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Collective modes in neutrino “beam” electron-positron plasma interactions
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We derive semiclassical neutrino-electron transport equations in the collisidhvies®v) limit from the
coupled Dirac equations, incorporating the charged and neutral weak current-current as well as electromagnetic
interactions. A corresponding linear response theory is derived. In particular, we calculate the response func-
tions for a variety of beam-plasma geometries, which are of interest in a supernova scenario. We apply this to
the study of plasmons and to a new class of collectikaronresonance modes, which are characterized by
w<(. We find that the growth rates of the unstable modes correspond to a strongly tempezéﬂilTé)(and
linearly momentum dependeegtfolding length of about 18 km under typical conditions for type Il super-
novas. This appears to rule out such long-wavelength collective modes as an efficient means of depositing
neutrino energy into the plasma sphere.
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[. INTRODUCTION nism of substantial energy transfer from neutrinos to a super-
nova plasma’([6]. We confirm this.

Neutrino transport processes are known to play a major It is the purpose of our present work to systematically
role in the energy-momentum flow powering the dynamicsderive the transport equations for the neutrino-electron sys-
of type Il supernova$l—3|. Generally, it has been that the tem from first principles(Sec. I, as well as the relevant
collision-dominated aspects have been studied in detail, leadlispersion relationgSec. Ill). We introduce appropriate
ing to substantial progress in the understanding of these ste$pinor Wigner functions, while deriving the detailed chiral
lar explosions, while, however, still leaving open some prob-structure of the neutrino Wigner function in the Appendix.
lems in the quantitative description of their spatio-temporalPreviously, only the phenomenological appro&bhor the
(hydrodynamig evolution. perturbative finite-temperature field thed6;7] was applied.

An earlier work by Bethd4], which introduced the idea Our general derivations may also prove useful for other as-
of a modified in-medium neutrino dispersion relation and ofyrophysical applications, such as those involving strong mag-
a corresponding effective Hamiltonian, was used in the seriegeic fields or, generally, neutrino transport under mean field
of papers[5] to describe the collective interaction of an in- -, 4itions.
tense neutrino flux(from the supernova corewith an In the collisionless regime, the results of Secs. Il and IlI
electron—pos;trc:n plasmdthe sup_)lfar:npva atmosphwei)f . allow us to investigate, in detall, the collective modes in the
comparatively low temperature. Their tentative conc uS'Onhighly anisotropic neutrino “beam” plus electron-positron

was that a particular induced plasma instability may be mUChIasma system. We find longitudinal and transverse plas-

more efficient than traditional collision dominated mecha-" ! . o .
nisms, i.e., faster by many orders of magnitude, in depositin%nons’ which are only perturbatively modified by the neutrino
the neutrino energy into the plasma sphik ux.

However, the approach in these papers is subject to criti- Furthermore, we also find a new class of growing, as well
cism, since there is no physical or formal justificatisuch 25 decaying collective oscillations, nonexistent in isotropic

- ee ’ el
as a hypothetical condensafer the scalar “bosonic” col-  €quilibrium plasmas, which we namepharons” * They are
lective neutrino wave function used. In particular, the im-Caused by a resonance effect, generally at a frequerlegs
plied quantum phase coherence of the neutrinos appears hdftgn the momenturg, due to the unbalanced neutrino mo-
to justify. Considering their incoherent thermal productionMentum distribution, which is characterized by a finite open-
and the effective duration or length of the “beam,” no N9 anglg with respect to the beam axis. We study Sl_Jch
bunching effects are to be expected. Moreover, it is someModes with the wave vector parallel to the beam direction
what hidden in their phenomenological approach how thd!YP€ | pharons as well as with the wave vector orthogonal
preciseV—A tensor structure of the electroweak current-t© the beam directioftype II pharons

current interactions can be taken into account. This has alsg G€0ometrically, the type Il situation corresponds most
been pointed out in Ref6] recently. Employing finite tem- closely to the one where the two-stream instabilities would

perature field theory, Bento studied the excitation or dampP€ €xpected to occur in ordinary plasmas. We investigate

ing of longitudinal electromagnetic plasmorisangmuir

modes in the electron plasma under the influence of a neu-

trino flux. His results indicate that this type of collective IAfter the island ofPharos where the famous lighthouse of an-
mode instabilities*. .. do notseem to be a viable mecha- cient Alexandria was constructed under the order of Ptolemeus 1.
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whether such instabilities are induced by the weak currenta small but finite neutrino mass, taking the growing evidence
current interactions and, depending on the growth rates, manto account14]. Eventually, however, we will pass to the
provide an essential contribution to the still partly elusivemassless limit, since for our applications the masses of order
energy transfer mechanism in type Il supernoi@ec. IlI). eV are definitely negligible compared to the relevant energy

The collective two-stream filamentation instability is well scales of order MeV.
known to occur in ordinary plasmas due to the electromag- The electromagnetic interaction of the electrons must be
netic Lorentz force[8,9]. More recently, it has also been added to the interaction of E¢L). For the derivation of the
studied in the context of stror(golor-electromagnetjanter-  transport equations, however, this does not introduce a new
actions, where two interpenetrating parton beams describelement. The corresponding modifications will be added at
high-energy nuclear reactions; sgB0] and further refer- the end of this section, making use of the earlier QED results
ences therein. [11].

More generally, one may expect such “hydrodynamic” The resulting DiracHeisenberg operatprequations for
instabilities in interacting many-body systems, in particular,the electrons and neutrinos, incorporating the interadtlon
in plasmas with interactions mediated by standard modeh the mean fieldHartreg approximation, can be written in
gauge fields, whenever the system consists of two or morthe form:
components with considerably different momentum space
distributions [8—10]. In these cases, perturbations, which, {fiy-o0,—m=300 y(cD—cye)lyM=0, (2
loosely speaking, are transverse to a predominant collective
flow, tend to be amplified by the collective feedback effect ofwherel =e, v denotes the electron and neutrino case, respec-
the effective long-range forces of mean field type. tively, andc(e) W=Cv.a, C/4=1; the neutrino current has to

Consequently, we are motivated in this study by the sube inserted into the electron equation and vice versa, as in-
pernova geometry, where the radially outward streamingjicated byd(") here. Thev—A four-currents are defined by
neutrinos interact with the electron-positron plasma, which
may produce a variety of collective instabilities.

3= [< #0y,(cf =R ye) ), (3)
Il. COUPLED NEUTRINO-ELECTRON TRANSPORT
EQUATIONS where the expectation value of the normal-ordered product

refers to the ensemble characterizing the state of the system,
which will be specified in more detail later.

Introducing the Wigner functions, i.e. ¢4) matrices
with respect to the spinor indices which depend on space-
time and four-momentum coordinatgkl],

Our derivation of mean field transport equations will fol-
low the successful strategy developed earlier for QE,
QCD[12], and hadronic mattdrl3]. The basic idea can be
easily summarized as follows: Starting from the underlying
field operator equations of the model under consideration,

one converts these into corresponding Wigner operator equa- ¢
tions, i.e. for the density operator in the Wigner representa- (I) L(X, p)_f —ye*ip-y/ﬁ
tion. In the appropriate mean field approximation the latter (27h)*

can be converted into a closed set of Wigner function equa-

tions (cf. Sec. Il A; furthermore, performing a consisteft X PP (x+y12)pP(x—yi2):), 4
expansion, the most relevant semiclassi@dlasov type

transport equations for the coupled relativistic phase spacand with thei dependence made explicit, the currents of Eq.
distributions are obtainetf. Sec. Il B. Presently, our nota- (3) can be expressed as

tion and conventions follow those of R¢fL1].

_ _ _ IVx)= —tr f d*pyu(cd —cR v WO (x,p),  (5)
A. From Dirac’s to mean field quantum transport equations

We add the effective local coupling terms with the trace refering to the spinor indices.

G Multiplying the Dirac equationg2) with the respective
Lin=— —F[lﬁ(y)m(l— ) W[ (& y#(cy—Cays) ¥9] adjoint spinor and making use of Eq§).—(5), thay can be
V2 converted to the Wigner representation. This yields the
(1) coupled electron and neutrino quantum transport equations

to the free Lagrangian densities of the electrons and electron RO _ it " 0

neutrinos(including their antiparticlés They represent the (Y- K—M)WE(X,p)=exp — = dx-dp |37 '(x) - ¥(Cy

weak charged and neutral current-current interactiaighe

standard model in the appropriate low-energy limit, with —clys)WO(x,p), (6)
=1+2 sirféy andcy=%, using standard notatid6]. For u

and = neutrinos, with only the neutral current interaction WhereK ,=p, +(i%/2)dy. and the partial derivative with re-

Contnbu“ng CV A_>CVA 1. Here the neutrinos are de- Spect tox on the r|ght hand side acts Only on the current

scribed by four-component spinors as well and we allow forJ!"). If it were not for theV—A factor on the right-hand
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side, the structure of these equations would be analogous to g }‘(')

Eq. (8) of Ref.[13] and could be analyzed accordingly.

In order to proceed here, we employ the decomposition of

the spinor Wigner functiongl1],

uv?

@)

W(|)=.7:(|)+i7573(l)+ yﬂvﬂ)+ ¥ ’}/SA(I)+ ;O-MVSU)

PHYSICAL REVIEW D 63 013008
veo(l) _ My
iK SW m Vﬂ

= 7N g, (cPFO—icpD)

. 1 ,
i.e., in terms of scalar, pseudoscalar, vector, axial vector, and iK,P®+ EEMW'KAS“)W - m(')Aﬂ)

antisymmetric tensor components:

1

f(')(X,D)EZtrW(')(X,p), (8)
0 __ 1o 0

PU(Xp)== 7 1ry"WH(x,p), 9)
0 _1 ()

V' (x,p)= 7y, WU (x,p), (10
0 _1 (1)

A,u (er)=ztr'}’5')’,uw (X1p)1 (11)
0 _1 ()

SW(x,p)=Ztr0WW (x,p), (12

which are real functions. Thus, for example, we obtain

IDx)=4— f d'p[cP VO (x,p) +cQAD(x,p)],
(13)

using Egs.(5) and(10), (11). Only these(axial) vector cur-
rents couple the transport equatidi6s.

. 1 :
—icyS - 5 e e sV (17)
= 70N g, (icdPO—c F0)
Lo O’ i)
+20V €S +ic)'S,4 s (18
(K, VP =K VD) =€, 0, KM +mOSE),
= UM (cPVO DAY — ]
€y (CPAD+cPVO)Y, (19

with K, as defined after Eq(6).

As is well known from other casg41-13, the real and
imaginary parts of these coupled equations can be separated
and eventually will thus lead to the proper transport equa-
tions in phase space and the generalizations of the mass-shell
constraint; cf. Sec. IIB .

Furthermore, we observe that the left-hand sides of Egs.
(15—(19) formally coincide with Eqs(5.7)—(5.11) of Ref.

[11]. There, however, the corresponding operatat for
electrically charged particles necessarily incorporates the ef-
fects of the Lorentz force in the external fidldartreg ap-
proximation.

Because of the linearity of the Dirac equation with respect

We introduce an abbreviation for the shift operator ap-to the weak and electromagnetic interaction terms, i.e. with

pearing in Eqs(6),

ih
jﬁ?zex% — 5 ap) Jﬂ)(x)

oo o] 15 5aca,

=) _;7M
—RM 'I;w

J(l)(X)

(14)

whered, acts only on the currer) , as before. Then, mak-
ing use of the commutation and trace relations of hea-
trices, we decompose Eq®) in terms of the Wigner func-
tion components, Eqg8)—(12). Thus we obtain the set of
coupled equations

K- YO —m®FO = 707 Oy 4 40), (15)

iK.A(I)+m(|)p(|):ij(|').(CQ)A(|)+CQ‘)V(|)), (16)

the derivative in Eq(2) replaced according to the minimal
coupling rule,dk — d& +ie A*(x), it is straighforward to in-
corporate the electromagnetic interaction into E45)—(19)

for the electron-positron case. Making use of the earlier QED
results, this is achieved by the substitution

i
K#=T14+ VA, (20)
%
V= &”—ejo( iy 0 )Fwapy, (21)
hoh )
T#=p e ja| 5 dp | F* 3 (22)

wherej, andj; are the conventional spherical Bessel func-
tions[cf. Egs.(4.19—(4.21) of Ref.[11]]; the derivatives),
in their arguments act only on the electromagnetic field
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strength tensor entering herg#”(x)= gk A"(x) — dyA*(X). 1. Semiclassical e~ transport equations
Our convention is tha¢ denotes the electron charge. ImplementmgP(e) A®=p (spin saturationand sepa-
With the electromagnetic fields incorporated, we alsorating the real and |mag|rl1Lary parts of E¢E5)—(19) with the
need to include the Maxwell equation help of Egs.(14) and (20), we obtain for thee™ e~ plasma
the set of equations
-y _me =g, (24)
ﬁMF‘“’(X)=ng(X)EetrJ d*py"WE(x,p), (23

Av-V©E=0, (25)

0=R™M.Y®E, (26)

which consistently determinds*” in terms of the electro-

magnetic four-currendy,,,. However, an important remark is 0=7(™.pE), (27
in order here. Together with Eq&0)—(22) also the defini-

tion of the Wigner function(4) has to be modified. In order 0 ores h VVS(Q) m©©

to preserve the gauge covariance of the equations, one has to " # 2 I

include an appropriate electromagnetic phase factor

(“Schwinger string”) [11,12. Since it will not appear ex- :R(V)x(g c ]_—(e)_lc 6 ,S(e)w/)

plicitly in any of our further derivations or applications, it AV 2 AT

may presently suffice to keep this in mind.

This completes the derivation of the coupled transport
equations for a system of electrons, neutrinos, and electro-
magnetic fields in accordance with the standard model and in EV,L]-‘(Q)—HVSS’Z
the collisionlesgVlasoy) limit.

— oINS, (28)

= _I(V)}\( gﬂ)\CVf(e)_ ECAeﬂ)\VV’S(E)Vv,)

B. Semiclassical limit 2

Our aim in this section is to extract the relevant semiclas- —CVR(V”‘SES{, (29
sical equations from the quantum transport equations which
we obtained in the previous section, E¢E5)—(19) in par- Ze
ticular. Taking the explici: dependence into account, which 2 ~#**”
enters through the definitions of the shift and kinetic opera-
tors in Eqgs.(14) and(20)—(22) respectively, it becomes ob-
vious how to expand the equations in powergofince the
leading terms of the real and imaginary parts of the equations

,Hks(e)vv/

1 '
= —R(”)"( 9unCaF (= 5 Cue SO )

o o (g
start out with different powers, it is useful to separate them, Al SN (30)
similarly to what was previously dofd1-13.
Furthermore, we presently simplify the set of equations EMW,VAS(e)w’

by assuming apin saturated electron-positron plasmae.
without the spin polarization effects which may be induced 1
by strong magnetic fields, for example. Thus, for &lee™ :I(v)x(g \CaF©®— Zcye )\W,S(e)vv’>
plasma, we have no pseudoscalar or axial vector densities; . 2k

cf. Egs.(7)—(12).

Also, the standard model neutrino-antineutrino system
consists strictly only of left-handed neutrineg and a right- A
handed antineutrinosg, if we appropriately neglect here  — E(V#V(f)—VVVf)Hm(e)Sﬁfl
their tiny (possibly finit¢ masses. In this case, as we show in
the Appendix, only the equal vector and axial vector densi-
ties contribute to the neutrino Wigner function, while all

+CcaR NS (31

= CV(IE,,V)VE,E) _IEJV)V,(U.e)) _ CAG#V)\V'R(V))‘V('S)V’,

other densities vanish in the massless limit. (32
These approximations serve as a working hypothesis for 1 V(e) I V(e)

our study of the collective modes and théir)stability in a

supernova environment in Sec. Il . Eventually, however, the — (RO _p (M@)o AQISYICTA

analysis of the complete coupled set of equatitt®—(19) VRV v Vi) ¥ Caun (33

and (23) should be performed, considering the presence or

generation of strong magnetic fields during supernova explowhere the constraint®6) and(27), which resulted from Eq.
sions or other astrophysical proces$&5-17 (and refer- (16), were taken into account in Eq&4) and (25), which
ences therein resulted from Eq(15); we usect{’y = cy A [cf. Egs.(1), (2)].
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We proceed to evaluate the linfit—0 of the above sys-
tem of equations. To begin with, we obtain from E¢&4)

that R V=301 0(#2) and 7= (#/2)s,- 3,3V +0(#%3)
" 1 m X _“pYu

and from Eqs(21), (22) thatI1#=p*+ O(#?) andV#= g%

—eF*" g+ 0(h2).

Then, first of all, the vector density can formally be cal-

culated from Eq(28):

1 1 ,
VE/,E): (p,u,_CV‘]ELV))f(e)—'_ECAe,U,)\VV’J(V))\SIVV

m(®

f f
+ 5 (0= eF ap) S5+ oy e dpd NS

+0(#?), (34)

PHYSICAL REVIEW D 63 013008

i.e. in the limit #—0. Similarly, we obtain from Eq(24)
together with Eq(37) a constraint equation

{(p—cydM)2—m®2[ 1+ (ca/m(®)230). J(V)]}'f(e): 0,
(40)

where we also used the constra@6) in the form
which is appropriate in this limit.
Clearly, the Eq.(40) demonstrates that it is thienetic

momentum

k®=p,-cyd(x), (42)

first order; we recall that, acts only onJ®”) in the last term.

Similarly, we obtain, from Eq(32),

S(e): 1
2 me

, h
_CAe,uV)\V’J(V))\V(e)V + 5[((9%_9':#)\‘93)1)(5)

f
= el Oy O IV = IV

+0(#?), (35)

with a contribution atO(#°) in the absence of a pseudo-

Therefore, we redefine the scalar density as a function of the
kinetic momenturrk,

TOx,p)=TO(x,k®@+c, N =FO(x,k), (43
instead of the canonical momentymwe will omit the su-
perscript fromk(®, since it is identical to the one df® in
the respective equations. This implies

HF@| = a1 O) — oy (9430 apt©. (44)

For the redefined variable and scalar density function, the

vector (or -scalay density, in distinction to the QED case of e*e~ mass-shell constrairfbllows:

Ref.[11]. Taking the limitz—0, we solve Eqs(34), (35) in
terms of the scalar densit§‘® or, rather, the modified scalar

density,
~ FE(x,
f@(x,p)= (X.p) . (39
1+ (ca/m®)23M(x). JM(x)
The results are
V(E)_i —cuJNF(e (37)
" _m(e)(p/,L Cy ©w ) ’
Ca v’ v)v' V)NF
812 gz €unn(p” = oy I IO, (39)

[k2—m(®2—c23(). 3y fE =0, (45)

instead of Eq(40). Furthermore, we finally obtain from Eq.
(39) the Vlasov typetransport equatiorfor the scalae™*e™
density,

[K- Iy —CyK,(34I0) 3=y ((9y- I — ek, F Ay ] ()

={k- =K, (c\[ 343N = 0 dH] + eF*) 9} O =0,
(46)

rewriting and using here the appropriate leading ordef in
form of the constraint27):

(933H) du(p,— cyd () TE

where we made use of the constrai@6), i.e. J*)-1V=0 for
i—0, and conveniently added a term on the right-hand side
of Eq. (38) which vanishes identically. Thus, we find that in
the semiclassical limit the spinor Wigner functions for theln particular, we also employed E(R7), rewritten now sim-
spin saturated system are completely determined by the scply as
lar density; cf. Eq(7).

Next, using Eqs(36) and(37), Eq. (25) yields a transport
equation for the scalar density:

=[K, (93 3") Gt (9 I F@=0.  (47)

k
(&) = __* 5(e)
V=51, (48)

“_ a MY — (v)Y§(e)
(95 —eF*dp)(p,—cyd, )t We observe that the weak current-current interaction leads to
an antisymmetric tensor coupling in the transport equation
(46), which is analogous to the electromagnetic field strength
coupling.

=[(p— I (3 = eF* dp0) — Cy(d- I [T©
=0, (39
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Furthermore, we remark that there are remaining equa- In order to complete the set of coupled classical transport
tions of the set(24)—(33) which we did not consider here, and constraint equationg5b), (46), (57), and(58), we have

since the dynamics can be represented completely in terms & reconsider the four-currents entering here and into the

the scalar density¥(®; recall Eqs.(36)—(38). Similarly as in

the QED case of Refl1], they could be shown to be satis-

Maxwell equation(23) in the limit 2—0 .
Implementing the spin saturation, in particuld(?=0,

fied identically to leading order in thie expansion, which we and using Eqs(37) and (43), we obtain theweak € e~

do not pursue here.

2. Semiclassicab, vy transport equations and currents

For approximately massless neutrinos, wit” =4
and F=P=S,,=0 (see the Appendjx we obtain a much
simpler set of equations from Eq&.5)—(19):

(K—ZJ(e))-V(V)z(), (49
i[(K=27®) viI— .0,
— €,y (K—2T@) Y =0, (50)

using ¢’ +c{’=2; hereK,=p,+(i#/2)dy. . Separating

real and imaginary parts, we expand the resulting equatio

in powers off:

(p—23®).yM+0(42)=0, (52)

(9y+ 20y 9,09) - VI +0(#2)=0, (52
[(p—23@) V- ..., ,]+0(#)=0, (53)
€ump (P—2J@)MVIY L O(R)=0, (54)

current
G ¢C .
W=t 5 1 f d*plp,— 30 TFE(x,p)
cG k
=4 VﬁF f d4km—(”e)f(e)(x,k) (59)

[cf. Eq. (13)], with ¢{? =c, . Similarly, theelectromagnetic
currentassumes the form

Ky
JE (x)=4e f d k=2 Fe(x, k) (60)
Me
N%f. Eq. (23)]. Finally, theweak v, vg currentis
3900=82F [ ol —23@ ) T
u (X)= 2 pLp.— 23,7 (X) ] (x,p)
G
=ST;J d*kk,, f((x,k), (61)

using once more’) =A%), c¢{)+c{?=2, as well as Eq.

o . (55
thus proceeding similarly as in the case of the electron- Tne closed set of four coupled mass-shell constraint and

positron plasma up to this point.

transport equations, with the currents determined by scalar

However, now it is obvious that the following ansatz im- (gensity functions, along with the Maxwell equation present

mediately solves Eqg$53) and (54):

V=(p-23), 10, (55)

with a scalar functionf of the phase space variablgsp.
Furthermore, to leading order fn, it converts Eq(49) into
the mass-shell constraint

(p—23®)ZF (=0, (56)

which demonstrates that it is thiinetic momentumk,,
=p,—2J®(x) , which is to be on-shell here.
Performing analogous steps as in EG)—(44) before,

redefiningT(i)(x,p)Ef(V)(x,k) in particular, we obtain di-

rectly thev, vg mass-shell constraint
k2 =0, (57)

and from Eq.52) the Vlasov typdransport equatiorfor the

v vg density function:
(K- 9x— 2K [ 9£3@7—g23@m]g,,)f(=0, (58

which may be compared to Eq$45 and (46) of the
electron-positron plasma.

the final result of our derivation of the semiclassical nonequi-
librium transport theory of neutrinos and electrons. It incor-
porates their antiparticles as discussed in more detail for the
QED case in Ref[11], as well as electromagnetic fields,
assuming are* e -spin saturated system in the mean field
dominated regime.

We note that the structure of ofinal closed set of equa-
tions could essentially be anticipated from purely classical
kinetic theory considerations, as previously obserf&d2].

On the other hand, for the study of spin polarization or
strong magnetic field effects and higher order quantum cor-
rections, we must go back to our previous set of EfjS)—

(19) of Sec. Il A.

Ill. LINEAR RESPONSE ANALYSIS AND (UN)STABLE
COLLECTIVE MODES

Presently, we apply the transport theory of Sec. I, in
order to derive the semiclassical dispersion relations of col-
lective modes of a neutrino-electron system in genésat.
MA).

In Sec. Il B we specialize our results for the type Il su-
pernova scenario. The relevant distribution functions are in-
troduced in Sec. IlIB1 and the necessary response functions
calculated in Sec. 11 B 2.
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In Sec. 1lIB3 we evaluate the dispersion relations for 5GOrvg) = —icM(gtg™ — g a#r) s 66
various collective modes. We determine théim)stability (@ (9"g a'g" o0 7 (66

properties in the neutrino “beam” Plus electron “plasma Furthermore, solving the Maxwell equati¢®3) with the re-
sphere” system formed during a type Il supernova explo- '

sion. The final section, Sec. Il B4 is devoted to a discussiori[)abr,gfiﬁI boundary conditiofgamping in the infinite pastwe

of the validity of the approximations used.

A. Linear response theory for neutrino-electron systems esFHr(q)= %(qﬂg;_qv(‘;}%)&]gm

The behavior of collective modes, in particular, the onset q Tieq
of instabilities, is determined by the evolution of small per- J2¢e? 1
turbations of a generic set of stationary distribution func- =i ————(g*g"™ —q'g*" 83, (67
tions, which may be caused by scattering interactions, for CvGr g?+ieq’
example. Therefore, we write the scalar density distributions
in the form where e—0", and where we used Eq&9) and (60), in

order to express théconserveyl electromagnetic current
f0(x,k) =8 (k) + 8fD(x,k), (62)  fluctuation in terms of its weak counterpart.
Implementing the retarded boundary condition, i.e. the

where f$) denotes the assumedomogeneousfour-  “Landau prescription”[9], the electron transport equation

momentum dependent solutions of the mass-shell and trangss) is solved by
port equations andf(") an initially small perturbation. This

assumption of homogeneity greatly simplifies the subsequent k[ 5G©#¥(q)+esF“"(q)]dyr
analysis and describes a sufficiently large “free-streaming” 6f(®)(qg,k)=-~ _ — f& k). (69
electron-neutrino system. —i(k-q+iek®)

The weak currents() determined byf{ [cf. Egs.(59) o _ _ o
and (61)] are homogeneous and the antisymmetric tensorsimilarly, the perturbation of the stationary neutrino distri-
which enter the transport equatio®) and (58), bution is determined by
k,8GMA(q) dyo
—i(k-gq+iek®)

Nuv=nr op 3" v _ gv 301" )p
CTrm AT AL ©3 51 (a,k)= Wk, (69
vanish in this case; from here @*®=c, andc('=2. Fur-

thermore, assuming aisotropic on-shellelectron-positron Obviously, Eqs(68) and (69) are coupled to each other via
distribution Egs.(66).

R We proceed by introducing the response functions
& (k)= o[ k?—m(©2—-c33™. IO KO, K|)  (64) b g ’ P

N
[cf. Eq. (45)], it follows that the corresponding electromag- M(')“’(q)z4f d*k K L
netic four-curren{60) vanishes, if we additionally assume a m(=® k.q+iek®
neutralizing background charge or approximately equal den- ) 0
sities of electrons and positrons, depending on the circum- X(k-qdg—kq- a0 fs'(k), (70)
stances. Consistently we det”=0, i.e. considering a situ- ) ) N ) )
ation without external electromagnetic fields. which will be calculated for specific choices of the stationary

indeed, then, the initial on-shell distributiofi§’(k) and ~ distributionsfg shortly; the factor Th(~ is meant to ap-
£ (k) arestationaryin the absence of collisions. They will Ply only in thee”e™ case and to be replaced by 1 for the

be further specified shortly. (approximately massless vg case.

Linearizing the transport equatio46) and (58) with re- Making use of the response functions, we multiply Egs.
spect to the small perturbatio@$"), we obtain for the elec- (68) and (69) by the appropriate factorief. Egs.(59) and
trons: (61)], and integrate overd, in order to obtain a closed set

of algebraic equations:
ik-qaf(©(q,k) +k,[ 5GO#*(q) +edF*(q)]d.f (k) =0,

(65 83N () =M*(q)
where we introduced the Fourier transform for any function ciGr e’
g of the space-time coordinates, X W&JS)(Q)— m&]ff)(Q) :
g(x)=(2m) " *fd*gexp —iq-x)g(q). (72)

Here 6G® and 6F denote the weak and electromagnetic 4G
tensors induced by the perturbatio” and 5f(®), respec- SIMN () = —= MM (q) 53©)(q), (72)
tively. From Eq.(63) we obtain NA P
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where the tensor fluctuationsG() and 6F were eliminated estimated chemical potential,.< =T . This is indirectly sup-
with the help of Eqs(66) and (67), respectively. Inserting ported by Bethe's results, see in particular Secs. VIE-VIG
the second into the first equation, the final result is of Ref.[2], which demonstrate the dilute character of matter
in the radiation bubble—the energy or entropy density of the
) “radiation” (i.e. of photons plus pairwise produced electrons
mgo and positronsis more than a factor fohigher than that of
nucleons in the bubble. Therefore, any background charge

2

M (e))\P(q) 5\]29)((:])5 g)\p+ M (e))\(r(q)

contamination by protons must be small here and corre-
- ZC\Z,G,Z:QMM M7e(q) 5Jf,e)(Q) spondingly the net charge of electrons over positrons neutral-
izing the plasma. Hence we may neglect the finite electron
-0. 73 chemical potential in a first approximation.
The solvability condition of this vector equation determines 1. Distribution functions
the dispersion relatiorfor the perturbations of the stationary ~ The following stationary electron-positron distribution
electron-positron distribution: will now be consideredcf. Eq. (64)]:
©)(g)=
DetM*™(q) =0, (74) O (k)= (2m) 3m©@ 5[ k2—m(®2— 23 3]
where M () is a 4x 4 matrix in the Lorentz indices. Analo- K[O(KO)E (K To) + O (—KO)F(—KITo)],
gously one obtains the dispersion relation for the neutrino
case, which we do not pursue. (79

A final remark is in order here. From the structure of Eq. . )
(73), particularly the generically small weak coupling term Where F(x)=(e*+1)"~, and whereT, denotes their tem-
compared with the electromagnetic one, it is natural to experature. Whed)=0, Eq.(75) describes the"e" black-
pect that the neutrinos can only influence the resulting disPody radiation(omitting the vacuum contributionWe re-
persion relations noticeably, if their response function showsnark that antiparticles are represented as fermions with
rather singular behavior. Furthermore, in this case, weak an@egative four-momentum hefe1]. _
electromagnetic interactions presumably will mix in the cor- ~Concerning the emission from the neutrino sphere, we
responding collective modes, due to the products involvedheglect its collective flow relative to the electron-positron
for example, in Eqs(73) and(74). This will be studied inthe Plasma sphere, or vice versa. However, it is important to

following sections with the application to a supernova sceincorporate the dilution and angular squeezing effects due to
nario. the spherical geometry. Thus, we assume the following sta-

tionary (approximately masslesseutrino-antineutrino dis-

B. Supernova two-stream scenario tribution:

The above results are fairly general and need to be 1
specialized according to the physical nature of the stationary (k)= 5(277)_35[ k?1(O (k%) O (Omax— 05 Q)
distributions as well as of their potentially unstable per-
turbations. We shall now study the idealized situation XFE(KO=w, T )+ - Ky — — K, — ),
where an electrically neutral finite temperature electron-
positron plasma is hit by a neutrino-antineutrino beam.
(Anti-)neutrinos are radiated from the neutrino sphere, move h denotes their chemical potential and
approximately radially outwards, and interacbllectively whereu, _eno es ) erc erTuca potential an only.e.(v,_
with the electron-positron plasma sphere forming the “radia0f ¥r) Spin state is taken into account. The additiofal
tion bubble” in Bethe’s supernova scenafi@]. As before, function, implementing the radiéfoutward” ) unit vectorn,
we derive our results in the collisionless limit. accounts for the finite opening anghg ¢ between neutrino
Typically, it is assumed that a short-lived, but intensemomenta and the radial direction. The maximal opening
neutrino flux (3 10?° W/cn?, total integrated luminosity angle is determined by sif.~=R/r, wherer denotes the
up to the order of several 19 ergs) with an approximately distance from the center of the neutrino sphere of raius
thermal spectrum corresponding to a temperatdie  The usual dilution factord=(R/r)?=sirffy,.,, does not
~1-10 MeV is released from the collapsing core and interappear explicitly, but is recovered in the calculation of,
acts at a distance of about 30—300 km from the center witfior example, the energy flux from the neutrino sphere based
the surrounding moderately relativistic electron plasma ofn fg).
(chargé density n,<10° cm 3 and temperatureT, We remark that the neutrino distribution is not necessarily
=0.5 MeV; here the uncertainties mostly reflect differing uniform within the cone defined bg,,.,. It may vary con-
scenarios considered in this cont€kt-3,5,4. We will study  siderably, depending on the emission characteristics of the
a corresponding set of parameters, following the discussioneutrino sphere. Thus, the distribution of E@6) may rep-
of the radiation bubble by Bethg]. resent an opening angle average; firerelevance of the
For the aboveoptimistic charge density and tempera- sharp®-function cutoff will be discussed in the final subsec-
ture, the electron-positron plasma is nondegenerate, with an, Sec. Il B4. Furthermore, it isot a global solution of

(76)
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the sphericalfree-streaming problem. However, our approxi- the stationary electron-positron distributifef. Eq.(75)] can

mate spatially homogeneous distribution, with the parametribe safely neglected henceforth.

dependence oR/r, is sufficient for the study of collective

modes with a characteristic wavelength very much less than

R, even though we are interested in the long-wavelength After specifying the unperturbed stationary electron and

limit with respect to the microscopic scales. neutrino dlstrlbutlonsf(e) andf ") respectively, we calculate
We omit thex and = neutrinos at present which have a the response functions (97 and M defined in Eq.

considerably weaker effective couplifgee Eq.(73) to-  (70). For the following calculations it is convenient to per-

gether with the remarks after E¢l)]; using siff,~0.23, form a partial integration, which yields

we havecvw0.96_(—0.04)_ for the el_ectron{zi,r) neutrinos. £0(k) NP+ gPKN

Furthermore, their chemical potential vanishes. For the elec- M(|)xp(q):4f dk— ( — g+ q q

tron (anti-)neutrinos, which carry about 4/10 of the total neu- m(=9 k-q+iek®

trino energy flux, we adopt Bethe’'s estimate which yields

2. Response functions

7,=m,/T,=0.29[2]. g2k kP 80
Next, we proceed to calculate the energy-momentum ten- kAt 10V2 (80)
o . . X (k-g+iek®)
sor, similarly as in Ref[11], for a stationary free neutrino-
antineutrino distribution: which is now obviously symmetric andiransverse

qu(')*P(q)ZO.MThus, the current fluctuations are properly
conservedq, 6J =0; cf. Egs.(72), (72).
T(V) —trf d4kkv7’u WO (x,k) = 4] d*kk V(V)(X k), Beginnir?a With(?f)w electronqcase, the calculation is facili-
(77)  tated by recalling that the distribution functié§’ , Eq. (75),
is isotropic with respect to the three-momentum components.
i.e. in terms of the vector densifgf. Eq. (10)]. Employing  Therefore, the spatial part of the response function can be
Eq. (55) and projecting on the “outward” momentum direc- decomposed into a transverse and a longitudinal part,

tion, we obtain the electron; vy energy flux corresponding qq qq’
to the homogeneous equilibrium distributiore): M(e)”(q)z( o ——- M (q)+ ?M(Le)(q). (81)
TWOiRi=4 J d*kkkZ ) (k) Defining theelectric (Debye screening mass
d (= . mi=— f dk KF(k/Te) = —eZTg, (82
=5, KRR (k= IT) + Rkt T )}
w=JOo

the results of a standard calculation for #lectron-positron

7 15 response functioare
:—dT“ 1+ 2 —nt -
480 oy — M @90 g)
4 dL Bt s R PO
=10 ' (79) =mj| 1 5 q(In _w‘ iT®(q w)) :
(83
choosingn=(0,0,1), and wheré denotes théotal neutrino- o
plus-antineutrino luminosity. The integral is evaluated ex- ,(eoi (e)i0 — q ()00
actly with the help of a formula from Ref18]. Correction (a%,Q)=M"(a,q) =~ M?q"q),
terms involving powers of/(#,T,) would be completely (84)
negligible for temperatures in the MeV range and a typical ,
neutrino massmuch less than 1 eV. The last equality in Eq. (@0 2@ 00 0 >
(78) provides the relation between temperature and radius of M (q ’Q):EM@ (a”,a), (85)
the neutrino sphere, given its luminosity2].
Similarly, we obtain from Eq(61) by direct calculation: 1 2 1
eMP (%, q)=5mp— 1——<2—ﬂ)
G, o GedT 1, ’ 20 2lq o
JM#:s—f dkkHt D (k) =—= ——=| 7.+ —7°| &~
(79) In|—— q— _|7T®(q w) (86)

where &#=(2[ 1+ cos,,4d,0,0,1). As expected, the neu- where we implemented the relativistic limit and neglected
trino current components are very small, since for temperaeorrection terms in powers of,/ T, ; here we simplified the
tures of about 10 MeV we ha\,@FTfj~ 10 MeV. There- notation by introducinng|qo| and qz|a|. We note the
fore, the corresponding term]("). J(*) in the expression for  appearance of the imaginary parts which, in general, are re-
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sponsible for Landau dampin@,19]. These kinetic theory Then, we obtain the components of theeutrino-
results completely agree with the perturbative one-loopantineutrino response functiog| ri):
evaluation of the QED polarization tensor in the high-

temperature limif20], a correspondence which was has been 1—7 q+q°
observed in many other cases, e[32]. —2cZMM0g0 §)=m2 ( 1-
In a fully realistic calculation, corrections due to the finite 4 zq—q°
ratio of my/T,<1 should also be considered. We neglect 0 0
them in our present work, since the appropriate electron tem- _ 1 a | 2a-97 i70(q—q°)
perature is not precisely known in this context. Furthermore, 2q q-q°

unfortunately, this would necessitate numerical calculations
where the transparency of the analytical results presented _
here would be lost. On the one hand, it seems unlikely that +im®(zq- qo)> ] (89
the additional mass scale can qualitatively change any of our
conclusions, since it is well separated from all the plasma
scales entering in the following. However, for particular ef- _ . _ . q°q’ .
fects, e.g. proper Landau dampif@19], a finite mass may M%(q°,6)=M""0(q°,q) =—-M"%q° q),
be crucial[cf. footnote following the discussion after Eq. q (90)
(112)]. Thus, proper “neutrino Landau damping” has been
discussed in more detail by Sihet al. recently[5].

Next, we turn to the calculation of the neutrino response (1)) 0 = w? ()00 <0 =
function M™*?_ It is more involved due to the preferred M”(g%q)= —M™™(q".q), (91)
direction of propagation, which enters here through the de- q
pendence of the stationary distributiéf6) on the “radial”
unit vectorni. In order to facilitate our task, we consider two 2 a ()0 L o w?
cases separately, depending on the orientation of the wave ~ 2CyM¥" (0", d)=5my,—
vector g with respect tai: §|fi (case ) andgLfi (case ). q
We recall thatj determines the direction of propagation of ( 1+7 q(l—qZ/w2)>

1-z

2

the collective excitations of the electron-positron plasma, es-
pecially in the presence of the neutrino flux.

Case |.Here we expect a response function with a formal o
structure generalizing the familiar results of E¢33)—(86), _ l a_ 9
since the geometry determining the essential angular integra- 2lqg ¢°
tions is identical to the previous case. Therefore, a tensor
decomposition into transverse and longitudinal parts analo- . o | 0
gous to Eq(81) still applies. However, the maximal opening —1mO(q-q) +i70(za-q") | |,
angle 6,,,, between neutrino momenta and the “radial” di-
rection limits the azimuthal anglé, e.g. in the vector de- (92)
composition,

2 zg-¢°
zq—q°
q-q°

where z=cos#., and w?=(q°)?. Indeed, forz——1, i.e.
k= g~k cos6+ EL , (87) without restriction on the opening angle, we recover the for-
mal structure of Eq983)—(86), while for z— 1 the response
_ . o ) function vanishes.
with k=|k|, which is conveniently employed after convert-  Fyrthermore, we observe that for a finite opening angle
ing the integral of Eq(80) to the corresponding threedimen- (1>z>—1) the Landau damping imaginary parts are lim-
sional (on-shel) form. ited to the regiong>q°>zq and that at the resonance fre-
_ Furthermore, instead of the Debye mass of &%), we quencyq®=Q=zqthe response function has additional sin-
introduce theveak thermal mass gularities, which are absent far=—1. In the present case,
with g||fi, the longitudinal as well as the transverse compo-
, 2¢5 (= nents,M (" andM{" respectively, are affected.
M= ?Jo dk K(F([k— g, J/T,) + F([K+ w1, JIT,)) Case Il.In this case, withgL i, we introduce a third unit
vector €, perpendicular to the other two vectors, in order to
3 decompose the momentum vector for the threedimensional
1+— ni) , (88)  response function integral,
v

1
= § C\Z/TIZ/

"_ e - . .
which takes the finite chemical potential of the neutrinos into k=k(ricosf+qq "sinfcosp+esindsing), (93

account. Here we applied the ultrarelativistic limit discussed . )
before, as well as the appropriate integral formula from RefWith the azimuthal and polar anglesand ¢, respectively,

[18]. such thatk- g=kqsinf#cose¢. The resulting angular integra-
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tions can all be done analytically in the appropriate ultrarela-

0y2
tivistic limit, either by elementary or contour integration ()

—(1-(q") o)

201 ()0 2 1 2qo
2cyM3”(q ,Q):izmwa

techniques.

Because of the symmetry properties of the required inte- 02
grals, presently it turns out to be useful to decompose the N (a°) “1|(1- gD (100
spatial part of the response function as follows: q° Z

5‘i—n‘nj—ﬂ
q2

where we introduced the abbreviation

M (q)= Mt (a)+n'n'M{(q)

. S 9;=(a")?-q*(1- 2%, (101)
aq ., nog'+nq
T M£2’<q>+TM‘3’(q>. (94)

with q=|q| and z=cosb,,, as before. Several qualifying

remarks are in order here:

All other terms which could arise vanish identically, since (i) For later convenience we did not separate real and

the corresponding polar angle integration comprises an odggnaginary parts in Eqg95)—(100) which are valid forcom-

function. plex =w+ivy, provided the imaginary part here is suffi-
In order to check the ensuing lengthy calculations, weciently small,|y|<|w|, or infinitesimal.

also evaluated independently the integrals resulting from the (ji) Either the upper or the lower signs have to chosen

transversality ~condition mentioned after EQq(80), consistently in Eqs(95)—(100 according to the following

M (q)=0, as well as from the trade!{"*(q). These rules (0< 6,,,= 7/2):

results we compared with what is obtained using the calcu-

lated components of the response function in the following.

In fact, this procedure leads to considerable simplifications.
Then, for 0< 6= /2, i.e. O0<z=<1, we finally obtain

these components of theeutrino-antineutrino response

v>0 and w>0=upper signs,

y>0 and w<—(qsin .= lower signs,

function(qL n): y<0 and w<0=lower signs,
2 00/ ~0 ~ o|1+1-2z 2z qo . .
—2¢EMM%(q0 q)=mZ, YRR R y<0 and w>>(q Sin O, Upper signs. (102
q;
0 q+q° They are due to théangulaj contour integrations, which

— 1 : (99

MO(G0,6)=M (1,

qn' o - 9% ,
=—0M§,’(q°.q)+?M‘Woo(qo.q).

result in different contributions according to the listed rules.

We do not report the results fas in the intervals which
are excluded in Egg.102), since the azimuthal angle inte-
grations have to be split in this case, yielding even more
complicated expressions.

Obviously, the response function has additional square-
root singularites at the resonance frequencies ()
=+Q N6y as y—0. The transverse componem!”,

(96) however, is not affected in the present caseqlL ).
02 This completes the calculation of the response functions
2 )0 2+ (@) 1=z 1 for the model distributions discussed in the previous subsec-
2cyMy7 (07, q) =5 my, - 3 i
2 q? 2 2 tion.
qO q q+q0 3. Dispersion relations, collective modes and instabilities
X| ——=—11 — ) . . . .
a q° : zq+ V2 | ©7 It is useful to begin the study of the dispersion relations
following from Egs.(73), (74) with the case of the electro-
1 (q°)2 magnetically interacting electron-positron plasma, i.e. with
2¢2M (L”l)(qqu)zsz\,' l—zi( 1 the weak interaction term G2 in Eq. (73) switched off.
q Considering separately transver3e and longitudinalL)
© [ g+q® current fluctuations, i.e53(®)(q)L § and 83®)(q)||q, respec-
X|[1-z2—=——In| —= , tively, Eq. (74) yields two equations determining the corre-
\/q— q zq+ \/q—z spondingdispersion relations
(98)
T: [1-eMP/(g?+ieq®)]®=0, (103
M{7(q° ﬁ>=@m<v>°"<q° a) (99 ;
G o A L: 1-e?M®%qg2=0, (104
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3

2
M@ | =o,

where the decompositiof81) of the spatial part of the re- ©
sponse function is especially taken into account.

The real solutions withw=|q°>q=|q| of Egs. (103
and(104), respectively, determine the well-known collective
transverse and longitudinal plasmon modés2Q]. In the | . 1_
long-wavelength limit p>q), for example, the explicit so-
lutions are (110

5 +2c5GEMYY

with the plasma response functions of E(’3)—(86), and (
(99%-q

(109

2
M (v)00

eZ
22
E + ZCVGF

0y2
- (qz) M@00_ g

2 2 6 2 2 2 3 2 with qE|a|'
T or(@)=wot 0% L oi(q)=wptz0% (109 In the long-wavelength limit §>q) and to lowest order
in G2 we obtain, for example, from E§109 the equation

with the plasma frequency3=3mj3 [cf. Eq. (82)], which
characterizes an ultrarelativistic neutral plasma. Again this is 0=w?—0q%— wé
in agreement with the one-loop calculations of finite tem-
perature field theoryT>m,). We remark that beyond the

2

1
J i ]

5\w

d We. . |41-2)+2(1-22) (1-2)% q
present collisionless approximation these modes naturally —wpa 36 T o
aquire a finite widtH 20].
We now turn to the case of a fully interacting neutrino- 4(1-2)—3z(1-72%2(q\?
antineutrino beam impinging on an electron-positron plasma. + 50 (Z) } (111

We remind ourselves of the two limiting cases introduced in
the preceding section concerning the orientation of the wav@iith w=|q°|, z=cos#.,, and where we indicated the ne-
vector g with respect to the outward normal vectds i.e.  glected higher order terms if . We introduced the dimen-

g/|i (case ) andd.L i (case I). In both cases, we concentrate sjonless constant

on the interesting possibility that the weak interaction term

might become comparable to the purely electromagnetic , 1

term «e? in Eq. (74). Because of the intrinsic smallness of a= ;
the weak coupling constant, this may happen only when the €

neutrino-antineutrino response functions become large, closghich governs the strength of the neutrino effects. The solu-

to the singularities found in Eq€89)—(92) or in Egs.(99—  tjon of Eq.(111) describes théransverse plasmon in a neu-

(100. Otherwise the neutrino effects can be treated as smaglino “beam” electron-positron plasma

perturbations of previous electron-positron plasma results, as However, as we anticipated, the smallness of the weak

we shall see. _ ) ~ coupling constant makes the influence of the neutrino terms
Case |.We observe here that the neutrino-antineutrinocompletely negligible here. Considering type Il supernova

response function obtained in Eq89)—(92) has the same conditions and setting,~1 MeV andT,~10 MeV, we

Ggmgm3, (112

tensor structure as the electron-positron one of E88:—  find thata?~10 22 Omitting the neutrino contribution and
(86). Considering the product of the two appearing in EQ-solving reproduces the first of EqEL05).
(74), c*F=M©@*MI# we obtain A similar analysis, i.e. foro>q, applies to Eq.(110
, which the longitudinal plasmon in a neutrino “beam”
® electron-positron plasmaAgain the neutrinos have a negli-
C%= ( s L VA (108 gible effect under supernova conditions.
q We now consider the dispersion relations implicit in Egs.
o (109 and (110 close to the resonance frequency, ie.
CO‘:CiozﬂCOO (107 ;%QHE_zq, Wh_|ch lies in the elt_actrqn—posnron Landau damp-
92 ' ing regime with 06< w<<q, considering 8<z<<1 from now on
(0< Opan<m/2) 2
g qq w2 ~ Inthis case, we expect the-frequerqu and correspond-
Cii= _( Si— — MM+ — _2600’ (109 Ingly o, to aquire &finite imaginary part, instead of the in-
q q finitesimali e representing the retarded boundary condition

[9]; cf. Egs.(68), (69) or (80). Therefore, replacing®+ie
with o=1q°| anqu|a|_ Therefore, we may still distinguish — w+ivy, the “Landau logarithms” and imaginary parts of
transverséT) and longitudinalL) current fluctuations which the calculated response functions have to be reconsidered.
do not mix, similarly to the case of a purely electromagneticWe rewritew=zq+ &, anticipating that<qz, and will use
plasma.

In analogy to Egs(103 and (104), we thus obtain from

Eq. (74) two equaﬂon; which now det_ermlng tmumn_o 2For the case of an ultrarelativistic pure electron-positron plasma
“beam”  electron-positron  plasma dispersion  relations i, equilibrium it can be shown that no solution, for example, of the
(qlln): dispersion equatiofl04) exists with 0< w<g.
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w+q+iy_ 1+z E+iy & 1, ) 23
nw_qﬂy—lnl_z—msgnyﬂn 1+ m) a——za (g/mp)“(1—2%)
+i 201 _ 52 2101 _ 52142 2
_m(l_¥, 113 | (12(1-2) +[21(1-2)19°(2) + 20(2) (9/mp)
a1-2) (212 +{[221(1-2)]g(2) + 2(a/mp)*}
where sgry=y/|y| . This is most appropriate for smafl (119

and v, reproducing the usual result for—0".
Specifically, we reconsider Eq110 and take only the |y| 7 , 4
dominant singular termx (zg—q°) ~* in M®®into account; F‘Za (a/mp)

cf. Eqg. (89). Thus we obtain, more explicitly,

z Y1-2%)3
1+ m_%+azl_z(1—(wﬂwz)zqmﬂ-y 2P [ 21(1- ) ]g(2)+ 2(almg) )
92 2 2 Zg—w—iy (120
» 1_%w-;l‘ynztgi:z -0, (114 and where
with o=zqg+ £. We recall thai?<1. g(z)zl—% z—% Ing. (121

It is easy to see that for a solution with~zq the term
«a? has to behave qualitatively such tHat least (¢,v)/q
~a’g?/mi<1, particularly in the long-wavelength limit
with g?/m3<1. Consequently, using E¢113), we expand
Eq. (114 up to second order i§/q or y/q. Separating real
and imaginary parts, it is straightforward to solve the result-
ing equations. We obtain

The corresponding real part of the dispersion relation in the
long-wavelength limit is

1
w(Q)=2¢- —GEm(1-2)°¢’

€1, s a(T22P+ 12(2)+1(2)(a/mp)? (TN A-D)H 1A=,
q 52 (a/mp)=(1-2°) (72/2)2+ [f(2) + (q/mp)2]2 (722> +[24(1-29)1%9%(z) (122
(115

with an interesting negative sign in front of the second term.

|| Traz(q/m v (1-2%)° Vr\]/e observe that the transverse pharons are quite sensitive to
I D , the geometry parameter
a 2 (w2/2)+[f(2)+(a/mp)*]? In particular, in the limitz— 0, corresponding to a maxi-
mally fanned-out “beam” with8,,,,— 7/2, the “damping
constant”y(q) diverges. In this limit the expansions leading
to Egs. (119 and (120 clearly break down. This can be

1 147 studied in more detail, starting again with E4.09 and
f(z2)=1— zzln—. (117 implementingg®= &+ iy, with £ y<q. However, it leads to

2 1-z a nonpropagating mode with frequency of the same small

order of magnitude as the damping constant, which is physi-
These results are consistent with the applied expansions, naally irrelevant to our study.

(116

neglecting higher order ia? corrections and defining

ing that §ocG§/e2 and yocGﬁ/e“, particularly in the long- However, under type Il supernova conditions, wih

wavelength limit. ~10 % and recalling that we have-1z%= sir?6,,,,= (RIr)?,
Recallingw=zq+ &, we thus obtain a pair dbngitudinal  in terms of the radiu® of the neutrino sphere and the dis-

pharon modes“type 1,” i.e. for g||n), with the real part of tancer of the electron-positron plasma from its center, a

the dispersion relation in the long-wavelength limit given bytypical value may beR/r)?>~0.5 for R~30 km[2]. Then,
for g<mp, the above calculations are accurate and we may
1 roughly estimate, for example, the transverse pharon damp-
w(q) =2q+ — G2m3(1- 2235, (118  ing constanty~10~?a%(q/mp)“q. For a pharon wavelength
4e? corresponding tag~mp/2 and an electron temperatuiig
~1 MeV, this yields a growth/decay lengtbne e-folding)
one, a growing, and the other, a decaying, mode, dependingn the order of 19-10'* km. A 1% increase of the collec-
on the sign ofy. tive mode amplitude squared, i.e. of its energy, means it
Analogously, we analyze the transverse dispersion relavould have to run through more than®®&m of plasma,
tion to be calculated from Eq109 for w<g. In this case, which is simply not there. The longitudinal mode behaves
we find a pair oftransverse pharon moddsy/pe ) with similarly.
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Clearly, the above estimates are crude and could be im- e2
proved by folding the results with the appropriate distribu- In: (1-2¢{GEM{IMP)| 1~| — +2ciGE
tions, depending on the distance from the supernova core
(and time. However, in view of the intrinsic weakness of the ()2 2
instabilities, we co»nczlude that it is unlikely that long- «|1- q_2 M (1100 p7 (€)00 +(2c\2,G§)2
wavelength type | @||n) pharon modes play an important q
role in the outward energy transport processes in type Il su- 5 02
pernovas. w|oo & @) (M())2M©M @00,
Considering the strong momentum dependence of the cal- (q0)2 q2

culated damping constants, Eq$16) and (120, however,
the question is raised, whether, at shorter wavelengths, cor-
responding collective modes could become important in-
stead. As we will discuss in the following subsection in more

(128

with q°=w+i7y. We observe that Eq127) has the same

detail, in this limit, the presently employed semiclassical
transport theory breaks down, necessitating further study.

Case II.We recall that here we ha\feL n and proceed as

before. However, the product of the two response matrice

appearing in Eq(74), C**=M©@**M{)# has to be recal-
culated. Taking the different tensor structure Mf"), ac-
cording to Eqs(95)—(100), into account, we obtain

02
COOZ(l (q ) M(e)OOM(V)OO (123)
q?
0
C ﬁcOO_,_ ﬂ_q_ M(e)OOM(V), (124)
q? q d °
' 0 n
Ci0= q gCoo—q—oM(Te)M(V), (125
q q
ini (40)2 ini 0
Cijzg%oo—kﬂ(l (q) M(e)ooM(V)
a‘ q q q°
iql
— (5” n'n q—q M)
+niniM{Y+ qq VISV (126

with q=|q|. We observe that**+C"*.

In the present case, we consider again two different kinds

of current fluctuations, when evaluating Eq(74):
53®(g)Lg,n (“Out"), i.e. fluctuations which are perpen-
dicular to the plane spanned lyand n, and fluctuations

with 83®(q) in this plane(* In”). Thus we obtain the fol-
lowing two equations which determine theutrino “beam”

electron-positron plasma dispersion relatiofgsL n):

3
:0’

(127

2
e
Out: (1 {(qO)T'FZC\Z/G,z:M-(rV) Mgl—e))

formal structure as Eq109 before. Furthermore, if we set
G% to zero, these equations reproduce the transverse and
longitudinal electron-positron plasmon dispersion equations
903) and (104).

Guided by our analysis of the transverse plasmon disper-
we expect only a negligible perturbative influence of the neu-
trino interactions in Eq.127), since they are again sup-
pressed by the factaa®~10 22 In particular, the present
structure ofM{" is a smoothly deformed version &1{,
compare Eqs(86) and (97), with no additional singularity.
Thus, the corresponding collective mode shows no particu-
larly interesting behavior and presentsecond kind of per-
turbatively deformed transverse plasmon

Finally, we consider Eq(128), describing a geometry
which resembles the one where two-stream instabilities arise
in other plasmag8-10. We attempt to find pharon type
solutions in the present case as well. For this purpose, we
take into account the leading root-singular terms, which con-
tribute here from Eq995), (98), and(100. The singularities
occur at the resonance frequencies-(); ==*+(s, as q?
=(q%2%-q?(1-2z%)—0, whereq=|q| andz=coSbyax.

We concentrate on the positive frequency solutions of the
dispersion equatioil28) and are particularly interested in
those with a positive imaginary part, which grow exponen-
tially in time. Therefore, we consideg®=w+ivy, with @
~(s>0, definings=sinéf,... Then, EqQ.(128 assumes a
slightly simpler form:

O 0\2
0=1+m; 2f (004 522 {(Q) 1]
2 2 2
zL d
(9%)? ~ (€00, L (e) 259 (€)0 4
X S —1|M® +5M¥ [1+mZM %] +0(a),
q
(129

with the dimensionless effective coupling constadt Eq.
(112. The terms ofO(a*) will be neglected in the follow-
ing, since their singularities cancel. Furthermore, we conve-
niently define

me=m3/q?, M@P=—e2M©0m2

M{E=2e2M{E/m3; (130
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cf. Egs.(83) and (86). Recalling the smallness @?, it is  azimuthal angle cutoffpresent inf(S”)(k), may not cause
obvious that any interesting solution must arise close thgpurious effects or invalidate our semiclassical transport ap-
resonance frequend® / =gs (0<s<1). proach.

Settingw=qs+ ¢ and assuming, y<qs, it is useful to In fact, the semiclassical approximatioof Sec. IIB is
expand Eq(129 in terms of the small complex quantity = based on the expansion of the full quantum transport equa-
=(&é+iy)/(29s). Here we make use of Eq113 once tions in powers ofi, appearing especially in the dimension-
more, in order to expand the Landau logarithms. Then, exless combinatiort d,- d,; cf. Egs.(6) and(20)—(22) in Sec.
panding to leading order iR, it is straightforward to arrive Il A. Therefore, a cutoff on a spacelike momentum coordi-

at the “formal solution” nate, corresponding to the anglé,., between three-
momentum and outward normal direction, may produce
. s(1—-s?)° large higher order corrections. These are controlled, how-
E+iy=ga’ ever, in thelong-wavelength limitWe recall that in the deri-

2 2 212
128[1+mgf(s)]°+ (ws/2)%} vation of the linear response theory in Sec. Ill A, the space-
S (h(s)M1+m2Tf(s)— (i mws/2 2 time gradients d/9x* become the four-momentay,,
(h(SIL+melf(s) = (imsi2)sgnyl}) beginning with Eq.(65). In the long-wavelength limit, ft is
(139 generally required thag, which probes the spatial inhomo-
geneity of the(stationary system, be small compared to the

where relevant momentunigradien} scales, i.e. the temperatures
5 . 5 ) Te,T,. Otherwise, the response functiofisee Eq.(80)]
h(s)=2sg(s) +ims(s"—1)sgny+4(s"—1) would inherit neglected higher order termsdq#a},, which

correspond to going from E6) to Eq. (46).
A truly microscopic transport calculation of the neutrino
X[2s?g(s)+ims(s>—1)sgny]. (132  distribution, as they are released from the neutrino sphere, is
an interesting topic for future workl,2]. We wish to con-
The functionsf andg were defined in Eqg117) and(121). clude by illustrating the modifications resulting from a more
The appearance of sgnon the right-hand side restricts the realistic smooth cutoff neutrino momentum distribution.

X[ f(s)+ (ims/2)sgny]+ma[ f(s)+ (i ws/2)sgny]

possibility of an explicit solution. For example, we consider the azimuthal angle integral
After some algebra, one obtains a criterion for a solutiorwhich contributes the singular term(q+q°)/(zg—q°) to
to exist in the relevant regime (0s<1): the neutrino response functidd (7%, Eq. (89), which in
turn is essential for the longitudinal type | pharon originating
{—1+s 1+ még(s)/z]}{wzmés2+4f(s)[1+ mgf(s)]} in Eqg. (110. Following the radial momentum and polar

angle integrations, one encounters the integral
+2s%g(s)[ 1+ mZf(s)]<0, (133
1
—2 0, 212

which in the long-wavelength Iimitm§>1) can only be =9 fﬁldz(q tie=laln)F(2), (134
fullfilled for sufficiently small s, i.e. a sufficiently small
opening angle of the neutrino momentum distribution.where we replaced the previous sharp cutoff, @¢z—z,,),
Clearly, taking only the leading terms in this limit into ac- by the smooth functior,
count, no solution exists. On the other hand, figs/q=2,

for example, the solvability criterion requires<0.426, cor- F(2)=N; Harctafi Ja(z—z,)]+arctafiya(1+z,) 1},
responding tofy, .~ 25°. (139
It is obvious, however, from Eq131) that anypharon ) ,
. L R . . 4 wherez,,=c0s6.x, and we have introduced the convenient
(“type 11, i.e. for gL n) solution here will havet,yxa abbreviations
«Gg, with no particular factors especially enhancing the
damping constant. We refrain from giving explicitly the not N. =arctaf Ja(l1-z )]+ arctaf Ja(1+z ).
very illuminating lengthy expressions. - " ™ (138

Instead, we conclude that in the supernova environment
the growth rate of the presently studied type Il pharons isThus, we have=(—1)=0, F(1)=1 and the Lorentzian de-
suppressed by an extra factoraf~10 22, as compared to rivative
type I. Consequently, these modes do not contribute at all in
this case. JaN7!

F'(2)= (137)

4. Discussion 1+ a(z—zy)?
The detailed calculations in the previous subsections arghe parameten>0 determines the steepness of the sigmoid

based on the stationary electron and neutrino distributioutoff, which ultimately should be related to the emission

functions, f) (k) and (k) of Egs.(75) and(76), respec-  characteristics of the neutrino sph¢as.

tively. While £ (k) is adequate for the supernova scenario Then, after a partial integration, we obtain an integral

discussed here, the question arises as to whether the shawjth three complex simple poles,
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04 |g 2 M F'(z 1
_4 a'q'+‘3—j d—— P (139 2=~ GZm2m2~10 2,
lal  lgl?)-1 z—(q°+ie)/|q| 2e?

which can be solved analytically. The final result is under typical type Il supernova conditions.

0 2(JaN.) 0 However, we found new types of growing, as well as
P (VeN,) Jal +( _ q_) damped collective modes, tipharons which are character-
lal  (q°=1qlzm2+|q|% a m |q ized by an essentially linear dispersion relatiar{q)/q

. ~const in the long-wavelength limit. Their characteristic
—lal 1 1+a(1+zy)? properties depend on the relative orientation of the neutrino
q°+|q| + 2 n1+a(1—z )2 beam, collective mode propagation and electric current fluc-
m tuation directions(and are studied in Secs. llIB2 and
1B 3). They partially overcome the discussed suppression,
since a resonance pole arises in the dispersion equations in
—. (139 the region withw(g)<g. In this region, one finds in an
q°—dl|zm ordinary electron-positron plasma strongly Landau damped
modes or, in the ultrarelativistic limit, ngplasmon modes at
Thus the previous result is recovered in the sharp cutoffy|.
limit. As we estimated roughly in Sec. Il B3, although they
We observe that the previoussonance polat q°=€  partially overcome the discussed suppression, the type | pha-
E|E1|zm is moved symmetrically off the real axis. However, ron growth rates are still about four, and likely more, orders
closer inspection shows that the above resutiassingular  of magnitude too small to make an impact on supernova

any more aqu_,|a|(zmii/\/g)_ We recalculated the com- €Vvolution. The type Il pharon growth rate is even more sup-
plete M("% component of the neutrino response functionPressed; it is proportional t6¢ , like a purely weak interac-
with the smooth cutoff functiorF(z) and found a corre- tion cross section. Clearly, we have seen that for the electro-
sponding result. weak interaction to be relevant, the effective particle
Therefore, in accordance with intuitive expectation, adensities have to be sufficiently high, since one has to over-
physically more appropriate moderate smoothing of the ancome the suppression expressed by the smallness® of
gular dependence of the neutrino momentum distributiorgiven above, or its equivalent for more massive particles. We
turns the pharon resonance poles into resonances with a finitemark that changing the neutrino and electron temperatures,
width, which decreases with increasing sharpness of the cu@s compared to the typical supernova case discussed after Eq.
off (i.e. asa—o). Most likely, this implies that realistic (122, for example, while keeping the “wavelengthiy /q
growth rates for the unstable modes will be lower than estifixed, the Type | pharon damping constants grow and the

o a°+a
— (I=Zn) o=

mated optimistically in Sec. 111 B 3. corresponding-folding lengths drop=< T, %T_ 3.
At this point it is worthwhile remarking that more realistic
IV. CONCLUSIONS calculations also have to take the collisonal damping into

account. This can be incorporated in our approach in the

In this work, we studied the collective modes which wererelaxation time approximation in future applicatioi®g.
earlier conjectured to produce anomalously large instabilities Finally, we point out that pharon type modes should occur
in the course of the interaction of the neutrino “beam” with in other situations with a current-current type interaction un-
the plasma sphere in type Il supernoya$ der two-stream conditions. The anisotropic momentum dis-

For this purpose, we derived the semiclassical transpottibution characteristic of a “beam” with limitegmomen-
theory based on the Dirac field equations for neutrinos andum) opening angle appears to cause the resonance effect
electrons, which are coupled according to the standareéxciting these modes by impact on an isotropic plasma. We
model. Our results also allow for the handling of situationsdid not study here a spatially limited beam or jet, which
with strong spin-polarizing magnetic fields, which we did notcauses quite different “hydrodynamic” instabilities.
consider here. We derived a related linear response theory Pharon modes may perhaps be fed effectively by the still
and applied it in a detailed supernova scenario, adapted frommknown central engine powering gamma ray bursts, for ex-
Bethe’s review[2]. ample; see Ref[21]. There is growing evidence for even

We studied, in particular, the modifications of the usualtruly jet-like processes in the gamma ray burst phenomenon.
transverse and longitudinplasmonsof an electron-positron  Furthermore, allowing for other than electro-weak interac-
plasma, which are caused by a high-power beam-like flux ofions, such modes possibly come into play in the ultimate
neutrinos, such as the almost radially outward streaming newevaporation of primordial black holg¢&2].
trinos, which are released from the neutrino sphere surround- To summarize, we conclude that the intrinsic weakness of
ing the supernova core. In the collisionless approximationthe neutrino caused collective effects, related to the large
we found only a very weak perturbative effect and no in-asymmetry of the electromagnetic and weak coupling
duced imaginary part of the dispersion relation. This is duestrengths, makes it rather unlikely that they play a role in the
to the suppression of all neutrino effects by the small dimenneutrino energy deposition in the supernova plasma sphere.
sionless effective coupling constant, However, the new pharon type instabilities may be quite rel-
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evant in two-stream situations occuring in other astrophysi- o IE)X+: _—_— (AB)
cal systems.
It thus describes the negative helicitgft-handed neutrino,
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hus describing a negative four-momentum positive helicity
right-handedl neutrino, which is the positive four-

momentum right-handed antineutrirnes .
APPENDIX XVe conclude that in the Weyl representation the physical
o _ v vr-spinor ¢*) is represented by
Here we consider in more detail the structure of the
neutrino-antineutrino spinor Wigner function. The general x=a.xs+a_x_
results of Eqs(7)—(12) can be further specialized for the W=( $=0 )

case of the standard mode| vg system in the massless
limit. We follow the notation of Ref[23] in this appendiX.  wherey is written as a suitably normalized superposition of

In the main part of the paper we use the Dirac-Pauli repthe two-spinors - , e.g., considering plane wave staff2s].
resentation of thes matrices, which are defined by the anti- Next, we calculate the corresponding four-spinor in the

(A8)

1 0 0 o 0 1
0_ i X ! = V) V) 1 X
7o —1) P (—0" 0)’ i (1 o)’ 98 = Ul =— —x)’ (A9)
(A1) \

where all entries are’22 matrices themselves; in particular, where we applied the unitary transformatiohdefined in

o', i=1,2,3 denote the standard Pauli matrices. We Iiste&:‘qs'(A3)‘ . . .
also the chirality operatog®=iy%y1y23 We proceed to calculate the bilinear covariants which are

¥“y", which anticom- needed in Egs(7)—(12). Using the explicit form of they

mutes with all y*. In the following we will conveniently . . . ; .
begin with the chiral Weyl representation g;’;trlces in the Dirac-Pauli representation, Edsl), we ob-

o (01 i 0 o s (10O ) (1) = 0= M) 5y (1)
with = y("1,0= (" "/ 2 , dropping the subscrigd

The subscript®,W presently serve to distinguish the repre- from now on. Furthermore,

sentations, which are related by

L PP = x =g 5y, (A11)
T — 5_0
¥6=UwrwYw, UW:f(l_VWVW) (A3) — N L= .
/e Py == x o x =gy g,
. . . : (A12)
i.e. a simple unitary transformation.
In the Weyl representation the stationary Dirac equationginglly, usingo’=i[ y*,y"]/2 , we also obtain
separates into a pair of two-component Weyl equations
YWorry=0. (A13)

Ex(p)=—0-px(p), (A4)
Summarizing, only the vector and axial vecttwo-point

E¢(p)=+o-pé(p), (AS) " gensities are nonzero for the v system and, in fact, they

the first of which d ibes the phvsica: ‘ are equal. This yields for the neutrino Wigner function com-
shall see, while the second one is discarded in the standaflpSY 57 (X.P) =A})(x.p), while all ther components
' vanish; see Eqg7)—(12).

; i Vo S i 2_1812 i . .
model. Using{c",o'}=24", one verifies thaE*=|p|%, in Presently we made use only of the algebraic properties of
both cases. Concentrating on E44), we consider first the e neutrino spinors. It did not enter that the amplitudes

positive energy solution with four-momenturp’ =(E  from Eq.(A8) actually are to be considered as creation and
>0,p), which obeys p=p/|p|): annihilation operators.
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