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Collective modes in neutrino ‘‘beam’’ electron-positron plasma interactions
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We derive semiclassical neutrino-electron transport equations in the collisionless~Vlasov! limit from the
coupled Dirac equations, incorporating the charged and neutral weak current-current as well as electromagnetic
interactions. A corresponding linear response theory is derived. In particular, we calculate the response func-
tions for a variety of beam-plasma geometries, which are of interest in a supernova scenario. We apply this to
the study of plasmons and to a new class of collectivepharon resonance modes, which are characterized by
v,q. We find that the growth rates of the unstable modes correspond to a strongly temperature (}Tn

2Te
3) and

linearly momentum dependente-folding length of about 1010 km under typical conditions for type II super-
novas. This appears to rule out such long-wavelength collective modes as an efficient means of depositing
neutrino energy into the plasma sphere.
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I. INTRODUCTION

Neutrino transport processes are known to play a m
role in the energy-momentum flow powering the dynam
of type II supernovas@1–3#. Generally, it has been that th
collision-dominated aspects have been studied in detail, le
ing to substantial progress in the understanding of these
lar explosions, while, however, still leaving open some pro
lems in the quantitative description of their spatio-tempo
~hydrodynamic! evolution.

An earlier work by Bethe@4#, which introduced the idea
of a modified in-medium neutrino dispersion relation and
a corresponding effective Hamiltonian, was used in the se
of papers@5# to describe the collective interaction of an i
tense neutrino flux~from the supernova core! with an
electron-positron plasma~the supernova atmosphere! of
comparatively low temperature. Their tentative conclus
was that a particular induced plasma instability may be m
more efficient than traditional collision dominated mech
nisms, i.e., faster by many orders of magnitude, in deposi
the neutrino energy into the plasma sphere@5#.

However, the approach in these papers is subject to c
cism, since there is no physical or formal justification~such
as a hypothetical condensate! for the scalar ‘‘bosonic’’ col-
lective neutrino wave function used. In particular, the i
plied quantum phase coherence of the neutrinos appears
to justify. Considering their incoherent thermal producti
and the effective duration or length of the ‘‘beam,’’ n
bunching effects are to be expected. Moreover, it is so
what hidden in their phenomenological approach how
preciseV2A tensor structure of the electroweak curre
current interactions can be taken into account. This has
been pointed out in Ref.@6# recently. Employing finite tem-
perature field theory, Bento studied the excitation or dam
ing of longitudinal electromagnetic plasmons~Langmuir
modes! in the electron plasma under the influence of a n
trino flux. His results indicate that this type of collectiv
mode instabilities ‘‘ . . . do not seem to be a viable mecha
0556-2821/2000/63~1!/013008~18!/$15.00 63 0130
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nism of substantial energy transfer from neutrinos to a sup
nova plasma’’@6#. We confirm this.

It is the purpose of our present work to systematica
derive the transport equations for the neutrino-electron s
tem from first principles~Sec. II!, as well as the relevan
dispersion relations~Sec. III!. We introduce appropriate
spinor Wigner functions, while deriving the detailed chir
structure of the neutrino Wigner function in the Append
Previously, only the phenomenological approach@5# or the
perturbative finite-temperature field theory@6,7# was applied.
Our general derivations may also prove useful for other
trophysical applications, such as those involving strong m
netic fields or, generally, neutrino transport under mean fi
conditions.

In the collisionless regime, the results of Secs. II and
allow us to investigate, in detail, the collective modes in t
highly anisotropic neutrino ‘‘beam’’ plus electron-positro
plasma system. We find longitudinal and transverse p
mons, which are only perturbatively modified by the neutri
flux.

Furthermore, we also find a new class of growing, as w
as decaying collective oscillations, nonexistent in isotro
equilibrium plasmas, which we name ‘‘pharons.’’ 1 They are
caused by a resonance effect, generally at a frequencyv less
than the momentumq, due to the unbalanced neutrino m
mentum distribution, which is characterized by a finite ope
ing angle with respect to the beam axis. We study su
modes with the wave vector parallel to the beam direct
~type I pharons!, as well as with the wave vector orthogon
to the beam direction~type II pharons!.

Geometrically, the type II situation corresponds mo
closely to the one where the two-stream instabilities wo
be expected to occur in ordinary plasmas. We investig

1After the island ofPharos, where the famous lighthouse of an
cient Alexandria was constructed under the order of Ptolemeus
©2000 The American Physical Society08-1



n
m
ve

ll
ag
n

ri

c’’
ar
d
o

ac
h
ti
o

su
in
ic

l-

e
ing
io
qu
ta
te
u

a
-

tr

n
-
fo

ce
e
rder
rgy

be

new
at

ults

ec-
o

in-
y

uct
tem,

ce-

q.

the
ns

-
nt

HANS-THOMAS ELZE, TAKESHI KODAMA, AND REUVEN OPHER PHYSICAL REVIEW D63 013008
whether such instabilities are induced by the weak curre
current interactions and, depending on the growth rates,
provide an essential contribution to the still partly elusi
energy transfer mechanism in type II supernovae~Sec. III!.

The collective two-stream filamentation instability is we
known to occur in ordinary plasmas due to the electrom
netic Lorentz force@8,9#. More recently, it has also bee
studied in the context of strong~color-electromagnetic! inter-
actions, where two interpenetrating parton beams desc
high-energy nuclear reactions; see@10# and further refer-
ences therein.

More generally, one may expect such ‘‘hydrodynami
instabilities in interacting many-body systems, in particul
in plasmas with interactions mediated by standard mo
gauge fields, whenever the system consists of two or m
components with considerably different momentum sp
distributions @8–10#. In these cases, perturbations, whic
loosely speaking, are transverse to a predominant collec
flow, tend to be amplified by the collective feedback effect
the effective long-range forces of mean field type.

Consequently, we are motivated in this study by the
pernova geometry, where the radially outward stream
neutrinos interact with the electron-positron plasma, wh
may produce a variety of collective instabilities.

II. COUPLED NEUTRINO-ELECTRON TRANSPORT
EQUATIONS

Our derivation of mean field transport equations will fo
low the successful strategy developed earlier for QED@11#,
QCD @12#, and hadronic matter@13#. The basic idea can b
easily summarized as follows: Starting from the underly
field operator equations of the model under considerat
one converts these into corresponding Wigner operator e
tions, i.e. for the density operator in the Wigner represen
tion. In the appropriate mean field approximation the lat
can be converted into a closed set of Wigner function eq
tions ~cf. Sec. II A!; furthermore, performing a consistent\
expansion, the most relevant semiclassical~Vlasov type!
transport equations for the coupled relativistic phase sp
distributions are obtained~cf. Sec. II B!. Presently, our nota
tion and conventions follow those of Ref.@11#.

A. From Dirac’s to mean field quantum transport equations

We add the effective local coupling terms

Lint[2
GF

A2
@c̄ (n)gm~12g5!c (n)#@c̄ (e)gm~cV2cAg5!c (e)#

~1!

to the free Lagrangian densities of the electrons and elec
neutrinos~including their antiparticles!. They represent the
weak charged and neutral current-current interactionsof the
standard model in the appropriate low-energy limit, withcV
5 1

2 12 sin2uW andcA5 1
2 , using standard notation@6#. For m

and t neutrinos, with only the neutral current interactio
contributing, cV,A→cV,A21. Here the neutrinos are de
scribed by four-component spinors as well and we allow
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a small but finite neutrino mass, taking the growing eviden
into account@14#. Eventually, however, we will pass to th
massless limit, since for our applications the masses of o
eV are definitely negligible compared to the relevant ene
scales of order MeV.

The electromagnetic interaction of the electrons must
added to the interaction of Eq.~1!. For the derivation of the
transport equations, however, this does not introduce a
element. The corresponding modifications will be added
the end of this section, making use of the earlier QED res
@11#.

The resulting Dirac~Heisenberg operator! equations for
the electrons and neutrinos, incorporating the interaction~1!
in the mean field~Hartree! approximation, can be written in
the form:

$ ig•]x2m( l )2J( l 8)
•g~cV

( l )2cA
( l )g5!%c ( l )50, ~2!

wherel 5e,n denotes the electron and neutrino case, resp
tively, andcV,A

(e) [cV,A , cV,A
(n) [1; the neutrino current has t

be inserted into the electron equation and vice versa, as
dicated byJ( l 8) here. TheV2A four-currents are defined b

Jm
( l )[

GF

A2
^:c̄ ( l )gm~cV

( l )2cA
( l )g5!c ( l ):&, ~3!

where the expectation value of the normal-ordered prod
refers to the ensemble characterizing the state of the sys
which will be specified in more detail later.

Introducing the Wigner functions, i.e. (434) matrices
with respect to the spinor indices which depend on spa
time and four-momentum coordinates@11#,

Wab
( l ) ~x,p![E d4y

~2p\!4
e2 ip•y/\

3^:c̄b
( l )~x1y/2!ca

( l )~x2y/2!:&, ~4!

and with the\ dependence made explicit, the currents of E
~3! can be expressed as

Jm
( l )~x!5

GF

A2
trE d4pgm~cV

( l )2cA
( l )g5!W( l )~x,p!, ~5!

with the trace refering to the spinor indices.
Multiplying the Dirac equations~2! with the respective

adjoint spinor and making use of Eqs.~3!–~5!, they can be
converted to the Wigner representation. This yields
coupled electron and neutrino quantum transport equatio

~g•K2m( l )!W( l )~x,p!5expS 2
i\

2
]x•]pD J( l 8)~x!•g~cV

( l )

2cA
( l )g5!W( l )~x,p!, ~6!

whereKm[pm1( i\/2)]xm and the partial derivative with re
spect tox on the right-hand side acts only on the curre
J( l 8). If it were not for theV2A factor on the right-hand
8-2
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side, the structure of these equations would be analogou
Eq. ~8! of Ref. @13# and could be analyzed accordingly.

In order to proceed here, we employ the decomposition
the spinor Wigner functions@11#,

W( l )5F ( l )1 ig5P ( l )1gmV m
( l )1gmg5A m

( l )1
1

2
smnS mn

( l ) ,

~7!

i.e., in terms of scalar, pseudoscalar, vector, axial vector,
antisymmetric tensor components:

F ( l )~x,p![
1

4
tr W( l )~x,p!, ~8!

P ( l )~x,p![2
1

4
i tr g5W( l )~x,p!, ~9!

V m
( l )~x,p![

1

4
tr gmW( l )~x,p!, ~10!

A m
( l )~x,p![

1

4
tr g5gmW( l )~x,p!, ~11!

S mn
( l ) ~x,p![

1

4
tr smnW( l )~x,p!, ~12!

which are real functions. Thus, for example, we obtain

Jm
( l )~x!54

GF

A2
E d4p@cV

( l )V m
( l )~x,p!1cA

( l )A m
( l )~x,p!#,

~13!

using Eqs.~5! and ~10!, ~11!. Only these~axial! vector cur-
rents couple the transport equations~6!.

We introduce an abbreviation for the shift operator a
pearing in Eqs.~6!,

J m
( l )[expS 2

i\

2
]x•]pD Jm

( l )~x!

5FcosS \

2
]x•]pD2 i sinS \

2
]x•]pD GJm

( l )~x!

[R m
( l )2 iI m

( l ) , ~14!

where]x acts only on the currentJm
( l ) , as before. Then, mak

ing use of the commutation and trace relations of theg ma-
trices, we decompose Eqs.~6! in terms of the Wigner func-
tion components, Eqs.~8!–~12!. Thus we obtain the set o
coupled equations

K•V ( l )2m( l )F ( l )5J ( l 8)
•~cV

( l )V ( l )1cA
( l )A ( l )!, ~15!

iK •A ( l )1m( l )P ( l )5 iJ ( l 8)
•~cV

( l )A ( l )1cA
( l )V ( l )!, ~16!
01300
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KmF ( l )2 iK nS mn
( l ) 2m( l )V m

( l )

5J ( l 8)lS gml~cV
( l )F ( l )2 icA

( l )P ( l )!

2 icV
( l )S ml

( l ) 2
1

2
cA

( l )emlnn8S ( l )nn8D , ~17!

iK mP ( l )1
1

2
emlnn8K

lS ( l )nn82m( l )A m
( l )

5J ( l 8)lS gml~ icV
( l )P ( l )2cA

( l )F ( l )!

1
1

2
cV

( l )emlnn8S ( l )nn81 icA
( l )S ml

( l ) D , ~18!

i ~KmV n
( l )2KnV m

( l )!2emnln8K
lA ln81m( l )S mn

( l )

5J ( l 8)l$ i @gml~cV
( l )V ( l )1cA

( l )A ( l )!n2 . . . m↔n#

2emnln8~cV
( l )A ( l )1cA

( l )V ( l )!n8%, ~19!

with Km as defined after Eq.~6!.
As is well known from other cases@11–13#, the real and

imaginary parts of these coupled equations can be sepa
and eventually will thus lead to the proper transport eq
tions in phase space and the generalizations of the mass-
constraint; cf. Sec. II B .

Furthermore, we observe that the left-hand sides of E
~15!–~19! formally coincide with Eqs.~5.7!–~5.11! of Ref.
@11#. There, however, the corresponding operatorKm for
electrically charged particles necessarily incorporates the
fects of the Lorentz force in the external field~Hartree! ap-
proximation.

Because of the linearity of the Dirac equation with resp
to the weak and electromagnetic interaction terms, i.e. w
the derivative in Eq.~2! replaced according to the minima
coupling rule,]x

m→]x
m1 ieAm(x), it is straighforward to in-

corporate the electromagnetic interaction into Eqs.~15!–~19!
for the electron-positron case. Making use of the earlier Q
results, this is achieved by the substitution

Km[Pm1
i\

2
¹m, ~20!

¹m[]x
m2e j0S \

2
]x•]pDFmn]pn, ~21!

Pm[pm2e
\

2
j 1S \

2
]x•]pDFmn]pn, ~22!

where j 0 and j 1 are the conventional spherical Bessel fun
tions @cf. Eqs.~4.19!–~4.21! of Ref. @11##; the derivatives]x
in their arguments act only on the electromagnetic fi
8-3
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strength tensor entering here,Fmn(x)[]x
mAn(x)2]x

nAm(x).
Our convention is thate denotes the electron charge.

With the electromagnetic fields incorporated, we a
need to include the Maxwell equation

]mFmn~x!5Jem
n ~x![e tr E d4pgnW(e)~x,p!, ~23!

which consistently determinesFmn in terms of the electro-
magnetic four-currentJem

n . However, an important remark i
in order here. Together with Eqs.~20!–~22! also the defini-
tion of the Wigner function~4! has to be modified. In orde
to preserve the gauge covariance of the equations, one h
include an appropriate electromagnetic phase fa
~‘‘Schwinger string’’! @11,12#. Since it will not appear ex-
plicitly in any of our further derivations or applications,
may presently suffice to keep this in mind.

This completes the derivation of the coupled transp
equations for a system of electrons, neutrinos, and elec
magnetic fields in accordance with the standard model an
the collisionless~Vlasov! limit.

B. Semiclassical limit

Our aim in this section is to extract the relevant semicl
sical equations from the quantum transport equations wh
we obtained in the previous section, Eqs.~15!–~19! in par-
ticular. Taking the explicit\ dependence into account, whic
enters through the definitions of the shift and kinetic ope
tors in Eqs.~14! and ~20!–~22! respectively, it becomes ob
vious how to expand the equations in powers of\. Since the
leading terms of the real and imaginary parts of the equat
start out with different powers, it is useful to separate the
similarly to what was previously done@11–13#.

Furthermore, we presently simplify the set of equatio
by assuming aspin saturated electron-positron plasma, i.e.
without the spin polarization effects which may be induc
by strong magnetic fields, for example. Thus, for thee1e2

plasma, we have no pseudoscalar or axial vector densi
cf. Eqs.~7!–~12!.

Also, the standard model neutrino-antineutrino syst
consists strictly only of left-handed neutrinosnL and a right-
handed antineutrinosn̄R , if we appropriately neglect her
their tiny ~possibly finite! masses. In this case, as we show
the Appendix, only the equal vector and axial vector den
ties contribute to the neutrino Wigner function, while a
other densities vanish in the massless limit.

These approximations serve as a working hypothesis
our study of the collective modes and their~in!stability in a
supernova environment in Sec. III . Eventually, however,
analysis of the complete coupled set of equations~15!–~19!
and ~23! should be performed, considering the presence
generation of strong magnetic fields during supernova ex
sions or other astrophysical processes@15–17# ~and refer-
ences therein!.
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1. Semiclassical e¿eÀ transport equations

ImplementingP (e)5A m
(e)[0 ~spin saturation! and sepa-

rating the real and imaginary parts of Eqs.~15!–~19! with the
help of Eqs.~14! and ~20!, we obtain for thee1e2 plasma
the set of equations

P•V (e)2m(e)F (e)50, ~24!

\¹•V (e)50, ~25!

05R (n)
•V (e), ~26!

05I (n)
•V (e), ~27!

PmF (e)1
\

2
¹nS mn

(e)2m(e)V m
(e)

5R (n)lS gmlcVF (e)2
1

2
cAemlnn8S (e)nn8D

2cVI (n)lS ml
(e) , ~28!

\

2
¹mF (e)2PnS mn

(e)

52I (n)lS gmlcVF (e)2
1

2
cAemlnn8S (e)nn8D

2cVR (n)lS ml
(e) , ~29!

1

2
emlnn8P

lS (e)nn8

52R (n)lS gmlcAF (e)2
1

2
cVemlnn8S (e)nn8D

1cAI (n)lS ml
(e) , ~30!

\

4
emlnn8¹

lS (e)nn8

5I (n)lS gmlcAF (e)2
1

2
cVemlnn8S (e)nn8D

1cAR (n)lS ml
(e) , ~31!

2
\

2
~¹mV n

(e)2¹nV m
(e)!1m(e)S mn

(e)

5cV~I m
(n)V n

(e)2I n
(n)V m

(e)!2cAemnln8R (n)lV (e)n8,
~32!

PmV n
(e)2PnV m

(e)

5cV~R m
(n)V n

(e)2R n
(n)V m

(e)!1cAemnln8I (n)lV (e)n8,
~33!

where the constraints~26! and~27!, which resulted from Eq.
~16!, were taken into account in Eqs.~24! and ~25!, which
resulted from Eq.~15!; we usedcV,A

(e) 5cV,A @cf. Eqs.~1!, ~2!#.
8-4
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COLLECTIVE MODES IN NEUTRINO ‘‘BEAM’’ . . . PHYSICAL REVIEW D 63 013008
We proceed to evaluate the limit\→0 of the above sys-
tem of equations. To begin with, we obtain from Eqs.~14!
that R m

( l )5Jm
( l )1O(\2) and I m

( l )5(\/2)]x•]pJm
( l )1O(\3)

and from Eqs.~21!, ~22! that Pm5pm1O(\2) and¹m5]x
m

2eFmn]pn1O(\2).
Then, first of all, the vector density can formally be ca

culated from Eq.~28!:

V m
(e)5

1

m(e) S ~pm2cVJm
(n)!F (e)1

1

2
cAemlnn8J

(n)lS lnn8

1
\

2
~]x

n2eFnl]pl!S mn
(e)1cV

\

2
]x•]pJ(n)lS ml

(e) D
1O~\2!, ~34!

where the right-hand side is to be evaluated consistentl
first order; we recall that]x acts only onJ(n) in the last term.
Similarly, we obtain, from Eq.~32!,

S mn
(e)5

1

m(e) S 2cAemnln8J
(n)lV (e)n81

\

2
@~]xm2eFml]p

l!V n
(e)

2 . . . m↔n#1cV

\

2
]x•]p~Jm

(n)V n
(e)2Jn

(n)V m
(e)! D

1O~\2!, ~35!

with a contribution atO(\0) in the absence of a pseudo
vector~or -scalar! density, in distinction to the QED case o
Ref. @11#. Taking the limit\→0, we solve Eqs.~34!, ~35! in
terms of the scalar densityF (e) or, rather, the modified scala
density,

f̃ (e)~x,p![
F (e)~x,p!

11~cA /m(e)!2J(n)~x!•J(n)~x!
. ~36!

The results are

V m
(e)5

1

m(e)
~pm2cVJm

(n)! f̃ (e), ~37!

S mn
(e)5

cA

m(e)2
emnn8l~pn82cVJ(n)n8!J(n)l f̃ (e), ~38!

where we made use of the constraint~26!, i.e. J(n)
•V50 for

\→0, and conveniently added a term on the right-hand s
of Eq. ~38! which vanishes identically. Thus, we find that
the semiclassical limit the spinor Wigner functions for t
spin saturated system are completely determined by the
lar density; cf. Eq.~7!.

Next, using Eqs.~36! and~37!, Eq. ~25! yields a transport
equation for the scalar density:

~]x
m2eFmn]pn!~pm2cVJm

(n)! f̃ (e)

5@~pm2cVJm
(n)!~]x

m2eFmn]pn!2cV~]x•J(n)!# f̃ (e)

50, ~39!
01300
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i.e. in the limit \→0. Similarly, we obtain from Eq.~24!
together with Eq.~37! a constraint equation

$~p2cVJ(n)!22m(e)2@11~cA /m(e)!2J(n)
•J(n)#% f̃ (e)50,

~40!

where we also used the constraint~26! in the form

~p2cVJ(n)!•J(n) f̃ (e)50, ~41!

which is appropriate in this limit.
Clearly, the Eq.~40! demonstrates that it is thekinetic

momentum,

km
(e)[pm2cVJm

(n)~x!, ~42!

which should be related to a classical mass-shell constra
Therefore, we redefine the scalar density as a function of
kinetic momentumk,

f̃ (e)~x,p!5 f̃ (e)~x,k(e)1cVJ(n)![ f (e)~x,k!, ~43!

instead of the canonical momentump; we will omit the su-
perscript fromk(e), since it is identical to the one off (e) in
the respective equations. This implies

]x
m f̃ (e)up5]x

m f (e)uk2cV~]x
mJn

(n)!]k
n f (e). ~44!

For the redefined variable and scalar density function,
e1e2 mass-shell constraintfollows:

@k22m(e)22cA
2J(n)

•J(n)!] f (e)50, ~45!

instead of Eq.~40!. Furthermore, we finally obtain from Eq
~39! the Vlasov typetransport equationfor the scalare1e2

density,

@k•]x2cVkm~]x
mJ(n)n!]kn2cV~]x•J(n)!2ekmFmn]kn# f (e)

5$k•]x2km~cV@]x
mJ(n)n2]x

nJ(n)m#1eFmn!]kn% f (e)50,

~46!

rewriting and using here the appropriate leading order in\
form of the constraint~27!:

~]x
nJ(n)m!]pn~pm2cVJm

(n)! f̃ (e)

5@km~]x
nJ(n)m!]kn1~]x•J(n)!# f (e)50. ~47!

In particular, we also employed Eq.~37!, rewritten now sim-
ply as

V m
(e)5

km

m(e)
f (e). ~48!

We observe that the weak current-current interaction lead
an antisymmetric tensor coupling in the transport equat
~46!, which is analogous to the electromagnetic field stren
coupling.
8-5
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Furthermore, we remark that there are remaining eq
tions of the set~24!–~33! which we did not consider here
since the dynamics can be represented completely in term
the scalar densityF (e); recall Eqs.~36!–~38!. Similarly as in
the QED case of Ref.@11#, they could be shown to be satis
fied identically to leading order in the\ expansion, which we
do not pursue here.

2. SemiclassicalnL n̄R transport equations and currents

For approximately massless neutrinos, withV m
(n)5A m

(n)

and F5P5Smn[0 ~see the Appendix!, we obtain a much
simpler set of equations from Eqs.~15!–~19!:

~K22J (e)!•V (n)50, ~49!

i @~K22J (e)!mV n
(n)2 . . . m↔n#

2emnln8~K22J (e)!lV (n)n850, ~50!

using cV
(n)1cA

(n)52; hereKm[pm1( i\/2)]xm . Separating
real and imaginary parts, we expand the resulting equat
in powers of\:

~p22J(e)!•V (n)1O~\2!50, ~51!

~]x12]x•]pJ(e)!•V (n)1O~\2!50, ~52!

@~p22J(e)!mV n
(n)2 . . . m↔n#1O~\!50, ~53!

emnln8~p22J(e)!lV (n)n81O~\!50, ~54!

thus proceeding similarly as in the case of the electr
positron plasma up to this point.

However, now it is obvious that the following ansatz im
mediately solves Eqs.~53! and ~54!:

V m
(n)[~p22J(e)!m f̃ (n), ~55!

with a scalar functionf̃ of the phase space variablesx,p.
Furthermore, to leading order in\ , it converts Eq.~49! into
the mass-shell constraint

~p22J(e)!2 f̃ (n)50, ~56!

which demonstrates that it is thekinetic momentum, km
[pm22J(e)(x) , which is to be on-shell here.

Performing analogous steps as in Eqs.~42!–~44! before,
redefining f̃ (n)(x,p)[ f (n)(x,k) in particular, we obtain di-
rectly thenLn̄R mass-shell constraint

k2f (n)50, ~57!

and from Eq.~52! the Vlasov typetransport equationfor the
nLn̄R density function:

~k•]x22km@]x
mJ(e)n2]x

nJ(e)m#]kn! f (n)50, ~58!

which may be compared to Eqs.~45! and ~46! of the
electron-positron plasma.
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In order to complete the set of coupled classical transp
and constraint equations~45!, ~46!, ~57!, and ~58!, we have
to reconsider the four-currents entering here and into
Maxwell equation~23! in the limit \→0 .

Implementing the spin saturation, in particularA m
(e)[0,

and using Eqs.~37! and ~43!, we obtain theweak e1e2

current

Jm
(e)~x!54

GF

A2

cV

m(e)E d4p@pm2cVJm
(n)~x!# f̃ (e)~x,p!

54
cVGF

A2
E d4k

km

m(e)
f (e)~x,k! ~59!

@cf. Eq. ~13!#, with cV
(e)5cV . Similarly, theelectromagnetic

current assumes the form

Jem
m ~x!54eE d4k

km

me
f e~x,k! ~60!

@cf. Eq. ~23!#. Finally, theweaknLn̄R current is

Jm
(n)~x!58

GF

A2
E d4p@pm22Jm

(e)~x!# f̃ (n)~x,p!

58
GF

A2
E d4kkm f (n)~x,k!, ~61!

using once moreV m
(n)5A m

(n) , cV
(n)1cA

(n)52, as well as Eq.
~55!.

The closed set of four coupled mass-shell constraint
transport equations, with the currents determined by sc
~density! functions, along with the Maxwell equation prese
the final result of our derivation of the semiclassical noneq
librium transport theory of neutrinos and electrons. It inco
porates their antiparticles as discussed in more detail for
QED case in Ref.@11#, as well as electromagnetic field
assuming ane1e2-spin saturated system in the mean fie
dominated regime.

We note that the structure of ourfinal closed set of equa
tions could essentially be anticipated from purely classi
kinetic theory considerations, as previously observed@6,12#.
On the other hand, for the study of spin polarization
strong magnetic field effects and higher order quantum c
rections, we must go back to our previous set of Eqs.~15!–
~19! of Sec. II A.

III. LINEAR RESPONSE ANALYSIS AND „UN…STABLE
COLLECTIVE MODES

Presently, we apply the transport theory of Sec. II,
order to derive the semiclassical dispersion relations of c
lective modes of a neutrino-electron system in general~Sec.
III A !.

In Sec. III B we specialize our results for the type II s
pernova scenario. The relevant distribution functions are
troduced in Sec. III B 1 and the necessary response funct
calculated in Sec. III B 2.
8-6
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In Sec. III B 3 we evaluate the dispersion relations
various collective modes. We determine their~in!stability
properties in the neutrino ‘‘beam’’ plus electron ‘‘plasm
sphere’’ system formed during a type II supernova exp
sion. The final section, Sec. III B 4 is devoted to a discuss
of the validity of the approximations used.

A. Linear response theory for neutrino-electron systems

The behavior of collective modes, in particular, the on
of instabilities, is determined by the evolution of small pe
turbations of a generic set of stationary distribution fun
tions, which may be caused by scattering interactions,
example. Therefore, we write the scalar density distributi
in the form

f ( l )~x,k!5 f S
( l )~k!1d f ( l )~x,k!, ~62!

where f S
( l ) denotes the assumedhomogeneous four-

momentum dependent solutions of the mass-shell and tr
port equations andd f ( l ) an initially small perturbation. This
assumption of homogeneity greatly simplifies the subsequ
analysis and describes a sufficiently large ‘‘free-streamin
electron-neutrino system.

The weak currentsJm
( l ) determined byf S

( l ) @cf. Eqs. ~59!
and ~61!# are homogeneous and the antisymmetric tens
which enter the transport equations~46! and ~58!,

G( l )mn[c( l )@]x
mJ( l 8)n2]x

nJ( l 8)m#, ~63!

vanish in this case; from here onc(e)[cV andc(n)[2. Fur-
thermore, assuming anisotropic on-shellelectron-positron
distribution

f S
(e)~k![d@k22m(e)22cA

2J(n)
•J(n)# f (e)~k0,ukW u! ~64!

@cf. Eq. ~45!#, it follows that the corresponding electroma
netic four-current~60! vanishes, if we additionally assume
neutralizing background charge or approximately equal d
sities of electrons and positrons, depending on the circ
stances. Consistently we setFmn[0, i.e. considering a situ
ation without external electromagnetic fields.

Indeed, then, the initial on-shell distributionsf S
(n)(k) and

f S
(e)(k) arestationaryin the absence of collisions. They wi

be further specified shortly.
Linearizing the transport equations~46! and~58! with re-

spect to the small perturbationsd f ( l ), we obtain for the elec-
trons:

ik•qd f (e)~q,k!1km@dG(e)mn~q!1edFmn~q!#]kn f S
(e)~k!50,

~65!

where we introduced the Fourier transform for any funct
g of the space-time coordinates,

g~x![~2p!24*d4q exp~2 iq•x!g~q!.

Here dG(e) and dF denote the weak and electromagne
tensors induced by the perturbationsd f (n) andd f (e), respec-
tively. From Eq.~63! we obtain
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dG( l )mn~q!52 ic ( l )~qmgnl2qngml!dJl
( l 8) . ~66!

Furthermore, solving the Maxwell equation~23! with the re-
tarded boundary condition~damping in the infinite past!, we
obtain

edFmn~q!5
ie

q21 i eq0
~qmgl

n2qngl
m!dJem

l

5 i
A2e2

cVGF

1

q21 i eq0
~qmgnl2qngml!dJl

(e) , ~67!

where e→01, and where we used Eqs.~59! and ~60!, in
order to express the~conserved! electromagnetic curren
fluctuation in terms of its weak counterpart.

Implementing the retarded boundary condition, i.e. t
‘‘Landau prescription’’ @9#, the electron transport equatio
~65! is solved by

d f (e)~q,k!5
km@dG(e)mn~q!1edFmn~q!#]kn

2 i ~k•q1 i ek0!
f S

(e)~k!. ~68!

Similarly, the perturbation of the stationary neutrino dist
bution is determined by

d f (n)~q,k!5
kmdG(n)mn~q!]kn

2 i ~k•q1 i ek0!
f S

(n)~k!. ~69!

Obviously, Eqs.~68! and ~69! are coupled to each other vi
Eqs.~66!.

We proceed by introducing the response functions

M ( l )lr~q![4E d4k
kl

m( l 5e)

1

k•q1 i ek0

3~k•q]k
r2krq•]k! f S

( l )~k!, ~70!

which will be calculated for specific choices of the stationa
distributionsf S

( l ) shortly; the factor 1/m( l 5e) is meant to ap-
ply only in the e1e2 case and to be replaced by 1 for th
~approximately! masslessnLn̄R case.

Making use of the response functions, we multiply Eq
~68! and ~69! by the appropriate factors@cf. Eqs. ~59! and
~61!#, and integrate over d4k, in order to obtain a closed se
of algebraic equations:

dJ(e)l~q!5M (e)lr~q!

3S cV
2GF

A2
dJr

(n)~q!2
e2

q21 i eq0
dJr

(e)~q!D ,

~71!

dJ(n)l~q!5
4GF

A2
M (n)lr~q!dJr

(e)~q!, ~72!
8-7
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where the tensor fluctuationsdG( l ) anddF were eliminated
with the help of Eqs.~66! and ~67!, respectively. Inserting
the second into the first equation, the final result is

M (e)lr~q!dJr
(e)~q![Fglr1M (e)ls~q!S e2

q21 i eq0
gs

r

22cV
2GF

2gstM
(n)tr~q!D GdJr

(e)~q!

50. ~73!

The solvability condition of this vector equation determin
thedispersion relationfor the perturbations of the stationar
electron-positron distribution:

DetM (e)~q!50, ~74!

whereM (e) is a 434 matrix in the Lorentz indices. Analo
gously one obtains the dispersion relation for the neutr
case, which we do not pursue.

A final remark is in order here. From the structure of E
~73!, particularly the generically small weak coupling ter
compared with the electromagnetic one, it is natural to
pect that the neutrinos can only influence the resulting
persion relations noticeably, if their response function sho
rather singular behavior. Furthermore, in this case, weak
electromagnetic interactions presumably will mix in the c
responding collective modes, due to the products involv
for example, in Eqs.~73! and~74!. This will be studied in the
following sections with the application to a supernova s
nario.

B. Supernova two-stream scenario

The above results are fairly general and need to
specialized according to the physical nature of the station
distributions as well as of their potentially unstable p
turbations. We shall now study the idealized situati
where an electrically neutral finite temperature electr
positron plasma is hit by a neutrino-antineutrino bea
~Anti-!neutrinos are radiated from the neutrino sphere, m
approximately radially outwards, and interactcollectively
with the electron-positron plasma sphere forming the ‘‘rad
tion bubble’’ in Bethe’s supernova scenario@2#. As before,
we derive our results in the collisionless limit.

Typically, it is assumed that a short-lived, but inten
neutrino flux (331029 W/cm2, total integrated luminosity
up to the order of several 1053 ergs) with an approximately
thermal spectrum corresponding to a temperatureTn

'1 –10 MeV is released from the collapsing core and int
acts at a distance of about 30–300 km from the center w
the surrounding moderately relativistic electron plasma
~charge! density ne&1030 cm23 and temperatureTe
*0.5 MeV; here the uncertainties mostly reflect differin
scenarios considered in this context@1–3,5,6#. We will study
a corresponding set of parameters, following the discuss
of the radiation bubble by Bethe@2#.

For the above~optimistic charge! density and tempera
ture, the electron-positron plasma is nondegenerate, wit
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estimated chemical potentialme,pT . This is indirectly sup-
ported by Bethe’s results, see in particular Secs. VI E–V
of Ref. @2#, which demonstrate the dilute character of mat
in the radiation bubble—the energy or entropy density of
‘‘radiation’’ ~i.e. of photons plus pairwise produced electro
and positrons! is more than a factor 102 higher than that of
nucleons in the bubble. Therefore, any background cha
contamination by protons must be small here and co
spondingly the net charge of electrons over positrons neu
izing the plasma. Hence we may neglect the finite elect
chemical potential in a first approximation.

1. Distribution functions

The following stationary electron-positron distributio
will now be considered@cf. Eq. ~64!#:

f S
(e)~k!5~2p!23m(e)d@k22m(e)22cA

2J(n)
•J(n)#

3@Q~k0!F~k0/Te!1Q~2k0!F~2k0/Te!#,

~75!

where F(x)[(ex11)21, and whereTe denotes their tem-
perature. WhenJ(n)50, Eq. ~75! describes thee1e2 black-
body radiation~omitting the vacuum contribution!. We re-
mark that antiparticles are represented as fermions w
negative four-momentum here@11#.

Concerning the emission from the neutrino sphere,
neglect its collective flow relative to the electron-positr
plasma sphere, or vice versa. However, it is important
incorporate the dilution and angular squeezing effects du
the spherical geometry. Thus, we assume the following
tionary ~approximately massless! neutrino-antineutrino dis-
tribution:

f S
(n)~k!5

1

2
~2p!23d@k2#„Q~k0!Q~umax2unW ,kW !

3F~@k02mn#/Tn!1•••k,mn→2k,2mn…,

~76!

wheremn denotes their chemical potential and onlyone(nL

or n̄R) spin state is taken into account. The additionalQ

function, implementing the radial~‘‘outward’’ ! unit vectornW ,
accounts for the finite opening angleunW ,kW between neutrino
momenta and the radial direction. The maximal open
angle is determined by sinumax5R/r, where r denotes the
distance from the center of the neutrino sphere of radiusR.
The usual dilution factor,d[(R/r )25sin2umax, does not
appear explicitly, but is recovered in the calculation
for example, the energy flux from the neutrino sphere ba
on f S

(n) .
We remark that the neutrino distribution is not necessa

uniform within the cone defined byumax. It may vary con-
siderably, depending on the emission characteristics of
neutrino sphere. Thus, the distribution of Eq.~76! may rep-
resent an opening angle average; the~ir!relevance of the
sharpQ-function cutoff will be discussed in the final subse
tion, Sec. III B 4. Furthermore, it isnot a global solution of
8-8
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thesphericalfree-streaming problem. However, our appro
mate spatially homogeneous distribution, with the parame
dependence onR/r , is sufficient for the study of collective
modes with a characteristic wavelength very much less t
R, even though we are interested in the long-wavelen
limit with respect to the microscopic scales.

We omit them and t neutrinos at present which have
considerably weaker effective coupling@see Eq.~73! to-
gether with the remarks after Eq.~1!#; using sin2uW'0.23,
we havecV'0.96(20.04) for the electron (m,t) neutrinos.
Furthermore, their chemical potential vanishes. For the e
tron ~anti-!neutrinos, which carry about 4/10 of the total ne
trino energy flux, we adopt Bethe’s estimate which yie
hn[mn /Tn50.29 @2#.

Next, we proceed to calculate the energy-momentum
sor, similarly as in Ref.@11#, for a stationary free neutrino
antineutrino distribution:

Tmn
(n)~x!5trE d4kkngmW(n)~x,k!54E d4kknV m

(n)~x,k!,

~77!

i.e. in terms of the vector density@cf. Eq. ~10!#. Employing
Eq. ~55! and projecting on the ‘‘outward’’ momentum direc
tion, we obtain the electron-nLn̄R energy flux corresponding
to the homogeneous equilibrium distribution~76!:

T(n)0ini54E d4kk0kzf S
(n)~k!

5
d

8p2E0

`

dkk3$F~@k2mn#/Tn!1F~@k1mn#/Tn!%

5
7p2

480
dTn

4S 11
30

7p2
hn

21
15

7p4
hn

4D
5

4

10

dL

pR2
, ~78!

choosingnW 5(0,0,1), and whereL denotes thetotal neutrino-
plus-antineutrino luminosity. The integral is evaluated e
actly with the help of a formula from Ref.@18#. Correction
terms involving powers ofm(n)/(hnTn) would be completely
negligible for temperatures in the MeV range and a typi
neutrino mass~much! less than 1 eV. The last equality in E
~78! provides the relation between temperature and radiu
the neutrino sphere, given its luminosityL @2#.

Similarly, we obtain from Eq.~61! by direct calculation:

J(n)m58
GF

A2
E d4kkm f S

(n)~k!5
GF

A2

dTn
3

12 S hn1
1

p2
hn

3D jm,

~79!

where jm[(2/@11cosumax#,0,0,1). As expected, the neu
trino current components are very small, since for tempe
tures of about 10 MeV we haveGFTn

3'1028 MeV. There-
fore, the corresponding term}J(n)

•J(n) in the expression for
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the stationary electron-positron distribution@cf. Eq. ~75!# can
be safely neglected henceforth.

2. Response functions

After specifying the unperturbed stationary electron a
neutrino distributions,f S

(e) and f S
(n) respectively, we calculate

the response functionsM (e)lr and M (n)lr defined in Eq.
~70!. For the following calculations it is convenient to pe
form a partial integration, which yields

M ( l )lr~q!54E d4k
f S

( l )~k!

m( l 5e) S 2glr1
qlkr1qrkl

k•q1 i ek0

2
q2klkr

~k•q1 i ek0!2D , ~80!

which is now obviously symmetric andtransverse,
qlM ( l )lr(q)50. Thus, the current fluctuations are prope
conserved,qldJll(q)50; cf. Eqs.~71!, ~72!.

Beginning with the electron case, the calculation is fac
tated by recalling that the distribution functionf S

(e) , Eq.~75!,
is isotropic with respect to the three-momentum compone
Therefore, the spatial part of the response function can
decomposed into a transverse and a longitudinal part,

M (e) i j ~q![S d i j 2
qiqj

qW 2 D MT
(e)~q!1

qiqj

qW 2
ML

(e)~q!. ~81!

Defining theelectric ~Debye! screening mass,

mD
2 [

4e2

p2 E0

`

dk kF~k/Te!5
1

3
e2Te

2 , ~82!

the results of a standard calculation for theelectron-positron
response functionare

2e2M (e)00~q0,qW !

5mD
2 F12

1

2

v

q S lnUq1v

q2vU2 ipQ~q2v! D G ,
~83!

M (e)0i~q0,qW !5M (e) i0~q0,qW !5
q0qi

q2
M (e)00~q0,qW !,

~84!

ML
(e)~q0,qW !5

v2

q2
M (e)00~q0,qW !, ~85!

e2MT
(e)~q0,qW !5

1

2
mD

2 v2

q2 F12
1

2 S v

q
2

q

v D
3S lnUq1v

q2vU2 ipQ~q2v! D G , ~86!

where we implemented the relativistic limit and neglect
correction terms in powers ofme /Te ; here we simplified the
notation by introducingv[uq0u and q[uqW u. We note the
appearance of the imaginary parts which, in general, are
8-9
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sponsible for Landau damping@9,19#. These kinetic theory
results completely agree with the perturbative one-lo
evaluation of the QED polarization tensor in the hig
temperature limit@20#, a correspondence which was has be
observed in many other cases, e.g.,@12#.

In a fully realistic calculation, corrections due to the fini
ratio of me /Te&1 should also be considered. We negle
them in our present work, since the appropriate electron t
perature is not precisely known in this context. Furthermo
unfortunately, this would necessitate numerical calculati
where the transparency of the analytical results prese
here would be lost. On the one hand, it seems unlikely
the additional mass scale can qualitatively change any of
conclusions, since it is well separated from all the plas
scales entering in the following. However, for particular e
fects, e.g. proper Landau damping@9,19#, a finite mass may
be crucial @cf. footnote following the discussion after Eq
~112!#. Thus, proper ‘‘neutrino Landau damping’’ has be
discussed in more detail by Silvaet al. recently@5#.

Next, we turn to the calculation of the neutrino respon
function M (n)lr. It is more involved due to the preferre
direction of propagation, which enters here through the
pendence of the stationary distribution~76! on the ‘‘radial’’
unit vectornW . In order to facilitate our task, we consider tw
cases separately, depending on the orientation of the w
vectorqW with respect tonW : qW inW ~case I! andqW'nW ~case II!.
We recall thatqW determines the direction of propagation
the collective excitations of the electron-positron plasma,
pecially in the presence of the neutrino flux.

Case I.Here we expect a response function with a form
structure generalizing the familiar results of Eqs.~83!–~86!,
since the geometry determining the essential angular inte
tions is identical to the previous case. Therefore, a ten
decomposition into transverse and longitudinal parts an
gous to Eq.~81! still applies. However, the maximal openin
angleumax between neutrino momenta and the ‘‘radial’’ d
rection limits the azimuthal angleu, e.g. in the vector de-
composition,

kW5qW q21k cosu1kW' , ~87!

with k[ukW u, which is conveniently employed after conver
ing the integral of Eq.~80! to the corresponding threedimen
sional ~on-shell! form.

Furthermore, instead of the Debye mass of Eq.~82!, we
introduce theweak thermal mass

mw
2 [

2cV
2

p2 E0

`

dk k„F~@k2mn#/Tn!1F~@k1mn#/Tn!…

5
1

3
cV

2Tn
2S 11

3

p2
hn

2D , ~88!

which takes the finite chemical potential of the neutrinos i
account. Here we applied the ultrarelativistic limit discuss
before, as well as the appropriate integral formula from R
@18#.
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Then, we obtain the components of theneutrino-
antineutrino response function(qW inW ):

22cV
2M (n)00~q0,qW !5mw

2 F12z

4 S 12
q1q0

zq2q0D
2

1

2

q0

q S lnUzq2q0

q2q0 U2 ipQ~q2q0!

1 ipQ~zq2q0!D G , ~89!

M (n)0i~q0,qW !5M (n) i0~q0,qW !5
q0qi

q2
M (n)00~q0,qW !,

~90!

ML
(n)~q0,qW !5

v2

q2
M (n)00~q0,qW !, ~91!

2cV
2MT

(n)~q0,qW !5
1

2
mw

2 v2

q2 F12z

2

3S 12
11z

2

q~12q2/v2!

zq2q0 D
2

1

2 S q0

q
2

q

q0D S lnUzq2q0

q2q0 U
2 ipQ~q2q0!1 ipQ~zq2q0!D G ,

~92!

where z[cosumax and v2[(q0)2. Indeed, forz→21, i.e.
without restriction on the opening angle, we recover the f
mal structure of Eqs.~83!–~86!, while for z→1 the response
function vanishes.

Furthermore, we observe that for a finite opening an
(1.z.21) the Landau damping imaginary parts are lim
ited to the regionq.q0.zq and that at the resonance fre
quencyq05V i[zq the response function has additional si
gularities, which are absent forz521. In the present case
with qW inW , the longitudinal as well as the transverse comp
nents,ML

(n) andMT
(n) respectively, are affected.

Case II.In this case, withqW'nW , we introduce a third unit
vectoreW , perpendicular to the other two vectors, in order
decompose the momentum vector for the threedimensio
response function integral,

kW5k~nW cosu1qW q21sinu cosf1eW sinu sinf!, ~93!

with the azimuthal and polar anglesu and f, respectively,
such thatkW•qW 5kq sinu cosf. The resulting angular integra
8-10
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tions can all be done analytically in the appropriate ultrare
tivistic limit, either by elementary or contour integratio
techniques.

Because of the symmetry properties of the required in
grals, presently it turns out to be useful to decompose
spatial part of the response function as follows:

M (n) i j ~q![S d i j 2ninj2
qiqj

qW 2 D MT
(n)~q!1ninjML1

(n)~q!

1
qiqj

qW 2
ML2

(n)~q!1
niqj1njqi

uqW u
M3

(n)~q!. ~94!

All other terms which could arise vanish identically, sin
the corresponding polar angle integration comprises an
function.

In order to check the ensuing lengthy calculations,
also evaluated independently the integrals resulting from
transversality condition mentioned after Eq.~80!,
qlM (n)lr(q)50, as well as from the traceMl

(n)l(q). These
results we compared with what is obtained using the ca
lated components of the response function in the followi
In fact, this procedure leads to considerable simplificatio

Then, for 0<umax<p/2, i.e. 0<z<1, we finally obtain
these components of theneutrino-antineutrino respons

function (qW'nW ):

22cV
2M (n)00~q0,qW !5mw

2 F1612z

4
7

z

4

q0

Aqz
2

7
1

2

q0

q
lnS q1q0

zq1Aqz
2D G , ~95!

M (n)0i~q0,qW !5M (n) i0~q0,qW !

5
qni

q0
M3

(n)~q0,qW !1
q0qi

q2
M (n)00~q0,qW !,

~96!

2cV
2MT

(n)~q0,qW !5
1

2
mw

2 ~q0!2

q2 F12z

2
7

1

2

3S q0

q
2

q

q0D lnS q1q0

zq1Aqz
2D G , ~97!

2cV
2ML1

(n)~q0,qW !5
1

4
mw

2 H 12z6S ~q0!2

q2
21D

3F12z
q0

Aqz
2

2
q0

q
lnS q1q0

zq1Aqz
2D G J ,

~98!

ML2
(n)~q0,qW !5

~q0!2

q2
M (n)00~q0,qW !, ~99!
01300
-

-
e

d

e
e

-
.
.

2cV
2M3

(n)~q0,qW !56
1

4
mw

2 q0

q F ~q0!2

q2
~12~q0!21Aqz

2!

1S ~q0!2

q2
21D ~12q0/Aqz

2!G , ~100!

where we introduced the abbreviation

qz
2[~q0!22q2~12z2!, ~101!

with q[uqW u and z[cosumax, as before. Several qualifying
remarks are in order here:

~i! For later convenience we did not separate real a
imaginary parts in Eqs.~95!–~100! which are valid forcom-
plex q0[v1 ig, provided the imaginary part here is suffi
ciently small,ugu!uvu, or infinitesimal.

~ii ! Either the upper or the lower signs have to chos
consistently in Eqs.~95!–~100! according to the following
rules (0<umax<p/2):

g.0 and v.0⇒upper signs,

g.0 and v,2q sinumax⇒ lower signs,

g,0 and v,0⇒ lower signs,

g,0 and v.q sinumax⇒upper signs. ~102!

They are due to the~angular! contour integrations, which
result in different contributions according to the listed rule

We do not report the results forv in the intervals which
are excluded in Eqs.~102!, since the azimuthal angle inte
grations have to be split in this case, yielding even m
complicated expressions.

Obviously, the response function has additional squa
root singularities at the resonance frequenciesv5V'

6

[6q sinumax, as g→0. The transverse componentMT
(n) ,

however, is not affected in the present case II (qW'nW ).
This completes the calculation of the response functi

for the model distributions discussed in the previous subs
tion.

3. Dispersion relations, collective modes and instabilities

It is useful to begin the study of the dispersion relatio
following from Eqs.~73!, ~74! with the case of the electro
magnetically interacting electron-positron plasma, i.e. w
the weak interaction term}GF

2 in Eq. ~73! switched off.
Considering separately transverse~T! and longitudinal~L!

current fluctuations, i.e.dJW (e)(q)'qW anddJW (e)(q)iqW , respec-
tively, Eq. ~74! yields two equations determining the corr
spondingdispersion relations:

T: @12e2MT
(e)/~q21 i eq0!#350, ~103!

L: 12e2M (e)00/qW 250, ~104!
8-11
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with the plasma response functions of Eqs.~83!–~86!, and
where the decomposition~81! of the spatial part of the re
sponse function is especially taken into account.

The real solutions withv[uq0u.q[uqW u of Eqs. ~103!
and~104!, respectively, determine the well-known collectiv
transverse and longitudinal plasmon modes@9,20#. In the
long-wavelength limit (v@q), for example, the explicit so
lutions are

T: vT
2~q!5v0

21
6

5
q2, L: vL

2~q!5v0
21

3

5
q2, ~105!

with the plasma frequencyv0
2[ 1

3 mD
2 @cf. Eq. ~82!#, which

characterizes an ultrarelativistic neutral plasma. Again thi
in agreement with the one-loop calculations of finite te
perature field theory (T@me). We remark that beyond th
present collisionless approximation these modes natur
aquire a finite width@20#.

We now turn to the case of a fully interacting neutrin
antineutrino beam impinging on an electron-positron plas
We remind ourselves of the two limiting cases introduced
the preceding section concerning the orientation of the w
vector qW with respect to the outward normal vectornW , i.e.
qW inW ~case I! andqW'nW ~case II!. In both cases, we concentra
on the interesting possibility that the weak interaction te
might become comparable to the purely electromagn
term }e2 in Eq. ~74!. Because of the intrinsic smallness
the weak coupling constant, this may happen only when
neutrino-antineutrino response functions become large, c
to the singularities found in Eqs.~89!–~92! or in Eqs.~95!–
~100!. Otherwise the neutrino effects can be treated as sm
perturbations of previous electron-positron plasma results
we shall see.

Case I. We observe here that the neutrino-antineutr
response function obtained in Eqs.~89!–~92! has the same
tensor structure as the electron-positron one of Eqs.~83!–
~86!. Considering the product of the two appearing in E
~74!, C ab[M (e)agMg

(n)b , we obtain

C 005S 12
v2

q2 D M (e)00M (n)00, ~106!

C 0i5C i05
q0qi

q2
C 00, ~107!

C i j 52S d i j 2
qiqj

q2 D MT
(e)MT

(n)1
qiqj

q2

v2

q2
C 00, ~108!

with v[uq0u andq[uqW u. Therefore, we may still distinguish
transverse~T! and longitudinal~L! current fluctuations which
do not mix, similarly to the case of a purely electromagne
plasma.

In analogy to Eqs.~103! and ~104!, we thus obtain from
Eq. ~74! two equations which now determine theneutrino
‘‘beam’’ electron-positron plasma dispersion relation

(qW inW ):
01300
is
-

lly

a.
n
e

ic

e
se

all
as

.

c

T: S 12F e2

~q0!22q2
12cV

2GF
2MT

(n)GMT
(e)D 3

50,

~109!

L: 12F e2

q2
12cV

2GF
2S 12

~q0!2

q2 D 2

M (n)00GM (e)0050,

~110!

with q[uqW u.
In the long-wavelength limit (v@q) and to lowest order

in GF
2 we obtain, for example, from Eq.~109! the equation

05v22q22v0
2F11

1

5 S q

v D 2

1•••G
2v0

2a2F4~12z!1z~12z2!

36
2

~12z2!2

24

q

v

1
4~12z!23z~12z2!2

60 S q

v D 2

1•••G , ~111!

with v[uq0u, z[cosumax, and where we indicated the ne
glected higher order terms inq/v. We introduced the dimen
sionless constant

a2[
1

2e2
GF

2mw
2 mD

2 , ~112!

which governs the strength of the neutrino effects. The so
tion of Eq. ~111! describes thetransverse plasmon in a neu
trino ‘‘beam’’ electron-positron plasma.

However, as we anticipated, the smallness of the w
coupling constant makes the influence of the neutrino te
completely negligible here. Considering type II superno
conditions and settingTe'1 MeV and Tn'10 MeV, we
find that a2'10222. Omitting the neutrino contribution and
solving reproduces the first of Eqs.~105!.

A similar analysis, i.e. forv.q, applies to Eq.~110!
which the longitudinal plasmon in a neutrino ‘‘beam’’
electron-positron plasma. Again the neutrinos have a negl
gible effect under supernova conditions.

We now consider the dispersion relations implicit in Eq
~109! and ~110! close to the resonance frequency, i.e.v
'V i[zq, which lies in the electron-positron Landau dam
ing regime with 0,v,q, considering 0,z,1 from now on
(0,umax,p/2).2

In this case, we expect the frequencyq0, and correspond-
ingly v, to aquire afinite imaginary part, instead of the in
finitesimal i e representing the retarded boundary conditi
@9#; cf. Eqs.~68!, ~69! or ~80!. Therefore, replacingq01 i e
→v1 ig, the ‘‘Landau logarithms’’ and imaginary parts o
the calculated response functions have to be reconside
We rewritev[zq1j, anticipating thatj!qz, and will use

2For the case of an ultrarelativistic pure electron-positron plas
in equilibrium it can be shown that no solution, for example, of t
dispersion equation~104! exists with 0,v,q.
8-12
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ln
v1q1 ig

v2q1 ig
5 ln

11z

12z
2 ip sgng1 lnS 11

j1 ig

q~11z! D
2 lnS 12

j1 ig

q~12z! D , ~113!

where sgng[g/ugu . This is most appropriate for smallj
andg, reproducing the usual result forg→01.

Specifically, we reconsider Eq.~110! and take only the
dominant singular term}(zq2q0)21 in M (n)00 into account;
cf. Eq. ~89!. Thus we obtain, more explicitly,

11FmD
2

q2
1a2

12z

2 S 12
~v1 ig!2

q2 D 2
q1v1 ig

zq2v2 igG
3F12

1

2

v1 ig

q
ln

v1q1 ig

v2q1 igG50, ~114!

with v[zq1j. We recall thata2!1.
It is easy to see that for a solution withv'zq the term

}a2 has to behave qualitatively such that~at least! (j,g)/q
;a2q2/mD

2 !1, particularly in the long-wavelength limi
with q2/mD

2 !1. Consequently, using Eq.~113!, we expand
Eq. ~114! up to second order inj/q or g/q. Separating rea
and imaginary parts, it is straightforward to solve the res
ing equations. We obtain

j

q
5

1

2
a2~q/mD!2~12z2!3

~pz/2!21 f 2~z!1 f ~z!~q/mD!2

~pz/2!21@ f ~z!1~q/mD!2#2
,

~115!

ugu
q

5
p

2
a2~q/mD!4

~12z2!3

~pz/2!21@ f ~z!1~q/mD!2#2
,

~116!

neglecting higher order ina2 corrections and defining

f ~z![12
1

2
z ln

11z

12z
. ~117!

These results are consistent with the applied expansions,
ing that j}GF

2/e2 and g}GF
2/e4, particularly in the long-

wavelength limit.
Recallingv[zq1j, we thus obtain a pair oflongitudinal

pharon modes~‘‘type I,’’ i.e. for qW inW ), with the real part of
the dispersion relation in the long-wavelength limit given

v~q!5zq1
1

4e2
GF

2mw
2 ~12z2!3q3, ~118!

one, a growing, and the other, a decaying, mode, depen
on the sign ofg.

Analogously, we analyze the transverse dispersion r
tion to be calculated from Eq.~109! for v,q. In this case,
we find a pair oftransverse pharon modes~type I! with
01300
t-

ot-

ng

a-

j

q
52

1

4
a2~q/mD!2~12z2!3

3
~p/2!2~12z2!1@z2/~12z2!#g2~z!12g~z!~q/mD!2

~pz/2!21$@z2/~12z2!#g~z!12~q/mD!2%2
,

~119!

ugu
q

5
p

4
a2~q/mD!4

3
z21~12z2!3

~pz/2!21$@z2/~12z2!#g~z!12~q/mD!2%2
,

~120!

and where

g~z![12
1

2 S z2
1

zD ln
11z

12z
. ~121!

The corresponding real part of the dispersion relation in
long-wavelength limit is

v~q!5zq2
1

8e2
GF

2mw
2 ~12z2!3q3

3
~p/2!2~12z2!1@z2/~12z2!#g2~z!

~pz/2!21@z2/~12z2!#2g2~z!
, ~122!

with an interesting negative sign in front of the second ter
We observe that the transverse pharons are quite sensiti
the geometry parameterz.

In particular, in the limitz→0, corresponding to a maxi
mally fanned-out ‘‘beam’’ withumax→p/2, the ‘‘damping
constant’’g(q) diverges. In this limit the expansions leadin
to Eqs. ~119! and ~120! clearly break down. This can b
studied in more detail, starting again with Eq.~109! and
implementingq05j1 ig, with j,g!q. However, it leads to
a nonpropagating mode with frequency of the same sm
order of magnitude as the damping constant, which is ph
cally irrelevant to our study.

However, under type II supernova conditions, witha2

'10222, and recalling that we have 12z25sin2umax5(R/r)2,
in terms of the radiusR of the neutrino sphere and the di
tance r of the electron-positron plasma from its center,
typical value may be (R/r )2'0.5 for R'30 km @2#. Then,
for q,mD , the above calculations are accurate and we m
roughly estimate, for example, the transverse pharon da
ing constant,g'1022a2(q/mD)4q. For a pharon wavelength
corresponding toq'mD/2 and an electron temperatureTe
'1 MeV, this yields a growth/decay length~onee-folding!
on the order of 109–1011 km. A 1% increase of the collec
tive mode amplitude squared, i.e. of its energy, mean
would have to run through more than 106 km of plasma,
which is simply not there. The longitudinal mode behav
similarly.
8-13
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Clearly, the above estimates are crude and could be
proved by folding the results with the appropriate distrib
tions, depending on the distance from the supernova c
~and time!. However, in view of the intrinsic weakness of th
instabilities, we conclude that it is unlikely that long
wavelength type I (qW inW ) pharon modes play an importan
role in the outward energy transport processes in type II
pernovas.

Considering the strong momentum dependence of the
culated damping constants, Eqs.~116! and ~120!, however,
the question is raised, whether, at shorter wavelengths,
responding collective modes could become important
stead. As we will discuss in the following subsection in mo
detail, in this limit, the presently employed semiclassi
transport theory breaks down, necessitating further study

Case II.We recall that here we haveqW'nW and proceed as
before. However, the product of the two response matr
appearing in Eq.~74!, C ab[M (e)agMg

(n)b , has to be recal-
culated. Taking the different tensor structure ofM (n), ac-
cording to Eqs.~95!–~100!, into account, we obtain

C 005S 12
~q0!2

q2 D M (e)00M (n)00, ~123!

C 0i5
q0qi

q2
C 001niS q

q0
2

q0

q D M (e)00M3
(n) , ~124!

C i05
q0qi

q2
C 002

qni

q0
MT

(e)M3
(n) , ~125!

C i j 5
qiqj

q2

~q0!2

q2
C 001

qinj

q S 12
~q0!2

q2 D M (e)00M3
(n)

2F S d i j 2ninj2
qiqj

q2 D MT
(n)

1ninjML1
(n)1

niqj

q
M3

(n)GMT
(e) , ~126!

with q[uqW u. We observe thatC mnÞC nm.
In the present case, we consider again two different ki

of current fluctuations, when evaluating Eq.~74!:
dJW (e)(q)'qW ,nW ~‘‘ Out’’ !, i.e. fluctuations which are perpen
dicular to the plane spanned byqW and nW , and fluctuations
with dJW (e)(q) in this plane~‘‘ In’’ !. Thus we obtain the fol-
lowing two equations which determine theneutrino ‘‘beam’’

electron-positron plasma dispersion relations(qW'nW ):

Out: S 12F e2

~q0!22q2
12cV

2GF
2MT

(n)GMT
(e)D 3

50,

~127!
01300
-
-
re

u-

l-

r-
-

l

s

s

In: ~122cV
2GF

2ML1
(n)MT

(e)!H 12F e2

q2
12cV

2GF
2

3S 12
~q0!2

q2 D 2

M (n)00GM (e)00J 1~2cV
2GF

2 !2

3S 22
q2

~q0!2
2

~q0!2

q2 D ~M3
(n)!2MT

(e)M (e)0050,

~128!

with q0[v1 ig. We observe that Eq.~127! has the same
formal structure as Eq.~109! before. Furthermore, if we se
GF

2 to zero, these equations reproduce the transverse
longitudinal electron-positron plasmon dispersion equati
~103! and ~104!.

Guided by our analysis of the transverse plasmon disp
sion relation under neutrino flux forqW inW , Eqs.~109!–~112!,
we expect only a negligible perturbative influence of the n
trino interactions in Eq.~127!, since they are again sup
pressed by the factora2'10222. In particular, the presen
structure ofMT

(n) is a smoothly deformed version ofMT
(e) ,

compare Eqs.~86! and ~97!, with no additional singularity.
Thus, the corresponding collective mode shows no part
larly interesting behavior and presents asecond kind of per-
turbatively deformed transverse plasmon.

Finally, we consider Eq.~128!, describing a geometry
which resembles the one where two-stream instabilities a
in other plasmas@8–10#. We attempt to find pharon type
solutions in the present case as well. For this purpose,
take into account the leading root-singular terms, which c
tribute here from Eqs.~95!, ~98!, and~100!. The singularities
occur at the resonance frequenciesv5V'

6[6qs, as qz
2

[(q0)22q2(12z2)→0, whereq[uqW u andz[cosumax.
We concentrate on the positive frequency solutions of

dispersion equation~128! and are particularly interested i
those with a positive imaginary part, which grow expone
tially in time. Therefore, we considerq0[v1 ig, with v
'qs.0, defining s[sinumax. Then, Eq.~128! assumes a
slightly simpler form:

0511mq
2M̃ (e)001a2

z

2

q0

Aqz
2 F ~q0!2

q2
21G

3S F ~q0!2

q2
21G M̃ (e)001

1

2
M̃T

(e)@11mq
2M̃ (e)00# D 1O~a4!,

~129!

with the dimensionless effective coupling constanta2, Eq.
~112!. The terms ofO(a4) will be neglected in the follow-
ing, since their singularities cancel. Furthermore, we con
niently define

mq
2[mD

2 /q2, M̃ (e)00[2e2M (e)00/mD
2 ,

M̃T
(e)[2e2MT

(e)/mD
2 ; ~130!
8-14
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cf. Eqs. ~83! and ~86!. Recalling the smallness ofa2, it is
obvious that any interesting solution must arise close
resonance frequencyV'

15qs (0,s,1).
Settingv[qs1j and assumingj,g!qs, it is useful to

expand Eq.~129! in terms of the small complex quantityk
[(j1 ig)/(2qs). Here we make use of Eq.~113! once
more, in order to expand the Landau logarithms. Then,
panding to leading order ink, it is straightforward to arrive
at the ‘‘formal solution’’

j1 ig5qa4
s~12s2!3

128$@11mq
2f ~s!#21~ps/2!2%2

3„h~s!$11mq
2@ f ~s!2~ ips/2!sgng#%…2,

~131!

where

h~s![2s2g~s!1 ips~s221!sgng14~s221!

3@ f ~s!1~ ips/2!sgng#1mq
2@ f ~s!1~ ips/2!sgng#

3@2s2g~s!1 ips~s221!sgng#. ~132!

The functionsf andg were defined in Eqs.~117! and ~121!.
The appearance of sgng on the right-hand side restricts th
possibility of an explicit solution.

After some algebra, one obtains a criterion for a solut
to exist in the relevant regime (0,s,1):

$211s2@11mq
2g~s!/2#%$p2mq

2s214 f ~s!@11mq
2f ~s!#%

12s2g~s!@11mq
2f ~s!#,0, ~133!

which in the long-wavelength limit (mq
2.1) can only be

fullfilled for sufficiently small s, i.e. a sufficiently small
opening angle of the neutrino momentum distributio
Clearly, taking only the leading terms in this limit into a
count, no solution exists. On the other hand, formD /q52,
for example, the solvability criterion requiress,0.426, cor-
responding toumax'25°.

It is obvious, however, from Eq.~131! that anypharon

~‘‘type II,’’ i.e. for qW'nW ) solution here will havej,g}a4

}GF
4 , with no particular factors especially enhancing t

damping constant. We refrain from giving explicitly the n
very illuminating lengthy expressions.

Instead, we conclude that in the supernova environm
the growth rate of the presently studied type II pharons
suppressed by an extra factor ofa2'10222, as compared to
type I. Consequently, these modes do not contribute at a
this case.

4. Discussion

The detailed calculations in the previous subsections
based on the stationary electron and neutrino distribu
functions, f S

(e)(k) and f S
(n)(k) of Eqs.~75! and ~76!, respec-

tively. While f S
(e)(k) is adequate for the supernova scena

discussed here, the question arises as to whether the s
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azimuthal angle cutoff, present inf S
(n)(k), may not cause

spurious effects or invalidate our semiclassical transport
proach.

In fact, the semiclassical approximationof Sec. II B is
based on the expansion of the full quantum transport eq
tions in powers of\, appearing especially in the dimensio
less combination\]x•]p ; cf. Eqs.~6! and~20!–~22! in Sec.
II A. Therefore, a cutoff on a spacelike momentum coor
nate, corresponding to the angleumax between three-
momentum and outward normal direction, may produ
large higher order corrections. These are controlled, h
ever, in thelong-wavelength limit. We recall that in the deri-
vation of the linear response theory in Sec. III A, the spa
time gradients ]/]xm become the four-momentaqm ,
beginning with Eq.~65!. In the long-wavelength limit, it is
generally required thatq, which probes the spatial inhomo
geneity of the~stationary! system, be small compared to th
relevant momentum~gradient! scales, i.e. the temperature
Te ,Tn . Otherwise, the response functions@see Eq.~80!#
would inherit neglected higher order terms inqm]k

n , which
correspond to going from Eq.~6! to Eq. ~46!.

A truly microscopic transport calculation of the neutrin
distribution, as they are released from the neutrino spher
an interesting topic for future work@1,2#. We wish to con-
clude by illustrating the modifications resulting from a mo
realistic smooth cutoff neutrino momentum distribution.

For example, we consider the azimuthal angle integ
which contributes the singular term}(q1q0)/(zq2q0) to
the neutrino response functionM (n)00, Eq. ~89!, which in
turn is essential for the longitudinal type I pharon originati
in Eq. ~110!. Following the radial momentum and pola
angle integrations, one encounters the integral

I[q2E
21

1

dz~q01 i e2uqW uz!22F~z!, ~134!

where we replaced the previous sharp cutoff, i.e.Q(z2zm),
by the smooth functionF,

F~z![N1
21$arctan@Aa~z2zm!#1arctan@Aa~11zm!#%,

~135!

wherezm[cosumax, and we have introduced the convenie
abbreviations

N6[arctan@Aa~12zm!#6arctan@Aa~11zm!#.
~136!

Thus, we haveF(21)50, F(1)51 and the Lorentzian de
rivative

F8~z!5
AaN1

21

11a~z2zm!2
. ~137!

The parametera.0 determines the steepness of the sigm
cutoff, which ultimately should be related to the emissi
characteristics of the neutrino sphere@2#.

Then, after a partial integration, we obtain an integ
with three complex simple poles,
8-15
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I 5
q01uqW u

uqW u
1

q2

uqW u2
E

21

1

dz
F8~z!

z2~q01 i e!/uqW u
, ~138!

which can be solved analytically. The final result is

I 511
q0

uqW u
1

q2~AaN1!21

~q02uqW uzm!21uqW u2/a
FAaN1S zm2

q0

uqW u
D

1 ln
q02uqW u

q01uqW u
1

1

2
ln

11a~11zm!2

11a~12zm!2G
→

a→`

~12zm!
q01uqW u

q02uqW uzm

. ~139!

Thus the previous result is recovered in the sharp cu
limit.

We observe that the previousresonance poleat q05V i

[uqW uzm is moved symmetrically off the real axis. Howeve
closer inspection shows that the above result isnot singular
any more asq0→uqW u(zm6 i /Aa). We recalculated the com
plete M (n)00 component of the neutrino response functi
with the smooth cutoff functionF(z) and found a corre-
sponding result.

Therefore, in accordance with intuitive expectation,
physically more appropriate moderate smoothing of the
gular dependence of the neutrino momentum distribut
turns the pharon resonance poles into resonances with a
width, which decreases with increasing sharpness of the
off ~i.e. asa→`). Most likely, this implies that realistic
growth rates for the unstable modes will be lower than e
mated optimistically in Sec. III B 3.

IV. CONCLUSIONS

In this work, we studied the collective modes which we
earlier conjectured to produce anomalously large instabili
in the course of the interaction of the neutrino ‘‘beam’’ wi
the plasma sphere in type II supernovas@5#.

For this purpose, we derived the semiclassical trans
theory based on the Dirac field equations for neutrinos
electrons, which are coupled according to the stand
model. Our results also allow for the handling of situatio
with strong spin-polarizing magnetic fields, which we did n
consider here. We derived a related linear response th
and applied it in a detailed supernova scenario, adapted f
Bethe’s review@2#.

We studied, in particular, the modifications of the usu
transverse and longitudinalplasmonsof an electron-positron
plasma, which are caused by a high-power beam-like flux
neutrinos, such as the almost radially outward streaming n
trinos, which are released from the neutrino sphere surrou
ing the supernova core. In the collisionless approximati
we found only a very weak perturbative effect and no
duced imaginary part of the dispersion relation. This is d
to the suppression of all neutrino effects by the small dim
sionless effective coupling constant,
01300
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under typical type II supernova conditions.
However, we found new types of growing, as well

damped collective modes, thepharons, which are character-
ized by an essentially linear dispersion relationv(q)/q
'const in the long-wavelength limit. Their characteris
properties depend on the relative orientation of the neutr
beam, collective mode propagation and electric current fl
tuation directions~and are studied in Secs. III B 2 an
III B 3 !. They partially overcome the discussed suppress
since a resonance pole arises in the dispersion equation
the region withv(q),q. In this region, one finds in an
ordinary electron-positron plasma strongly Landau dam
modes or, in the ultrarelativistic limit, no~plasmon! modes at
all.

As we estimated roughly in Sec. III B 3, although the
partially overcome the discussed suppression, the type I p
ron growth rates are still about four, and likely more, orde
of magnitude too small to make an impact on superno
evolution. The type II pharon growth rate is even more su
pressed; it is proportional toGF

4 , like a purely weak interac-
tion cross section. Clearly, we have seen that for the elec
weak interaction to be relevant, the effective partic
densities have to be sufficiently high, since one has to ov
come the suppression expressed by the smallness ofa2,
given above, or its equivalent for more massive particles.
remark that changing the neutrino and electron temperatu
as compared to the typical supernova case discussed afte
~122!, for example, while keeping the ‘‘wavelength’’mD /q
fixed, the Type I pharon damping constants grow and
correspondinge-folding lengths drop}Tn

22Te
23 .

At this point it is worthwhile remarking that more realist
calculations also have to take the collisonal damping i
account. This can be incorporated in our approach in
relaxation time approximation in future applications@9#.

Finally, we point out that pharon type modes should oc
in other situations with a current-current type interaction u
der two-stream conditions. The anisotropic momentum d
tribution characteristic of a ‘‘beam’’ with limited~momen-
tum! opening angle appears to cause the resonance e
exciting these modes by impact on an isotropic plasma.
did not study here a spatially limited beam or jet, whi
causes quite different ‘‘hydrodynamic’’ instabilities.

Pharon modes may perhaps be fed effectively by the
unknown central engine powering gamma ray bursts, for
ample; see Ref.@21#. There is growing evidence for eve
truly jet-like processes in the gamma ray burst phenomen
Furthermore, allowing for other than electro-weak intera
tions, such modes possibly come into play in the ultim
evaporation of primordial black holes@22#.

To summarize, we conclude that the intrinsic weakness
the neutrino caused collective effects, related to the la
asymmetry of the electromagnetic and weak coupl
strengths, makes it rather unlikely that they play a role in
neutrino energy deposition in the supernova plasma sph
However, the new pharon type instabilities may be quite r
8-16
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evant in two-stream situations occuring in other astroph
cal systems.
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APPENDIX

Here we consider in more detail the structure of t
neutrino-antineutrino spinor Wigner function. The gene
results of Eqs.~7!–~12! can be further specialized for th
case of the standard modelnLn̄R system in the massles
limit. We follow the notation of Ref.@23# in this appendix.

In the main part of the paper we use the Dirac-Pauli r
resentation of theg matrices, which are defined by the an
commutation relations$gm,gn%52gmn, i.e. explicitly

gD
0 5S 1 0

0 21D , gD
i 5S 0 s i

2s i 0 D , gD
5 5S 0 1

1 0D ,

~A1!

where all entries are 232 matrices themselves; in particula
s i , i 51,2,3 denote the standard Pauli matrices. We lis
also the chirality operatorg5[ ig0g1g2g3, which anticom-
mutes with allgm. In the following we will conveniently
begin with the chiral Weyl representation

gW
0 5S 0 1

1 0D , gW
i 5S 0 s i

2s i 0 D , gW
5 5S 21 0

0 1D .

~A2!

The subscriptsD,W presently serve to distinguish the repr
sentations, which are related by

gD
m5UWgW

m UW
† , UW[

1

A2
~12gW

5 gW
0 ! ~A3!

i.e. a simple unitary transformation.
In the Weyl representation the stationary Dirac equat

separates into a pair of two-component Weyl equations

Ex~pW !52sW •pW x~pW !, ~A4!

Ef~pW !51sW •pW f~pW !, ~A5!

the first of which describes the physicaln l n̄R-system, as we
shall see, while the second one is discarded in the stan
model. Using$s i ,s j%52d i j , one verifies thatE25upW u2, in
both cases. Concentrating on Eq.~A4!, we consider first the
positive energy solution with four-momentump1

m 5(E

.0,pW ), which obeys (p̂[pW /upW u):
01300
i-

-

rt

l

-

d

n

rd

sW • p̂x152x1 . ~A6!

It thus describes the negative helicity~left-handed! neutrino,
nL . Conversely, for the negative energy solution withp2

m

5(E,0,2pW ), we obtain

sW •~2 p̂!x251x2 , ~A7!

thus describing a negative four-momentum positive helic
~right-handed! neutrino, which is the positive four
momentum right-handed antineutrino,n̄R .

We conclude that in the Weyl representation the phys
nLn̄R-spinorc (n) is represented by

cW
(n)5S x5a1x11a2x2

f50 D , ~A8!

wherex is written as a suitably normalized superposition
the two-spinorsx6 , e.g., considering plane wave states@23#.
Next, we calculate the corresponding four-spinor in t
Dirac-Pauli representation:

cD
(n)5UWcW

(n)5
1

A2 S x

2x
D , ~A9!

where we applied the unitary transformationU defined in
Eqs.~A3!.

We proceed to calculate the bilinear covariants which
needed in Eqs.~7!–~12!. Using the explicit form of theg
matrices in the Dirac-Pauli representation, Eqs.~A1!, we ob-
tain

c̄ (n)c (n)505c̄ (n)g5c (n), ~A10!

with c̄ (n)[c (n)†g05(x†x†)/A2 , dropping the subscriptD
from now on. Furthermore,

c̄ (n)g0c (n)5x†x5c̄ (n)g5g0c (n), ~A11!

c̄ (n)g ic (n)52x†s ix5c̄ (n)g5g ic (n).
~A12!

Finally, usingsmn[ i @gm,gn#/2 , we also obtain

c̄ (n)smnc (n)50. ~A13!

Summarizing, only the vector and axial vector~two-point!
densities are nonzero for thenLn̄R system and, in fact, they
are equal. This yields for the neutrino Wigner function co
ponentsV m

(n)(x,p)5A m
(n)(x,p), while all other components

vanish; see Eqs.~7!–~12!.
Presently we made use only of the algebraic propertie

the neutrino spinors. It did not enter that the amplitudesa6

from Eq. ~A8! actually are to be considered as creation a
annihilation operators.
8-17
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