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Making use of geometrical invariants in black hole collisions
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We consider curvature invariants in the context of black hole collision simulations. In particular, we propose
a simple and elegant combination of the Weyl invariantsI andJ, thespeciality indexS. In the context of black
hole perturbationsS provides a measure of the size of the distortions from an ideal Kerr black hole spacetime.
Explicit calculations in well-known examples of axisymmetric black hole collisions demonstrate that this
quantity may serve as a useful tool for predicting in which cases the close limit can provide an accurate
estimate of the radiation wave form and energy. This makesS particularly suited to studying the transition
from nonlinear to linear dynamics and for an invariant interpretation of numerical results.

PACS number~s!: 04.25.Dm, 04.25.Nx, 04.30.Db, 04.70.Bw
o
h
e
s
c
b
sic
a

er
de

on
x
fo

-
ela
-
th
u
e

te
ho
o
d

m
er

n
o
d
-
ria
iv
te
iz

ev
-

ally
ob-
l to
ory

nt
n

ery
g
ari-
3D
m

les

of
n-

al
wo

ex-
tin-

l
ur
,
d to

to
tiv-
th

ses
e-
I. INTRODUCTION

Einstein’s theory of gravity demands the equivalence
all coordinate representations of gravitational dynamics. T
coordinate gauge invariance makes general relativity v
simple and beautiful because there are no special familie
observers to be considered. On the other hand, though, it
also make it difficult to distinguish whether differences o
served in two spacetime representations are true phy
~geometrical! differences or gauge differences. A natur
way to limit confusion between gauge and physical diff
ences is to work, whenever possible, with geometrically
fined scalars, which are invariant under~passive! coordinate
transformations. Geometric curvature invariants have a l
productive history in the classification and distinction of e
act analytic solutions of Einstein’s equations, particularly
the algebraic Petrov classification and characterization
curvature singularities@1#. To a lesser extent, curvature in
variants have also been applied in the field of numerical r
tivity, primarily for code testing when evolving exact solu
tions numerically. Here gauge invariant methods have
distinct advantage that they can be applied to evolutions
ing numerically generated coordinates which are not und
stood analytically.

Black hole perturbation theory has recently genera
much interest as a model for the late stages of a black
collision spacetime@2#. When two black holes are close t
each other one can simply treat the problem as a single
torted black hole that ‘‘rings down’’ into its final equilibrium
state. Perturbative calculations applied in this final regi
have become an important tool in the verification and int
pretation of numerically generated results@3–5#. More am-
bitiously, the perturbative approach can be used in conju
tion with full scale 3D numerical relativity simulations t
directly ‘‘take over’’ and continue a previously compute
numerical black hole spacetime@6#. In setting up such a per
turbative approach one would like to have a working crite
for when we can expect perturbation theory to be effect
based only on numerical data. Some indicators of the po
tial success of perturbation theory, like for instance the s
of the distortions of the apparent horizon, have been pr
ously applied to numerical results@7#, but these require es
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tablishing a coordinate system, tend to be computation
expensive and none are effective, in particular, for the pr
lem sketched above. In this context it is extremely usefu
have a gauge invariant estimate of when perturbation the
can be expected to be effective.

Motivated by this purpose we introduce an invaria
quantity S, which geometrically measures local deviatio
from algebraic speciality, and which we expect to be a v
useful tool for numerical and perturbative work involvin
near-stationary regions of black hole spacetimes. Our inv
ant index is simple, elegant and can be applied to full
numerical evolutions to directly explore the transition fro
nonlinear to the linear regime@6#, or for invariant interpre-
tation of numerical spacetimes. In all well-known examp
of axisymmetric black hole collisions we studied,S has al-
ready proven to be very useful.

II. THE SPECIALITY INDEX

Curvature invariants are part of the standard analysis
exact solutions of Einstein’s equations. From the Weyl te
sor,Cabcd, which carries information about the gravitation
fields in the spacetime, one can algebraically derive t
complex curvature invariants usually calledI and J. These
are essentially the square and cube the self-dual part,C̃abcd

5Cabcd1( i /2)eabmnC cd
mn , of the Weyl tensor:

I 5C̃abcdC̃
abcd and J5C̃abcdC̃ mn

cd C̃mnab. ~1!

These scalars are useful in the algebraic classification of
act solutions. The different algebraic Petrov types are dis
guished by the degeneracies among the~up to! four principal
null directions~PNDs! associated pointwise with the Wey
tensor. Type I is the algebraically general case with fo
distinct principal null directions. The other types II, III, D
and N have at least two coincident PNDs and are referre
as algebraically special. A notable characteristic common
all stationary isolated black hole solutions of general rela
ity is that they are all algebraically special, of type D, wi
two pairs of coincident principal null directions~PNDs! at
each point. We contend however that for interesting ca
involving nontrivial dynamics, perturbed black hole spac
times are generically not algebraically special, of type I.
©2000 The American Physical Society01-1
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Significantly, the invariantsI and J satisfy the relation,
I 3527J2 if and only if the Weyl tensor is algebraically spe
cial @1#. Since the Weyl tensor in a perturbed black ho
spacetime is not expected to be algebraically special, we
pect I 3Þ27J2. Our proposal, then, is to use this relation
construct an invariant index for algebraic speciality as a lo
measure of the size of the distortions from some backgro
black hole. This violation can be in general quantified
considering the followingspeciality index:

S5
27J2

I 3
. ~2!

Note that, unlikeI and J, the peeling theorem implies n
characteristic falloff forS. For the unperturbed algebraical
special background Kerr spacetimeS51. In the perturbed
spacetime we generically expectS511DS, and the size of
the deviationDSÞ0 can be used as a guide to predicting t
effectiveness of black hole perturbation theory.

The theory of perturbations on a background Kerr spa
time was worked out first by Teukolsky@8# and has been
extensively studied by many authors@9–12#. In this context
it is natural to use the Newman-Penrose decomposition
the Weyl tensor into five complex quantities,c0 , c1 , c2 ,
c3, and c4, defined with respect to some choice of a n
tetrad basis. In terms of the Weyl components, for an a
trary tetrad choice:

I 53c2
224c1c31c4c0 ,

J52c2
31c0c4c212c1c3c22c4c1

22c0c3
2 . ~3!

For any type D spacetime such as Kerr, a tetrad can be
veniently chosen such that onlyc2 is non-vanishing. By ex-
pressingS with respect toany perturbation of such a tetra
we find that

S5123e2
c0

(1)c4
(1)

~c2
(0)!2

1O~e3!, ~4!

were e is a perturbation parameter, and the superscript
and (1) stand respectively for background and first or
pieces of the perturbed Weyl scalars. Thus, the lowest o
term in the deviation is second order in the perturbation
rametere. In the perturbative context this means that, wh
the speciality index is significantly different from unity, on
can see that a potentially second order quantity has bec
significant, and the first order theory should no longer
trusted. For the case of Schwarzschild Eq.~4! can be reex-
pressed in terms of the gauge invariant Moncrief functio
@10#.

III. EXAMPLE APPLICATIONS

For considering deviations of S from unity it is natural
think of deviations by some factor with the strongest atS
50 and S5` when J or I vanish. In order to make the
symmetry betweenS-too large andS-too small deviations
more apparent in graphical representation it is useful to c
12750
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sider a rescaled formSnorm511(S21)/AuSu211, which is
bounded in magnitude between 0 and 2. A deviation o
‘‘factor of two’’ for S corresponds to an additive deviation
the approximately60.5 in Snorm. We take this as a reason
able cutoff, to be checkeda posteriori, for values ofSnorm

above which we cannot expect perturbation theory to be
plicable. In regions where this condition is violated we c
expect significant violations of the perturbative dynamics.
test our interpretation ofS we have considered some wel
studied cases of axisymmetric black hole collisions. We fi
it useful to consider the location of such violating regio
with respect to the background black hole horizon and
perturbative ‘‘potential barrier.’’ As is well known, perturba
tive black hole dynamics are governed by a wave equa
with a potential concentrated in the vicinity ofr 52M in the
isotropic coordinates used for our examples. The poten
has the effect of largely preventing waves from crossing t
region.

The examples we consider here all correspond to ev
parity modes implying thatS is real, so we leave out refer
ence to its imaginary component in the following discussio
We first consider the case of two initially resting equal-ma
black holes. This initial configuration is represented by t
equal-mass time-symmetric Misner datasets parametrize
m0 as a measure of the initial separation. In this ca
Schwarzschild black hole perturbation theory has be
shown to provide a very good estimate of the total radia
energy for cases withm0,1.8 even though the black hole
share a common apparent horizon only whenm0,1.36.
Comparisons with numerical calculations@4# and second or-
der calculations@13# have demonstrated that the linear pe
turbation approach overestimates the radiation energy
only a factor of two up tom051.8 but beyond that the dif-
ferences grow quickly. Second order perturbations have b
applied in this case as a useful tool for assessing the dom
of validity of perturbation theory. We can obtain similar co
clusions by applying our speciality index test. Figure
shows the initial values ofSnorm along the equator for Misne
data, at several initial separations. In isotropic coordinates
used in previous studies, the horizon of the background bl
hole is located atr 50.5M and location of the perturbative
‘‘potential barrier’’ is nearr 52M . First consider the case
m051.2. While there is small region near the horizon whe
the criterion fails, this region is well inside the potential ba
rier which should prevent any local errors in the perturbat
dynamics from having a significant effect on the outgoi
radiation. In the marginalm051.8 case, the error inSnorm
begins to be significant near the potential barrier, and
radiation should be somewhat affected. For larger value
m0 the violation is significant in the vicinity of the potentia
barrier itself, invalidating the perturbation dynamics. T
sudden drop in the value ofSnorm in these cases makes ou
interpretations insensitive to the choice of a cutoff.

Another well-studied case is the collision of black hol
with non-vanishing initial linear momentumP. Here again,
first order perturbation theory has been very successful,
expectedly providing a good estimate of the radiation en
gies even for large values ofP @14#. We consider configura-
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 62 127501
tions corresponding to a fixedm51.5, for various values o
P. The corresponding initial values ofSnorm are shown in
Fig. 2. The presence of momentum in the initial slice int
duces qualitatively different features to the initial values oS
exhibiting now a region ofS.1 which falls off more slowly
at larger. There is no question in this case of the location
this region, but rather the magnitude of the violation. In t
case the violation seems to grow quadratically withP and
reaches our cutoff just afterP5M . Suggesting perturbation
theory should be successful up to thisP;M . The prediction

FIG. 1. The specialty index for Misner data. The equator
values ofSnorm shown in this plot allow the interpretation that pe
turbation theory can work for cases ofm0,1.8 but not higher. The
‘‘potential barrier’’ nearr iso52M prevents the violation of pertur
bative dynamics inside near the horizon atr 50.5M , from affecting
the radiation. For larger separations the interpretation of a pote
barrier atr iso52M is itself invalidated.

FIG. 2. Boosted black holes. The initial inward linear mome
tum of the black holes results in qualitatively different features
the equatorialSnorm values. These curves correspond to separati
of m051.5 and suggest that perturbation theory should be g
below P5M .
12750
-

f

of our prescription is consistent with the accuracy to 10%
radiation energies shown in Ref.@14# for P,M but does not
explain the mere doubling of this discrepancy out toP
53M .

In the above analysis we have considered the location
the SÞ1 regions in relation to the local properties of th
‘‘background’’ black hole. The specification of the bac
ground metric in this standard treatment is not itself gau
independent though. We can evaluate the applicability o
perturbative treatment in a gauge invariant way by utilizing
gauge-invariant specification of the background. A sim
way to do this is to specify the background Schwarzsch
radial coordinate byr Schw

6 53M2/I . The location of the ho-
rizon and potential barrier are then found with respect to t
coordinate. A two-dimensional representation of the res
for Misner initial data is given in Fig. 3. These plots sho
three curves, representing the locations of the backgro
horizon, the potential barrier, and theS50.5 surfaces in a
quadrant of thexz-plane. The qualitative features observ
in the preceeding interpretation ofS for the Misner problem,
are reproduced precisely in this more complete, fully inva
ant perspective.

IV. DISCUSSION

We have identified a gauge invariant quantity which p
vides a particularly interesting local reduction of the geom
ric data in a~numerical! black hole spacetime. We forese
three areas of application whereS should be a useful quan
tity: perturbation studies, which we have discussed in de
numerical spacetime interpretation, and numerical code t
ing. In the context of perturbation theory we have demo
strated thatS provides an invariant criterion for predictin
when perturbation theory might provide a reliable appro

l

ial

-

s
d

FIG. 3. Fully invariant analysis. Here we reexamine the Misn
results, for them051.2,1.4,1.8,2.2 cases respectively, showing
full 2D picture in a quadrant of thexz plane. The results of the
analysis this time provided in terms of an invariantly defined ba
ground andr Schw52M horizon and potential barrier nearr Schw

53M . The solid curve indicates theS51/2 surface.
1-3
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BRIEF REPORTS PHYSICAL REVIEW D 62 127501
mation for part of a black hole spacetime. This method
the advantage over other estimates such as apparent ho
formation that it is genuinely gauge invariant. In practice
can serve as simple alternative to second order perturba
theory, but our prediction does not provide such a dir
validation of a perturbative calculation. Knowing thatS;1
does not, for example, identify the appropriate backgrou
spacetime, a vital step in any application, but it is very use
predictor of when perturbation theory may be a useful al
native to numerical simulation in a generic black hole spa
time. The quantityS itself is not restricted to perturbatio
studies but should also be useful in the general interpreta
of numerical spacetimes.S is uniquely valuable in this con
text because it is a gauge invariant quantity, responsiv
dynamical disturbances, such as radiation, but with no c
acteristic~peeling! falloff behavior. ThusS can indicate typi-
cal dynamical disturbances directly, without reference to a
additional structure. As an example, looking atS in numeri-
cal simulations, Misner data evolve after a short time
qualitatively resemble the black hole data with inward m
mentum discussed above. After longer evolutions in t
family S tends to approach unity in the horizon-potent
region with evidence of radiation moving away in both d
,

en
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e
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ys
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rections. In this context we also note that the presence o
isolated horizon@15#, a recent construct of growing theore
ical interest in black hole spacetimes, implies locally thaS
51. Lastly, becauseS is an invariant with often predictable
behavior, it can be very useful in numerical code testing.
Kerr spacetimes, for example,S51 exactly in any coordi-
nates. Also in typical cases of Bowen-York binary black ho
data that we have looked atS falls off quickly toward unity
away from the black holes. In light of its simplicity an
straightforward significance, we expectS to become a stan
dard, very useful tool for analyzing numerically generat
spacetimes and interpreting their physical content.
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