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Radiative corrections to the semileptonic Dalitz plot with angular correlation between polarized
decaying hyperons and emitted charged leptons
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We obtain a model-independent expression for the Dalitz plot of semileptonic decays of polarized hyperons
including radiative corrections to ordera and neglecting terms of orderaq/pM1, where q is the four-
momentum transfer andM1 is the mass of the decaying hyperon. We specialize our results to exhibit the
correlation between the charged-lepton momentum and the spin of the decaying hyperon. We present results
for the three-body region of the Dalitz plot and for the complete Dalitz plot~which includes the four-body
region!. From these results we also obtain the corresponding radiative corrections to the integrated lepton
spin-asymmetry coefficient. Our formulas are valid for charged as well as for neutral decaying hyperons and
are appropriate for model-independent experimental analyses whether the real photon is discriminated or not.
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I. INTRODUCTION

The form factors of hyperon semileptonic decays~HSD!,
A→Bln l , contain important information about the low
energy strong interactions of spin-1/2 baryons (A andB are
such baryons andl and n l are the accompanying charge
lepton and neutrino!. Their experimental determination re
quires the use of accurate formulas in the analysis of
measurements of several observables. An important on
these observables is the angular correlation between the

ŝ1 of A and the directionl̂ of the momentum ofl. It is the
purpose of this paper to calculate the radiative correcti

~RC! to the Dalitz plot~DP! with the spin correlationŝ1• l̂
exhibited explicitly.

We shall obtain expressions that are suitable for a mo
independent experimental analysis. The model depend
of the virtual RC is handled following the approach of Sirl
@1# to the RC of neutron beta decay, while the model dep
dence of the bremsstrahlung RC is controlled by the theo
of Low @2#. In previous work we have discussed the RC

the unpolarized DP@3# and to the DP with theŝ1•p̂2 spin
correlation kept explicitly@4# (p̂2 is the direction of the mo-
mentum of the emitted baryonB). It is not possible to derive
the result for the spin correlationŝ1• l̂ from the final result of
Ref. @4# because all kinematical integrations, except for thl
and B energiesE and E2, respectively, were already pe
formed. However, since we are going to follow the sa
approach of this reference, much of the work has alre
been advanced.

The bremsstrahlung RC is a four-body decay whose
covers entirely the DP of the three-body decayA→Bln l .
We shall refer to the latter as the three-body region~TBR!
and to the non-overlap of the former and the latter as
four-body region~FBR!. Even when no experimental a
rangement has been made to detect and discriminate
0556-2821/2000/63~1!/014025~17!/$15.00 63 0140
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photons, it is possible to eliminate the photons that belong
the FBR by energy-momentum conservation. Therefore
calculating the bremsstrahlung RC we shall keep a clear
tinction between these two regions.

We shall also obtain the radiative corrections to the in
grated lepton spin-asymmetry coefficienta l . As we shall
see, the distinction between the TBR and the FBR leads
perceptible change in the RC to this asymmetry coefficie

Our results will be presented in two final forms. On
where the triple integration over the real photon thre
momentumk is left indicated and ready to be performe
numerically. And another one, an analytical form, whe
such a triple integration has been performed. Both forms
be used to numerically cross-check on one another. H
ever, the analytical result, although tedious to feed into
Monte Carlo program, leads to a considerable savings
computer time because the triple integration does not hav
be performed within the Monte Carlo calculation every tim
E andE2 or the form factors are changed.

For the use of our results it is important that this paper
as self-contained as possible. In Sec. II we introduce
notation and conventions and we review the virtual RC; a
the infrared divergence of this part is clearly separated
Sec. III the real photon emission is calculated and separ
into the contributions of the TBR and of the FBR. The ca
culation of Ref.@4# is adapted to the present case. The inf
red divergence is extracted following Ref.@5# and its cancel-
lation with the one of Sec. II is discussed in detail. Our fi
main result is established, allowing for the elimination~or
not! of real photons from the experimental analysis. In S
IV we proceed to the analytical evaluation of the triple int
gration over the photon bremsstrahlung three-moment
Our second main result is established, also allowing for
experimental discrimination~or not! of real photons. In Sec
V we use the analytical result to obtain the RC to the asy
metry coefficienta l . In Sec. VI we make numerical evalu
©2000 The American Physical Society25-1
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ations for several HSD and also for theLc
1→Le1n decay.

We compare with other results available in the literatu
Section VII is reserved to discuss and summarize our res
To make this paper self-contained we introduce two app
dices. In Appendix A we give the amplitudes for virtual an
bremsstrahlung RC, emphasizing how the model depend
is kept under control. In Appendix B we give the analytic
expressions of all the coefficients, both new and of Refs.@3#

and @4# required to compute the RC to theŝ1• l̂ correlation.
Our results have been obtained neglecting contributi

of order aq/pM1 and higher (q is the momentum transfe
and M1 is the mass ofA). They cover both neutral an
chargedA and are reliable up to 0.5% or better in HS
Furthermore, they provide a useful result for charm de
experiments with several thousands of events. For higher
tistics experiments it will be necessary to incorpora
aq/pM1 contributions.

II. VIRTUAL RADIATIVE CORRECTIONS

In this section we shall discuss the virtual radiative c
rections, up to ordera and neglecting terms of orde
aq/pM1, to the DP of the HSD

A→B1 l 1n l , ~1!

with A polarized. Our results will be specialized to exhib
the angular correlationŝ1• l̂ .

A convenient procedure to get such results is that of R
@4#. So, in this paper we adopt the same approach, the s
approximations and the same conventions of this refere
In this way, p15(E1 ,p1), p25(E2 ,p2), l 5(E,l), and pn

0

5(En
0 ,pn) will be the four-momenta ofA, B, l, andn l , re-

spectively.M1 , M2, and m will denote the masses of th
first three particles. We shall assume throughout this pa
that mn50. p̂2 will denote a unit vector alongp2, etc. We
shall make our calculations in the center-of-mass~CM!
frame ofA. In this case,p2 , l, andpn will denote the mag-
nitudes of the corresponding three-momenta. There will
no confusion because the expressions obtained will no
manifestly covariant. Because we want our results to exh
the correlationŝ1• l̂ , it is convenient to choose thez-axis
along l and not alongp2 as done in Ref.@4#.

At this point, it is convenient to mention that it is no
possible to obtain the virtual RC of our present case by us
the final virtual RC given bydGV of Eq. ~15! of Ref. @4#.
This is because in that equation the correlationŝ1•p̂2 was
singled out after the integration over the azimuthal anglef l
of l was performed@in such Eq.~15! df l is still present in
the phase space. As it appears and because of the choi
z-axis its integration amounts a 2p factor#. Therefore, all the
terms indGV containing the productŝ1• l̂ , and which appear
before the integration overdf l is performed, have bee
transformed leaving the correlationŝ1•p̂2 only. There is no
way to recover theŝ1• l̂ terms from this Eq.~15! of Ref. @4#.
So, for obtaining ourdGV , exhibiting the correlationŝ1• l̂
only, we have to take a few steps back before that Eq.~15!.
01402
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Our calculation now starts at the point where the sca
productsŝ1• l̂ and ŝ1•p̂2 appear for the first time, that is, a
Eq. ~13! of Ref. @4#, namely,

(
spins

uMVu25
1

2 (
spins

uMV8 u22
1

2 (
spins

uMV
(s)u2. ~2!

Here MV is the sum of the order zero amplitudeM08 ,
corrected@1# by the model-dependent part of the virtual r
diative corrections through the modified form factorsf 18 and
g18 , and the model-independent amplitudeMv of such RC.
M08 andMv are given explicitly in Appendix A@see Eqs.~A1!
and~A3!#. Of course, Eq.~2! is now adapted to our case of
polarized hyperonA. That is, the spinoruA(p1) now appears
S(s1)uA(p1), with S(s1) being the spin projection operato
of A given in Eq.~4! of Ref. @4#.

With Eq. ~2! we can express the differential decay ra
dGV as

dGV5
dE2 dE dV l df2

~2p!5
M2mmnF1

2 (
spins

uMV8 u2

2
1

2 (
spins

uMV
(s)u2G

5dGV82dGV
(s) . ~3!

Notice the variables in the phase space of this equation,
correspond to our new choice of thez-axis alongl. dV l is
the differential of the solid angle ofl̂ anddf2 is the differ-
ential of the azimuthal angle ofp̂2.

In Eq. ~3!, dGV8 corresponds to the first term within th
square brackets. It can be identified with the differential d
cay rate with virtual radiative corrections of unpolarizedA
given in Eq.~10! of Ref. @3# and, therefore, there is no nee
to recalculate it now.dGV

(s) corresponds to the second term
the square brackets of Eq.~3! and it contains the scalar prod
ucts ŝ1• l̂ , ŝ1•p̂n , and ŝ1•p̂2. The scalar productŝ1•p̂n can
be expressed in terms ofŝ1• l̂ andŝ1•p̂2 by three-momentum
conservation. In this way, onlyŝ1• l̂ andŝ1•p̂2 will appear in
dGV

(s) . Now, we require thatŝ1• l̂ be the only scalar produc
present indGV

(s) . This can be accomplished by noting th

the most general form ofŝ1•p̂2 depends onŝ1• l̂ , l̂•p̂2, and
cosf2. The terms directly proportional to this cosine dro
out after integration overf2 from 0 to 2p. This fact allows
us to use the replacement~see Ref.@6# for further discussion!

ŝ1•p̂2→~ ŝ1• l̂ !~ l̂•p̂2!5 ŝ1• l̂ y, ~4!

in dGV
(s) , leaving us with an expression which only contai

the correlationŝ1• l̂ . In Eq. ~4! y is the cosine of the angle
betweenp̂2 and l̂ . Let us define, in the CM ofA, the variable
y0

y05
~M12E22E!22p2

22 l 2

2p2l
• ~5!
5-2
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In this three body decay one can make the identificati

En
05M12E22E, ~6!

as the neutrino energy and then one can see thaty5y0. Of
course, thisy varies within21 and 1. When a real photon i
presenty0 will not be any longer identifiable withy ~see Sec.
III !.

With these considerations in mind, we can express
dGV of Eq. ~3! as

dGV5
GV

2

2

dE2 dE dV l df2

~2p!5
2M1H A081

a

p
~A18f1A19f8!

2 ŝ1• l̂FB091
a

p
~B28f1B29f8!G J . ~7!

This dGV is the DP with virtual radiative corrections up t
order a ~and neglecting terms of orderaq/pM1), leaving
E2 andE as the relevant variables and with only the angu
correlationŝ1• l̂ explicitly exhibited. The integration overf2

only amounts the factor 2p. Now, A08 , A18 , and A19 are
given in Eqs.~B1!–~B3! of Appendix B. The new terms
B09 , B28 , andB29 are

B095Q6Ep2y01Q7El, ~8!

B2852D3En
0l 1D4E~p2y01 l !, ~9!

B295D4E~p2y01 l !. ~10!

In these equations the coefficientsQ6 and Q7 are long
quadratic functions of the form factors. They are given
Eqs.~B6! and ~B7!, respectively, of Ref.@4#. For complete-
ness we repeat them too@see Eqs.~B9! and ~B10!#. D3 and
D4 depend on the leading form factorsf 18 and g18 and they
are given in Eqs.~B13! and~B14!, respectively. The primes
on A08 , A18 , A19 , B09 , B28 , andB29 indicate that these term
contain the model-dependence of the virtual radiative cor
tions through the leading form factors. The mod
independent functionsf andf8 are

f~E!52S 1

b
arctanhb21D ln

l

m
2

1

b
~arctanhb!2

1
1

b
LS 2b

11b D1
1

b
arctanhb2

11

8

1H p2/b1
3

2
ln~M2 /m! ~NDH!,

3

2
ln~M1 /m! ~CDH!,

~11!

f8~E!5S b2
1

b Darctanhb. ~12!

NDH ~CDH! stands for neutral~charged! decaying hyperons
In these equations we use the definitionb5 l /E and L de-
01402
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notes the Spence functionL(x)5*0
x(dt/t)lnu12tu. l repre-

sents a small photon mass which regularizes the infrared
vergence in the functionf(E). Actually, Eq. ~7! contains
twice the infrared divergence. The first one appears inA18f
of the spin-independent part and the other one appear
B28f of the spin-dependent part. Both divergences will
canceled by their counterparts in the bremsstrahlung co
bution.

Let us close this section by comparing thedGV of Eq. ~7!
with the dGV of Eq. ~15! of Ref. @4#. In spite of minor dif-
ferences in their phase space factors, we can see that
spin-independent parts are the same. This is not the cas
their spin-dependent parts. We can notice that the coe
cientsA09 , A28 , andA29 , which appear in the spin-depende
part of dGV of Ref. @4#, have changed to the coefficien
B09 , B28 , andB29 , respectively, ofdGV of Eq. ~7!. We ob-
serve in Eqs.~8!–~10! that in theB coefficientsy0 always
appears as a factor ofp2, while for theA coefficients of Ref.
@4# y0 always appears as a factor ofl. This latter observation
may induce us to think of the possibility of obtaining th
dGV of Eq. ~7! from the dGV of Ref. @4# by simply inter-
changingp2 with l. Unfortunately this rule does not wor
because under such an interchange theA coefficients do not
lead to theB coefficients and, thus, we cannot obtain Eq.~7!
directly from the finaldGV of Ref. @4#.

III. BREMSSTRAHLUNG RADIATIVE CORRECTIONS

In addition to the virtual RC the bremsstrahlung contrib
tions must be calculated to get the complete RC to the DP
polarized decaying hyperons. In this section, we shall ob
them, to the same order of approximation as the virtual R
both for the TBR and for the FBR. First we shall define tho
regions and next we shall proceed to the calculations. A
discussed in Appendix A, these corrections are mod
independent by virtue of the theorem of Low@2#.

A. Kinematics, TBR, and FBR

The DP in the variablesE and E2 is the kinematically
allowed region of the four-body decay

A→B1 l 1n l1g, ~13!

where g represents a real photon with four-momentumk
5(v,k). The DP can be seen as the union of the TBR a
FBR, each one defined presently.

The TBR of the DP is the region where the three-bo
decay~1! and the four-body decay~13! overlap completely.
The energiesE andE2 satisfy the bounds

E2
2<E2<E2

1 , ~14!

and

m<E<Em . ~15!

Here,E2
1 (E2

2) is the upper~lower! boundary of the TBR
given by
5-3
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E2
65

1

2
~M12E6 l !1

M2
2

2~M12E6 l !
, ~16!

andEm is the maximum energy of the charged lepton

Em5
M1

22M2
21m2

2M1
. ~17!

The FBR of the DP is the region where only the fou
body decay~13! can take place. The energiesE and E2 in
this region satisfy the bounds

M2<E2<E2
2 , ~18!

m<E<EB , ~19!

where

EB5
~M12M2!21m2

2~M12M2!
. ~20!

Both regions TBR and FBR are depicted in Fig. 1 of Ref.@3#,
where more details about these regions can be found.

We can now proceed to the calculation of the bremsstr
lung RC to the DP. First we shall do this for the TBR a
next for the FBR. The complete bremsstrahlung RC to
DP are obtained by simply adding the results of the TBR
those of the FBR. To obtain the complete RC of each reg
we must also add the virtual RC of Eq.~7!.

B. TBR bremsstrahlung RC

Here we shall obtain the bremsstrahlung RC restricted
the TBR and with the angular correlationŝ1• l̂ explicitly
shown. We shall follow closely the procedure employed
Ref. @4#. In order to extract the infrared divergent terms a
the finite terms that accompany them, we shall use the
proach of Ref.@5#, which was applied to the RC to the DP o
Ke3

6 decays. However, for the same reasons discussed in
II, it is not possible to use the final result of Ref.@4# for the
bremsstrahlung RC to obtain the corresponding result for
RC to theŝ1• l̂ correlation. We must start at an earlier sta
of the calculations of this reference, namely, from its E
~31! which reads

(
spins

uMBu25
1

2 (
spins

uMB8 u22
1

2 (
spins

uMB
(s)u2. ~21!

This equation is the square, summed over spins, of
bremsstrahlung transition amplitudeMB of the four-body
process ~13! with the spinor uA(p1) replaced by
S(s1)uA(p1). The explicit form ofMB is given in Eq.~A5!
of Appendix A. Equation~21! enables us to express th
bremsstrahlung differential decay rate as
01402
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dGB
TBR5

M2m mn

~2p!8

d3p2

E2

d3l

E

d3k

2v

d3pn

En
(
spins

uMBu2

3d4~p12p22 l 2pn2k!

[dGB82dGB
(s) , ~22!

wheredGB8 contains the first term of Eq.~21! and is indepen-

dent ofŝ1, while dGB
(s) contains the second term of this equ

tion and is spin-dependent.
There is no need to recalculate the spin-independent t

dGB8 . This part is readily identified with the Eq.~33! of Ref.
@4#, namely,

dGB85dGB
ir1dGB

a1dGB
b . ~23!

dGB
ir contains the infrared-divergent terms. Following t

method of Ref.@5#, we can use the equality~56! of Ref. @4#
and writedGB

ir as

dGB
ir5

a

p
dV8@A18I 0~E,E2!1C2#, ~24!

instead of Eq.~34! of Ref. @4#. The phase space factor in E
~24! is now

a

p
dV85

a

p

GV
2

2

dE2 dE dV l df2

~2p!5
2M1 , ~25!

instead of thedV of Eq. ~35! of Ref. @4#. A18 is defined in
Appendix B and the result forI 0(E,E2) is given in Eq.~52!
of Ref. @4#, namely,

I 0~E,E2!5
1

b
arctanhbF2 lnS 2l

l D1 lnS m hmax
2

4~E1 l !r 1
D G

2
1

b
LS 2

a2

4r 1
D1

1

b
LS 2

4r 2

a2 D 22 lnS m

l D
2 lnS hmax

2

2mEn
0~q22m2!

D , ~26!

where

r 65
1

E1 l
$@En

0l 2~q22m2!2a2E/4#

6$@En
0l 2~q22m2!2a2E/4#22m2a4/16%1/2%,

a25hmax~4p2l 2hmax!,

and

q25M1
222M1E21M2

2 .

hmax is defined right below Eq.~31!.
With Eqs.~36!–~38! of Ref. @4# for C2 , d GB

a , andd GB
b ,

respectively, we can express thed GB8 of Eq. ~23!, with some
minor rearrangements, in the compact form
5-4
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d GB85
a

p
dV8H A18I 0~E,E2!

1
p2l

4pE21

1

dxE
21

y0
dyE

0

2p

dfk@ uM8u21uM9u2#J ,

~27!

with

uM8u25
b2~12x2!

~12bx!2 FD22
D1E1D2lx

D G , ~28!

and

uM9u25
En

ED~12bx! FD1S v1E~11bx!2
m2

E~12bx! D
1D2p̂n•S l1 k̂~E1v!2 k̂

m2

E~12bx! D G . ~29!

In these last three equations,x5 l̂• k̂ andy5 l̂•p̂2 are the
cosines of the polar angles ofk andp2, respectively, wherea
fk is the azimuthal angle ofk. Furthermore,En5En

02v and

D5En
01(p21 l)• k̂. The quantityEn

0 was defined in Eq.~6!
01402
andy0 is the variable defined in Eq.~5!. Notice that, even if
we are still in the TBR,y0 is no longer equal toy; however
inside this regiony0 still varies within21 and 1~Also no-
tice that outside, in what we called the FBR,y0>1 always.!
The coefficientsD1 andD2 depend on the leading form fac
tors and they are given in Eqs.~B11! and~B12! of Appendix
B.

Once we haved GB8 of Eq. ~22!, we can turn our attention
to the spin-dependent partd GB

(s) of this equation. In order to
compute it we shall start from Eq.~43! of Ref. @4#, namely,

d GB
(s)5d GB

I 1d GB
II , ~30!

where d GB
I and d GB

II contain (spinsuMa
(s)u2 and

(spins(uMb
(s)u212Re@Ma

(s)#@Mb
(s)#†), respectively. Ma

(s) and
Mb

(s) are the spin-dependent parts of the amplitudesMa and
Mb defined in Eq.~A5!, after the spinoruA is replaced by
S(s1)uA . dGB

I contains the infrared-divergent terms as w
as many infrared-convergent ones.d GB

II is infrared-
convergent only. To computed GB

I we follow the procedure
of Ref. @5# to extract the infrared divergence. According
this and using the explicit form of(spinsuMa

(s)u2 given in Eq.
~44! of Ref. @4#, we can writed GB

I as
rms are

re

s, to get

t

e

d GB
I 5

a

p
dV8

1

8p
lim
l→0

E
l2

hmax
dh

d3k

v

d3pn

En
d4~p12p22 l 2pn2k!3@2D3ŝ1• lEn

01D4ŝ1•p2E1D4ŝ1• lE

1D3ŝ1• lv1D4ŝ1•kE#3(
e

S l •e

l •k
2

p1•e

p1•kD 2

. ~31!

The infrared divergence is contained in the first three terms within the square brackets, the remaining two te
infrared-convergent.h5(pn1k)2 is the invariant mass, which in the CM ofA is given byh52p2l (y02y). In the TBR,
hmax52p2l(y011) andhmin5l2, with l2→0. The coefficientsD3 and D4 depend on the leading form factors and they a
given in Eqs.~B13! and ~B14! of Appendix B.em is the polarization four-vector of the real photon.

In order to expressd GB
I in terms of the correlationŝ1• l we need to express the scalar productsŝ1•p2 and ŝ1•k of Eq. ~31!

in terms ofŝ1• l. This can be achieved by using the substitution of Eq.~4! and its analog@6#,

ŝ1•k → ~ ŝ1• l̂ ! ~ l̂•k!. ~32!

In Eq. ~31!, with these substitutions, we can separate the infrared-divergent terms from the infrared-convergent one

d GB
I 5

a

p
dV8ŝ1• l̂H B28

1

8p
lim
l→0

E
l2

hmax
dh

d3k

v

d3pn

En
d4~p12p22 l 2pn2k!3F 2p1• l

p1•k l•k
2

m2

~ l •k!2
2

M1
2

~p1•k!2G
1

1

8p
lim
l→0

E
l2

hmax
dh

d3k

v

d3pn

En
d4~p12p22 l 2pn2k!3FD3v l 1D4 l̂• k̂ vE2D4

h

2bGb2

v2

12~ l̂• k̂!2

~12b l̂• k̂!2J . ~33!

HereB28 is given in Eq.~9!. In the first integral the sum over polarizations indicated in Eq.~31! was performed in covarian
form, whereas in the second one it was performed by using the Coester representation@7#.

The first integral in Eq.~33! can be identified with the divergent integralI 0 of Eq. ~26!. The second one can be put in th
convenient form of Eq.~38! of Ref. @3# by performing the integration over thed function and leavingy as the integration
variable instead ofh. In this way, we can expressd GB

I finally as
5-5
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d GB
I 5

a

p
dV8ŝ1• l̂H B28I 0~E,E2!1

p2E

4p E
21

1

dxE
21

y0
dyE

0

2p

dfk3FD3

b l

D
2D4S 12

lx

D D Gb2~12x2!

~12bx!2 J . ~34!

The other term of Eq.~30!, d GB
II , does not need any calculation. We can take the result of Eq.~57! of Ref. @4# and, with

only minor changes in the phase space factor, we can adapt it to our case. After the application of rule~32! in such Eq.~57!
is performed, we obtain

d GB
II5

a

p
dV8ŝ1• l̂

p2b

4p E
21

1 dx

12bxE21

y0
dyE

0

2p

dfk

1

D
3H D3EnF2 l 2~E1v!x1

m2

E

x

12bxG
1D4Fv1~11bx!E2

m2

E

1

12bxG~p2y1 l 1vx!J . ~35!
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At this point we can collect our partial results to get o
first main result, namely, the DP of polarized decaying h
perons with radiative corrections up to ordera, neglecting
terms of orderaq/pM1, and restricted to the TBR. It can b
set as

d GTBR5d GV1d GB
TBR

5d GV1@d GB82~d GB
I 1d GB

II !#, ~36!

whered GV is given in Eq.~7!, d GB
TBR is given in Eq.~22!,

and dGB8 , d GB
I and d GB

II are given in Eqs.~27!, ~34! and
~35!, respectively. The integration over the three-moment
of the real photon in these last three equations is ready t
performed numerically~but it can be performed analyticall
too, as we shall see in the next section!.

The result of Eq.~36! can be compared with the corre
sponding one of Ref.@4# @the sum of Eqs.~15!, ~33!, ~51!,
and ~57! of this reference#. We observe that the spin
independent partsd GB8 are the same, although our prese
d GB8 is expressed in a more compact form, while the sp
dependent parts are different. By looking in detail at tho
equations of Ref.@4#, it is clear that one cannot obtain from
them the above Eqs.~34! and ~35!, as we stressed in th
introduction.

C. FBR bremsstrahlung RC and complete RC

We shall now calculate the bremsstrahlung contribut
of the FBR and afterwards we shall obtain the complete
to the DP, with the addition of the TBR and virtual contr
butions.

The calculation of bremsstrahlung in the FBR is relative
simple because the events in this region have the same
plitude MB of Eq. ~A5! and it is infrared-convergent. W
need to change the upper limit of the integrals over the v
abley of Eqs.~27!, ~34!, and~35!—this limit now becomes
one—and to change the previously infrared-divergent in
gral I 0 of these equations intoI 0F defined as

I 0F5
u0F

2
lnS y011

y021D , ~37!

with
01402
-

be

t
-
e

n
C

m-

i-

-

u0F54S 1

b
arctanhb21D . ~38!

I 0F is no longer infrared-divergent because in the FBR
photon has a minimum energy which is nonzero. It can
easily calculated from Eq.~18! of Ref. @5#. The invariant
massh of this equation must be integrated now from a min
mum value hmin52p2l(y021) to a maximum valuehmax
52p2l(y011). The quantityy0 is still defined as in Eq.~5!,
but within this FBR it is always positive and greater th
one; it can even grow indefinitely, but this causes no pr
lem. It is also clear thatI 0F is always real.

With these changes we can write the differential dec
rate corresponding to the FBR as

d GB
FBR5d GB8

FBR2d GB
(s) FBR, ~39!

with

d GB8
FBR5

a

p
dV8H A18I 0F~E,E2!

1
p2l

4pE21

1

dxE
21

1

dyE
0

2p

dfk@ uM8u21uM9u2#J ,

~40!

and

d GB
(s) FBR5

a

p
dV8ŝ1• l̂H B28I 0F~E,E2!

1
p2l

4pE21

1

dxE
21

1

dyE
0

2p

dfk@ uM-u21uMIVu2#J .

~41!

In Eq. ~40!, uM8u2 and uM9u2 are given in Eqs.~28! and
~29!, respectively. Equation~41! is the sum of Eqs.~34! and
~35!, after the above changes are performed.uM-u2 and
uMIVu2 are

uM-u25
b2~12x2!

~12bx!2 FD3l 1D4Ex

D
2D4

1

bG , ~42!
5-6
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uMIVu25
1

DE FD3EnS 2 l 2Ex2vx1
m2

E

x

12bxD
1D4S v2

m2

E

1

12bx
1~11bx!ED

3~p2y1 l 1v!G . ~43!

Equation~39! is the FBR contribution to the RC of th
DP. It can be added to the TBR contribution to obtain t
complete RC to the DP of polarized hyperons within t
approximations mentioned before. This completes our fi
main result of Eq.~36! by including the emission of all rea
photons allowed by energy-momentum conservation. I
displayed compactly as

d G5d GTBR1d GB
FBR, ~44!

with dGTBR andd GB
FBR given in Eqs.~36! and ~39!, respec-

tively. The integrations over the photon variables are re
to be performed numerically.

Let us close this section by mentioning that all the in
grals which arise in the two regions of the DP can be p
formed analytically. Because of this, we can obtain co
pletely analytical results for the RC of the DP. We shall
this in the next section.

IV. ANALYTICAL INTEGRATIONS

In this section we shall perform analytically the phot
three-momentum integrals contained in Eqs.~27!, ~34!, ~35!,
~40!, and~41! to obtain an analytical expression for the R
to the DP restricted to the TBR first and for the total D
later.
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A. TBR analytical form

The k-integrals corresponding to the TBR of the DP a
those of Eqs.~27!, ~34!, and ~35!. They can be performed
analytically by following the procedure of Sec. V of Ref.@3#,
where the RC to the DP of unpolarized hyperons were
tained. Fortunately much of the work has already been
vanced. The integrals that concern us now can be expre
in terms of the functionsu i ( i 52, . . . ,9) given by Eq.~99!
of that reference, and in terms of theu j ( j 510, . . .,16)
given by Eq.~46! of Ref. @8#. In this last reference the RC
include all the terms of orderaq/pM1, which are dropped
here. We can express the analytical form of Eq.~27! as

dGB85
a

p
dV8@A18I 01~D11D2!~u81u-!1D2~u91u IV !#.

~45!

This equation is equivalent todwB of Eq. ~92! of Ref. @3#.
Similarly, the expressions fordGB

I anddGB
II of Eqs.~34! and

~35! become

dGB
I 5

a

p
dV8 ŝ1• l̂@B28I 01D3r1

l 1D4r2
l #, ~46!

dGB
II5

a

p
dV8 ŝ1• l̂@D3r3

l 1D4r4
l #. ~47!

In Eq. ~45! theu i functions are contained in the function
u8, u9, u- andu IV given by Eqs.~85!, ~86!, ~90!, and~91!
of Ref. @3#, respectively. The functionsr i

l ( i 51, . . . ,4) in
Eqs.~46!,~47! can be expressed as
r1
l 5

p2l 2

2
@~b221!u212u32u4#, ~48!

r2
l 5

p2E2

2 F2
2

E
u01~b221!u22~b223!u322u42bu5G , ~49!

r3
l 5

p2

2 H E~E1En
0!~12b2!u22F ~32b2!

E2

2
1EEn

0Gu31
1

2
E2~11b2!u42

l

2
~E12En

0!u52
m2

2E
u61

1

2
~2E2En

0!u7

2
1

2
~E2En

0!u81
1

4
u92

3

2
l 2u102

1

4
u15J , ~50!

r4
l 5

p2

2 H m2F22b21
En

0

E Gu21F2
7

2
m21p2ly0Gu31F ~32b2!

E2

2
2EEn

02p2ly0Gu42F1

2
bE212lEn

0Gu52
m2

2E
u6

1
1

2
~3E1p2by0!u72Eu81

1

4
u92

5

2
l 2u102p2l ~12b2!u1112p2lu122p2lu132

l

2
u142

1

4
u152

1

4E
u16J . ~51!
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With Eqs.~45!–~47! all the integrals overk in Eqs.~27!,
~34!, and~35! have been expressed in an analytical form. W
can obtain now the bremsstrahlung differential decay r
dGB

TBR of decaying polarized hyperons with the photon in
grals expressed analytically. Substituting in Eq.~22! the ana-
lytical forms of dGB8 , Eq. ~45!, and ofdGB

(s) , which is the
sum of Eqs.~46! and ~47!, the analytical form ofdGB

TBR

reads

dGB
TBR5

a

p
dV8$A18I 01~D11D2!~u81u-!1D2~u91u IV !

2 ŝ1• l̂@B28I 01D3~r1
l 1r3

l !1D4~r2
l 1r4

l !#%. ~52!

We are now in a position to obtain our second main res
in this paper: the analytical RC to the DP of decaying pol
ized hyperons to ordera and neglecting terms of orde
aq/pM1. This result comes from the addition of the virtu
RC, dGV of Eq. ~7!, and ofdGB

TBR of Eq. ~52!. It can be put
compactly as

dGTBR5
GV

2

2

dE2 dE dV l

~2p!4
2M1H A081

a

p
F12 ŝ1• l̂

3FB091
a

p
F2

l G J . ~53!

HereA08 andB09 are the same as Eqs.~B1! and~8!, respec-
tively. F1 andF2

l are

F15A18~f1I 0!1A19f81~D11D2!~u81u-!

1D2~u91u IV !, ~54!

F2
l 5B28~f1I 0!1B29f81D3~r1

l 1r3
l !

1D4~r2
l 1r4

l !. ~55!

The coefficientsA18 , A19 , B28 , andB29 are given in Eqs.
~B2!, ~B3!, ~9! and ~10!, respectively.Di ( i 51, . . . ,4) are
given in Eqs.~B11!–~B14!. The functionsf, f8, and I 0
appear in Eqs.~11!, ~12!, and ~26!, respectively. The new
model-independent functionsr i

l ( i 51, . . . ,4)were given in
Eqs. ~48!–~51!. The sumsu81u- and u91u IV appear ex-
plicitly in Eqs. ~93! and ~94! of Ref. @3#, respectively. We
have corrected a misprint in that Eq.~93!. Its fourth term has
to be l /2 u5 rather than2 l /2 u5. For completeness, we re
produce these two sums in Appendix B@see Eqs.~B39! and
~B40!#.

Because the infrared divergence, which appears in the
tual partdGV through the functionf, cancels out with its
bremsstrahlung counterpart, which appears inI 0, the sum
f1I 0 is no longer infrared-divergent and, therefore,dGTBR

of Eq. ~53! is infrared-convergent.
dGTBR is the result corresponding todG of Eq. ~101! in

Ref. @4#. Comparing both results, we can observe that
spin-independent parts are the same, but the spin-depen
parts show important differences. In Eq.~101! of Ref. @4# we
have, within the square brackets that accompany the cor
01402
e
te
-

lt
-

ir-

e
ent

la-

tion ŝ1•p̂2, the termsA09 andF2, while in Eq. ~53! the cor-

responding terms accompanyingŝ1• l̂ are B09 and F2
l . They

are different. In fact, we may notice that inF2
l of Eq. ~55!

only theu i-functions (i 52, . . .,16) appear, while inF2 of
Eq. ~103! of Ref. @4# also theh-functions appear@see Eqs.
~91!-~95! of this reference#. Because of this, the RC toŝ1• l̂
and ŝ1•p̂2 correlations are quite different.

B. FBR analytical form

The k-integrals of the FBR are those contained in Eq
~40! and ~41! and they can be performed analytically, to
BecausedGB8

FBR of Eq. ~40! has the same form as the co
respondingdGB8 of Eq. ~27! of the TBR, we can follow the
same procedure of Sec. V of Ref.@3# to calculate the ana
lytical form of this dGB8

FBR. The result has the same stru
ture asdGB8 of Eq. ~45!,

dGB8
FBR5

a

p
dV8@A18I 0F1~D11D2!~uF81uF-!

1D2~uF91uF
IV !#, ~56!

with

uF81uF-5
p2l

2 F2En
0~12b2!u2F1S En

02
11b2

2
ED u3F

1
E

2
u4F1

l

2
u5F1

12b2

2
u6F2

2E2En
0

2E
u7F

1
1

2
u8F2

1

4E
u9FG , ~57!

and

uF91uF
IV5

p2l

2
@u0F2~E1En

01bp2y0!u3F

1~En
01E!u4F1 lu5F#. ~58!

These last two equations have the same structure au8
1u- andu91u IV of the TBR analytical form ofdGB8 of Eq.
~45!. Thus, I 0 and u i in the latter are changed intoI 0F and
u iF , respectively, in the analytical form ofdGB8 in the FBR,
Eq. ~56!.

The change ofu i into u iF occurs because in the formery
is integrated between21 andy0 and in the lattery is inte-
grated between21 and 1. The new set$u iF% ( i
52, . . .,16) is explicitly given in Appendix B andu0F is
given in Eq.~38!. We can compare with theu i

T of Ref. @9#
where the RC of the DP for the FBR were calculated up
order aq/pM1. We cannot take readily the result of th
reference because, according to our approximations,
would have to neglect all the terms of orderaq/pM1 in that
result to obtain ours. We find the procedure of Ref.@3# more
adequate and straightforward for our purposes. Howeve
order to check our results we have reproduced the Table
5-8
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Ref. @9#. Our numerical evaluations coincide very we
within the approximation of neglecting terms of ord
aq/pM1; we shall not display here this numerical evalu
tion.

In a similar way, we can see that the spin-dependent
of dGB

FBR has the same structure as the corresponding s
dependent part ofdGB

TBR. Thus, we get
-

he

e

01402
-

rt
n-

dGB
(s) FBR5

a

p
dV8ŝ1• l̂@B28I 0F1D3~r1F

l 1r3F
l !

1D4~r2F
l 1r4F

l !#, ~59!

with the functionsr iF
l ( i 51, . . . ,4) having the same struc

ture as the previousr i
l of Eqs.~48!–~51!. Explicitly, they are
r1F5
p2l 2

2
@~b221!u2F12u3F2u4F#, ~60!

r2F5
p2E2

2 F2
2

E
u0F1~b221!u2F2~b223!u3F22u4F2bu5FG , ~61!

r3F5
p2

2 H E~E1En
0!~12b2!u2F2F ~32b2!

E2

2
1EEn

0Gu3F1
1

2
E2~11b2!u4F2

l

2
~E12En

0!u5F2
m2

2E
u6F

1
1

2
~2E2En

0!u7F2
1

2
~E2En

0!u8F1
1

4
u9F2

3

2
l 2u10F2

1

4
u15FJ , ~62!

r4F5
p2

2 H m2F22b21
En

0

E Gu2F1F2
7

2
m21p2ly0Gu3F1F ~32b2!

E2

2
2EEn

02p2ly0Gu4F2F1

2
bE212lEn

0Gu5F2
m2

2E
u6F

1
1

2
~3E1p2by0!u7F2Eu8F1

1

4
u9F2

5

2
l 2u10F2p2l ~12b2!u11F12p2lu12F2p2lu13F

2
l

2
u14F2

1

4
u15F2

1

4E
u16FJ . ~63!
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From Eqs.~56! and ~59! we obtain the analytical brems
strahlung differential decay ratedGB

FBR of decaying polarized
hyperons corresponding to Eq.~39!,

dGB
FBR5

a

p
dV8@F1F2 ŝ1• l̂ F2F

l #, ~64!

with

F1F5A18I 0F1~D11D2!~uF81uF-!1D2~uF91uF
IV !,

~65!

F2F
l 5B28I 0F1D3~r1F

l 1r3F
l !1D4~r2F

l 1r4F
l !.

~66!

At this point we complete our second main result. T
addition ofdGB

FBR of Eq. ~64! anddGTBR of Eq. ~53! gives us
the complete analytical RC to the DP of decaying polariz
hyperons to ordera and neglecting terms of orderaq/pM1.
This complete result can be expressed compactly as
d

dGTOT5
GV

2

2

dE2 dE dV l

~2p!4
2M1H A081

a

p
~F11F1F!2 ŝ1• l̂

3FB091
a

p
~F2

l 1F2F
l !G J . ~67!

HereA08 , B09 , F1 , F1F , F2
l , andF2F

l are given in Eqs.
~B1!, ~8!, ~54!, ~65!, ~55!, and~66!, respectively.

From Eq.~67! we can obtain easily Eq.~53! to the RC of
the DP with the TBR only by droppingF1F andF2F

l . It is
this Eq.~67! which must be used to obtain, in HSD, total
integrated observables, such as the spin-asymmetry co
cient of the charged lepton. We shall calculate this asymm
try coefficient in the next section, allowing for the possibili
that real photon emission be discriminated experiment
via energy-momentum conservation or via detection.

V. SPIN ASYMMETRY COEFFICIENT a l

In this section we shall obtain the RC to the spi
asymmetry coefficient of the charged leptona l . We shall
consider the two cases discussed all along, namely,
bremsstrahlung photons not be discriminated at all or t
directly or indirectly the photons belonging to the FBR
5-9
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eliminated from the experimental analysis. We will discu
the former case first and afterwards we will discuss the la
case. As we shall see in the numerical evaluation of the n
section, an appreciable difference can be observed betw
these two cases.

a l can be calculated from the total DP of Eq.~67!. This
equation can be used to get the quantitiesN6 which appear
in the definition ofa l ,

a l52
N12N2

N11N2
. ~68!

HereN1(N2) denotes the number of the emitted charg
leptons with momenta in the forward~backward! hemisphere
with respect to the polarization of the decaying hyper
With those numbers calculated, we may expressa l as

a l
T52

B2
l 1~a/p!~a2

l 1a2F
l !

B11~a/p!~a11a1F!
. ~69!

Here

B2
l 5E

m

EmE
E2

2

E2
1

B09dE2dE, ~70!

a2
l 5E

m

EmE
E2

2

E2
1

F2
l dE2 dE, ~71!

a2F
l 5E

m

EBE
M2

E2
2

F2F
l dE2 dE, ~72!

B15E
m

EmE
E2

2

E2
1

A08dE2 dE, ~73!

a15E
m

EmE
E2

2

E2
1

F1dE2 dE, ~74!

a1F5E
m

EBE
M2

E2
2

F1F dE2 dE. ~75!

In these integrals,B09 , F2
l , F2F

l , A08 , F1, and F1F are
given in Eqs.~8!, ~55!, ~66!, ~B1!, ~54!, and ~65!, respec-
tively.

In Eq. ~69! we have attached an upper index T to den
that the asymmetry coefficient includes the total DP of
real photons. The contributions of the TBR to the RC ofa l

are given by the termsa2
l anda1, while the contributions of

the FBR are given by the termsa2F
l anda1F . We can now

rewritea l
T to comply with our approximations, i.e., in such

way that only the terms of ordera, neglecting terms of orde
aq/pM1, appear. The corresponding expression is

a l
T5a0

l F11
a

p S a2
l 1a2F

l

B2
l ~0!

2
a11a1F

B1~0! D G , ~76!
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wherea0
l is the spin-asymmetry coefficient of the charg

lepton without RC. It is obtained from Eq.~69! by dropping
the terms proportional toa, namely,

a0
l 52

B2
l

B1
. ~77!

B2
l (0) andB1(0) in the denominators of Eq.~76! are the

zero-orderq/M1 approximations of theB2
l of Eq. ~70! and of

the B1 of Eq. ~73!, respectively. Explicitly, they are

B2
l ~0!5E

m

EmE
E2

2

E2
1

B28 dE2 dE, ~78!

B1~0!5E
m

EmE
E2

2

E2
1

A18 dE2 dE, ~79!

with B28 andA18 given in Eqs.~9! and ~B2!, respectively.
The coefficienta l when only the TBR of the DP is al

lowed can be easily obtained now. All that has to be don
to dropa2F

l anda1F from Eq. ~76! so that

a l
R5a0

l F11
a

p S a2
l

B2
l ~0!

2
a1

B1~0!D G . ~80!

We attached an upper index R to denote that the bremss
lung correction is restricted to the TBR.

In Ref. @4# we only calculated the emitted baryo
asymmetry-coefficientaB corresponding toa l

R. In this ref-
erence it was assumed that the FBR photons were alw
discriminated. The contribution of these photons should
calculated and added to the results of this reference in o
to get anaB corresponding to the abovea l

T .
In the next section we shall display numerical evaluatio

that will allow us to compare our results with others ava
able in the literature and, also, to appreciate the relevanc
discriminating or not FBR photons.

VI. NUMERICAL RESULT

In order to compare the coefficientsa l
R of the TBR of the

DP anda l
T of the total DP, we shall make numerical eval

ations of them for several decays. These results will ena
us to establish the relevance of the difference betweena l

R

and a l
T in the study of HSD. We shall also compare the

with other results reported in the literature. In Table I w
give the values of the form factors used in the numeri
evaluation of the coefficientsa l

R and a l
T for the decays

n→pen̄, L→pen̄, S2→nen̄, S2→Len̄, S1 →Le1n,
J2→Len̄, J2→S0en̄, J0→S1en̄, and Lc

1→Le1n.
For this last decay we take the form factors of Ref.@10#. The
sign of the form factorg1 must be changed when the charg
lepton is positive@11#. In the radiatively uncorrected ampli
tudes theq2-dependence of the form factor was neglect
along with the contributions arising fromf 3 , g2, andg3 as
was done in other calculations in the literature.

To evaluatea l
R we use Eq.~80! and for a l

T we use Eq.
5-10
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~76!. These equations involve the double integration over
energiesE andE2. At this point is convenient to mention
technical aspect that we have to deal with when calcula
the integrals

E
E2

2

E2
1

E2
n ln~y011!dE2 ~81!

and

E
M2

E2
2

E2
n lnS y011

y021DdE2 , ~82!

with n50,1. Integral~81! is contained in Eqs.~71! and~74!
of the TBR. In this regiony0 may become21 and accord-
ingly the logarithm in its integrand diverges in this limi
Integral ~82! is contained in Eqs.~72! and ~75! of the FBR.
In this regiony0 cannot reach21 but it can reach asymp
totically 11 so that the logarithm in its integrand diverges
this last limit. The first limit occurs whenE2→E2

1 and also
when E2→E2

2 provided E.EB . The second limit occurs
whenE2→E2

2 providedE,EB . However, even if the inte-

TABLE I. Values of the form factors used in our numeric
calculations. For the first three decays we take the form factor ra
of Ref. @6# while for the other decays we use Ref.@13#. For Lc

1

→L we take the values of Ref.@10#. For convenience we include in
the last column the uncorrecteda l

0 of Eq. ~77! corresponding to this
choice of form factors.

Decay f 1 f 2 g1 a0
l

n→p 1.000 1.970 1.261 20.0850
L→p 1.236 1.199 0.890 0.0200
S2→n 1.000 20.970 20.340 20.6319
S2→L 0.000 1.172 0.601 20.7030
S1→L 0.000 1.172 0.601 20.6474
J2→L 1.225 20.074 0.354 0.2579
J2→S0 0.707 1.310 0.899 20.1989
J0→S1 1.000 1.853 1.267 20.1913
Lc

1→L 0.350 0.090 0.610 20.9513
01402
e

g

grands in Eqs.~81! and ~82! diverge in these limits, the in-
tegrals themselves have a finite result. A detailed analysi
this technicality can be found in Ref.@12#. To numerically
perform these integrals we can either follow the approach
this reference and implement it in the program to evalu
the a l ’s or we may neglect the points wherey0→61. This
last approach is equivalent to leaving out the boundaries
the TBR and the FBR of the DP. The numerical differen
between these two alternatives is negligible. Here we foll
the second alternative.

In Table II we display our numerical results for the radi
tive corrections to the asymmetry coefficientsa l

R and a l
T .

We compute them by taking the percentage differences~that
is, we multiply by 100!

da l
R,T5a l

R,T2a0
l , ~83!

where a0
l is the uncorrected spin-asymmetry coefficient

the charged lepton, Eq.~77!.
In the second column of Table II we display thedaR

corresponding to the TBR of the DP, in the third column t
daT corresponding to the complete DP are given, in t
fourth column we give the results forda obtained from Eq.
~23! and Table I of p. 58 of Ref.@13# and, finally, in the fifth
column we give the two values reported in Ref.@6#.

From Table II we see that there is a very good agreem
between ourdaT and theda of Refs. @13# and @6#. In both
references the FBR was included. The inclusion or exclus
of the FBR is appreciable, as can be seen by comparing
second and third columns, except for the decaysn→pen̄ and
S2→nen̄. In several instances the inclusion of the FB
contribution reduces the total radiative corrections, even
the point of making them negligibly small. It may even b
that the values in the second column are one order of m
nitude larger than the corresponding ones in the third c
umn. Therefore, in general, there is an important differen
betweena l

R anda l
T .

VII. CONCLUSIONS

In this paper we have obtained the radiative correction
ordera to the Dalitz plot of the semileptonic decays of p

s

n for

TABLE II. Percentage radiative corrections@that is, Eq.~83! multiplied by 100# of the spin-asymmetry

coefficient of the charged lepton in hyperon semileptonic decays. The prediction in the fourth colum
Lc

1→L uses the approach of Ref.@13#, but it was not actually given there.

Decay daR5a l
R2a0

l daT5a l
T2a0

l da Ref. @13# da Ref. @6#

n→p 0.0119 0.0095 0.0101
L→p 0.0813 0.0014 20.0023 20.0
S2→n 0.0832 0.0815 0.0758 0.1
S2→L 0.1432 0.0836 0.0770
S1→L 0.1287 0.0755 0.0911
J2→L 0.1024 20.0246 20.0310
J2→S0 0.3327 0.0371 0.0212
J0→S1 0.3312 0.0350 0.0208
Lc

1→L 0.0757 0.1294 0.1098
5-11
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larized spin-1/2 baryons, neglecting terms of orderaq/pM1

and higher. Our main result has two forms. One in which
triple k-integration is ready to be performed numerical
given in Eq.~44! and which is the sum of Eqs.~36! and~39!.
And another one in which such integration has been p
formed analytically, given in Eq.~67! and which is the sum
of Eqs.~53! and ~64!.

Since real photons may be discriminated either direc
~by detection! or indirectly ~by energy-momentum conserva
tion! we have split our main result to cover this possibility.
photon discrimination indeed takes place, instead of Eq.~44!
one should use only Eq.~36! and instead of Eq.~67! one
should use only Eq.~53!

An important integrated observable is the charged-lep
spin-asymmetry coefficienta l . Using the analytical forms o
Eqs. ~67! and ~53! we obtained the radiative corrections
this observable. The integrations overE and E2 were per-
formed numerically and the results are displayed in Table
A systematic behavior of the RC toa l is observed. The
contribution of the FBR bremsstrahlung may be as import
as the RC from the TBR and even of opposite sign, in suc
way that when no photon discrimination takes place the co
plete RC toa l may become almost negligible. In this tab
we also compared with results reported in other referen
@6,13#. This comparison is satisfactory. For completeness,
evaluated also the RC to thea l of the processLc

1

→Le1n.
Our results are model-independent and are not com

mised to any particular value of the form factors. All th
model dependence of radiative corrections has been abso
into the f 1 andg1 form factors in our approximation of ne
glecting contributions of orderaq/pM1. This is indicated
by putting a prime on them. For hyperons our results
reliable up to a precision of around 0.5%. This precision
useful for experiments involving several thousands of eve
For high statistics experiments involving several hundred
thousands of events or for decays involving charm such
Lc

1→Le1n or even heavier quarks our equations provid
good first approximation. To improve the precision of o
formulas it becomes necessary to includeaq/pM1 contribu-
tions. Our results are valid for both neutral or charged
caying hyperons and whether the emitted positively or ne
tively charged lepton is either electron-type or muon-ty
To conclude let us remark that in a Monte Carlo analysis
advantage of the analytical form is that the trip
k-integration does not have to be repeated every time
values off 1 andg1, or of E andE2, are changed. This lead
to a considerable saving of computer time.
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APPENDIX A

In this appendix we give for completeness the amplitud
for the RC of the decay~1!. All of them are also given in
Ref. @4#. The uncorrected transition amplitudeM0 for process
~1! is

M05
GV

A2
@ ūB~p2!Wm~p1 ,p2!uA~p1!#@ ūl~ l !Omvn~pn!#,

~A1!

where

Wm~p1 ,p2!5 f 1~q2!gm1
f 2~q2!

M1
smnqn1

f 3~q2!

M1
qm

1Fg1~q2!gm1
g2~q2!

M1
smnqn1

g3~q2!

M1
qmGg5 .

~A2!

HereOm5gm(11g5) andq is the four-momentum transfer
The model-independent part of the virtual radiative c

rections has the amplitude

Mv5
a

2p
@M0f~E!1Mp1

f8~E!#, ~A3!

where f(E) and f8(E) are given in Eqs.~11! and ~12!,
respectively.Mp1

is

Mp1
5S E

mM1
DGV

A2
@ ūBWluA#@ ūlp” 1Olvn#. ~A4!

The model-dependent part of the virtual radiative corr
tions is absorbed intoM0 through the definition of effective
form factors f 18 and g18 . This fact is denoted by putting a
prime onM0.

The bremsstrahlung transition amplitudeMB is obtained
following the Low theorem@2#,

MB5
eGV

A2
@ ūBWluA#@ ūlOlvn#F l •e

l •k
2

p1•e

p1•kG
1

eGV

A2
@ ūBWluA#F ūle”k”Olvn

2l •k
G

5Ma1Mb . ~A5!

In this equation, the amplitudesMa andMb correspond to the
first and second summands, respectively. Within our
proximations the Low theorem guarantees that no mod
dependence appears here.

APPENDIX B

In order to make this paper self-contained, we reprod
here all the coefficients which appear in our final results. F
Eq. ~7! they come from Ref.@4#,
5-12
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A085Q1EEn
02Q2Ep2~p21 ly0!2Q3l ~p2y01 l !

1Q4En
0p2ly02Q5p2

2ly0~p21 ly0!, ~B1!

A185D1EEn
02D2l ~p2y01 l !, ~B2!
01402
A195D1EEn
0 . ~B3!

The coefficientsQi ( i 51, . . . ,7) aregiven in Eqs.~B1!–
~B7! of Ref. @4#, respectively. For completeness we repr
duce them here:
Q15F1
2F2E22M2

M1
G1

1

2
F2

2FM21E2

M1
G1F1F2FM21E2

M1
G1F1F3F11

M2

M1
G3F12

E2

M1
G1F2F3FM21E2

M1
GF12

E2

M1
G

1G1
2F2E21M2

M1
G2

1

2
G2

2FM22E2

M1
G1G1G2FM22E2

M1
G1G1G3FM2

M1
21GF12

E2

M1
G2G2G3FM22E2

M1
GF12

E2

M1
G

1M1
2Q5H FM12E2

M1
G2

2
1

2

q2

M1
2J , ~B4!

Q252
F1

2

M1
2

G1
2

M1
2

F1F2

M1
1

G1G2

M1
1

F1F3

M1
F11

M2

M1
G1

F2F3

M1
FM21E2

M1
G1

G1G3

M1
FM2

M1
21G2

G2G3

M1
FM22E2

M1
G

12
F1G1

M1
1M1Q5FM12E2

M1
G , ~B5!

Q35Q122F1
2FE22M2

M1
G22G1

2FE21M2

M1
G2M1

2Q5H F12
E2

M1
G2

2
q2

M1
2J , ~B6!

Q45Q224
F1G1

M1
, ~B7!

Q55
F3

2

M1
2 FM21E2

M1
G2

G3
2

M1
2 FM22E2

M1
G22

F1F3

M1
2

12
G1G3

M1
2

, ~B8!

Q65F1
2FE22M2

M1
2

p2by0

M1
G1G1

2FE21M2

M1
2

p2by0

M1
G12F1G1FE22p2by0

M1
G1~G1G22F1F2!Fp2by0

M1
G

1F2G2F211~11b2!
E

M1
1

E2

M1
1

p2by0

M1
G1F1G2F211

M2

M1
1~11b2!

E

M1
1

p2by0

M1
G

2G1F2F212
M2

M1
1~11b2!

E

M1
1

p2by0

M1
G2F3G3F m2

M1
2 S 12

E2

M1
2~12b2!

E

M1
1

p2by0

M1
D G

1F1G3F m2

M1E S 211
M2

M1
1

E

M1
D G2F3G1F m2

M1E S 212
M2

M1
1

E

M1
D G2~F2G31F3G2!F m2

M1E S M12E22E

M1
D G ,

~B9!

Q75F1
2F ~M11M2!~E22M2!

M1E G1G1
2F ~M12M2!~E21M2!

M1E G12F1G1FM1~2M11E212E!2m2

M1E G1F1G2S E22M2

M1
D

3S M122E2E2

E D2G1F2S E21M2

M1
D S M122E2E2

E D1F3G1S E21M2

M1
D S m2

M1ED2G3F1S E22M2

M1
D S m2

M1ED
1~F1F22G1G2!S E2

22M2
2

M1E D . ~B10!

The coefficientsD j ( j 51, . . . ,4) read
5-13
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D15 f 18
213g18

2, ~B11!

D25 f 18
22g18

2, ~B12!

D352~ f 18g182g18
2!, ~B13!

D452~ f 18g181g18
2!. ~B14!

y0 andEn
0 were defined in Eqs.~5! and ~6!, respectively.

The functionsu i which appear in Eqs.~47!–~50! corresponding to the TBR of the DP are given by

u i5
1

p2
~Ti

11Ti
2!, ~B15!

wherei 52, . . .,16, and

T2
656

17a6

~16b!~11ba6!
lnF 17b

12bx0
G6

~16x0!ln~16x0!

~16b!~12bx0!
6

16a6

~17b!~11ba6!
ln~16a6!2

~x01a6!ln~6x06a6!

~11ba6!~12bx0!
,

~B16!

T3
15T3

25
1

2b H LF 12b

12bx0
G2LF12bx0

11b G2LF11ba2

12bx0
G1LF11ba2

11b G1LF 12bx0

11ba1G2LF 12b

11ba1G
1 lnF12bx0

12b G lnF11ba1

11b G J , ~B17!

T4
65~x061!ln~16x0!6~16a6!ln~16a6!2~x01a6!ln~6x06a6!, ~B18!

T5
652

1

2
$~12x0

2!ln~16x0!1~x071!a6112~12a62!ln~16a6!1~x0
22a62!ln@6~x01a6!#%, ~B19!

T6
75F2 l 1p26

bEn
0~x01a7!

11ba7 G I 46
bEn

0~x01a7!

~11ba7!2
I 11FEn

02
bEn

0~x01a7!

11ba7 GJ42
bEn

0~x01a7!

~11ba7!2
J1

6
En

0~x01a7!

~11ba7!2
I 2

72
En

0~x01a7!

~11ba7!2
J2

7 , ~B20!

T7
65F p22 l 7

bEn
0~x01a6!

11ba6 G I 17
En

0~x01a6!

11ba6
I 2

61FEn
02

bEn
0~x01a6!

11ba6 GJ12
En

0~x01a6!

11ba6
J2

6 , ~B21!

T8
6522~ l 2p21En

0x0!7En
0~x01a6!I 2

62En
0~x01a6!J2

6 , ~B22!

T9
6

4l 2
52

3E

2l 2
~ l 2p21En

0x0!1F3~ l 2p2!

4b l
1

3En
0p2

4l 2
1bG6G I 17

~En
0!2~x01a6!2

4l 2~11ba6!
I 3

62
~En

0!2~x01a6!2

4l 2~11ba6!
J3

61G6I 2
6

1F2
3En

0

4b l
1

3En
0~En

01 lx0!

4l 2
6bG6GJ16G6J2

6, ~B23!

T10
7 5

1

3
~x0

371!ln~17x0!1
1

3
@~a7!371# ln~17a7!2

1

3
@x0

31~a7!3# ln@7~x01a7!#1
1

6
~12x0

2!~a761!2
1

3
~x061!

3@12~a7!2#, ~B24!

T11
1 5T11

2 5
1

2p2b
$En

0@~12bx0!J42J1#2~bEn
01 l 2p2!I 41~ l 2p2!I 1%, ~B25!
014025-14
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T12
1 5T12

2 5
1

2p2b
@En

0~12bx0!J112En
0x012~ l 2p2!2~bEn

01 l 2p2!I 1#, ~B26!

T13
1 5T13

2 52
1

2p2
En

0~12x0
2!, ~B27!

T14
6 5En

0@11x0
212a6~x071!6a6~x01a6!~ I 2

66J2
6!#, ~B28!

T15
6 53En

0@2p2~11y0!1 l ~12x0
2!#2~En

0!2~x01a6!2~J3
66I 3

6!22lEn
0~x01a6!a6~J2

66I 2
6!, ~B29!

T16
6 54l 2F 3

2b2
@2~ l 2p21En

0x0!1bEn
0~12x0

2!#1S 2
3~ l 2p21bEn

0!

2b2
2p2~11y0!1

p2~En
0!2

2l 2 D I 1

2
~En

0!2~x01a6!2

2l ~11ba6!
~bJ11J2

66bI 16I 2
6!1S 3En

0~12bx0!

2b2
1

~En
0!2~En

01 lx0!

2l 2 D J1G . ~B30!

The following definitions are used in the above expressions:

x052
p2y01 l

En
0

, a65
En

06p2

l
, ~B31!

I 15
2

b
arctanhb, I 2

65 lnUa611

a621
U , ~B32!

I 3
65

2

a6221
, I 45

2

12b2
, ~B33!

J152
1

b H lnF 11b

12bx0
G1 lnF 12b

12bx0
G J , ~B34!

J2
65 lnU a621

a61x0
U1 lnU a611

a61x0
U , ~B35!

J3
6522F a6

a6221
2

1

a61x0
G , ~B36!

J45
2

b F 1

12b2
2

1

12bx0
G , ~B37!

G657
b~En

0!2~x01a6!2

4l 2~11ba6!2
7

a6~a6221!

4~11ba6!
. ~B38!

The sumsu81u- andu91u IV which appear in Eq.~53! are

u81u-5
p2l

2 F2En
0~12b2!u21S En

02
11b2

2
ED u31

E

2
u41

l

2
u51

12b2

2
u62

2E2En
0

2E
u71

1

2
u82

1

4E
u9G , ~B39!

u91u IV5
p2l

2
@u02~E1En

01bp2y0!u31~En
01E!u41 lu5#. ~B40!

Hereu05(11y0)(I 122).
The explicit forms of the photon integrals corresponding to the FBR of the DP are
014025-15
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u2F5
1

bp2
F I 2

2

b2
2

I 2
1

b1
1

E2

m2 S I 2
12I 2

21b lnU I 3
2

I 3
1U D G1

2I 1

Eb2b1
, ~B41!

u3F5
I 1

p2
lnUb1

b2U1
1

bp2
FLS 12b

b2 D 2LS 12b

b1 D 1LS 11b

b1 D 2LS 11b

b2 D G , ~B42!

u4F5
1

p2
Fa1I 2

12a2I 2
21 lnU I 3

2

I 3
1UG , ~B43!

u5F5
1

2p2
F ~12a 12!I 2

12~12a 22!I 2
21

4p2

l G , ~B44!

u6F52
y0

2

~b2!2
~ I 2

21bI 1!22
y0

1

~b1!2
~ I 2

11bI 1!12F21bS y0
2

b2
2

y0
1

b1D G I 4 , ~B45!

u7F52F2I 11
y0

2

b2
~bI 11I 2

2!2
y0

1

b1
~bI 11I 2

1!G , ~B46!

u8F52@41~y0
2!I 2

22~y0
1!I 2

1#, ~B47!

u9F524E12@6~En
02E!1b~GF

21GF
1!#I 112~GF

2I 2
21GF

1I 2
1!12p2F ~y0

2!2

b2
I 3

22
~y0

1!2

b1
I 3

1G , ~B48!

u10F5
1

3p2
F2~a222a12!2a23I 2

21a13I 2
11 lnU I 3

2

I 3
1UG , ~B49!

u11F5
2~ I 42I 1!

bp2
, ~B50!

u12F5
2~ I 122!

bp2
, ~B51!

u13F50, ~B52!

u14F52@~22a2I 2
2!~y0

2!2~22a1I 2
1!~y0

1!#, ~B53!

u15F524En
014l @a2y0

2I 2
22a1y0

1I 2
1#12p2@~y0

2!2I 3
22~y0

1!2I 3
1#, ~B54!

u16F524E2~ I 122!18@~En
0!222E2b2#I 114lp2F ~y0

2!2

b2
~bI 11I 2

2!2
~y0

1!2

b1
~bI 11I 2

1!G , ~B55!

wherea6, I 1 , I 2
6 , I 3

6 , I 4 are given in Eqs.~B31!–~B33! and

b6511ba6, y0
65y06a6,

GF
657bS 2Ea61p2

y0
6

b6D y0
6

b6
.
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