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Behavior of the thermal gluon self-energy in the Coulomb gauge
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We study, to one loop order, the behavior of the gluon self-energy in the noncovariant Coulomb gauge at
finite temperature. The cancellation of the peculiar energy divergences, which arise in such a gauge, is explic-
itly verified in the complete two point function of the Yang-Mills theory. At high temperatures, the ledding
term is determined to be transverse and nonlocal, in agreement with the results obtained in covariant gauges.
The coefficient of the sub-leading f(contribution is nontransverse but local and coinciflgs to a multi-
plicative constantwith that of the ultraviolet pole term of the zero temperature amplitude.

PACS numbsd(s): 11.10.Wx

In thermal field theory, one is often interested in the con-gences might cancel when all the contributions to a given
tributions which arise from the region where the loop mo-amplitude are added together. This has been checked, using
menta are of the same order as the temperafureith T the conventional dimensional regularization, in the case of
much larger than all the masses and external monjénts.  the one-loop self-energy for the gluon at zero temperature
Suchhard thermal loopcontributions determine the leading [16]. ) . S
gauge invariant terms of the amplitudes at high temperature, !n this Brief Report we verify explicitly, in one-loop
which are important imesumminghe QCD thermal pertur- QCD, thqt _the cancellation of thedl defined terms takes _
bation theon[6]. In general, the coefficients of these leading Place at finite temperature as well. As a consequence of this,
order terms are not directly related to the ultraviolet singula?V® Show that all the properties of the hard thermal loop
terms of the zero temperature amplitudes. In thermal QCDamplltudes alluded to earlier, continue to hold even in the
for example, then-gluon amplitudes at one-loop order be- Coulomb gauge. Thus, we show that the leadfigerm in

. 2 . . the gluon self-energy is nonlocal and is gauge invariant
have _I|keT_ f_or high T, even though these amplitudes are (namely, it is transverse and has the same value as in other
ultraviolet finite, at zero temperature, for>4. The hard

T - auges The In(T) term, on the other hand, is local but non-
thermal loop region is also relevant for determining the sub—g ges M

: . . transverse, with the coefficient coincidirigp to a factoy
leading, In{l) behavior of the amplitudes. It has been arguedyi, that of the ultraviolet pole term of the zero temperature

that, in contrast with the behavior of the leadifi§ terms,  ampjitude in the Coulomb gauge. This latter property allows
the coefficients of the I)) terms are simply related to those s to determine directly, from the self-energy for the Cou-
of the ultraviolet pole terms of the zero temperature ampli4{omb field (00 component the In(T) correction to the effec-
tudes[7]. tive coupling constant at high temperature. This simple be-
These properties of the amplitudes at high temperaturehavior arises essentially because the Coulomb field is
which have been verified in covariant and axial gauges, werdecoupled from the ghosf&7].
derived under the assumption that the integration over the To carry out the computation at finite temperature, we use
loop energyg, is well defined. On the other hand, it is well the analytically continued imaginary time formalisih8],
known that, in the Coulomb gauge, there are spurious poleghere the integration over the loop energy is replaced by a
at q=0, leading to divergent energy integrals simply be-Summation over the discrete valugs=2milT, wherel is an
cause the denominators of some of the integrands may gateger. The diagrams which cqntrlpute to the gluon self-
independent ofjy. (For a discussion of this and other related energy, at one-loop, are shown in Fig. 1. .
aspects of the Coulomb gauge see, for exame13.) In the Coulomb gauge, the gluon propagator can be writ-

Consequently, it is not cleas, priori, whether all the prop- ten as

erties of the thermal amplitudes, derived in covariant and " 52b n2q,,0,~d-n(g,n,+q,n,)

axial gauges, would continue to hold in the Coulomb gauge  D},(q)= | Tt = , (D
as well because of thidl defined energy integrals. At zero q q

temperature, there is a proposal to regularize these singulathere n#=(1,0,0,0), while the ghost propagator has the
ties using a varianf14] of the conventional dimensional fqm

regularization[15]. However, it has also been pointed out
that, even though individual Feynman diagrams can have ab 520
divergent energy integrals in the Coulomb gauge, such diver- D*(q)= ? (2
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This propagator is independent of energy and this is one of the reasons that divergent energy integrals arise.
Let us consider first the ghost loop contribution to the gluon self-energy shown in @@jg.Using the appropriate
ghost-gluon-ghost vertex in the Coulomb gauge, one finds that, at finite temperature, this graph leads to the contribution
b 2 dS i~ [P} ™
Hi(j'ﬁgsozﬁa NGT iy S gy [ 9 (24 +Ka +Kid)
‘ 2 o (2m?  g*(q+k)?

3

———|K[74T lim X, qZ[ 87k?+(d—2)k'kI]. 3)
r'(d) 0t 9o

d
B 5N g?m2 ( d)
© 2(2m)d 2

Hereg is the gauge coupling constaim,the color factor of lation between the various diagrams now follows from the
SU(N), d the space dimensiof=3 in four space-time di- anti-symmetry as described above.
mensiony andI" denotes the gamma functiga9]. The q, Since theill defined terms cancel, we can now proceed
sum in Eq.(3) has been regularized in the spirit@function with the standard _met_hod for eval_uating_the remaining finite
regularization, by introducing the factof/, with »—0" at temperature contributions, which is facilitated by the use of
the end[20]. A key element of this procedure is the processthe relation[18]
of analytic continuation which makes use of the relation © 1 [(+i=
ST1"=¢(—7n), where{ denotes the Riemann zeta function TI > |(q0=wi|T)=m ~dgo[1(ge) +1(—0qp)]
[19]. = —he

It is then easy to check that all such terms cancel out 1 [+ints
when we take into consideration similar contributions which +— dgol1(qp)
arise from the 00 components of the internal gluon propaga- 2mi ) —iet s
tors in the other diagrams in Fig. 1. In fact, adding all such
contributions, we obtain +1(—qo)]

expgo/T)—1" ®)

T7i.ab_ i ab :5abN92T lim 2 a Herelgqo) is given by an integral over the space compo-
(00) =" (ghosy 2 0 nentsq and —0". The first term on the right-hand side
represents the zero-temperature part of the amplitude while
f dd(i (KK +Kqgl+Kqg") the second term contains the thermal corrections which in-

n—0t Yo

3 == =0 (4 volve the Bose-Einstein distribution function. In the thermal
(2m) q°(a+k) part, the contour in thgg complex plane may now be closed
_ ) _ _in the right half-plane and thg, integration performed by
which follows from the anti-symmetry of the integrand in evaluating the contributions from the poles of the gluon
Eq. (4) underq— —qg—k. propagator. In this way, the second term in E§). may be
This exact cancellation can also be proved using a differexpressed in terms of forward scattering amplitudes of on-

ent regularization of the energy independent contributionsshe|| thermal particles with four momentugt= (|q|,q), as
An interesting alternative, in this respect, is to employ ajjjystrated in Fig. 2[5,21].

gauge which interpolates between the Coulomb and the penoting byA*"25(q,k) the total forward scattering am-
Feynman gauges, as described in the second papéjinit  plitude, where the sum over the polarizations and the color
is easy to verify that the only modification in E@t), which  states of the thermal gluon is to be understood, we can write
this approach introduces, involves the denominators, whiclthe thermal contributions in terms of a momentum integral of
change asq?—q?—aq? and @+K)?>—(q+K)2—a(q, A*"*" as follows:

+ko)2, wherea is the parameter interpolating between the

Feynman §=1) and the Coulombg=0) gauges. In this H{ﬁye’?ﬁm:f
case,a can be thought of as a regularization parameter

which, when the limita— 0 is taken at the end, regularizes
the energy singularities of the Coulomb gauge. The cancel-

P FIG. 1. One-loop diagrams which contribute
o o to the gluon-self energy. Wavy and dashed lines
b Thv.b fu.a eV B TR denote, respectively, gluons and ghosts.

(a) (b) ©)

d?:c_i 1 1
(27 21d] exp(ldliT) 1
XA, + AL k) g g, (6)
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kp,a —kv,b -k, b kp,a kn,a AR known hard thermal loop result obtained in covariant and
axial gaugeg1-7]. Such a gauge independent contribution
M has a physical interpretation in terms of plasma frequencies
) Pyt v ~ =7 7 7 and screening lengtH4.8]. . _
@ @) ®) Furthermore, we have determined theTh{erms in the

thermal part of the gluon self-energy to be
FIG. 2. Forward scattering graphs associated with diagfaas

2)y 5ab
and(1b). N &2 k-n
(o Hmﬁ%ﬂ . kHU—WnW4-;;WMV+k%M

where we have set the space dimensiod+d3, which is the

case of interest to us. Note that the temperature provides a 8 k2 T

natural ultraviolet cut-off for the thermal corrections. We —§—2n/‘n" In(— , 9
. . n K

may now extract from Eq(6) a series of high-temperature

contributions whi.ch arise from the region of .Iargeln the wheren#=(1,0,0,0) and« is a typical external momentum
hard thermal region, we can use the expansion scale. This expression which is local, but nontransverse, co-
K2 K incides with the coefficientup to a factoy of the ultraviolet

1 _ 1 _ + T ) pole term of the zero-temperature self-energy in the Cou-
(q+k)? 2q-k (2g-k)? (29-k)°® lomb gaugd14], as expected7].
The above correspondence implies that the coefficient of
in the denominators of the forward scattering amplitude, and?(T/«) in Eq. (9) must be the same as the coefficient of
expand its numerator similarly in powers kfg. One thus IN(«/w) in the renormalized amplitude at zero temperature,
gets forA#”2 in Eq. (6) terms which are homogeneousgn whereu is the renormalization scale. This property allows us
of degree 1,0; 1,— 2 and so on. The first term has a denomi-t0 determine, in a simple way, the W)(corrections in the
nator of the form 1/4- k) and a numerator which is quadratic "Unning coupling constant at high temperature. To this end,
in g and independent d€ Such odd terms cancel out in Eq. W€ Use the fact that the logarithmic contribution to the run-
(6) by symmetry undeg— —q. The next contributions are ning coupling constang(«/u) atT=0, can be determined

qO:‘&l

1INg?

22 In

down by a power ok/q and arise from the terms ia#*2°  directly from the renormalized Coulomb field amplitude]
which are of zero degree i Such terms yield the leading
K
from those terms if\“*-2® which are of degree-2 in g. By (np) = ;)
power counting, these give rise to the Th(contributions.

T2 contributions. The next non-vanishing contributions come [700ab _ sabj2
Performing the integration ovey, we determine the leading From the temperature dependent part of the 00 amplitude in

. (10

T2 contribution to be Ed. (9), we see that thec dependence cancels in the total
amplitude so that the complete Coulomb thermal amplitude
sviab g°N &P ) g*k’+q’k* g q’k? contains only a logarithmic factor M{w). This term will
H(Tz’) = J8n &-k - (El'k)z /P then determine the logarithmic contribution to the running

coupling constanE(T/,u) at high temperature.
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