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Quark-gluon vertex in arbitrary gauge and dimension
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One-loop off-shell contributions to the quark-gluon vertex are calculated, in an arbitrary covariant gauge and
in arbitrary space-time dimension, including quark-mass effects. It is shown how one can get results for all
on-shell limits of interest directly from the off-shell expressions. In order to demonstrate that the Ward-
Slavnov-Taylor identity for the quark-gluon vertex is satisfied, we have also calculated the corresponding
one-loop contribution involving the quark-quark-ghost-ghost vertex.
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[. INTRODUCTION ing v, . For massless quarks, some on-shell results are avail-
able, mainly in the Feynman gauge, presented by Nowak,
Tests of perturbative quantum chromodynanit®] are  Praszatowicz and Storrski (NPS [8].
steadily reaching new levels of precisif8], necessitating The situation when ongluon or quark momentum van-
information on higher-loop results for a wide range of pro-ishes has been studied in more detail. Technically, in this
cesses. Higher-order QCD effects are also frequently recase all three-point functions effectively reduce to two-point
quired for background estimates in searches for signs of neimtegrals. For massless quarks, some one-loop results in an
physics. arbitrary covariant gauge have been obtained by Braaten and
In spite of its fundamental role, the quark-gluon vertexLeveille [9]. In the Feynman gauge, also two-loop correc-
has not been explored in detail, even at one loop. It is otions have been presented B]. Moreover, in a recent paper
course very much related to the electron-photon vertex oby Chetyrkin and Ry [10], renormalized expressions for
guantum electrodynamics, a basic and nontrivial aspect ahree-loop-order QCD vertices have been obtained for such
which is the anomalous magnetic moment,gor 2, which ~ zero-momentum configurations, in an arbitrary covariant
provides a powerful test of the whole concept of quantungauge.
field theories. The quark-gluon vertex differs from the The QED contribution, proportional to the “Abelian”
electron-photon vertex already at one loop, by the contribucontribution to the quark-gluon vertex, has been studied
tions of an additional Feynman diagram, involving the three-more systematically. An early paper by Ball and CHBC)
gluon vertex. In fact, apart from introducing additional color [11] presented a systematic kinematical decomposition of the
structure, this non-Abelian diagram introduces at the onevertex, and gave off-shell results for the one-loop QED ver-
loop level a kinematical structure which is absent in the QEDrex in Feynman gauge. Their work was extended to arbitrary
vertex. covariant gauge by KizilersuReenders and Pennington
For special kinematical configurations, and specialKRP) [12]. All above-mentioned papers deal with ttui-
gauges, several results are available. Already around 198hensionally regulated13]) four-dimensional case. Results
the symmetric off-shell case was considered by Pascual arf@r the three-dimensional QED contribution are also avail-
Tarrach(PT) in [4] (see alsd5]) in an arbitrary covariant able (for massless fermiopsdue to Bashir, Kizilersand
gauge for massless quark¥he emphasis was on comparing Pennington(BKP) [14]. A summary of all these one-loop
the modified minimal subtractionMS) and Weinberg’'s results is given in Table I. In addition to this table, we note
renormalization schemes. The symmetric off-shell case wathat another special gauge which has been investigated is the
also considered if7] by Dung, Tarasov and PhudbTP), Fried-Yennie gauggl5s].
for massive quarks, restricted to the scalar function multiply- Among non-covariant gauges, we would like to mention
the Coulomb gauge. In some sense, it is more “physical,”
but technically rather challengiid 6]. A rather different ap-
*On leave from Institute for Nuclear Physics, Moscow State Uni-proach to QCD vertex functions is provided by lattice calcu-
versity, RU-119899 Moscow, Russia; email address:lations [17]. The quark-gluon vertex functions may also

davyd@thep.physik.uni-mainz.de serve as a basis for modeling the photon-nucleon vertices
TEmail address: Per.Osland@fi.uib.no [18] and the quark-Reggeon vertgkal.
*Email address: Leo.Saks@fi.uib.no From Table I, one can see that, even if we consider the
!Numerical analysis of two-loop QCD vertices in this limit is results in(or around four dimensions, there are still several
given in a recent papg6]. “white spots.” The aim of the present paper is to coadr
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TABLE I. Kinematics and gauges considered in other one-loop studies. None of these results is valid for
arbitrary dimensiom.

All momenta off-shell Some momenta on-shell
2_ 2
General case pi=p3=p3 p3=0 p%— p§ 0 or
p3=p3=0
QED QCD
Feynman special case of special case of _
gauge BC [11] PT[4], m=0 BL [9], m=0 NPS[8], m=0
Arbitrary PT[4], m=0
. KRP [12]; _
covariant BKP [14], 3d DTP[7], BL [9], m=0
gauge Y. part

such remaining spots. Moreover, we present results which (iv) QCD is also a theory of interest in three and two
are valid for anarbitrary value of the space-time dimension. dimensiongsee, e.g.[21));
Apart from the quark-gluon vertex itself, we also consider (v) as we shall see, the results for arbitrary dimension are
the related two-point functions, and the quark-quark-ghosthot much more cumbersome than those considered around
ghost vertex function, in order to be able to check that th€our dimensiongin some respects, they are even more trans-
obtained quark-gluon vertex function obeys the Ward-parent and instructiye
Slavnov-Taylor(WST) identity [20]. The paper is organized as follows. In Sec. Il, we introduce

At the one-loop level, the simple and well-known Dirac- the notation for the two- and three-point functions to be con-
matrix structure of the lowest-order quark-gluon vertex getssidered, and discuss their decomposition in terms of scalar
modified. In the general case, 12 structures are needed fanctions as well as the corresponding Ward-Slavnov-Taylor
decompose if11]. Thus, 12 scalar functions multiplying identity. In Sec. Ill, we present the most general off-shell
these tensor structures are to be calculated. These scalasults for the quark-gluon vertex. Sec. IV contains the cor-
functions depend on the gauge parameter, the space-time desponding expressions for special limits of interest. In Sec.
mension, quark ma&sy, and the kinematical invariants V, we conclude with a summary and a discussion of the
(p?, p3,p3). Four of them(the “longitudinal” oneg are  results. Then, we have several appendices where some fur-
involved in the WST identity, whereas the remaining eightther results and technical details are presented, such as the
are unconstrained. formulas used to decompose the quark-gluon vei#gpen-

There are several reasons why the one-loop results calcghix A), relevant results for the scalar integrédppendices B
lated in arbitrary gauge and dimensiorare of special inter- and O, results for the one-loop contribution involved in
est: checking the WST identityAppendix D, and general results

(i) knowing the results in arbitrary gauge, one can explic-for the transverse part of the quark-gluon vertéppendix
ity keep track of gauge invariance for physical quantities; E).

(i) if one is interested in the two-loop calculation of the
quark-gluon coupling, one should know one-loop contribu-
tions in more detail; Il. PRELIMINARIES

(iii ) results in arbitrary dimension make it possible to con-
sider all on-shell limitdirectly from these expressior(see
Sec. IV); this is impossible if one only has the results valid
around four dimensions;

We shall here establish some notation, and discuss the
functions involved in the Ward-Slavnov-Taylor identity for
the quark-gluon vertex.

A. Notation

A graphical representation of the quark-gluon vertex is
given in Fig. 12 The momentum of the outgoing quark is
denoted byp;, p, is the momentum of the incoming quark,
whereag; and . are the momentum and the Lorentz index
of the gluon, respectively. All momenta are ingoing,
p1+p,+p3=0. The lowest-order quark-gluon vertex is

FIG. 1. Kinematics of the quark-gluon vertex. 2To produce the figures, thexobraw packagg22] was used.
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wheren=4-2¢ is the space-time dimension in the frame-
work of dimensional regularizatiofiL3]. Understanding the

pa subscript ofJ as the number of massive propagat@s in
[23]), we can extend this notation to the massless integrals
J(v1,v2,v3) considered irf24], via

<5

—p1—qy Xp2—g

J(vy,v2,v3) = do(v1,v2,V3). (2.6)

w3
—
=5
S

P

Pa Integrals with Lorentz indices can be reduced to the scalar
ones using the standard techniq{25] (see also i126,27).
FIG. 2. The two one-loop diagrams. Using the integration-by-parts techniq(i28] (see also in
[29]), all integrals with higher integer powers of propagators
(Tl ¥, ga (2.1)  can be algebraically reduced to integrals with the powers

equal to one or zer@or details, see Appendix B

whereT? are color matrices corresponding to the fundamen- As in [24], we shall extract from the expressions for one-

tal representation of the gauge group. As a rule, it will beloop integrals a factor

implied that the SUY) group is considered, witN being the

number of colorgwe can putN=3 in the engl. L[N
When one calculates radiative corrections to the quark- I 5_1 n\ T2(1—¢)
gluon vertex, other Dirac matrix structures arise, in addition n= mr(s— 5) =mr(1+s). (2.7

to y,, EQ.(2.1). The total number of independent structures
is 12 (see, e.g., if4,11], and also in Appendix A of this . ) ) )
papey. Extracting the over-all color structure, we can present® Natural extension of the notation used[¥] is to intro-
the one-particle irreducible quark-gluon vertex as duce the functiong; (i=1,2) such that

L2(p1.P2.P3) =g T ,(P1,P2.P3), (2.2 J(L1,) =i 7"?5ei(pi,p3,p3:m). (2.9

where matrix notation in both color and Dirac matrices is|n this sense, the functiop, Eq. (2.14 of [24], would cor-

understood. o respond tap,, which also represents the massless limippf

At the 0ne-|00p IeVel, we ha.Ve two Contrlbutlons to the(| — 1,2) Moreover, we can reserve the notatid@and ©3
quark-gluon vertex which are lShOWH in Fig. 2. Their colorfor the triangle integral with all three massive lines, which
factors are proportional tade—3C,) andCy, respectively,  occurs in the three-gluon vertéthe massive quark loop con-
whereCr and C, denote eigenvalues of the quadratic Ca-tripution).

simir operator in the fundamental and adjoint representa- Then, for the two-point integrals we introduce functions
tions, respectively. For the SN} gauge group,

N2—1 Kki(pfim)=x, 2.9
CA:N, CF: 2N

(2.3

wherep, (1=1,2,3) is the external momentum of the two-
point function, whereas the subscript<0,1,2) shows how
many of the two internal propagators are massive. In this
way, kg [coinciding with thex defined in Eq(2.15 of [24]]
a:orresponds to the two-point function with massless lines,

The first, “Abelian” contribution is completely similar to
the one-loop correction to the fermion-photon vertex in
QED. The difference is only in the over-all factor. Formally,
we can get the one-loop QED vertex from the considere
QCD vertex by puttingc,=0. The second diagram in Fig. 2 A
is essentially non-Abelian and appears due to the self inter- J1(1,1,0=J30(1,1,0 =i 7" nKoy, (2.10
action of gluons.

If quarks are massive, it is clear that diagraaandb in ~ and analogously fody(0,1,1) andJy(1,0,1), withkg; and
Fig. 2 involve “triangle” integrals with two and one massive «o», respectively. Theng; corresponds to the two-point
lines, respectively: function with one massive and one massless line,

Jo(v1,v2,v3) J1(0,1,)=J5(0,1,) =i #"2nx 4, (2.11
J
[(p2—)2—m?]"1[(py+q)2—m?]*2(g?) "3’

(2.4 J1(1,0,)=35(1,0,) =i m"25x . (2.12

. Finally, «, corresponds to the two-point function with two
d'q massive lines,

[(P2— 21" (p1+q)?]"2 G2~ m?]™s’ _
(2.5 J5(1,1,0=J5(1,1,0 =i 7"k, 3, (2.13

31(V11V2'V3)EJ’
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and similarly forJ5(1,0,1) andJ;(0,1,1) (which would in-
volve «,, and k,,, respectively. The massless two-point
functions introduced in Eq2.15 of [24] can be identified as
Ki<—>K0’i .

The new feature, as compared to the massless case, is the

appearance of the “tadpole” integral

J1(0,0,1)=J,(1,0,0=J,(0,1,0

I
=i Wn/z—sglfz; (m?) e=ix"2pmk, (2.19
with
~ ~ I'(1—-2¢) 1
— 2 = 2\ —¢&
k=k(m r2(1—2) 8(1_8)(m )%, (2.1H

Let us recall that the massless tadpoles vanish in the frame-

work of dimensional regularizatiofi 3],

J;(1,0,0=3,(0,1,0=J,(0,0,)=0.  (2.16

We shall also introduce some notation to keep track of the

various orders in the perturbative expansion. For a quaXtity

PHYSICAL REVIEW D 63 014022

p

P—q p
FIG. 3. Quark self-energy diagram.

g’n C

(D(p2) = R _
a > (p) (477)“/22p2(n 2)(1-¢)
X[ (p?+m?) k1(p?%m) —m?x(m?)],
(2.20
2=~ 7 Comn- £)y(p%im).
(47T)n/2 !
(2.2
The ghost propagator is
2
Du%2(p?) =i 5alazG(p ) . (2.22

p2

The lowest-order result i6®=1, whereas the one-loop

(e.g. any of the scalar functions contributing to the propagagontribution reads

tors or the vertices we shall denote the zero-loop-order con-

tribution as X(®), and the one-loop-order contribution as
X, so that the perturbative expansion looks like

X=XO+x®4. .. (2.17
B. Two-point functions
The lowest-order gluon propagator is
1 Pu,Ppu,
—i ap___ -~
16%%2 p2 ( Iim, p2 ’ (218

where ¢ is the gauge parameter corresponding to a general

covariant gauge, defined such th&0 is the Feynman

gauge. Here and henceforth, a causal prescription is under-

stood, 1p?— 1/(p?+i0). For the present purposes, loop cor-
rections to the gluon propagat@see, e.g., Eqs(2.7) and
(C.1) of [24]] are not required.

We shall denote the quark propagatorS{p). The two
scalar functionsr(p?) andB(p?) in the inverse quark propa-
gator are defined via

iS"(p)=a(p?)p+B(pAH)I, (2.19

wherep=p*y, , wheread is the unit matrix in the space of
Dirac matrices. At the lowest orden!®=1 and g(®=

9’7 Ca
(47T)n/2 4

GW(p?)= [2+(n—3)&]xe(p?). (2.23

Note that in the Fried-Yennie gaug@l] (see also ir{32)),
£=-2, GW(p?) is finite as n—4. Moreover, if one
choosest=—2/(n—3) as then-dimensional generalization
of this gaugd 33,34, then the right hand siddRHS) of Eq.
(2.23 vanishes.

C. Ward-Slavnov-Taylor identity

The WST identity [20] for the quark-gluon vertex
I' ,(p1.P2,p3) reads(see, e.g., in2,35))

PAT ,(P1,P2.P3)=G(p3)[S *(—p)H(P1,P2.P3)
—H(p2,p1,P3)S Y(p2)], (2.29

where G(p?) [see Eq.(2.22] is the scalar function associ-
ated with the ghost propagator.

The functionH (and the “conjugated” functiorH) in-
volves the complete four-point quark-quark-ghost-ghost ver-
tex, as shown in Fig. 4. To get the function, we need to
“join” the out-quark and out-ghost lines in a non-standard
vertex (denoted by a cro$sand integrate over the resulting
loop momentum. It should be noted that the complete quark-
quark-ghost-ghost vertex involved in the WST identity can
be decomposed into a connected and an unconnected piece,

—m. For the next-to-leading order, one needs to calculatas shown in Fig. 5. Moreover, the connected part can be

the one-loop diagram shown in Fig. 3, which yieldsr n
near 4, se¢30])

further split in terms of the propdone-particle irreducible
vertices, see Fig. 6.
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—p—k q . OO ~O-@-O~
+

- ~ -
A — -7 ) . Y
- IEN " =
-
Pp—

FIG. 6. Connected part of the quark-quark-ghost-ghost ampli-
tude in terms of propefdark) vertices.

k r

the RHS, all one-loop contributions are proportionalCtg,
FIG. 4. Graphical representation of thefunction. except for the quark self-energies, which con@jn. There-
fore, all we need to do is to represent thx as Cg
We note that the first diagram on the RHS of the equation—zCa) +3Ca. In this way, we get two separate WST iden-
shown in Fig. &(the diagram involving the proper four-point tities for the contributions of diagramsandb in Fig. 2,
function) does not have a zero-logpree contribution. Its

perturbative expansion starts from the one-loop boxes, cor- ur(1a) _ o “lre-1/
responding to the exchange by two gluons. SinceHtienc- P3T " (P1,P2,P3) =| Cr— 5 Ca|Ce IS (= Py)
tion involves an extra loop integratiofsee Fig. 4, this 1 o
proper four-point function does not contribute to the one- =S (p2) 1YY, (2.28
loop-orderH function, H®), which is shown in Fig. 7. (1)
The H function can be decomposed in terms of scalar Pgrﬂ (P1,P2,P3)
functions(“form factors”) as _
( ) =[S~ (= ) IOHD(py.p;.ps)
— 2 2 .2 2 2 .2 J—
H(plyp21p3)—X0(p11p2,p3)|"’Xl(plypz,pa)lbl _H(l)(p2’pl,ps)[s—l(pz)](o)
+x2(P3.p3.p3) P2 1
+5CACE 1S H(—p1) —S H(p) JPHO
+xa(P3.P5,P3) 0, PLP3, (2.29 27F
with +2GM(PH[S H(—p1)—S H(p2) PH,
(2.29
== - . 2.2
Tuv Z(y"y” VoY) (2.29 where, following the convention of Eq2.17), the super-

o scripts “(0)” and “(1)" correspond to the zero-loop and
The “conjugated” functionH can be written in terms of the one-loop contributions, respectively.

same scalar functions, The first identity, Eq(2.28), has, up to a factor, the same
_ form as the Abelian(QED) identity, also known as the
H(P2,P1,P3) = Xxo(P3.P%,P3)! — x2(P5.P7,p3) b1 Ward-Fradkin-Takahashi identify36]. The second identity,

Eq. (2.29, is the non-Abelian one.
—xl(piypf,pi)rﬁz

+X3(p§ ,pfipi)%vp‘fPZ- (2.27 D. Decomposition of the quark-gluon vertex

Keeping in mind the WST identity2.24), it is useful to

(0)— O®—=qg (i= . . A
At the lowest order,’=1 and x;“=0 (i=1,2,3). The  gpjit the quark-gluon vertex into a longitudinal part and a
one-loop results for thg; functions(valid for arbitrary val-  {ransverse part,

ues ofn and ¢) are presented in Appendix D.
~ Atthe one-loop level, it is convenient to “split” the WST I ,(P1.P2.P2) =T (p1.p2.p3) +T'P(p1.p2.p3),
identity into two separate identities, corresponding to the (2.30
contributions of the two diagrams shown in Fig. 2. To do

this, we need to rewrite the one-loop contribution to the RHSvhere
of Eq. (2.24 in terms of color coefficientsGr—3C,) and

Ca, in analogy with the two contributions to the LHS. On

unconnected part connected part

FIG. 5. Unconnected and connected parts of the quark-quark-
ghost-ghost amplitude. FIG. 7. The one-loop order functidd®.
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and, thereforel'("’ does not contribute to the LHS of Eq. Ts,= 0,05,
(2.24). '
In general, we shall just extend the decomposition of the T ,=y,(pf—p3) +(pP1—P2) ,P3,
QED vertex suggested 1] (see also in Refl12]) to the
QCD case. The longitudinal part of the vertex can be repre- 1., .,
sented as T7,==5(P1~ POV (B1—P2) —(P1—P2) ]

4

_(p _p ) O-V pvp)\!
Fﬁf)(pl,pz,ps):; )\i(pi,pg,pg)Li’M(pl,pZ), 17 P2)uTumP1P2

(2.32 Tg, = _Y,LU'yxpf@*'plﬂpz_pzulbl-
with The connection of’s and 7’s with the naive decomposition
basis is discussed in Appendix A.
L1y=Yu, Applying charge conjugation to the quark-gluon vertex,
i.e., interchanging quark and anti-quark, the following rela-
Lop=(P1—P2)(P1—P2) > tion is obtained'see, e.g., in Ref.12]):
L3,=(P1—P2),. CFM(pl,pz,pg)C_1=—F;(pz,pl,ps). (2.37
Lap=0p(PrPa)". 2.33 Interchanging the quark momenta@q¢—p,) and using the

fact that

Using Eq.(2.24), the functions\; can be related to the func- Cy,Cl=—4T (2.38
tions a, B, G andy;. For instance, in the “Abelian” case m we '
(i.e., when we consider only the first, QED-like diagram in gne finds that alL, and T, are odd, except fot,, and

Fig. 2) the functions\; (i =1,2,3,4) would be equal tp to Te,:
a color factoy "
. (%)~ (o) Liu(P1.p2)=—L{ ,(P2.p1), =123,
- 2 2 a(Pp)— alP;
2[a(p1)+a(p2)], 2(p?—p2) L4,M(p1,p2)=LIYM(p2,p1),
2)— B(p2 Tiu(P1,P2)=—T] .(P2,P1), 1=1,2,3,457.8,
_ ,B(pll ,32 p2) and O, (2.34 u
P1™P2 T6,u(P1.P2) =T, (P2,P1). (2:39
respectively(see in[11,12).° To satisfy Eq.(2.37), all \'s and 7's must be symmetric

The transverse part of the vertex, which does not contribyger the interchange @ﬁ and p%, excepth , and 76, which
ute to the WST identity2.24), can be presented a%1]

are odd:
P{P(p1.p2.Pa)= 2, 7i(P3.3.P3) T ,(P1.P2). M(PLPZ P =N (P2 PP, 1=12.3
(2.39 Na(P%,P3,P3)=—\a(P3,P3,P3),
where the transverse tensors are the following: 7(p3,p3,p3)=7(p5,p%,p3), 1=1,2,3,4578,
T14=P1u(P2P3) = P2u(P1Ps). (239 ro(P2p2.02) = — 7o(p2.p2.p2). (2.40
T2,=—[P1,(P2P3) — P2, (P1P3) 1(P1—P2), An important corollary of these relations is that in the case

p§= p%E p? the A, and ¢ functions must vanish,

Na(p%p%p3) =0, 76(p%,p%p3)=0.  (2.41

Furthermore, in Ref[12] a modification of the basis

- (2.35,(2.36 has been proposed, which has an advantage in

dealing with kinematical singularitidsNamely, the trans-

3Since in the QED case the longitudinal functions have suchyerse part is represented as

simple representation?.34) in terms ofa(piz) and,B(pi,?), there
was no need in Refd11,12 to introduce a special notation for
these functions. In the presence of the non-Abelian contribution, the _
situation becomes more complicated. This is why we have intro- “In Ref.[12], the notationo; andS; was used for what we caf
duced longitudinal functions; in Eq. (2.32. andT, .

T3,,u: pgyu_ p3,u¥53!

T4, =[P1,(P2P3) — P2, (P1P3) 10 ,\P1P5,

014022-6
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Fﬁp(pl,pz,psFE i(pivpg,pgﬁi,ﬂ(pl:pz)-

T
i

where Mo=(pi—m?)(p3—m?)p3+m?(pi—p3)>. (33
~ 2
Tau= 3 512Tau™ P3T7,]

2_p? In fact, K is a symmetric function gp?, p3 andp3. It can be

, . rewritten as— s\ (p3,p3,p3), where\(x,y,z) is the Kdlén
=p3[P1— P2~ Yu(B1—P2) 1= 2(P1+ P2) Lo PIP2 function [cf. Eq. (3.2 of [24]]. Note thatM, can also be
represented as

T T (79, B4 My=pipi+2(pupomP e mi= K+ [(pipa) + PR

with
~ 1 5, - 1, To distinguish between the contributions of the two one-
74=7(P2= P74, =77t 5P37a. (244 Joop diagrams in Fig. 2, we shall use the lettarandb:

(1)_y (1a) (1b) (1)_ (1a), (1b)
Moreover, as we shall see below, in the on-shell limit the A NTEENTT T LR 34

following modifications ofs, and\; turn out to be useful:  For the calculation we used the algebraic programming sys-
tem REDUCE [37]. Further technical details can be found in

~ 1 ~ 1 .
No=N,+ EpgTz, Na=\3— Epng' (2.45 Appendices A and B.

A. Results for the longitudinal part of the vertex

. OFF-SHELL RESULTS N .
The general results for the longitudinal functions of the

Before presenting results for the and r; functions, let us  vertex are reasonably compact, even in a general covariant
introduce the following notation for the Gram determinantsgauge and arbitrary dimension, and are given below for the

occurring in the denominators: two diagrams.
1. Diagram a

92 (c 1(: )

7 “FT 5%A

277 (n=2)(1-¢) ~
N (pi.p3.p5) = — 55 LP3(PE+ M%) kg i+ p(P5+m?) k1~ (PF+PHMPK],  (3.5)
(4m) 4p1p3

et

ST (n-2)a-9)

[p5(p2+m?) ky 1= p2(p3+m?) Ky o+ (pT— p3)M?k],

)\(la)(pz,pz,DZ):
2o (4m)"2  4p2p3(pi-—pd)

(3.6)
g2 (c 1(:)
7\ “FT 5%A
2 (n—=&m
) (1a) 2, 2' 2y _ _ ’ 3.
3 (P1,P2,P3) (472 02— pl (K117 K12 (3.7
N§?(p2,p5.p3)=0. (3.8
Note that diagrana does not contribute ta{".
2. Diagram b
9°7Ca 1
N (pF,p5.p3) =~ (mn,zﬁ{(2—§>K[2<pi+p§—2m2>¢1—nm—nxl,z—4f<o,3]+[2+<n—3>§]
X (Pi=P3)2L(P1P2) o1+ M1+ Ko gl +[2+(N—3)E](PT— PR PK1 2~ PIKL1T (P1P2) (K11~ K12)]
2+ 2~
—(n-2)(2-grm?| Suby a2 PP } (3.9
pP1 P2 P1P2
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7ZCA
(4m)"2 16K(pi—p3)

A‘“’)(pl,pz,pg)— [[2+<n—3>§]p§(pi—p%)[(p1p2>¢1+m2¢1+xo,s]

+[2+(n=3)€1p3[PoKk 12— Pik1a+ (P1P2) (K11~ K12 ]+ (N—2)(2— €K

2, 2 2, 2 22
pitm pz+m P1—=P2 .~
X 2 K11~ 2 K12 2 2 m2K y (31@
Py P> 1P2

977A

(1b) m — 2 m2 2_ 2 2 2
NS (pF,p5.p3) = 7 )H/ZSM {( 4)£p3L(P1P2) + MPley+ (n—=3)E[(P5— Pp5— M) kg 1+ (P — P5—MP) k1 2+ P3roal

M _
—(n—2>§—12(p122)("—12'1—“—2 +[4(n- 1)~ nElMy 2
P1—P2 P71 2 1~ P2
+(n—2)§[1 M( p1p2) [m ] (3.1
p1p2

Ca ém(pi—p3)
(4")n2 16/C1M12 |(n—3>p§[(p1p2>+mz]zw<n—3>m1,1+K1,2>+/Cp§qo1+<n—3>[<p1p2>

A(lb)(pl pz ps)

+m?][(p1P3) K11+ (P2P3) K12t p%"o,s]ﬁL(n_z)’C > 2 2T T2

2(pip)+mM* o My [ ki1 Kip
——— M°k+ 7 2 > > .
P1P2 P1—P2\ P1 P>

(3.12

We have checked that these expressions, together with theade more compact by introducing certain linear combina-
results for the two-point functions and for the functions tions of the;, functions, namely
(given in Appendix D, satisfy the WST identitie$2.28),
(2.29 at the one-loop level, for arbitrary values mfand ¢.
Results for the\; functions in the Feynman gauge (P1P3) K11+ (P2P3) k1ot p%'ﬁ,a- K11t K10~ 2K 3,
(é€=0) can be easily obtained from the expressions pre-
sented above. We just note that

g%7Ca (n—1)m kit K1~ 2K, KigtKiz,  Kig—Kip, (319
(k11— K
(4m 2(p7-pg)

AN (p2,p3,p3)]c=0=

(313  where we should take, for the subscript fz, i=2 for
diagrama andi =0 for diagramb. Note that the basi€3.15
)\Zlb)(pf,pg,pé)lgfo=0- (3.14) is over-complete: we have got five combinations of the four
k’s. This degree of freedom has allowed us to present the
results in a more compact form.
We have collected results in an arbitrary covariant gauge
In an arbitrary covariant gauge, the results for most of then Appendix E. Here we present results for thdunctions in
7; functions are rather cumbersome. The expressions can ltke Feynman gauge.

B. Results for the transverse part of the vertex
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1. Transverse functions in Feynman gauge: Diagram a

gan—EC
F 272 nm

(1a); 2 2 2 _ 2 _ 2K11™ K12
71 PL.P2. PR sm0=———— 5| 2AAM° = (P1P2) J@2t K111 K10~ 2Kk 3 (P1—P2)° —5——( (3.19
1 1 2'M3/1é=0 (47T)n/2 2’C 1M2 2 1,1 1,2 2,3 1~ M2 1_p%
92 (c 1C>
™ 5%a
2 2(n—1) 2(n—1)
T(zla)(Pf,pg,pg)E:o:W% 2(4m2_p§)¢’2_T[(plpz)_mz]ngﬁoZ_T[(plpz)_mz]
z(plpz)
X[(plpB)Kl1+(p2p3)K12+p3K23] (n— 2)—p(K11+K12 2K)— (N—=4)(Kky 1t K12
1~2
m2 2, 2 _
+(n—2)[ (P12 (PATP2) —(pl—|oz)21—'(l'21 Ki’z}, (3.17)
p1P3 P1—P2
9° (c lc)
n Y= 5ha
2 1 [2(n-1) 2(n—1)
SPL RS Ple0=— e qgg| PP P2 L(PaPe) M Peat ——(Pa=p2) L(Papz) ]

X[(P1P3) k1,1F (P2P3) K12t pg,Kz,a] —8(n— 2)(pi— mz)(pﬁ— m?) @, —2(Ppy— Pa)?
X[4(n—1)m?—p3le,+4(n—2)[(p1py) — M?](ky 1+ K12~ 2K23) +(N—4)(P1—P2)* (K1 1+ K1 2)

m2(p1p,) (P1P2) (P +P3)
+(n=2)| 1- —— 5= | (P3— P2 (kp1— K19+ (N—2)m?| —————2 -2
P1P2 p1p3
X (K1t Ky~ 2;)], (3.18
789(p2,p3,p3)|e=0=0, (3.19

5 1
g°n| Ce— ECA

EUL0Z Pl e-0=— —— e (=AM, (3.20
9° (c 1c)
M Y“F~ 5%A| 2_12
2°A| p2—p 2(n—1) 2(n—1)
T(ela)(pf,pi,pi)lng (4m)"2 ;_GKZ ( 2(4m*=p3) @, — Tpi[(plpz)— m?]%¢,— [(P1P2)
m*(p1p,)(Pi+Pp3)
—m2|[(P1P3) k1 1+ (P2P3) K12t P3Ka 2] +(N—2) 5 21 = -2 2~ (p1—P2)?
P1P2
K K m*(p1p2)
32— (n=2) (ko Ky 20) — (= 4><K11+K12>} (3.29
pI—p3 pip
7 (p%,03.03)|¢=0=0, (3.22
) 1
g7 CF_ECA (6_n)
76 (p%,p3.p3)|¢-0= (4 oK {P3[(P1P2) —~ M1 @o+ (P1P3) k11T (P2P3) k12t P32 3 (3.23
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The function7{!® becomes non-zero whef0 (see Appendix E In fact, the results for{'® and 7' in an arbitrary
covariant gauge can be obtained from E@16 and (3.23 by changing the overall factors and (6—n) into (n—¢&) and
[6—n+(n—4)&], respectively.

2. Transverse functions in Feynman gauge: Diagram b

2
g°7Ca (N—1)m K11~ K12
72(p%,p3.p5)] 0=~ (477)”2 2K |2[(p1p2)+m Je1— K117 K10+ 203~ (P1— pz)z—rljll_ p% , (3.29

2(n-1) ,

g?7Ca 1
¢ e PAL(P1P2) + M T201 + 4= 3)[(P1py) +mT s +2pFey

752 (p%,p3.p3)|¢=0= (42 16€

( —
[(p1p2)+m2][(p1p3 K11+(p2p3);<12+p3f<03] 2(n=3)(Kky 1t K12~ 2K03)
?(p1p2) ~ K11~ K1,
F(N=8)(kp Ky )= (N=2) D2 (e 2R) = (n— ) (py— pp) P22
1pz P1—P2
2, 2 _
+(n—2)m? (plpz)(zp; p2)—2 K1,21 K;,z}' (3.29
p1P2 P1—P3
9°nCa 1 |2(n—1) , 2(n—1)

P3(P1—P2)%[(P1P2) + M ]2, + K (p1—P2)2[(p1p2) + M?]

Tglb)(p§1p§1p§)|§=0: - (471')”/2 32K K

X[(P1P3) k1,1F (P2P3) K1 2t pgKo,a] —8(N—2)[(p1p2) + M?2p1+(N—4)(py— pz)z(K1,1+ K1)

m*(p1py)
+2p§(p1—p2)2<pl+4(n—2)[(p1p2)+m2](;<1,l+K112—2K013)+(n—2) 2—;22+1 (p%—pg)
1P3
+ -
(1= ey —mi(n—2)| PIPPLYRE) <K1,1+K1,2—2K>], (3.2
p1p2

7 (p2,p3,p3)|¢0=0, (3.27)
by, 2 2 2 g°7Ca 3
75 (plap21p3)|§=0:_(4ﬂ_—)n/2§m¢1: (3.28

9°7Ca p1 pz 2(n—1) 2(n—1)

= P3L(pap2) + M 201+ 4L(p1p2) + MPlgs+ —=—[(p1p2) +m’]

T(Glb)(pl’p2'p3 |§ 0~ (4 )n/z 32K

X[(P1P3) k1,1t (P2P3) K1 2T pgKo,s.] + 29%@1"’ (N=4) (K11t K12 —2(K1 1T K12~ 2K03)

2
m<(p1p2) K117 K1,
—(N=2) —— o (K1t Ko 2K) +(N—8)(Py— Pp)° —5—=
p1p2 P1—P2
2442 _
+ gy PP PEERD s K;,z}, (329
pP1pP3 P1—P3
7 (p?,p2,p3)|¢=0=0, (3.30
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2
g°nC,s 3
5P (p2, pg,p§)|§=0:—(4w)n/A2 R{pﬁ[(plpz) +m?] @1+ 2K @1+ (P1P3) K11+ (P2P3) K1 o+ pgKo,a}- (3.30)

In the limit of massless quarkey— 0, the above results For massless three-dimensional QED, results are given by
simplify considerably. First of all, in this limit{V=7  Bashir, KizilerStand Pennington ifil4]. We reproduce their
=rN=7Y=0 (this holds also in an arbitrary covariant results for the longitudinal vertex, Eq&0) and(51), as well
gauge. Furthermore,¢;— o, ¢2— o, Kij—Koj, Kp;  as the transverse paft€gs.(55), (57)—(60).

— Ko andx—0. Comparison with some other papers is given in Sec. 1V,
‘ where the corresponding special limits are considered.

C. Comparison with other papers

As we have already mentioned, the contributions of the D. Renormalization
first diagram should coincide, up to an overall factor, with
the one-loop contribution to the fermion-photon vertex in
QED. Formally, to get the QED case from our expressions
we can putC,=0, Cc=1, g=€ (the absolute value of the _ )
charge of the electronTherefore, our expressions also pro- YV-singular part ofnj” reads
vide a one-loop correction to the QED vertex, in an arbitrary

In the limitn—4 (e¢—0) the only function in the quark-
gluon vertex which has an ultraviol@tV) singularityat one
loopis thek(ll) function. In an arbitrary covariant gauge, the

covariant gauge and dimension. (LUV) _ 9’7 [ _ _E E _
To get the expressions for the dimensionally regulated " * (4m)%® (1=8)] Cr ZCA * 4(2 £)Ca
four-dimensional case, we put=4—2¢ and expand our
results(including the scalar integrals, see Appendixi€e, v }+ o
keeping singular (¥) and finite terms. In the Feynman €
gauge €=0) and in four dimensions, we reproduce the
well-known results fron{11]. There are a few misprints in . 9’7 1—&)Cent E sa—aca =+
[11] which were pointed out if12] (p. 1252. We agree with _(477)278 (1-6)Ck 4( €)Ca s
most of these corrections given 2], except for the fol-
lowing: Egs.(3.12), (3.14 and (A19) of [11] are correct, (3.32

they should not be changed.

| For an %rb|_trary valﬁe OEE%nd In fouf: d|min3|ons,|onle- %n the first line, the contributions from the first and the sec-
oop contributions to the Q vertex have been calculateq,q diagram are explicitly separated. This result coincides
by Kizilersy Reenders and Penningt¢h2]. We basically with Egs. (A.55)—(A.57) of Ref.[30].”

reproduce their results given by E80)—(64), (67)—(74), The d'. er. ent érts of thef o- .o'ntf nctions are as fol-
and (87), except forr; and 7¢, Egs.(69) and (72). Specifi- Verg P Wo-point funct
cally, to get agreement with our results, we had to change the
following®: in the sixth line ofrg,

9’7 1
1 M= —=——Ce(1-¢)| =+ |, (3.33

+Zqzmz[pz(pz—mz)u—kz(kz—mz)L’] (4m)<—® €

—= 1tﬂlzmz[pz(pz+ m?)L+k?(k?+m?)L'] 9%7 1
4 ) ﬂ(l,UV):_WmCF(4_§)(E+... , (3.39
aa
and in the eleventh line of;,
m? 6 . .
_ —p2q2(p4— k4)[(m2+ k2)L—(m2+ p2)|_f] However, we note that some factors mfare inconsistent. The

result for J, [Appendix, Eq.(5)] should read—2/\/—k?p?q? (no
7). The right-hand sides of Eqg!0) and(55) should have an extra
. Finally, K, andK(© are related likel, andJ©. We are grateful
to the authors of14] for confirming these misprints.

"The contribution of the first diagram is also in agreement with
Eq. (11.65 of [38], whereas for the contribution of the second
diagram there seems to be a misprint in E§l1.70 of [38].

SThere is also an obvious misprint in their EA14): the denomi-  Namely, intheir notation, the factor (% ¢) in Eq. (11.70 should
nator[ (k—2)?—m?] should read (k—w)2—m?]. We are grateful read (1+¢). Their & and & correspond to our (+§&) and 2,
to the authors of12] for confirming all mentioned misprints. respectively.

3m?
== a2 TP KO M KL+ kA (mP+p?)L].
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A. Symmetric case

(3.39 In Ref. [4] (see also ir[5)) the “symmetric” limit of the
quark-gluon vertexpi=p3=p3=p?=—pu?, has been ex-

The results forr and 3 agree with Eq(2.5.138 of [30] (our amined(for the case of massless quarksz0). The decom-

a and B correspond to his{ B) andmA, respectively, and position O.f the quark-gluon vertex is given in E@"?’f‘). of

with Eq. (11.55 of [38]. Among they; functions, onlyx, [4]. It besrcally corresp_onds to the naive decornposrtlon pre-

has a UV-singularity at one loop, sente_d in Eq(Al) of this paper. In_Ref[4] explicit results
are given only for two scalar functiorisut of twelve:

2
g°n Ca

1LUV) _ ~A
G )_(477)2_8 2 (2+9)

1
—_ .
€

(LUV)_ g_nCA I'y—~h; and 'y —hy,. (4.2)

(1- §) (3.39

2-¢ 2
(4m) Taking into account Eq(2.41), in terms of\’s and 7's we
Using our results we have checked that all other functionsget (see also in Appendix A
A (i#1), ¥V (i=1,2,3) and #Y have no UV- Ti=Ni+p2rs+(pipo) g, Tio=—75. (4.3
srngularrtres Thrs was one of the important checks on self-
consistency of the calculation. Putting pl p2 p3_ p? [implying (p1p,)=—2p?] and m

To renormalize the above expressions, we need to sub=0, we arrive at the following one-loop results:
tract the 1¢ poles, (possibly getting some constarR in-

stead, depending on the renormalization scheme: 1
P g 9277 CF_ECA> 1
1 r{=- —m[gr4<n—4)—n§]p2¢o
;+-.-)—>(R+-~-). (3.37 (4m)
_ 9°7Ca (1

In the MS schemeR=0, becausésee Eq(2.7)] +(3—n+Hroa + (4m)"2 gl12-2(2n—=5)¢

p=e "[1+0(&?)], (3.39 1
+(n_4)§2]Ko,3_ E(S_nf)p2€0o ; (4.9

so thate™ ¥* and (4r)® are absorbed by theS re-definition

of the coupling constarg?. )
This procedure can be also re-formulated in the language 97| Cr— ECA
of the renormalizatiorZ-factors, by analogy with Sec. VIlI F(112)= Iy — §[(n— 6)—(n—4)¢&]eg
of [39]. (4)
97Cal L e L neeye
IV. SOME SPECIAL CASES (42 g(N=7é=5,(n=6)¢

A few limits are of special interest: 4.5
the symmetric case, whepf p2 p3; '
the on-shell limitp{=p3=m? (with or without the as- Taking into account that the constaR¢1) used in[4,5] can

sumption that the vertex function is being sandwiched bebe identified as

tween Dirac spinons
the zero-momentum limit, when the gluon momentum 4 T

vanishes f3=0). R(l):p2¢o(p2,p2,p2)|n=4=ﬁCI2(§), (4.9
Since in all these cases we can pdt= p5=p?, we start

by considering thrs as the first step towards all these limits ang expanding ire (keeping the divergent and finite in
In the casepf=p3=p> some of the tensor structures termg, we arrive at the same result as given in E§s36 of

(2.33 and(2.36) in the quark-gluon vertex become linearly [4]8 |n Eq. (4.6) Cl,(6)=Im[Li,(€'%)] is the Clausen func-
dependent, namely:, , andT,,, L3, andTy,, T4, and tjon.

T7, - Moreover, according to Eq2.41), A4 and 7 vanish. For the case of massive quarks£0), a similar “sym-
Therefore the quark-gluon vertex in this limit can be writtenmetric” limit has been considered in Ref7], where the
as[cf. Egs.(2.44) and(2.45] renormalization factoZ;- was calculated at the one-loop
5 _ order in the MOM scheme. For their calculation, only one of
Fu|pi=p'g’£p2: LygNitLlo Aoty Ng+T5,73+T5,75 the scalar functiongnamely, the one accompanying thyg
+T7rﬂ;7+T8v/L7-8' (41)
o . 8There is a misprint in Eq(2.39 of [4]: 'y, should readp?l’;,

In fact, only theL, , contribution remains “non-transverse” = —42I";,. Note that thes used in[4] has different sign, as com-
in this limit. pared to ours.

014022-12



QUARK-GLUON VERTEX IN ARBITRARY GAUGE AND. .. PHYSICAL REVIEW D63 014022

matrix) was needed, ;< h,, which is related to\.’s and 7's = 2(m2,m2,p§) 4.9
via Eq. (4.3). Puttingp3=p3=p3=p?= — u? in our expres- ' '

sions, we arrive at the same reSuds given in Eqs(13-  for the ¢; functions in the on-shell limit. According to Eq.
(14) of [7]. In particular, we have taken into account that the(C31), in this limit the functione, (corresponding to dia-

functionsH andM introduced in Eq(15) of [7] are related to gram a) reduces to a tWO_point function and a tadpo]e,
our functionse; through®

__ A2 2 12 A2 __ A2 2 "2 12 1 ~
H=—p%01(p%,p%.P*)|n=a, M=—p%@a(p*,p*P*)|n=4. e ——-[2(n—=3)ky5~ (N—2)k].
4.7 (n—4)(4m*—p3)

More details on these functions can be found in Appendix C.

4.9

This is the reason why, does not appear in the on-shell
results for diagrana.

The tensor structure of E¢4.1) does not change whenwe  The results for the relevant longitudinal and transverse
put p>=m?. Let us introduce the notation functions in the Iimitp§= p§= m? are presented below.

B. On-shell quarks

1. Diagram a

QZW(CF_ECA)
27A] (n=2)(1- &)~

(18) (12 m2 p2) =
Ay (me,me,p3) (4m)"? 2in—3) (4.10

) 1
g 7 CF_ECA 1

(47)"2 (n—3)(n—4)(4m?—p3)?

KG9, m, p2) = — {(N=3)[(2—&)(4m?—p3) +(n—5)£p3] Kz

—(n—2)[4m?—p2+2(n—5)&m?]x}, (4.1

9277<C ¢ )
P2 (n—&m

X2 2, 2, 2y
3 7(m7,m=,p3) (47r)"2 (n—3)(n—4)(4m?—p3)

[(n—2)k—2(n—3)x24], (4.12

o] Ce- 5C
FoovA 1

—2%(n-3)—(n— 2ro(n—
@M 2(n-3)n-apdam_pg LN 2N HEREN s

759 (m? m?,p3) = —

—(n—=2)k]+(n—=3)(n—4)(4m?—p3)[ 2k, 5~ (n—2)x]}, (4.13

) 1
g 7 CF_ECA

(47)"2 4(n—3)m(4m?—p3)

799 (2,2, p2) = {(n=2)&(4m?—p3)k+4(n—3— &)m?

X[2(n—3)Kkp3— (N—2)k]}, (4.14

9Theira corresponds to our (&), whereas theik denotes the ratim?/ u2= —m?/p?. Note that there is a misprint in teurnal version
of the result for the last contribution in E(L4), Cy,: in the very last term, [f1/(1+)\)] should read IpN/(1+\)]. In the preprint version of
[7] this equation is correct.

Owe also note a misprint in the large-mass\(1éxpansion of thé function presented in Appendix C of R¢T]: the last available term,
—2672/(110255), should read- 1523/(630@°). We are grateful to O.V. Tarasov for confirming this misprint.
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¢7| Ce— 5C
F 2 A g

(47)"2 2(n—3)(n—4)m(4m?—p3)?

73 (m2,m?,p2) = — {4(n—5)m’[2(n—3)kp5— (N—2)k]

—(n=2)(n—4)(4m?—p3)x}, (4.19

gzn(CF_ECA>
2 6—n+(n—4)¢
(4m)™  (n—3)(n—4)(4m?—p3)

719 (m2,m2,p2) = — [2(n—3)Kkp3— (N—2)k]. (4.19

2. Diagram b

7]CA —§

(1b) 2 _
Ny (m?2,m?,p ) (4n )n/24(n 3

)[(n 3) kot (N—2)k], (4.17

9°7Ca
(47)"2 16(n—3)(4m?

REP (m?,m? p3) = 72 BN 1(n=3)(2- Hmpset-2(n-3)*pi 2(n-3)m?
3
+p3lel®—2(n—3)%E[4(n—4)m’+3p3 Ko st 4(n—3)(2— £)[4(n—2)m*+ p3 ko3

+(n—1)(n—2)(n—3)&2p5k—2(n—2)(2— &)[8m?+ (n—3)p3]x}, (4.18

g 77CA
(4m)™2 32(n—3)m(4m?— p3)

X{P(m2,m?,p3) = {2(n—3)(n—4)£2p3(4m*—p3) P+ [4(n—1)+2(n—4)¢

—(n—2)(n—3)&2][4(n—3)m2p3e3°+ 8(n—3)MPkq 5— (N—2) p5x]+4(n—3)2E2(4m2—p3) ko 5

—4(n—1)(n—2)(4m?—p3)«}, (4.19
2
(1b), 2 2 2y 97 7CA 1 > 4— 84 0s_ (4
73 (M%,m*,p3) (477)”’216(n—3)p§(4m2—p3){ (N—3)&(4—¢)( m? ps)[ps(Pl (N—4) kg 5]
—[2(2—¢)—(n—3)&]p3[4(n—3)M?p*+ 2(n— 3) ko3 (N— 2)«1}, (4.20
2 2 2 92’7CA 1

{(n—2)(n—4)£(4m?— pd)k+ €[ 2+ (n—3) £]m?

(4m)"2 8(n—3)m(4m?—p3)

X[4(n—3)m2e$*+2(n—3) kg3~ (N—2)k]—2(n—3)[6+2(n—5) &+ E2]m?(4m?— p3) 3%,

(4.21

_ 927]CA 3
(4m)"2 16(n—3)m(4m?— p3)?

730 (m2,m?,p3) = {2(n—3)(4m?—p2)[4m?+2(n—5)ém?— (n—4) £p3] ¢3°

+(n—1)[2+(n—3)£][4(n—3)M?p39>+ 8(n— 3)M?kq 3— (N—2) p3k]

—4(n—3)2£(4mP— p3) ko5~ (N—2)[6+ (N—3) £](4MP— p3) T}, (4.22
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927ICA
(47)"2 8(n—3)(4m?— p3

2 (m?,m?, p3) = -

X[4(n—3)m?$*+2(n—3) kg5~ (N—2)k]}.

H(2(n-3)6(4- ) (am?

PHYSICAL REVIEW D63 014022

—peP-[12+2(2n—7)¢—(n—3) 2]

(4.23

When p%eo, the only problem which may arise in Egs.
(4.10—(4.23 concerns the functionsy"® and 74 contain-
ing p% in the denominator. However, the coefficients of

(p3)° in the numerators of§® and 7{**) are proportional to

[2K2'3—(n—2)7<] and kg 3, respectively. If we take into ac-
count thatx 4 p2-0= 3(n—2)x and ko 4 p2-0=0 (massless
tadpole, we see that the Iimipgﬂo is regular forr(31).

3. Dirac and Pauli form factors

(Fy+Fp)®=

9277(0 - ¢ )
F 2 A
n (47T)n/2

1

X

(n—3)(n—4)(4m?—p3)
x{(n—3)[2(n—3)p3—(n?-9n+22)
X (4mP—pd)lka3—2(n—2)

Let us consider again the on-shell limi=p3=m?,

without putting any further conditions ops. If we recall
that the “physical” quark-gluon vertex should be sand-
wiched between physical states obeying the Dirac equation,p, + )b = —

X[2(n—5)m?+p3]«}, (4.28

9°7Ca 1
(47)"2 8(n—3)(4m?—p3)

u(—py)Tu(p,), X{4(n—3)p5(2m2e3°+ ko 3 +(N—3)

X[8+2(4n—13)é— (n—4)&?]
pou(p2)=mu(p,),

(4.29

with  u(—py)ps=—mu(—p,), -
X (4m?—p3) ko3~ 8(n—2)(5m?— p3)«},

4.2
then(using the above Dirac conditionge arrive at the stan- 4.29
dard decomposition 1
u( r F.(p2)u( ! F(1a) g2n<CF_§CA) (n—5)m
u(— u = u(— u == =
(=pD)T L u(p2) =F1(p3)u(—p1) v, u(p2) om’ 2 (47)"2 (n—3)(4m?— p%)
1 — -
— 5o Fa(P3)U(—Pp1) o, p3u(p2) X[2(N—3) k5~ (N—2)], (4.30
=[F1(p3)+F2(p3)]u(—py) 7,.u(p2) 1 y_ 9 m
2m ? (47)"2 2(n—3)(4m2— p?)?

1 _
+ 5—Fa(p3)u(—p1)(P1—P2) LU(P2),

2m X{(n—3)p3[12m*+ (n—4)p3]e3>+2(n
(4.25

—3)[8m?+ (n—3)p3lxo st (N—2)[(n—6)
(4.3)

whereF ;(p3) andF,(p3) are often associated with the Dirac
and Pauli form factors, respectively. In terms of {ineodi-
fied) A and 7 functions we get

X (4m?—p3)—(n—1)p3]x}.

The results for thQED-like) diagrama agree with Egs.
(5.69 and(5.70 of [40].

In the massless limitm—0, and in Feynman gauge,
=0, our results can be compared with thosg &f where
renormalized results for the quark self-ener@y, and the
quark-gluon vertex functionsAf and A% (their notation,
are collected in Tables B.l and B.II, respectively. The vertex
functions are given for off-shell gluonpf=p3=0,p3+0)

and the out-going quark being off-shellpq# 0,p3=p3
=0). We confirm these results.

1
Fi+Fyo=N+ p§7'3—2m7-5+§(p§—4m2)78, (4.2

1 - - 1,
ﬁFZZ_Zm)\2+)\3_TS+ §p37'7—m7'8. (427)

Using our results we get
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C. Zero-momentum limit

Let us consider the zero-momentum lingt=0, with
p,=—p;=p being off shell. We can proceed in two steps.
The first step, puttingp?=p3=p? (without putting p?
=m?), has been already done in E@.1). As the second
step, we should pup3=0 (which implies p;=0). In this
limit, the quark-gluon vertex becomes

Fﬂ|p2 plEp,p3:0:Ll,,u)\l+ LZ,;L)\2+ L3VM)\3

(4.32

One can check that the corresponding scalar functions are

regular.
The substitutions for the relevant integrals!are

J2(1,1,D)]p,=—p,=p,p;=0= m[(n—3)32(0,1,1)
—J35(1,1,0], (4.33
n—2

J2(1,1,0)|p2=,p15p1p3=0: WJz(O,l,O), (434)

I1(1,1,D)]p, -~ p,=p.ps—0= (pz——mz)z{(n_ 2)J,(0,0,1)
—(n—=3)(p2+m?)J,(0,1,1)},
(4.395
J1(1,1,0)|p2:_p15p1p3:0:0. (43@

The scalar functions from E@4.32) in this limit are

) 1
977 Ce— ECA

(471_)n/2

(n=2)(1-¢)
2p?

)\g-la)(pZ'pZ,o) —

X[(p?+m?) ky(p?) —mPk], (4.37)
g%y| C 1c )
F~— 5%“A _ _
RG9(p?,p2,0) = — 2 (n—2)(1-§)
(4m"2  8(p?)*(p*—m?)

X{[(p*>—m?)(p?+3m?) —(n—3)
X (p?+m?)?]ky(p?) +[2(n—2)p?
(4.38

—n(p2—m?)m?x},

N general, one should also make sure that the next term of the

expansion inp3 does not contribute, which may happen whgn

appears in the denominators. In this calculation, we did not need

suchp? terms.

PHYSICAL REVIEW D 63 014022

ke 1(:

g 7 F_E A (n_g)m
(477) n/2 2p2( p2_ m2)

X{[(n=4)p?+(n—2)m?]ky(p®)

—(n—2)mk},

N (p?,p?,0) =

(4.39

9°7Ch 2-¢§
(477)n/2 8p2( p2_ m2)

N (p2,p2,0)=
X{(n—2)(m?-3p?)m?x

+[4(n=3)m?p?+(n=2)(p?~m?)
X (3p%+m?) ]k (p?)}, (4.40

_@PnCa (N-2)(2-9)
(4m)"2 32(p?)?(p?—m?)

A (p?,p%,0)=

X{[(n—4)p?+nmP]m?x
—[4(n—=3)m*+ (n—4)(p?>—m?)

X (p?+3m*)]x1(p?)}, (4.41)

g°7Ca  m(n—1)
(4m)"? 4p*(p?—m?)
X{[(n=2)m?+ (n—4)p?]x4(p?)

A (p?,p%,0)=

—(n—2)m?x}. (4.42

If we now consider the on-shell case, i.e., patm?, we
need to be careful, since the above expressions contain
(p?—m?) in their denominators. Using two terms of the ex-
pansion ofx;(p?) in é=(m?—p?)/m?,

i’;&(n@)

Kl(pz): 2(n—3)

1
1+ 56+0( 52)}, (4.43

we see that the pole gt?=m?(6=0) is canceled. In this
way, we arrive at

9’7 (n—2)k

(12 m2 ) —
}\l (m ,m 10) (477_)”/2 2(n_3)

X

1 1
Ce— ECA)(1_§)+ ECA(Z_f)}
(4.44

o’y (n—2)k
(47)"2 4(n—3)m?

AP(m?m?,0)= -

X

1 1
CF—ECA)<1—§>+ ZCA<2—§>},

(4.49
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g’n  (n—2)k L &' n-2

A (m2,m2,0)= — Ko(p?)

(4m)"2 4(n—3)m bo(am? 2
1 1 1 3
X||Ce=5Ca|(n=&+5Can=1) . X||Ce=5Ca|(1-8+ 7Ca2=8)|, (4.5
(4.46
4 2}((1): 9277 (n_2)(n_4)K( 2)
These results coincide with those obtained by first taking the P2 (4m)"2 2 otP
on-shell limit pf=p3=m? [see Egs.(4.10—(4.12 and L L
(4.17—-(4.19 abovdg and then puttingp;=0. If we assume |l ce—Zc ) 1— &)+ =Cu(2— }
that the vertex4.32 is sandwiched between physical states Foa2mA (1-¢) 4 AZ=8).
(4.24), we see that both structures containipg can be (4.53

transformed intoy,,, so that the “effective” vertex becomes
Putting p?=u? (as in [9]) means that the logarithms
¥, [\ 1(M2,m2,0) + 4m?X 5(m?,m2,0) — 2mi 5(m?,m2,0)]. In(p%?) [in our case, Int?), since we implyu = 1] vanish.
(4.47) Therefore, we should subst|_tu_1;eO:1/s+2 (see, for ex-
ample, Eq.2.15 of [24]). Omitting theO(&) terms we see
Substituting our resultét.44—(4.46 we obtain for the one- that
loop contribution to Eq(4.47)

W 9 1 3 1
9?7 (n—1)(n—2) - A7 :>16772 Cr=5Ca (1_§)+ZCA(2_§) ;4‘1 :
Ve gme  2n-3) (4.54
g (3—2¢) . ca_, 9 ( 1 ) A+ te o
:’}/M(477)278F(8}(1_28) CF(mZ) y 4p2)\2 = 16’772|:2 CF ZCA (1 §)+ ZCA(Z f) ’

(4.595

where we have explicitly separated the contributions of dia-
where we have taken into account the definitions;af2.7) grams a and b. To perform the renormalizatiortin the
andx (2.15. We see that the resul#.48 is gauge indepen- MS-schemg we need just to subtract theslferm, i.e.,
dent, and it does not contaid, . For the QED case, it co-

(4.48

2

incides with Eq.(22) of [15]. 1ren). 9 1 3
In the masslessnf=0) case, we can compare our results A ):@ (CF_ ECA> (1=6)+ ZCA(Z_ &)
for the zero-momentum limit with those given [8]. The (4.56
definition of the zero-gluon-momentum vertex is given in
their Eq. (A4) (the lower equation It is proportional to Now we can compare our Eq&4.55—(4.56) with one-
(their g« our p) loop results forl'; 4 presented in Eq(A12) of [9]. Taking
into account that thei¢ corresponds to our (% ¢), and also

q,d, that theira=g?/(4), we see that we are in agreement with
[1+F3(q2)]yﬂ+ T4(9?)y” (o “2 [9]. Moreover, their result for the quark self-energy function
q A(qg®) [see Eq(A9) of [9]] is in agreement with out(p?).
(4.49 Note thatB(p?)=0 in the massless case.

If we consider our results in the off-shell zero-momentum

_ . L~ . V. CONCLUSIONS
limit, we see that on puttinghr=0 the function\ 3 vanishes.

The remaining two functions can be mapped ihtp, as In this article we have given results for the one-loop
guark-gluon vertex in an arbitrary covariant gauge and in an
)\(lren)HF3+r4, —4p% T, (4.50 arbitrary space-time dimension. The calculation was carried

out with massive quarks.

To calculate the quark-gluon vertex, we have decomposed
it into longitudinal (2.32 and transvers¢2.35 parts, I'{
and FELT) (like the decomposition in QED11]). Altogether
12 scalar functiongfour A's and eight7's) are needed to
define the quark-gluon vertex. We found that the function

or, vice versa,

TaoN{®V+4p2X,, T,o-4p2,,  (45)

where the superscript(fen)” means “renormalized.” N4, the coefficient ofo,,(p;—p,)?, which is absent in
In the massless case, taking into account that the masslegfEp, does not vanish in QC[Bee Eq(3.12] and contrib-
tadpole functior17<|m:o vanishes, we get utes to the non-Abelian part of the Ward-Slavnov-Taylor

014022-17
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identity (2.29. The general results for the longitudinal parts way. Research by L.S. was supported by the Norwegian
(\'s) are given in Egs(3.5—(3.12 (arbitrary gaugg and  State Educational Loan Fund. A.D.’s research was supported
results for the transverse partsg) are given in Eqs(3.16— by the Alexander von Humboldt Foundation, and then by the
(3.31) (Feynman gaugeand in Appendix Harbitrary covari- DFG. Partial support from the grants RFBR No. 98-02-
ant gaugg Using recurrence relatiorisee Appendix B all 16981 and Volkswagen No. 1/73611 is acknowledged.
results have been expressed in terms of integrals with powers

of propagators equal to zero or one. Only two non-trivial
scalar functions are required,(p3,p3,p3), wherei=1 or 2
counts the number ohassivepropagators involve(see Sec-
tion Il A and Appendix Q.

Starting from the general off-shell expressiong? (
#m?,p5#m?,p3+0) in an arbitrary space-time dimension,
n, for the longitudinal and transverse parts of the vertex, we
have derived results for the on-shell limip{=p3=m?)
which are also valid for an arbitrary(Section I\V). Note that
if we started from the off-shell results expanded around
=4 (similar to the results of11,12 for the QED casg we
would get infrared divergences from the on-shell-divergen
logarithms. Keeping the arbitrary space-time dimension, wi
see that the corresponding infrared divergences result in e
tra poles ine=(4—n)/2.

[

Various special cases of the general results were com-

pared with those of Refd4,7-9,11,12,14,15(for details,
see Secs. lll and IV

At the one-loop level, the Ward-Slavnov-Taylor identity
for the quark-gluon vertex can be split in an Abelian and a
non-Abelian part, Eq92.28 and(2.29. The Abelian part is
similar to the Ward-Fradkin-Takahashi identity in QEES],
whereas the non-Abelian part has a nontrivial contribution
involving the quark-quark-ghost-ghost vertéx 25, which
can be described by scalar functiops(i=0, .. .,3).0One-

loop results for these functions are presented in Appendix D.

Using the results for thesg functions, and those for quark

APPENDIX A: DECOMPOSITION OF THE VERTEX

The general quark-gluon vertex can be expresse@es
35,11,12)

I ,(p1,P2,P3)=v.N1+ P22+ p1Ns+ v, P20a+ v, 0105
+P2.P2h6+ P2ubih7+ P, b2hs
+P1,.01Ne+ P2ub1b2h10F P1P1H2N11
+vuP1b2h12, (A1)

Whereh,=h;(p},p3,p3).
The longitudinal and transverse functions of EG&32
%ind (2.35 are related to this naive basis as follows:

1 1
Ni=hy— E(pzpa)(heﬁ' hs)— E(plpS)(h8+ ho)

1
+§(p§—2p§)h12,

2= [(p2p3)(hg—h7)

2(p
+(p1p3) (hg—hg) — p3hyal,

2.2

17 P2)

2

and ghost self energies, we have checked that our results for

the longitudinal parts of the vertexXx(, A, A3, and\,)
satisfy the WST identity for arbitraryn and ¢, as they
should.

In principle, some techniques which can be used for the
calculation of the two-loop off-shell quark-gluon vertex, at
least in them=0 case, are already availablé1,27], al-
though the problem of higher powers of irreducible numera-
tors is still difficult for algorithmization. For special limits,
the calculation is very similar to the three-gluon vertex,
which was calculated at two loops if39] (the zero-
momentum limif and in[42] (the on-shell cage?
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N3=— {(p2p3)[ha+hy+ (p1p2)hyol

2_ 2
17 P2

+(P1P3)[h3+hs+(p1p2)hysl},

1
Na= 5[ —ha+hs+(papg)hiot (P1P3)hadl, (A2)

[hy+hs+hy+hs+(p1p2) (hipthig)],

T1= 2

pl_pg

To= —(hﬁ_h7+ h8_h9+ 2h12),
2(pi—p3)

2

1

1
T3= — Z(h6+ h7+ h8+ hg),

r-

(hiothyy),

TaT 5
17 P

1
Ts= — E(h4+ hs),

18
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1
Te= Z(he‘l‘ h7_h8_hg_2h12),

1
7= — [ (P2P3)h1ot (P1P3)h14l,
P1—P2

ng_hlz, (A3)

where\;=\;(p7,p5.p3), 7i=7i(p3.p3.p3).
Inverting these relations, one finds

hy=N\1+ 73p3+ 76(p2—P3) + 7a(P1P2),

ho=—N3+N;— 71(P1P3) + 74(P1P2) (P1P3) + 75

1
+ 77| P3— gpé),
hs=N3— N+ [ 71— 74(P1P2) 1(P2P3) + 75

1
—77( p%—zpﬁ),
1 2 2
hy=—N4— 75+ 577(p1_pz),

.1 2 2
hs=N\4— 175 277(p1 P2),

he=N2—T2(P1P3) — 73+ 76,
h7=—No+ 75(p1p3) = 73+ 76— 7g,
hg=— N+ 72(P2P3) = 73— 76+ 73,
ho=N>—T2(P2P3) — 73— 76,

h10= — 74(P1P3) + 77,

h11= 74(P2P3) — 77,

hio,=—r7g.

(Ad)

APPENDIX B: RECURRENCE RELATIONS
FOR SCALAR INTEGRALS

To calculate scalar integrals with high@ntege) powers

PHYSICAL REVIEW D63 014022

three-point integrals, one can follow an approach described
in [29] (see, in particular, Sec. IV ¢29] where the massive
case is discussedUsing the recurrence relations, we can
reduce all integrals to the master integralg1,1,1) (
=1,2) and a few two-point integrals. All basic integrals are
discussed in Appendix C.

1. Two-point integrals

All two-point integrals occurring in this paper can be as-
sociated with certain special cases of three-point integrals
andJ; (defined in Eqs(2.4) and (2.5), respectively, when
one of the indices; vanishes. The masses of internal par-
ticles (m;,m,) can be equal torh,m), (m,0), (Om), or
(0,0).

For two-point integrals with arbitrary masses,

1
[(p—a)®—mi]"(q”—m))"2’
(B1)
such a procedure has been described in detail in Appendix A
of [46]. For positivev;, it is enough to apply

3(2)(V11V2|m1,m2)5f dq

I (v1+1,vlmy,my)

_i _ -2 2_ A2
_VlA{[(n v1—2v,)(p—mj)

+ (n—3v1)m§]\](2)( vy, VoM, my)
— vy (p2—mZ—m3)I® (w1 + 1v,— 1 my,my)
—2v,m3J@ (v — 1Ly, +1|my,my)}, (B2)

together with a similar equation withv{,m;) < (v,,m,). In
Eqg. (B2),

A=A(mf,m3,p?)=4mim;—(p’~mi—m3)>. (B3

In our calculation, A may be equal top?(4m?—p?),
—(p*=m?? or —(p%?2.

Note that the sum of indices for any of the integrals on
the RHS of Eq(B2) is less(by one than such a sum for the
integral on the LHS. Thereford(® with any (positive in-
tegersy; and v, can be reduced t8‘®) with »;,=v,=1 and
tadpole integrals.

The reduction of tadpole integrals is trivial:

’ (N 1)' 2 N Y

of denominators, a recurrence procedure based on thand similarly for J,(N,0,0)=J,(0N,0)], where @);
integration-by-parts techniqu@8] has been used. For the =TI'(a+j)/I'(a) is the Pochhammer symbol.

2. Three-point integrals J,
For the integrald, with positive v; (with at least one of them being greater than)ptiee following solution of recurrence

relations can be used:
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1
3o(v1,v2,v3+ D=5 (71 = ve) PP+ (V2 va)PoP3 +2(N— w1 v, = 2v3)P3(PiPo) + 2(vo— v)M*(P1—P2)

—(2n—vi—vy— 6V3)m2p§]J2( Vy,Vp,V3)— p§(p§—4m2)
X[v1do(v1+ Lvp,v3— 1)+ vod5( vy, vp+ Lyg— 1) ]+ [(p3— m?)p3+2(p3— p3)m?]
X[ w135(v1+ Lvo— Lvg) + v3da( vy, v~ Lyg+ 1) +[(p2—m?)p2—2(p2 - p2)m?]

X[Vsz(Vl_ 1,V2+ 1,V3) + V3J2( Vl_ 1,V2 y V3+ 1)]}, (BS)
1
Jo(vy+1vp,v3) :m{z(n_ Vi— Vo~ 2V3)[pi(p2p3) - mz(plpg)].]z( v1,Vp,v3) t (pi_ m?)

X[(v3— Vl)pi"_(VZ_ V3)P§+(V1_ v2)M?]d5( vy, v,,v3) +[p§(p§— mz)_Zmz(p%_ p%)]
X[w1do(v1+Lpp, v 1)+ vpdo(vy, vo+ Lyg— 1)+ (pi—m?)(p5—mP)

X [v1da(v1+ L= 1wg) + vada(vy, v— Lyg+1)] = (pf—m?)?

X[ vodo(vy—Lvo+Lwvg) +vado(vy— Ly, wz+1) ]}, (B6)

and also an equation fdn(v4,v,+1,v3) which can be obtained from E¢B6) via (vl,pi)e(vz,pg). The quantityM, is
defined in Eq(3.3).
In fact, for our calculation we needed only tlr¢=v,=v;=1 case of Eq(B5),

1
31,1, =5 T {2(n=4)P3(P1P2) ~ M7132(1,1,1) ~ 2p3(p5—4m?)3o(2,1,0 + (P~ mP)p3 +2(pE— p2)m’]

X[35(2,0,1)+J35(1,0,2]+[(pi—m?)p3—2(pi— p2)m?][J(0,2,1) +J,(0,1,2)]}, (B7)

where we have taken into account the obvious symmejfy,,v,,0)=J,(v,,v,,0). We note a remarkable fact that the
coefficient 0fJ,(1,1,1) is proportional tor{—4). Since, in the off-shell casé;(1,1,1) is finite in four dimensions, this means
that we do not get any nontrivial function in finite parts of any triangle integrals with higheln fact, this property is valid
for arbitrary internal massd43] (a special case has been discusseldhf).

3. Three-point integrals J,

For the integralg; with positive v; (with at least one of them being greater than)ptiee following solution of recurrence
relations can be used:

1
I(v1,v2 vt D=5 —E (200 w1 = vg) (PaP2) + v1PT+ voPy — v+ (2081 = 3vy = 20 M* (w1, v, 5)

+(P5—m2)[v1d1(v1+ 1vo— Lwa) + v3dy(vy,vo— Lvs+ 1) ]+ (pi—m?) [ vodi(v1— Lvo+ 1,v5)

+v3d1(v1— 10, w3+ 1) ] p3[v1da(v1+ Lo, v3— 1)+ w201 (vy, vo+ 1vs— 1)1}, (B8)

Ji(vi+1lwy,v3)= {2(n— vy — vo— v3) [ P2(P2P3) + MA(P1P3) 1d1(v1, V2, v3)

2vp5M;
— (1T = vop5— v3p3)Pida(ve,vp, vg) + MP[ 20103+ 20,(P1P2) + (Vo= 1) P5— (v1— vp) M)

X J1(v1,v,v3)+ (My+p3m?) [ v131(v1+ 1= 1v3) + v3ds(vy, vy~ Lva+ 1) ]+ p5(pT—m?)
X[v1d1(v1+ 1wy, v3= 1)+ wd1(vy, v+ Lvs—1)] = (pI— M) [wdy(v1— Lvo+ Lvg)
+v3d1(v— 1wy, v3+1)]}, (B9)

and also an equation fdr(v,,v,+ 1,v3) which can be obtained from E¢B9) via (vl,p§)<—>(v2,p§). The quantityM; is
defined in Eq(3.2).

The “highest” integralJ; which occurred in our calculation wak(2,2,1). Using Eq(B9) and the @1,p§)<—>(vz,p§)
symmetry, we get
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1
‘]1(212!1) = zpzM ( (Ml+ mng)[‘]l(21lvl) +‘Jl(11211) +‘]l(1!112)] + (n_ 5)[p§(plp3) + mz(p2p3)]‘Jl(21111) + (n_ 5)
3 1

2 2 2_ 2)2 1 2_ 12y2 1
X[P1(P2P3) +M(p1p3) N1(1,2,1) = (p1— M%7 33(0,3, D+ 531(0,2,2) | = (p2~ M) (3,0, + 5 31(2,0,2)

2,2 2 2 1
+p3(pi+ps;—2m°)| J(3,1,0)+ §J1(2,2,0) . (B10)
For the integrals);(1,1,2), J;(2,1,1) andJ;(1,2,1), direct application of Eq$B8), (B9) yields
1
Jl(lylvz): 2_/\/1]-{2(”_4)[(p1p2)+mz]‘]l(lllyl)_2p§"]1(21110)+(p§_mz)[J1(21011)+‘]l(l1012)]

+(pf—m?)[J1(0,2,)+34(0,1,2)1}, (B11)

1
3(210=7 v p2{2<n—4>[pi<p2p3>+m2<p1pg>]J1(1,1,1>+2p§(p§—m2>J1(2,1,0)
1M3

+(My+m?p3)[I1(2,0,D+31(1,0,2 ]— (pf—m?)?[ J1(0,2,1) +J;(0,1,2 ]}, (B12)

and similarly forJ(1,2,1).

4. Integrals with numerators

We also need some integrals with negative powers of denomin@aterswhen the corresponding denominator is in the
numeratoy. Such formulas can be obtained in a standard way, via representing the numerators in terms of the external
invariants. For the cases when one of thés equal to (-1), we get

Ji(v1,v2,—1)=—(p3) HP3[(p1P2) + oimM?]i(v1,v5,0) + (P1P3) Ji( v1— 1,v5,0) + (P2P3) Ji( vy, v2— 1,00},
Ji(ve,—1va)=—(p3) Y[ p3(P1p3)+ oiMm2(Pap3) 13i(v1,0,v5) + (P2P3) i (v1,0,v5— 1)+ (P1p2) Ji(v1— 1,03)},

Ji(=1,vz,v3)=—(p2)  H[PpI(P2p3) + aim?(p1p3) 13i(0,v2,v3) + (P1P3) Ji(0,v2, v3— 1) + (P1P2) Ji(0,v,— Lv3)},

whereo;=1 ando,=—1 (for the integrals], andJ,, respectively. We note that similar substitutions would also be valid
for the integrals); (with three massive lingsif we put o3=0.
Moreover, an integral withv3=—2 has occurred:

31(v1,v2,=2) ={[(p1p2) + M= (n—1) " KH1(v1, 72,00+ 2(p3) H(P1P3)[(P1P2) + M2+ (N—1) K}y (v~ 1,0,,0)
+2(p3) " H(P2Pa)[ (P1P2) +M?]+(n—1) " CHI1(vy, v~ 1,00+ (p3) "°[(p1p3)?~(n—1) K]
X J1(v1=2,02,0)+(p3) ~2[(P2pa)®— (N—1) " K1Iy(vy, 2~ 2,00+ 2(p3) *[(P1P3)(P2Ps)
+(n—1)"1K)I;(v1—1,v,—1,0),

with K defined in Eq.(3.1).
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APPENDIX C: BASIC SCALAR INTEGRALS 3,(0,1,1)=3,(0,1,1)

As discussed in Sec. Il Asee also Appendix B all re- =im? *m ?I'(1+¢)
sults for the scalar functions\(, 7;, etc) can be expressed

in terms of three-point integrald;(1,1,1) andJ,(1,1,1), 1 m?—p? m?—p3

two-point integrals (2.10—(2.13 and a tadpole integral X1z 2+ ———In———+0(e),
(2.14. Remember that we are interested in results which are P1 m

valid for arbitrary values of the space-time dimension (C6)

1. Two-point integrals
o o Jx(1,1,0=i 7> °*m 2T (1+¢)
The massless two-point integral is trivial,

= 1 2
€ p53—4m
FZ(E—l)F(z— 5)
=i 72— p2)2-2 with the same functiorf as in Eq.(C5). Above the corre-
3 I'(n-2) ' sponding thresholdp>m? or p3>4m?), these functions

(C1) acquire imagigaryzparts, whose sign is defined by the causal
prescription pf«<p;+i0 (for details, see Appendix A of
Two-point integrals with one or two massive lines can be[46)).
expressed in terms of the Gauss hypergeometric function In the limit pf=p3=p? (in particular, in the on-shell

(see, e.g., in23)): case, the combinations
n
P 35(1,0.)—-3,(0,1,)
J1(0,1,1)=J,(0,1,)=2i 7" (m*)"e f—-—F—
1( ) 2( ) e (m?) n—2 pg_pi
. 1,2—n/2| p? - should be treated in the following way:
X R—
Fil o el (C2
‘J2(11011)_‘]2(01111) d
n 12-n/2 p2 [ = —{3,(0,1,0)| y2— 2
—i N2 m2\ni2—2 _ 0 M3 2_ 2 2 ps=p
J2(1,1,0 =i 7"(m") F(Z 2) 2F1( 32 | am2) P2—P1 p2=pZ—p2
3 (C8
The results for the integrall; (1,0,1)=J,(1,0,1) can be ob- USing Eq.(C2), and also the fact that
tained from(C2) by substitutingp?— p3.
In three dimensions, Eq§C2) and(C3) yield (cf., e.g., in d abl | ab a+tlb+1
[48)) &2':1 c |7 _?ZFl c+1 |2 (C9
2im? [ p3 we obtain
Jl(O,l,l)|n:3=J2(0,1,1)|n:3= m f _2 ’
3,(1,0,1)— J3,(0,1,1)
i 72 2 2 2
TA(L2.0g= 1| 2, (ca PP g
m \4m
. 1
with =— ﬁ\lz(o,l,lﬂpi:pz. (C].O)
imﬂ? z>0, In the on-shell case, we get
2z 1-\z
f(2)= . (CH)
n—2
\/?Zarctan/—z, z<0. J2(0,1,1)| g2 2= mb(oyl,o)- (C1y
Around four dimensionsr(=4—2¢), they are singular Moreover, for some functions we need the expansion of this
(see, e.q.[45]): integral in 8;=(m?—p?)/m? up to the linear term,
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1 [23]. For our purposes, we need integer powers of propaga-
1+ 551+ O( 5%)}. tors. Using recurrence relation$29] based on the

integration-by-parts techniqyi28], all scalar integrals can be
(€12 reduced taJ;(1,1,1) and two-point functions.

3,(0,1,) = mJZ(O,l,O)

2. Three-point integrals a. General off-shell case

For the triangle integrald, and J,, results in arbitrary Transforming Feynman parametric integréits example,
dimension, and also for any powers of the propagators, cansing the Cheng-Wu theoref7]), we can present;(1,1,1)
be presented in terms of multiple hypergeometric functionsandJ,(1,1,1) as

(1,1 1)=—i77“’2F(3—E)JOCfC gede (C13
o 2] Jo Jo (1+ &+ )" [P p(L+ &+ m)— ppi—Enpi— P31

. (= dédy
Jx(1,1,)=— ”/2r<3—2) :
AT 2 fo f0(1+§+ )" ML+ €+ ) (14 97) — épi— Empl— P3P " cia

In the three-dimensional casen3) the denominator b. Symmetric case
(1+ &+ n) disappears in both integrals, and one can easily The ©

. AR symmetric” case is of a certain intere@ee e.g. in
integrate ovek, and then over. This yields y g

[7]), when all external invariants are equal;=p3=p3
=— u?. Then we obtain

i772 m+ \ M1/p3
J1(1,1,1)|n:3:_ > n > | (C15)
psMy [ m— \/M1/p3 in2 (= dp
(L1 —sp2e_ o= —| ————
L1 Dln=apte w2 Jo 14 p+ 72
L1 im? | m(2m? - pi-p3)+ VMo
1 L = = n y
2 "2 M, | m(2m2—p2—pd)— M, I (1+ ) (m*+ u?+ uy)
(C16 m?+u2+m?y |
where M; and M, are defined in Eq93.2) and (3.3), re- (C18
spectively. If M, /p3 or M, is negative(in J; andJ,, re-
spectively, the logarithms should be substituted by arctan
functions[see Eq.(C5)], which correspond to the limiting in2 (= dp

cases of the result obtained [48] (see also in43]) for J2(11111)|n:4,p_2:7,u,2:__2 —
three-dimensional three-point function with arbitrary masses. ' pJoltpty
Note that in the massless case we arrive at the well-known

result[49] (see also if14]) (M?+ u?)(1+ 7)?

Xln
m*(1+ )%+ u?y

i

31411, h—3m=0=J0(1,1,D)]—3=— W
1M2M3
(C17

(C19

These parametric representations are equivalent to those for
In four dimensionsf=4), we can also integrate ovér  the H andM functions given in7]. Note thatu?J,—im?H
Then, performing the remaining integral, we arrive at the andu?J,<i7?M. These integrals can be evaluated in terms
known results in terms of dilogarithnig5]. of Clausen functions as
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31(1,1,1)|n:4’p_2:_ﬂz we can putn=4 in Eq. (C24). For instance, the following

' simple representation in terms of,Glan be mentioned

s [ZCI +2Cl ( +26 ) 21w

= 2 2 1 J1(1,1,))| 4 2= 2o 2=—T———s

2\/— S 1( )|n 4p7=p5=m p§(4m2_p§)

a _ s
+Cly| 7 —26g, +CI2(7T—2051)], (C20 X{Ch =240 ~imhog),
(C26

(111!1)| = 2__ 2
i e with

2im2 2 _ n‘/ﬁ <p2< 2
o :f [zcb( von| T +2 952) Yos=arctan,(4m?—p3)/ps,  0<p3<4m
H Let us also consider the integrd)(1,1,1) in the on-shell
T limit. Starting from the representatidi€14) in arbitrary di-
+Clo| 3 —20s (C21)  mensionn and integrating oveg, we get
where J2(1 1Dl pz-me
2 2 2 2 1 n
Mmet+2m met+4m e
tanfg;=———=—, tanfs,= \/——— (C22 =5l F(Z——)
sl ,U«Z\/§ s2 3M2 2 2
This gives analytical results for the andM functions from > f ” dz . (Cc27
[7]. In the massless limitni—0), 6s,= 05,= w/6, and, re- 0 (14 7)"Im?(1+ n)?— np3]° "2
membering that G(2/3)=2Cl,(/3), we reproduce the
well-known resulf5] It is easy to show that this three-point functi@n the on-
dim shell limit) reduces to a two-point functiofC3) with a
Jo(1,1,D) |z g2 — 2= — \/_C|2( ) (C23  shifted space-time dimension-n—2,
a
J2(1,1,D)| p2— p2— 2= 4TJ2(1,1,0) (C28
c. On-shell limit v n nn-2
Now let us consider the on-shell limit;=p5=m? For  ysing Eq.(C3) we get
J1(1,1,1), the two-fold parametric integreC13) yields 1 n
_ T ni2pm2\n/2-3
‘]1(1’1'1)|p§:p§:m2 J2(1,1,1)|pi:p§:m2— Em—” (m?)" 1"(2— E)
. n 1,3-n/2 p
_ n/2 _ ’ 3
i F(3 2) XoFa| g, . (C29
% J'mfm dédy _ In the limit n—4, because of the singular factor in front of
0 (1+ &+ )" d[mPn?—¢p31e "2 the RHS of Eq.(C28), we need to expand the two-point

function up to thee term. This is how dilogarithmgor
Clausen functionsarise in the finite part of the three-point

Using Mellin-Barnes contour integral for the second denomifunction.

(C24

nator, we find The same resuliC29 can be obtained from Eq&32) and
1 (34) of [23], taking into account that the first two arguments
31(1,1,D)| 2 2 o= A (11 YC e — of the @, function arez,=z,=z=1. Therefore, the sum
2 I'(n=3) overj in Eq. (34) of [23] (corresponding to anF, function
of unit argumentcan be performed in terms &F functions.

F( s) As a result, we arrive at EqC29).
Moreover, using Kummer relations for contiguoyb ;
functions, we get

1 (i o
Xﬁ dS( - m—

XT'(n—5-2s)'?(1+s)

( \ (1,2— n/2 )
n n—3),F; z
XI|3=5+s|. (C25 3/2
1,3—n/2
Closing the contour to the right, we get the result in terms of =(n=4)(1-2)5F, 3/2 z|+1. (C30

-F4 functions of the argumem§/(4m2). Note that the in-
tegralJ;(1,1,1) is not divergent in the on-shell limit, so that Therefore,
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2(n—3)

J5(1,1,2)| 2= 2= 2=
2 lp3-p3-m (n—4)(4m?—

[J2(1 1,00~ 32(0,1,)[ 2 2], (C31)

APPENDIX D: RESULTS FOR THE x FUNCTIONS

The one-loop results foy; functions from Eq.(2.25 are collected below:

x§D(p3.p3,p5) =~ ( 49 ;’n,ZSM {[2+(n=3)E]IMy(pi—m?) @1 — (n—2) £pTpap5es + (N—2) EM4[ (P1p2) +M?] gy

— Em?p3[N(p1p,) +2m?] g + (N —3) E M?P3 kg s+ PA(P5— M) kq 1+ MP(PT— p5—m?) k1 ]
— (2= &) My (Kot K19 + EMyky 1+ (N—2)EMP[(p1py) + mP]k}, (D1)

9’7 mCy

X (p7.p3.p3)= 2 BK Ml{<2—§>M1<p2p3>[(plp2>+mz]cpl—Sm%p§«m+[2+(n—3>§]/m¢1

+(n— 3)§p3[(p1p2)+mz][p1p2+m2(p1p2)]<pl+(2—§)M1[(p1p2)f<1,1+D§K1,2+(p2p3)Ko,3]
+(n—3)£p3[p2p3+m2(p1p2) Ixo st (N—3) P2 P3(P1Ps) + MA(PaPs) ks 1+ (N—3)ép3
X[ pd(p2ps) +M2(pyp3)]xy ot (N—2)EMPKC}, (D2)

977

mC
X5D(p3.p3.p3) = )n,z 8KM; P {[2+(N—3)E]K M1 — (2— ) My(P1Pa)[(P1P2) + Mgy

(4
+&(n—4)K—(n—3)M;1p3pies— (n—3) £p2p3[ (P1P2) + M?] ko 5+ (N—3) EPA P5(P1P2)
+(p1p3)(p3—M?) k11— (N—3)EP2(PoPa)[ (P1P2) + M?]ky ot EPIK KL o~ (2— €)My

X [piKl,l"_ (P1P2) K12t (P1P3) Ko 3]+ (N— 2)Em2K( p%) “2(pyp2) + mz](Kl,z_})}a (D3)

9°n Ca

a7 BK Ml{(n—4>§mzicp§qo1—m2M1[2<p1p3>+s(pzpsnsol—[2+(n—3>§]M1p§(pzp3>so1

x$(p?,p3,pd)=—

—(N—=2)éM;, (p1p2)(p2p3)<P1_Ml[z(plpa)"‘f(pzps)]Ko,s_Ml[ZDi"‘ E(p1P2) IK11
— M4[2(p1p2) + Pl Ky o+ (N—3)EP3LPIP5+M2(P1p2) 1Ko 3+ (N—3)EPTL P5(P1P3) + MA(Popa) Ky g
+(Nn—3)£p3[ p7(p2Ps) + MP(Pyp3) 1K1 2 (N—2) EMPKk}. (D4)

APPENDIX E: TRANSVERSE FUNCTIONS
IN AN ARBITRARY GAUGE

We here collect results for the transverse parts of the ver{exvalid for arbitrary covariant gauge and dimension.

1. Transverse functions of diagrama
Using the decompositiofB.15), all 7's of diagrama can be presented ds

3As mentioned in Sec. 11l B, the combinations ©f in Egs.(E1) and(E2) are linearly dependent. As a result, we ¢aimultaneously
shift t; ;—t; 1+ 2¢;, tj o=t o+ p%ci andti'5—>ti,5+(p§—p§)zci (wherec; are arbitrary functions of the momenta, which can be chosen
separately for eachy), without change of the value of the corresponding This possibility allows us to write some of th& in a more
compact form.
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7 (pf.p3.p3)
5 1
9°7| Ce— ECA
_ = ']y (1a)
B (4r)"2 [ti,o 217 [(P1P3) K11
+(P2P3) kot p%xm] + ti(’lza)(Kl,l'f' K12~ 2K33)
+ ti(,l3a)( K11t K12~ 2K)+ tfia)( K11t K1)

K — K
+ti<;a>1;_;2}. €D
P1—P3

The results for the scalar function§® (which depend on

the invariantsp? ,p3,p3) are listed below, for all eight’s:
ti)=—(n—HmK ~[(p1p;) —m?],

- 1o,

1
ti=>(n—gHmk 7,
(1a) 1 -1 2
tis =§(n—§)mIC (P1—P2)%,

1
1) = — K~ H2(n—4)EM 5 p3(p3— M) (p—m?)

X[(p1p2) —MP]+ (1+€)p5—4m?
+(n=1)K " 'p3[(p1p2) —m?]
X[(1+8)(p1p2) — (1— €)M’ +4£(p1p2)},

1
thi) == Z(N= DK [(1+&)(pipy) — (1= Hm?],
1
th5)= 76K (n=2)— (n=3)m* M, *(pi - p3)*],

1
t55)= - g(n=2)m’L " H(1-£)(pipd) *(pap2)
+26M 5 ' (P1po) —MP]+AEKM 5
1
the=—g(n—HKTIM; {(1-§ Mo+ 263 pip}

—m?( P1p2) ] — 4§m2K},

1
th8)=— gk X(pipd) H(n-2)(1-§)

X(p1—P2)[pIps—M2(pip,)]+2(n—2)
X (1= &mM2L+2(n—3)ém?M 5 'pdp3(py—py)?
X(pi—p3)?},

PHYSICAL REVIEW D 63 014022

t&?é‘)=%/c‘1{<pi+p%—zmz)[<1+§><pi+p§)
—2(1-&m?]—-4(n-2)K+(n—-1)K 1
X (p=p3)°L(p1p2) —MPIL(1+€)(p1p2)
— (1= &m?]=2(n—4)Em?M; *(p3—p3)?
X [(p1p2) —m?](p%+ps—2m?)},

(=0

1

t§5) =T H2(n—3)emP KM, H(pf-pd)°
X (p2+p3—2m?)—[(n—1)(p2—p3)?+4K]
X[(1+ 5)(p1p2)—(1—§)m2]},

1
th)= Tg(n—2m°K ~H(L-&)(pipy)
X[(p1—P2)2(p1p2) —2K]+2EM 51
X (pZ—p3)(p1p2) —m?1},
1
8= Tg(N= DK {1+ )(p1—p)*+2ém*M ;!

X (p2—p3)2L(p1p2) —m?]},

1
t58)= 16 ~2(PI—p)H(n—1+28)[2K~ (p1py)

X(p1—P2)?]— (N—NE+68)K—(1—&)m?
X[(n=2)K(pip3) *(p1p2) — (N—1)(p1—p2)?]
+(n=3)éM ;! (py—p2)’[2mPpip3p3
—p3(p1p2) (p3p5+m*) —4m*K]},

the'=— %émlC M=K *pil(p1py) —m?]
—2(n=5)+2(n—4)KM;*
X (p+p3—2m?) —(n—4) M (pi—p})?
X[(p1p2) —m2]},
tE&f)=%émwl[(n—sw;l(p%p§—2m2>
~(n—=1K 1,

t{'®=o0,
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1 _ —_
ths' = 7(n=2)Em°C "M, Y (pip)

X[2K(pi+p3) — pipsps+m?p3(pap2)],

1 :
thd) = — 7 (n=4)Emk M5 *pi[(pp2) —m?],

1
ti8) =~ Z&m{(n=2)K "'[(pip3) (P1P2) (P+PD)

—2]+4(n—=3)M; Y(pi+ps—2m?)},

(1a)__1 -1 Y o -1

tsg = ZmIC {4(N—4—-§K+(n—4)(KM 5
X (pi—p3)%(p5—4m?) —(n—3)&(pi—p3)?
—2£p3[(p1p2) — M?]},

(1a)_1 -1 —1,.2 . 2\2

ts1 —melC {(n=3) M, *(p1—p32)
X[(p1po) —m?]+2},

G

1 —_ —
t5) =5 (n—2)ém° M *(pip3) ~"[2(p—P2)*(P1P2)

+2pip3p3—m2pi(pi+pd)]l,

1
th2) = g (n—4)émM 'p3(pi+p5—2m?),

1
th)= g ém(pi-pd)*(n—2)(pip3) *
—4(n=3)M 3 [ (p1p2) —m?]},

1

the = 8
X{Mo[ (14 €)p5— 4m?]+6£m?p3[ (pypy) —m?]

X (pi+p3—2m?)+(n—1)K ~1p3[(p1p2) —m?]?

X[ Mo+ £p3(pips—mH 1},

KM (pi—pd)

1
thi)= 5K (i pH{2(n—3)ém* M, (pf+pj

—2m?)—(n—=1)K "[(1+&)(p1p2)
—(1-&m7},

la) _
i =0,
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1
td = — 1_6(n—2)m21C_1(Pf—p§)

x{(1=&)(pip3) Y(p1p2)
+26M 5 3 (p1p2) — M2},

1
thd == Tg(N—4HK My (pi-pD{(1-HM,

+2£pIp3p3—2ém?2[4K+p3(p1p2) 1},

1
t6s)= g€ 1 PI-pH{(n-2)(1-9)

XM (p2p3)~L(p1po)(pi+p3)—2]
—(N=2)(1+&)(p1—p2)?
—8(n—3)ém?KM; '(pi+ps—2m?)},

1
8= S émpEL(n—4) M (p + p3—2m?)

—(n=3)K 1],
(1a) 1 —1fp—1,.2 2
ti1 :_E(n_3)§m/\/12 {7 p3[(p1p2) —m?]+ 2},
-0,

1 _ —
0= — 2 (n-2)em* M (pp3)

X{p3[2(p1p,) —mM?]+ 4K},
(1a) 1 -1,.2
tva =—Z(n—4)§mM2 p3,
1 )
th5)= 7 ém{4(n—3) M, '[2K+ p3(pap2) —m?p3]
—(n—2)(p5p3) Hpi+pd}
(1a) 1 —142 2
the)=— 5[n—6—(n=4)£1K "*p3[(p1p2) —m’],
1 _ 1 3
thi'=— 5[n-6-(n-4)£K %,

G- G- -o.

2. Transverse functions of diagramb

By analogy with diagrana, (E1), all 7's of diagramb can

be presented as
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7P(p?.p3,p3) =

2
9°7Ca
(4,”_)n/2 ti(,lob)gol_'— ti(,llb)[( plp3) K11

+(P2P3) k12t pgKo,s]

+ ti(,lzb)( K11T K127 2K03)
+ tl(‘jéb)( K1’1+ K1‘2_ 27()

K11— K
1b 1p) *1,1 1,2
+ti(,4 )(Kl,1+ Kl, )+ti(,5 )ﬁ

P1—=P2
(E2)

The results for the scalar functionS® (which depend on
the invariantgp? ,p3,p3) are listed below, for all eight’s:

1b) _
tio' =

1b) _
t(l,l)_

1b) _
thy)=

1b) _
-

1
1b
t(, )

1b) _
(-

1b) _
t(2,0)—

1
gMK "M H(n—4)(n—6) LM’ M 1 *pj

X[(p1p,) +M?]+ (n—4)EKp5+(n—4) €2
X[(p1p2) +M2][(n—2)K+(n—3)p3(p1p2)]
—(N=3)&(1-HM;pi—2(2n—2-§M,
X[(plpz)—i—mz]},

1
—g(n=3)¢mK "M H{[1-(n=3)£](p:p2)

+[1—£—(n—6)eKM ; 1Im?),

1 _
Tem2(2n—2-HK ™ =(n=2)(n=3)&M, ],

1
Te(N—2)ém{(pip3) - My
—(n=6)ém?M 1 ’[(p1p2) + m?]},
Te(N—HEMM 36— 1+(n—6)éM
X[ pip5+m3(pip2)1},

L mk2(2n-2- —p,)?

16m [2(2n E(p1—p2)
—(n—2)£K(p3p3) H(pi+pd)l,

1

16 Hl2—¢-(n—=3)&*]p5—(n—3)

X (n—4)Em? M 1 'p3[(p1p,) + m?]+(n—1)
X (2= &K ~1p3[(p1p2) +m?]?—(n—1)

X (N—3)&K " 1p5(p1p2)[ (P1p2) +m?]
+[4(n—3)—2(2n—5)¢é—(n—2)(n—3)¢&?]
X[(p1pa) +m?]},
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1
) =1 H(N=1)(2= H)[(p1po) +m?] — (n-3)¢?

X[(n—1)(pyp2)+ (n—3)m2KCM 1 1]},

ti=— 1 “4(n-3)—2(2n—5)é—(n—2)

X(n=3)¢],

1
t5 =35 (n—2)M*K ~H(n=3) &M ; [(p1py) +m’]

— (2= &)(pipy) H(p1p2)},

1
5= (= DK TMH2-HM - (n-3)¢

X[pip3+m?(pip2)1},

1
the)= 25 " H(n—=2) (2= Hm[(pip) *(pap2)

X(p2+p3)—2]—[2(n—4)—(3n—8)¢&]
X(pl—p2)2},

1
thle) =35K ~H(n— ) em’ M1 Y[(p1py) + 7]

X[(N—=3)&(p:—p3)2—4(4—EK]+ 4+ (n
—4)E][(p1p2) +M?][(N—3)(py—po)?—4(n—4)
X K(p3) 1+ (2-§[(n—2)(pi—p3)?

X (1=K~ "My) =K~ My p5(p;—pa)?]
+8(n—3) K+ (n—3)£2(pi—p3)2+(n—3)

X E(p1p2)[(P1p2) + M ][4+ (n— 1)K+

X (p1—p3)%1},

1
thiY =55 1 (p) T H(n—3)gm?M
X[(n—3)&(pi—p3)2—4(4—§)K]
+[(n—1)K ~Y(pf—p3)?+41[(n—3)£%(pspy)
—(2—&)(p1pa) — (2— &M},
t‘s%é’)=—6—14516*1(p§>*1[4+(n—4)§][4/<+<n—3>

X (p—p3)?l,
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1
this)= g4(N=2)m°K ~1(p3) “HEM L [(pap) + 7]
X[4(4—E)K—(n—3)&(pi—p3)2]+(2— &)

X (p2p3) 13 (p1p2) (P1—P2)?—2K1},

1
= g2(n— K (P H(n-3)&M

X (pi—p3) 3 pips+m3(pips)]—(2—€)p3(ps
—P2)?— 44— EKM [ pip3+mP(p.p2) T},
1

th8)= < 1(PD) H(2-&)(pf-pH)H4(n-2)
Xm2K(pip3) t—2(n—3)&(py—p2)?
—(N—=2)(p1—p2)M?(pip3) *(p1p2) + 11},
1

tg%g):ggmic “IMH(n—4)(n—6)EmPK M tp2

+(n=2)(n—4)EK+[1+(n—3)£]p3(p1p2)
X[n—4—(n—1)K *M;]—(n—1)m?K ~*M,p3
+(n—=4)[1—(n—3)£]m?*p5—(n—2)
X(n—3)éEM,},

1
i) = g émk M H(n=3)é[pip3+ m*(p1po)]
X[(N=6)M = (n—1)K = (n—-1)K M,

+(n=3)(1+3¢)},

1
thy =1(N=2)(N=3)&mk "M 1 [ (p1pa) + m?],

1

iy = 75(N=2)émK "M Mi(p1p2) (Pp3)
—(p1pz) —m?+(n—3)ém?
—(n—=6)ém?KM 1],

(1b) 1 -1 -1 2

tia =—E(n—4)§mlC M H(p1p2)+m

+(n—3)&(p1pa) +(N—6)Em?ICM 1 1,

1
the)=— 75(N=2)émK ~"[(pip3) ~*(P1p2)

X (p%+p3)—2],
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1
tig)=— gmK ~H{ep3lpi+pi+(2—Hm’]

X[(N—4)KM;*=(n=3)]+[(n—3)(2—¢)
—1]€p3[(p1p2) + M?]+[12—2&+(n—4)
X &(4- 61K},

1
tg%f)zggmﬁ_l.
(1b) _ 1 —1p44-1 2, 2 2
t5> —1—6(n—3)§mlC M H2K(p1+p3—2m?)
— (p—P3)2[(p1p2) +m?]— £p3 pips
+m?(py1p2) 1},
(1b) _ 1 -1 2 2,.2\—1
t53 —1—6(n—2)§m/\/l1 {(2=&m*—[ My(p1p3)

—1](pi+pd)}.

1
t = Tg(N—4EmM 1 pi+p3+(2-Hm?),

1

ths) = TgEMC M1 H(pi-p)H(n=3)(2- &)[pip;
+m?(p1p2) ]+ (N—2) KM,y (pipd) ~t
—(n=3)(p+p3)[(p1p2) +m?]},

1
t6o'=— 35 (PE-PD{(N=3)(n—4)&(m*M 1 'p3
+1)[(p1p2) +m?]+(n—1)(n—3)&2K ~1p3
X (p1p2)[(P1p2) + M+ [(n—2)
X (2= &) +(n—=3)&p5—2[2— (n—3)£][(p1P2)
+m?]—(n—1)(2— &K ~*Myp3},

1
t6r = 35 ~2(PI—PDI(N—1)(2= &) (P1p2) + ]

—(n=1)(n=3)&(p1py)
_(n_3)2§2m2KM Il}’

1
t6)=— 57 (Pi-pHl4-2(n—3)¢-(n-3)
X (n—4)&,

1
th) =52 (n—2)K ~H(pi-pd{(n—3)&m’M;*

X[(p1p2)+m?]— (2= &)m2(p2p3) (p1p2)},
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1 3 1
té%f>=671<n—4>/c TIMp-pR{(2- M, ti'8)= - 75(n—2)ém(pip) ~*(pi+p3),

—(n—3)& pip3+m? , 1 -
t(lb)— -1 (N—2)(2— &)m?

(Pi=p3H(n-2)(2-) +(n—3)&(4— O)P3(P1p2) + (6— O P(P1P2)
X[(plpZ) l(plpz)(pl+p2) 2] +m2p§+2K]},
+(p1—p2)2[(N—4)(2+§)
A thy= —/c LM Y(n—3)&(4— &) p2p3+m(p:p,) ]

—2(n—=3)&7},

1 +(6— &) My},
(1b) -1 1

0= gémpEl(n—4) M —(n=3)K ], {an b _ g
8,2 8,5 ’
(1b) 1 —14y-1 2 (1b) 1 2041
tf)=— 5 (N=3)émK M {(p1py) + 2], th) =~ 5(N=2)&@4-HmMm; Y,
£ — o, 1 -
72 the' =~ Tg(N— 44— Hm*M
1_ 71
ths (n 2)¢ém[(pip3) '- M, In the limit m—0, 7Y, 7, 7Y and 7Y vanish. We
. also note that ali{’}? andt(lb) are proportional torf—4), as
- they should, since the transverse part cannot contain UV-
)= — —(n—4)emMm; L, y s P
poles ing at one loop.
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