjoint Majorana fermion system in the continuum. (2.8
In this paper we adopt the following lattice regularization

rocedurd5]. The gauge part is given by a standard four-Where sifp2== , sifp,/2.
gimensioﬁ[al]Wilsongpla?qugtte acti%n 4 The free gluino propagator is the same as that of the Dirac

fermion on the lattice,

Syuon= > > —iRetr(u Up.o Ul - ut) — —i3 v, sinp,+W(p)
A P SEP) = (VAP PP~ P))y = S,
(2.1) 3 ,Sinf p,+W(p)
(2.9
The gluino part is given by the Wilson fermion,
where
S Et[1_< )(=1+y,)U(Mg(n+ UL (n)
ino= r=y(n)(—r n)(n n
gluino™ < 2 VU umint U, W(p)=M+r2>, (1—cosp,). (2.10
Y73
1 -
+topntp)(—r- Y)UL(M#(n)U,(n) We set the Wilson parameter=1 in this paper. A peculiar
feature of the Majorana fermion is that the propagators
— which connect tway’s or two ¢’s give the nonzero contri-
+(M+4r) () g(n) bution
_ b
= 6~ + 30U Mg+ UL GHPIP(=P)=FPI=O)
— (#*(p p))=C"'SE(p). (2.1
+(M+4r)g(n)g(n)], (2.2

In order to calculate the one loop correction to the SUSY
WT identity we need two kinds of gluon-gluino interaction
vertices

where gluino fieldy= ¢2T? is the adjoint representation of
the gauge group and satisfies the Majorana condition,

y=yC=Cy’, Y=yC=yT(-C™Y). (2.3

1
b,
) , o 5 °(k p)=— gfabc( yﬂcosi(—anLpM)
The charge conjugation matrix is given &= y,y,. We

used this condition in the second equality of E2}2). Our vy 1
matrix convention is as follows: —ir sinz(—k/ﬁ P (s (2.12
( 0 —m) (0 1) 1
Yi=\|. i v Ya=T , b,cd _ bd dereb
" lidt 0 10 V5or(k,p)= 8gz(ff"cefe + fadefe ‘“)[IYMSIHZ
1 0 1
YS=Y172Y3¥4T | 4| (2.9 X(—k“+pu)—rcos§(—kﬂ+pﬁ) S,
1 (2.13
U“Vzi[yﬂ’y”]’ 29 and three gluon self-interaction vertices,
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P v Xa(n)= =12 tr(y(n) ysU ,(n)ge(n+ p)U}(n)
Vi (k,p) AN C 1 _ N
3 + () ysU ,(n—w)p(n—p)U,(n—w)
@ —2y(n) ys¢(n)). (35
Pk~ k P yd(p) V. is a backward derivative) is some operator, and(n)

is a localized transformation parameter. The trace is taken for
the color indices only.

On the other hand there are several choices for the defi-
nition of the supertransformation on the lattice. The restric-
tion is only to recover the proper form in the continuum
limit. Adding to this condition we require the supertransfor-

Vi (k, p)

AL(h)
(b)

S le mation to commute with the parity transformation on the
A;(p) A lattice as in the continuum,
63t (k. 1) " Y(X,0)— PP 1) = yo( = X,1),
t — . - . — .
A%k (X, 1) — " (X",0) = (=X, 1) v, (3.9
u(

(© - PP -
Uo(X,1)—=Ug (X", 1) =Ug(—X,t),
FIG. 1. Quark-gluon vertices needed for our one-loop calcula-
tons. U(X,) = UE(XP ) = Ul(=x—k,t).

(3.7)

1
b _ b H
G35,k p)=3igf* C( Syp COS5 SINZ (P 1), Inbthis papg_r we adopt the following definition to satisfy the
above conditions:
I 1
+3,, coszsins (k—p),+ 3,

— 1
22 80U (M =19 &, 5[UMUM+U, e+ )], (3.9

P. .1
XCOSTSIniU—k)p . (2.149 1

3¢U () =—ig &y, 5 (UL (n)h(n)+ g(n+m)U,(n)),
Our assignments of momentum and color factors for the ver-

tices are depicted in Fig. 1. 39
1

I1l. AXIAL AND SUSY WARD-TAKAHASHI IDENTITY 5§¢/f(n)= - EUMVEPW(I’I), (3.10

ON LATTICES

_ 1

Thep(l)R transformation is given as an axial rotation of 6§¢(n):§§aMPW(n), (3.1)

the gluino field,
Su=iaysp 5Ezia$y5 (3.) whereé, Eare fermionic transformation parameters satisfy-

ing the Majorana condition. For the field strend®, we
with a rotation parametex. The corresponding axial Ward- employ the definition with clover plaquette,

Takahashi identity is given by 4

1
((V ,4i5,(n)O0)y=2M(D(N) O)+(Xa(n)O) Pu(n)=7 .21 %(Uw(n)—urﬂv(n)), (3.12
50 A A
~\ Sa)/" B2 UL, (M=U,mU,(n+wUln+nuln),
(3.13

where the axial currenjt,, and the symmetry-breaking terms L A
Dp, Xa are Uz =U, (MU} (n=u+»Uj(n-pw), (3.14

IsuM =@My, 75U, (Mg + UL, By n)=Ul(n—m)UT(n—a-7)
Da(n) =tr((n) ys(n)), (3.4 XU, (n=p=1)U,(n=7), (3.19
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U =Usn= U=V = Zig S Ly I -+ )
“

(3.16
X g+ wtr((T3,TPTU ,(n) TU T (n
This definition is slightly different from the original ori&]. vt JUL(MTU,(n)
By transforming the vacuum expectation value of some +[y#¢//a(n)]$b(n)(r+ Y,)95(n—w)

operator
Xtr(( T3, TPJUL(n—p)TU ,(n— )},

<O>:J dwa(’)e_ gluon™ Sgluino (317) (32@
where H ,, is given by a subtraction between the clover

with a localized transformation parameter we find the SUSYjgats
WT identity on the lattice,

1
50 H(M) = g [WU (M = U, (M) + (Ug ()
((V ,8,(M)O)=M(Dg(n) O) +(Xg(n) O) — s ¢
_U;rl,,u.v(n))_(UZ,p,V(n)_U;,/.Ly(n))

3.1
(3.18 ~ Uz, (n)—UL,,(n)]. (3.26

where the supercurrei®, and the gluino mass terig be- ] @) (3
comes Here we notice thaXg”’, Xg’ come from the pure gauge

part andX(l() ) X(34) are originated from the gluino action.
1 A EspeciallyX is given by transforming the gluino field in
SuM==5 2 0,7, P (UM +DULN e wilson torm. oo
e At tree level the breaking terms due to the Wilson fermion
+P,,(n+m)UT (M g(n)U,(n), 319 X, X represent th&)(a) irrelevant operator and those
from the plaquette actiok?), X§) represent th&(a?) op-
erator. The SUSY WT identity is recovered in the continuum
DS(n)zzv T potf(Py(N)¢h(N)). (320 \ith the gluino mass set to zero since all the irrelevant op-
. erators vanish and the lattice supercurrgp(n) gives the

The explicit SUSY breaking teriXs is given by a sum of ~continuum form

four terms
S, (N)——=2, 0,7, tH(F,.¥). (3.27
Xs(n) =X () + X () +XP(m) +X§(n) (323 u(M) == 25 057, (P
with However, at one loop order every term gives the finite con-

tribution and the symmetry restoration becomes nontrivial.
Derivation of the Feynman rules for the supercurrent and
#(n) breaking terms is a straightforward but tedious task and the
results are very complicated. We omitted them in this paper.

XPm=2> ro,, tr[ P,,(N)

upo

1
_ = T
5> Uu(mi(n+p)U () IV. ONE LOOP CORRECTION TO AXIAL
WARD-TAKAHASHI IDENTITY

1
- E(UL(H—M))w(n—M)UM(n—M)}] , (3.22 In this section we calculate the one loop correction to the
axial Ward—Ta_kahashi identity. We consider the WT identity
, 1 . with O=y(y) ¥(2):
X=X S eunporuys UL Y(N)

0=((V i 5.(M)Y(Y) $(2)) —2M(D AN $(Y) $(2))

B R R — (XA (MUY D) + 50 v THD)

KU Ppon=p), 829 80 (Y P 75 @1
X&my=2 y, tf(U,L(n—M)lﬁ(n)UL(n—M)Hw(n—M) We calculate the quantum correction to each Green functions

uv in the identity. Although our fermion is Majorana the one

+ loop correction becomes the same as that for the Dirac fer-
+U (N g(MU,(NH,,(n+w) mion system[14,15 except for the color factor. One loop

—2¢p(n)H ., (n)), (3.249  contributions to the Green function§(V ,js,)¢#) and
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1y gence is subtracted in the first term of Hg.5. We can
- evaluate it by a simple Taylor expansion arourdp(M)
L+p =(0,0,0). Meanwhile the second term should be calculated
Ry, carefully with some IR cutoff. In this paper we introduce a
k/ NP gluon mass\ into the gluon propagator inside the loop as an

©

IR cutoff.! We can evaluat& " quite simply with a Taylor

expansion in terms ofk(p,M) keepingX\ finite,

aT™O;N)

; TRk p, M) =TRHO0N) + K, —— ——+ -,
Y
(4.6
ko NP conty - ; At
@ where T®"(0;\) contributes to the renormalization of the

operator and the remaining terms &péa) errors.
FIG. 2. One loop diagrams which contribute to the operator In this scheme the vertex corrections are given as follows:
vertex correction in the axial Ward-Takahashi identity.

=]jsu:Da,Xa for the first diagram and = j5,, , X, for the remain- gZ [ ()\a)Z
ing three. Tpo=1+ PNC —|Og—2—6977 , 4.7
o v

<XA¢//Z> are given by the four diagrams in Fig. 2. One loop

[ 2 ra)?
level full Green functions become To—1+ 12772 N —4 o ( 2) +2.5851,
i
' 7 - ) 4.8
<(VMI5M)¢(k)¢(p)>fu"=ml(k+ P) . TAYuYs 4.8
m
2
z Xa=g—Nc(8-664), 4.9
X—— 4.2 1672
ip+z M’
m
z xoe-d N (—19.285 (4.10
X (0P = i+ D), Xa7, 75 RIET
m
2
Z2 Xo=——N.(102.8694 4.19)
+ (XM +Xg) vl ———— 0 1672 ¢ : : :

ip+z.'™M’

4.3 Numerical errors of the finite parts in this section are in the
_ last digit written. The gluino wave function and mass renor-
The one loop correction tdDA4) is given by the first malization factors are evaluated by the quantum correction to

diagram in Fig. 2, the gluino propagator,
- Z> Z, 2 [ (ra)?
D k full — T . — 9
(Dath(K)4(p)) Tz P gtz Zy=1+ 7 —Nel log——-+15.641,  (4.12
(4.9 i
In this paper we adopt the lattice schefié] and evalu- 2 —14 9? N —3 | (Na)? 8.584 41
ate the renormalization factors. This renormalization scheme m— 1602 © o9 2 : ) (4.13

is given by a Taylor expansion around zero external momen-

tum and quark mask=p=M=0 and a zero momentum We sum up the one loop level Green functions in the form of
subtraction. We start by rewriting the quantum correction ashe WT identity in order to see the mixing behavior of the

operators.
Ta(K,p M) =[Ta(k,p.M) = Tk, p, M) T+ Tk p, M), 7
.5
cont

. ) S The IR cuto_ﬁ)\ is canceled if we move to the modified minimal
whereT,""is a continuum form of quantum correction inte- subtraction MS) scheme[16,17. The renormalization factors

grated in tfgoem lattice loop momentum betweernn/a and | hich connect the operators evaluated on lattice to that oM8e
wl/a. This T, is introduced to treat the infrared divergence scheme are independent of the gluon massid are consistent with

of the massless theory which appearsTig at k=p=M those calculated with other IR cutoff-like external momentum
=0. SinceT3™ has the same IR singularity, the IR diver- scheme$18] at the one loop level.
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Ga={(V 4i5,) $(K) ()M = 2M(D (k) ()" — (Xah(K) o p) )"

- Z; . ( ( Xml  Xo Z,
—m H(k+pP)(TA=X2) ¥, ¥5— 2| M| Tp+ 7) + 7) s m
=ZoZa N3 5,) WO ()R = ZoXa( (9,1 5,) Y(K) ()= 2M (D At(K) (D)), (4.14
|
where suffixR means the renormalized quantity axigl rep- — i T _ >
resents a mixing between the explicit breaking term and the 0= (@l su(M)YY)¥(2))r— 2MR(DAM YY) ¥(2))r
axial vector current. Here we notice th¥t, is an O(g?) + 80y Ys( (M) (2) )+ B AU(Y) h(N))rYs.  (4.22

qguantity and we will make use of the relatiafyX,= X,
+O(g* in the following discussion.
The gluino mass is renormalized as V. ONE LOOP CORRECTION TO SUSY
WARD-TAKAHASHI IDENTITY

Mg=Z(M—3), 4.1
R=Zm ( 2 (419 We consider the following SUSY WT identity witkd®
whereX is an additive mass correction =Ady)¥(2):
2 —_— —_—
20:_%: 12 2NC(_51_434], (4.16 0:<(Vﬂsﬂ(n))Aa(y)¢(Z)>_M<Ds(n)Aa(Y)¢(Z)>
T — _
—(Xs(MALY)¥(2))+ 0ny v L W(Y) ¥(2))
which gives the critical hopping parameter corresponding to 1
the chiral symmetric point + 5n,z§0pg<Aa(Y) Poo(2)). (5.9
Koer[1- 20 4.1
cg 4 (4.1 Although these Green functions are gauge variant we can

derive gauge-independent quantities such as the additive
The multiplicative mass renormalization factor evaluatedmass correction CorrEctIy. OneEJop correqtioni to the Green
from the WT identity agrees with that from the gluino propa- functions ((V ,S,)A, %), (DsA.4), and (XPA,¢) with i
gator =1,2,3 are given by the diagrams in Fig. 3. The one loop
correction to the explicit breaking term withk=4 is given by

1 Xm g° (\a)? the two diagrams in Fig. 4.
Zp =Zy| Tpt 5| =1~ T%ZNC 3 |097—8-584- As in the previous section we adopt the lattice scheme

[16] and introduce the gluon magshere again in order to
(4.18 settle the IR divergence of the massless theory at vanishing
external momentum. At the one loop level all the IR diver-

The renormalization factor of the axial vector current isgence comes from the first four diagrams of Fig. 3 and can

given with the relation be regularized with this scheme. The fermion loops in Fig. 4
do not have any IR divergence.
(i5)r=Za(i5) pare (4.19 In order to investigate the full Green function we need to
evaluate the wave function renormalization factors of the
and becomes gluino and gluon fields. Th&, for the gluino field is treat-
able in the lattice scheme with gluon masdHowever,Z; of
92 the gluon field has a contribution from the fermion and ghost
Zt=2,Tp=1+ N.(8.664. (4.20 loops and all the IR divergence at vanishing external mo-
167 mentum cannot be regularized with gluon mas3he lattice

schemd 16] is not appropriate to renormalize the whole op-
As is easily seen, contributiafi, from the bare axial vector erators in the SUSY WT identity. Meanwhile the additive
current andX, from the explicit breaking term cancel each correction to the gluino mass and the mixing coefficient of
other the supercurrent with extra currenf, are free from the IR
divergence at the one loop level and need not be multiplied
Z,'—X,=1.000, (4.21)  with the wave renormalization factdf,Z; since they are
O(g?) values. They can be investigated in any renormaliza-
and a proper form of the axial WT identity is recoveredtion schemes appropriately at the one loop level. In this pa-
automatically for the renormalized quantitifist] per we will adopt the lattice scheme for simplicity and con-
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T
r
b+k o N I+k+p N I
FIG. 3. One loop diagrams which contribute
P P k-~ to the operator vertex correction in the SUSY WT
;66 P \:_ X7 identity. T=S,,Dg,X§ 2.
Aq(k) B A (o)
(b) (e)
r
Kk P
Axlk) %(p)

centrate on these problems of additive mass correction angse of the relatiom?M = g*M g+ O(g*). The one loop level

trgit%%esritr(])lr mixing and evaluate the concerning vertex COlGartex correction to the Green functiobGVMSM)AaE) and
i V.

We calculate the one loop contribution imposing the on-<D5Aa"0> are
shell condition to the external gluino momentum,

— 1
((V,S)ALK) ¢(p>>1=ﬁ(kﬂ+pM>(kvammT‘§)

I'(ip+Mg)=0, (5.2
1
+(8uak =K, Y ) T ———,
wherel" represents some operator vertex. This is applicable ip+M
to the bare mass inside the one loop correction by making (5.3
. - 1 D D
r (DA H(P)1= 5 (MK, TE +PBTER
k w7
I
-~ +p2y TSN , 5.4
Aq(k) I+k ¥o) P Yalcm ip+M (5.9
(@)
where
2 2
g 2
T = SNe| —27.8741)+ —|, (5.5
6 N
r
gz
T = N[6.3721)], (5.6)
Aq(k) ¥(p)
(b) 5 9 (Aa)? 2m°
TP)=——=N| —3In———23.64537)+ —|,
FIG. 4. One loop diagrams which contribute to the explicit 167 T N
SUSY breaking term’= X (5.7
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TABLE I. Contribution to additive mass correction from each
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2

X{ atr=1. 80% of the contribution is given by’ andX§". T&= 12 SN[11.13@1)], (5.14
T
Xs X X2 X&) x§) ,
Tai) 42.2083(5) 7.32191(2) 2.85525(4)-0.95093(2) TE) = 12772 N —2.00q1)], (5.15
2 g
T, = N —1.8422)]. 5.1
TgDp)Ig—NC[l.OO(ll)], (5.9 GM 1672 ol 32)] (5.16
1672
Here we should notice that the one loop correction to the
2 SUSY explicit breaking ternXg produces an additive mass
T&D&=%Nc[—l-ooql)]- (5.9  correction given by Eq(5.13. This additive correction co-
T

The finite term proportional to W, emerges from the last

incides with that from the axial Ward-Takahashi identity
(4.16 within a numerical error. This fact confirms the pre-
diction of Ref.[5] that the supersymmetry is recovered at the

tadpole diagram in Fig. 3. In the above the finite part of theSame fine-tuning point as the axial Ugl symmetry. We
loop correction is evaluated by performing the loop integralshave a comment on the origin of this additive correction. The

with the Monte Carlo routin®EGAS in double precision. We
employ 20 sets of 10points for integration. Errors are esti-

SUSY explicit breaking ternXs can be classified into four
parts X{) . X{) is given by supertransforming the gluino

mated from the variation of integrated values over the setdields of the Wilson termX§" appears from the gluino action
We eliminated the terms when their coefficients becomdy transforming the link variable in the covariant derivative.

smaller than the numerical errors. Here we remind the readet?), X&)

are originated from the gluon plaquette action.

that the logarithmic divergence appears only in the term conSince the additive mass in the axial WT identi#y16) is due
cerning the mass renormalization. The one loop contributiorto the axial symmetry-breaking term given by rotating the

to the explicit breaking termiXsA ,4) is given by

— 1
XA PAP))1= 5Lkt P) (K, ey, TS

+ (8K K, Y TE+iK 0,0

X (TE MTE) + Kk pTER+ P2y TS

Wilson term, it might have been expected that the additive
correction in the SUSY WT identity comes only froxt?,

XD which are directly related to the Wilson term. However,
X, X§ produces only 80% ofa%and remaining 20% is

a contribution fromx), X§. Contributions from eack{)

is given in Table I. The Wilson parameter dependence of
T%dd is given nontrivially inside the diagram multiplying
X2 X&) with the Wilson parameter in the gluino propaga-
tor and the interaction vertex. We depicted thdependence

% 1 510 O©f 3, andT3%in Table II, which are in good agreement for
ip+M ' ' everyr within a numerical error.
Summing up all the vertex contributions we can investi-
where gate the mixing behavior.
. G =((V,.S)ALK #(P)) 1~ M(DALK) $(P))1
X) = _ _
T = gl 11T 5.43 — (XA PP
1 (S _ 71X
0 92 :E[(k,u_*—pﬂ)(kva-va')/p,(-rs _TS )
T "1 >N[3.37167)], (5.12
T
+(8,k—K, o) TH) =ik 0, o (MTE)+ TEY
9 1
T5 = 2 Nl 51.43485)], (5.13 —KebTER—PabTER =P YaTou] . (5.17)

ip+M

TABLE Il. Wilson parameter dependence of the additive mass correction from axial and SUSY WT
identity. Both results are in good agreement for evenyithin a numerical error.

r 0 0.2 0.4 0.6 0.8 1.0
Tad 0 19.793(8) 30.707(8) 38.286(7) 44.964(8) 51.4345(5)
3o 0 19.791(1) 30.695(2) 38.283(3) 44.960(4) 51.4346(1)
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where theory with the dimensional regularizatiph9]. This term is
related to the gamma-trace anomaly corresponding to the

T(1)=T(S)—T(X)=g—2N (3.0002)] (518 SUPer conformal symmetry breaking. Its coefficieR§"

T T T ez &7 ’ : should be identical with the one loop leyglfunction of the

N=1 SYM theory,
TH=TP) 479

92 lgl-loop
2 ra)? 02 TH=——3N=——>" (5.28
=9 N =3 1o s150) 4 2T 16m g
1672 ° m? . NZ |’

as was required for the gamma-trace anomag}. This con-
(5.19  dition is satisfied in our calculatiot5.18. T3 in the third
term gives the additive mass correction, which coincides
with 3 from the axial WT identity(4.16. T contributes
to the multiplicative mass renormalization factor.
(5.20 The remaining three terms are mixing with gauge-variant
operators. These mixings are because we adopted gauge-
We consider the mixing property of the operators by makingvariant operatorO=A(y)#(z) in Eq. (5.1) and a fixed
use of the following conditions for the renormalized Greengauge in the perturbative calculation. However, these extra

2

g

6m?

Tow=Tou+ TEu= Ne[ —2.8423)].

functions at small momentum: mixings disappear if we impose an on-shell condition to the
gluino momentum and set the renormalized gluino mass to
— 1 1 zero
<((9/.LS,LL)AE¥(k) lp(p)>R:P(ku+ p,u,)kvo-va’yMiIb_i_ M )
ip=—Mg=0. (5.29
(5.2))

At last we have a comment on the renormalization of the
. 1 whole operators in the SUSY WT identity. In order to derive
((9,TALK) w(p)>R=—2(kﬂ+ P.)(6,.K the multiplicative renormalization factors of the supercurrent
k and gluino mass we need an appropriate renormalization
1 scheme likg 20], in which the IR divergence of the fermion

, and ghost loop is treatable. We have the same form of the

ip+M vertex correction as in Eqg5.3), (5.4), (5.10 even if we
change the renormalization scheme. Once the gluino and

(5.22 . =
gluon wave-function renormalization factois,, Z; are

—Kuva)

given the supercurrent is renormalized as

_ 1 1
<D5Aa(k) w(p)>R_EMlkvavai¢TMl (Sy,)bare: Zgl(SM)R"‘T(TS)(T,L)R (5.30
(5.23 with
— 1 1 -1_ [ 5 (9
i
If we sum up all the contributions to the SUSY WT identity
_ 1 1 — —
(A3, ) AL P(P))r=— Epap,IZS vi (5.29 Gs=((V,S)ALK¢(p)"" — M(DA(y) ¢(2))""
1P+ _
—(XsAa(K) g(p))™", (5.32
_ 1 1 . .
(A3 ) A (K)W(P))r=— — P>V ) the one loop corrections to the supercurrent and the explicit
(A0t W(P)r k2p 7 ip+M breaking term shall cancel out
(5.26
zs-TP=1, (5.33
Here we introduce a gauge-invariant fermionic current with
dimension 7/2 and the proper form of the SUSY WT identity with gamma
trace anomaly term is supposed to be recovered for the renor-
T, (M)=2t{P,,(n)y,#(n)]. (5.27  malized quantities.

We can easily see that the first term in E§.17) with TS
contributes to the multiplicative normalization factor of the
supercurrent. The second term wi[ﬁll) represents the mix- In this paper we regularize the supersymmetric Yang-
ing with a gauge-invariant currert, as was discussed in Mills theory on the lattice with the Wilson plaquette action
Ref. [5]. Mixing with T, is also reported in the continuum for the gluon and the Wilson fermion for the gluino. In this

VI. CONCLUSION
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regularization the supersymmetry and axial U{symmetry T, . If we can extract this gamma-trace anomaly part non-
of the continuum SYM theory are broken explicitly. How- perturbatively from the SUSY WT identity, we may be able
ever, both of the symmetries can be recovered in the corfo evaluate the exag function of theN=1 SYM theory.
tinuum by fine-tuning the mass parameter. A peculiar point in our calculation is that the SUSY
In order to see this restoration process we calculated thereaking term given by supertransforming the plaquette ac-
one loop correction to the SUSY Ward-Takahashi identitytion also contributes to the additive mass correction. There-
perturbatively. It is shown that the additive mass correctiorfore when we consider using the domain-wall fermion as a
(the critical maspgiven by the SUSY Ward-Takahashi iden- gluino part, it is nontrivial to see the disappearance of the
tity coincides with that from the axial WT identity. This additive mass correction because the domain-wall fermion
means the SUSY and the U(dsymmetry can be restored System contains the Wilson term in its action before integrat-
simultaneously in the continuum limit with a single fine- ing out the unphysical heavy modes. The negative unity Wil-
tuning of the gluino mass. Since tuning to the chiral symmetSOn parameter remains in the gluino-gluon interaction vertex.
ric point is a well-known subject in computer simulation, This is a fascinating future problem.
there would have been no technical difficulty in dealing with
the SYM system on the lattice even nonperturbatively if the
gx|a| FJ(l)R symmetry had no anomgly_. The'chlral symmet- | greatly appreciate the valuable discussions with S. Aoki,
ric point cannot be given by the vanishing pion mass for ther |zupuchi, T. Kobayashi, Y. Sato, and A. Ukawa. Their
anomalousU(1)r symmetry of SYM and an alternative comments were precise and helped me very much. This work
method is needed. Application of the vacuum degeneracy q§ supported in part by the Grants-in-Aid for Scientific Re-
residualZ,y symmetry due to gluino condensation seems tosearch from the Ministry of Education, Science, and Culture
be hopeful[10]. (No. 2373. Y.T. is supported by the Japan Society for the
The supercurrent on the lattice mixes nontrivially with Promotion of Science.
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