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Radiative corrections to the semileptonic Dalitz plot with angular correlation between polarized
decaying hyperons and emitted charged leptons
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We obtain a model-independent expression for the Dalitz plot of semileptonic decays of polarized hyperons
including radiative corrections to order and neglecting terms of orderq/7M,, where q is the four-
momentum transfer anl, is the mass of the decaying hyperon. We specialize our results to exhibit the
correlation between the charged-lepton momentum and the spin of the decaying hyperon. We present results
for the three-body region of the Dalitz plot and for the complete Dalitz pAdtich includes the four-body
region. From these results we also obtain the corresponding radiative corrections to the integrated lepton
spin-asymmetry coefficient. Our formulas are valid for charged as well as for neutral decaying hyperons and
are appropriate for model-independent experimental analyses whether the real photon is discriminated or not.
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I. INTRODUCTION photons, it is possible to eliminate the photons that belong to
the FBR by energy-momentum conservation. Therefore, in
The form factors of hyperon semileptonic decd#SD),  calculating the bremsstrahlung RC we shall keep a clear dis-
A—Bly, contain important information about the low- tinction between these two regions.
energy strong interactions of spin-1/2 baryoAsgndB are We shall also obtain the radiative corrections to the inte-
such baryons andl and », are the accompanying charged grated lepton spin-asymmetry coefficiemt. As we shall
lepton and neutrino Their experimental determination re- see, the distinction between the TBR and the FBR leads to a
guires the use of accurate formulas in the analysis of th@erceptible change in the RC to this asymmetry coefficient.
measurements of several observables. An important one of Our results will be presented in two final forms. One
these observables is the angular correlation between the spivhere the triple integration over the real photon three-
s, of A and the directiol of the momentum of. It is the ~Momentumk is left indicated and ready to be performed
purpose of this paper to calculate the radiative correction§umerically. And another one, an analytical form, where

(RO) to the Dalitz plot(DP) with the spin correlatiors, - | such a triple integration has been performed. Both forms can
exhibited explicitly be used to numerically cross-check on one another. How-

We shall obtain expressions that are suitable for a modefVe": the analytical result, although tedious to feed into a

independent experimental analysis. The model dependen%Onte Car_lo program, Ieads_ to a consi_derable savings of
of the virtual RC is handled following the approach of Sirlin computer time because the triple integration does not have to

[1] to the RC of neutron beta decay, while the model depenpe performed within the Monte Carlo calculation every time
dence of the bremsstrahlung RC is controlled by the theorerfr @MdE2 or the form factors are changed. .
of Low [2]. In previous work we have discussed the RC to For the use of our results it is important that this paper be

. . A~ . as self-contained as possible. In Sec. Il we introduce our
the unpolarized DR3] and to the DP with thes; - p, spin notation and conventions and we review the virtual RC; also

correlation kept explicitlyf4] (p, is the direction of the mo-  the infrared divergence of this part is clearly separated. In
mentum of the emitted baryd)). It is not possible to derive  Sec. |11 the real photon emission is calculated and separated
the result for the spin correlatias - | from the final result of into the contributions of the TBR and of the FBR. The cal-
Ref.[4] because all kinematical integrations, except forlthe culation of Ref[4] is adapted to the present case. The infra-
and B energiesE and E,, respectively, were already per- red divergence is extracted following RE5] and its cancel-
formed. However, since we are going to follow the samelation with the one of Sec. Il is discussed in detail. Our first
approach of this reference, much of the work has alreadynain result is established, allowing for the eliminatir

been advanced. not) of real photons from the experimental analysis. In Sec.
The bremsstrahlung RC is a four-body decay whose DRV we proceed to the analytical evaluation of the triple inte-
covers entirely the DP of the three-body deday-Bly,. gration over the photon bremsstrahlung three-momentum.

We shall refer to the latter as the three-body redgi®BR)  Our second main result is established, also allowing for the
and to the non-overlap of the former and the latter as thexperimental discriminatiofor no) of real photons. In Sec.
four-body region(FBR). Even when no experimental ar- V we use the analytical result to obtain the RC to the asym-
rangement has been made to detect and discriminate realetry coefficiente,. In Sec. VI we make numerical evalu-
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ations for several HSD and also for the — Ae™ v decay. Our calculation now starts at the point where the scalar
We compare with other results available in the Iiterature.productsgl.i and§l~62 appear for the first time, that is, at
Section VIl is reserved to discuss and summarize our resultgq. (13) of Ref. [4], namely,

To make this paper self-contained we introduce two appen-

dices. In Appendix A we give the amplitudes for virtual and , 1 b 1 (912
bremsstrahlung RC, emphasizing how the model dependence S‘%JMW 2 SP%JMW ) S%JMV “. @)
is kept under control. In Appendix B we give the analytical

expressions of all the coefficients, both new and of Re&fk. Here My is the sum of the order zero amplitudd),

and[4] required to compute the RC to tisg- | correlation.  corrected[1] by the model-dependent part of the virtual ra-
Our results have been obtained neglecting contributiongliative corrections through the modified form factdfsand
of order aq/7M and higher § is the momentum transfer g:  and the model-independent amplitulfe of such RC.
and M, is the mass ofA). They cover both neutral and M{ andM, are given explicitly in Appendix Asee Eqs(Al)
chargedA and are reliable up to 0.5% or better in HSD. 544 (A3)]. Of course, Eq(2) is now adapted to our case of a
Furthermore, they provide a useful result for charm decaBbolarized hyperoi\. That is, the spinou,(p;) now appears
experiments with several thousands of events. For higher sta-(s )y, (p,), with 3(s,) being the spin projection operator
tistics experimen.ts it will be necessary to incorporateqys o given in Eq.(4) of Ref. [4].
aq/mM contributions. With Eq. (2) we can express the differential decay rate
dr'y as
Il. VIRTUAL RADIATIVE CORRECTIONS

In this section we shall discuss the virtual radiative cor- drV:dEZ dE d), d¢, Mzmmy[} ORIVIE
rections, up to ordera and neglecting terms of order (2m)° 2 spins
ag/7M4, to the DP of the HSD 1
-5 > IMPP?
2 & V
A—B+I+y, 1 spins
—dr/ —dr®
with A polarized. Our results will be specialized to exhibit dly=dI'y". 3)
the angular correlatios, - . Notice the variables in the phase space of this equation, they

A convenient procedure to get such results is that of Refcorrespond to our new choice of tzeaxis alongl. dQ, is

[4]. SO’. n t_h|s paper we adopt the same approaph, the SaMfe differential of the solid angle dfanddg, is the differ-
approximations and the same conventions of this reference.

In this way, py=(E1,p1), P»=(E5.,p,), |=(E,l), and pcV) ential of the azin?uthal angle qf,. . o
—(E°,p,) will be the four-momenta oA, B, I, and vy, re- In Eq. (3), dI'y, corresponds to the first term within the
specf[i;/evly M;, M,, andm will denote ’thr-; r'nasse;’of the Sduare brackets. It can be identified with the differential de-

first three particles. We shall assume throughout this pape‘f’?‘y rate with virtual radiative corrections of unpolanzAd
~ ) given in Eq.(10) of Ref.[3] and, therefore, there is no need
thatm,=0. p, will denote a unit vector along,, etc. We

h ; . to recalculate it nowdI'{) corresponds to the second term of
shall make our calculations in the _center-of-ma(ﬁ\/l) the square brackets of E) and it contains the scalar prod-
frame of A. In this casep,, |, andp, will denote the mag- AN A A A PRI

nitudes of the corresponding three-momenta. There will b&/CtSS1-l, S1-Py, @nds,-p,. The scalar producs;-p, can
no confusion because the expressions obtained will not bee expressed in terms ef | ands,; - p, by three-momentum
manifestly covariant. Because we want our results to exhibitonservation. In this way, onis;-1 ands, - p, will appear in
the correlations, -1, it is convenient to choose theaxis  dI'(). Now, we require tha$; -1 be the only scalar product
alongl and not along, as done in Refl4]. present ind'{Y . This can be accomplished by noting that

At this point, it is convenient to mention that it is not o 1ost general form &, - p, depends ors,-1, 1-p,, and
possible to obtain the virtual RC of our present case by using,s s~ The terms directly proportional to this cosine drop
the final virtual RC given bydl'y of Eq. (15 of Ref. [4]. out after integration ovet, from O to 27. This fact allows

This is because in that equation the 00”9]3@'152 was  us to use the replacemeisee Ref[6] for further discussion
singled out after the integration over the azimuthal anfjle

of | was performedin such Eq.(15) d¢, is still present in S Po— (S D py)=5.-1y, (4)
the phase space. As it appears and because of the choice of

z-axis its integration amounts an2factor]. Therefore, all the jn dl“§,s) , leaving us with an expression which only contains
terms indI'y containing the producd; - I, and which appear the correlations;-i. In Eq. (4) y is the cosine of the angle

before the integration ovedd, iSA pgrformed, have been betweerf)z andi. Let us define, in the CM oA, the variable
transformed leaving the correlatiap- p, only. There is no

way to recover the, -1 terms from this Eq(15) of Ref. [4].

So, for obtaining ourdI'y, exhibiting the correlatiors; - 1
only, we have to take a few steps back before that(Eg).

Yo
(M;—E,—E)?—p3—I?

2p,l 2

Yo=
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In this three body decay one can make the identificationnotes the Spence functidn(x) = [§(dt/t)In|1—t]. \ repre-
EO— M. —E.—E © sents a small photon mass which regularizes the infrared di-
v 1 =2 == vergence in the functiorb(E). Actually, Eq. (7) contains
twice the infrared divergence. The first one appearAjith
of the spin-independent part and the other one appears in
B,¢ of the spin-dependent part. Both divergences will be

as the neutrino energy and then one can seeythat,. Of
course, thigy varies within—1 and 1. When a real photon is
presenty, will not be any longer identifiable witk (see Sec.

). canceled by their counterparts in the bremsstrahlung contri-
With these considerations in mind, we can express th&ution: _ , _
dI'y of Eq. (3) as Let us close this section by comparing the,, of Eq. (7)

with the dI'y, of Eq. (15) of Ref. [4]. In spite of minor dif-
ferences in their phase space factors, we can see that their

G dE, dE dQ, d¢, L a , he o
V=% : 2M i Aj+—(Alp+ATS") splr_1—|nd_ependent parts are the same. Th[s is not the case for
(2m) m their spin-dependent parts. We can notice that the coeffi-
o o cientsAg, A,, andA7, which appear in the spin-dependent
—s-1| Bg+ ;(B§¢+ BY¢') ] (7)  part of dI'y of Ref. [4], have changed to the coefficients

By, Bj, andBj, respectively, ofdl'y of Eq. (7). We ob-
ThisdT'y is the DP with virtual radiative corrections up to S€'Ve in Eqs(8)—(10) that in theB coefficientsy, always

order a (and neglecting terms of ordergq/=M,), leaving  2PPears as afactor ph, while for theA coefficients of Ref.

E, andE as the relevant variables and with only the angulart?] Yo &ways appears as a factorlofThis latter observation

Lo~ - . : ; may induce us to think of the possibility of obtaining the
correlations, - | explicitly exhibited. The integration oveb, dT'. of Eqa. (7) f the dT'v, of Ref. [4] by simolyv inter-
only amounts the factor 2 Now, Aj, A;, and A] are v of Eq. (7) from thedl'y of Ref. [4] by simply inter

. . . changingp, with I. Unfortunately this rule does not work
given 1n Egs.(B1)—~(B3) of Appendix B. The new terms poca se under such an interchangeAtmefficients do not

o, Bz, andB; are lead to theB coefficients and, thus, we cannot obtain E).
" directly from the finaldI'y, of Ref.[4].
By=QeEP2yo+ Q/El, ®) Y v of Ref.[4]

Bé= _ D3E8| +D4E(poyo+1), (9) IIl. BREMSSTRAHLUNG RADIATIVE CORRECTIONS

In addition to the virtual RC the bremsstrahlung contribu-
B3=D4E(p2yo+1). (100 tions must be calculated to get the complete RC to the DP of
. o polarized decaying hyperons. In this section, we shall obtain
In these equations the coefficier@y and Q7 are long  them, to the same order of approximation as the virtual RC,
quadratic functions of the form factors. They are given inpoth for the TBR and for the FBR. First we shall define those
Egs.(B6) and (B7), respectively, of Refl4]. For complete-  regions and next we shall proceed to the calculations. As is
ness we repeat them tgsee Eqs(B9) and(B10)]. Dz and  discussed in Appendix A, these corrections are model-
D, depend on the leading form factof$ andg; and they independent by virtue of the theorem of L.
are given in Eqs(B13) and(B14), respectively. The primes
onAg, A;, Al, Bg, B3, andBj indicate that these terms A. Kinematics, TBR, and FBR
contain the model-dependence of the virtual radiative correc- . ] ) ) )
tions through the leading form factors. The model- The DP in the variable& and E; is the kinematically
independent functiong and ¢’ are allowed region of the four-body decay

A—B+I+1+y, (13)

(1 )I N1 5
P(E)=2 Earctanh@—l na—ﬁ(arctanhe)

where y represents a real photon with four-momentkm

1 (28 1 11 =(w,k). The DP can be seen as the union of the TBR and
+ ,EL m) + EarctanhB— ) FBR, each one defined _presently._
The TBR of the DP is the region where the three-body
) 3 decay(1) and the four-body decafi3) overlap completely.
7B+ 5 In(Ma/m) (NDH), The energie€ andE, satisfy the bounds
RE v E, <E,<E, 14
5In(My/m) (CDH), 2 skasksy, (14)
and
) 1
' (E)= ( B— E arctanhg. (12 m<E<E,,. (15)

NDH (CDH) stands for neutracharged decaying hyperons. Here,E; (E,) is the upper(lower) boundary of the TBR
In these equations we use the definitiBe=I/E andL de-  given by
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2

1 5 M,m m, d3p, d® d%k d®p
Ey=-(M;—Exl)+ - 16 wR_T2 v T2l T - m v 2
2 = (M= EED* o —E=D) (18 e =" .F E E 20 E, szmJMB'
andE, is the maximum energy of the charged lepton X 8 (p1=pz=1=p,~k)
=dly—dry, (22)
M2—M3+m? . . .
Esz (17 wheredI'g contains the first term of Eq21) and is indepen-
1

dent ofs, while dI'$®) contains the second term of this equa-
) ) tion and is spin-dependent.
The FBR of the DP is the region where only the four-  there s no need to recalculate the spin-independent term
body decay(13) can take place. The energigsandE; in gp/  This part is readily identified with the E¢33) of Re.
this region satisfy the bounds [4], namely

M,<E,<E, , (18) dlg=dI'+dlg+dry. (23)

dI‘iBr contains the infrared-divergent terms. Following the
m<E<Eg, (19 method of Ref[5], we can use the equalit6) of Ref. [4]
and writedT'g as
where N
drt=—dQ'[A]lo(E,E;) +Cy], (24)
(My—Mp)?+m? i

Es= 2(M;—M,) (20 instead of Eq(34) of Ref.[4]. The phase space factor in Eq.
(24) is now
Both regions TBR and FBR are depicted in Fig. 1 of R8f, 2
where more details about these regions can be found. a0 =2 Gy MZMl, (25)
We can now proceed to the calculation of the bremsstrah- ™ T 2 (2m)°

lung RC to the DP. First we shall do this for the TBR and
next for the FBR. The complete bremsstrahlung RC to thenstead of thed() of Eq. (35) of Ref.[4]. A is defined in
DP are obtained by simply adding the results of the TBR toAppendix B and the result fdry(E, E,) is given in Eq.(52)
those of the FBR. To obtain the complete RC of each regiongf Ref.[4], namely,
we must also add the virtual RC of E(y).

2
21n

2
i M 7ax
A

4(E+Dr

1
Io(E,E,)= —arctanhB
B. TBR bremsstrahlung RC B

Here we shall obtain the bremsstrahlung RC restricted to 1 a2 1 4ar _ m
the TBR and with the angular correlatios-1 explicitly B\ 4r, +EL 2 -2 In(f)
shown. We shall follow closely the procedure employed in
Ref.[4]. In order to extract the infrared divergent terms and 772max
the finite terms that accompany them, we shall use the ap- —In B | (26)
proach of Ref[5], which was applied to the RC to the DP of 2mE,(g°—m")
K3 decays. However, for the same reasons discussed in Se€bhere
II, it is not possible to use the final result of Rg4] for the
bremsstrahlung RC to obtain the corresponding result for the 1 o2 s o )
RC to the, -1 correlation. We must start at an earlier stage "=~ g5 LE"(a"—m%) —a’E/4]
of the calculations of this reference, namely, from its Eq.
(31) which reads +{[E%%(q?— m?) — a’E/4]?— m?a‘/16}2,
2_ 1 12 1 (s)|2 a’= Nmad 4P2l — Tmax)»
SpEmSIMBI —ZSPZmSIMBI ZspEmsll\/la > @)
and
This equation is the square, summed over spins, of the Q?=M2—2M,E,+M3.
bremsstrahlung transition amplituddg of the four-body
process (13) with the spinor ua(p;) replaced by 7maxiS defined right below Eq31).
3. (s1)ua(py)- The explicit form ofMg is given in Eq.(A5) With Eqgs.(36)—(38) of Ref.[4] for C,, dT'3, andd 'S,
of Appendix A. Equation(21) enables us to express the respectively, we can express tti&'; of Eq.(23), with some

bremsstrahlung differential decay rate as minor rearrangements, in the compact form
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a andyy is the variable defined in E@5). Notice that, even if
d Fé:;dﬂ/[Ailo(E'Ez) we are still in the TBRyj is no longer equal ty; however
inside this regiory, still varies within—1 and 1(Also no-
p,l (1 Yo 27 tice that outside, in what we called the FBR=1 always)
+ —f de dyf d¢k[|M'|2+|M"|z]} : The coefficientdD, andD, depend on the leading form fac-

tors and they are given in Egd811) and(B12) of Appendix
27 B.

Once we havel T'g of Eg. (22), we can turn our attention

with to the spin-dependent pati™$® of this equation. In order to
B2(1-x?) D,E+D,Ix compute it we shall start from E@43) of Ref.[4], namely,
|M'|2:m =5 | (28)
dr=drs+dry, (30)
and
, m?2 where dT'y and dI§ contain =g, dM2  and
M| _W[Dl w+E(1+Bx)— E(1—,8x)) S oind M2 +2R<—:{M(S)][M(S)]T) respectively. M and
, M are the spin-dependent parts of the amphtum?,gand
~ ~ ~m Mb defined in Eq.(A5), after the spinowy, is replaced by
Db, |+k(E+w)_kE(1—Bx)> ' (29 3 (S1)Ua - dl“{3 contains the infrared-divergent terms as well

. . as many infrared-convergent oneslTy is infrared-

In these last three equations=1-k andy=1-p, are the  convergent only. To compu@I'g we follow the procedure
cosines of the polar angles kfandp,, respectively, whereas of Ref. [5] to extract the infrared divergence. According to
¢y is the azimuthal angle df. FurthermoreE,=E)—w and  this and using the explicit form (ﬁsp,nJM(s)l given in Eq.
D=E%+(p,+1)-k. The quantityE® was defined in Eq6)  (44) of Ref.[4], we can writed T'y as

TTmax d3k d3 v ~ ~ ~
dTg= —dQ’8—I|m sz dy— Ep *(p1—po—1—p,—K) X[ — D35, - IEC+D,s;- pE+Dys; - IE
}\4»0 v
3
+Dg%y o+ Dy KE]X S | - El k) 31)

The infrared divergence is contained in the first three terms within the square brackets, the remaining two terms are
infrared-convergenty=(p,+k)? is the invariant mass, which in the CM @f is given by 7=2p,l(y,—Yy). In the TBR,
Nmas= 2P (Yo-+1) and ,in=\2, with A>—~0. The coefficient®; and D, depend on the leading form factors and they are
given in Egs.(B13) and(B14) of Appendix B.¢, is the polarization four-vector of the real photon.

In order to expresd I'}; in terms of the correlatios; - | we need to express the scalar produsgt®, ands, - k of Eq. (31)
in terms ofs, - 1. This can be achieved by using the substitution of @yand its analod6],

sk — (5D (k). (32)

In Eq. (31), with these substitutions, we can separate the infrared-divergent terms from the infrared-convergent ones, to get

o ~~ o~ 1 Mmax d3k d3p 2pl| m2 M%
drk=—dQ’s, 1! B, —nmf dnp— ”54 —1-p,—k)x — —
B ar Sl 28 )\2 7] (pl pZ ) |:p1k Ik (lk)z (plk)z
1 mmax A3k d3p ,8 1—(1-k)?
+—IimJ’ — — 8 p1—po—1—p,—K) x| Dswl +D,4l-k wE—D _— 33
877)\*\0 }\2 n ® Ev (pl p2 ) 3w w 42B 2 (1 Bl k) ( )

HereB, is given in Eqg.(9). In the first integral the sum over polarizations indicated in @d) was performed in covariant
form, whereas in the second one it was performed by using the Coester represéiation

The first integral in Eq(33) can be identified with the divergent integiglof Eq. (26). The second one can be put in the
convenient form of Eq(38) of Ref. [3] by performing the integration over th& function and leaving/ as the integration
variable instead of;. In this way, we can expresi;l“'B finally as
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B (1-x?)
el (34

- Ix)
D/ (1-px)?

The other term of Eq(30), d 'y, does not need any calculation. We can take the result of3of Ref.[4] and, with
only minor changes in the phase space factor, we can adapt it to our case. After the applicatior{3®) inlsuch Eq.(57)
is performed, we obtain

pZE 1 Yo 2w
4 )1 J-1 " Jo

dri=®gog, fP2p (t 9 fy‘)d fzwd L b —1— (e )><+12 X
e= S ) 1) (WY, dhp | PsEy @XTE 1o 8x

m?> 1
+Dy4 w+(1+ﬂx)E—E1_—l&J(p2y+l+wx) . (35
|
At this point we can collect our partial results to get our 1
first main result, namely, the DP of polarized decaying hy- bor=4 Earctanhe—l : (39

perons with radiative corrections up to order neglecting

terms of orderq/7M;, and restricted to the TBR. Itcan be | is no longer infrared-divergent because in the FBR the
set as photon has a minimum energy which is nonzero. It can be
4T TBR_ g ot d [TER easily calculated from Eq(18) of Ref. [5]. The invariant
R B massz of this equation must be integrated now from a mini-
—dTy+[dT5—(d F'E;+drg)]. (36) mum value nmin:2pzl(yq—1) to a ma>_<imum v_aIuenmax
=2p,l(yp+1). The quantityy, is still defined as in Eq(5),
whered T’y is given in Eq.(7), d';BR is given in Eq.(22),  but within this FBR it i_s alquys positive_ and greater than
and dI'y, dT andd T} are given in Eqs(27), (34) and ~ ON€; it can even grow indefinitely, but this causes no prob-
(35), respectively. The integration over the three-momentur{®™- It is also clear thaltr is always real. _
of the real photon in these last three equations is ready to be With these changes we can write the differential decay
performed numericallybut it can be performed analytically faté corresponding to the FBR as
too, as we shall see in the next secjion FBR_ 41/ FBR_ 4 1~(s) FBR
The result of Eq.(36) can be compared with the corre- dl'g™=d g dl'y : (39)
sponding one of Refl4] [the sum of Eqs(15), (33), (51),  ith
and (57) of this referenck We observe that the spin-
independent partd I'; are the same, although our present
dI'g is expressed in a more compact form, while the spin-

o
dF,BFBR:;dQ,{A£IOF(E1E2)
dependent parts are different. By looking in detail at those

equations of Refl4], it is clear that one cannot obtain from pol (1 1 27 2 o
them the above Eqg34) and (35), as we stressed in the +Ef_ldxj_ldyfo deb [M'[#+ M7,
introduction.

(40)

C. FBR bremsstrahlung RC and complete RC and

We shall now calculate the bremsstrahlung contribution
of the FBR and afterwards we shall obtain the complete RC re FBR_ & 0's 1 B (E.E
to the DP, with the addition of the TBR and virtual contri- T 740s 1) Balor(E,Ep)
butions. | 1 . ,

The calculation of bremsstrahlung in the FBR is relatively p_2f f f i m|2 V|2
simple because the events in this region have the same am- * A7 _1dx _1dy 0 A [M”|% M7
plitude Mg of Eqg. (A5) and it is infrared-convergent. We 41
need to change the upper limit of the integrals over the vari- (42)
abley of Egs.(27), (34), and(35)—this_ limit now become;; In Eq. (40), [M'[2 and|M"|? are given in Eqs(28) and
one—and to change _the prewously infrared-divergent |nte(29)1 respectively. Equatiofdl) is the sum of Eqs(34) and
grallo of these equations intlye defined as (35), after the above changes are performfd”|? and

V|2
Yo+l IMY|? are

Yo—1

Oor
lOFZT In

, (37)

M= B?(1—x?) [ D3l +D,4Ex
with (1— Bx)? D ‘Bl

(42)
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iz 1 m2  x A. TBR analytical form
IMY|2= ﬁ[D3Ev( ~I-Ex—ox+ E 1—,8x) The k-integrals corresponding to the TBR of the DP are

those of Eqs(27), (34), and (35). They can be performed

2
i analytically by following the procedure of Sec. V of RES],
D4l @ E 1-pBx +(1+BX)E) where the RC to the DP of unpolarized hyperons were ob-
tained. Fortunately much of the work has already been ad-
X(poy+1+w)|. (43) vanced. The integrals that concern us now can be expressed
in terms of the function®; (i=2,...,9)given by Eq.(99)

of that reference, and in terms of thg (j=10,...,16)

Equation(39) is the FBR contribution to the RC of the iven bv Ea.(46) of Ref. [8]. In this last reference the RC
DP. It can be added to the TBR contribution to obtain the-g y Eq.(46 8]

include all the terms of ordes#tq/ =M, which are dropped
complete RC to the DP of polarized hyperons within thehere. We can express the anglyq':icall form of E27) aspp
approximations mentioned before. This completes our first
main result of Eq(36) by including the emission of all real
photons allowed by energy-momentum conservation. It is dr: =de’ Aot (D1+D-) 0 + 0"V +Do( 0"+ 6V
displayed compactly as 5= 4 TAxlo+ (D1 + Do) )+ Do )]

(45)
dl=d ™8R+ d TEER, (44)

, ) , This equation is equivalent twg of Eq. (92) of Ref.[3].
with dI'™" andd F_EBR given in Egs.(36) and(39), respec-  gjmjjarly, the expressions fail', anddI'! of Egs.(34) and
tively. The integrations over the photon variables are read¥35) become

to be performed numerically.
Let us close this section by mentioning that all the inte-
grals which arise in the two regions of the DP can be per- a | |
formed analytically. Because of this, we can obtain com- dFB:;dQ S;-1[Bzlo+D3p1t+Dapsl, (46)
pletely analytical results for the RC of the DP. We shall do
this in the next section.

n_ % A 7 I I
IV. ANALYTICAL INTEGRATIONS dlg=—dQ"$,-I[D3py+Dapy]- (47

In this section we shall perform analytically the photon
three-momentum integrals contained in E@), (34), (35), In Eq. (45) the g; functions are contained in the functions
(40), and (41) to obtain an analytical expression for the RC 6, 8", ¢” and¢" given by Eqs(85), (86), (90), and(91)
to the DP restricted to the TBR first and for the total DPof Ref. [3], respectively. The functions: (i=1,...,4) in

later. Eqgs.(46),(47) can be expressed as
I p2|2 2
pi= "5 [(B*=1)0,+263— 0], (49
| _ p2E2 2 2 2
P2= "5 _Eeo"‘(ﬁ —1)0,—(B°—3)03—20,— 05|, (49
E? 1 | m? 1
p|3=& E(E+E%(1-8%)6,—| (3— %)= +EE®| 63+ —EX(1+ B%) 0,— = (E+2E%) 65— —— 0+ = (2E—EO) ¢,
2 2 2 2 2E 2
1 0 1 3 5 1
—E(E—Ev)ﬁg-i— 199_§| 910_1915 , (50)
P2 2 2 ES / 2 2 E? 0 1 2 0 ’
ps= o | M| 2= 54 | 02| = 5m4palyo| O3+ (3= %) 5 —EE, = palyo| 04— | 5 BE +2IE, 05— 5= 06
1 1 5 ’ ) | 1 1
+§(3E+ pzﬁYo)97_E98+Z¢99_§| 010— P2l (1= %) 011+ 2Pl 15— pol 013_5614_2915_E016 . (51

014025-7
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With Egs.(45)—(47) all the integrals ovek in Egs.(27),  ion S Py the termsA and®,, while in Eq.(53) the cor-
(34), and(35) have been expressed in an analytical form. We ding t . B” and®. Th
can obtain now the bremsstrahlung differential decay ratéesP(;';fe'rne%t elrrrln?a(?cccvsgn?na;fr?gticsrteha?ﬂi'n of IZE q (5‘;;/

. y 2 .

dI"BR of decaying polarized hyperons with the photon inte-2"¢ _ e
grals expressed analytically. Substituting in E2@) the ana-  °NIY the gi-functions (=2, .. .,16) appear, while inb, of
lytical forms of dT', Eq. (45), and of dT'® , which is the Eqg. (103 of Ref. [4] also then-functions appeafsee AEqu.
sum of Eqgs.(46) and (47), the analytical form ofdI' 2R (91):(95) of this referencg Because of this, the RC 1§ -1
reads ands; - p, correlations are quite different.

« .
dr{ER=—dQ {A{l+(D1+D)(6 + ")+ Dy( 6"+ 6") B. FBR analytical form

The k-integrals of the FBR are those contained in Egs.
S Bt Dal ot + 02+ DAl o+ o)L (40) and (41) and they can be performed analytically, too.
S 1[B2lo+ Ds(patpa) +Dalpz t pa) I} BecausedI'; "R of Eq. (40) has the same form as the cor-

We are now in a position to obtain our second main resulféspondingdl’g of Eq. (27) of the TBR, we can follow the
in this paper: the analytical RC to the DP of decaying polarsame procedure of Sec. V of R¢8] to calculate the ana-
ized hyperons to ordetr and neglecting terms of order lytical form of this dI';™R. The result has the same struc-
ag/7M,. This result comes from the addition of the virtual ture asdI'g of Eq. (45),

(52

RC, dI'y of Eq. (7), and ofdI' ;2R of Eq. (52). It can be put
compactly as

SR

G2 dE,dE dQ,

dI' TBR=
2 (2m®

2M,

|

HereA(| andBg are the same as Eq®81) and(8), respec-
tively. @, and®), are

A'+a<I>
0 T 1

X (53

B/ + 2 o
0 T 2

D =A1(p+1g)+ATp"+(D1+Dy) (0 +6")

+D,(68"+6V), (54
DL=Bj(p+10)+ By’ +Da(py+ps)
+D4(py+py). (55)

The coefficientsA;, A], B,, andBj are given in Egs.
(B2), (B3), (9) and (10), respectivelyD; (i=1,...,4) are
given in Egs.(B11)—(B14). The functions¢, ¢', andl,
appear in Egs(1l), (12), and (26), respectively. The new
model-independent functiorp$ (i=1,...,4)were givenin
Egs. (48—(51). The sumsd’ + #" and 6"+ 6" appear ex-
plicitly in Egs. (93) and (94) of Ref. [3], respectively. We
have corrected a misprint in that E@3). Its fourth term has
to bel/2 65 rather than— /2 65. For completeness, we re-
produce these two sums in Appendix &e Eqs(B39) and
(B40)].

r FBR @ ’ ’ ’ "
dFB :;dQ [A1|0F+(D1+D2)(0F+ 0F)

+D,(GE+ 6Y)], (56)
with
! " p2| 1+B2
0F+9F:7[_Eg(1_52)92F+ E0- 5> E|0sF
E | 1- 82 2E—-E?
+ 504F+ 565|:+ 2 06F_ 2E 67F
1 1
+ E 08[:_ E 0g|: y (57)
and
" v p2| 0
OF+ 6F =7[90F—(E+ E,+Bp2Yo) O3F
+(E%+E) e +1605e]. (58)

These last two equations have the same structuré’ as
+ 6" and¢”+ 6" of the TBR analytical form ofil" of Eq.
(45). Thus,ly and 6; in the latter are changed inlgr and
0 , respectively, in the analytical form off'g in the FBR,
Eq. (56).

The change o), into 6, occurs because in the former
is integrated betweern 1 andy, and in the lattewy is inte-

Because the infrared divergence, which appears in the vigrated between—1 and 1. The new set{6} (i

tual partdI'y through the functionp, cancels out with its
bremsstrahlung counterpart, which appeard gnthe sum
¢+1, is no longer infrared-divergent and, therefodé, 'BR

of Eq. (53 is infrared-convergent.

=2,...,16) is explicitly given in Appendix B andyr is
given in Eq.(38). We can compare with theiT of Ref.[9]
where the RC of the DP for the FBR were calculated up to
order ag/mM 1. We cannot take readily the result of this

dI'"BR s the result corresponding @l of Eq. (101) in reference because, according to our approximations, we
Ref. [4]. Comparing both results, we can observe that thevould have to neglect all the terms of ordeqg/7M, in that
spin-independent parts are the same, but the spin-dependessult to obtain ours. We find the procedure of R&8f.more
parts show important differences. In EG01) of Ref.[4] we  adequate and straightforward for our purposes. However, in
have, within the square brackets that accompany the correlarder to check our results we have reproduced the Table | of

014025-8
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Ref. [9]. Our numerical evaluations coincide very well

within the approximation of neglecting terms of order
ag/7mM; we shall not display here this numerical evalua-

tion.

PHYSICAL REVIEW [B3 014025

o -~ -~
dr) FBR:;dQ’Sl' I[B3l or + Da(pie + par)

+D4(phe+ pae) ], (59)

In a similar way, we can see that the spin-dependent part

of dT'E2R has the same structure as the corresponding spirwith the functionsp!r (i=1,
ture as the previou,s! of Eqgs.(48)—(51). Explicitly, they are

dependent part afl" g%, Thus, we get

.,4) having the same struc-

pal?
P1F= T[(,BZ_ 1) Oop + 2035 — 4], (60)
p2E2 2 2 2
PoF= "% _E90F+(B —1) 0= (B°—3) 03— 204 — BOsr |, (61)
2
P2 0 0 1., 0 m
PIF= > E(E+E))(1—-B%) 60— (3-8 ) +EE 93F+ SEX(1+ 2 )94F_—(E+2E ) OsF — 5E 5= O6r
1 2
5(2E ES )97F_—(E EY )98F+499F | 910F_1015F , (62
0 2 2
D, EO 7 E 1 m
P4F—7[m2{2 ,32+E o+ _§m2+ P2lyo| Osr+ (3_,32)7_EE8_ P2lYo| Oar— E,BEZ"'Z'E;? Osr— 5 Oor
1 1 5, ,
§(3E+p2,3)’0)97|: E08F+209F_§| O10r = P2l (1= B%) 01235+ 2Pl 010 — Pol 013

| 1 1
5tk 7 015~ 77 Oer (-

From Eqgs.(56) and(59) we obtain the analytical brems-
strahlung differential decay rat" 5" of decaying polarized
hyperons corresponding to E(9),

drE="d0 [y~ 5T ], (64
with
@1 =Aflor+(D1+Dy) (0 + 6F) + Do 6+ 6F),
(65)
®be=Bjlor+D3(phe+ pie) + Da(phr T phe).- .

At this point we complete our second main result. The

addition ofdI"g2® of Eq. (64) anddI" BR of Eq. (53) gives us

(63

G2 dE,dE dQ,

dl'ror= > (2m)°

o A A

(67)

< By (@l o) >“

HereAj, Bj, ®,, ®z, ®,, anddLe are given in Egs.
(B1), (8), (54), (65), (55), and(66), respectively.

From Eq.(67) we can obtain easily E¢53) to the RC of
the DP with the TBR only by droppind - and CI)'ZF. Itis
this Eq.(67) which must be used to obtain, in HSD, totally
integrated observables, such as the spin-asymmetry coeffi-
cient of the charged lepton. We shall calculate this asymme-
try coefficient in the next section, allowing for the possibility
that real photon emission be discriminated experimentally
via energy-momentum conservation or via detection.

V. SPIN ASYMMETRY COEFFICIENT ¢«

In this section we shall obtain the RC to the spin-
asymmetry coefficient of the charged leptapn. We shall

the complete analytical RC to the DP of decaying polarizectonsider the two cases discussed all along, namely, that

hyperons to ordexr and neglecting terms of ordesg/ 7wM ;.
This complete result can be expressed compactly as

bremsstrahlung photons not be discriminated at all or that
directly or indirectly the photons belonging to the FBR be

014025-9
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eliminated from the experimental analysis. We will discusswhere o}, is the spin-asymmetry coefficient of the charged
the former case first and afterwards we will discuss the lattefepton without RC. It is obtained from E¢69) by dropping
case. As we shall see in the numerical evaluation of the nexhe terms proportional tar, namely,

section, an appreciable difference can be observed between

these two cases. | B>
a, can be calculated from the total DP of E&7). This %= B, (77)
equation can be used to get the quantities which appear
in the definition ofq, B,(0) andB;(0) in the denominators of E{76) are the
zero-ordery/ M ; approximations of thB'2 of Eq.(70) and of
N*—N~ the B, of Eq. (73), respectively. Explicitly, they are
q=2——-. (69
NT+N"- Em (g
B'2(0)=J' f 2B, dE,dE, (78)
HereN*(N™) denotes the number of the emitted charged m JE,

leptons with momenta in the forwacttdackward hemisphere .
with respect to the polarization of the decaying hyperon. _ f m j A
With those numbers calculated, we may expresss B1(0) m Je, A dE, dE, (79

T BL+ (/) (8l + abe) with B, andA] given in Egs.(9) and (B2), respectively.
T B+ (alm)(arta)” (69) The coefficientey when only the TBR of the DP is al-
lowed can be easily obtained now. All that has to be done is
Here to dropabe anda; from Eq. (76) so that
Em (] af a a
B'=J JZB”dEdE, 70 R 1+ —| ———— ——| | 80
27 ) E; oUE2 (70) a=ag - BIZ(O) B,(0) (80

| Em (€] .| We attached an upper index R to denote that the bremsstrah-
azzf f “®,dE, dE, (71 lung correction is restricted to the TBR.
m “E In Ref. [4] we only calculated the emitted baryon
e - asymmetry-coefficienteg corresponding tcnf‘. In this ref-
ale:J BJEz q’led E,dE, (72 erence it was assumed that the FBR photons were always
m Jwm, discriminated. The contribution of these photons should be
calculated and added to the results of this reference in order

Em () to get anag corresponding to the abovqT.
B,= m e AodE, dE, (73 In the next section we shall display numerical evaluations
2 that will allow us to compare our results with others avail-
£ N able in the literature and, also, to appreciate the relevance of
alzf me_Z ®,dE, dE, (74)  discriminating or not FBR photons.
m JE,

VI. NUMERICAL RESULT

Eg E-
ajF= f J 2®p dE, dE. (75) In order to compare the coefficieni§ of the TBR of the

m M2 DP anda/ of the total DP, we shall make numerical evalu-
ations of them for several decays. These results will enable
: . us to establish the relevance of the difference betwe@n
en in Eqs.(8), (55), (66), (B1), (54), and (65), respec- . !
given in Eqs.(8), (59), (66), (BD), (54 (69), resp and a,T in the study of HSD. We shall also compare them

tively.
InyEq. (69) we have attached an upper index T to denoteVith other results reported in the literature. In Table | we

that the asymmetry coefficient includes the total DP of thed'Ve the values of the form faFg:tors usTed in the numerical
real photons. The contributions of the TBR to the RCapf ~ €Valuation of the coefficients” and @, for the decays
are given by the terma), anda,, while the contributions of n—pev, A—pev, 3" —nev, 3" —Aev, 37" —Ae",

the FBR are given by the tern&,- anda;-. We can now = —Aer, E 3%, E0=S"er, and A] —Ae’v.
rewrite ] to comply with our approximations, i.e., in such a For this last decay we take the form factors of R&0]. The
way that only the terms of order, neglecting terms of order sign of the form factog, must be changed when the charged

aqg/wM,, appear. The corresponding expression is lepton is positivg11]. In the radiatively uncorrected ampli-
tudes theqg?-dependence of the form factor was neglected

In these integralsBy, ®), ®L-, Aj, ®;, andd - are

aflat+a. a +a along with the contributions arising froify, g,, andg; as
al=ap| 1+ — Zl 2k é OlF , (76)  was done in other calculations in the literature.
T\ By(0) 1(0) To evaluateaR we use Eq(80) and for o]/ we use Eq.
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TABLE I. Values of the form factors used in our numerical grands in Eqs(81) and (82) diverge in these limits, the in-
calculations. For the first three decays we take the form factor ratiogegrals themselves have a finite result. A detailed analysis of
of Ref. [6] while for the other decays we use RgL3]. For A this technicality can be found in ReffL2]. To numerically
— A we take the values of RefL0]. For convenience we include in  perform these integrals we can either follow the approach of
the last column the uncorrecteq of Eq. (77) corresponding to this  this reference and implement it in the program to evaluate

choice of form factors. the o's or we may neglect the points wheyg— =+ 1. This

| last approach is equivalent to leaving out the boundaries of
Decay fy fa 9 %o the TBR and the FBR of the DP. The numerical difference
n—p 1.000 1.970 1261 —0.0850 between these two alternatives is negligible. Here we follow
A—p 1.236 1.199 0.890 0.0200 the second alternative.
S —n 1.000 —-0970 —0.340 —0.6319 In Table Il we display our numerical results for the radia-
S LA 0.000 1172 0.601 —0.7030 tive corrections to the asymmetry coefficient§ and o .
StA 0.000 1.172 0.601 —0.6474 We compu@e them by taking the percentage differertttest
E A 1225 -0074 0354  0.2579 is, we multiply by 100
(AR S 0.707 1.310 0.899 —0.1989 RT_ _RT I
AN 1.000 1.853 1.267 —0.1913 o =ai —a, (83)
A:—>A 0.350 0.090 0.610 —0.9513

where a'o is the uncorrected spin-asymmetry coefficient of
the charged lepton, Eq77).

H R
(76). These equations involve the double integration over the !N the second column of Table Il we display tfer
energiesE and E,. At this point is convenient to mention a corresponding to the TBR of the DP, in the third column the

a . A T . . .
technical aspect that we have to deal with when calculatln?m corresponding to the complete DP are given, in the
the integrals ourth column we give the results f@ia obtained from Eq.

(23) and Table | of p. 58 of Ref.13] and, finally, in the fifth
column we give the two values reported in Rig].

N

J’Ef ESIn(yo+1)dE, (81 From Table Il we see that there is a very good agreement
E between oursa™ and theda of Refs.[13] and[6]. In both

references the FBR was included. The inclusion or exclusion

and of the FBR is appreciable, as can be seen by comparing the
B Yot 1 second @d third columns, except for the deaayspev and

sz Egln( 0 )dEz, (820 X~ —nev. In several instances the inclusion of the FBR
M2 Yo—1 contribution reduces the total radiative corrections, even to

. . ] ) the point of making them negligibly small. It may even be
with n=0,1. Integral(81) is contained in Eq71) and(74)  that the values in the second column are one order of mag-
of the TBR. In this regiory, may become-1 and accord- pjtude larger than the corresponding ones in the third col-

ingly the logarithm in its integrand diverges in this limit. ymn. Therefore, in general, there is an important difference
Integral (82) is contained in Eqs.72) and(75) of the FBR. betweenaf anda; .

In this regiony, cannot reach-1 but it can reach asymp-
totically + 1 so that the logarithm in its integrand diverges in
this last limit. The first limit occurs whek,—E, and also
when E,—E, provided E>Eg. The second limit occurs In this paper we have obtained the radiative corrections to
whenE,—E, providedE<Eg. However, even if the inte- order« to the Dalitz plot of the semileptonic decays of po-

VII. CONCLUSIONS

TABLE Il. Percentage radiative correctiofithat is, Eq.(83) multiplied by 100 of the spin-asymmetry
coefficient of the charged lepton in hyperon semileptonic decays. The prediction in the fourth column for
AJ— A uses the approach of R¢fL3], but it was not actually given there.

Decay daR=af— ol sa"=al—ay Sa Ref.[13] Sa Ref.[6]
n—p 0.0119 0.0095 0.0101

A—p 0.0813 0.0014 —0.0023 -0.0
ST n 0.0832 0.0815 0.0758 0.1
ST A 0.1432 0.0836 0.0770

StSA 0.1287 0.0755 0.0911

E A 0.1024 —0.0246 —0.0310

B30 0.3327 0.0371 0.0212

E0.3% 0.3312 0.0350 0.0208

Al —A 0.0757 0.1294 0.1098
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larized spin-1/2 baryons, neglecting terms of ordeg/ wM | APPENDIX A
and higher. Our main result has two forms. One in which the

triple k-integration is ready to be performed numerically, for the RC of the decayl). All of them are also given in

given in Eq.(44) anq Whi(_:h is the sum of Eg(§36) and(39). Ref.[4]. The uncorrected transition amplitubi® for process
And another one in which such integration has been Pery) is

formed analytically, given in Eq67) and which is the sum

In this appendix we give for completeness the amplitudes

of Eqgs.(53) and(64). G _ -

Since real photons may be discriminated either directly MO:—V[UB(pz)Wﬂ(pl,pz)uA(pl)][ul(I)Oﬂvy(py)],
(by detection or indirectly (by energy-momentum conserva- V2
tion) we have split our main result to cover this possibility. If (A1)

photon discrimination indeed takes place, instead of(E4).
one should use only Eq36) and instead of Eq(67) one
should use only Eq(53) £,(0?) f4(0)
An important mtegrqted obse_rvable is the .charged-leptow\/ﬂ(pl,pz):fl(q2) Yt M Tt
spin-asymmetry coefficient, . Using the analytical forms of 1 1
Egs. (67) and (53) we obtained the radiative corrections to 92(9%)
this observable. The integrations overand E, were per- +[91(a?) y,+ 2
formed numerically and the results are displayed in Table II.
A systematic behavior of the RC ta, is observed. The (A2)
contribution of the FBR bremsstrahlung may be as important
as the RC from the TBR and even of opposite sign, in such &lereO,=vy,(1+ ys) andq is the four-momentum transfer.
way that when no photon discrimination takes place the com- The model-independent part of the virtual radiative cor-
plete RC toa; may become almost negligible. In this table rections has the amplitude
we also compared with results reported in other references
[6,13]. This comparison is satisfactory. For completeness, we
evaluated also the RC to the; of the processA.
—Aety.
Our results are model-independent and are not comprovhere ¢(E) and ¢'(E) are given in Egs(11) and (12),
mised to any particular value of the form factors. All the respectivelyM, is
model dependence of radiative corrections has been absorbed
into thef, andg, form factors in our approximation of ne- Gy — _
glecting contributions of ordexq/7M;,. This is indicated Mp1:(W)_[UBW)\UA][UIFSIO)\UV]- (A4)
by putting a prime on them. For hyperons our results are 142
reliable up to a precision of around 0.5%. This precision is . .
useful for experiments involving several thousands of eventsL] The model-dependent part of the virtual radiative correc-

where

+93(q2)
Ml o-,u.qu Ml qp, Vs5-

M, =5~ [Mo(E)+ My 6/ (E)], (A3)

For high statistics experiments involving several hundreds o 10ns 1S absorPed mtbflo thrpugh the definition of effe_ct|ve
thousands of events or for decays involving charm such a m factorsf; andg; . This fact is denoted by putting a
AJ—Ae"v or even heavier quarks our equations provide Prme onMo. . . . .
good first approximation. To improve the precision of our fo||-gcv?nbrtehrgsfgv?/rlwggrérn%g]sltlon ampliti is obtained
formulas it becomes necessary to includg 77M, contribu- 9 ’
tions. Our results are valid for both neutral or charged de-

caying hyperons and whether the emitted positively or nega- M :ﬂ[j W.u ][UO v,] l__ P1-€

tively charged lepton is either electron-type or muon-type. B2 P ETNATIIL K pyk

To conclude let us remark that in a Monte Carlo analysis the -

advantage of the analytical form is that the triple eG, — u £kOyv,

k-integration does not have to be repeated every time the * f[UBWXUA] T 2lk

values off,; andg,, or of E andE,, are changed. This leads

to a considerable saving of computer time. =M,+M,. (A5)

In this equation, the amplitudéd, andM,, correspond to the
ACKNOWLEDGMENTS first and second summands, respectively. Within our ap-
proximations the Low theorem guarantees that no model-
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A/=D,EE°. (B3)

+Q4EPolyo—Qsp3lyo(p2+1yo), (B1) The coefficient®; (i=1,...,7) aregiven in Eqs(B1)—
) 0 (B7) of Ref. [4], respectively. For completeness we repro-
A1=DEE;—Dsl(payo+l), (B2)  duce them here:
|
2E,—M 1 M,+E Mo+ E>, M E M,+E E
_p2 2B Mal 15 Mot E, Y27 =2 2 _2 bt
Ql—Fl[ M, }-FZF [ M, }-ﬁ-Fle[ M, +FF3 1+ Ml X1 M, +F5F3 M, {1 MJ
2E,+M 1 M,—E -E M E, M,—E E
o1cz27 M2y o M2 72 X2~ =2 r2_ _ X2 2, —2
Gl[ M, ZGZ[ M, +Gle[ M, +G,G; M, 1“1 Ml G2G3[ M, Hl MJ
M;—E,]?> 1 ¢?
2 1 2 _ -4
+M1Qs [ M, } 2 2| (B4)
R P PR P P Y VP A P A VP [ VPR N VP P
G M,—E
2t 1+M1Q5[ S 2}, (B5)
1 Ml
E,+ 2 g?
2| =2 2 . 2| =2 2 _2 _ 4
Q Ql 2F { Ml } 1 Ml 1Q5 |:1 M]J M%}, (BG)
F1G1
Qs=Q2— (B7)
F3[Ma+Ep| G3[Mp—E,] FiFs  GiGs
Q= =M M T2 T (B8)
M1 1 M3 1 M3 M3
E>—M2>  p2By Ex+My  p2Byo E>—p2BYo pz,BYO
o B2 2 P2bYo o E2 2 P2
QG_Fl[ M, M, }4_61 M, M, +2F ;G M, +(G1G,—F1F»)
[ E P2BYo { M, pzﬂ)’o}
+F,Gyl —1+(1+ 82—+ — +F,G 1+—+ 1+ —+
2G| ( 'B)Ml M, M, 1G> ( ,3) M, M,
[ M, P2B8Yo m? E> pzﬁYo
—G1F2 _1__+(1+,8 )—+ M, F3G3M—i 1———(1 ,3) 1 M,
vriay Mg M2y Fo] Mg Mo, E F,Ga+ FoGy)| e M= E2~E
Iz M, My | TP e M, ) | (PGt RG]
(B9)
(M1+M3)(E;—My) (M1=My)(Ex+My) My(=M;+E,+2E)—m? E>—M;
_r2 2
Q7—F1[ ME +G2 M 2F,G, Vo +F1Go| =
M,;—2E-E, E,+M,\(M;—2E—E, E,+M,\ [ m? E,—M,\ [ m?
X(T)‘Gﬁ M, S A v PR T VIVl e VPR T V=
2—M3
+(F1F2_G1G2) W (BlO)
The coefficientD; (j=1,...,4)read
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D,=f;%2+3g;?, (B11)
D,=f1*~g5% (B12)
Ds=2(f191—91%), (B13)
D,=2(f19:+9:%). (B14)

yo andE® were defined in Eqg(5) and (6), respectively.
The functionsé; which appear in Eq947)—(50) corresponding to the TBR of the DP are given by

1
0;=—(T +T), (B15)
P2
wherei=2,...,16, and
. 1¥a” In[ 18 +(1J_fxo)ln(14_fx0)+ l+a™ In(l+ai)_(xo+ai)ln(ixoiai)
2T (1£B)(1+BaY) [1-B%)  (1xB)(1-BX0) ~(1FB)(1+pa*) (1+Ba™)(1— Bxg)
(B16)
T+—T‘—i L{ 1-8] [1-Bx| [1+pa” 1+Ba” 1-Bxo| | 1-8
3328 (1% 1+8 1-BXo 1+8 1+Ba* 1+Ba*
1-Bx%,] [1+pBa*
+In -5 In 18 ] (B17)
Ty =(Xo£1)In(1xxg) = (1xa%)In(1+a*)— (xo+a*)In(=xe=a®), (B18)
1
T§:—E{(l—xg)ln(lixo)Jr(xOI1)ai+1—(1—ai2)ln(1iai)+(x§—ai2)ln[i(xo+ai)]}, (B19)
. BES(xo+a™)|  BEYxo+a”) { . ﬁEi(x0+aI>1 BE(Xp+a")
To=|—l+p,*+ ——|1,= —— "1, +| E%- ——J,— -
1+pBa* (14 Ba™)? 1+pBa* (14 Ba*)?
E%xo+a®) _ E%xet+a’) _
+ |+_ +, BZO
(1+Ba*)2 > (1+Ba*)? ? (B20
. _BEUxo+at)| _Exo+a®) . [, BES(xe+a®) E0(xo+a®)
Tr=|Pel® 1rpa | 1epar 2|5 iega | Tiipa 2 (821
Tg=—2(1-p,+E%q) FE(xo+a™)l; —E%xo+a*)J; , (B22)
Ts 3(1-p,) . 3E%, (E9%xo+a®)? | (EDXxp+a™)? | . |
—=——(l-p,+E° =11, 13— S+GTIS
JTERPTEAL ”X°)+_ YITE +BG]1 41%(1+pa*) °  4X(1+Bad) R
3E? 3:5‘V’(E‘3+|x0)+ N
+ ~ 45 +—4|2 +BG* 1, =G, (B23
= 1 o5 N TP T - TPy S S 2y( A7 1
T10=§(x0+1)ln(1+x0)+ 5[(a+) F*1]In(1¥a )—§[x0+(a+) IIn[F(xg+a™)]+ 6(1—x0)(a+i1)—§(x0t1)
X[1—(a¥)?], (B24)
1
Ti1=T1=5 2 EN (1= BX0)da= J1] = (BES+1=py) 4+ (1= p2)l o}, (B25)
P28
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1
Tio=Tiz= 55 5lEN1-X0)d1+2E 0+ 2(1=po) ~ (BE,+1-po) 4], (B26)
- 1
Tis=Tig= — 55-Ex(1-xg), (B27)
P2
Ti=E%1+x3+2a"(xo¥1)=a ™ (xo+a™) (15 £J5)], (B28)
Ti5=3E)[2po(1+Y0) +1(1=xg) ] (EDA(Xo+a™ )% (I3 £13) —2IEN(xe+a")a" (J; £13), (B29)
3 3(1—po+ BE}) pa(E})?
Tie=413 —[2(1—po,+E%) + BEA(1—xd)]+| — ——————po(1+yo) + —l
16 ZBZ[( P2+ E Xo) + BE,(1—Xp)] 25 P2(1+Yo) TR
E%?(xo+a™)? . o [3E%1-Bx0) (E9HHE®+Ixe)
—(—O+(BJ1+JZ—i,8I1iI2—)+ (17 Ax0) | (BN 213, (B30)
21(1+Ba*) 232 212
The following definitions are used in the above expressions:
P2Yot! . E%+p,
Xo=— g a=——, (B31
| 2 tanhs, |, =I a +1 (B32)
= —arctanng, 5> =In s
B 2 a*—1
5= 2 l4= 2 (B33)
Platt-1’ 12
1 1+ { 1-8 ]
Ji=—=1{In In , B34
: ,8( Ty A ey (B34
. ai—l‘ ai+1‘
J>=In|— +In|— , (B35
a7+X0‘ a7+X0‘
J3=-2 a ! (B36)
3 a*?—1 a“+xo]
21 1 ®37
CBl1-p% 1-BX)
. _BED(xota®)? _a*(a*?-1
cr=5F ARl i (B39)
41(1+ Ba™)?  4(1+pBa”)
The sumsd’ + ¢” and 8"+ 6" which appear in Eq(53) are
0
P 711 ) o 1+p° E | 1-p? 2E-E, 1 1
0'+0"=—| —Ey(1=p%) 0o+ | E)m —5—E |03+ 5 04+ 505+ —5— 0= —=— 07+ 5 05— 7= 05|, (B39
" IV_p2| 0 0

Here 6p=(1+yo) (11— 2).
The explicit forms of the photon integrals corresponding to the FBR of the DP are
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1|1, 1,5 E? I3~ 21,
Oop= —| —— ———+ —| 1,7 =1, +BIn|=— | | + , B41
2 ﬁpz[ oo b |z 2 th 5" Ebb* (B41
I, bt 1 1-8 1-8 1+8 1+ 8
Or=—In|—| +——| L —L +L — B42
7 p2 |b-| Bp2 ( b ) ( bt bt b~ (B42
Oue=—| a1, —a 1, +In|—| |, B43
*= 0, 2 2 = l (B43
1 4
bse= 5| (1= D)1," —(1-a B, + 12, (B44
2p, I
Yo o ve Yo Yo )
Ogr=2——=(1, +Bl;)—2 I, "+ Bl)+2[ 2+ B —— == |l,, B45
6F (b_)z( 2 tBl) (b+)2( 2 tBl) B e (B45)
Yo Y .
Oe=2 2|l+b__(Bll+|2 )_b—+(,3|1+|2 )| (B46)
O =2[4+ (Yo )2~ —(yo)l2" 1, (B47)
B o (Yo)? _ (¥9)?
Ogr=24E+2[6(EC—E)+ B(Gr +G/) 111+ 2(Grl, + G 15)+2py| —— 137 — - 1,7, (B49)
Oror= = 2(a ?—a*?)—a 3, +a™®," +In s (B49)
3p2 |3Jr ,
2(14—1y)
_ ST B50
11F 8D, (B50)
2(1,—2)
S B51
12F 8D, (B51)
013=0, (B52)
0rr=2[(2—a 1,7 )(Yo)—(2—a*1,")(yg)], (B53)
O15e=24E0+41[a”yg 1~ —a’yg 1" 1+2p,[(yg) s —(yg)?157], (B54)
—)2 +)2
1= 24E%(1,— 2) + B[ (E%)2— 2E242]1 , + 4lp, (yb" (Bly+1,)— (y;—+<ﬁll+lz+> , (B55)
wherea®, I, |,, I3, |4 are given in Eqs(B31)—(B33) and
i:1+ﬁai1 yg:yoiai,
. . Ya|Ye
Ge=%pB| 2Ea+p,—|—.
F=+8 pzbi) b*
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