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Weak decay of uniformly accelerated protons and related processes
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We investigate the weak interaction emission of spin-1/2 fermions from accelerated currents. As particular
applications, we analyze the decay of uniformly accelerated protons and neutrons, and the neutrino-
antineutrino emission from uniformly accelerated electrons. The possible relevance of our results to astrophys-
ics is also discussed.
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[. INTRODUCTION celerated neutrons may be of some relevance in situations
where they are under the influence of “relatively” strong
We investigate the weak interaction emission of spin-1/20ackground gravitational fields and, thus, will also be per-
fermions from classical and semiclassical currents. We deformed. , .
note by semiclassical those currents which possess classical Some features of thg and inverseg decays for uni-
trajectories and are endowed with quantized inner energ rn_1|y acce_lerated nucleons will be discussed in terms of the
levels. Our results can be used to investigate a broad class hf'!ing-Davies-Unrul(FDU) effect. The FDU effect asserts
processes involving accelerated particles provided that theéo.at the Mmkowsk! vacuum corresponds to a therma_l bath
have a well defined world line, as indeed verified in many ith respect to uniformly accelerated observgsse). It is

situations of interest. In the case where the particle is acce verhaps remarkable that although '”erEa' observers associate
he inverse3 decay to the channgl—ne™ v, coaccelerated

could be fully analyzed quantum mechanically. As a Consesﬁservers associate thameproton decay event to one of the
. : N &ollowing channels;pe” —nv,, pre—net or pe v,—n

qguence, any recoil effects due to the fermion emission woul Ve Ple X el

be automatically taken into accouft,2]. For instance, in where the absorbegl” andv, are Rindler particles present in

Ref.[1] a quasiclassical approach to quantum electrodynanthe FDU thermal bath “attached" to the proton’s frafid.

ics was developed to considgrsynchrotron radiation from The correspondmg branching ratios can be also calculated as
an electron in a classical background magnetic field. Thig function of the proton acceleration. , ,
approach is basically characterized by assuming that the Under a certain restriction, we can make our semiclassical

electron motion is quasiclassical. This is always possible a§UTTent to behave as a classical one. This is suitable to inves-
long as the magnetic field is not very strong, namely tigate neutrino-antineutrino emission from accelerated elec-

<H, andy>1, whereH ,=4.4x 10" G andy is the Lorentz trons. This process is of relevance in some astrophysical situ-

factor for the electron. This quasiclassical approach applie@tions as, €.g., in the cooling of neutron stars. Eventually we

to neutrino-antineutrino emission is analyzed in detail in Seccompare our results in the proper limit with the ones in the

6.1 of Ref.[2]. literature obtained by quantizing electrons in a background
Although it is hard to take into account the current recoil Magnetic field 8-10. _
in our semiclassical approach, the relations here obtained, 1N€ Paper is organized as follows. In Sec. Il we introduce

which agree with the full quantum mechanical treatment inthe semiclassical currents and discuss how they model par-

the proper limit <1, see, e.g., Sec. Ylare easily appli- ticle decays. In Sec. lll, we introduce the weak-interaction
cable when the process involves particle decay and the tr&ction and couple our current to a spin-1/2 fermion-
jectory itself (rather than the underlying dynamical processam'fe,r_m'on fleld.. Afterwards we calcullate thg differential
which generates )itis inferred from the observational data. transition probability for currents following arbitrary world

Explicit results for uniformly accelerated currents are exhib-IN€s- IN Sec. IV we use the results obtained in the previous
ited. section to explicitly evaluate the fermion emission rate and

As far as we know, the first ones to call attention to theradiated power for the particular case of a uniformly accel-

possibility that noninertial protons may decay were GinzburgErated current. The next two sections, Secs. V and VI, are
and Syrovatski[3] but only recently Mullef4] obtained the dedicated to analyze in detail the decay of uniformly accel-

first estimation for the decay rate associated with the procedyated protons and neutrons, and the neutrino-antineutrino
p—ne' v, by assuming that all the involved particles are emission from uniformly accelerated electrons, respectively.
e

scalars. Here, as a particular application of modeling accel!Ve &!S0 comment on the possible astrophysical relevance of

erated particles by semiclassical currents, we perform a conu! results. We dedicate Sec. VII for our final discussions.
prehensive(inertial-ram@ analysis of the invers@ decay W€ will use natural units =% =kg=1 throughout this paper
for uniformly accelerated protons. We show that under cer!Niess stated otherwise.
tain astrophysical conditions, high-energy protons in strong
background magnetic fields should rapidly decay.

The observation of noninertial neutrons is less trivial. Let us consider a particle in a four-dimensional

Notwithstanding the calculation of the decay rate for ac- Minkowski spacetime covered by the usual inertial coordi-

Il. SEMICLASSICAL VECTOR CURRENT
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nates {,x) e R*. Let x*(7) be the particle’s world line and
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fermions (with respect to the inertial frame instantaneously

its proper time. The classical vector current associated witht rest with the curremSatisfiesi'IZKMl, M. In order to be

this particle is given by

qu“(T)
u’(7)

JH(x)= S Ix=x(n], (2.1

where q is a “small” coupling constant andu®(7)

conservative we will imposék|<w<Mj, M,. It will be-
come clear further that the typical energy of the emitted fer-

mionsw is of the order of the current’s proper acceleration
Hence our condition above can be recast in the suitable form
a<<M,, M,. Our results should be accurate as far as this
condition is verified.

=dx*/dr. The current above is suitable to describe a point-

like classical(i.e., with noinner structupeparticle. Eventu-
ally it can be used to describe a fermibpand antifermion

f, emission from an accelerated partige

pl—>p1f1f_2

s st o
(e.g., a noninertial electron emitting a neutrino-antineutrino Y (x) (Z‘i f d*k[ by i

pain). Notwithstanding, this current must be improved in or-
der to allow more general processes of the form

p1—P2fifa, (2.2
where particlep; turns into particlep, with a fermion-
antifermion pair emissiofe.g., decay of an accelerated pro-
ton into a neutron with a positron-neutrino emisgiorhis is
attained by replacing the real coupling constanby an
operator-valued functiofsee, e.g., Ref.11])

q(r)=eforgeeHor, 2.3

This can be regarded as the usual first-quantization proce-

dure, where a classical observalgjas replaced by a self-
adjoint operatorfqo evolved by the one-parameter group of
unitary operators (r)=e "Mo". Here H, is the proper
Hamiltonian of the system, i.e.,

|:|o|pj>:Mj|pj>, =12, (2.9

where |p;) and|p,) are the energy eigenstates associated

with particlesp; and p,, respectively, andl, and M, are
the correspondingest massesAs a result, the classical cur-
rent(2.1) is replaced by the semiclassical one

q(7)uk(7)
u(7)

0= S[x=x(m)]. (25
Calculating the matrix elemenlj#piﬂpj)z<pj|j?”|pi> as-

sociated withj#, we have

(7)

i(Mj—Mi)TuM(T)
0

G S[x—x(7)], (2.6

i .
](piﬂpj)_

where Gq¢=|(p,|qolp1)| is the effective coupling constant.
Note that we can recover curre(®.1) from Eq. (2.6) by
makingM,=M, and G¢=0.

Ill. FERMION-ANTIFERMION EMISSION FROM A
SEMICLASSICAL CURRENT

We shall describe the emitted fermions by spinorial fields

+w)
o

(x)+di, 2,01,
(3.1

whereby,, andd{, are annihilation and creation operators of
fermions and antifermions, respectively, with three-
momenturmk = (k*,k¥,k?) and polarizationr. We will adopt
the notation used in Ref7]. Energyw, momentumk, and
massm are related as usualy=k?+m?>0. ¢{ “ and
z,b(kj,‘”) are positive and negative frequency solutions of the
Dirac equationi y“d,, i, ) —myl,“’=0. By using they*
matrices in the Dirac representati(see, e.g., Ref12]), we
find

m*w
Qi (Fot+k-x) 0
U= . 3.2
V16miw(w=m)
kK*+ikY
and
0
i (Fot+k-x) m= o
l//(k*iw)(X):— . (3.3
V16miw(w+m) K*—ikY
—K?

We have orthonormalized modé&%2), (3.3) according to the
inner producf11]

i 2= | sty

=83(k—K')8,01 0+ 0pr0 s (3.9
whered ,=n dX with n* being a unit vector orthogonal to
3, and pointing to the future, antl is an arbitrary spacelike
hypersurface. We have chosenconst for the hypersurface

. As a consequence, canonical anticommutation relations
for fields and conjugate momenta lead to the following

We will assume that the fermion emission does notSimple anticommutation relations for creation and annihila-

change appreciably the four-velocity pf with respect to
p;:. We will denominate this assumption “no-recoil condi-
tion.” This is verified as far as the momentum of the emitted

tion operators:

{Bk(riﬁl'gf}z{akaval’(r'}:&))(k_k,)grr(r’ (35)
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and

{BKU!BK'U'}:{akU!ak’o’}:{BkU1ak’0’}:{6k0'1 k'o ’} 0.
(3.6

Next we minimally couple the spinorial fieldg; and ¥,

associated with the emitted fermioﬁlsandf_z, respectively,
to our general current* according to the weak-interaction

action

ASFJ d4X]M{‘i’17’“(Cv_CAVS)‘i’2+‘i'ﬂ“(CV_CA?’S)‘i'l}'
(3.7

wherecy andc, will be settled further.
The vacuum transition amplitude for proce&s2) at the
tree level is given by

‘71”'2

2=(p2l @ (f1yerys fa,0,|S10)@[p1).  (3.8)

Note that the second term inside the parenthesis at the right 2
hand side of Eq(3.7) vanishes in this case. By using the

field decomposition3.1) in Eq. (3.7), and actingé, in Eq.
(3.8), we obtain

kqko kp—ay!

(3.9

Agnre= f e T (Ve

wherej Pi~Pi) and w( “) are obtained from Eqg2.6) and

(3.2, (3. 3) respectlvely
By substituting the amplitud€3.9) in the following ex-
pression for the differential transition probability

dpPi—P2 Z 2 )
Pt o2 o i (3.19
we obtain
dpPi—P2
- = 4 4,1 (P1—P2) ' v ,
ok dk, fd de X3P G (),
(3.1)
where
‘]ﬁijHPZ)(X'X,)EJ—LplﬁpZ)(x)jEjpzﬂpl)(x’), (313

and

=3 3 W00 y*(cy—car”)

o1=% 0=

oD, 0ve?, (x)

Xy (Cy=CaY) iy o P (X))} (3.13

Equation(3.12 can be cast in the form

PHYSICAL REVIEW D 63 014010

, U (DU(7)
“Tuo(r)ul(r")

X 8 [x' —x(7")]

J(#p;"pz)(x,xr):G |AM(T*T’)53[X_X(T)]

(3.19

by using our curren(2.5), whereAM=M,— M, while Eq.

(3.13 is written as

Yev=ear®) X [ule?, ()

X E(:kI:E)UZ(X/ )17"(cy—cay®)

x 2 [l (X

G, (X, X") =tr

VW 001} (319

The summations that appear in E§.15 can be calculated
by using modes3.2), (3.3):

(kim) kN ’
+w) ) FikM(x=x"))
= (X)(/l*- ( ) 2(277)3 € !

(3.1

wherek*=(w,k) is the emitted fermion’s four momentum
and k=K vy,. Applying the above expression in E.15),
and usingy-matrix trace identities, we obtain

gl (ki k)M (x=x"),

Gl (x,x) = {(cT+ ety Kyy'ky]

4(2m) 8w 0,
+2cyCatr[ Y2 y*Koy K]
—mymy(cy—ctr y*y" T}
el (kg +k)Mx=x")y ,
e,
X[ 2k{"k) = 7K Ka,] — mamy(cd— ci)

(3.19

+2iCVCA6’uVaﬁklak2'B},
where €**"# is the totally skew-symmetric Levi-Civita
pseudotensor (with €%?%=-1) and k{“k¥=(kiky

+kik5)/2. Letting Egs.(3.14 and (3.17) into (3.11, we
obtain the differential transition probability

f de d7’eAM(=7)
(277) W10

x @ (1t k) XD (62 + ¢2) {4k

dpPP1i—Pk2
d3k1d3k2

+ inCAGMmBkmsz]Uﬂ(T)UV(T') - [(0\2/— Ci)
X mymy+ (c§+ A KiK. Jur( UL(7")},

(3.18

where we have used thdtr=dt/u®
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IV. UNIFORMLY ACCELERATED CURRENTS wherek,; Xk, is the usual three-vector product akg-k;
The world line of a uniformly accelerated particle with =K;k3+k/k¥. In order to integrate Eq(4.6), it is conve-
proper acceleratioa can be given in the usual Minkowski njent to use spherical coordinates in the momenta splace (

P 4 ~ ~ ~ ~ o~ ~ ~
coordinates {,x) € R by eR",0e[0,7],$<[0,27)), where K*=ksindcosp, Kk’
x*(7)=(a"lsinhar, 0, 0, a~lcoshar). (4.1) =ksindsing, k*=kcos, and the following change of inte-
gration variablez— \=e?¢. By using expressiofB.471.10
The corresponding four-velocity is of Ref.[13], we obtain
u*(7)=(coshar, 0, 0, sinfar7). (4.2

dl"plﬂpz 4Ggﬁe*ﬂ'AM/a ) o~ o
= ~ {(CV+CA)(w1w2+k1k2

Let us now define new coordinates = _
d%k,d%, (27)%w,wa

E=(r—7")12 and s=(7+17")/2, 4.3 L L
. _ X c00,€080,)Kiam/al 2( w1+ w5)/a]
which allows us to rewrite Eq3.18 as L L
+2¢ycak 1k,SiNf1Sind,Sin( b — o)
“+ 00
de_ d§exp{2|[AM§ X|m{K2+ZiAM/a[2(2)1+Z)2)/a]}

2 2 2, .2
+[(cy—ca)mimy—(cy+cy)

— 00

dpPi—P2 2GZ; fm
d3kld3k2 - (277)6(1)1(1)2

+(ky+kp) uy(s)sinh(ag)/al}
X {2(c2+ c2)kEkEL U (S)u,(s)cost(ag) % KikoSIngSind,Cos 1 = )

—a%x,(s)x,(s)sintF(ag)]—cosh2a¢) XRe{Kopiamal 2(w1+ wp)/al}}, (4.7

2_ 2 2 2\ e
xLeymemama* (eyt i) (kike)] where R¢z} and In{z} are the real and imaginary parts of a
+2ianCASinf(23§)E,waﬂx“(s)u”(s)ki'kg}, complex number, respectively, and& ,(z) is the modified
4.4 Bessel function. B
@. We note that the uncorrelated emissionfefand f, is
where we have usefix(7)—x(7')]*=2a"'sinh@u*(s),  spherically symmetricin the instantaneously comoving

u“(7) = cosh@d)u“(s) +asinh@Ox“(s), ur(7') frame. This can be seen by tracing dué., integrating one
= cosh@du(s) —asinh@EXX(S), and ub(r)u, (') of the momentum variables in E¢.7),
=cosh(aé).
In order to decouple the integrals in Eg.4), let us make ~
the following change in the momentum variable: dIrPi—P2 _8G§ffef’7AM/a Z

dek—'((c%cz)z) P
~ ~ ~ K (2150, ~ v la) 0102
ki—kt=(w,k)=[K'uy(s), K, K, —ak'x(s)]. a7k (2m) wja Jo oy

X Kgiamsal 2(w1+ w,)/a]+(c§—ca)mim,

Using Egs.(4.1) and (4.2 we can verify explicitly that the X RE[K 51 oiamral 2(@1+ )12}, 4.9

transformation(4.5) corresponds to a boost in tk&lirection.

Indeedk* are the components of the emitted fermion’s four-
momentum in the inertial frame instantaneously at rest with, 4 notin
the current at the proper time Hence the transition prob-
ability per proper timel'P17P2=dPP17P2/ds for process
(2.2 can be written from Eq(4.4) as

g that this expression is independent @f, &),

wherej,|=1 and 2 are associated with particlesand f,.
The energy distribution of emitted particles is given by

drPi—p2 2G§ﬁ f+oc s )

— = — déexp(2i[AM drPi—Pz Ggre ™M ©

A%k, 0%k, (27w w,d = sexpil ¢ =—° \/wjz—mjzf dw|\/w|2—m|2
m

dZ)J 7T4a

+alsi ot e w1 w1t
a sinh(aé)(w;+ w,) ]} ><((C\2,+Ci)wlszziAM/a[z(wl"'wZ)/a]
X{(cg+cR) (wrwy+kiK3) +(cg—cpmm,

~2icyeasin2ag) (kyxke) (e + e XREKy pamial 2000+ Bplalh). (4.9

x (ki -k3) = (c§—ca)mim,]cosh2aé)},

(4.6 The total transition rate is given by
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GZ —mAM/a
['P1i—=P2=

jdwlj dwz\/wl %\/Z)g_
m ma

X ((CG+ca) 010K i amal 2( 01+ w,)/a]

wa

+(cy—camm, Re[K s siamral 2(w1+ wp)/al})

(4.10

while the emitted power can be estimated by

777AM/a
fdwlf dwzwj
my ma
x\/Zof—

X 010K i am7al 2(@1 + w5)/a]+ (4 —c3)

Wit Pe=

2 [F2_ 20002 2
m?\w3—m((cd+c3)

Xmymy RE(K 4 giamral 2( 01+ wy)/al}).

(4.11

Assuming thatf, or f, is a massless particle, we can

perform explicitly the integrals that appear in E¢&10 and

PHYSICAL REVIEW D 63 014010

GZ(c2+ca)ma? (=
p1—p _ eff Vv A ,1_ -2 -3
[hhe 8 72mAM/a Jl dp(p 2p "+p )
2 2
w39 P 0
181 g2 | —3/2,3/2+iAM/a, 3/2—iAM/a]’
(4.16
G (c2+c2)mdad
—P2_ v_"A -3, -4
massive 87 2amAM/a f dp(p “=2p +p™7)
2 2
XG3O m_p 0
B8l 42 |=3/2, 2+iAM/a, 2—iAM/a)’
(4.17
Wp]-*) py _ gf‘f( C\2/+ C»ZQ) m3a3
massless 8777/2e7rAM/a

><f dp(p~'=3p ?+3p %—p7%
1

2
m°p
30
a

2|10
—3/2, 2+iAM/a, 2—iAM/a]’

(4.17). For this purpose, we make the change of variables

(w01, 5)—(p,0), where
p=olw+1 and {=w’m?

(4.12

and here we label the massless and mas@sivé massm)

particles with| and i indices, respectively. Applying EQq.

(4.12 in Egs.(4.10 and(4.11) with m;=0, we have
GZ(c3+ca)ymS (= %
rpﬁpz:e—f do(p—1 zf de 32 r—1)22
PyEpETT p(p—1) ) (-1
X Kaiamal 2mp¢4al, (4.13
2 2 2 7
p1—p ef‘f(CV+CA)m * _ 2 * Y 12
Wnassive S agAME dp(p—1)* | dLL*(L-1)
X Koiamal 2mpg 4 al, (4.14
and
(cv+cA)m o
Wit s —277 = J dp(p—1) f dgg2( -1

X Kaiamral 2mp 4 a].

(4.195

By using Eq.(6.592.4 of Ref.[13] to perform the{ integra-
tion in Egs.(4.13—(4.15, we obtain

(4.18

oP) are the Meijer'sG functions (see
q

.....

where Gm“(x|

Ref. [13] for their definition and propertigs Defining v

=p? in Eqs.(4.16—(4.18, and using Eq(7.811.3 of Ref.
[13], we can integrate these expressions. The Meij@’s
function sums that appear as a result can be simplified by
using their properties. Eventually, we obtain

. G24(c2+c2)ma?
I'h 7= 32777/267TAM/Z‘1
2|13/2, 2
X G2 — . . ,
24\ 52|1/2, —3/2, 3/2+riAM/a, 3/2—iAM/a
(4.19
P1—Po__ Ggff( C\2/+ Ci) m3a3
massive 32, 712gmAMIa
m2|0, 2, 5/2
X G — . . ,
35\ a2|1/2, 1, —3/2, 2+iAM/a, 2—iAM/a
(4.20
1—Po 3G2(co+cam’a’®
massless: 64ﬂ_7/2e7TAM/a
212, 5/2
X GA9 — .
24 52(1/2, —3/2, 2+iAM/a, 2—iAM/a
(4.21)
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In the case where bothy andf_2 are massless particles,

PHYSICAL REVIEW D63 014010

V. ACCELERATED PROTON AND NEUTRON DECAY

this is more convenient to obtain the total transition rate by | ot us now consider the processes

first integrating in momentl,; andk,. Thus, we first write
[see Eq.(4.6)]

2 2 2
T'P1—=P2= —Geﬁ( CV+ CA)

ar — o0

]2
(4.22

wheree>0 is a regulator that ensures the convergence of th
frequency integral above. The corresponding total emitte
power is

© 2iw ,
x[ dwwzex;{?(smhagﬂe)
0

Geﬁ(cv+ CA)

77_4

YyPi—pa— f " ageriame fo i,

o ~ ~
j dw,w?
0

2iw, ,
X ex T(S|nha§+|e) .

2iwy _
X ex T(smhagﬂe)

(4.23

By performing the frequency integrals and defining the new

variablew=e%¢, Eqs.(4.22, (4.23 become

2G2 + 5+2iAM/a
FP1HP2: ﬁ(CV CA)af d\"v' d . I
't 0 (W?2—1+2iew)®
(4.24
121G2.( 2+ c2)gb [ 6+2iAM/a
WPi—Pr— _ Gerlcy CA)af dw W - .
wt 0o (W>—1+2iew)’
(4.25

Solving the integrals that appear in Ed4.24 and (4.25
(see the Appendjx we obtain

o1, Car(CG+CR) [ 4a*AM +5a’AM+ AM®
: - 60’7T3 eZﬂ'AM/a_ 1
(4.26)
and
WWP1—P2
38408

2258+ 1036*AM2+56002AM*+ 64A M
e27TAM/a+l '

(4.27

p—ne’ v, (5.1)

and

n—pe v, (5.2
for uniformly accelerated protons and neutrons, respectively.
We will assume the neutrino mass to vanish because even if
this is not so, it would be neglectable in comparison with any
other energy scale involved in the problem. The effective
coupling constanGx= G, for processes5.1), (5.2) is ob-
ained by imposing that the mean proper lifetime of inertial
neutrons is 887 §14], i.e.,

I P=I""P(a—0)=1/887s 1. (5.3
This phenomenological procedure has the advantage of by
passing any uncertainties on the influence of the nucleon
inner structure. For sake of convenience, we takeathe0
limit in Eqg. (4.6) rather than in Eq(4.19, obtaining

n—p 2
dfin _ 4G J d§e2|§(AM+we+w,,)
d%k.d%k,, (277)6wew
X(:erv+Ee'EV)
2G?2 kek,| ~ -
=— P01+ 22 )5(we+w,,—AM),
(277)5 WeW,
(5.9

where we have usecl,=c,=1 [15] since only left-handed
massless neutrinos are known to exist. After integrating Eq.

(5.4) in angular coordinates and ., we find

V(AM=®,)%—m
(5.9

Evaluating numerically E¢5.5 with m,=0.511 MeV, and
AM=(m,—m,)=1.29 MeV, we end up witH'["P=1.81
x107%G2, MeV®. Hence by imposing cond|t|0|(5 3, we
obtain G =1.74G¢, where Ge=1.166x10° GeV ? is
the Ferm| couplmg constafit4]. Now we are able to use Eq.
(4.19 to plot in Fig. 1 the proton and neutron mean proper
lifetimes 7,(a)=(I'"~"")~* and r,(a)=(I'"""P)"*, respec-
tively. Let us note that

2
pn

GJ'A
2 Jo

3

M-—mg _

rhP= do,0’(AM—,)

—2m|AM|/a

(a)=e 75(8). (5.6)

We have only considered accelerati@as m,=938 MeV in
order to respect our no-recoil conditi¢see Sec. )l We call
attention to the fact that for acceleratioas a.=27|AM|
~8 MeV, we havery(a)~7,(a). This is easier to under-
stand in the coaccelerated frame with the current, wkece

In the next sections we use these formulas to investigateording to the FDU effec{5,6]) a thermal bath of Rindler

some selected reactions.

particles with temperatur€cp,=a/27 is “attached” to the

014010-6
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FIG. 1. The mean proper lifetime of protons, (full line), and FIG. 3. The normalized energy distribution of emitted positrons,
utrons,r, (dashed ling are plotted as functions of their proper A%~", and neutrinosN?~", are plotted for two values of the
celerationa. Note thatr,— +% and 7,—887 s asa—0. For  proton’s proper acceleratioa= 1.0 MeV (full line) and 2.0 MeV
celerationg>a,=27AM~8 MeV we have that,~ 7,. (dashed ling Note that the typical energy of the emitted particles
(in the inertial frame instantaneously at rest with the prptisn

rrent. Thus, fom>a, we haveTgp,>|AM|, which leads ~ given byo~a.

both nucleons to behave similarlgSee Ref[7] for a more
comprehensive discussion on this issue. with j=e,v, where dl“pl—’p2/dw is defined in Eq.(4.9.

In order to estimate how much energy is carried out inNote thawpﬂ“ N“HP In Fig. 3 we plot the distributions

form of leptons, we may use Eq@.20 and(4.21) to obtain  \®" for two values of acceleratiom=1.0 and 2.0 MeV.

WP and Wi P=e2"IAMIEP=n for j=e,v. Although e see that the typical energin the inertial frame instan-
we" and WH" (as well asWg P and W) P) are not  taneously at rest with the nucleoaf the emitted electrons
manifestly identical, they seem to be according to Fig. 2. 544 neutrinos iso~a, which justifies our no-recoil condi-

In order to investigate the energy distribution of the emit-4jp,

ted leptons, let us define the normalized energy distribution Iﬁ order to roughly estimate how small is the proper life-

log[W;/(1MeV/s)]

time of circularly moving protons at the CERN Large Had-
1 dI'Pi—P2 ron Collider (LHC) we use directly Eq(5.6) with a=a

[P1—P2 dz),— B7 <1078 MeV for the proton’s proper acceleration, obtaining
rp(aLHC)~1§X1°8yr, where we have used that,(a

S e By <meg,|AM|)=10° s. Although Eq(5.6) was derived assum-
ing uniformly accelerated motion, this should not be seen as
a major problem: Because of the huge proper lifetime ob-
tained for the proton, our estimation turns out to be non-
sensitive up to an inaccuracy of hundreds of thousands of
orders of magnitudéwhich should not be the case

Astrophysics seems to provide much more suitable condi-
tions for the observation of the decay of accelerated protons.
Although our decay raté4.19 was obtained considering
uniformly accelerated protons, let us assume that this is ap-
proximately valid for circularly moving protons with proper
acceleratiom>AM, 1/R, whereR is the local curvature ra-
dius of the proton trajectory. Indeed we can test this assump-
tion, e.g., for two-level scalar systems, whose excitation
rates, at the tree level, are given 6]

NP17P2=
J

-10

"|""|"l"|""|"'
||||||||||||||||||||||

-0.5 0 0.5 1 1.5 R
log[a/(1MeV)]

¢ AE

FIG. 2. WP™" and W] P are plotted in full and dashed lines, lin=5 ~ g2mAEla_ 1 (5.8

respectively, forj =e, v, as functions of the nucleon proper accel-
erations. Our numerical results suggest thaf~"=WP~" and

W

e i and

014010-7
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where we have usedM =0, cy=ca=1 and G, is the
corresponding effective coupling constant.
In order to determine the value @&.,, we assume that

Eq. (6.3 describes the instantaneous emitted power from an
for uniformly accelerated and circularly moving relativistic electron witharbitrary world line at the point where it has
sources, respectively, wheog is a small coupling constant proper acceleration. This is indeed verified for photofsee
andAE is the two-level system energy gap. Note that in thel_ armor formula in Ref[17]) and scalar particl¢18] emis-

limit a>AE, Eqgs.(5.8 and (5.9 give usl'},/T";,=1.103.

sion from accelerated sourceBNe emphasize that this

In order to iIIustr_ate an astrophysical si_tuation Wherg proequivalence is not fullfalthough it is approximatejyveri-
cess(5.1) may be important, let us consider a cosmic rayfied for Eq.(6.2), which depends in general on the source’s

proton with energyE, = ym,~ 1.6x 10" eV under the influ-
ence of a magnetic fielB~10 G of a typical pulsar. Pro-

world line.] Thus we will impose that Eq(6.3) gives the
radiated power for the neutrino emission from circularly

tons under these conditions have proper acceleratioas of moving relativistic electrons in a uniform magnetic fied
=yeB/m,~110 MeV>|AM|. For practical purposes the provided thati=yeB/m,<m, (no-recoil condition. Herey
acceleration of the proton will be assumed as constant alonig the usual Lorentz factor for the electron axid its electric

the process. For the chosen value€gfandB, the proton is
confined in a cylinder with typical radiuR~y%*/ag~5

charge. The differential emission ratemgf?e pairs in a back-
ground magnetic field was calculated in def&i (see Ref.

X103 cm<lg, wherelg is the typical size of the magnetic [8] for the form used beloy

field region. According to Eq4.19 we obtain7-p~10‘7 S.

As a result, protons would have a “laboratory” mean life- rtP
time of t,=y7,~10"! s. Forlg~10" cm, we obtain that o

2 04 5.3+1/2 2.3
Ggmg m, x°s

XS

less than| AN, /N,|=(1—e '8/%)~Ig/t,~1% of the pro- ~ dS
tons would decay via proce$s.1). We note that we did not

take into account the influence of the magnetic field on the
emitted positron. Clearly a more precise estimation should
take into account this effect as well as other ones as, e.g., the
nonuniformity of the magnetic field and energy losses
through electromagnetic sinchrotron radiation. The last one

in particular may not be a problem since energy may be
furnished to the proton from dynamo processes. A more
careful analysis of such astrophysical issues would be wel-
come but this is beyond the scope of the present field-
theoretical investigation.

where y=a/mg,

x{<C%+Ci)

162m)° ¥ (1+xs¥?) (1+xs¥?)

|
S

f:[6+(y—5)(sz+(s—y)z)]Ai(y)dy—sAi(s)

1
2+ 3(2s5+y)(y=9)? |Ai(y)dy+(C{+CQ)

X

+8sCa +Ai(s) |, (6.9

3 ©
Z( L (s—y)?Ai(y)dy

Ai(z) is the Airy function, ands

e[0,y/x] is defined such that

VI. NEUTRINO EMISSION FROM UNIFORMLY
ACCELERATED ELECTRONS

In this section, we will consider the emission of neutrinos
from accelerated electrons:

€ —€ Vele.

(6.2

3/2
MeYXS

w,= m (65)

The parameter€, andC, give the vector and axial contri-
butions to the electric current, respectively. Using E§s4)

and(6.5) we have, in the limity<1,

The description of the creation of neutrino-antineutrino pairs
by electrons in an external electromagnetic field in the con-

¥x
text of the standard model is contained in Sec. 6.1 of Ref.W1L5= . ds(w,+ w

[2]. Here we analyze this process for uniformly accelerated
electrons by using the formulas derived in Sec. IV where
both emitted fermions are massless. From Hgs26 and

(4.27) we get for the emission rate ofv, pairs

' 5(2c2+23c2)

”) ds 10873

2,66
Flle X -

(6.6)

Letting CZ=0.93 andC2=0.25[9], we haveW' T=1.14
X107 2G2a®. By comparing this expression with our Eq.
(6.3) we obtainG,,=2.45G¢. In Figs. 4 and 5 we plot Egs.
(6.2 and(6.3), respectively, for uniformly accelerated elec-
trons withasm,.

The normalized energy distribution of emitted neutrino-

__Ga (6.2
o1sgt '
and for thetotal radiated power
W, 156,27 (6.3)
" 2568 '

014010-8

antineutrino

1 dr,,
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FIG. 4. The emission probability per proper timeiQ,, pairs is FIG. 6. The normalized energy distribution of the emitted neu-
plotted fora<m,. trinos (and antineutringsis plotted for two values of the electron’s

proper acceleratiora=0.1 MeV (full line) and 0.2 MeV(dashed

is plotted in Fig. 6 for electrons with proper acceleratin !in€). Note that the typical energy of the emitted particles the

—0.1 MeV and 0.2 MeV, wherfsee Eq(4.9)] inertial frame instantaneously at rest with the electigrgiven by
o~a.
dl,, 2Gi~, [* ~ ~ - - . o . .
~—=— wff dw,wKo[2(w,+w,)/a]. (6.8 likely to decay in this way, under some astrophysical condi-
do, w"a 0 tions high-energy protons in background magnetic fields may

have a considerably short lifetime. Moreover, we have ana-
(Neutrinos and antineutrinos have identical emission energlyzed the modification of the usug decay for uniformly
distribution) Note again thak defines the typical energy of accelerated neutrons. This may be of some relevance when

the emitted neutrinos. neutrons are under the influence of strong background gravi-
tational fields. Although a full curved spacetime calculation
VIl. DISCUSSIONS is desirable to treat these situations, our calculation should be

a good approximation when the gravitational field is “mod-
We have investigated the weak interaction emission Okrate” [18]. In this case, neutrons can be treated as being
spin-1/2 fermions from classical and semiclassical currentsaccelerated in Minkowski space.
As a particular application of modeling the accelerated par- By restricting our semiclassical current to behave classi-
ticle by a semiclassical current, we have analyzed the inverS@a”y, we were able to use our formalism to investigate the
B decay of uniformly accelerated protons. We have showmeutrino-antineutrino pair emission from uniformly acceler-
that although protons in laboratory storage rings are noited electrons and compare our results with the ones in the
literature obtained by quantizing the electron field in a back-

§ A L I L E ground magnetic field. Our formalism allows the utilization

E of currents associated with more general world lines. De-
< -6 pending on the accuracy level required, however, one can
o3 use directly the formulas derived for uniformly accelerated
E . currents. This may be particularly useful in some astrophysi-

cal situations.
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o Wn+2iAM/a
I*—f (A1)

dw ,
0 (W>—1+2iew)"t?

PHYSICAL REVIEW D63 014010

Since the integrand df, is analytic in the upper half-plane
and goes to zero dsv| ("*2) as|w|—, it follows thatZ,
=0. As a consequence Eq#6) and(A3) imply

Note that the analytic extension of the integrand above has

poles of order (+1) atw*==*1—ie+O(e?) . This im-

plies that we can make=0 in Eq. (Al) provided we con-

tour the pole aw* =1 by the upper half-plane, i.e.,

Wn+2iAM/a
Ip=1]d

(A2)
Y+ (W

2 1)n+1’

where y.=[0,1-€'JU{l*€e'e’; Ac[0m]}U[1+€ %)
with €' —0, . Using the residue theorem we see that
T, —T=2mi Regfp)y-1, (A3)

whereZ | is obtained substituting, by y_ in Eq.(A2), and
we denote the residue value of the function
Wn+2iAM/a
fa(w)= w1 (A4)

at the pointw=w=* by Resf,),—w=. Now, let us define

oo wht2iaM/a
In= J—m dW(W2—1+2iew)”“’ (A5)
which can be written foe—0 as
I,=(—1)"e 2mMag 7 (A6)

27 Resfy)yo
o 1+ ( _ 1)n927TAM/a !

+
n

(A7)

with

n

{(W_Wi)n+1fn(w)}|w=wt.

(A8)

Resf,)w—w== nr aw’

Using function (A4) to explicitly evaluate Eq(A8) for n
=5, 6, we obtain

. —7 [4a*AM+5a2AM3+AM?®
IS - lz(hS e27TAM/a_ 1 ! (Ag)
and
T i
® 4608@°

225384 1036*AM2+56002AM*+ 64A M
X e27rAM/a+ 1 .

(A10)
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