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Summing Sudakov logarithms inB— Xy in effective field theory
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We construct an effective field theory valid for processes in which highly energetic light-like particles
interact with collinear and soft degrees of freedom, using the dBeaysy near the end point of the photon
spectrumx=2E, /m,—1, as an example. Below the scale-mj, both soft and collinear degrees of freedom
are included in the effective theory, while below the scale mb\/xT, where 1-y is the light cone
momentum fraction of the quark in theB meson, we match onto a theory of bilocal operators. We show that
at one loop large logarithms cancel in the matching conditions, and that we recover the well-known renormal-
ization group equations that sum leading Sudakov logarithms.
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. INTRODUCTION mic contribution, the terms log"N are referred to as the
next-to-leading logarithmic contribution, and the remaining
Effective field theorieSEFT’s) provide a simple and el- terms are called subdominant.
egant method for calculating processes with several relevant Recently there has been some discussion in the literature
energy scale$l]. Part of the utility of EFT's is that they of summing Sudakov logarithms using effective field theory
dramatically simplify the summation of powers of logarithms technique§4—6]. Such an approach could have several ad-
of ratios of mass scales, which would otherwise make pervantages over the conventional method; in particular, while
turbation theory poorly behaved. For example, in a theoryfactorization formulas are based on perturbation theory,
with a very heavy particle of masd, one-loop corrections EFT’s, by construction, are valid beyond perturbation theory,
scale in the problem. In the EFT in which the heavy particIeStra'gthor"‘{ard('f tedious to go beyond the leading twist
has been removed from the theory, such logarithms are r@pproximation. In the various versions of the EFT approach

; ot hich have been suggested, the effective theory is the so-
placed by factors of log(/\) (wherey is the renormalization W ” i X .
scale in dimensional regularization, or the cutoff in cutoff called “large energy effective theory(LEET) [7], which

regularization, and the complete series of leading Iogarithmsdescrlbes light-like particles coupled to soft degrees of free-

; . . . ~dom. However, a difficulty with the approaches presented to
n n
ag log™(u/\) is straightforward to sum via the renormaliza- date is that, as pointed out in Ref6], in the minimal sub-

tion group. _ _traction(MS) scheme logarithms arising at one loop in LEET
~The situation is more complicated for processes withyg not match logarithms arising at one loop in QCD for any
highly energetic light particles. In this case, there are bothxpoice of the matching scaje hence these logarithms may
collinear and infrared divergences in the theory, which giVqut be summed using the renormalization group equations
rise to the familiar Sudakov double logarithif®. For ex- (RGE’s).
ample, the perturbative expansion of tkéh moment of the In this paper we consider this problem in the context of
photon spectrum in inclusive— Xy decay is of the form  B— X,y decays: We show that the problem of matching
scales may be resolved by introducing a new intermediate
effective theory containing both soft and collinear degrees of
> > Ch.maalog™N. (1)  freedom, which is then matched onto LEK&ffectively in-
N m<2n tegrating out the collinear modest a lower scale. We show
that the matching conditions onto both effective theories
Although the arguments of these logarithms are not obvicontain no large logarithms at one loop. We then calculate
ously the ratio of two scales, they arise because the typicdhe€ RGE's in the two theories summing the leading loga-
energy and invariant mass of light particles are widely sepalithms and a certain subset of the next-to-leading logarithms.

rated, and they may be summed via well-known techniqued© this order the expression obtained for the resummed
based on factorization theorerf@j into the form Sudakov logarithms is identical to that derived in R¢€H,

[10].

II. SUDAKQOV LOGARITHMS IN  B—Xgy AND LEET

Inclusive decays of heavy quarks have been well under-
stood for many years in the context of an operator product

The termsaf log"" 1N are referred to as the leading logarith-

ex;{E (apallog"™ I N+ballog"N)+---|. (2
n

n fact, the authors of8] argued that the resummation of sub-

*Email address: bauer@physics.utoronto.ca leading Sudakov logarithms is not necessary for practical purposes
"Email address: fleming@physics.utoronto.ca for this decay. Nevertheless, it provides a simple example in which
*Email address: luke@physics.utoronto.ca we may compare our results to those in the literature.
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expansion(OPE in the inverse mass of the heavy quark \ o omy
[11]. At leading order in the\ 5cp/m;, expansion thé me-
son decay rate is equal to tlhequark decay rate, and non-
perturbative effects are suppressed by at least two powers ¢ s
Agcp/my. However, the OPE only converges for suffi- p =myv+k
ciently inclusive observables. Unfortunately, experimental
cuts on measurements of rare decays suclBB-asXyy, B FIG. 1. The OPE foB— Xsy.
—Xd 17, andB— X7 are required, restricting the avail-
able phase space considerably. Since all of these decays : L9 . )
of phenomenological interest, either in the determination of©" this decay is illustrated in Fig. 1. We write the momenta
|V, OF detection of new physics, understanding inclusive®’ the b quark, photon, and lighs quark jet as
decays in restricted regions of phase space is important. My My,

If the phase space is restricted such that the final hadronic p{y=myv*+k*, q“=7xﬁ", ps =7n“+lf’“+ k#,
state is dominated by only a few resonances, the breakdown @
of the OPE simply reflects the fact that an inclusive treat-
ment based on local duality is no longer appropriate. This isyhere, in the rest frame of thH& meson,
the case for the dilepton invariant mass spectrum in inclusive
B— X4 "1~ andB— X,|7 decays[12]. However, when the v#=(1,0), n*=(1,0,0~-1), "*=(1,0,00. (5
kinematic cut is in a region of phase space dominated by
highly energetic, low invariant mass final states, the OPEHere k* is a residual momentum of ordetqgcp, and 1
breaks down even for quantities smeared over a parametri= My/2(1—x)n*, wherex=2E, /my. The invariant mass of
cally larger region of phase space, where the decay is ndhe lights-quark jet
resonance dominated. This situation arises in the end-point ) ) <
region of the electron energy spectrum and the low hadronic Ps~mpn- (I +k)=m(1—x+k™) (6)
invariant mass region in semileptonig— X, Iv decay, as L . 9 .
well as the end-point region of the photon spectrumBin  (Wherek™=k™/my) is O(my) except near the end point of
— Xy decay[8,13. the photon energy spectrum wheee: 1. Inclusive quantities

Consider the dominant contribution to the decBy &€ calculat.ed yia the OPE by t.akir.1g the imaginary part of
—X.y, which arises from the magnetic penguin operatorthe graphs in Fig. 1 and expanding in powerk6fy/p. As

_my
B=3 n+l+k

Qere the strange quark mass has been set to? Zéve.OPE

[14] long asx is not too close to the end point, this is an expan-
sion in powers ink#/m,, which matches onto local opera-
d :im < /“’E(1+ )bE 3) tors. This leads to an expansion for the photon energy spec-
T 1672 07 2 Y8)OF v trum as a function ok in powers ofag and 1y [15]:

dr asCp w? 4, aCr ) log(1—x) 7
a—l}“l— yp= (Zlogag+5+§w o(1—x)+ ype 7+x—2x"=2(1+x)log(1—x)—| 4 T—x | 1—x .
1 ’ )\1 v/ 2 3
+ﬁ (N =9N5)8(1—X)—(N1+3N\,) 68 (1—x)—§6 (1—x) |} +O(ag,1/imp), )
b
|
where log(1— x)) ( log(1—x)
——| =lmj——0(1—x—
(1—x) . B0 1—x ( 2

 GE[ViVi?alCo(p)|? s{mbw)r, ®

- 1
0 3277 Mo "m, +5106%(B) 8(1-x— ).

and the subscript 4+ denotes the usual plus distribution, The parameters\; and A, are matrix elements of local
dimension-five operators.
Near the end point of the photon spectru; 1, both the

(1
(1_X)+:L|Lno( T 0(1-x=p)

2Throughout this work we will ignore the contribution of opera-
+log(B)8(1—x— ,8)] , (9) tors other tharD, to the decay.
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perturbative and nonperturbative corrections are singular anc
the OPE breaks down. The severity of the breakdown is mos sy LN s
easily seen by integrating the spectrum over a regiem1 & TuEd
<x<1. WhenA=<Aqcp/m, the most singular terms in the » 05568 LYS b
1/m,, expansion sum up into a nonperturbative shape func 560

(@) (b) {c)

tion of characteristic width\ ocp/my [16]. The perturbative

series is of the form ) ) a
FIG. 2. One-loop corrections to the matrix element@f in

1 1 dr _ aSCF QCD

F_o 17Aa 1+ P (—2|092A—7logA+-..)

(IR) divergences except that in the heavy-quark wave func-
+O(a§), (10) tion diagram, Fig. &). This IR divergence is regulated using
dimensional regularization. The vertex diagram, Fi¢g)2
where the ellipses denote terms that are finiteAas0.  Yields
These Sudakov logarithms are large fo1, and can spoll

the convergence of perturbation theory. The full series has L@ _ asCr zﬂé _§
been shown to exponentidi@,10] and the leading and next- qeo= ~ Crlw)sTb 5w log m; *2log m; ik
to-leading logarithms must be resummed foA (12
<exp(— v/ ag(my)), which is parametrically larger than
Ao/ My in the my—oo limit [17], where

In general, “phase space” logarithms are to be expected e (14 )
whenever a decay depends on several distinct scales. For [#=——myoh” Ys q,. (13)
example, inb— X ev, decay the rate calculated with the 8m 2
OPE performed atu=m, contains large logarithms of ) i . .
m./m,. In [18] an EFT was used to run fromm, to m,, Co(u) is the Wilson coefficient 997 and the dpts denote
summing phase space logarithms of the ratigm,,. Simi- (here and in the rest of the papénite terms which are not

spectrum the invariant mass of the light quark jet scales agxternal field

m,y1—x, and is widely separated from the scale=m, ~2

where the OPE is performed. In order to sum logarithmaA of Z,=1— asCr §+3 |Og'“_2 .t (14)
[or the more complicated plus distributions in the differential Am | € My
spectrum, Eq(7)] we would expect to have to switch to a 5
new effective theory au=mj,, use the renormalization . asCg|1 | Ps | %
group to run down to a scale of ordem,\1—x, at which Ze=lm e Og?ff ogm—§+--- (@9
point the OPE is performedln fact, we will see that the
situation is slightly more complicated than this. where
We are then left with the question of the appropriate 5 -
theory below the scalen,. The simplest possibility is to RP=4mple e (16)

expand the theory in powers kf/my andl#/m,. The heavy . ,
quark is then treated in the heavy quark effective theory"‘_nd adding the counterterm required to subtract off the UV
(HQET) [19], while the light quark propagator is treated in divergence
the large energy effective theof.EET) proposed many

years ago by Dugan and Grinst¢ifi. Expanding thes quark Z,=1+ asCr E (17)
propagator in powers of 1, , we find the LEET propagator Am €

ips n i | &4 k"‘) we find

_2_: ~ + (11)

ps 2n-(I+k) m, a.C 5

Aqcp=Cr(p)sI'b| 1 -

2

s—F ( Iog2£§+ ~log—
LEET is an effective theory of lightlike Wilson lines, much 4w mg 2 Tmp
as heavy quark effective theofHQET) is an effective >
theory of timelike Wilson line$4]. The hope would then be i E+2 Iog'u—+---
to match QCD onto LEET and then use the renormalization € m;
group to sum the Sudakov logarithms. This is the approach
taken in[6]. However, a simple attempt at matching shows The corresponding LEET diagram is shown in Fig. 3.
that this does not sum the appropriate logarithms. Neither of the wave-function graphs gives a contribution,

Consider the one-loop matching of the opera’fmrfrom since the light quark wave function in Feynman gauige

QCD to LEET. We regulate ultraviolet divergences with di-
mensional regularizationrd=4—2¢). We introduce a small
invariant massp§ for the s quark which regulates all infrared  3we will work in Feynman gauge throughout this paper.

. (18
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FIG. 3. One-loop correction to thesy vertex in LEET.

proportional ton?=0, and the heavy quark wave function

vanishes in dimensional regularization. Thus the only

contribution is from the vertex graph. Denoting the

coefficient of the corresponding operator in LEET asfine @ power-counting parameter=

CO[1+ (aCpldm)CH+---], we find
prmg) €
Ps

F

ko

O~ F aC
Alger=C™ ()€l hy 1— yp

I'1+2e)I'(1-2¢)I'(1+€
L(1+29T 20T )—c“kﬁﬁ]
€
aCe(1 2  p?
—cOTVETrR 1 ZF 22 S
CH ()&l h[l P ( 2 eogmbﬁ
p2
+2 logf—— +-+-— CY (% ” 19
gzmb,u (m) (19
wherep?/m, is the soft scale. So
CO(7)=Cs(R),
2 2
Ps Ps
()= =— =
CH(R)= = 6(2I09m~+1 +2 log? =
2 p2 ~2
ClogRs_ 2 S _

We immediately notice two problents.
(1) There is no matching scalg at which all the large
single and double logarithms i@® vanish. Thus, there are

PHYSICAL REVIEW D63 014006

splitting of an energetic particle into two almost collinear

particles. Thus, by matching onto LEET, one is integrating
out the collinear modes which also contribute to infrared

physics. As we will show below, once collinear degrees of
freedom are included, both of the above problems are re-
solved.

IIl. THE COLLINEAR-SOFT THEORY
A. Collinear and soft modes

It is convenient to work in light-cone coordinates
p“=(p*,p”,p}), wherep™=n-p andp~ =n-p, and to de-
V1—x that becomes
small in the limitx— 1. The momentum of the light-quark jet
then scales as

PL~my(A%1N). (22)

This scaling is unchanged by emission of either soft or col-
linear degrees of freedom, with momenta scaling as

psoﬂwmb()\zv)\zv)\z)r pcollinearwmb()\zaly)\)- (22)
and so emission of both modes is kinematically allowed. It is
the presence of infrared sensitive graphs with collinear loop
momentum that makes this EFT more complicated than
other, more familiar, EFT’s, where infrared sensitivity comes
purely from soft modes. This is similar to the situation in
nonrelativistic QCD(NRQCD) [21], in which power count-
ing is complicated by the fact that a given amplitude receives
contributions from loop momenta which are small compared
to the heavy quark mass, but which have parametrically dif-
ferent dependence on the heavy quark velodity In
NRQCD, the relevant scales are known as soft, ultrasoft, and
potential, and must be treated separately in order to obtain
consistent power countin@2,23.

We follow a similar approach here, and introduce separate
fields for both soft and collinear degrees of freedbie-
tween the scalem, and my\ the effective theory contains
separate fields for both collinear and soft modes, while at
scales below-mp\ (the exact scale depends on the operator

logarithms in the rate which cannot be summed using theinder consideration, as will be discussed in the next séction

renormalization group in LEET.

(2) C™ contains a divergence proportional to £)lbg pﬁ.
Since p§ is an infrared scale in the problem, it is not clear
how to sensibly renormalize this term. In RE8] this diver-

the collinear modes are integrated out of the theory and it is
matched onto LEET. We will refer to this intermediate
theory as the collinear-soft theory, and resist the urge to cre-
ate another acronym.

gence was cancelled by a nonlocal counterterm in the inclu- There is an important difference between the approach
sive rate; however, this term indicates that LEET cannot béaken here and the one taken in Rdf4,25 where loga-

used for exclusive processgx0]. Furthermore, the matching
of the inclusive rate performed i%] still leaves large loga-
rithms in the coefficient of the operator.

rithms of v are summed in NRQCD and NRQED. In the
latter case no intermediate theory is introduced; instead the
running is performed in one step through the velocity RGE.

The problem is that LEET only describes the coupling oflIn NRQED these two approaches differ at subleading order
light-like particles to soft gluons, but does not describe thd 25,26, and it may be that such one-step running is needed

“Note thatC,(u) includes a factor ofa Cr/(4)log(my/uw),
which converts one of the factors of lagm,) in Eq. (12) to
log(my,/my). This is not important for our argument.

here at two loops.

SAt two loops an additional gluon field scaling @s A, \) might
have to be includef{l27].

014006-4
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TABLE I. Power counting rules for fields in the collinear-soft ) S) %)
theory in Feynman gauge, whexe= y1—x. g?ﬁigT“n“g _§igT"n”g @igT"v"P,,
. —— =>-=L>=
Factor Scaling (@) (b) (c)
Soft.gluonAfL A? FIG. 5. Leading-order quark-gluon interactions in the collinear-
Collinear gluonA7, A soft effective theory(a) collinear-collinear,(b) collinear-soft, and
Heavy quarkh AS (c) heavy-soft. Applying the rules from Table I, the vertices scale as
Collinear quarké A (@ AL, (b) \°, and(c) \°.
Collinear volume element}*x, A4
Soft volume elemend*xq A8 The interactions leading ik which we will need in this

paper are shown along with their Feynman rules and scaling
in Fig. 5. Note that the interaction of a soft particle with a
The power counting rules in the collinear-soft theory maycollinear particle leaves the minus and perpendicular mo-
be obtained by a field rescaling, analogous to that performethenta of the collinear particle unchanged, since they are
in [23]. The scaling of the fields is chosen such that theparametrically larger for the collinear particle. This is analo-
propagators are alD(1), putting thex dependence into the gous to the multipole expansion which is performed in
interaction terms. For example, in the kinetic term for a SoftNRQCD [28]. As a result at one loop, soft-collinear interac-
gluon, tions in this theory are equivalent to LEET, since collinear
propagators in soft loops reduce to LEET propagators:
— 4 a__ a\2
fd X(d,A,—=3,A,) (23 AT (p—k) o~ 1

A 26
“2nk @0

the typical length scale associated with soft excitations scales 2 (p=l* 2 (p=k)"p —(p")°
as\ 2~p. SO the factor ofi*x scales as. 8. Each de-
rivative scales apsor~\2, o the soft gluon field must scale
as\? for the kinetic term to be(1).

Since the various collinear momentum components scal
differently with A, power counting for collinear gluons is
gauge dependerthis is easily seen from the propagator,

since in a covariant gauge the components ofidh” term Because the leading purely collinear interaction, Fig@),5

scale differently. In this paper we are working in Feynman ) . . .
scales as\~ -, power counting for collinear loops is less

gauge, in which case the different components of collinearSim le than for soft loobs. Terms which would scaleag
gluons have the same scaling. Performing a similar analysigucﬁ as the ourel colﬁnéar wave-function aranh in Ff 6
for the other fields, we obtain the power-counting rules given - purely 5 ction grap g. 5,
in Table I. are proportional ton“=0 and so vanish in the effective

Rather than write down the effective Lagrangian for thethgolrg/.n;o;vlev;é, Sthe r}‘e{ Szztéplmgfai?h;?ﬁgs the)rtz]eso V\r’]rt]_'Ch
various fields, which is quite lengthy, we will instead justw u IVEly b€ Supp S ough Aneou
g looks complicated, graphs withnly collinear lines are

give the Feynman rules, which are obtained by expandin X X . o
the QCD amplitudes in powers of. The spinors in the éﬂentlca}l to the corre_spond_lng graphs in QCD. This is be-
cause in any graph in which all the lines have the same

collinear-soft theory are related, at leading ordekjrio the ; ;
. . scaling (and there are no purely soft graphs, so this only
QCD spinors via . 2 h
refers to purely collinear graphsexpanding in powers of

wherep is a collinear momentunk is a soft momentum, and
p?=0 from the equations of motion. Once again, this is
analogous to NRQCD, where in ultrasoft loops the Feynman
Fules reduce to those for HQET. By the same token, in soft-
collinear interactions, the appropriate volume element is the
collinear volume element, scaling as *.

h,=P,u, &=P.u, &=Pmu, (24)  does not change the propagators. Since the locations of poles
in the propagators are unaffected, it is irrelevant whether one
where we have defined the projection operators calculates the full graph in QCD and then expands in powers
o o of N, or calculates each order in the collinear-soft theory.
p+1 1) Iy Thus, for purely collinear graphs, such as the wave function
Pi=—— Pn=7 Pi=7, (25 graph in Fig. 6, we will not bother to write down the com-

plete set of operators, but simply calculate the graph in QCD
which project out the heavy quark spinor, a massless spingind expand.
in the n direction, and a massless spinor in thalirection, There is one important subleading operator, shown in Fig.
respectively. The propagators for the different fields are/, Which can be enhanced by the\ lpiece of the purely
shown in Fig. 4.

——— > — _
. _c . uv
lg ’;’# —————- collinear quark  -j é,;—z- HGEHG— collinear gluon
iP, —_— heav £ T G soft gluon
W 'y quar -1 F 6‘6‘6‘

FIG. 6. Pure collinear wave function graph. TBé\ ~2) con-
FIG. 4. Propagators in the collinear-soft effective theory.  tribution vanishes.
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(b)

FIG. 8. The one-loop collinear gluon corrections to the vertex

FIG. 7. Nonlocal vertex aD(\).

. . . . V&,
collinear coupling. By momentum conservation, there is no

vertex coupling two heavy quarks and a collinear quark, aCr | 1 Iog(ﬁzlmﬁ) 5

since a heavy quark cannot emit a collinear gluon and stay AQCD=§F“b[1— S| S ——

on its mass shell. However, expanding the diagram in Fig. 7 4 \e € 2e

in powers of\ gives the nonlocaD()\) interaction shown in 1 7 Y

the figure.(This is similar to the nonlocal operators found in + zlog>—+ = log— +- - } (29

[29].) Though it is formally subleading, in graphs such as 2 7 my 2 Tmg

Fig. 8a) it gives anO(1) effect. where all the 1¢ divergences are infrared in origin. The one-

loop correction in the collinear-soft theory can be calculated

B. Matching onto the collinear-soft theory from the Feynman diagrams in Figs. 3 and 8. In pure dimen-

We now proceed to compute the matching conditions fOIsionaI regularization all graphs are zero, as there is no scale

N resent in the loop integrals. Thus, we find the matchin
the operatorO,, and demonstrate that there are no Iargep P g g

logarithms in the matching coefficients. At tree level, theCondltlon

matching is trivial. Defining the current in the effective alCr( 1 Iog(ﬁzlmﬁ) 5

theory by CvZy=1+——| 2t —_—+5_ ] 30
VE=ET#h,, (27)  where Z, is the counterterm required to subtract the UV

divergences in the collinear-soft theory.
This derivation of course assumes that the collinear-soft
theory reproduces the infrared behavior of QCD. We can
_ heck this by instead introducing a small invariant mass for
=1+ : 2 ¢ . > g
Cv Olas) (28) the s quark, as in Sec. Il, and explicitly verifying that the
matching calculation discussed in Sec. Il, but now using thds identical to that in full QCD given in Eq18). The soft
collinear-soft theory instead of LEET, hence including col-9luon contribution in the collinear-soft theory is identical to
linear modes. The calculation is simplest if we set the invarithe LEET result, given in Eq19):

wherel'* is given in Eq.(13), the Wilson coefficienCCy, at
the tree level is

ant mass of thes quark to zero; this introduces additional alCl1 2 p2 p2
infrared divergences to the calculation which cancel in thea_= —CVEF“hS—F ———log > 42 logf— +-

. N . . s n 4 € € Myl Mp&
matching conditions. The one-loop matrix elementOafin
full QCD can be calculated from the diagrams in Fig. 2, and (31)
we find the amplitude The collinear vertex diagram, Fig(a, gives

- C 2\ T (1+ 6T (1-e)T(2—¢) 1
U)_ (e = /-'L_ <
Ac Cvgnr h o (4 pi) P(2_2€) 62
— aCe] 2 2 2 pi  p: p2
=—Cvéal h?[—?—; 210977 l0g%=7 + 2 log= -+ . (32)

As previously discussed, the leading piece of the wave function graph HEy.i8O(1/\?), but fortunately vanishes.
Expanding to higher orders in, the graph gives the same result as in full QCD, Ep). We therefore obtain for the
contribution of the collinear gluons

p2 3 pk

o~ + = log—y + - -
gMZ 2 gMZ

aSC,:
4 : (33

_ 2 3 2 p?
Acz—Cvan“h—W -

—+—log=—=—
2¢ € g,u2

014006-6
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Adding the soft and collinear contributions, as well as the

counterterm given in E¢30), we obtain

2 2

— asCe ps 3 Ps

=_ © >+ —log—

Acs CvéI'*h ype log mk2)+ 2Iog mﬁ
~ 2 ~2

. (34

%
+—— zlog>—— = log— +---
€ 2 ngb 2 QEE

Note that the troublesome divergened 1/e)log pﬁ cancels

once the two contribution§31) and (33) are added. Thus,
both collinear and soft modes are required for the theory tq
be renormalized sensibly. Comparing to the full theory resu
(18), we see that the collinear-soft theory reproduces the |

physics of QCD, and that at the scale= m, all nonanalytic
terms vanish. This determines the matching scale tmpge

confirming the result found by calculating in pure dimen-

sional regularizatior{30).

C. Renormalization group equations

From the counterterm given in E§30) it is simple to
extract the anomalous dimension of the operat6rin the
collinear-soft theory. From the definition

—2‘1(~ i + i Z 35
w=2Zy M(m ’Bég Vs (39
we have
Ni :as(:u)CF
’ué’ﬁ v 27e '
I ad@Ce(l  E 5
ﬁazv——T E+|OQE§+§ , (36)

where we have usefi= —ge-+0(g®). This give the anoma-
lous dimension

B2 5

+=.
m2 2

_ayBIC

YW= 2 Iog

(37

Note that the divergent piece of the anomalous dimensio

cancels between the two terf8]. The RGE for the coeffi-
cient of the operato¥* is therefore

d
TL@ Cu(m) = y(m)Cy(m). (39)

Solving this RGE we obtain

(Cg/2B0)(5— 87/ Boars) ~Cg /B

Cy(mp),
(39
and Cy(my)=1

ag(m)
Ag

~2
o
m;

Cv(ﬁ)=(

where ag=ag(my), Bo=11-2/3n;,

+O(ag(my)). Note that in deriving the anomalous dimen-
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O(y)

= i8(1-y-kY

Tt S(1y+kr S(1-y+R +4f)
B —

FIG. 9. Diagrammatic representation of the OPE, as well as the

or O(y).

:gero and one gluon Feynman rules for the resulting nonlocal opera-

IV. THE SOFT THEORY
A. Matching

The collinear-soft effective theory is valid down {©
~my1—X, the typical invariant mass of the liglstquark
jet. At this scale we integrate out the collinear modes, and
perform an OPE to calculate the inclusivelecay rate. Dia-
grammatically, this is illustrated in Fig. 9. This results in a
nonlocal OPE in which the two currents are separated along
a light-like direction. As in Eq(4), we write the momentum
of the eikonal line as

mp, My
pi= K+ 7 (L= Y,

(40)

wherek* is the residual momentum of the heavy quéarkte
that we distinguisly from x, the rescaled photon momentum,
since beyond tree level they will differThe imaginary piece
of the first graph is then proportional té(1—y+k*)
(where, as usual, careted variables are dividethpy, so the
OPE is in terms of an infinite number of nonlocal operators,
labeled byy:

O(y)=h,8(1—y+iD ")h,. (41)

rl’Eeynman rules for nonlocal operators of this type were ob-
tained in[30], by writing them as the Fourier transform of
operators in position space, and expanding out the path-
ordered exponential in powers of the gauge field. Equiva-
lently, the Feynman rules may be obtained by taking the
imaginary piece of the time-ordered product in LEET with
additional gluons; the single gluon Feynman rule is given in
Fig. 9.

The matrix element o©O(y) between heavy quark states
with residual momentunk is

(b(k)[h,8(1—y+iD *)h,|b(k))=8(1—y+k*)+O(ay),
(42)

sion (37) we have assumed that the nonlocal vertex given in
Fig. 7 has the same running as the QCD coupling. This aswhile its matrix element between hadrons is the well-known

sumption needs to be checked in subsequent work.

structure functiorj16]
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dr
&:Fof dyCly, x;m)f(y;p), (44)
+
N e
999 eQQ SECGEGT where theC(y,x; u)’s are the coefficients of the OPE.
To match onto LEET at one loop we compare the differ-
(a) (b) (c) ential decay rate in the parton modél— Xy, which in

LEET is
FIG. 10. Feynman diagrams contributing to the one-loop matrix
element ofO(y).
dr

h _ iR dx
(Blh, (1 _y+|D )hU|B>- 43
(B[h,h,[B)

—Fof dyC(y,x; u)(b(k)|O(y; uw)|b(k)). (45)

Kkt

f(y)=

We therefore need the one-loop matrix elemen©g¥) be-
Thus, LEET consists of a continuous set of operators labeletiveen quark states. This may be calculated from the dia-
by y. Each operator has a coefficient that depends on thgrams shown in Fig. 10.
kinematic variablex, and the differential rate foB— Xy is Again all divergences are regulated in dimensional regu-
given by the integral larization. As an example, Fig. 1@ gives

4—d d—24 A dnt et bt aat
. 7 d® “q, dg dg" &(k™+1-y)—d(k"+q" +1-y)
(a) = 2(
<b(k)|o (Y)|b(k)> ICFg (mb) J(Z’]T)d72 27 21 (q+qf_qi+i€)(q++qf+i&_)q+' (46)
The first term is proportional to
j d’g 1 _SJ d’ fld de)\ A
2m (@+ia@vtio@n ) 2molo o P a7+ 20g- (LX) +xn)]°
4i 1 o
=——d77r(3—d/2)j de AMNNITI[(1—x)2+2(1—x)]¥?73, (47
(4) o Jo

The\ integral vanishes in dimensional regularization, so this term vanishes. After performing thedtfivietiegration in the
second term, we are left with

—d _ _
Ceg?( w1 d?-%g, dg 1
(b(k)|O@(y)|b(k))=i ——| —| - f — -
2@ \mp)  kt+1-yJd M) 27 g (kT+1-y)+8°—ie
1
>< ~
g —(k"+1-y)+ie
CCe? ([ w\ Okt +1-y) %, 1
27 \my kf+1-y 4 2m7 g2+ (kT+1-y)?
Crg? 2 Okt +1—
~ =9 an r(o—r17y) (48)
877-2 mb (k++1_y)1+25

Using the identity

oy—x)
(y_x)1+26 -

2(Iog(y—x)
=, I (y—x

1
~ 528y + 0y =)

+O(62)}, (49

we find
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C 1 nr 1w - .
(b(I)|0®(y)[b(k)y=— =L | =+ Zlogs + Zlog 2 4 | s(1-y+kt) - o1 -y +k)
2 ? 1 log(1—y+k*
X <—+2loglu_2 " 4( d yA )) : 0
€ My (1—-y+k™). 1-y+k™ |,

The diagram in Fig. 1®) gives the same result as (&) while the diagram in Fig. 1@) gives

6(1—y+k")
(1-y+k").]

S(1-y+k*)+4 (51)

Cr|[ 2 72
(b(k)| 0/ (y)|b(k))= = == [ ( ~Z-210g"%5
4 € mb

In dimensional regularization the wave function diagrams vanish. Since the decay rate is infrared finite, including the wave
function graphs simply converts an infrared tlivergence to an ultraviolet divergence. Therefore, we may neglect the wave
function counterterm, and combining all graphs we find the bare matrix element

Ce(2 2 2 72 R X A
(b(k)| 0> qy) (k) =| 1~ Z=F( - 24 Zlog2_— 21092 +10g? 2+ | | 81—y +k*)
e€ e e m m; mZ
C R 4 72 log(1—y+k*
~ O 1y k) (———4|og“—2+4 . 8( il A )) , (52
4m € My (1-y+k*), 1-y+k™ |,

where all divergences are ultraviolet. The renormalized opefafgrw) is related to the bare operator by

Obare(y)=J dy'Z(y',y; )0y’ it). (53

Renormalizing in MS(generalized in the obvious way to cancel the?Idivergencels we find

ag(m)Ce 1l 1

1 -
T ey -y,

oy —y)+

_os(@Ce(1 1 EP 1
2 € € gmg €

Z(y’,y;ﬁ)=[ H(y’—y)]- (54

Note that the counterterm consists of a diagonal piece which is proportioddlte-y), and an off-diagonal piece propor-
tional to A(y’ —y). This latter term mixes the operat@(y) with all operatorsO(y') with y'>y.

Inserting the one-loop matrix element of the renormalized operator int@gdBgwe find the the differential decay rate in
the parton modeb— Xgy

o .~ L~ aSCF 27‘22 Mz .
—| =To [ dyCly,x;m){O(y;m))=L0 | dyCly,x;i){ | 1— log——2log— +--- | |8(1—-y+k™)
dx|, . 4 m, My
aCr . 72 1 log(1—y+k*)
- O(1—y+k")| | 4—4log—; - +8 - ) (55)
™ M/ (1—y+k™), 1-y+k* .

One might worry about the appearance in Ep) of logarithmic terms that depend om,, since this scale has been integrated
out and thus should not be present in the effective theory. These terms are due to our choice of factoring the heavy quark mass
out of the soft scalen,(1—y+k*) by writing our expressions in terms of careted quantities. The logarithms, afncel in
the matching coefficient.

The Wilson coefficient(y,x;u) are determined by matching the collinear-soft theory onto LEET. In the collinear-soft
theory, the Feynman diagrams for the forward scattering matrix element are shown in Fig. 11. As with LEET, all divergences
are regulated in dimensional regularization. Expanding the expression for the forward scattering amplitude obtained from these

graphs in powers of (1X+R+), we find for the differential decay rate
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dr aC 72 w2 . aC .
| =CUTo! | 1+ = og? S 45 l0g™ 4| [a(1-x+ k)~ S8 o1 -x+k")
log(1—x+k* 1
1-x+k* . 1-x+k* .

Comparing Eqs(56) and(55) gives the short-distance coefficieBfy,x; ). At the tree level, the matching is trivial, and we
write

~ 2/~ asCr (1) ~ 2
Cly xi)=Cu(m)| (y =x)+ ——Co(y, 1) |+ O(a), (57)
where i is the matching scale. At one loop, we find
~2 ~2 ~2
2 I e\ 0y —x) log(y —x)
CO(y,x; T :(Zlo —+3log—+--- | 8(y—x)—| 3+4lo —) +40(y—X)| ———
(VX ) Sz T30 (y=x) w2y, TV )
~ 2 ~2 ~2
Iz [ oy —x) [ 6(y —X)
=|2lo +3lo +o | S(y—%x)—4 lo - 58
( T2y "2 9y ) Y0y Sy Py ) - P
At the scalep=my\y—x the logarithmic terms vanish, and we find
o(y—x
CH(y, x;mp\y—x)=—3 (yy_x)+ (59
The matching scale is therefore different for each oper@ioy).
B. Renormalization group
The differential decay rate in LEET given in E@5) may be written as
dr C % 2 R
—=r0f dycly. x| 1- 255 [ log—— 2 jog—— & S(1—y+kh)
dx 4 m2(1—y+k™)? m2(1—y+k")?
C 4 w? 4
+ Aovr —log ’ ~ ~ , (60
4m \1-y+kt  mi(l-y+k")? 1-y+k*
|
and so the large logarithms in the matrix elemen©dg¢¥/; 1) _ adm)Ck 2
vanish at the scaléw=m,(1—y+k*). [This expression YY) = — Iogm—g—l)é(y -Y)
looks highly singular, but as can be seen from Ef), the
delta functions combine with the other terms to form plus _ oy’ —y) 62)
functions] Thus, in order to sum all logarithms pfwe must Yy =y, =y

continue to run the operat@(y) in LEET. From Eqs(593)

and(54) we obtain the renormalization group equation Solving Eq.(61) analytically, however, is nontrivial and be-

yond the scope of this worl8]. Instead, we may diagonalize
q the anomalous dimension matrix by taking high moments of
~ / ro~ oy the spectrum. This will allow us to compare our results to
Hdu Clyxim) f dy' 7y ySmClY Xim), - (6D thosepof Refs[9,10]. Note that in Refs[9,go] both leading
and next-to-leading logarithms were resummed. This re-
quires the two-loop contribution to theef/counterterm, the
where y(y,y’;z) is the continuous anomalous dimension full one-loop matching condition, and the two-loop running
matrix of ag, none of which have been included here. As a result
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1 dr

B BN Tl

——-aye-- e I'(N) Jl)x ax
u@&«@’@? aC N N
=r°c2(p,)[1— > 2 loP—— 7 log—
4 No No

F
(@) (b) v
+h.c. ™
~ 2 ~2
> S M M
—log>——5log—| +---, 66
w g m% gmﬁ (66)
060666666660 06G00
(c) (d)

whereny=e~ "E. This needs to be compared to the one-loop

FIG. 11. Collinear-soft theory Feynman diagrams which con-matrix element of{O(N;u)), which can be obtained from
tribute to the forward scattering amplitude throuQf«s). Eq. (55):

our calculation only resums the leading logarithms and a

class of the subleading logarithms. However, it is straightfor- - 1 1 -
ward to extract from the literature a resummation of exactly (O(Ns&)) = fo dyy""{O(y: 7))
the same set of logarithms.

To calculate the moments we set the residual momentum asCg N N
k to zero.(This residual momentum can easily be incorpo- =l== {4 '092mbn0_4 |°gmbn0 Tt
rated by boosting from the rest frame of tbequark, p,
=myv, to the framep=myv +k.) Taking moments uncon- (67)

volutes the expression for the differential decay rate in

LEET, Eq.(45), and we obtain The one-loop matching coefficient is now easily determined

using Eqgs(63), (66), and(67) and we find

1 dr
F(N):f dXXNila
0
C 72N 72N
. , C(l)(N;ﬁ)IajﬂF[Zlogzgz—nJrSIogr':zn .
:FOJO dxx’\‘*ljl dyC(y—x;u){O(y; 1)) bMo bMo (69

1 1
:Fofo dzz\lflcr(l_ziﬁ)fo dyy" " XO(y; ) At the matching scal@=my\/ny/N all logarithms in this
matching coefficient vanish. Furthermore, from E&j) it is

=T'oC(N;m){O(N; L)), (63  clear that the matrix elemedqO(N;z)) contains no large
logarithms ofN at the scalg& =myny/N. Thus we run in the
where we have used collinear-soft theory fromm, to my,yny/N, perform the

OPE, and rurC(N;z) from myyng/N to myng/N.
1 X The running of the coefficien€y in the collinear-soft
C(y—x)= —C’(l— —) 0(y—x), (64)  theory from the scalen, to the scalem,yngy/N is obtained
y y by settinge = mpng/N in Eq.(39). The running in LEET is
determined by the RGE fdC(N; )
since C(y—x) just contains delta functions and plus distri-
butions. Thus, the operat@(N;w) is just a linear combi-
nation of the set of operato®(y; ). The matching from - - -
the collinear-soft theory onto LEET at tree level is trivial, “@C(N;“): Y(N;2)C(NiR), (69)
and we find

a.Cr where the anomalous dimension is given by
S

4ar

C(N;T)=C2(T)| 1+ c“)(N;m%omi).

(65 1
Y(N;) = fo dz2'" 'y(z;m)

DeterminingCV(N; ) requires the one-loop expression of

I'(N) in the collinear-soft theory and the one-loop matrix a()Ce N

element ofO(N; ) between partonic states. The one-loop - —[1_2 Iog( mbno)}' (70
expression for the differential decay rate in the collinear-soft

theory is given in Eq(56). Settingk, to zero and taking

moments we obtain The solution to this equation is
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cf n; oo —c2<m \ﬁ)
"N VITP NN

This sums perturbative logarithms df into the coefficientC(N). We can then substitute this into E@3) to obtain an
expression for the resummed moments of the differential decay rate.

Using the result foCy,(u) given in EqQ.(39) and taking the matrix element &f(N; ) between hadronic states, we find the
resummed expression for large photon energy moments of the @eeay,y

2Ce 4m N )

— 1+ -2 log—
( no) Bo( Boas No 2C
Ag

(E> P (71)

m_
"N

I~

N

as

CF(S—S#

F ) 2C¢ 4 N
No| | Aol Poas No B_o( Y Boas 2 g
ag| My W Ag

my—
N
As

4wl

I'(N)=Tof(N;mpng/N) (72)

as

Logarithms are explicitly summed in this expression and only long distance physics is contained in the function
f(N;mgng/N).
We can easily compare our results to those in the literature. A resummed expresdigiNjois given in Ref.[9]:

F(N)IFof(N;mb/N)ex;{_ fl dy

ng/N Y

mpy d
(2f ° y%rcwwr(mby)w(mbfy)”, (73

mby

where, at one loop, distance coefficient. In addition we determine the one-loop
anomalous dimension and solve the RGE. Next we integrate

()= as('“)CF’ out collinear modes at the scafe,\y—x by switching to

™ LEET. We perform an OPE in powers of { x) which leads
to the appearance of a nonlocal operator where two vertices

T(w)=— as(p)Cr , (74)  are separated along the light cone. The matrix element of this
™ operator betweet meson states is the structure function.

We perform the OPE at one-loop in the collinear-soft theory

()= — Sas(n)Cr and match onto the nonlocal operator in LEET. At the scale
e 4o m,+Y — X no logarithmic terms are introduced into the short-

) ) distance coefficient.
Note that the cusp anomalous dimenslog(u) s the con- In order to compare to the factorization formalism results
tribution to the anomalous dimension from the“l€ounter- — , w0 jiterature we repeat our analysis for large moments of
term. Using only the one-loop cusp anomalous dImenSIorlthe decay rate. In this case we find that the collinear-soft

tree level matching, and the one-loop running «f, Eq. —
(73) resums leading logarithms and the same class of nex{-heory matches onto LEET at the scalgvno/N, and that

to-leading logarithms we resum in our calculation. Perform- here are no large logarithms in the.matrlx element ,Of the
ing the integrations in the exponent we reproduce &6). b_||0cal operator at the s_catebnolN: Using the renormaliza-
Thus the approach presented here, based on an effective fidlgn 9roup equations in the collinear-soft theory we sum
theory, is in agreement with the factorization formalism ap-logarithms ofN between the scales;, and m,yno/N. We

proach for summing perturbative logarithms. then switch to LEET and sum logarithms Nfbetween the
scalesmyyng/N and myng/N. This sums all perturbative
V. CONCLUSIONS logarithms ofN. We find that our result agrees with the re-

_ sults presented in the literature. This gives us confidence that
In the specific case @ — Xgy we have shown how Suda- we have constructed the correct effective field theory.

kov logarithms can be summed within an effective field Though we have presented this work entirely in the con-
theory framework. First we construct an intermediate theorytext of B— Xgy our approach is general. It should be
which includes both collinear and soft degrees of freedomstraightforward to apply the collinear-soft theory and LEET
By performing a one-loop calculation we show that thisto other processes in which Sudakov logarithms arise. Fur-
collinear-soft theory can be matched onto QCD at the scaléhermore, this approach could also be applied to exclusive
m, without introducing logarithmic terms into the short- decays, in which case one does not perform the final OPE
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onto LEET, but remains in the collinear-soft theory. This
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