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We present a number of exact relations for the heavy quark limit and develop an analytiga#xXjgansion
for heavy mesons in the 't Hooft model. Among the new results are the relaigr=3\2—mZ+ 82, 1img
corrections to the decay constants, to the kinetic expectation values,mémmhperturbative corrections to
the B—D amplitude at zero recoil. The properties of the IW functions are addressed and the small velocity
sum rules are verified.
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[. INTRODUCTION act relations involving terms that appear in thend/expan-
sion. In Sec. Il we will discuss some general features of this

Heavy quark symmetry and heavy quark expansion havenodel. In Sec. Ill the static limimg— o will be explored
played an important role in understanding weak decays o&nd we will derive a number of relations involving 't Hooft
charm and-flavored hadrons allowing extraction of the fun- wave functions in this limit. These relations will be applied
damental parameters of the standard modeflavored in Sec. IV to derive some exact results for power corrections
quarks and, in particular, charm quarks are not infinitelyin this model. Section V gives the conclusions.
heavy even in the crude approximation. In practicendl/
corrections to the strictng— limit often constitute the Il. THE 't HOOFT MODEL
main limitation. Even in a few cases where the first terms are ) )
known, a question remains about the convergence of the em- QCD1+1 is based on the Lagrangian
ployed 1mq expansion(For a review and further references,
see Ref[1].)

In such a situation it is advantageous to have a model
laboratory where both fil corrections and the whole finite-
Mg amplitudes can be evaluated exactly. On the one handiefined in one space and one time dimension, gy
this allows one to trace in detail how the methods used fore=0,1 and all fields depend only on two space-time coordi-
actual QCD work in a simplified setting. On the other hand,nates. In the light-cone gaug®&;"=0, as in any other axial
it has been empirically observed that certain quantities irgauge, the non-Abelian term in the field strength tensor
heavy flavor hadrons suffer from numerically large powerG,,=i[D,,D,]=4d,A,—d,A,+i[A,,A,] vanishes, which
corrections, while others seem robust against finite mass efirastically simplifies the dynamics of the model. This allows
fects. Studying this in toy models can help gain some insighbtne to eliminate the only nonvanishing component of the
which can be applied in various studies of actual QCD, in-gauge fieldA~, by means of the Poisson equation
cluding those based on the QCD sum rules technique or lat-
tice computations. - %A, =g, 2

One such solvable model, which has been applied to a
variety of strong interaction phenomena in the past is the 'where _we have introduced light-cone coordinates
Hooft model, QCD in %1 dimensions at large number of =(1/y2)(x°+x%). In two dimensions there are no dynami-
colors N.— [2]. The 't Hooft model has two important cal gluons and, after solving the Poisson equat@n the
features that resemble rea(3+1)-dimensional QCD only remnant of the gluon field is a Coulomb-like instanta-
(QCDs. ;) phenomenologically: confinement and spontane-neous interaction among the quarks. Of course, in one space
ous chiral symmetry breaking. Since the underlying micro-dimension, the “Coulomb” interaction is linearly confining.
scopic mechanisms for these effects in this model are quit is this feature which makes QGD; so attractive if one is
different from the respective mechanisms in QGR, it is  interested in studying models which exhibit infrared slavery.
probable that QCB, , is of little help to understand theri- An additional simplification occurs in the lardé. limit
gin of these features in real QCD, but it may nevertheless be
very valuable to better understand ttensequencesr other
observables.

In this paper we will focus on theng—c limit of the 't
Hooft model. Even though we were not able to solve thiswhere sea quarkémore precisely, quark loopsare sup-
limit analytically, we succeeded in deriving a number of ex-pressed and only planar diagrams survive. Therefore, in a

_ 1
/3=§q: Q(IV"DM—mq)q—Z—gZTrGWGW (1)

S

2
N
N— o0, ﬂ%% fixed, 3)
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light-cone Fock space expansion, the valeaqeapproxima— _ qo(y)
tion for mesons becomes exact, and the two body equation Ke(x)= dy ®)
for the quark distribution amplitude,(x) of mesongthe 't
Hooft equation2]) reads Then the following commutation relation holds:
2 2 2 2 2
mi—pB° m;—p @ (y) dy m; (1dy
2 _| 1 2 2 n N et 2| T2
M{en(X) <~ T en(X) =B f dy y—x)? [H,K]e(x) f ey) =1z Xf = yqo(y)- €)
B mf—ﬂz m%— 2 Since for eigenstates the expectation value of the commuta-
=t e+ Ven(X). (4 tor of any operatoA with Hamiltonian vanishes,
Herex denotes the light-cone momentum fraction carried by (n[[#,A]|n)=0, (10)

the quark andv, is the invariant mass of the meson.

Equation(4) has a very physical interpretation: the light- one has
cone energy of thgq pair consists of a sum of the light-cone 0=(n|[H,K]|n)
kinetic energies of the quark and antiquark plus an interac- 5 5
tion termV. The integral operatov can be interpreted as the —m2 1d_y = 1dy ) (11)
momentum space representation of a linear potential. The Hloy ¢y 0l— y“D"(y
singularity of the QCD-Coulomb interaction in E®) is
regularized using the principal value prescription, with Therefore,
1 1 1 1 Ldy dy
[fay (3 m [ ein=—pun [ ey, @2
0 (X_y)2 X 1-X y oY

For practical purposes, it is convenient to rewrite E4. andP,, is identified with the parity of the eigenstate This

into the form where the singularity of the interaction term |s'de”t'f'cat'°” is confirmed by comparing with explicit ex-
pressions for the matrix elements of the pseudoscalar and

less severe:
scalar densities between the statand the vacuun3]
2 2
my ms 1 on(Y) = en(x)
M2p,(x —+ —) X 2 f y—.
Zon(X)=| S 1| en0 B oy (Olaaun— f X T 2 g(x),
(5
Note that Eq(5) can also be obtained as a variational equa- <0| i Iny= / dx (x).
tion for the functionalHamiltonian defined by the quadratic 92! 7501 T x)¢n
form (13
. Jldx _§+ m3 )@2()() Using Eq.(12), it is easy to see thd0)|c,q4|n)#0 only for
0 1-x) 7" states withP,,= 1 and(0|q,i ysq:|n)# 0 only for states with
P,=-1.
2 n
f dxdy—2 T [en(y) — en(X)] 6) Integrating the 't Hooft equation ovex and using the
(y X)2 ' parity relation(12) we get
The interaction term in Eq(6) is non-negative and the ki- 1dx B q
netic term is minimized for/(1—x) =m, /m,, i.e., when the o 7<Pn(X)— my(my—P,m,) Jo Xen(X),
ratio of momentum fractions carried by the quark and anti-
quark equals their ratio of bare masses. Therefore the varia- 1 dx M2 1
tional formulation Eq.(6) of the 't Hooft equation yields a f — o (X =—”f dxe.(x). (14
|0wer bound 0 1_X (Pn( ) mz(mz_ anl) 0 (Pn( ) ( )
M ,>m;+m, 7) Similarly, integrating the 't Hooft equation multiplied by
yields
[the inequality is saturated only for the massless pion where
m;=m,=0 and atn=0, with ¢ (x)=1]. The mass of a f— %

1
bound state exceeds the sum of tiewe masses of the con- fo dXXen(x) = fo dxen(x)
stituents, the fact expected semiclassically.
A certain parity relation proves to be useful; it was first 1 1—x
given in Ref.[3] and reportedly ascends to 't Hooft. We ——Zj dxIn——o,(X),
define operatoK as My /o X

+
Mﬁ mZ_anl
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J'ld 100 m%—miJr m, Jld ) . 32
X(1—X) @p(X)= X@n(X ~ -—
0 “n Mﬁ m;—Pymy| Jo n ~ eﬁ+ B? mgp— B>t mé
€t 2 V()= ot + E t Wa(t)
B[t ) 1 e
M_ﬁ , 9% N—¢n(X). Q
_ _ _ BZ (Mo Wy(s)
Another useful relation for the 't Hooft equation which —5 | ds > (20
holds for arbitrary quark masses was derived by Burkigtt 0 (t=s)

and is often referred to as the virial theorem. Let us denote

We assume that in the notations of the previous sectipn
=mgq is large, andmg,=m, will be denoted simply asn
below. The limitmy> g is obtained by expanding the sec-
ond term in the right-hand sid&RHS) of Eq. (20) in t/mq

A direct computation yields for the commutator bBf with and extending it to the intervaD,~):?

the interaction operator in the 't Hooft equation the follow-

d - d
D—X&, D—(l—X)m. (15)

ing result: w242 m2— 32 2
(En+i)\lfn(t)=<—ﬁ)q’n(t)+ 1— '8_2
[D,V]=-V (16) 2mq 2t m3
and, therefore, t t2 t3 w0
X|lo+zm—+—F5+ - t
m5— 32 2 2mg  2mg "
[D,/H]=—H+ . a7
(1—x)2 B[, Wu(s)
——| ds . (21
L 2Jo  (t—s)?
Likewise
B m2— 82 Performing Iing expansion, it is convenient to study the
[D.H]=—H+—— (18)  eigenvalues
X
~2 2
; ; ; ~ €t
Using again the fact that the expectation value of the com- € ="e B (22)

mutator of any operator with Hamiltonian vanishes in an
energy eigenstate, these two commutation relations yield the
relation which holds for any eigenfunctidn:

2mq

of the equation themselves rather than direetly This will
> be assumed later when we studymy/ corrections to the
. (19

static limit. (The explicit factor 1—,82/m(22 can be eliminated

by properly rescaling.)
The static limit is obtained neglecting all terms sup-
The 't Hooft equations describing mesons with one heavypressed by inverse powers i, [5-7]:

quarkQ acquire new symmetry which entails one to a num-

ber of additional relations. In the rest of the paper we study 2_ g2 i B2 (= W,(s)

these relations in the static limitro—) and develop the En‘l’n(t)z—‘l’n(t)+—‘1'n(t)——f ds—"7

1/mq expansion around this limit. 2t 2 2 Jo (t—s)z(

23

1
M§=(m§—ﬂz)<;> =(m§—ﬁ’2)<(1_x)z

Il. STATIC VERSION OF THE 't HOOFT EQUATION )
S This is a stationary Schdinger-type equation for the one-
In the heavy quark limit, i.e., when the mass of the quarkgimensional system with the static Hamiltonian
m;—, the meson wave functions become sharply peaked

nearx—1, since most of the momentum is then carried by 2_g2 ¢ 2 e g

this quark. Therefore, in order to study time,=mg— — :u __'8_ _9s

R i . Q) . H=Hstat + . (24
limit, it is convenient to introduce the nonrelativistic vari- 2t 2 2Jo(t—s)?

ables M,=mo+e€,, t=(1-Xx)mg, and V(1)

=(1/Vmg) en(1—t/mg). In these variables the 't Hooft Similar to Eq.(6), the expectation value of the Hamiltonian

equation(4) takes the form over a stateV,, can be written in the form
As it stands, Eq(19) is valid only form?> 2. Form?< 82 it can 2Extending the interval t§0) introduces errors that are only
be replaced by a subtracted versdh. O(l/mg).
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= (m? t
<n|HstaJn>:JO dt(z_t+§)\l’ﬁ(t)

2
s f i dpvn(s> LU

(s—1)?

(29

Since m?/2t+t/2=m, Eq. (25) suggests thak,>m. This

PHYSICAL REVIEW D 63014004

ocdt o
mJ —\pn(t):—Pnf dtw (1)
ot 0

i.e., mF"=—P.F™, Hereafter we call states for which
P,=—1 and P,=1 P odd andP even, respectively. Of
course, Eq(33) can also be obtained directly by applying the
heavy quark limit to the finite mass parity relation Ed2),

(33

lower bound follows also directly from the general lower which is the reason why corrections to the static limit do not

bound Eq.(7).

The larget asymptotics of the static eigenfunctions is ob-

tained directly:

t~>00ﬂ F(n)
n(t) t3 1 (26)
where
(n) ’7TmQ
F"= dt\I’n(t)— lim N—fn, (27)

mQHoo C

andf,, is the usual annihilation constant of a me$8h The
combination F™ has finite largeN, and IargelﬁnQ limits.
Together with various momentsntegrals of\Ifn(t) with

powers oft] it plays an important role in the heavy quark
expansion. For future use, it is convenient to define a set of

operators acting oW (t),

J.wzf dtt'w(t), Jo=J, (28
0
and matrix elements
Fl(”)zf dtt' ¥ (1). (29
0

Then, for example, F(M)2=(n|Jy|n). Of course, the inte-
grals in Egs.(28) and (29) literally converge only for—1
=|<2.

The static analogue of the operat6iin Eq. (8) takes the
form

= W(s)
K\If(t)zf ds , (30
0 s—t
and its commutator with the Hamiltonian
H,K i 1f d—mZJ 1J 31
HKI=5t), s 2], 472t g% B

For any energy eigenstate the equation'n|[H,K]|n)=0
holds, and we thus find

n(t) (32

2 . 2
-~ f dtw (1)
0

or

spoil the parity classification.

Another relation among the moments of the wave func-
tion can be obtained by integrating the static equatiz®)
from O to«, yielding

2 FM=m?F")+F{,

which with the help of the above parity relation can be writ-
ten as
F{"=(2¢,+mP,)F™, (34)

Nondiagonal matrix elements &f are also expressed in
terms ofe andF:

P.P—-1 1
2 €, €

(nlK]|I)= FME®, (35)

Certain useful relations emerge also from the commutation
relation

[H,t]=— , (36)

BK

2
and the obvious commutatdit,K]=—J,. Thus, for ex-
ample, [t,[t,H]]=—(B%2)J, and hencen|[t,[t,H]]|n)=
—(B212)(FM)23

In the following, we will derive a tower of relations

among the moments oifﬁ. For this purpose, we consider
the operators

(37)
A direct computation yields

(m —pAHtN 2+ M

[D,,H]=—nt"" 1H+ 5

B
_72

=0

(k+1)(n—k=2)t""k33,. (39

X

For n=0,1,2 the last sum is absent. The first few relations
take the form

3This relation is the so-called fourth sum rule for the Darwin
operator.
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d ] m?—p% 1 tion DEQ=mgyQ. In the 't Hooft model, in the limitmg

— H|=— +=, n=0, —oo this immediately leads to

dt’ 7| 212 2

d ] ,uf,=f dt(t—t)2W2(t)=(t?)— (1) (42)
[tm,H =—H+t, n=1, 0

Combining then=2 relation in Eq(40) with the virial equa-

[ d ] 1 3 tion (n=1) one finds
tza,H =—2tH+§(m2—ﬂ2)+§t2, n=2, - B
- : 39 3ui=AP-—mi+ g% A=, (43
PO " P f bound
2 — H|=—3t?H+ (m?— BA)t+ 23— —-Jy, n=3, or any bound state.

dt’™ | 2 In the absence of actual chromomagnetic fieldDir 2
C g the next operator is represented by the Darwin term

5
t“a,H :—4t3H+ (m —BHt?+ t4 B%td,— B2, L B2F2
: : =T <HQ|Q< 3DE)QIHo)= (44)
n=4.

. _ . _(the last relation is obtained using the equation of motion for
Taking the expectation values of the operator relations inthe gauge field, and factorization valid Bt—). At the
Egs.(39) we obtain the moment&") in terms of the bound- same order a nonlocal zero-momentum correlator of the ki-

state energies and decay constdfits netic operators appears as well, which will be addressed in
the next section.

n=1, ()=e, Before proceeding to the IW functions, let us mention an
upper bound on the decay constaft®. It is obtained using

n=2, 3(t*)=4(t)>—(m*-p?), one of the Sobolev's inequalities bounding the norm via

(400 L, andL} norms in one dimension:

1
fdz|f(z)|2 Alfdz|f’(z)|2
Note thatn=5 does not literally lead to meaningful relations _ .
since they would involve divergent terms. The case0  In terms of the Fourier transform d{z), W(t) it takes the

n=3, &t%)=6(t*)(t)—2(m*- B*)(t)+ B?Fq,

n=4, 5(t%)=8(t°)(t)~3(m’— B2)(t?) +45°FoFy.

1/4
for anya.

(49

|f(a)|<2Y3

yields the relation form
d 1/ 1/4
=dt 1/2 2 242
(mz_ﬁz)J’ Ryan-1, (a1) f dtxp(t)’sw U dtw (t)} AU dtt?w (t)} :
0t (46)
i.e., the virial theorem Eq19) for the light quark in the limit ~ Applied to the static wave function it reads
where the other quark is static. As we have mentioned above, o va
it is literally valid at m> 3, for smallerm it can be under- -, s 4AN%2—m?+ B2
stood, for example, as an analytic continuation in the mass of F<\m(A%+pu2) V= m — 3
light antiquark or in a subtracted form. As we will show
later, these moments are important in thend/expansion  or
since the leading My corrections in Eq.(21) are simple
powers oft. 3_T 232, 2\12
The relation(t)=¢, is also a direct consequence of the pD<4 BHAF uz) ™ (47

virial equation(19) (the one which involvessné) expanded _
to the first nontrivial order in Mg It was first derived in  These bounds are B=2 counterpart of the bounds dis-

Ref.[6] (see also Ref7]). In QCD the bound-state energies cussed in QCD in Ref{8].
e, are usually denoted by Since the inequality in Eq46) is saturated only by func-
n n-

2

The next important parameter of the heavy quark expantions of the form 1/¢+rt] ), ba SO;”“C’” of the 't Hooft (-:]qua—

sion is the kinetc expectation value Mw tion cannot saturate the bourid?). It is interesting, how-
5652014 in the limit ® th ever, that for the ground states with light spectator quarks,

(1/2MHQ)<HQ|Q('D) Q|Hg). In the limit mg— ¢ the op- m= g the decay constarft numerically almost saturates the
erator of the spacelike momentum takes the simple formpound, within only a few percent.
since theZ-graph contributions can be neglected, the light-  The operatot plays a special role for the static equation
cone combination of momentum is given ki, ,, and the  (23): the first and the last terms i, are homogeneous
time component can be excluded using the equation of mdunctionals of rank—1 with respect td, while the termext/2
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has rank+ 1. It breaks the dilatation invariance of the eigen- 1 o
state problem. This operator is the analogue of the operator — (HY(p")|QQIH (p)) = &
D of Ref. [9] representing the part of the full trace of the 2~/PoPo
energy-momentum tensat,,, associated with the light de-
grees of freedomSec. II, Eq.(9)]. Likewise, there are many (pp")
relations for various observables in the 't Hooft model, in- NG
volving the operatot. Here we consider matrix elements of Ho
t.

Using the commutator Eq36) we write

(pp")
2

=(vv')=w. (51

In the 't Hooft model the IW functions are given by the
following expression in terms of the static wave functions:

1
<k|t|n>:ﬁ<kl[ﬁ,t]|n>

2 Jm
=———— | dt¥V ()P ([wF yWw?—1]t
) gnk 1+Wi\/m 0 k() n([ + ])
B
=—5——(kIK[n) 2\z (= t
26 en) 2\ f ditwy| —= | Wo(V20), (52
) 1+z)o \/E
B
=—————(Kk|[H,K]|n
2(6k—6n)2< Ii in) where
1+2%
B - - 2_
:_m(sz@lF@i_ng)an)) W=— =, ZEWENW 1. (53
k™ €n
g2 The expression for the IW function was obtained in RE5$.

= FWEM1-pP.), 48 and[10].
4(e—€)? o Fo'l Pn) “9 Let us note that each value wf# 1 can be represented by

two different values o corresponding to two possible val-
where relationg31) and(33) have also been used. This can ues of the square root in E¢62), such thatz;z,=1. They

be cast into the form must yield the same value @&f up to a sign:
B[ 1 DFT £nd(2) = PoPind 112), (54)
k[t—H|n)=———FyF¢" ( )
(K Im 2(ex— €n)? 00 49 which, forn+k looks similar to a miraculous property of the

't Hooft equation[5]. Alternatively, the above property can
which embeds botlk=n andk#n [we have used the fact be written as
that P,P,=(—1)%""]. The above equation shows that the

operatort— 7 is P odd, i.e., its matrix elements do not van- Enk(W) =P Pyéin(W). (55)
ish only between the states of opposite parity. This make?\low we can demonstrate it explicity
sense since, in the static limit-7¢ is simply QiD Q. Using the fact thaD=t(d/dt) is the generator of scale

Using the second of the commutation relatiq88) we  {ansformations. i.e.
have, for the nondiagonal matrix elements of the dilatation T

operatorD, eN(@Df (t)=n@Ud/d0f (1) =f(at) (56)
d B2 0 wrong parity, for an arbitrary functiorf (t), the IW function can be written
(Kt oIm=————FFD| . in the form
dt 2(e—€n)? 1 right parity,
(50 2.7 d
fnk(z)=—\/_<k|e(D+1’2)'“Z|n>, D=t—. (57)

1+z dt

These matrix elements determine the so-called oscillator
strengths—the small velocit§sV) transition amplitudes be-
tween the heavy quark stat@ssually the ground and the *
P-wave” states in actual QCDEquation(50) allows one to

prove an important symmetry relation for the IW function.

Note that the operatdd + 3 is anti-Hermitear(antisymmet-
ric), so that]e(®*¥2nZn)=||nY|. This ensures the so-called
first sum rule expressing the unit probability of the transition
to arbitrary final state in the heavy quark liniih the SV
approximation it is known as the Bjorken sum rule

A. IW function To calculate the diagonal matrix elements»fone can

The IW function determines the transition amplitudes be-US€ the identity
tween two heavy-quark states induced by a current bilinear
in two heavy quark fields. In the present context it can be
defined as a diagonal scalar current in the heavy quark limit we thank R. Lebed for the cross checks in the numerical com-
Mg— °: putations.
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2
|kP).

, 10 [d d 1 , 1 d 1
| avr w3 [ ol Srvonw =g + 5l pf— 7 =(kl|t5+ 5
(63

_‘Pz(t)f/(t)} The first sum rule then becomes obvious being a conse-
quence of completeness of the eigensta®her sum rules
1 are straightforward as well.
- §<f () (58) Consider, for example the third sum rule for the kinetic
operator. Using the commutator with=1 in Eq. (39), we

valid for arbitraryf(t). In particular, it shows that the expec- have
tation values oD + 3 vanish. Together with relatiof50) we

see that only even powers Bf+ 3 survive in the exponentin > (- €)%= (klt—H|){1]t—H|k)
Eq. (57) when|n) and|k) have the same parity, and only l

odd powers contribute if the parity of the two states is oppo-

site: = (K| t?[k) — ((K[t[Kk))?

= (). (64)

2.z | (k| cosh[D+ 3)Inz]|n), n—k=even, o .
= Similarly, we get for the second, “optical” sum rule
1+Z | (k| sinh[(D+2)InZ][n), n—k=odd. .
59 1
9 S e e0=-3 Ktl)llg+ 510
This proves the symmetry properties E¢$4),(55) and en-
sures that the IW functions are analytiovat' =1, in spite of — (K2 d t k) = 5K 6
the branch point irz as a function obv’. =— (K|t &Jr §| >_§' (65)
The fourth sum rule for the Darwin operator can be directly

] N _ obtained by inserting the complete set of states into the com-
Important constraints on the transition amplitudes bemuytator[t,[t,H]]= — (8%2)Jo:

tween heavy flavor hadrons and on the parameters of the

B. SV sum rules

heavy quark expansion follow from the sum rules, in particu- ) s 1 _BAFY)2
lar, in the small velocity(SV) limit. In 1+1 dimensions the 2 Ti(a— e =— §<k|[t'[t’H]]|k>_ 7~ (Po-
first four sum rules in the heavy quark limit take the form
(66)
1
P 7= > 2, IV. 1/mq EXPANSION
T

In practice, it is often necessary to account for the first
1 few 1/mg corrections to the static limitng—c, since in
5 &= > (a—e)Th, (60)  actuality these effects are non-negligible not only for charm,
but even forb-flavor hadrons. In studies of the 't Hooft
model there appears an additional motivation: the available
2)k=2 (EI_Ek)Zlek’ numerical approac'hes often app_ly only to the finite quark
K masses. The solution of the static equat{@B) is approxi-
mated by the solution of the generic finite-mass 't Hooft
5 - equation wherang is taken large but finite. For computa-
(P3=2 (6— €. (61)  tional reasonsng, cannot be taken too large, and control over
! the “spurious” 1img corrections becomes mandatory even
for studies of the pure static case.
In this section we will study the leadingriy, corrections
o the axial decay constant, meson masses, and the kinetic
energy of the heavy quark. Theni4 expansion is carried
1 _ out by applying to Eq(21) the standard formalism of non-
ma |Q7MQ|k>= TIKE 0 covariant time-independent perturbation theory used in QM.
Since the leading friy corrections in Eq(21) involve only
powers oft, it is possible to derive exact expressions for the
first few terms in the Ihy expansion for these observables

The so-called “oscillator strengths’? parametrize the tran-
sition amplitudes into the opposite-parity states in the S\/t
limit, and p? denotes the slope of the elastic IW function

1L V2
m(k(v)|Q70Q|k(0)>=1—Pk7+(9(v4)
(62

R 5See Ref[11], where the absence of continuum eigenstates for the
(v is the velocity of the final state hadrprTherefore, 't Hooft model Hamiltonian is proved.
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that depend only on the moments of the static wave function
and of the structure function. Using the results from Sec. I,
one can then express the coefficients in thagleéxpansion
solely in terms of the static binding energy and the decay
constant.

Although we will perform the Ihg expansion using old-
fashioned time-ordered perturbation theory, we will intro-
duce here the corresponding notations which resemble those
used in field theory, where 1 corrections to various ex- The obvious relation
pectation values are given by correlators of the type

dA(T
[ arr| 52 B0

d
~(d [ dr g TIAG).BO}K)

+(K|[A(0),B(0)]]k). (72)

(k[iT{H",A}|k)=0

(K f _OTTHAQ), (K- ®0 " holds as well, which will be used later.
In the static limit,(t) equals to the bound-state energy
Heisenberg operators O(7) are understood as Itis often necessary to know ho{t) changes under various

e""0(0)e” """, we assume that the Schilinger operators perturbationssH. The answer is readily obtained using Egs.
we deal with, do not depend anexplicitly. (39) and (70):
We then denote for the stationary problem

d
w St=(K[iT{t, 0H}K)= —(K|| t ==, 0H || Kk). 73
(ITABIK=(K | driTiA©)B(IHK u it onlo= |[tdt h s

SinceD,=t(d/dt) generates scale transformationd,imne

= 2 W finds

€ €K
(KBI(nlAlK)

€n— €k

n+k

+2>

n#k

{t%,O}zDim[O]O. (74)

(68)

I _ I . . .
The similar expectation value can be defined for the timeS2Y.[t(d/d0),t']=It". Therefore, any perturbation whichis a
homogeneous rankfunctional oft, satisfieq 10]

ordered product of arbitrary number of operators. We con-

sider
8(ty=—1(SH,). (75)
H—H+aA+BB+yC+- - _
For example, forsH= A\t one findsé(t)=— X\, a result that
and put can be easily verified by direct evaluation, since the exact

result readgt), =(t)/\/1+2\. The same property holds for

(k[iT{A,B,C, .. .}|k) nonlocal operators as well. For example,

__[92 99 (K|iT{t,A,B}|k) = — (D[A]+D[B]+1)(k|iT{A,B}|K)
=-l7 (wﬁy---ek(a,ﬂ,%-'-) I (76)
a=B=y=---=0
69 o
Two basic relations hold for such products of two op- .
erators: g P (K|iT{(t—2H),A,B}|lk)=—(D[A]+D[B]-1)
_ X (K[iT{A,B}|k),
(K[IT{[H.A],B}k)=(KI[A,B]|k) (70
where D[A],D[B] denote thet-dimension of operatorg\
and andB.
, B ) The above properties parallel the relations for the operator
(KIIT{AH,B}[k) = e(K[IT{A,B}[k) — (k| AB[ k) of the trace of the energy-momentum tensor for the light
+(k|AlK)(k|B|K), degrees of freedom in actual QCD discussed in Faf.This
similarity was elucidated in the previous section.
- _ . _ The mg-suppressed terms in the RHS of ER1) playing
(KIIT{HA,BHk) = el KIIT{A, B k) = (KIBATK) the role of the perturbation 8§ are given by
+ (k| A[K)(K|B|K). (7D t?2mg, t32mf, etc. Therefore, in the iy expansion one

typically needs to comput& products Eq(68) with the op-

The first relation has a transparent meaning: sjif¢eA]=
—i(dA/dt), Eq.(70) is a form of integrating by parts

eratort? (or t3, in higher order. As exemplified above, this
can be done directly using the relations in Eq€) and(71):
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2 4
(KliT{t? A}|k)=— §<k|[D21A]|k>_§5k<k|[DluA]|k>
4 4
—§<k|tA|k>+§€k<k|A|k>, (77

2
<k|iT(t3—BTJ°,A]|k>
1
— — S{KI[D3,AT|K) ~ e(KI[D2, AT[K)
1 2 2 2 3 2
_§(4fk_m +B )<k|[D11A]|k>_§<k|t Alk)

1
—2€(k|tAK) + E(saeﬁ—m2+ B?)(k|A[K), (78)

etc.
As an application of these relations, we obtain

_ 4
(KIIT{E% 12} k) = — 3 (2() +()(t%)

64 28 2
=—|g g (M= B2+ 3 BPFG).

(79

PHYSICAL REVIEW D 63 014004

where we have used théD,,Jg]=Jy and[D,,Jg]=2J;.
Thus,

P 1 2FP 22q+mPy @)

F09 mg3FP 3mg

In the last equation we used relation Eg4) for F{¥'. The
1/mq corrections toF turn out to be significantsee Refs.
[5.12).

It is often advantageous to define the axial decay constant
via the pseudoscalar current rather than the axial current:

<maymw=5® (83)
2Mp,, ° 2
then
7(k):f<k>ﬂ and ﬁ(n:,:(mﬂ_ 84)
mQ+m mQ+m

Similar to what is observed in actual QCD, then}/ correc-
tions to the ground staté are smaller,

oumFY e+ m(3+2Py)
Bk 3mg (9

The analytic expressiof82) agrees with the numerical
computations performed in Rdf5] for the ground state. In

Trz“s correlator governs therhf, corrections to the average ermg ofc, introduced there to quantify these preasymptotic
(t) which, in turn, determines the kinetic expectation valuegqrections

in the static limit. Likewise

. 2l +4 4
(KIT{E2 k) = — —5— (Kt k) =3 (1= D ekt k).
(80)
Similarly we get the analytic expression for theny/ cor-

rections to the decay constan8®¥. Indeed, E£")2
=(k|Jo|k), and

1 .
51/mQ(F(k))2=m<k|'T{t2130}|k>
= ! k 2 D,,Jo]lk
—E< | =3[D2.30][k)

1 4
" 2mg 3 {aKliT{t, o} k) = (K[tJolk)
(KR KIolK}

1

4 4
“amg| 3FOIFYY— 3 e(kI[D1.Jo] k)

4 4
-GPSR

— o SFRRD, en

5
Ck:gfk'f‘mpk. (86)

In the nonrelativistic case,— m holds, and for the negative-
parity ground state one has the correct limit —m/6 [5].
For the first excitation, however, one would hawg
—11m/6.

It is not difficult to derive the expression for thenid
correction to the light-cone wave function itself generated by
perturbationt?/2mg:

1
V(1) =Wy (t)+ — W) (87)
Mq

Using the commutators in Eq&39) we get

LY PP BP YL .

Note that simply replacingng by MHQ:mQJre when
passing fromge,(x) to ¥ (t), would amount to adding
only (1img) eft(d/dt)+3]¥,.(t). The remaining part
(1/3mQ)[t2(d/dt)—ekt(d/dt)+ek/2] actually changes the
shape.

Using similar techniques, it is straightforward to obtain
explicit 1/mg expansion of the meson mass in the 't Hooft
model; we consider it through ordﬁ?/mé corresponding to
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the order discussed in case of Q8. A straightforward 1 mg /1
evaluation of the expectation value of E@1) yields (see m(QQF Mo\ X (93
Q Q

also Ref.[10]) X
<t2>x—<t>i—,82 and, .on the other rEmd, use the similar operator product ex-
Mp,—Mo=(t)=+ 2mg pansion(OPB for (QQ):
A3+ A1) 3+ (IT{E2 t2) — 4(t)(t2 1 — (Q(ID)?Q)~B* pp
+ < > < > < {2 }> < >< > oM <HQ|QQ|HQ>:1_ > _ 3
8mg Hg 2mg 2mg
4 ,34
+0 /3_3) (89) +0 —3)- (94)
mg Mg

Here all expectation values correspond to the static limitThe exp_licitacomputations show that these equations are sat-

mo—, i.e., do not implicitly depend omg. Using the isfied with p7_ given by Eq.(92).

previously derived relations, especially E¢40) and (79), It is interesting that it is possible to derive a closed ex-

all terms can be expressed only in terms of the static bindingression for the expectation value of the “kinetic” operator

energyA and the axial decay constant of the respective stateQ(iD,)?Q in terms of the 't Hooft wave function for arbi-
Finally, the object usually appearing in therly expan-  trary massmg:

sion of the diagonal matrix elements to this order, is the

zero-momentum correlator of operators?=Q(iD)%Q 1 (HolQ(iD,)%QIHo)
which represent the i, piece of the Hamiltonian 2My,
-p° :1<k|iT{7?2 72} K). (90) mg |, ,/1
2 :2MHQ MHQ(X)—mQ<;>
In particular, it determines the i, variation of the kinetic , M2 2
expectation valuék|Q(iD)?Q|k) itself in the actual finite- s Ho fldX(p(X) (95
mq hadron. The expression fgr . in the 't Hooft model is 4 \ mg(mg—mP) Jo

most simply obtained using the above mentioned relation
Q(—iD,)Q=t—H which holds for the zero-momentum ma- (this expression assumes a certain ultraviolet regularization
trix elements in the static limit. Therefore, we simply need to©f the operator, see belgywwhereP is parity of Hg. The

compute(k|i T{(t—H)2 (t—H)2}|k). In this way we obtain idea is the following. ,
In the rest frame of the meson the expectation value of

—2p3 = (kliT{m?, 72}|k) Q[(iDg)?+(iD,)?]Q is simply 2Q(iD_)2Q) and, there-
fore
: B
— 3 3 2 421\ _ 2\_ " E2
=4t +4(t)°+ (I T{t",t7}) — 4(t)(t*) 5 F 1 L
s (HalQL(IDo)*+(iD,)*IQ[Hg)
H
4 3 4 2 2 1 22 Q
= - §Ek—§ék(m —ﬁ)‘l'gﬁF 1
=moMy f dxxe?(X). (96)
4 , 1 ?Jo
=—|guaact gﬂzFZ . (92
The complementary combination of momentum operators

This correlator is numerically large. _6[(i|:_)o)2—(iDz)2]Q can be determined using the general
We can compare the i, expansions discussed above identity
with the general operator expansion Ré&,7] valid in arbi-

trary gauge theory f deaQ(x):f de[ 670Q

2_ 2 3
My —mg=A+ o G —E<iT{7;'2 %2}>+p—D -
Ho R 2mg  m3l 8 ’ 4 +6(iD0—mQ)z—(iD)2+(i/2)a“VGWQ
2
3_,82F2 2mQ
T pp= (92) (97)

Similarly—and even a bit simpler—is to consider the expan-valid in arbitrary dimension. IiD =2 one hasi(2)c*"G,,
sion of the scalar density which is given precisely[@Y =Giy® with G=3€¢*"G,,=Gg. Since (QiD,Q)
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=(QiDyiD,Q)=0 and the light-cone combinatiofQ(iD, gator,ehowever gluon is absent from the physical spectrum in

—iD,)Q) is again directly expressed via the 't Hooft wave D=2.

function, Eq. (97) vyields the necessary equation for It mustbe noted, however, that careful treatment of pass-

<6[(iD0)2_(iDz)2]Q> involving, however, the expectation ing to the light-cone coordinates mlrle computations of the

value(QGi y5Q). similar vacuumexpectation valug€O0|#Giys#|0) in the 't
Hooft model yielded additional terms which canceled the

1/m,, pole observed in Ref13] and led to a finite result at

m,—0. A possibility of similar subtleties in the computation

of the meson expectation values deserves further studies. We

1 are grateful to A. Zhitnitsky for pointing out and discussing
Goi=—g—J* (98)  this problem.

- llmé correction at zero recoilAs another application of
the 1mg expansion, we briefly consider here the second-
order nonperturbative corrections to the zero-recBil
—D(@sY transition amplitude. At this kinematic point the

The gluonic field strengttG,; can be explicitly written
via quark current in the light-cone gauge

which leads to a nonlocal four-fermion operator. We note,
L
however, that the currert” includes not only the spectator deviation from the elastic IW functiofwhich is unity herg

quarkq, but aIsoay*()\a/Z)Q.. This term described by the 5nh64rs at the levelmE ,, which provides a method of ex-
bare loop leads to the ultraviolet divergent expression. W‘?racting V|, The corrections, however, are shaped by

§|mply dlscgrd this con.trlbgt|on IW” in Eq. (98), which strong dynamics at the typical hadronic scale and at present
fixes a certain renormalization procedure. Then we get  .annot e evaluated from the first principles. The existing
estimates, in particular for the axiB~D* amplitude, rely
i on the sum rules derived in Reff,14]:
<Q§UMVGMVQ> =<QGi’ySQ> ,LL2 /.LZ—,LLZ
G T G
, |Forl2+ S, [Fif2=ga-—S-—7—C
| Caxero [ Cayety) = " e o
= Xp(X —
& Mag)o ¥ Yo =y

X ! + ! + 2 +0 !
> (E_ E) mZ mi 3mgmg my/’
Xy (100
2 1 2
= ﬁ_ ﬂ( f d_)(¢(x)> ] (99 whereF are the zero-recoil transition amplitudes to the ex-
4 My X cited statesFx1/mqg, £, is the short-distance renormaliza-

tion factor, and/,ef,, ,ué are expectation values of the kinetic

o ] and chromomagnetic operators, respectively. One then has
This finally yields Eq.(95) where we have used Eqd4) to  [14]

express the last term via the decay constant of the meson.

A note of caution must be voiced regarding this deriva- Mé #Z—Mé 1 1
tion, however. In the way described above we obtain the bar€ p« = £x°— —2+”T St g | (LX)
operator Q(iD,)?Q. It does include a finite contribution 6mg Me My b
from the domain of momenta of orderg even in the lead- 1
ing order inmg . On the contrary, in the heavy quark expan- +0 —3) , (101
sion we are interested only in the physics originating from Mg

momenta essentially below the scale of the heavy quark mass N ] ) )
itself. The expressions EqéR0),(91) refer just to such low- Where a positive quantity parameterizes the magnitude of
energy effective operator. Therefore, in general the literafn® sum of the excitation probabilities in the LHS of the sum
comparison of the two expectation values is not too instructules, in terms of the local operator term in the RHS of Eq.
tive. It is easy to check that already to the leading order if100):
Mg the two expressions differ by the amoy®/2 attributed

. 2 2_ 2
to the domain of momenta mg,. 2 IF |2_ M +Mn_MG i+ i+ 2
Here we note an interesting feature of the exact expecta- & ' K| ~X m? 4 m2 mi 3mgmg '
tion value of the local quark-gluon operaQGi ysQ in Eq. (102

(99). At mg—0 it has an Ithg singularity regardless of the
mass of the second quark in the meitédx/mp(x)ocl/mQ at
mo<p. Yet we know that no appropriate masflmsmal %We are grateful to A. Vainshtein for informing us of existing

states exist in the model at,# 0 (the groundQQ state has  examples of similar IR singularities in physical amplitudes in the
negative parity, and their pairs areNL/ suppressed The  absence of contributing massless particles, in low dimensions. Re-
singularity technically emerges due to massless gluon propaortedly, such a situation is excluded > 3.
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The expressions for the excitation amplitudes were elabomeson masses, decay constants and heavy quark kinetic en-

rated in Ref.[9]. Following Ref.[14], existing numerical ergies. Using the above relations, we were able to express the

estimates ofp. assume(somewhat arbitrarilythat x can  corresponding bhy coefficients in terms of\ and FX.

vary up to 1, that isy=0.5+0.5. _ Likewise, we derived the expressions for the oscillator
We computedy analytically in the 't Hooft model. Since  gyrengths and verified a set of the SV sum rules in the heavy

spin and C_hror_nomagnenc field are absent in two dimension uark limit. As an application of the developedry expan-

only the kinetic operator acts here. The sum rule takes thsion, we computed the nonperturbativené/corrections to

form the zero recoiB— D transition amplitude.
Although the 't Hooft model is in principle “numerically
2 zﬂi solvable,” many observables can only be determined with
FD+kzo |Fk|2:§A_(E_ m_b> 7 o md/)’ (103 very limited precision in practical calculations. This is par-
Q ticularly the case for observables in the limit where one of
the quarks becomes heavy. In this case the 't Hooft wave
and the excitation amplitudeB, to the leading order are function becomes extremely asymmetric and many numeri-
given by cal technigques, which are otherwise rather powerful for finite
1/ 1 1 (k|6772Q|0> quark masses, fail to produce numerically reIiabIe_re_ggIts.
sz_(__ _)—Z (104) For this regime, where the heavy quarks are not infinitely
me My €™ €o heavy, it is often advantageous to perform thend/expan-
sion beyond the leading order. The corresponding expansion
Similarly, x is defined through coefficients that we derived involve only properties of the 't
Hooft wave functions in the static limit. Moreover, through
1 1242 the use of exact relations, the expansion coefficients can be
> |Fk|2=X(__ —) —. (105  expressed in terms ohy— properties of the wave func-
k=0 M My tions that can be calculated numerically with sufficiently
high accuracy.

. . The developed analytic rh; expansion allows us to carry
2 Q
The sum o Fk can be computed using the same technique t precisi tudies, in the fr work of the 't Hooft

as was elaborated in the previous sections. However, the cor- L
model, of such an intriguing and poorly understood phenom-

rections to the amplitudes we consider are not expressed anghon as violation of local duality in heavy flavor dec&ys].

more via only positive integer moments, and include expec;l_h i Fit itude h ticul h
tation values of operators with higher derivatives. Yet they, € question o 1IS magnhitude has a particular pneénomeno-

can be expressed in terms of the slope of the IW funqtfon logical significance in the domain of moderately heavy
We give here the final result quarks, where reliability of the asymptotic expansions is un-

known a priori, and numerical computations are unavoid-

able.
10 5 & 4 1 5 5 m—p The developed technique can _be used to test, on the ex-
X= 2—1+ @7_2_1(’)2_ Z) =3 +2—12—22 ample of the 't Hooft model, various approximations rou-
Mo €M+ tinely applied to the actual beauty decays. Some of them will
be reported in Refl16], while others deserve further dedi-
4 ( ) 1) cated studies.
71 ik (106
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V. SUMMARY AND OUTLOOK
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