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Analytical heavy quark expansion in the ’t Hooft model
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We present a number of exact relations for the heavy quark limit and develop an analytical 1/mQ expansion

for heavy mesons in the ’t Hooft model. Among the new results are the relation 3mp
2 5L̄22msp

2 1b2, 1/mQ

corrections to the decay constants, to the kinetic expectation values, and 1/mQ
2 nonperturbative corrections to

the B→D amplitude at zero recoil. The properties of the IW functions are addressed and the small velocity
sum rules are verified.
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I. INTRODUCTION

Heavy quark symmetry and heavy quark expansion h
played an important role in understanding weak decays
charm andb-flavored hadrons allowing extraction of the fu
damental parameters of the standard model.b-flavored
quarks and, in particular, charm quarks are not infinit
heavy even in the crude approximation. In practice, 1/mQ
corrections to the strictmQ→` limit often constitute the
main limitation. Even in a few cases where the first terms
known, a question remains about the convergence of the
ployed 1/mQ expansion.~For a review and further reference
see Ref.@1#.!

In such a situation it is advantageous to have a mo
laboratory where both 1/mQ corrections and the whole finite
mQ amplitudes can be evaluated exactly. On the one ha
this allows one to trace in detail how the methods used
actual QCD work in a simplified setting. On the other han
it has been empirically observed that certain quantities
heavy flavor hadrons suffer from numerically large pow
corrections, while others seem robust against finite mass
fects. Studying this in toy models can help gain some insi
which can be applied in various studies of actual QCD,
cluding those based on the QCD sum rules technique or
tice computations.

One such solvable model, which has been applied t
variety of strong interaction phenomena in the past is th
Hooft model, QCD in 111 dimensions at large number o
colors Nc→` @2#. The ’t Hooft model has two importan
features that resemble real~311!-dimensional QCD
(QCD311) phenomenologically: confinement and sponta
ous chiral symmetry breaking. Since the underlying mic
scopic mechanisms for these effects in this model are q
different from the respective mechanisms in QCD311, it is
probable that QCD111 is of little help to understand theori-
gin of these features in real QCD, but it may nevertheless
very valuable to better understand theconsequencesfor other
observables.

In this paper we will focus on themQ→` limit of the ’t
Hooft model. Even though we were not able to solve t
limit analytically, we succeeded in deriving a number of e
0556-2821/2000/63~1!/014004~13!/$15.00 63 0140
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act relations involving terms that appear in the 1/mQ expan-
sion. In Sec. II we will discuss some general features of t
model. In Sec. III the static limitmQ→` will be explored
and we will derive a number of relations involving ’t Hoo
wave functions in this limit. These relations will be applie
in Sec. IV to derive some exact results for power correctio
in this model. Section V gives the conclusions.

II. THE ’t HOOFT MODEL

QCD111 is based on the Lagrangian

L5(
q

q̄~ igmDm2mq!q2
1

2gs
2
Tr GmnGmn , ~1!

defined in one space and one time dimension, i.e.,m,n
50,1 and all fields depend only on two space-time coor
nates. In the light-cone gauge,A150, as in any other axia
gauge, the non-Abelian term in the field strength ten
Gmn5 i @Dm ,Dn#5]mAn2]nAm1 i @Am ,An# vanishes, which
drastically simplifies the dynamics of the model. This allow
one to eliminate the only nonvanishing component of
gauge fieldA2, by means of the Poisson equation

2]2
2 Aa

25gs
2Ja

1 , ~2!

where we have introduced light-cone coordinatesx6

5(1/A2)(x06x1). In two dimensions there are no dynam
cal gluons and, after solving the Poisson equation~2!, the
only remnant of the gluon field is a Coulomb-like instant
neous interaction among the quarks. Of course, in one sp
dimension, the ‘‘Coulomb’’ interaction is linearly confining
It is this feature which makes QCD111 so attractive if one is
interested in studying models which exhibit infrared slave

An additional simplification occurs in the largeNc limit

Nc→`, b2[
gs

2Nc

2p
fixed, ~3!

where sea quarks~more precisely, quark loops! are sup-
pressed and only planar diagrams survive. Therefore,
©2000 The American Physical Society04-1
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light-cone Fock space expansion, the valenceq̄q approxima-
tion for mesons becomes exact, and the two body equa
for the quark distribution amplitudewn(x) of mesons~the ’t
Hooft equation@2#! reads

Mn
2wn~x!5Fm1

22b2

x
1

m2
22b2

12x Gwn~x!2b2E
0

1

dy
wn~y!

~y2x!2

[Fm1
22b2

x
1

m2
22b2

12x Gwn~x!1Vwn~x!. ~4!

Herex denotes the light-cone momentum fraction carried
the quark andMn is the invariant mass of the meson.

Equation~4! has a very physical interpretation: the ligh
cone energy of theqq̄ pair consists of a sum of the light-con
kinetic energies of the quark and antiquark plus an inter
tion termV. The integral operatorV can be interpreted as th
momentum space representation of a linear potential.
singularity of the QCD-Coulomb interaction in Eq.~4! is
regularized using the principal value prescription, with

E
0

1

dy
1

~x2y!2
52S 1

x
1

1

12xD .

For practical purposes, it is convenient to rewrite Eq.~4!
into the form where the singularity of the interaction term
less severe:

Mn
2wn~x!5S m1

2

x
1

m2
2

12xDwn~x!2b2E
0

1

dy
wn~y!2wn~x!

~y2x!2
.

~5!

Note that Eq.~5! can also be obtained as a variational eq
tion for the functional~Hamiltonian! defined by the quadratic
form

^nuHun&5E
0

1

dxS m1
2

x
1

m2
2

12xDwn
2~x!

1
b2

2 E
0

1

dxdy
@wn~y!2wn~x!#2

~y2x!2
. ~6!

The interaction term in Eq.~6! is non-negative and the ki
netic term is minimized forx/(12x)5m1 /m2, i.e., when the
ratio of momentum fractions carried by the quark and a
quark equals their ratio of bare masses. Therefore the va
tional formulation Eq.~6! of the ’t Hooft equation yields a
lower bound

Mn.m11m2 ~7!

@the inequality is saturated only for the massless pion wh
m15m250 and atn50, with wp(x)51#. The mass of a
bound state exceeds the sum of thebare masses of the con
stituents, the fact expected semiclassically.

A certain parity relation proves to be useful; it was fir
given in Ref. @3# and reportedly ascends to ’t Hooft. W
define operatorK as
01400
on

y

c-

e

-

i-
ia-

re

Kw~x!5E
0

1

dy
w~y!

y2x
. ~8!

Then the following commutation relation holds:

@H,K#w~x!5
m1

2

x E
0

1dy

y
w~y!2

m2
2

12xE0

1 dy

12y
w~y!. ~9!

Since for eigenstates the expectation value of the comm
tor of any operatorA with Hamiltonian vanishes,

^nu@H,A#un&50, ~10!

one has

05^nu@H,K#un&

5m1
2S E

0

1dy

y
wn~y! D 2

2m2
2S E

0

1 dy

12y
wn~y! D 2

. ~11!

Therefore,

m2E
0

1 dy

12y
wn~y!52Pnm1E

0

1dy

y
wn~y!, ~12!

andPn is identified with the parity of the eigenstaten. This
identification is confirmed by comparing with explicit ex
pressions for the matrix elements of the pseudoscalar
scalar densities between the staten and the vacuum@3#

^0uq̄2q1un&5ANc

4pE0

1

dxS m1

x
2

m2

12xDwn~x!,

^0uq̄2ig5q1un&5ANc

4pE0

1

dxS m1

x
1

m2

12xDwn~x!.

~13!

Using Eq.~12!, it is easy to see that^0uq̄2q1un&5” 0 only for
states withPn51 and^0uq̄2ig5q1un&5” 0 only for states with
Pn521.

Integrating the ’t Hooft equation overx and using the
parity relation~12! we get

E
0

1dx

x
wn~x!5

Mn
2

m1~m12Pnm2!
E

0

1

dxwn~x!,

E
0

1 dx

12x
wn~x!5

Mn
2

m2~m22Pnm1!
E

0

1

dxwn~x!. ~14!

Similarly, integrating the ’t Hooft equation multiplied byx
yields

E
0

1

dxxwn~x!5Fm1
22m2

2

Mn
2

1
m2

m22Pnm1
G E

0

1

dxwn~x!

2
b2

Mn
2E0

1

dx ln
12x

x
wn~x!,
4-2
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E
0

1

dx~12x!wn~x!5Fm2
22m1

2

Mn
2

1
m1

m12Pnm2
G E

0

1

dxwn~x!

1
b2

Mn
2E0

1

dx ln
12x

x
wn~x!.

Another useful relation for the ’t Hooft equation whic
holds for arbitrary quark masses was derived by Burkardt@4#
and is often referred to as the virial theorem. Let us den

D5x
d

dx
, D̃5~12x!

d

d~12x!
. ~15!

A direct computation yields for the commutator ofD with
the interaction operatorV in the ’t Hooft equation the follow-
ing result:

@D,V#52V ~16!

and, therefore,

@D,H#52H1
m2

22b2

~12x!2
. ~17!

Likewise

@D̃,H#52H1
m1

22b2

x2
. ~18!

Using again the fact that the expectation value of the co
mutator of any operator with Hamiltonian vanishes in
energy eigenstate, these two commutation relations yield
relation which holds for any eigenfunction:1

Mn
25~m1

22b2!K 1

x2L 5~m2
22b2!K 1

~12x!2L . ~19!

The ’t Hooft equations describing mesons with one hea
quarkQ acquire new symmetry which entails one to a nu
ber of additional relations. In the rest of the paper we stu
these relations in the static limit (mQ→`) and develop the
1/mQ expansion around this limit.

III. STATIC VERSION OF THE ’t HOOFT EQUATION

In the heavy quark limit, i.e., when the mass of the qu
m1→`, the meson wave functions become sharply pea
nearx→1, since most of the momentum is then carried
this quark. Therefore, in order to study them1[mQ→`
limit, it is convenient to introduce the nonrelativistic var
ables Mn5mQ1 ẽn , t5(12x)mQ , and Cn(t)
5(1/AmQ)wn(12t/mQ). In these variables the ’t Hoof
equation~4! takes the form

1As it stands, Eq.~19! is valid only form2.b2. Form2<b2 it can
be replaced by a subtracted version@4#.
01400
e

-

he

y
-
y

k
d

y

S ẽn1
ẽn

21b2

2mQ
DCn~ t !5S msp

2 2b2

2t
1

t

2

12
b2

mQ
2

12
t

mQ

D Cn~ t !

2
b2

2 E
0

mQ
ds

Cn~s!

~ t2s!2
. ~20!

We assume that in the notations of the previous sectionm1
5mQ is large, andmsp5m2 will be denoted simply asm
below. The limitmQ@b is obtained by expanding the se
ond term in the right-hand side~RHS! of Eq. ~20! in t/mQ
and extending it to the interval@0,̀ ):2

S ẽn1
ẽn

21b2

2mQ
DCn~ t !5S m22b2

2t DCn~ t !1S 12
b2

mQ
2 D

3F t

2
1

t2

2mQ
1

t3

2mQ
2

1•••GCn~ t !

2
b2

2 E
0

`

ds
Cn~s!

~ t2s!2
. ~21!

Performing 1/mQ expansion, it is convenient to study th
eigenvalues

en[ẽn1
ẽn

21b2

2mQ
~22!

of the equation themselves rather than directlyẽn . This will
be assumed later when we study 1/mQ corrections to the
static limit. ~The explicit factor 12b2/mQ

2 can be eliminated
by properly rescalingt.!

The static limit is obtained neglecting all terms su
pressed by inverse powers ofmQ @5–7#:

enCn~ t !5
m22b2

2t
Cn~ t !1

t

2
Cn~ t !2

b2

2 E
0

`

ds
Cn~s!

~ t2s!2
.

~23!

This is a stationary Schro¨dinger-type equation for the one
dimensional system with the static Hamiltonian

H5Hstat5
m22b2

2t
1

t

2
2

b2

2 E
0

` ds

~ t2s!2
. ~24!

Similar to Eq.~6!, the expectation value of the Hamiltonia
over a stateCn can be written in the form

2Extending the interval to@0,̀ ) introduces errors that are onl
O(1/mQ

4 ).
4-3
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^nuHstatun&5E
0

`

dtS m2

2t
1

t

2DCn
2~ t !

1
b2

4 E
0

`

dsdt
@Cn~s!2Cn~ t !#2

~s2t !2
. ~25!

Since m2/2t1t/2>m, Eq. ~25! suggests thaten.m. This
lower bound follows also directly from the general low
bound Eq.~7!.

The large-t asymptotics of the static eigenfunctions is o
tained directly:

Cn~ t ! →
t→` b2F (n)

t3
, ~26!

where

F (n)[E
0

`

dtCn~ t !5 lim
mQ→`

ApmQ

Nc
f n , ~27!

and f n is the usual annihilation constant of a meson@3#. The
combinationF (n) has finite large-Nc and large-mQ limits.
Together with various moments@integrals of Cn

2(t) with
powers oft# it plays an important role in the heavy qua
expansion. For future use, it is convenient to define a se
operators acting onC(t),

JlC5E
0

`

dttlC~ t !, J0[J, ~28!

and matrix elements

Fl
(n)5E

0

`

dttlCn~ t !. ~29!

Then, for example, (F (n))25^nuJ0un&. Of course, the inte-
grals in Eqs.~28! and ~29! literally converge only for21
< l ,2.

The static analogue of the operatorK in Eq. ~8! takes the
form

KC~ t !5E
0

`

ds
C~s!

s2t
, ~30!

and its commutator with the Hamiltonian

@H,K#5
m2

2t E0

`ds

s
2

1

2E0

`

ds5
m2

2t
J212

1

2
J0 . ~31!

For any energy eigenstaten, the equation̂ nu@H,K#un&50
holds, and we thus find

m2U E
0

`dt

t
Cn~ t !U2

5U E
0

`

dtCn~ t !U2

~32!

or
01400
of

mE
0

`dt

t
Cn~ t !52PnE

0

`

dtCn~ t !, ~33!

i.e., mF21
(n) 52PnF (n). Hereafter we call states for whic

Pn521 and Pn51 P odd andP even, respectively. Of
course, Eq.~33! can also be obtained directly by applying th
heavy quark limit to the finite mass parity relation Eq.~12!,
which is the reason why corrections to the static limit do n
spoil the parity classification.

Another relation among the moments of the wave fun
tion can be obtained by integrating the static equation~23!
from 0 to `, yielding

2enF (n)5m2F21
(n) 1F1

(n) ,

which with the help of the above parity relation can be wr
ten as

F1
(n)5~2en1mPn!F (n). ~34!

Nondiagonal matrix elements ofK are also expressed i
terms ofe andF:

^nuKu l &5
PnPl21

2

1

en2e l
F (n)F ( l ). ~35!

Certain useful relations emerge also from the commuta
relation

@H,t#52
b2K

2
, ~36!

and the obvious commutator@ t,K#52J0. Thus, for ex-
ample,†t,@ t,H#‡52(b2/2)J0 and hencê nu†t,@ t,H#‡un&5
2(b2/2)(F (n))2.3

In the following, we will derive a tower of relations
among the moments ofCn

2 . For this purpose, we conside
the operators

Dn5tn
d

dt
, D15t

d

dt
[D. ~37!

A direct computation yields

@Dn ,H#52ntn21H1
n21

2
~m22b2!tn221

n11

2
tn

2
b2

2 (
k50

n23

~k11!~n2k22!tn2k23Jk . ~38!

For n50,1,2 the last sum is absent. The first few relatio
take the form

3This relation is the so-called fourth sum rule for the Darw
operator.
4-4
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F d

dt
,HG52

m22b2

2t2
1

1

2
, n50,

F t
d

dt
,HG52H1t, n51,

F t2
d

dt
,HG522tH1

1

2
~m22b2!1

3

2
t2, n52,

~39!

F t3
d

dt
,HG523t2H1~m22b2!t12t32

b2

2
J0 , n53,

F t4
d

dt
,HG524t3H1

3

2
~m22b2!t21

5

2
t42b2tJ02b2J1 ,

n54.

Taking the expectation values of the operator relations
Eqs.~39! we obtain the momentŝtn& in terms of the bound-
state energies and decay constantsF:

n51, ^t&5e,

n52, 3^t2&54^t&22~m22b2!,
~40!

n53, 4^t3&56^t2&^t&22~m22b2!^t&1b2F0
2 ,

n54, 5^t4&58^t3&^t&23~m22b2!^t2&14b2F0F1 .

Note thatn>5 does not literally lead to meaningful relation
since they would involve divergent terms. The casen50
yields the relation

~m22b2!E
0

`dt

t2
C2~ t !51, ~41!

i.e., the virial theorem Eq.~19! for the light quark in the limit
where the other quark is static. As we have mentioned ab
it is literally valid at m.b, for smallerm it can be under-
stood, for example, as an analytic continuation in the mas
light antiquark or in a subtracted form. As we will sho
later, these moments are important in the 1/mQ expansion
since the leading 1/mQ corrections in Eq.~21! are simple
powers oft.

The relation^t&5en is also a direct consequence of th
virial equation~19! ~the one which involvesmQ

2 ) expanded
to the first nontrivial order in 1/mQ . It was first derived in
Ref. @6# ~see also Ref.@7#!. In QCD the bound-state energie
en are usually denoted byL̄n .

The next important parameter of the heavy quark exp
sion is the kinetic expectation value mp

2 5

(1/2MHQ
)^HQuQ̄( iDW )2QuHQ&. In the limit mQ→` the op-

erator of the spacelike momentum takes the simple fo
since theZ-graph contributions can be neglected, the lig
cone combination of momentum is given byxMHQ

, and the
time component can be excluded using the equation of
01400
n

e,

of

-

,
-

o-

tion D0Q5mQQ. In the ’t Hooft model, in the limitmQ
→` this immediately leads to

mp
2 5E

0

`

dt~ t2 t̄ !2C2~ t !5^t2&2^t&2. ~42!

Combining then52 relation in Eq.~40! with the virial equa-
tion (n51) one finds

3mp
2 5L̄22m21b2, L̄[en , ~43!

for any bound state.
In the absence of actual chromomagnetic field inD52

the next operator is represented by the Darwin term

rD
3 5

1

2MHQ

^HQuQ̄~2 1
2 DW EW !QuHQ&5

b2F2

4
~44!

~the last relation is obtained using the equation of motion
the gauge field, and factorization valid atNc→`). At the
same order a nonlocal zero-momentum correlator of the
netic operators appears as well, which will be addresse
the next section.

Before proceeding to the IW functions, let us mention
upper bound on the decay constantsF (n). It is obtained using
one of the Sobolev’s inequalities bounding theL` norm via
L2 andL2

1 norms in one dimension:

u f ~a!u<21/2F E dzu f ~z!u2G1/4F E dzu f 8~z!u2G1/4

for any a.

~45!

In terms of the Fourier transform off (z), C(t) it takes the
form

U E dtC~ t !U<p1/2F E dtC2~ t !G1/4F E dtt2C2~ t !G1/4

.

~46!

Applied to the static wave function it reads

F<Ap~L̄21mp
2 !1/45ApS 4L̄22m21b2

3
D 1/4

or

rD
3 ,

p

4
b2~L̄21mp

2 !1/2. ~47!

These bounds are aD52 counterpart of the bounds dis
cussed in QCD in Ref.@8#.

Since the inequality in Eq.~46! is saturated only by func-
tions of the form 1/(c1t2), a solution of the ’t Hooft equa-
tion cannot saturate the bound~47!. It is interesting, how-
ever, that for the ground states with light spectator qua
m&b the decay constantF numerically almost saturates th
bound, within only a few percent.

The operatort plays a special role for the static equatio
~23!: the first and the last terms inHstat are homogeneous
functionals of rank21 with respect tot, while the term}t/2
4-5
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has rank11. It breaks the dilatation invariance of the eige
state problem. This operator is the analogue of the oper
D of Ref. @9# representing the part of the full trace of th
energy-momentum tensorumm associated with the light de
grees of freedom@Sec. II, Eq.~9!#. Likewise, there are many
relations for various observables in the ’t Hooft model,
volving the operatort. Here we consider matrix elements
t.

Using the commutator Eq.~36! we write

^kutun&5
1

ek2en
^ku@H,t#un&

52
b2

2~ek2en!
^kuKun&

52
b2

2~ek2en!2
^ku@H,K#un&

52
b2

4~ek2en!2
~m2F21

(k) F21
(n) 2F0

(k)F0
(n)!

5
b2

4~ek2en!2
F0

(k)F0
(n)~12PkPn!, ~48!

where relations~31! and ~33! have also been used. This ca
be cast into the form

^kut2Hun&5
b2

2~ek2en!2
F0

(k)F0
(n)S 12~21!k2n

2 D ~49!

which embeds bothk5n and k5” n @we have used the fac
that PkPn5(21)k2n#. The above equation shows that th
operatort2H is P odd, i.e., its matrix elements do not va
ish only between the states of opposite parity. This ma
sense since, in the static limit,t2H is simply Q̄iD zQ.

Using the second of the commutation relations~39! we
have, for the nondiagonal matrix elements of the dilatat
operatorD,

^kut
d

dt
un&52

b2

2~ek2en!3
F0

(k)F0
(n)H 0 wrong parity,

1 right parity,
~50!

These matrix elements determine the so-called oscill
strengths—the small velocity~SV! transition amplitudes be
tween the heavy quark states~usually the ground and the ‘
P-wave’’ states in actual QCD!. Equation~50! allows one to
prove an important symmetry relation for the IW function

A. IW function

The IW function determines the transition amplitudes b
tween two heavy-quark states induced by a current bilin
in two heavy quark fields. In the present context it can
defined as a diagonal scalar current in the heavy quark l
mQ→`:
01400
-
or

-

s

n

or

-
ar
e
it

1

2Ap08p0

^HQ
(k)~p8!uQ̄QuHQ

(n)~p!&5jnkS ~pp8!

MHQ

2 D ,

~pp8!

MHQ

2
5~vv8![w. ~51!

In the ’t Hooft model the IW functions are given by th
following expression in terms of the static wave functions

jnk5
2

11w6Aw221
E

0

`

dtCk~ t !Cn~@w7Aw221#t !

5
2Az

11zE0

`

dtCkS t

Az
D Cn~Azt!, ~52!

where

w5
11z2

2z
, z5w6Aw221. ~53!

The expression for the IW function was obtained in Refs.@5#
and @10#.

Let us note that each value ofw5” 1 can be represented b
two different values ofz corresponding to two possible va
ues of the square root in Eq.~52!, such thatz1z251. They
must yield the same value ofj, up to a sign:

jnk~z!5PnPkjnk~1/z!, ~54!

which, forn5” k looks similar to a miraculous property of th
’t Hooft equation@5#. Alternatively, the above property ca
be written as

jnk~w!5PnPkjkn~w!. ~55!

Now we can demonstrate it explicitly.4

Using the fact thatD[t(d/dt) is the generator of scale
transformations, i.e.,

eln(a)Df ~ t ![eln(a)t(d/dt) f ~ t !5 f ~at! ~56!

for an arbitrary functionf (t), the IW function can be written
in the form

jnk~z!5
2Az

11z
^kue(D11/2)ln zun&, D5t

d

dt
. ~57!

Note that the operatorD1 1
2 is anti-Hermitean~antisymmet-

ric!, so thatie(D11/2)ln zun&i5iun&i. This ensures the so-calle
first sum rule expressing the unit probability of the transiti
to arbitrary final state in the heavy quark limit~in the SV
approximation it is known as the Bjorken sum rule!.

To calculate the diagonal matrix elements ofD one can
use the identity

4We thank R. Lebed for the cross checks in the numerical co
putations.
4-6
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E dtC8~ t !C~ t ! f ~ t !5
1

2E dtF d

dt
@C2~ t ! f ~ t !#

2C2~ t ! f 8~ t !G
52

1

2
^ f 8~ t !& ~58!

valid for arbitraryf (t). In particular, it shows that the expec
tation values ofD1 1

2 vanish. Together with relation~50! we
see that only even powers ofD1 1

2 survive in the exponent in
Eq. ~57! when un& and uk& have the same parity, and on
odd powers contribute if the parity of the two states is op
site:

jnk5
2Az

11z
• H ^ku cosh[~D1 1

2 )ln z#un&, n2k5even,

^ku sinh[(D1 1
2 )ln z] un&, n2k5odd.

~59!

This proves the symmetry properties Eqs.~54!,~55! and en-
sures that the IW functions are analytic atvv851, in spite of
the branch point inz as a function ofvv8.

B. SV sum rules

Important constraints on the transition amplitudes
tween heavy flavor hadrons and on the parameters of
heavy quark expansion follow from the sum rules, in partic
lar, in the small velocity~SV! limit. In 111 dimensions the
first four sum rules in the heavy quark limit take the form

rk
22

1

4
5(

l
t lk

2 ,

1

2
ek5(

l
~e l2ek!t lk

2 , ~60!

~mp
2 !k5(

k
~e l2ek!

2t lk
2 ,

~rD
3 !k5(

l
~e l2ek!

3t lk
2 . ~61!

The so-called ‘‘oscillator strengths’’t parametrize the tran
sition amplitudes into the opposite-parity states in the
limit, and r2 denotes the slope of the elastic IW function

1

2M
^ l uQ̄gmQuk&5t lk«mnvn,

1

2M
^k~vW !uQ̄g0Quk~0!&512rk

2 vW 2

2
1O~vW 4!

~62!

(vW is the velocity of the final state hadron!. Therefore,
01400
-

-
he
-

t lk5^ l ut
d

dt
1

1

2
uk&, rk

22
1

4
5^kuS t

d

dt
1

1

2D 2

ukP).

~63!

The first sum rule then becomes obvious being a con
quence of completeness of the eigenstates.5 Other sum rules
are straightforward as well.

Consider, for example the third sum rule for the kine
operator. Using the commutator withn51 in Eq. ~39!, we
have

(
l

t lk
2 ~e l2ek!

25(
l

^kut2Hu l &^ l ut2Huk&

5^kut2uk&2~^kutuk&!2

5~mp
2 !k . ~64!

Similarly, we get for the second, ‘‘optical’’ sum rule

(
l

t lk
2 ~e l2ek!52(

l
^kutu l &^ l ut

d

dt
1

1

2
uk&

52^kut2
d

dt
1

t

2
uk&5

ek

2
. ~65!

The fourth sum rule for the Darwin operator can be direc
obtained by inserting the complete set of states into the c
mutator†t,@ t,H#‡52(b2/2)J0:

(
l

t lk
2 ~e l2ek!

352
1

2
^ku†t,@ t,H#‡uk&5

b2~F (k)!2

4
5~rD

3 !k .

~66!

IV. 1ÕmQ EXPANSION

In practice, it is often necessary to account for the fi
few 1/mQ

k corrections to the static limitmQ→`, since in
actuality these effects are non-negligible not only for char
but even forb-flavor hadrons. In studies of the ’t Hoof
model there appears an additional motivation: the availa
numerical approaches often apply only to the finite qu
masses. The solution of the static equation~23! is approxi-
mated by the solution of the generic finite-mass ’t Ho
equation wheremQ is taken large but finite. For computa
tional reasonsmQ cannot be taken too large, and control ov
the ‘‘spurious’’ 1/mQ corrections becomes mandatory ev
for studies of the pure static case.

In this section we will study the leading 1/mQ corrections
to the axial decay constant, meson masses, and the ki
energy of the heavy quark. The 1/mQ expansion is carried
out by applying to Eq.~21! the standard formalism of non
covariant time-independent perturbation theory used in Q
Since the leading 1/mQ corrections in Eq.~21! involve only
powers oft, it is possible to derive exact expressions for t
first few terms in the 1/mQ expansion for these observable

5See Ref.@11#, where the absence of continuum eigenstates for
’t Hooft model Hamiltonian is proved.
4-7
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that depend only on the moments of the static wave func
and of the structure function. Using the results from Sec.
one can then express the coefficients in the 1/mQ expansion
solely in terms of the static binding energy and the de
constant.

Although we will perform the 1/mQ expansion using old-
fashioned time-ordered perturbation theory, we will intr
duce here the corresponding notations which resemble t
used in field theory, where 1/mQ corrections to various ex
pectation values are given by correlators of the type

2^ku E
2`

`

dt iT$A~0!,dH~t!%uk&. ~67!

Heisenberg operators O(t) are understood a
eiHtO(0)e2 iHt; we assume that the Schro¨dinger operators
we deal with, do not depend ont explicitly.

We then denote for the stationary problem

^ku iT$A,B%uk&[^ku E
2`

`

dt iT$A~0!,B~t!%uk&

5 (
n5” k

^kuAun&^nuBuk&
en2ek

1 (
n5” k

^kuBun&^nuAuk&
en2ek

. ~68!

The similar expectation value can be defined for the tim
ordered product of arbitrary number of operators. We c
sider

H→H1aA1bB1gC1•••

and put

^ku iT$A,B,C, . . . %uk&

[2S ]

]a

]

]b

]

]g
. . . ek~a,b,g,••• ! D

a5b5g5•••50

.

~69!

Two basic relations hold for suchT products of two op-
erators:

^ku iT$@H,A#,B%uk&5^ku@A,B#uk& ~70!

and

^ku iT$AH,B%uk&5ek^ku iT$A,B%uk&2^kuABuk&

1^kuAuk&^kuBuk&,

^ku iT$HA,B%uk&5ek^ku iT$A,B%uk&2^kuBAuk&

1^kuAuk&^kuBuk&. ~71!

The first relation has a transparent meaning: since@H,A#5
2 i (dA/dt), Eq. ~70! is a form of integrating by parts
01400
n
I,

y

-
se

-
-

^ku E dtTH dA~t!

dt
,B~0!J uk&

5^ku E dt
d

dt
T$A~t!,B~0!%uk&

1^ku@A~0!,B~0!#uk&. ~72!

The obvious relation

^ku iT$H l ,A%uk&50

holds as well, which will be used later.
In the static limit,^t& equals to the bound-state energye.

It is often necessary to know hoŵt& changes under variou
perturbationsdH. The answer is readily obtained using Eq
~39! and ~70!:

dtkk5^ku iT$t,dH%uk&52^kuF t
d

dt
,dHG uk&. ~73!

SinceD15t(d/dt) generates scale transformations int, one
finds

F t
d

dt
,OG5Dim@O#O. ~74!

Say,@ t(d/dt),t l #5 l t l . Therefore, any perturbation which is
homogeneous rank-l functional of t, satisfies@10#

d^t&52 l ^dHl&. ~75!

For example, fordH5lt one findsd^t&52l, a result that
can be easily verified by direct evaluation, since the ex
result readŝ t&l5^t&/A112l. The same property holds fo
nonlocal operators as well. For example,

^ku iT$t,A,B%uk&52~D@A#1D@B#11!^ku iT$A,B%uk&
~76!

or

^ku iT$~ t22H!,A,B%uk&52~D@A#1D@B#21!

3^ku iT$A,B%uk&,

where D@A#,D@B# denote thet-dimension of operatorsA
andB.

The above properties parallel the relations for the opera
of the trace of the energy-momentum tensor for the lig
degrees of freedom in actual QCD discussed in Ref.@9#. This
similarity was elucidated in the previous section.

ThemQ-suppressed terms in the RHS of Eq.~21! playing
the role of the perturbation dH are given by
t2/2mQ , t3/2mQ

2 , etc. Therefore, in the 1/mQ expansion one
typically needs to computeT products Eq.~68! with the op-
eratort2 ~or t3, in higher order!. As exemplified above, this
can be done directly using the relations in Eqs.~70! and~71!:
4-8
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^ku iT$t2,A%uk&52
2

3
^ku@D2 ,A#uk&2

4

3
ek^ku@D1 ,A#uk&

2
4

3
^kutAuk&1

4

3
ek^kuAuk&, ~77!

^ku iTH t32
b2J0

4
,AJ uk&

52
1

2
^ku@D3 ,A#uk&2ek^ku@D2 ,A#uk&

2
1

2
~4ek

22m21b2!^ku@D1 ,A#uk&2
3

2
^kut2Auk&

22ek^kutAuk&1
1

2
~8ek

22m21b2!^kuAuk&, ~78!

etc.
As an application of these relations, we obtain

^ku iT$t2,t2%uk&52
4

3
~2^t3&1^t&^t2&!

52F64

9
ek

32
28

9
ek~m22b2!1

2

3
b2F0

2G .
~79!

This correlator governs the 1/mQ corrections to the averag
^t2& which, in turn, determines the kinetic expectation va
in the static limit. Likewise

^ku iT$t2,t l%uk&52
2l 14

3
^kut l 11uk&2

4

3
~ l 21!ek^kut l uk&.

~80!

Similarly we get the analytic expression for the 1/mQ cor-
rections to the decay constantsF (k). Indeed, (F (k))2

5^kuJ0uk&, and

d1/mQ
~F (k)!25

1

2mQ
^ku iT$t2,J0%uk&

5
1

2mQ
^ku2

2

3
@D2 ,J0#uk&

1
1

2mQ

4

3
$ek^ku iT$t,J0%uk&2^kutJ0uk&

1^kutuk&^kuJ0uk&%

5
1

2mQ
H 2

4

3
F0

(k)F1
(k)2

4

3
ek^ku@D1 ,J0#uk&

2
4

3
F0

(k)F1
(k)1

4

3
ek~F0

(k)!2J
52

1

2mQ

8

3
F0

(k)F1
(k) , ~81!
01400
where we have used that@D1 ,J0#5J0 and @D2 ,J0#52J1.
Thus,

d1/mQ
F (k)

F (k)
52

1

mQ

2

3

F1
(k)

F0
(k)

52
2~2ek1mPk!

3mQ
. ~82!

In the last equation we used relation Eq.~34! for F1
(k) . The

1/mQ corrections toF turn out to be significant~see Refs.
@5,12#!.

It is often advantageous to define the axial decay cons
via the pseudoscalar current rather than the axial curren

1

2MHQ

^0uq̄ig5Quk&5
1

2
f̃ (k), ~83!

then

f̃ (k)5 f (k)
Mk

mQ1m
and F̃ (k)5F (k)

Mk

mQ1m
. ~84!

Similar to what is observed in actual QCD, the 1/mQ correc-
tions to the ground stateF̃ are smaller,

d1/mQ
F̃ (k)

F̃ (k)
52

ek1m~312Pk!

3mQ
. ~85!

The analytic expression~82! agrees with the numerica
computations performed in Ref.@5# for the ground state. In
terms ofck introduced there to quantify these preasympto
corrections

ck5
5

6
ek1mPk . ~86!

In the nonrelativistic caseek→m holds, and for the negative
parity ground state one has the correct limitc52m/6 @5#.
For the first excitation, however, one would havec1
→11m/6.

It is not difficult to derive the expression for the 1/mQ
correction to the light-cone wave function itself generated
perturbationt2/2mQ :

Ck~ t !5Ck
`~ t !1

1

mQ
Ck

(1)~ t !. ~87!

Using the commutators in Eqs.~39! we get

Ck
(1)~ t !5

1

3 S t2
d

dt
12ekt

d

dt
12ekDCk

`~ t !. ~88!

Note that simply replacingmQ by MHQ
.mQ1e when

passing fromwk(x) to Ck(t), would amount to adding
only (1/mQ)ek@ t(d/dt)1 1

2 #Ck(t). The remaining part
(1/3mQ)@ t2(d/dt)2ekt(d/dt)1ek/2# actually changes the
shape.

Using similar techniques, it is straightforward to obta
explicit 1/mQ expansion of the meson mass in the ’t Hoo
model; we consider it through orderb3/mQ

2 corresponding to
4-9
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the order discussed in case of QCD@9#. A straightforward
evaluation of the expectation value of Eq.~21! yields ~see
also Ref.@10#!

MHQ
2mQ5^t&`1

^t2&`2^t&`
2 2b2

2mQ

1
4^t3&14^t&31^ iT$t2,t2%&24^t&^t2&

8mQ
2

1OS b4

mQ
3 D . ~89!

Here all expectation values correspond to the static li
mQ→`, i.e., do not implicitly depend onmQ . Using the
previously derived relations, especially Eqs.~40! and ~79!,
all terms can be expressed only in terms of the static bind
energyL̄ and the axial decay constant of the respective st

Finally, the object usually appearing in the 1/mQ expan-
sion of the diagonal matrix elements to this order, is
zero-momentum correlator of operatorspW 25Q̄( iDW )2Q
which represent the 1/mQ piece of the Hamiltonian

2rpp
3 5

1

2
^ku iT$pW 2,pW 2%uk&. ~90!

In particular, it determines the 1/mQ variation of the kinetic
expectation valuêkuQ̄( iDW )2Quk& itself in the actual finite-
mQ hadron. The expression forrpp

3 in the ’t Hooft model is
most simply obtained using the above mentioned rela
Q̄(2 iD z)Q5t2H which holds for the zero-momentum ma
trix elements in the static limit. Therefore, we simply need
compute^ku iT$(t2H)2,(t2H)2%uk&. In this way we obtain

22rpp
3 5^ku iT$pW 2,pW 2%uk&

54^t3&14^t&31^ iT$t2,t2%&24^t&^t2&2
b2

2
F2

52S 4

9
ek

32
4

9
ek~m22b2!1

1

6
b2F2D

52S 4

3
mp

2 ek1
1

6
b2F2D . ~91!

This correlator is numerically large.
We can compare the 1/mQ expansions discussed abo

with the general operator expansion Ref.@9,7# valid in arbi-
trary gauge theory

MHQ
2mQ5L̄1

mp
2 2b2

2mQ
2

1

mQ
2 F2

1

8
^ iT$pW 2,pW 2%&1

rD
3

4 G
1•••, rD

3 5
b2F2

4
. ~92!

Similarly—and even a bit simpler—is to consider the expa
sion of the scalar density which is given precisely by@7#
01400
it

g
e.

e

n

-

1

2MHQ

^Q̄Q&5
mQ

MHQ

K 1

xL ~93!

and, on the other hand, use the similar operator product
pansion~OPE! for ^Q̄Q&:

1

2MHQ

^HQuQ̄QuHQ&512
^Q̄~ iDW !2Q&2b2

2mQ
2

2
rD

3

2mQ
3

1OS b4

mQ
3 D . ~94!

The explicit computations show that these equations are
isfied with rpp

3 given by Eq.~91!.
It is interesting that it is possible to derive a closed e

pression for the expectation value of the ‘‘kinetic’’ operat
Q̄( iD z)

2Q in terms of the ’t Hooft wave function for arbi
trary massmQ :

1

2MHQ

^HQuQ̄~ iD z!
2QuHQ&

5
mQ

2MHQ

FMHQ

2 ^x&2mQ
2 K 1

xL
1

b2

4 S MHQ

2

mQ~mQ2mP!
E

0

1

dxw~x!D 2G ~95!

~this expression assumes a certain ultraviolet regulariza
of the operator, see below!, whereP is parity of HQ . The
idea is the following.

In the rest frame of the meson the expectation value
Q̄@( iD 0)21( iD z)

2#Q is simply 2̂ Q̄( iD 2)2Q& and, there-
fore

1

2MHQ

^HQuQ̄@~ iD 0!21~ iD z!
2#QuHQ&

5mQMHQ
E

0

1

dxxw2~x!. ~96!

The complementary combination of momentum operat
Q̄@( iD 0)22( iD z)

2#Q can be determined using the gene
identity

E dDxQ̄Q~x!5E dDxH Q̄g0Q

1Q̄
~ iD 02mQ!22~ iDW !21~ i /2!smnGmn

2mQ
2

QJ
~97!

valid in arbitrary dimension. InD52 one has (i /2)smnGmn

5G̃ig5 with G̃5 1
2 emnGmn5G01. Since ^Q̄iD zQ&
4-10
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5^Q̄iD0iDzQ&50 and the light-cone combination̂Q̄( iD 0
2 iD z)Q& is again directly expressed via the ’t Hooft wav
function, Eq. ~97! yields the necessary equation f

^Q̄@( iD 0)22( iD z)
2#Q& involving, however, the expectatio

value ^Q̄G̃ig5Q&.
The gluonic field strengthG01 can be explicitly written

via quark current in the light-cone gauge

G0152gs
2 1

]2
J1 ~98!

which leads to a nonlocal four-fermion operator. We no
however, that the currentJ1 includes not only the spectato
quarkq, but alsoQ̄g1(la/2)Q. This term described by the
bare loop leads to the ultraviolet divergent expression.
simply discard this contribution inJ1 in Eq. ~98!, which
fixes a certain renormalization procedure. Then we get

K Q̄
i

2
smnGmnQL 5^Q̄G̃ig5Q&

5
b2

4

mQ

MHQ

E
0

1

dxw~x!E
0

1

dyw~y!
1

x2y

3S 1

x
2

1

yD
52

b2

4

mQ

MHQ

S E
0

1dx

x
w~x! D 2

. ~99!

This finally yields Eq.~95! where we have used Eqs.~14! to
express the last term via the decay constant of the meso

A note of caution must be voiced regarding this deriv
tion, however. In the way described above we obtain the b
operator Q̄( iD z)

2Q. It does include a finite contribution
from the domain of momenta of ordermQ even in the lead-
ing order inmQ . On the contrary, in the heavy quark expa
sion we are interested only in the physics originating fro
momenta essentially below the scale of the heavy quark m
itself. The expressions Eqs.~90!,~91! refer just to such low-
energy effective operator. Therefore, in general the lite
comparison of the two expectation values is not too instr
tive. It is easy to check that already to the leading orde
mQ the two expressions differ by the amountb2/2 attributed
to the domain of momenta;mQ .

Here we note an interesting feature of the exact expe
tion value of the local quark-gluon operatorQ̄G̃ig5Q in Eq.
~99!. At mQ→0 it has an 1/mQ singularity regardless of the
mass of the second quark in the meson*0

1dx/xw(x)}1/mQ at
mQ!b. Yet we know that no appropriate masslessphysical

states exist in the model atmq5” 0 ~the groundQQ̄ state has
negative parity, and their pairs are 1/Nc suppressed!. The
singularity technically emerges due to massless gluon pro
01400
,

e

.
-
re

ss

l
-

n

a-

a-

gator, however gluon is absent from the physical spectrum
D52.6

It must be noted, however, that careful treatment of pa
ing to the light-cone coordinates in the computations of
similar vacuumexpectation valuê0uc̄G̃ig5cu0& in the ’t
Hooft model yielded additional terms which canceled t
1/mc pole observed in Ref.@13# and led to a finite result a
mc→0. A possibility of similar subtleties in the computatio
of the meson expectation values deserves further studies
are grateful to A. Zhitnitsky for pointing out and discussin
this problem.

1/mQ
2 correction at zero recoil. As another application of

the 1/mQ expansion, we briefly consider here the secon
order nonperturbative corrections to the zero-recoilB
→D (ast) transition amplitude. At this kinematic point th
deviation from the elastic IW function~which is unity here!
appears at the level 1/mc,b

2 , which provides a method of ex
tracting uVcbu. The corrections, however, are shaped
strong dynamics at the typical hadronic scale and at pre
cannot be evaluated from the first principles. The exist
estimates, in particular for the axialB→D* amplitude, rely
on the sum rules derived in Refs.@9,14#:

uFD* u21 (
kÞ0

uFku25jA2
mG

2

3mc
2

2
mp

2 2mG
2

4

3S 1

mc
2

1
1

mb
2

1
2

3mcmb
D 1OS 1

mQ
3 D ,

~100!

whereFk are the zero-recoil transition amplitudes to the e
cited states,Fk}1/mQ , jA is the short-distance renormaliza
tion factor, andmp

2 , mG
2 are expectation values of the kinet

and chromomagnetic operators, respectively. One then
@14#

FD* 5jA
1/22F mG

2

6mc
2

1
mp

2 2mG
2

8 S 1

mc
2

1
1

mb
2

1
2

3mcmb
D G ~11x!

1OS 1

mQ
3 D , ~101!

where a positive quantityx parameterizes the magnitude
the sum of the excitation probabilities in the LHS of the su
rules, in terms of the local operator term in the RHS of E
~100!:

(
kÞ0

uFku25xF mG
2

3mc
2

1
mp

2 2mG
2

4 S 1

mc
2

1
1

mb
2

1
2

3mcmb
D G .

~102!

6We are grateful to A. Vainshtein for informing us of existin
examples of similar IR singularities in physical amplitudes in t
absence of contributing massless particles, in low dimensions.
portedly, such a situation is excluded inD.3.
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The expressions for the excitation amplitudes were ela
rated in Ref.@9#. Following Ref. @14#, existing numerical
estimates ofFD* assume~somewhat arbitrarily! that x can
vary up to 1, that is,x50.560.5.

We computedx analytically in the ’t Hooft model. Since
spin and chromomagnetic field are absent in two dimensio
only the kinetic operator acts here. The sum rule takes
form

FD
2 1 (

kÞ0
uFku25jA2S 1

mc
2

1

mb
D 2mp

2

4
1OS 1

mQ
3 D , ~103!

and the excitation amplitudesFk to the leading order are
given by

Fk5
1

2 S 1

mc
2

1

mb
D ^kuQ̄pz

2Qu0&
ek2e0

. ~104!

Similarly, x is defined through

(
kÞ0

uFku25xS 1

mc
2

1

mb
D 2 mp

2

4
. ~105!

The sum ofFk
2 can be computed using the same techniq

as was elaborated in the previous sections. However, the
rections to the amplitudes we consider are not expressed
more via only positive integer moments, and include exp
tation values of operators with higher derivatives. Yet th
can be expressed in terms of the slope of the IW functionr2.
We give here the final result

x5
10

21
1

5

63

e0
2

mp
2

2
4

21S r22
1

4D5
5

7
1

5

21

m22b2

e0
22m21b2

2
4

21S r22
1

4D . ~106!

For light spectator quark the value ofx turns out to be abou
0.55. This is surprisingly close to the central value gue
mated in Ref.@14# for the case of actual QCD.

V. SUMMARY AND OUTLOOK

We have studied the ’t Hooft model in themQ→` limit.
Our main result is exact relations for the heavy quark kine
energy, as well as moments of the ’t Hooft wave functi
and of the structure function in this limit, which allow us
express these observables in terms of only the heavy q
binding energyL̄ and the axial decay constantFk.

In the ’t Hooft model, these moments appear as coe
cients in the 1/mQ expansion for various observables. As
example, we calculated coefficients in the 1/mQ expansion of
01400
o-

s,
e

e
or-
y-
-

y

i-

c

rk

-

meson masses, decay constants and heavy quark kineti
ergies. Using the above relations, we were able to express

corresponding 1/mQ coefficients in terms ofL̄ andFk.
Likewise, we derived the expressions for the oscilla

strengths and verified a set of the SV sum rules in the he
quark limit. As an application of the developed 1/mQ expan-
sion, we computed the nonperturbative 1/mQ

2 corrections to
the zero recoilB→D transition amplitude.

Although the ’t Hooft model is in principle ‘‘numerically
solvable,’’ many observables can only be determined w
very limited precision in practical calculations. This is pa
ticularly the case for observables in the limit where one
the quarks becomes heavy. In this case the ’t Hooft w
function becomes extremely asymmetric and many num
cal techniques, which are otherwise rather powerful for fin
quark masses, fail to produce numerically reliable resul7

For this regime, where the heavy quarks are not infinit
heavy, it is often advantageous to perform the 1/mQ expan-
sion beyond the leading order. The corresponding expan
coefficients that we derived involve only properties of the
Hooft wave functions in the static limit. Moreover, throug
the use of exact relations, the expansion coefficients can
expressed in terms ofmQ→` properties of the wave func
tions that can be calculated numerically with sufficien
high accuracy.

The developed analytic 1/mQ expansion allows us to carr
out precision studies, in the framework of the ’t Hoo
model, of such an intriguing and poorly understood pheno
enon as violation of local duality in heavy flavor decays@16#.
The question of its magnitude has a particular phenome
logical significance in the domain of moderately hea
quarks, where reliability of the asymptotic expansions is u
known a priori, and numerical computations are unavoi
able.

The developed technique can be used to test, on the
ample of the ’t Hooft model, various approximations ro
tinely applied to the actual beauty decays. Some of them
be reported in Ref.@16#, while others deserve further ded
cated studies.
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