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Behavior of the thermal gluon self-energy in the Coulomb gauge
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We study, to one loop order, the behavior of the gluon self-energy in the noncovariant Coulomb gauge at
finite temperature. The cancellation of the peculiar energy divergences, which arise in such a gauge, is explic-
itly verified in the complete two point function of the Yang-Mills theory. At high temperatures, the leadingT2

term is determined to be transverse and nonlocal, in agreement with the results obtained in covariant gauges.
The coefficient of the sub-leading ln(T) contribution is nontransverse but local and coincides~up to a multi-
plicative constant! with that of the ultraviolet pole term of the zero temperature amplitude.

PACS number~s!: 11.10.Wx
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In thermal field theory, one is often interested in the co
tributions which arise from the region where the loop m
menta are of the same order as the temperatureT, with T
much larger than all the masses and external momenta@1–5#.
Suchhard thermal loopcontributions determine the leadin
gauge invariant terms of the amplitudes at high temperat
which are important inresummingthe QCD thermal pertur-
bation theory@6#. In general, the coefficients of these leadi
order terms are not directly related to the ultraviolet singu
terms of the zero temperature amplitudes. In thermal QC
for example, then-gluon amplitudes at one-loop order b
have likeT2 for high T, even though these amplitudes a
ultraviolet finite, at zero temperature, forn.4. The hard
thermal loop region is also relevant for determining the s
leading, ln(T) behavior of the amplitudes. It has been argu
that, in contrast with the behavior of the leadingT2 terms,
the coefficients of the ln(T) terms are simply related to thos
of the ultraviolet pole terms of the zero temperature am
tudes@7#.

These properties of the amplitudes at high temperat
which have been verified in covariant and axial gauges, w
derived under the assumption that the integration over
loop energyq0 is well defined. On the other hand, it is we
known that, in the Coulomb gauge, there are spurious p
at qW 50, leading to divergent energy integrals simply b
cause the denominators of some of the integrands ma
independent ofq0. ~For a discussion of this and other relat
aspects of the Coulomb gauge see, for example,@8–13#.!
Consequently, it is not clear,a priori, whether all the prop-
erties of the thermal amplitudes, derived in covariant a
axial gauges, would continue to hold in the Coulomb gau
as well because of theill defined energy integrals. At zero
temperature, there is a proposal to regularize these singu
ties using a variant@14# of the conventional dimensiona
regularization@15#. However, it has also been pointed o
that, even though individual Feynman diagrams can h
divergent energy integrals in the Coulomb gauge, such di
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gences might cancel when all the contributions to a giv
amplitude are added together. This has been checked, u
the conventional dimensional regularization, in the case
the one-loop self-energy for the gluon at zero temperat
@16#.

In this Brief Report we verify explicitly, in one-loop
QCD, that the cancellation of theseill defined terms takes
place at finite temperature as well. As a consequence of
we show that all the properties of the hard thermal lo
amplitudes alluded to earlier, continue to hold even in
Coulomb gauge. Thus, we show that the leadingT2 term in
the gluon self-energy is nonlocal and is gauge invari
~namely, it is transverse and has the same value as in o
gauges!. The ln(T) term, on the other hand, is local but no
transverse, with the coefficient coinciding~up to a factor!
with that of the ultraviolet pole term of the zero temperatu
amplitude in the Coulomb gauge. This latter property allo
us to determine directly, from the self-energy for the Co
lomb field ~00 component!, the ln(T) correction to the effec-
tive coupling constant at high temperature. This simple
havior arises essentially because the Coulomb field
decoupled from the ghosts@17#.

To carry out the computation at finite temperature, we u
the analytically continued imaginary time formalism@18#,
where the integration over the loop energy is replaced b
summation over the discrete valuesq052p i lT , wherel is an
integer. The diagrams which contribute to the gluon se
energy, at one-loop, are shown in Fig. 1.

In the Coulomb gauge, the gluon propagator can be w
ten as

Dmn
ab~q!5

dab

q2 Fhmn1
n2qmqn2q•n~qmnn1qnnm!

qW 2 G , ~1!

where nm5(1,0,0,0), while the ghost propagator has t
form

Dab~q!5
dab

qW 2
. ~2!
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This propagator is independent of energy and this is one of the reasons that divergent energy integrals arise.
Let us consider first the ghost loop contribution to the gluon self-energy shown in Fig. 1~c!. Using the appropriate

ghost-gluon-ghost vertex in the Coulomb gauge, one finds that, at finite temperature, this graph leads to the contrib

P (ghost)
i j ,ab 5

dabNg2T

2
lim

h→01
(
q0

q0
hE ddqW

~2p!d

~2qiqj1kiqj1kjqi !

qW 2~qW 1kW !2

5
dabNg2p

d
2

2~2p!d
GS 12

d

2DG2S d

2D
G~d!

ukW ud24T lim
h→01

(
q0

q0
h@d i j kW21~d22!kikj #. ~3!
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Hereg is the gauge coupling constant,N the color factor of
SU(N), d the space dimension~53 in four space-time di-
mensions! and G denotes the gamma function@19#. The q0
sum in Eq.~3! has been regularized in the spirit ofz-function
regularization, by introducing the factorq0

h , with h→01 at
the end@20#. A key element of this procedure is the proce
of analytic continuation which makes use of the relati
(1

`l h5z(2h), wherez denotes the Riemann zeta functio
@19#.

It is then easy to check that all such terms cancel
when we take into consideration similar contributions wh
arise from the 00 components of the internal gluon propa
tors in the other diagrams in Fig. 1. In fact, adding all su
contributions, we obtain

P (00)
i j ,ab1P (ghost)

i j ,ab 5
dabNg2T

2
lim

h→01
(
q0

q0
h

3E ddqW

~2p!d

~kikj1kiqj1kjqi !

qW 2~qW 1kW !2
50 ~4!

which follows from the anti-symmetry of the integrand
Eq. ~4! underq→2q2k.

This exact cancellation can also be proved using a dif
ent regularization of the energy independent contributio
An interesting alternative, in this respect, is to employ
gauge which interpolates between the Coulomb and
Feynman gauges, as described in the second paper in@16#. It
is easy to verify that the only modification in Eq.~4!, which
this approach introduces, involves the denominators, wh
change as qW 2→qW 22aq0

2 and (qW 1kW )2→(qW 1kW )22a(q0

1k0)2, wherea is the parameter interpolating between t
Feynman (a51) and the Coulomb (a50) gauges. In this
case, a can be thought of as a regularization parame
which, when the limita→0 is taken at the end, regularize
the energy singularities of the Coulomb gauge. The can
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lation between the various diagrams now follows from t
anti-symmetry as described above.

Since theill defined terms cancel, we can now procee
with the standard method for evaluating the remaining fin
temperature contributions, which is facilitated by the use
the relation@18#

T (
l 52`

`

I ~q05p i lT !5
1

4p i E2 i`

1 i`

dq0@ I ~q0!1I ~2q0!#

1
1

2p i E2 i`1d

1 i`1d
dq0@ I ~q0!

1I ~2q0!#
1

exp~q0 /T!21
. ~5!

Here I (q0) is given by an integral over the space comp
nentsqW and d→01. The first term on the right-hand sid
represents the zero-temperature part of the amplitude w
the second term contains the thermal corrections which
volve the Bose-Einstein distribution function. In the therm
part, the contour in theq0 complex plane may now be close
in the right half-plane and theq0 integration performed by
evaluating the contributions from the poles of the glu
propagator. In this way, the second term in Eq.~5! may be
expressed in terms of forward scattering amplitudes of
shell thermal particles with four momentumqm5(uqW u,qW ), as
illustrated in Fig. 2@5,21#.

Denoting byAmn,ab(q,k) the total forward scattering am
plitude, where the sum over the polarizations and the co
states of the thermal gluon is to be understood, we can w
the thermal contributions in terms of a momentum integra
Amn,ab as follows:

P thermal
mn,ab 5E d3qW

~2p!3

1

2uqW u

1

exp~ uqW u/T!21

3@Amn,ab~q,k!1Amn,ab~2q,k!#q05uqW u , ~6!
e
es
FIG. 1. One-loop diagrams which contribut
to the gluon-self energy. Wavy and dashed lin
denote, respectively, gluons and ghosts.
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where we have set the space dimension tod53, which is the
case of interest to us. Note that the temperature provid
natural ultraviolet cut-off for the thermal corrections. W
may now extract from Eq.~6! a series of high-temperatur
contributions which arise from the region of largeq. In the
hard thermal region, we can use the expansion

1

~q1k!2U
q05uqW u

5
1

2q•k
2

k2

~2q•k!2
1

k4

~2q•k!3
1••• ~7!

in the denominators of the forward scattering amplitude, a
expand its numerator similarly in powers ofk/q. One thus
gets forAmn,ab in Eq. ~6! terms which are homogeneous inq
of degree 1,0,21,22 and so on. The first term has a denom
nator of the form 1/(q•k) and a numerator which is quadrat
in q and independent ofk. Such odd terms cancel out in E
~6! by symmetry underq→2q. The next contributions are
down by a power ofk/q and arise from the terms inAmn,ab

which are of zero degree inq. Such terms yield the leadin
T2 contributions. The next non-vanishing contributions co
from those terms inAmn,ab which are of degree22 in q. By
power counting, these give rise to the ln(T) contributions.
Performing the integration overq, we determine the leading
T2 contribution to be

P (T2)
mn,ab

5
g2Ndab

48p
T2E dVS q̂mkn1q̂nkm

q̂•k
2

q̂mq̂nk2

~ q̂•k!2
2hmnD ,

~8!

where*dV denotes the integration over the directions ofq̂

5qW /uqW u and q̂m5(1,q̂). This contribution, which is clearly
nonlocal and manifestly transverse, agrees with the w

FIG. 2. Forward scattering graphs associated with diagrams~1a!
and ~1b!.
.
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known hard thermal loop result obtained in covariant a
axial gauges@1–7#. Such a gauge independent contributi
has a physical interpretation in terms of plasma frequen
and screening lengths@18#.

Furthermore, we have determined the ln(T) terms in the
thermal part of the gluon self-energy to be

P (lnT)
mn,ab5

g2Ndab

8p2 Fkmkn2k2hmn1
4

3

k•n

n2
~kmnn1knnm!

2
8

3

k2

n2
nmnnG lnS T

k D , ~9!

wherenm5(1,0,0,0) andk is a typical external momentum
scale. This expression which is local, but nontransverse,
incides with the coefficient~up to a factor! of the ultraviolet
pole term of the zero-temperature self-energy in the C
lomb gauge@14#, as expected@7#.

The above correspondence implies that the coefficien
ln(T/k) in Eq. ~9! must be the same as the coefficient
ln(k/m) in the renormalized amplitude at zero temperatu
wherem is the renormalization scale. This property allows
to determine, in a simple way, the ln(T) corrections in the
running coupling constant at high temperature. To this e
we use the fact that the logarithmic contribution to the ru
ning coupling constant,ḡ(k/m) at T50, can be determined
directly from the renormalized Coulomb field amplitude@17#

P (ln m)
00,ab 5dabkW2F11Ng2

24p2
lnS k

m D G . ~10!

From the temperature dependent part of the 00 amplitud
Eq. ~9!, we see that thek dependence cancels in the tot
amplitude so that the complete Coulomb thermal amplitu
contains only a logarithmic factor ln(T/m). This term will
then determine the logarithmic contribution to the runni
coupling constantḡ(T/m) at high temperature.
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