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Summing Sudakov logarithms inB\Xsg in effective field theory

Christian W. Bauer,* Sean Fleming,† and Michael Luke‡
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We construct an effective field theory valid for processes in which highly energetic light-like particles
interact with collinear and soft degrees of freedom, using the decayB→Xsg near the end point of the photon
spectrum,x52Eg /mb→1, as an example. Below the scalem5mb both soft and collinear degrees of freedom
are included in the effective theory, while below the scalem5mbAx2y, where 12y is the light cone
momentum fraction of theb quark in theB meson, we match onto a theory of bilocal operators. We show that
at one loop large logarithms cancel in the matching conditions, and that we recover the well-known renormal-
ization group equations that sum leading Sudakov logarithms.
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I. INTRODUCTION

Effective field theories~EFT’s! provide a simple and el
egant method for calculating processes with several rele
energy scales@1#. Part of the utility of EFT’s is that they
dramatically simplify the summation of powers of logarithm
of ratios of mass scales, which would otherwise make p
turbation theory poorly behaved. For example, in a the
with a very heavy particle of massM, one-loop corrections
will typically be enhanced by log(M/l), wherel is a low
scale in the problem. In the EFT in which the heavy parti
has been removed from the theory, such logarithms are
placed by factors of log(m/l) ~wherem is the renormalization
scale in dimensional regularization, or the cutoff in cuto
regularization!, and the complete series of leading logarithm
as

n logn(m/l) is straightforward to sum via the renormaliz
tion group.

The situation is more complicated for processes w
highly energetic light particles. In this case, there are b
collinear and infrared divergences in the theory, which g
rise to the familiar Sudakov double logarithms@2#. For ex-
ample, the perturbative expansion of theNth moment of the
photon spectrum in inclusiveb→Xsg decay is of the form

(
n

(
m<2n

Cn,mas
n logm N. ~1!

Although the arguments of these logarithms are not ob
ously the ratio of two scales, they arise because the typ
energy and invariant mass of light particles are widely se
rated, and they may be summed via well-known techniq
based on factorization theorems@3# into the form

expF(
n

~anas
n logn11 N1bnas

n logn N!1¯G . ~2!

The termsas
n logn11 N are referred to as the leading logarit
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mic contribution, the termsas
n logn N are referred to as the

next-to-leading logarithmic contribution, and the remaini
terms are called subdominant.

Recently there has been some discussion in the litera
of summing Sudakov logarithms using effective field theo
techniques@4–6#. Such an approach could have several a
vantages over the conventional method; in particular, wh
factorization formulas are based on perturbation theo
EFT’s, by construction, are valid beyond perturbation theo
and by including higher dimension operators it should
straightforward~if tedious! to go beyond the leading twis
approximation. In the various versions of the EFT approa
which have been suggested, the effective theory is the
called ‘‘large energy effective theory’’~LEET! @7#, which
describes light-like particles coupled to soft degrees of fr
dom. However, a difficulty with the approaches presented
date is that, as pointed out in Refs.@6#, in the minimal sub-
traction~MS! scheme logarithms arising at one loop in LEE
do not match logarithms arising at one loop in QCD for a
choice of the matching scalem; hence these logarithms ma
not be summed using the renormalization group equati
~RGE’s!.

In this paper we consider this problem in the context
B→Xsg decays.1 We show that the problem of matchin
scales may be resolved by introducing a new intermed
effective theory containing both soft and collinear degrees
freedom, which is then matched onto LEET~effectively in-
tegrating out the collinear modes! at a lower scale. We show
that the matching conditions onto both effective theor
contain no large logarithms at one loop. We then calcul
the RGE’s in the two theories summing the leading log
rithms and a certain subset of the next-to-leading logarith
To this order the expression obtained for the resumm
Sudakov logarithms is identical to that derived in Refs.@9#,
@10#.

II. SUDAKOV LOGARITHMS IN B\Xsg AND LEET

Inclusive decays of heavy quarks have been well und
stood for many years in the context of an operator prod

1In fact, the authors of@8# argued that the resummation of su
leading Sudakov logarithms is not necessary for practical purpo
for this decay. Nevertheless, it provides a simple example in wh
we may compare our results to those in the literature.
©2000 The American Physical Society06-1
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expansion~OPE! in the inverse mass of the heavy qua
@11#. At leading order in theLQCD/mb expansion theB me-
son decay rate is equal to theb quark decay rate, and non
perturbative effects are suppressed by at least two powe
LQCD/mb . However, the OPE only converges for suf
ciently inclusive observables. Unfortunately, experimen
cuts on measurements of rare decays such asB→Xsg, B
→Xsl

1l 2, andB→Xul n̄ are required, restricting the avai
able phase space considerably. Since all of these decay
of phenomenological interest, either in the determination
uVubu or detection of new physics, understanding inclus
decays in restricted regions of phase space is important

If the phase space is restricted such that the final hadr
state is dominated by only a few resonances, the breakd
of the OPE simply reflects the fact that an inclusive tre
ment based on local duality is no longer appropriate. Thi
the case for the dilepton invariant mass spectrum in inclus
B→Xsl

1l 2 and B→Xul n̄ decays@12#. However, when the
kinematic cut is in a region of phase space dominated
highly energetic, low invariant mass final states, the O
breaks down even for quantities smeared over a param
cally larger region of phase space, where the decay is
resonance dominated. This situation arises in the end-p
region of the electron energy spectrum and the low hadro
invariant mass region in semileptonicB→Xul n̄ decay, as
well as the end-point region of the photon spectrum inB
→Xsg decay@8,13#.

Consider the dominant contribution to the decayB
→Xsg, which arises from the magnetic penguin opera
@14#

Ô75
e

16p2 mbs̄smn
1

2
~11g5!bFmn , ~3!
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where the strange quark mass has been set to zero.2 The OPE
for this decay is illustrated in Fig. 1. We write the momen
of the b quark, photon, and lights quark jet as

pb
m5mbvm1km, qm5

mb

2
xn̄m, ps

m5
mb

2
nm1 l m1km,

~4!

where, in the rest frame of theB meson,

vm5~1,0W !, nm5~1,0,0,21!, n̄m5~1,0,0,1!. ~5!

Here km is a residual momentum of orderLQCD, and l m

5mb/2(12x)n̄m, wherex52Eg /mb . The invariant mass of
the light s-quark jet

ps
2'mbn•~ l 1k!5mb

2~12x1 k̂1! ~6!

~wherek̂15k1 /mb) is O(mb
2) except near the end point o

the photon energy spectrum wherex→1. Inclusive quantities
are calculated via the OPE by taking the imaginary part
the graphs in Fig. 1 and expanding in powers ofkm/Aps

2. As
long asx is not too close to the end point, this is an expa
sion in powers inkm/mb , which matches onto local opera
tors. This leads to an expansion for the photon energy sp
trum as a function ofx in powers ofas and 1/mb @15#:

FIG. 1. The OPE forB→Xsg.
dG

dx
5G0H F12

asCF

4p S 2 log
m2

mb
2 151

4

3
p2D Gd~12x!1

asCF

4p F71x22x222~11x!log~12x!2S 4
log~12x!

12x
1

7

12xD
1
G

1
1

2mb
2 F ~l129l2!d~12x!2~l113l2!d8~12x!2

l1

3
d9~12x!G J 1O~as

2,1/mb
3!, ~7!
l

a-
where

G05
GF

2 uVtbVts* u2auC7~m!u2

32p4 mb
5Fmb~m!

mb
G2

, ~8!

and the subscript ‘‘1’’ denotes the usual plus distribution,

1

~12x!1
[ lim

b→0
H 1

12x
u~12x2b!

1 log~b!d~12x2b!J , ~9!
S log~12x!

~12x! D
1

[ lim
b→0

H log~12x!

12x
u~12x2b!

1
1

2
log2~b!d~12x2b!J .

The parametersl1 and l2 are matrix elements of loca
dimension-five operators.

Near the end point of the photon spectrum,x→1, both the

2Throughout this work we will ignore the contribution of oper

tors other thanÔ7 to the decay.
6-2
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SUMMING SUDAKOV LOGARITHMS IN B→Xsg IN . . . PHYSICAL REVIEW D 63 014006
perturbative and nonperturbative corrections are singular
the OPE breaks down. The severity of the breakdown is m
easily seen by integrating the spectrum over a region 12D
,x,1. WhenD<LQCD/mb the most singular terms in th
1/mb expansion sum up into a nonperturbative shape fu
tion of characteristic widthLQCD/mb @16#. The perturbative
series is of the form

1

G0
E

12D

1 dG

dx
511

asCF

4p
~22 log2 D27 logD1¯ !

1O~as
2!, ~10!

where the ellipses denote terms that are finite asD→0.
These Sudakov logarithms are large forD!1, and can spoil
the convergence of perturbation theory. The full series
been shown to exponentiate@9,10# and the leading and next
to-leading logarithms must be resummed forD
<exp„2Ap/as(mb)…, which is parametrically larger tha
LQCD/mb in the mb→` limit @17#.

In general, ‘‘phase space’’ logarithms are to be expec
whenever a decay depends on several distinct scales.
example, inb→Xcen̄e decay the rate calculated with th
OPE performed atm5mb contains large logarithms o
mc /mb . In @18# an EFT was used to run frommb to mc ,
summing phase space logarithms of the ratiomc /mb . Simi-
larly, in b→Xsg near the end point of the photon ener
spectrum the invariant mass of the light quark jet scales
mbA12x, and is widely separated from the scalem5mb
where the OPE is performed. In order to sum logarithms oD
@or the more complicated plus distributions in the different
spectrum, Eq.~7!# we would expect to have to switch to
new effective theory atm5mb , use the renormalization
group to run down to a scale of ordermbA12x, at which
point the OPE is performed.~In fact, we will see that the
situation is slightly more complicated than this.!

We are then left with the question of the appropria
theory below the scalemb . The simplest possibility is to
expand the theory in powers ofkm/mb andl m/mb . The heavy
quark is then treated in the heavy quark effective the
~HQET! @19#, while the light quark propagator is treated
the large energy effective theory~LEET! proposed many
years ago by Dugan and Grinstein@7#. Expanding thes quark
propagator in powers of 1/mb , we find the LEET propagato

ip” s

ps
2 5

n”
2

i

n•~ l 1k!
1OS l m1km

mb
D . ~11!

LEET is an effective theory of lightlike Wilson lines, muc
as heavy quark effective theory~HQET! is an effective
theory of timelike Wilson lines@4#. The hope would then be
to match QCD onto LEET and then use the renormalizat
group to sum the Sudakov logarithms. This is the appro
taken in@6#. However, a simple attempt at matching sho
that this does not sum the appropriate logarithms.

Consider the one-loop matching of the operatorÔ7 from
QCD to LEET. We regulate ultraviolet divergences with d
mensional regularization (d5422e). We introduce a smal
invariant massps

2 for thes quark which regulates all infrare
01400
nd
st

c-

s

d
or

s

l

y
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~IR! divergences except that in the heavy-quark wave fu
tion diagram, Fig. 2~b!. This IR divergence is regulated usin
dimensional regularization. The vertex diagram, Fig. 2~a!,
yields

AQCD
~a! 52C7~m!s̄Gmb

asCF

4p F log2
ps

2

mb
2 12 log

ps
2

mb
2 1¯G ,

~12!

where

Gm5
e

8p2 mbsmn
~11g5!

2
qn . ~13!

C7(m) is the Wilson coefficient ofÔ7 and the dots denote
~here and in the rest of the paper! finite terms which are not
logarithmically enhanced. Including a factor ofAZ for each
external field

Zb512
asCF

4p F3

e
13 log

m̃2

mb
2 1¯G , ~14!

Zs512
asCF

4p F1

e
2 log

ps
2

mb
2 1 log

m̃2

mb
2 1¯G , ~15!

where

m̃2[4pm2e2gE ~16!

and adding the counterterm required to subtract off the
divergence

Z7511
asCF

4p

1

e
, ~17!

we find

AQCD5C7~m!s̄GmbF12
asCF

4p S log2
ps

2

mb
2 1

3

2
log

ps
2

mb
2

1
1

e
12 log

m̃2

mb
2 1¯ D G . ~18!

The corresponding LEET diagram is shown in Fig.
Neither of the wave-function graphs gives a contributio
since the light quark wave function in Feynman gauge3 is

3We will work in Feynman gauge throughout this paper.

FIG. 2. One-loop corrections to the matrix element ofÔ7 in
QCD.
6-3
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proportional ton250, and the heavy quark wave functio
vanishes in dimensional regularization. Thus the o
contribution is from the vertex graph. Denoting th
coefficient of the corresponding operator in LEET
C(0)@11(asCF/4p)C(1)1¯#, we find

ALEET5C~0!~ m̃ !j̄nGmhH 12
asCF

4p F S 4p
m2mb

2

ps
4 D e

3
G~112e!G~122e!G~11e!

e2 2C~1!~ m̃ !G J
5C~0!~ m̃ !j̄nGmhF12

asCF

4p S 1

e22
2

e
log

ps
2

mbm̃

12 log2
ps

2

mbm̃
1¯2C~1!~ m̃ ! D G , ~19!

whereps
2/mb is the soft scale. So

C~0!~ m̃ !5C7~m̃ !,

C~1!~ m̃ !5
1

e22
1

e S 2 log
ps

2

mbm̃
11D 12 log2

ps
2

mbm̃

2 log2
ps

2

mb
22

3

2
log

ps
2

mb
222 log

m̃2

mb
2 1¯ . ~20!

We immediately notice two problems.4

~1! There is no matching scalem̃ at which all the large
single and double logarithms inC(1) vanish. Thus, there ar
logarithms in the rate which cannot be summed using
renormalization group in LEET.

~2! C(1) contains a divergence proportional to (1/e)log ps
2.

Sinceps
2 is an infrared scale in the problem, it is not cle

how to sensibly renormalize this term. In Ref.@6# this diver-
gence was cancelled by a nonlocal counterterm in the in
sive rate; however, this term indicates that LEET cannot
used for exclusive processes@20#. Furthermore, the matchin
of the inclusive rate performed in@6# still leaves large loga-
rithms in the coefficient of the operator.

The problem is that LEET only describes the coupling
light-like particles to soft gluons, but does not describe

4Note that C7(m) includes a factor ofasCF /(4p)log(mW /m),
which converts one of the factors of log(m/mb) in Eq. ~12! to
log(mW /mb). This is not important for our argument.

FIG. 3. One-loop correction to thebsg vertex in LEET.
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splitting of an energetic particle into two almost colline
particles. Thus, by matching onto LEET, one is integrati
out the collinear modes which also contribute to infrar
physics. As we will show below, once collinear degrees
freedom are included, both of the above problems are
solved.

III. THE COLLINEAR-SOFT THEORY

A. Collinear and soft modes

It is convenient to work in light-cone coordinate
pm5(p1,p2,p'

i ), wherep15n•p andp25n̄•p, and to de-
fine a power-counting parameterl5A12x that becomes
small in the limitx→1. The momentum of the light-quark je
then scales as

ps
m;mb~l2,1,l!. ~21!

This scaling is unchanged by emission of either soft or c
linear degrees of freedom, with momenta scaling as

psoft;mb~l2,l2,l2!, pcollinear;mb~l2,1,l!. ~22!

and so emission of both modes is kinematically allowed. I
the presence of infrared sensitive graphs with collinear lo
momentum that makes this EFT more complicated th
other, more familiar, EFT’s, where infrared sensitivity com
purely from soft modes. This is similar to the situation
nonrelativistic QCD~NRQCD! @21#, in which power count-
ing is complicated by the fact that a given amplitude recei
contributions from loop momenta which are small compa
to the heavy quark mass, but which have parametrically
ferent dependence on the heavy quark velocityv. In
NRQCD, the relevant scales are known as soft, ultrasoft,
potential, and must be treated separately in order to ob
consistent power counting@22,23#.

We follow a similar approach here, and introduce separ
fields for both soft and collinear degrees of freedom.5 Be-
tween the scalesmb and mbl the effective theory contains
separate fields for both collinear and soft modes, while
scales below;mbl ~the exact scale depends on the opera
under consideration, as will be discussed in the next secti!,
the collinear modes are integrated out of the theory and
matched onto LEET. We will refer to this intermedia
theory as the collinear-soft theory, and resist the urge to
ate another acronym.

There is an important difference between the appro
taken here and the one taken in Refs.@24,25# where loga-
rithms of v are summed in NRQCD and NRQED. In th
latter case no intermediate theory is introduced; instead
running is performed in one step through the velocity RG
In NRQED these two approaches differ at subleading or
@25,26#, and it may be that such one-step running is nee
here at two loops.

5At two loops an additional gluon field scaling as~l, l, l! might
have to be included@27#.
6-4
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The power counting rules in the collinear-soft theory m
be obtained by a field rescaling, analogous to that perform
in @23#. The scaling of the fields is chosen such that
propagators are allO(1), putting thel dependence into the
interaction terms. For example, in the kinetic term for a s
gluon,

;E d4x~]mAn
a2]nAm

a !2 ~23!

the typical length scale associated with soft excitations sc
asl22;psoft

21, so the factor ofd4x scales asl28. Each de-
rivative scales aspsoft;l2, so the soft gluon field must scal
asl2 for the kinetic term to beO(1).

Since the various collinear momentum components s
differently with l, power counting for collinear gluons i
gauge dependent~this is easily seen from the propagato
since in a covariant gauge the components of thekmkn term
scale differently!. In this paper we are working in Feynma
gauge, in which case the different components of collin
gluons have the same scaling. Performing a similar anal
for the other fields, we obtain the power-counting rules giv
in Table I.

Rather than write down the effective Lagrangian for t
various fields, which is quite lengthy, we will instead ju
give the Feynman rules, which are obtained by expand
the QCD amplitudes in powers ofl. The spinors in the
collinear-soft theory are related, at leading order inl, to the
QCD spinors via

hv5P1u, jn5Pnu, j n̄5Pn̄u, ~24!

where we have defined the projection operators

P15
p”11

2
, Pn5

n” n̄”

4
, Pn̄5

n̄”n”

4
, ~25!

which project out the heavy quark spinor, a massless sp
in the n direction, and a massless spinor in then̄ direction,
respectively. The propagators for the different fields
shown in Fig. 4.

FIG. 4. Propagators in the collinear-soft effective theory.

TABLE I. Power counting rules for fields in the collinear-so
theory in Feynman gauge, wherel5A12x.

Factor Scaling

Soft gluonAm
s l2

Collinear gluonAm
c l

Heavy quarkh l3

Collinear quarkj l

Collinear volume element,d4xc l24

Soft volume elementd4xs l28
01400
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The interactions leading inl which we will need in this
paper are shown along with their Feynman rules and sca
in Fig. 5. Note that the interaction of a soft particle with
collinear particle leaves the minus and perpendicular m
menta of the collinear particle unchanged, since they
parametrically larger for the collinear particle. This is ana
gous to the multipole expansion which is performed
NRQCD @28#. As a result at one loop, soft-collinear intera
tions in this theory are equivalent to LEET, since colline
propagators in soft loops reduce to LEET propagators:

n”

2

n̄•~p2k!

~p2k!2 ;
n”

2

p2

~p2k!1p22~p'!2 52
n”

2

1

n•k
, ~26!

wherep is a collinear momentum,k is a soft momentum, and
p250 from the equations of motion. Once again, this
analogous to NRQCD, where in ultrasoft loops the Feynm
rules reduce to those for HQET. By the same token, in s
collinear interactions, the appropriate volume element is
collinear volume element, scaling asl24.

Because the leading purely collinear interaction, Fig. 5~a!,
scales asl21, power counting for collinear loops is les
simple than for soft loops. Terms which would scale asl22,
such as the purely collinear wave-function graph in Fig.
are proportional ton250 and so vanish in the effectiv
theory. However, the 1/l coupling enhances terms whic
would naively be suppressed. In fact, although thel count-
ing looks complicated, graphs withonly collinear lines are
identical to the corresponding graphs in QCD. This is b
cause in any graph in which all the lines have the sa
scaling ~and there are no purely soft graphs, so this o
refers to purely collinear graphs!, expanding in powers ofl
does not change the propagators. Since the locations of p
in the propagators are unaffected, it is irrelevant whether
calculates the full graph in QCD and then expands in pow
of l, or calculates each order inl in the collinear-soft theory.
Thus, for purely collinear graphs, such as the wave funct
graph in Fig. 6, we will not bother to write down the com
plete set of operators, but simply calculate the graph in Q
and expand.

There is one important subleading operator, shown in F
7, which can be enhanced by the 1/l piece of the purely

FIG. 5. Leading-order quark-gluon interactions in the colline
soft effective theory:~a! collinear-collinear,~b! collinear-soft, and
~c! heavy-soft. Applying the rules from Table I, the vertices scale
~a! l21, ~b! l0, and~c! l0.

FIG. 6. Pure collinear wave function graph. TheO(l22) con-
tribution vanishes.
6-5
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CHRISTIAN W. BAUER, SEAN FLEMING, AND MICHAEL LUKE PHYSICAL REVIEW D63 014006
collinear coupling. By momentum conservation, there is
vertex coupling two heavy quarks and a collinear qua
since a heavy quark cannot emit a collinear gluon and s
on its mass shell. However, expanding the diagram in Fig
in powers ofl gives the nonlocalO(l) interaction shown in
the figure.~This is similar to the nonlocal operators found
@29#.! Though it is formally subleading, in graphs such
Fig. 8~a! it gives anO(1) effect.

B. Matching onto the collinear-soft theory

We now proceed to compute the matching conditions
the operatorÔ7 , and demonstrate that there are no lar
logarithms in the matching coefficients. At tree level, t
matching is trivial. Defining the current in the effectiv
theory by

Vm5 j̄nGmhv , ~27!

whereGm is given in Eq.~13!, the Wilson coefficientCV at
the tree level is

CV511O~as!. ~28!

To perform this matching at one loop, we repeat the one-l
matching calculation discussed in Sec. II, but now using
collinear-soft theory instead of LEET, hence including c
linear modes. The calculation is simplest if we set the inva
ant mass of thes quark to zero; this introduces addition
infrared divergences to the calculation which cancel in
matching conditions. The one-loop matrix element ofÔ7 in
full QCD can be calculated from the diagrams in Fig. 2, a
we find the amplitude

FIG. 7. Nonlocal vertex atO(l).
01400
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AQCD5 s̄GmbF12
asCF

4p S 1

e2 1
log~m̃2/mb

2!

e
1

5

2e

1
1

2
log2

m̃2

mb
2 1

7

2
log

m̃2

mb
2 1¯ D G , ~29!

where all the 1/e divergences are infrared in origin. The on
loop correction in the collinear-soft theory can be calcula
from the Feynman diagrams in Figs. 3 and 8. In pure dim
sional regularization all graphs are zero, as there is no s
present in the loop integrals. Thus, we find the match
condition

CVZV511
asCF

4p S 1

e2 1
log~m̃2/mb

2!

e
1

5

2e
1¯ D , ~30!

where ZV is the counterterm required to subtract the U
divergences in the collinear-soft theory.

This derivation of course assumes that the collinear-s
theory reproduces the infrared behavior of QCD. We c
check this by instead introducing a small invariant mass
the s quark, as in Sec. II, and explicitly verifying that th
dependence on the invariant mass in the collinear-soft the
is identical to that in full QCD given in Eq.~18!. The soft
gluon contribution in the collinear-soft theory is identical
the LEET result, given in Eq.~19!:

As52CVj̄nGmh
asCF

4p F 1

e22
2

e
log

ps
2

mbm̃
12 log2

ps
2

mbm̃
1¯G .

~31!

The collinear vertex diagram, Fig. 8~a!, gives

FIG. 8. The one-loop collinear gluon corrections to the ver
Vm.
.

Ac
~v !5CVj̄nGmh

asCF

2p S 4p
m2

ps
2 D e G~11e!G~12e!G~22e!

G~222e!

1

e2

52CVj̄nGmh
asCF

4p F2
2

e22
2

e
1

2

e
log

ps
2

m̃22 log2
ps

2

m̃2 12 log
ps

2

m̃2 1¯G . ~32!

As previously discussed, the leading piece of the wave function graph Fig. 8~b! is O(1/l2), but fortunately vanishes
Expanding to higher orders inl, the graph gives the same result as in full QCD, Eq.~15!. We therefore obtain for the
contribution of the collinear gluons

Ac52CVj̄nGmh
asCF

4p F2
2

e22
3

2e
1

2

e
log

ps
2

m̃22 log2
ps

2

m̃2 1
3

2
log

ps
2

m̃2 1¯G . ~33!
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Adding the soft and collinear contributions, as well as t
counterterm given in Eq.~30!, we obtain

Acs52CVj̄nGmh
asCF

4p F log2
ps

2

mb
2 1

3

2
log

ps
2

mb
2

1
1

e
2

1

2
log2

m̃2

mb
22

3

2
log

m̃2

mb
2 1¯G . ~34!

Note that the troublesome divergence;(1/e)log ps
2 cancels

once the two contributions~31! and ~33! are added. Thus
both collinear and soft modes are required for the theory
be renormalized sensibly. Comparing to the full theory res
~18!, we see that the collinear-soft theory reproduces the
physics of QCD, and that at the scalem̃5mb all nonanalytic
terms vanish. This determines the matching scale to bemb ,
confirming the result found by calculating in pure dime
sional regularization~30!.

C. Renormalization group equations

From the counterterm given in Eq.~30! it is simple to
extract the anomalous dimension of the operatorVm in the
collinear-soft theory. From the definition

gV5ZV
21S m̃

]

]m̃
1b

]

]gDZV , ~35!

we have

m̃
]

]m̃
ZV5

as~m̃ !CF

2pe
,

b
]

]g
ZV52

as~m̃ !CF

2p S 1

e
1 log

m̃2

mb
2 1

5

2D , ~36!

where we have usedb52ge1O(g3). This give the anoma-
lous dimension

gV52
as~m̃ !CF

2p S log
m̃2

mb
2 1

5

2D . ~37!

Note that the divergent piece of the anomalous dimens
cancels between the two terms@6#. The RGE for the coeffi-
cient of the operatorVm is therefore

m̃
d

dm̃
CV~m̃ !5gV~m̃ !CV~m̃ !. ~38!

Solving this RGE we obtain

CV~m̃ !5S as~m̃ !

as
D ~CF/2b0!~528p/b0as!S m̃2

mb
2D 2CF /b0

CV~mb!,

~39!

where as[as(mb), b051122/3nf , and CV(mb)51
1O„as(mb)…. Note that in deriving the anomalous dime
sion ~37! we have assumed that the nonlocal vertex given
Fig. 7 has the same running as the QCD coupling. This
sumption needs to be checked in subsequent work.
01400
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IV. THE SOFT THEORY

A. Matching

The collinear-soft effective theory is valid down tom̃
'mbA12x, the typical invariant mass of the lights-quark
jet. At this scale we integrate out the collinear modes, a
perform an OPE to calculate the inclusiveb decay rate. Dia-
grammatically, this is illustrated in Fig. 9. This results in
nonlocal OPE in which the two currents are separated al
a light-like direction. As in Eq.~4!, we write the momentum
of the eikonal line as

ps
m5

mb

2
nm1km1

mb

2
~12y!n̄m, ~40!

wherekm is the residual momentum of the heavy quark~note
that we distinguishy from x, the rescaled photon momentum
since beyond tree level they will differ!. The imaginary piece
of the first graph is then proportional tod(12y1 k̂1)
~where, as usual, careted variables are divided bymb), so the
OPE is in terms of an infinite number of nonlocal operato
labeled byy:

O~y!5h̄vd~12y1 iD̂ 1!hv . ~41!

Feynman rules for nonlocal operators of this type were
tained in @30#, by writing them as the Fourier transform o
operators in position space, and expanding out the p
ordered exponential in powers of the gauge field. Equi
lently, the Feynman rules may be obtained by taking
imaginary piece of the time-ordered product in LEET wi
additional gluons; the single gluon Feynman rule is given
Fig. 9.

The matrix element ofO(y) between heavy quark state
with residual momentumk is

^b~k!uh̄vd~12y1 iD̂ 1!hvub~k!&5d~12y1 k̂1!1O~as!,

~42!

while its matrix element between hadrons is the well-kno
structure function@16#

FIG. 9. Diagrammatic representation of the OPE, as well as
zero and one gluon Feynman rules for the resulting nonlocal op
tor O(y).
6-7
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f ~y!5
^Buh̄vd~12y1 iD̂ 1!hvuB&

^Buh̄vhvuB&
. ~43!

Thus, LEET consists of a continuous set of operators labe
by y. Each operator has a coefficient that depends on
kinematic variablex, and the differential rate forB→Xsg is
given by the integral

FIG. 10. Feynman diagrams contributing to the one-loop ma
element ofO(y).
01400
d
e

dG

dx
5G0E dyC~y,x;m! f ~y;m!, ~44!

where theC(y,x;m)’s are the coefficients of the OPE.
To match onto LEET at one loop we compare the diffe

ential decay rate in the parton model,b→Xsg, which in
LEET is

dG

dxU
k1

5G0E dyC~y,x;m!^b~k!uO~y;m!ub~k!&. ~45!

We therefore need the one-loop matrix element ofO(y) be-
tween quark states. This may be calculated from the d
grams shown in Fig. 10.

Again all divergences are regulated in dimensional re
larization. As an example, Fig. 10~a! gives

x

^b~k!uO~a!~y!ub~k!&5 iCFg2S m

mb
D 42dE dd22q̂'

~2p!d22

dq̂2

2p

dq̂1

2p

d~ k̂1112y!2d~ k̂11q̂1112y!

~ q̂1q̂22q̂'
2 1 i e!~ q̂11q̂21 i e!q̂1 . ~46!

The first term is proportional to

E ddq̂

~2p!d

1

~ q̂21 i e!~ q̂•v1 i e!~ q̂•n!
58E ddq̂

~2p!d E
0

1

dxE
0

`

dl
l

@ q̂212lq̂•„v~12x!1xn…#3

52
4i

~4p!d/2 G~32d/2!E
0

1

dxE
0

`

dlld25@~12x!212~12x!#d/223. ~47!

Thel integral vanishes in dimensional regularization, so this term vanishes. After performing the trivialq̂1 integration in the
second term, we are left with

^b~k!uO~a!~y!ub~k!&5 i
CFg2

2p
S m

mb
D 42d

1

k̂1112y
E dd22q̂'

~2p!d22

dq̂2

2p

1

q̂2~ k̂1112y!1q̂'
2 2 i e

3
1

q̂22~ k̂1112y!1 i e

5
CFg2

2p
S m

mb
D 42d

u~ k̂1112y!

k̂1112y
E dd22q̂'

~2p!d22

1

q̂'
2 1~ k̂1112y!2

5
CFg2

8p2 S 4p
m2

mb
2D e

G~e!
u~ k̂1112y!

~ k̂1112y!112e
. ~48!

Using the identity

u~y2x!

~y2x!112e 52
1

2e
d~y2x!1u~y2x!F 1

~y2x!1
22eS log~y2x!

~y2x! D
1

1O~e2!G , ~49!

we find
6-8
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^b~k!uO~a!~y!ub~k!&52
asCF

4p H S 1

e2
1

1

e
log

m̃2

mb
2

1
1

2
log2

m̃2

mb
2

1¯ D d~12y1 k̂1!2u~12y1 k̂1!

3F S 2

e
12 log

m̃2

mb
2D 1

~12y1 k̂1!1

24S log~12y1 k̂1!

12y1 k̂1
D

1

G J . ~50!

The diagram in Fig. 10~b! gives the same result as 10~a!, while the diagram in Fig. 10~c! gives

^b~k!uO~c!~y!ub~k!&52
asCF

4p
F S 2

2

e
22 log

m̃2

mb
2D d~12y1 k̂1!14

u~12y1 k̂1!

~12y1 k̂1!1

G . ~51!

In dimensional regularization the wave function diagrams vanish. Since the decay rate is infrared finite, including th
function graphs simply converts an infrared 1/e divergence to an ultraviolet divergence. Therefore, we may neglect the w
function counterterm, and combining all graphs we find the bare matrix element

^b~k!uObare~y!ub~k!&5F12
asCF

4p
S 2

e2
2

2

e
1

2

e
log

m̃2

mb
2
22 log

m̃2

mb
2

1 log2
m̃2

mb
2

1¯ D Gd~12y1 k̂1!

2
asCF

4p
u~12y1 k̂1!F S 2

4

e
24 log

m̃2

mb
2

14D 1

~12y1 k̂1!1

18S log~12y1 k̂1!

12y1 k̂1
D

1

G , ~52!

where all divergences are ultraviolet. The renormalized operatorO(y;m) is related to the bare operator by

Obare~y!5E dy8Z~y8,y;m̃ !O~y8,m̃ !. ~53!

Renormalizing in MS~generalized in the obvious way to cancel the 1/e2 divergences!, we find

Z~y8,y;m̃ !5H F12
as~m̃ !CF

2p S 1

e2 1
1

e
log

m̃2

mb
22

1

e D Gd~y82y!1
as~m̃ !CF

p

1

e

1

~y82y!1
u~y82y!J . ~54!

Note that the counterterm consists of a diagonal piece which is proportional tod(y82y), and an off-diagonal piece propor
tional to u(y82y). This latter term mixes the operatorO(y) with all operatorsO(y8) with y8.y.

Inserting the one-loop matrix element of the renormalized operator into Eq.~45! we find the the differential decay rate i
the parton modelb→Xsg

dG

dx
U

k1

5G0E dyC~y,x;m̃ !^O~y;m̃ !&5G0E dyC~y,x;m̃ !H F12
asCF

4p
S log2

m̃2

mb
2
22 log

m̃2

mb
2

1¯ D Gd~12y1 k̂1!

2
asCF

4p
u~12y1 k̂1!F S 424 log

m̃2

mb
2D 1

~12y1 k̂1!1

18S log~12y1 k̂1!

12y1 k̂1
D

1

G J . ~55!

One might worry about the appearance in Eq.~55! of logarithmic terms that depend onmb , since this scale has been integrat
out and thus should not be present in the effective theory. These terms are due to our choice of factoring the heavy qu
out of the soft scalemb(12y1 k̂1) by writing our expressions in terms of careted quantities. The logarithms ofmb cancel in
the matching coefficient.

The Wilson coefficientsC(y,x;m) are determined by matching the collinear-soft theory onto LEET. In the collinear
theory, the Feynman diagrams for the forward scattering matrix element are shown in Fig. 11. As with LEET, all diver
are regulated in dimensional regularization. Expanding the expression for the forward scattering amplitude obtained fr
graphs in powers of (12x1 k̂1), we find for the differential decay rate
014006-9
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dG

dx
U

k1

5CV
2~m̃ !G0H F11

asCF

4p
S log2

m̃2

mb
2

15 log
m̃2

mb
2

1¯ D Gd~12x1 k̂1!2
asCF

4p
u~12x1 k̂1!

3F 4S log~12x1 k̂1!

12x1 k̂1
D

1

17S 1

12x1 k̂1D
1

G J . ~56!

Comparing Eqs.~56! and~55! gives the short-distance coefficientC(y,x;m). At the tree level, the matching is trivial, and w
write

C~y,x;m̃ !5CV
2~m̃ !Fd~y2x!1

asCF

4p
C~1!~y,x;m̃ !G1O~as

2!, ~57!

wherem is the matching scale. At one loop, we find

C~1!~y,x;m̃ !5S 2 log2
m̃2

mb
2 13 log

m̃2

mb
2 1¯ D d~y2x!2S 314 log

m̃2

mb
2D u~y2x!

~y2x!1
14u~y2x!S log~y2x!

y2x D
1

5S 2 log2
m̃2

mb
2~y2x!

13 log
m̃2

mb
2~y2x!

1¯ D d~y2x!24
u~y2x!

y2x
log

m̃2

mb
2~y2x!

23
u~y2x!

y2x
. ~58!

At the scalem̃5mbAy2x the logarithmic terms vanish, and we find

C~1!~y,x;mbAy2x!523
u~y2x!

y2x
1¯ . ~59!

The matching scale is therefore different for each operatorO(y).

B. Renormalization group

The differential decay rate in LEET given in Eq.~55! may be written as

dG

dx
5G0E dyC~y,x;m̃ !H F12

asCF

4p S log2
m̃2

mb
2~12y1 k̂1!2

22 log
m̃2

mb
2~12y1 k̂1!2D Gd~12y1 k̂1!

1
asCF

4p S 4

12y1 k̂1
log

m̃2

mb
2~12y1 k̂1!2

2
4

12y1 k̂1D J , ~60!
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-
e
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to
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and so the large logarithms in the matrix element ofO(y;m̃)

vanish at the scalem̃5mb(12y1 k̂1). @This expression
looks highly singular, but as can be seen from Eq.~55!, the
delta functions combine with the other terms to form p
functions.# Thus, in order to sum all logarithms ofm we must
continue to run the operatorO(y) in LEET. From Eqs.~53!
and ~54! we obtain the renormalization group equation

m
d

dm
C~y,x;m̃ !5E dy8g~y,y8;m̃ !C~y8,x;m̃ !, ~61!

where g(y,y8;m̃) is the continuous anomalous dimensi
matrix
01400
g~y,y8;m̃ !5
as~m̃ !CF

p F S log
m̃2

mb
221D d~y82y!

2
2

~y82y!1
u~y82y!G . ~62!

Solving Eq.~61! analytically, however, is nontrivial and be
yond the scope of this work@8#. Instead, we may diagonaliz
the anomalous dimension matrix by taking high moments
the spectrum. This will allow us to compare our results
those of Refs.@9,10#. Note that in Refs.@9,10# both leading
and next-to-leading logarithms were resummed. This
quires the two-loop contribution to the 1/e2 counterterm, the
full one-loop matching condition, and the two-loop runnin
of as , none of which have been included here. As a res
6-10
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our calculation only resums the leading logarithms and
class of the subleading logarithms. However, it is straightf
ward to extract from the literature a resummation of exac
the same set of logarithms.

To calculate the moments we set the residual momen
k to zero.~This residual momentum can easily be incorp
rated by boosting from the rest frame of theb quark, pb
5mbv, to the framep5mbv1k.) Taking moments uncon
volutes the expression for the differential decay rate
LEET, Eq. ~45!, and we obtain

G~N!5E
0

1

dxxN21
dG

dx

5G0E
0

1

dxxN21E
2`

`

dyC~y2x;m!^O~y;m!&

5G0E
0

1

dzzN21C8~12z;m̃ !E
0

1

dyyN21^O~y;m̃ !&

[G0C~N;m̃ !^O~N;m̃ !&, ~63!

where we have used

C~y2x!5
1

y
C8S 12

x

yD u~y2x!, ~64!

sinceC(y2x) just contains delta functions and plus dist
butions. Thus, the operatorO(N;m) is just a linear combi-
nation of the set of operatorsO(y;m). The matching from
the collinear-soft theory onto LEET at tree level is trivia
and we find

C~N;m̃ !5CV
2~m̃ !F11

asCF

4p
C~1!~N;m̃ !G1O~as

2!.

~65!

DeterminingC(1)(N;m0) requires the one-loop expression
G(N) in the collinear-soft theory and the one-loop mat
element ofO(N;m) between partonic states. The one-lo
expression for the differential decay rate in the collinear-s
theory is given in Eq.~56!. Settingk1 to zero and taking
moments we obtain

FIG. 11. Collinear-soft theory Feynman diagrams which co
tribute to the forward scattering amplitude throughO(as).
01400
a
-
y

m
-

n

ft

G~N!5E
0

1

xN21
dG

dx

5G0CV
2~m̃ !H 12

asCF

4p F2 log2
N

n0
27 log

N

n0

2 log2
m̃2

mb
225 log

m̃2

mb
2G J 1¯ , ~66!

wheren05e2gE. This needs to be compared to the one-lo
matrix element of̂ O(N;m)&, which can be obtained from
Eq. ~55!:

^O~N;m̃ !&5E
0

1

dyyN21^O~y;m̃ !&

512
asCF

4p F4 log2
m̃N

mbn0
24 log

m̃N

mbn0
G1¯ .

~67!

The one-loop matching coefficient is now easily determin
using Eqs.~63!, ~66!, and~67! and we find

C~1!~N;m̃ !5
asCF

4p F2 log2
m̃2N

mb
2n0

13 log
m̃2N

mb
2n0

G1¯ .

~68!

At the matching scalem̃5mbAn0 /N all logarithms in this
matching coefficient vanish. Furthermore, from Eq.~67! it is
clear that the matrix element^O(N;m̃)& contains no large
logarithms ofN at the scalem̃5mbn0 /N. Thus we run in the
collinear-soft theory frommb to mbAn0 /N, perform the
OPE, and runC(N;m̃) from mbAn0 /N to mbn0 /N.

The running of the coefficientCV in the collinear-soft
theory from the scalemb to the scalembAn0 /N is obtained
by settingm̃5mbAn0 /N in Eq. ~39!. The running in LEET is
determined by the RGE forC(N;m̃)

m
d

dm
C~N;m̃ !5g~N;m̃ !C~N;m̃ !, ~69!

where the anomalous dimension is given by

g~N;m̃ !5E
0

1

dzzN21g~z;m̃ !

52
as~m̃ !CF

p F122 logS m̃N

mbn0
D G . ~70!

The solution to this equation is

-
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CS N;
mbn0

N
D 5CV

2S mbAn0

N
D S asS mb

n0

N
D

asS mbAn0

N
D D

2CF

b0
S 11

4p

b0as
22 log

N

n0
D
S n0

N
D

2CF

b0
. ~71!

his sums perturbative logarithms ofN into the coefficientC(N). We can then substitute this into Eq.~63! to obtain an
xpression for the resummed moments of the differential decay rate.

Using the result forCV(m) given in Eq.~39! and taking the matrix element ofO(N;m) between hadronic states, we find the
esummed expression for large photon energy moments of the decayB→Xsg

G~N!5G0f ~N;mbn0 /N!S asS mbAn0

N
D

as

D
CF

b0
S 528p

b0as
D S asS mb

n0

N
D

asS mbAn0

N
D D

2CF

b0
S 11

4p

b0as
22 log

N

n0
D
. ~72!

ogarithms are explicitly summed in this expression and only long distance physics is contained in the fun
(N;mbn0 /N).

We can easily compare our results to those in the literature. A resummed expression forG(N) is given in Ref.@9#:

G~N!5G0f ~N;mb /N!expF2E
n0 /N

1 dy

y S 2E
mby

mbAy dm

m
Gc~m!1G~mby!1g~mbAy! D G , ~73!
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where, at one loop,

Gc~m!5
as~m!CF

p
,

G~m!52
as~m!CF

p
, ~74!

g~m!52
3as~m!CF

4p
.

Note that the cusp anomalous dimensionGc(m) is the con-
tribution to the anomalous dimension from the 1/e2 counter-
term. Using only the one-loop cusp anomalous dimens
tree level matching, and the one-loop running ofas , Eq.
~73! resums leading logarithms and the same class of n
to-leading logarithms we resum in our calculation. Perfor
ing the integrations in the exponent we reproduce Eq.~72!.
Thus the approach presented here, based on an effective
theory, is in agreement with the factorization formalism a
proach for summing perturbative logarithms.

V. CONCLUSIONS

In the specific case ofB̄→Xsg we have shown how Suda
kov logarithms can be summed within an effective fie
theory framework. First we construct an intermediate the
which includes both collinear and soft degrees of freedo
By performing a one-loop calculation we show that th
collinear-soft theory can be matched onto QCD at the sc
mb without introducing logarithmic terms into the shor
01400
n,

t-
-

eld
-

y
.

le

distance coefficient. In addition we determine the one-lo
anomalous dimension and solve the RGE. Next we integ
out collinear modes at the scalembAy2x by switching to
LEET. We perform an OPE in powers of (y2x) which leads
to the appearance of a nonlocal operator where two vert
are separated along the light cone. The matrix element of
operator betweenB meson states is the structure functio
We perform the OPE at one-loop in the collinear-soft theo
and match onto the nonlocal operator in LEET. At the sc
mbAy2x no logarithmic terms are introduced into the sho
distance coefficient.

In order to compare to the factorization formalism resu
in the literature we repeat our analysis for large moments
the decay rate. In this case we find that the collinear-s
theory matches onto LEET at the scalembAn0 /N, and that
there are no large logarithms in the matrix element of
bilocal operator at the scalembn0 /N. Using the renormaliza-
tion group equations in the collinear-soft theory we su
logarithms ofN between the scalesmb and mbAn0 /N. We
then switch to LEET and sum logarithms ofN between the
scalesmbAn0 /N and mbn0 /N. This sums all perturbative
logarithms ofN. We find that our result agrees with the r
sults presented in the literature. This gives us confidence
we have constructed the correct effective field theory.

Though we have presented this work entirely in the co
text of B→Xsg our approach is general. It should b
straightforward to apply the collinear-soft theory and LEE
to other processes in which Sudakov logarithms arise. F
thermore, this approach could also be applied to exclus
decays, in which case one does not perform the final O
6-12
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onto LEET, but remains in the collinear-soft theory. Th
could be applied to recent results on factorization in nonl
tonic decays@31#, as well as LEET-based relations betwe
form factors in decays to highly energetic final states@32#.
Since these latter results depend only on the spin symm
of LEET, which is also present in the collinear-soft theo
they should remain valid in the present approach.
s.
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