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Weak decay of uniformly accelerated protons and related processes
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We investigate the weak interaction emission of spin-1/2 fermions from accelerated currents. As particular
applications, we analyze the decay of uniformly accelerated protons and neutrons, and the neutrino-
antineutrino emission from uniformly accelerated electrons. The possible relevance of our results to astrophys-
ics is also discussed.
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I. INTRODUCTION

We investigate the weak interaction emission of spin-
fermions from classical and semiclassical currents. We
note by semiclassical those currents which possess clas
trajectories and are endowed with quantized inner ene
levels. Our results can be used to investigate a broad cla
processes involving accelerated particles provided that
have a well defined world line, as indeed verified in ma
situations of interest. In the case where the particle is ac
erated by a background electromagnetic field, such proce
could be fully analyzed quantum mechanically. As a con
quence, any recoil effects due to the fermion emission wo
be automatically taken into account@1,2#. For instance, in
Ref. @1# a quasiclassical approach to quantum electrodyn
ics was developed to considerg-synchrotron radiation from
an electron in a classical background magnetic field. T
approach is basically characterized by assuming that
electron motion is quasiclassical. This is always possible
long as the magnetic field is not very strong, namely,H
!H0 andg@1, whereH054.431013 G andg is the Lorentz
factor for the electron. This quasiclassical approach app
to neutrino-antineutrino emission is analyzed in detail in S
6.1 of Ref.@2#.

Although it is hard to take into account the current rec
in our semiclassical approach, the relations here obtai
which agree with the full quantum mechanical treatment
the proper limit (x!1, see, e.g., Sec. VI!, are easily appli-
cable when the process involves particle decay and the
jectory itself ~rather than the underlying dynamical proce
which generates it! is inferred from the observational dat
Explicit results for uniformly accelerated currents are exh
ited.

As far as we know, the first ones to call attention to t
possibility that noninertial protons may decay were Ginzb
and Syrovatskii@3# but only recently Muller@4# obtained the
first estimation for the decay rate associated with the proc
p→ne1ne by assuming that all the involved particles a
scalars. Here, as a particular application of modeling ac
erated particles by semiclassical currents, we perform a c
prehensive~inertial-frame! analysis of the inverseb decay
for uniformly accelerated protons. We show that under c
tain astrophysical conditions, high-energy protons in stro
background magnetic fields should rapidly decay.

The observation of noninertial neutrons is less trivi
Notwithstanding the calculation of theb decay rate for ac-
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celerated neutrons may be of some relevance in situat
where they are under the influence of ‘‘relatively’’ stron
background gravitational fields and, thus, will also be p
formed.

Some features of theb and inverseb decays for uni-
formly accelerated nucleons will be discussed in terms of
Fulling-Davies-Unruh~FDU! effect. The FDU effect assert
that the Minkowski vacuum corresponds to a thermal b
with respect to uniformly accelerated observers@5,6#. It is
perhaps remarkable that although inertial observers asso
the inverseb decay to the channelp→ne1ne , coaccelerated
observers associate thesameproton decay event to one of th
following channels:pe2→nne , pn̄e→ne1 or pe2n̄e→n,
where the absorbede2 andn̄e are Rindler particles present i
the FDU thermal bath ‘‘attached’’ to the proton’s frame@7#.
The corresponding branching ratios can be also calculate
a function of the proton acceleration.

Under a certain restriction, we can make our semiclass
current to behave as a classical one. This is suitable to in
tigate neutrino-antineutrino emission from accelerated e
trons. This process is of relevance in some astrophysical s
ations as, e.g., in the cooling of neutron stars. Eventually
compare our results in the proper limit with the ones in t
literature obtained by quantizing electrons in a backgrou
magnetic field@8–10#.

The paper is organized as follows. In Sec. II we introdu
the semiclassical currents and discuss how they model
ticle decays. In Sec. III, we introduce the weak-interacti
action and couple our current to a spin-1/2 fermio
antifermion field. Afterwards we calculate the differenti
transition probability for currents following arbitrary worl
lines. In Sec. IV we use the results obtained in the previ
section to explicitly evaluate the fermion emission rate a
radiated power for the particular case of a uniformly acc
erated current. The next two sections, Secs. V and VI,
dedicated to analyze in detail the decay of uniformly acc
erated protons and neutrons, and the neutrino-antineut
emission from uniformly accelerated electrons, respectiv
We also comment on the possible astrophysical relevanc
our results. We dedicate Sec. VII for our final discussio
We will use natural unitsc5\5kB51 throughout this pape
unless stated otherwise.

II. SEMICLASSICAL VECTOR CURRENT

Let us consider a particle in a four-dimension
Minkowski spacetime covered by the usual inertial coor
©2000 The American Physical Society10-1
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nates (t,x)PR4. Let xm(t) be the particle’s world line andt
its proper time. The classical vector current associated w
this particle is given by

j m~x!5
qum~t!

u0~t!
d3@x2x~t!#, ~2.1!

where q is a ‘‘small’’ coupling constant andum(t)
[dxm/dt. The current above is suitable to describe a po
like classical~i.e., with noinner structure! particle. Eventu-
ally it can be used to describe a fermionf 1 and antifermion
f̄ 2 emission from an accelerated particlep1:

p1→p1f 1 f̄ 2

~e.g., a noninertial electron emitting a neutrino-antineutr
pair!. Notwithstanding, this current must be improved in o
der to allow more general processes of the form

p1→p2f 1 f̄ 2 , ~2.2!

where particlep1 turns into particlep2 with a fermion-
antifermion pair emission~e.g., decay of an accelerated pr
ton into a neutron with a positron-neutrino emission!. This is
attained by replacing the real coupling constantq by an
operator-valued function~see, e.g., Ref.@11#!

q̂~t!5eiĤ 0tq̂0e2 iĤ 0t. ~2.3!

This can be regarded as the usual first-quantization pr
dure, where a classical observableq is replaced by a self-
adjoint operatorq̂0 evolved by the one-parameter group
unitary operators Uˆ (t)5e2 iĤ 0t. Here Ĥ0 is the proper
Hamiltonian of the system, i.e.,

Ĥ0upj&5M j upj&, j 51,2, ~2.4!

where up1& and up2& are the energy eigenstates associa
with particlesp1 and p2, respectively, andM1 and M2 are
the correspondingrest masses. As a result, the classical cur
rent ~2.1! is replaced by the semiclassical one

ĵ m~x!5
q̂~t!um~t!

u0~t!
d3@x2x~t!#. ~2.5!

Calculating the matrix elementsj (pi→pj )
m [^pj u ĵ mupi& as-

sociated withĵ m, we have

j (pi→pj )
m 5Geffe

i (M j 2Mi )t
um~t!

u0~t!
d3@x2x~t!#, ~2.6!

whereGeff[u^p2uq̂0up1&u is the effective coupling constan
Note that we can recover current~2.1! from Eq. ~2.6! by
makingM25M1 andGeff5q.

We will assume that the fermion emission does n
change appreciably the four-velocity ofp2 with respect to
p1. We will denominate this assumption ‘‘no-recoil cond
tion.’’ This is verified as far as the momentum of the emitt
01401
th
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fermions ~with respect to the inertial frame instantaneous
at rest with the current! satisfiesuk̃u!M1 , M2. In order to be
conservative we will imposeuk̃u,ṽ!M1 , M2. It will be-
come clear further that the typical energy of the emitted f
mionsṽ is of the order of the current’s proper accelerationa.
Hence our condition above can be recast in the suitable f
a!M1 , M2. Our results should be accurate as far as t
condition is verified.

III. FERMION-ANTIFERMION EMISSION FROM A
SEMICLASSICAL CURRENT

We shall describe the emitted fermions by spinorial fie

Ĉ~x!5 (
s56

E d3k@ b̂kscks
(1v)~x!1d̂ks

† c2k2s
(2v) ~x!#,

~3.1!

whereb̂ks andd̂ks
† are annihilation and creation operators

fermions and antifermions, respectively, with thre
momentumk5(kx,ky,kz) and polarizations. We will adopt
the notation used in Ref.@7#. Energyv, momentumk, and
massm are related as usual:v5Ak21m2.0. cks

(1v) and
cks

(2v) are positive and negative frequency solutions of
Dirac equationigm]mcks

(6v)2mcks
(6v)50. By using thegm

matrices in the Dirac representation~see, e.g., Ref.@12#!, we
find

ck1
(6v)~x!5

ei (7vt1k•x)

A16p3v~v6m! S m6v

0

kz

kx1 iky

D ~3.2!

and

ck2
(6v)~x!5

ei (7vt1k•x)

A16p3v~v6m! S 0

m6v

kx2 iky

2kz

D . ~3.3!

We have orthonormalized modes~3.2!, ~3.3! according to the
inner product@11#

^cks
(6v) ,ck8s8

(6v8)&[E
S
dSmc̄ks

(6v)gmck8s8
(6v8)

5d3~k2k8!dss8d6v6v8 , ~3.4!

wheredSm[nmdS with nm being a unit vector orthogonal to
S and pointing to the future, andS is an arbitrary spacelike
hypersurface. We have chosent5const for the hypersurface
S. As a consequence, canonical anticommutation relati
for fields and conjugate momenta lead to the followi
simple anticommutation relations for creation and annih
tion operators:

$b̂ks ,b̂k8s8
† %5$d̂ks ,d̂k8s8

† %5d3~k2k8!dss8 ~3.5!
0-2
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and

$b̂ks ,b̂k8s8%5$d̂ks ,d̂k8s8%5$b̂ks ,d̂k8s8%5$b̂ks ,d̂k8s8
† %50.

~3.6!

Next we minimally couple the spinorial fieldsĈ1 andĈ2,
associated with the emitted fermionsf 1 and f̄ 2, respectively,
to our general currentĵ m according to the weak-interactio
action

ŜI5E d4x ĵm$CR 1gm~cV2cAg5!Ĉ21CR 2gm~cV2cAg5!Ĉ1%,

~3.7!

wherecV andcA will be settled further.
The vacuum transition amplitude for process~2.2! at the

tree level is given by

A k1k2

s1s25^p2u ^ ^ f 1k1s1
, f 2̄k2s2

uŜI u0& ^ up1&. ~3.8!

Note that the second term inside the parenthesis at the
hand side of Eq.~3.7! vanishes in this case. By using th
field decomposition~3.1! in Eq. ~3.7!, and actingŜI in Eq.
~3.8!, we obtain

A k1k2

s1s25E d4x jm
(p1→p2)c̄k1s1

(1v1)gm~cV2cAg5!c2k22s2

(2v2) ,

~3.9!

where j m
(pi→pj ) andck js j

(6v j ) are obtained from Eqs.~2.6! and

~3.2!, ~3.3!, respectively.
By substituting the amplitude~3.9! in the following ex-

pression for the differential transition probability

dP p1→p2

d3k1d3k2

5 (
s156

(
s256

uA k1k2

s1s2u2, ~3.10!

we obtain

dP p1→p2

d3k1d3k2

5E d4xE d4x8Jmn
(p1→p2)

~x,x8!Gk1k2

mn ~x,x8!,

~3.11!

where

Jmn
(p1→p2)

~x,x8![ j m
(p1→p2)

~x! j n
(p2→p1)

~x8!, ~3.12!

and

Gk1k2

mn ~x,x8![ (
s156

(
s256

$c̄k1s1

(1v1)
~x!gm~cV2cAg5!

3c
2k22s2

(2v2)
~x!c̄2k22s2

(2v2)
~x8!

3gn~cV2cAg5!ck1s1

(1v1)
~x8!%. ~3.13!

Equation~3.12! can be cast in the form
01401
ht

Jmn
(p1→p2)

~x,x8!5Geff
2 um~t!un~t8!

u0~t!u0~t8!
eiDM (t2t8)d3@x2x~t!#

3d3@x82x~t8!# ~3.14!

by using our current~2.5!, whereDM[M22M1, while Eq.
~3.13! is written as

Gk1k2

mn ~x,x8!5trH gm~cV2cAg5! (
s256

@c
2k22s2

(2v2)
~x!

3c̄
2k22s2

(2v2)
~x8!#gn~cV2cAg5!

3 (
s156

@ck1s1

(1v1)
~x8!c̄k1s1

(1v1)
~x!#J . ~3.15!

The summations that appear in Eq.~3.15! can be calculated
by using modes~3.2!, ~3.3!:

(
s56

c6ks
(6v)~x!c̄6ks

(6v)~x8!5
~k”6m!

2~2p!3v
e6 ikl(x2x8)l,

~3.16!

wherekl5(v,k) is the emitted fermion’s four momentum
and k”5k” lgl. Applying the above expression in Eq.~3.15!,
and usingg-matrix trace identities, we obtain

Gk1k2

mn ~x,x8!5
ei (k11k2)l(x2x8)l

4~2p!6v1v2

$~cV
21cA

2 !tr@gmk” 2gnk” 1#

12cVcAtr@g5gmk” 2gnk” 1#

2m1m2~cV
22cA

2 !tr@gmgn#%

5
ei (k11k2)l(x2x8)l

~2p!6v1v2

$~cV
21cA

2 !

3@2k1
(mk2

n)2hmnk1
ak2a#2m1m2~cV

22cA
2 !hmn

12icVcAemnabk1ak2b%, ~3.17!

where emanb is the totally skew-symmetric Levi-Civita
pseudotensor ~with e0123521) and k1

(mk2
n)[(k1

mk2
n

1k1
nk2

m)/2. Letting Eqs.~3.14! and ~3.17! into ~3.11!, we
obtain the differential transition probability

dP p1→p2

d3k1d3k2

5
Geff

2

~2p!6v1v2
E

2`

1`

dtE
2`

1`

dt8eiDM (t2t8)

3ei (k11k2)l[x(t)2x(t8)] l$2@~cV
21cA

2 !k1
(mk2

n)

1 icVcAemnabk1ak2b#um~t!un~t8!2@~cV
22cA

2 !

3m1m21~cV
21cA

2 !k1
ak2a#um~t!um~t8!%,

~3.18!

where we have used thatdt5dt/u0
0-3
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IV. UNIFORMLY ACCELERATED CURRENTS

The world line of a uniformly accelerated particle wi
proper accelerationa can be given in the usual Minkowsk
coordinates (t,x)PR4 by

xm~t!5~a21sinhat, 0, 0, a21coshat!. ~4.1!

The corresponding four-velocity is

um~t!5~coshat, 0, 0, sinha t!. ~4.2!

Let us now define new coordinates

j[~t2t8!/2 and s[~t1t8!/2, ~4.3!

which allows us to rewrite Eq.~3.18! as

dP p1→p2

d3k1d3k2

5
2Geff

2

~2p!6v1v2
E

2`

1`

dsE
2`

1`

djexp$2i @DMj

1~k11k2!lul~s!sinh~aj!/a#%

3$2~cV
21cA

2 !k1
mk2

n@um~s!un~s!cosh2~aj!

2a2xm~s!xn~s!sinh2~aj!#2cosh~2aj!

3@~cV
22cA

2 !m1m21~cV
21cA

2 !~k1
ak2a!#

12iacVcAsinh~2aj!emnabxm~s!un~s!k1
ak2

b%,

~4.4!

where we have used@x(t)2x(t8)#m52a21sinh(aj)um(s),
um(t)5cosh(aj)um(s)1asinh(aj)xm(s), um(t8)
5cosh(aj)um(s)2asinh(aj)xm(s), and um(t)um(t8)
5cosh(2aj).

In order to decouple the integrals in Eq.~4.4!, let us make
the following change in the momentum variable:

km→ k̃m5~ṽ,k̃![@klul~s!, kx, ky, 2aklxl~s!#.
~4.5!

Using Eqs.~4.1! and ~4.2! we can verify explicitly that the
transformation~4.5! corresponds to a boost in thez direction.
Indeed,k̃m are the components of the emitted fermion’s fou
momentum in the inertial frame instantaneously at rest w
the current at the proper times. Hence the transition prob
ability per proper timeGp1→p2[dP p1→p2/ds for process
~2.2! can be written from Eq.~4.4! as

dGp1→p2

d3k̃1d3k̃2

5
2Geff

2

~2p!6ṽ1ṽ2
E

2`

1`

djexp$2i @DMj

1a21sinh~aj!~ṽ11ṽ2!#%

3$~cV
21cA

2 !~ṽ1ṽ21 k̃1
zk̃2

z!

22icVcAsinh~2aj!~ k̃13 k̃2!z1@~cV
21cA

2 !

3~ k̃1
'
• k̃2

'!2~cV
22cA

2 !m1m2#cosh~2aj!%,

~4.6!
01401
-
h

where k̃13 k̃2 is the usual three-vector product andk̃1
'
• k̃2

'

[ k̃1
xk̃2

x1 k̃1
yk̃2

y . In order to integrate Eq.~4.6!, it is conve-

nient to use spherical coordinates in the momenta spack̃

PR1,ũP@0,p#,f̃P@0,2p)), where k̃x5 k̃sinũ cosf̃, k̃y

5 k̃sinũ sinf̃, k̃z5 k̃cosũ, and the following change of inte
gration variable:j→l[eaj. By using expression~3.471.10!
of Ref. @13#, we obtain

dGp1→p2

d3k̃1d3k̃2

5
4Geff

2 e2pDM /a

~2p!6ṽ1ṽ2a
$~cV

21cA
2 !~ṽ1ṽ21 k̃1k̃2

3cosũ1cosũ2!K2iDM /a@2~ṽ11ṽ2!/a#

12cVcAk̃1k̃2sinũ1sinũ2sin~f̃12f̃2!

3Im$K212iDM /a@2~ṽ11ṽ2!/a#%

1@~cV
22cA

2 !m1m22~cV
21cA

2 !

3 k̃1k̃2sinũ1sinũ2cos~f̃12f̃2!#

3Re$K212iDM /a@2~ṽ11ṽ2!/a#%%, ~4.7!

where Re$z% and Im$z% are the real and imaginary parts of
complex numberz, respectively, andKn(z) is the modified
Bessel function.

We note that the uncorrelated emission off 1 and f̄ 2 is
spherically symmetricin the instantaneously comovin
frame. This can be seen by tracing out~i.e., integrating! one
of the momentum variables in Eq.~4.7!,

dGp1→p2

d3k̃ j

5
8Geff

2 e2pDM /a

~2p!5ṽ ja
E

0

`

dk̃l

k̃l
2

ṽ l

~~cV
21cA

2 !ṽ1ṽ2

3K2iDM /a@2~ṽ11ṽ2!/a#1~cV
22cA

2 !m1m2

3Re$K212iDM /a@2~ṽ11ṽ2!/a#%!, ~4.8!

and noting that this expression is independent of (ũ j ,f̃ j ),
where j ,l 51 and 2 are associated with particlesf 1 and f̄ 2.
The energy distribution of emitted particles is given by

dGp1→p2

dṽ j

5
Geff

2 e2pDM /a

p4a
Aṽ j

22mj
2E

ml

`

dṽ lAṽ l
22ml

2

3~~cV
21cA

2 !ṽ1ṽ2K2iDM /a@2~ṽ11ṽ2!/a#

1~cV
22cA

2 !m1m2

3Re$K212iDM /a@2~ṽ11ṽ2!/a#%!. ~4.9!

The total transition rate is given by
0-4
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Gp1→p25
Geff

2 e2pDM /a

p4a
E

m1

`

dṽ1E
m2

`

dṽ2Aṽ1
22m1

2Aṽ2
22m2

2

3~~cV
21cA

2 !ṽ1ṽ2K2iDM /a@2~ṽ11ṽ2!/a#

1~cV
22cA

2 !m1m2 Re$K212iDM /a@2~ṽ11ṽ2!/a#%!

~4.10!

while the emitted power can be estimated by

W j
p1→p25

Geff
2 e2pDM /a

p4a
E

m1

`

dṽ1E
m2

`

dṽ2ṽ j

3Aṽ1
22m1

2Aṽ2
22m2

2~~cV
21cA

2 !

3ṽ1ṽ2K2iDM /a@2~ṽ11ṽ2!/a#1~cV
22cA

2 !

3m1m2 Re$K212iDM /a@2~ṽ11ṽ2!/a#%!.

~4.11!

Assuming thatf 1 or f̄ 2 is a massless particle, we ca
perform explicitly the integrals that appear in Eqs.~4.10! and
~4.11!. For this purpose, we make the change of variab
(ṽ1 ,ṽ2)→(r,z), where

r[ṽ l /ṽ i11 and z[ṽ i
2/m2, ~4.12!

and here we label the massless and massive~with massm)
particles with l and i indices, respectively. Applying Eq
~4.12! in Eqs.~4.10! and ~4.11! with ml50, we have

Gp1→p25
Geff

2 ~cV
21cA

2 !m6

2p4aepDM /a E
1

`

dr~r21!2E
1

`

dzz3/2~z21!1/2

3K2iDM /a@2mrz1/2/a#, ~4.13!

Wmassive
p1→p25

Geff
2 ~cV

21cA
2 !m7

2p4aepDM /a E
1

`

dr~r21!2E
1

`

dzz2~z21!1/2

3K2iDM /a@2mrz1/2/a#, ~4.14!

and

Wmassless
p1→p2 5

Geff
2 ~cV

21cA
2 !m7

2p4aepDM /a E
1

`

dr~r21!3E
1

`

dzz2~z21!1/2

3K2iDM /a@2mrz1/2/a#. ~4.15!

By using Eq.~6.592.4! of Ref. @13# to perform thez integra-
tion in Eqs.~4.13!–~4.15!, we obtain
01401
s

Gp1→p25
Geff

2 ~cV
21cA

2 !m3a2

8p7/2epDM /a E
1

`

dr~r2122r221r23!

3G13
30S m2r2

a2 U0
23/2, 3/21 iDM /a, 3/22 iDM /aD ,

~4.16!

Wmassive
p1→p25

Geff
2 ~cV

21cA
2 !m3a3

8p7/2epDM /a E
1

`

dr~r2222r231r24!

3G13
30S m2r2

a2 U0
23/2, 21 iDM /a, 22 iDM /aD ,

~4.17!

Wmassless
p1→p2 5

Geff
2 ~cV

21cA
2 !m3a3

8p7/2epDM /a

3E
1

`

dr~r2123r2213r232r24!

3G13
30S m2r2

a2 U0
23/2, 21 iDM /a, 22 iDM /aD ,

~4.18!

where Gpq
mn(xub1 , . . . ,bq

a1 , . . . ,ap) are the Meijer’sG functions ~see

Ref. @13# for their definition and properties!. Defining v
[r2 in Eqs. ~4.16!–~4.18!, and using Eq.~7.811.3! of Ref.
@13#, we can integrate these expressions. The Meijer’sG
function sums that appear as a result can be simplified
using their properties. Eventually, we obtain

Gp1→p25
Geff

2 ~cV
21cA

2 !m3a2

32p7/2epDM /a

3G24
40S m2

a2 U3/2, 2

1/2, 23/2, 3/21 iDM /a, 3/22 iDM /aD ,

~4.19!

Wmassive
p1→p25

Geff
2 ~cV

21cA
2 !m3a3

32p7/2epDM /a

3G35
50S m2

a2 U0, 2, 5/2

1/2, 1, 23/2, 21 iDM /a, 22 iDM /aD ,

~4.20!

Wmassless
p1→p2 5

3Geff
2 ~cV

21cA
2 !m3a3

64p7/2epDM /a

3G24
40S m2

a2 U2, 5/2

1/2, 23/2, 21 iDM /a, 22 iDM /aD .

~4.21!
0-5
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In the case where bothf 1 and f̄ 2 are massless particles
this is more convenient to obtain the total transition rate
first integrating in momentak̃1 and k̃2. Thus, we first write
@see Eq.~4.6!#

Gp1→p25
Geff

2 ~cV
21cA

2 !

2p4 E
2`

1`

dje2iDMj

3H E
0

`

dṽṽ2expF2i ṽ

a
~sinhaj1 i e!G J 2

,

~4.22!

wheree.0 is a regulator that ensures the convergence of
frequency integral above. The corresponding total emit
power is

W p1→p25
Geff

2 ~cV
21cA

2 !

p4 E
2`

1`

dje2iDMjE
0

`

dṽ1ṽ1
3

3expF2i ṽ1

a
~sinhaj1 i e!G E

0

`

dṽ2ṽ2
2

3expF2i ṽ2

a
~sinhaj1 i e!G . ~4.23!

By performing the frequency integrals and defining the n
variablew[eaj, Eqs.~4.22!, ~4.23! become

Gp1→p252
2Geff

2 ~cV
21cA

2 !a5

p4 E
0

`

dw
w512iDM /a

~w22112i ew!6
,

~4.24!

W p1→p252
12iGeff

2 ~cV
21cA

2 !a6

p4 E
0

`

dw
w612iDM /a

~w22112i ew!7
.

~4.25!

Solving the integrals that appear in Eqs.~4.24! and ~4.25!
~see the Appendix!, we obtain

Gp1→p25
Geff

2 ~cV
21cA

2 !

60p3 S 4a4DM15a2DM31DM5

e2pDM /a21
D

~4.26!

and

W p1→p2

5
Geff

2 ~cV
21cA

2 !

3840p3

3S 225a611036a4DM21560a2DM4164DM6

e2pDM /a11
D .

~4.27!

In the next sections we use these formulas to investig
some selected reactions.
01401
y

e
d

te

V. ACCELERATED PROTON AND NEUTRON DECAY

Let us now consider the processes

p→ne1ne ~5.1!

and

n→pe2n̄e ~5.2!

for uniformly accelerated protons and neutrons, respectiv
We will assume the neutrino mass to vanish because eve
this is not so, it would be neglectable in comparison with a
other energy scale involved in the problem. The effect
coupling constantGeff5Gpn for processes~5.1!, ~5.2! is ob-
tained by imposing that the mean proper lifetime of inert
neutrons is 887 s@14#, i.e.,

G in
n→p[Gn→p~a→0!51/887s21. ~5.3!

This phenomenological procedure has the advantage o
passing any uncertainties on the influence of the nucl
inner structure. For sake of convenience, we take thea→0
limit in Eq. ~4.6! rather than in Eq.~4.19!, obtaining

dG in
n→p

d3k̃ed
3k̃n

5
4Gpn

2

~2p!6ṽeṽn

E
2`

1`

dje2i j(DM1ṽe1ṽn)

3~ṽeṽn1 k̃e• k̃n!

5
2Gpn

2

~2p!5 S 11
k̃e• k̃n

ṽeṽn
D d~ṽe1ṽn2DM !,

~5.4!

where we have usedcV5cA51 @15# since only left-handed
massless neutrinos are known to exist. After integrating
~5.4! in angular coordinates and inṽe , we find

G in
n→p5

Gpn
2

p3 E0

DM2me
dṽnṽn

2~DM2ṽn!A~DM2ṽn!22me
2.

~5.5!

Evaluating numerically Eq.~5.5! with me50.511 MeV, and
DM5(mn2mp)51.29 MeV, we end up withG in

n→p51.81
31023Gpn

2 MeV5. Hence by imposing condition~5.3!, we
obtain Gpn51.74GF , where GF[1.16631025 GeV22 is
the Fermi coupling constant@14#. Now we are able to use Eq
~4.19! to plot in Fig. 1 the proton and neutron mean prop
lifetimes tp(a)5(Gp→n)21 and tn(a)5(Gn→p)21, respec-
tively. Let us note that

tn~a!5e22puDM u/atp~a!. ~5.6!

We have only considered accelerationsa!mp5938 MeV in
order to respect our no-recoil condition~see Sec. II!. We call
attention to the fact that for accelerationsa@ac[2puDM u
'8 MeV, we havetp(a)'tn(a). This is easier to under
stand in the coaccelerated frame with the current, where~ac-
cording to the FDU effect@5,6#! a thermal bath of Rindler
particles with temperatureTFDU5a/2p is ‘‘attached’’ to the
0-6
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current. Thus, fora@ac we haveTFDU@uDM u, which leads
both nucleons to behave similarly.~See Ref.@7# for a more
comprehensive discussion on this issue.!

In order to estimate how much energy is carried out
form of leptons, we may use Eqs.~4.20! and~4.21! to obtain
W j

p→n and W j
n→p5e2puDM u/aW j

p→n for j 5e,n. Although
W e

p→n and W n
p→n ~as well asW e

n→p and W n
n→p) are not

manifestly identical, they seem to be according to Fig. 2
In order to investigate the energy distribution of the em

ted leptons, let us define the normalized energy distribut

N j
p1→p2[

1

Gp1→p2

dGp1→p2

dṽ j

~5.7!

FIG. 1. The mean proper lifetime of protons,tp ~full line!, and
neutrons,tn ~dashed line!, are plotted as functions of their prope
accelerationa. Note thattp→1` and tn→887 s asa→0. For
accelerationsa@ac[2pDM'8 MeV we have thattp'tn .

FIG. 2. W j
p→n andW j

n→p are plotted in full and dashed lines
respectively, forj 5e,n, as functions of the nucleon proper acce
erations. Our numerical results suggest thatW e

p→n5W n
p→n and

W e
n→p5W n

n→p .
01401
-
n

with j 5e,n, where dGp1→p2/dṽ j is defined in Eq.~4.9!.
Note thatN j

p→n5N j
n→p . In Fig. 3 we plot the distributions

N j
p→n for two values of acceleration:a51.0 and 2.0 MeV.

We see that the typical energy~in the inertial frame instan-
taneously at rest with the nucleon! of the emitted electrons
and neutrinos isṽ'a, which justifies our no-recoil condi-
tion.

In order to roughly estimate how small is the proper lif
time of circularly moving protons at the CERN Large Ha
ron Collider ~LHC! we use directly Eq.~5.6! with a5a

LHC

'1028 MeV for the proton’s proper acceleration, obtainin
tp(a

LHC
)'1033108

yr, where we have used thattn(a

!me ,uDM u)'103 s. Although Eq.~5.6! was derived assum
ing uniformly accelerated motion, this should not be seen
a major problem: Because of the huge proper lifetime
tained for the proton, our estimation turns out to be no
sensitive up to an inaccuracy of hundreds of thousands
orders of magnitude~which should not be the case!.

Astrophysics seems to provide much more suitable con
tions for the observation of the decay of accelerated proto
Although our decay rate~4.19! was obtained considering
uniformly accelerated protons, let us assume that this is
proximately valid for circularly moving protons with prope
accelerationa@DM ,1/R, whereR is the local curvature ra-
dius of the proton trajectory. Indeed we can test this assu
tion, e.g., for two-level scalar systems, whose excitat
rates, at the tree level, are given by@16#

G lin5
c0

2

2p

DE

e2pDE/a21
~5.8!

and

FIG. 3. The normalized energy distribution of emitted positro
N e

p→n , and neutrinos,N n
p→n , are plotted for two values of the

proton’s proper acceleration:a51.0 MeV ~full line! and 2.0 MeV
~dashed line!. Note that the typical energy of the emitted particl
~in the inertial frame instantaneously at rest with the proton! is

given by ṽ'a.
0-7
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Gcir5
c0

2

2p

ae2A12DE/a

2A12
~5.9!

for uniformly accelerated and circularly moving relativist
sources, respectively, wherec0 is a small coupling constan
andDE is the two-level system energy gap. Note that in t
limit a@DE, Eqs.~5.8! and ~5.9! give usG lin /Gcir51.103.

In order to illustrate an astrophysical situation where p
cess~5.1! may be important, let us consider a cosmic r
proton with energyEp5gmp'1.631014 eV under the influ-
ence of a magnetic fieldB'1014 G of a typical pulsar. Pro-
tons under these conditions have proper accelerations oaB
5geB/mp'110 MeV@uDM u. For practical purposes th
acceleration of the proton will be assumed as constant a
the process. For the chosen values ofEp andB, the proton is
confined in a cylinder with typical radiusR'g2/aB'5
31023 cm! l B , wherel B is the typical size of the magneti
field region. According to Eq.~4.19! we obtaintp'1027 s.
As a result, protons would have a ‘‘laboratory’’ mean lif
time of tp5gtp'1021 s. For l B'107 cm, we obtain that
less thanuDNp /Npu5(12e2 l B /tp)' l B /tp'1% of the pro-
tons would decay via process~5.1!. We note that we did no
take into account the influence of the magnetic field on
emitted positron. Clearly a more precise estimation sho
take into account this effect as well as other ones as, e.g.
nonuniformity of the magnetic field and energy loss
through electromagnetic sinchrotron radiation. The last
in particular may not be a problem since energy may
furnished to the proton from dynamo processes. A m
careful analysis of such astrophysical issues would be w
come but this is beyond the scope of the present fie
theoretical investigation.

VI. NEUTRINO EMISSION FROM UNIFORMLY
ACCELERATED ELECTRONS

In this section, we will consider the emission of neutrin
from accelerated electrons:

e2→e2nen̄e . ~6.1!

The description of the creation of neutrino-antineutrino pa
by electrons in an external electromagnetic field in the c
text of the standard model is contained in Sec. 6.1 of R
@2#. Here we analyze this process for uniformly accelera
electrons by using the formulas derived in Sec. IV whe
both emitted fermions are massless. From Eqs.~4.26! and
~4.27! we get for the emission rate ofnen̄e pairs

Gnn̄5
Gen

2 a5

15p4
, ~6.2!

and for thetotal radiated power

Wnn̄5
15Gen

2 a6

256p3
, ~6.3!
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where we have usedDM50, cV5cA51 and Gen is the
corresponding effective coupling constant.

In order to determine the value ofGen , we assume tha
Eq. ~6.3! describes the instantaneous emitted power from
electron witharbitrary world line at the point where it has
proper accelerationa. This is indeed verified for photon~see
Larmor formula in Ref.@17#! and scalar particle@18# emis-
sion from accelerated sources.@We emphasize that this
equivalence is not fully~although it is approximately! veri-
fied for Eq.~6.2!, which depends in general on the source
world line.# Thus we will impose that Eq.~6.3! gives the
radiated power for the neutrino emission from circula
moving relativistic electrons in a uniform magnetic fieldB
provided thata5geB/me!me ~no-recoil condition!. Hereg
is the usual Lorentz factor for the electron ande is its electric
charge. The differential emission rate ofnen̄e pairs in a back-
ground magnetic field was calculated in detail@2# ~see Ref.
@8# for the form used below!:

dGnn̄
LP

ds
5

GF
2me

4

16~2p!3

me

g

x5s311/2

~11xs3/2!4
3H ~CV

21CA
2 !

x2s3

~11xs3/2!

3E
s

`F21
1

3
~2s1y!~y2s!2GAi ~y!dy1~CV

21CA
2 !

3F E
s

`

@61~y2s!~s21~s2y!2!#Ai ~y!dy2sAi ~s!G
18sCA

2F3

4 S E
s

`

~s2y!2Ai ~y!dyD 1Ai ~s!G J , ~6.4!

where x[a/me , Ai( z) is the Airy function, and s
P@0,g/x# is defined such that

vn1vn̄[
megxs3/2

~11xs3/2!
. ~6.5!

The parametersCV andCA give the vector and axial contri
butions to the electric current, respectively. Using Eqs.~6.4!
and ~6.5! we have, in the limitx!1,

W nn̄
LP

5E
0

g/x

ds~vn1vn̄!
dGnn̄

LP

ds
5

5~2CV
2123CA

2 !

108p3
GF

2me
6x6.

~6.6!

Letting CV
250.93 andCA

250.25 @9#, we haveW nn̄
LP

51.14
31022GF

2a6. By comparing this expression with our Eq
~6.3! we obtainGen52.45GF . In Figs. 4 and 5 we plot Eqs
~6.2! and ~6.3!, respectively, for uniformly accelerated ele
trons witha<me .

The normalized energy distribution of emitted neutrin
antineutrino

Nnn̄[
1

Gnn̄

dGnn̄

dṽn

~6.7!
0-8
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is plotted in Fig. 6 for electrons with proper accelerationa
50.1 MeV and 0.2 MeV, where@see Eq.~4.9!#

dGnn̄

dṽn

5
2Gen

2

p4a
ṽn

2E
0

`

dṽ n̄ṽ n̄
2
K0@2~ṽn1ṽ n̄!/a#. ~6.8!

~Neutrinos and antineutrinos have identical emission ene
distribution.! Note again thata defines the typical energy o
the emitted neutrinos.

VII. DISCUSSIONS

We have investigated the weak interaction emission
spin-1/2 fermions from classical and semiclassical curre
As a particular application of modeling the accelerated p
ticle by a semiclassical current, we have analyzed the inv
b decay of uniformly accelerated protons. We have sho
that although protons in laboratory storage rings are

FIG. 4. The emission probability per proper time ofnen̄e pairs is
plotted fora<me .

FIG. 5. The total radiated power in form of neutrinos is plott
for a<me .
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likely to decay in this way, under some astrophysical con
tions high-energy protons in background magnetic fields m
have a considerably short lifetime. Moreover, we have a
lyzed the modification of the usualb decay for uniformly
accelerated neutrons. This may be of some relevance w
neutrons are under the influence of strong background gr
tational fields. Although a full curved spacetime calculati
is desirable to treat these situations, our calculation shoul
a good approximation when the gravitational field is ‘‘mo
erate’’ @18#. In this case, neutrons can be treated as be
accelerated in Minkowski space.

By restricting our semiclassical current to behave clas
cally, we were able to use our formalism to investigate
neutrino-antineutrino pair emission from uniformly accele
ated electrons and compare our results with the ones in
literature obtained by quantizing the electron field in a ba
ground magnetic field. Our formalism allows the utilizatio
of currents associated with more general world lines. D
pending on the accuracy level required, however, one
use directly the formulas derived for uniformly accelerat
currents. This may be particularly useful in some astrophy
cal situations.
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APPENDIX: INTEGRATION OF EQS. „4.24…, „4.25…

In order to solve Eqs.~4.24! and~4.25! let us consider the
integral

FIG. 6. The normalized energy distribution of the emitted ne
trinos ~and antineutrinos! is plotted for two values of the electron’
proper acceleration:a50.1 MeV ~full line! and 0.2 MeV~dashed
line!. Note that the typical energy of the emitted particles~in the
inertial frame instantaneously at rest with the electron! is given by

ṽ'a.
0-9
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I n
1[E

0

`

dw
wn12iDM /a

~w22112i ew!n11
, nPN. ~A1!

Note that the analytic extension of the integrand above
poles of order (n11) at w65612 i e1O(e2) . This im-
plies that we can makee50 in Eq. ~A1! provided we con-
tour the pole atw151 by the upper half-plane, i.e.,

I n
15E

g1

dw
wn12iDM /a

~w221!n11
, ~A2!

where g6[@0,12e8#ø$16e8eiu; uP@0,p#%ø@11e8,`)
with e8→01 . Using the residue theorem we see that

I n
22I n

152p i Res~ f n!w51 , ~A3!

whereI n
2 is obtained substitutingg1 by g2 in Eq. ~A2!, and

we denote the residue value of the function

f n~w![
wn12iDM /a

~w221!n11
~A4!

at the pointw5w6 by Res(f n)w5w6. Now, let us define

In[E
2`

1`

dw
wn12iDM /a

~w22112i ew!n11
, ~A5!

which can be written fore→0 as

In5~21!ne22pDM /aI n
21I n

1 . ~A6!
ry

r-

01401
s

Since the integrand ofIn is analytic in the upper half-plane
and goes to zero asuwu2(n12) as uwu→`, it follows thatIn
50. As a consequence Eqs.~A6! and ~A3! imply

I n
15

22p i Res~ f n!w51

11~21!ne2pDM /a
, ~A7!

with

Res~ f n!w5w65
1

n!

dn

dwn
$~w2w6!n11f n~w!%uw5w6.

~A8!

Using function ~A4! to explicitly evaluate Eq.~A8! for n
55, 6, we obtain

I 5
15

2p

120a5 S 4a4DM15a2DM31DM5

e2pDM /a21
D , ~A9!

and

I 6
15

ip

46080a6

3S 225a611036a4DM21560a2DM4164DM6

e2pDM /a11
D .

~A10!
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