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Making use of geometrical invariants in black hole collisions
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We consider curvature invariants in the context of black hole collision simulations. In particular, we propose
a simple and elegant combination of the Weyl invaridraadJ, the speciality indexS. In the context of black
hole perturbationss provides a measure of the size of the distortions from an ideal Kerr black hole spacetime.
Explicit calculations in well-known examples of axisymmetric black hole collisions demonstrate that this
quantity may serve as a useful tool for predicting in which cases the close limit can provide an accurate
estimate of the radiation wave form and energy. This makesurticularly suited to studying the transition
from nonlinear to linear dynamics and for an invariant interpretation of numerical results.

PACS numbgs): 04.25.Dm, 04.25.Nx, 04.30.Db, 04.70.Bw

[. INTRODUCTION tablishing a coordinate system, tend to be computationally

expensive and none are effective, in particular, for the prob-

Einstein’s theory of gravity demands the equivalence oflem sketched above. In this context it is extremely useful to

all coordinate representations of gravitational dynamics. Thifiave a gauge invariant estimate of when perturbation theory

coordinate gauge invariance makes general relativity vergan be expected to be effective.

simple and beautiful because there are no special families of Motivated by this purpose we introduce an invariant
observers to be considered. On the other hand, though, it cgiantity S, which geometrically measures local deviation
also make it difficult to distinguish whether differences ob-rom algebraic speciality, and which we expect to be a very
served in two spacetime representations are true physic4Seful tool for numerical and perturbative work involving

(geometrical differences or gauge differences. A natural near-stationary regions of black hole spacetimes. Our invari-

way to limit confusion between gauge and physical differ-2nt index is simple, elegqnt and can be applied.t_o full 3D
ences is to work, whenever possible, with geometrically denumerical evolutions to directly explore the transition from
fined scalars, which are invariant undpassivé coordinate no_nlmear to thg linear reg_lm[es], or for invariant interpre-
transformations. Geometric curvature invariants have a Iontatlon. of numepcal spacetimes. In all well-known examples
. S e L 8 axisymmetric black hole collisions we studiefi,has al-
productlve hlstor_y in the qla55|_f|cat|on ar_ld dlstlncfuon of ex- ready proven to be very useful.
act analytic solutions of Einstein’s equations, particularly for
the algebraic Petrov classification and characterization of
curvature singularitie§l]. To a lesser extent, curvature in-
variants have also been applied in the field of numerical rela- Curvature invariants are part of the standard analysis of
tivity, primarily for code testing when evolving exact solu- exact solutions of Einstein’s equations. From the Weyl ten-
tions numerically. Here gauge invariant methods have theor,C,,c4, Which carries information about the gravitational
distinct advantage that they can be applied to evolutions udields in the spacetime, one can algebraically derive two
ing numerically generated coordinates which are not undercomplex curvature invariants usually callecéndJ. These
stood analytically. are essentially the square and cube the self-dual Bggtq
Black hole perturbation theory has recently generatedzcabcd+(i/z)eabmncmféd, of the Weyl tensor:
much interest as a model for the late stages of a black hole
collision spacetimd2]. When two black holes are close to | =CapeC?®® and J=ChpcL,,C™% (1)
each other one can simply treat the problem as a single dis-
torted black hole that “rings down” into its final equilibrium These scalars are useful in the algebraic classification of ex-
state. Perturbative calculations applied in this final regimeact solutions. The different algebraic Petrov types are distin-
have become an important tool in the verification and interguished by the degeneracies among(tigeto) four principal
pretation of numerically generated resyl8-5]. More am-  null directions(PNDg associated pointwise with the Weyl
bitiously, the perturbative approach can be used in conjundensor. Type | is the algebraically general case with four
tion with full scale 3D numerical relativity simulations to distinct principal null directions. The other types II, I, D,
directly “take over” and continue a previously computed and N have at least two coincident PNDs and are referred to
numerical black hole spacetini@]. In setting up such a per- as algebraically special. A notable characteristic common to
turbative approach one would like to have a working criteriaall stationary isolated black hole solutions of general relativ-
for when we can expect perturbation theory to be effectivety is that they are all algebraically special, of type D, with
based only on numerical data. Some indicators of the potertwo pairs of coincident principal null direction®ND9 at
tial success of perturbation theory, like for instance the sizeach point. We contend however that for interesting cases
of the distortions of the apparent horizon, have been previinvolving nontrivial dynamics, perturbed black hole space-
ously applied to numerical resulfg], but these require es- times are generically not algebraically special, of type I.

Il. THE SPECIALITY INDEX
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Significantly, the invariantd and J satisfy the relation, sjder a rescaled forrﬁnorm:1+(3_1)/\/mz+_l, which is
13=2732 if and only if the Weyl tensor is algebraically spe- pounded in magnitude between 0 and 2. A deviation of a
cial [1]. Since the Weyl tensor in a perturbed black hole«tacior of two” for S corresponds to an additive deviation of
spacetime is not expected to be algebraically special, we expq approximately* 0.5 in S,.,,. We take this as a reason-
pect|3+#27J2. Our proposal, then, is to use this relation to ble cutoff, to be checked posteriori for values ofS
construct an invariant index for algebraic speciality as a local |\ "l e Lo expect perturbation theory t“o"’{)”e ap-
measure of the size of the distortions from some backgroun licable. In regions where this condition is violated we can
black hole. This violation can be in general quantified bye ¢ ’ ificant violati fh turbative d ics T
considering the followingspeciality index xpect significant violations of the perturbative dynamics. To

test our interpretation of we have considered some well-
2732 studied cases of axisymmetric black hole collisions. We find
S=—. 2 it useful to consider the location of such violating regions
' with respect to the background black hole horizon and the
perturbative “potential barrier.” As is well known, perturba-
tive black hole dynamics are governed by a wave equation
with a potential concentrated in the vicinity of2M in the
isotropic coordinates used for our examples. The potential
has the effect of largely preventing waves from crossing this

Note that, unlikel and J, the peeling theorem implies no
characteristic falloff forS. For the unperturbed algebraically
special background Kerr spacetinge=1. In the perturbed
spacetime we generically expeSt1+AS, and the size of
the deviatioltAS+# 0 can be used as a guide to predicting the''*>
effectiveness of black hole perturbation theory. region. _

The theory of perturbations on a background Kerr space- The examples we consider here all correspond to even-
time was worked out first by Teukolsky8] and has been Parity modes implying tha& is real, so we leave out refer-
extensively studied by many authd®-17). In this context €nce to its imaginary component in the following discussion.
it is natural to use the Newman-Penrose decomposition oVe first consider the case of two initially resting equal-mass
the Weyl tensor into five complex quantitiegy, ¢, ¥y, black holes. This initial configuration is represented by the
3, and i, defined with respect to some choice of a null €qual-mass time-symmetric Misner datasets parametrized by
tetrad basis. In terms of the Weyl components, for an arbi#o @s a measure of the initial separation. In this case,

trary tetrad choice: Schwarzschild black hole perturbation theory has been
shown to provide a very good estimate of the total radiated
|=3¢§—4¢1¢3+ Yatho, energy for cases withky<1.8 even though the black holes
share a common apparent horizon only whep<1.36.
J=— 3+ Yoatho+ 20 st — Yah’ — ot (3)  Comparisons with numerical calculatiop and second or-

der calculationg13] have demonstrated that the linear per-
For any type D spacetime such as Kerr, a tetrad can be comurbation approach overestimates the radiation energy by
veniently chosen such that oni is non-vanishing. By ex- only a factor of two up tquy= 1.8 but beyond that the dif-
pressingS with respect taany perturbation of such a tetrad ferences grow quickly. Second order perturbations have been
we find that applied in this case as a useful tool for assessing the domain
of validity of perturbation theory. We can obtain similar con-
y§ Y clusions by applying our speciality index test. Figure 1
(lp(ZO))z shows the initial values af,,,, along the equator for Misner
data, at several initial separations. In isotropic coordinates, as

were € is a perturbation parameter, and the superscript (0 sed .in previous studies, the horizon of the background_black
and (1) stand respectively for background and first ordefole is located at=0.5M and location of the perturbative
pieces of the perturbed Weyl scalars. Thus, the lowest ordePotential barrier” is nearr=2M. First consider the case,
term in the deviation is second order in the perturbation pato=1.2. While there is small region near the horizon where
rametere. |In the perturbative context this means that, Whenthe criterion faiIS, this I’egion is well inside the pOtentia| bar-
the speciality index is significantly different from unity, one fier which should prevent any local errors in the perturbative
can see that a potentially second order quantity has becontynamics from having a significant effect on the outgoing
significant, and the first order theory should no longer beadiation. In the marginak,=1.8 case, the error i§,om
trusted. For the case of Schwarzschild E4). can be reex- begins to be significant near the potential barrier, and the
pressed in terms of the gauge invariant Moncrief functiongadiaﬂon should be somewhat affected. For Iarger values of
[10]. o the violation is significant in the vicinity of the potential
barrier itself, invalidating the perturbation dynamics. The
IIl. EXAMPLE APPLICATIONS sudden drop in the value &, in these cases makes our
interpretations insensitive to the choice of a cutoff.
For considering deviations of S from unity it is natural to  Another well-studied case is the collision of black holes
think of deviations by some factor with the strongestSat with non-vanishing initial linear momentur. Here again,
=0 and S=o whenJ or | vanish. In order to make the first order perturbation theory has been very successful, un-
symmetry betweerf-too large andS-too small deviations expectedly providing a good estimate of the radiation ener-
more apparent in graphical representation it is useful to congies even for large values & [14]. We consider configura-

S=1-3¢? +0(€), (4)
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FIG. 1. The specialty index for Misner data. The equatorial 0 1 2 3 4 0 1 3 4

values ofS,,m Shown in this plot allow the interpretation that per-
turbation theory can work for cases @f<1.8 but not higher. The
“potential barrier” nearr;s,=2M prevents the violation of pertur-
bative dynamics inside near the horizorr at0.5M, from affecting
the radiation. For larger separations the interpretation of a potenti
barrier atr;s,=2M is itself invalidated.

FIG. 3. Fully invariant analysis. Here we reexamine the Misner
results, for theuy=1.2,1.4,1.8,2.2 cases respectively, showing the
full 2D picture in a quadrant of th&z plane. The results of the
a}nalysis this time provided in terms of an invariantly defined back-
a . . .
ground andrgqp=2M horizon and potential barrier neagp,
=3M. The solid curve indicates th€=1/2 surface.

tions corresponding to a fixed= 1.5, for various values of of our prescription is consistent with the accuracy to 10% for
P. The corresponding initial values &, are shown in radiation energies shown in R¢f4] for P<M but does not
Fig. 2. The presence of momentum in the initial slice intro-explain the mere doubling of this discrepancy out Ro
duces qualitatively different features to the initial valuessof =3M.
exhibiting now a region o6>1 which falls off more slowly In the above analysis we have considered the location of
at larger. There is no question in this case of the location ofthe S#1 regions in relation to the local properties of the
this region, but rather the magnitude of the violation. In this“background” black hole. The specification of the back-
case the violation seems to grow quadratically wittand  ground metric in this standard treatment is not itself gauge
reaches our cutoff just aftd?=M. Suggesting perturbation independent though. We can evaluate the applicability of a
theory should be successful up to tiis-M. The prediction  perturbative treatment in a gauge invariant way by utilizing a
gauge-invariant specification of the background. A simple
2 . way to do this is to specify the background Schwarzschild
radial coordinate by2.,,=3M?%1. The location of the ho-
rizon and potential barrier are then found with respect to this
coordinate. A two-dimensional representation of the results
for Misner initial data is given in Fig. 3. These plots show
three curves, representing the locations of the background
horizon, the potential barrier, and tl#&=0.5 surfaces in a
quadrant of thexz-plane. The qualitative features observed
in the preceeding interpretation 8ffor the Misner problem,
are reproduced precisely in this more complete, fully invari-

i .

b ----P=05M ant perspective.
L L P=1.0M
Ll —— P=20M
o IV. DISCUSSION

Snorm 1r

|l We have identified a gauge invariant quantity which pro-
0 i : w vides a particularly interesting local reduction of the geomet-
ric data in a(numerical black hole spacetime. We foresee
three areas of application whe&eshould be a useful quan-
FIG. 2. Boosted black holes. The initial inward linear momen-tity: perturbation studies, which we have discussed in detail,
tum of the black holes results in qualitatively different features innumerical spacetime interpretation, and numerical code test-
the equatorialS, . values. These curves correspond to separation$Ng. In the context of perturbation theory we have demon-
of uy=1.5 and suggest that perturbation theory should be googtrated thatS provides an invariant criterion for predicting
below P=M. when perturbation theory might provide a reliable approxi-
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mation for part of a black hole spacetime. This method hasections. In this context we also note that the presence of an
the advantage over other estimates such as apparent horizizolated horizor{15], a recent construct of growing theoret-
formation that it is genuinely gauge invariant. In practice itical interest in black hole spacetimes, implies locally t8at
can serve as simple alternative to second order perturbation 1. Lastly, becausé is an invariant with often predictable
theory, but our prediction does not provide such a direchehavior, it can be very useful in numerical code testing. In
validation of a perturbative calculation. Knowing tht1  kerr spacetimes, for exampl§=1 exactly in any coordi-
does not, for example, identify the appropriate backgrounghates. Also in typical cases of Bowen-York binary black hole
spacetime, a vital step in any application, but it is very usefulyata that we have looked &tfalls off quickly toward unity
predictor of when perturbation theory may be a useful alterzyay from the black holes. In light of its simplicity and
native to numerical simulation in a generic black hole spacesiraightforward significance, we expegtto become a stan-
time. The quantityS itself is not restricted to perturbation garg; very useful tool for analyzing numerically generated
studies but should also be useful in the general interpretatiogpacetimes and interpreting their physical content.

of numerical spacetimes is uniquely valuable in this con-

text because it is a gauge invariant quantity, responsive to

dynaml_cal dls_turbances, such_ as radiation, t_Jut_Wlth no _char- ACKNOWLEDGMENTS
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