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Remark about a non-BPS D-brane in type-IIA theory
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In this paper we show simple mechanisms of how, from the Dirac-Born-Infeld supersymmetric action for
non-BPS Dp-brane, we can obtain the Dirac-Born-Infeld supersymmetric action describing a BPS
D(p21)-brane in type-IIA theory.

PACS number~s!: 11.25.Mj
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I. INTRODUCTION

In recent years many new results about D-branes in st
theories have emerged. In a remarkable series of pape
Sen @1,2,4–6#, the problem of the nonsupersymmetric co
figuration in string theories was studied. It is clear that no
Bogomol’nyi-Prasad-Sommerfield~BPS! D-branes in type-
IIA, and -IIB theories are as important as supersymme
ones @3#. On the other hand it is known that non-BP
D-branes are not stable, so that they can decay into a su
symmetric string vacuum. The instability of this system is
consequence of the tachyon field that lives on the world v
ume of the non-BPS D-brane. But the presence of a non-B
brane in string theory is important for one reason. We c
construct the kink solution of the tachyonic field on t
world volume of a non-BPS D-brane, which forms a D-bra
of a dimension smaller than original non-BPS D-brane
can be shown on the basis of topological arguments that
solution is stable~for a review of this subject, see Refs.@7,8#!
~also see Ref.@9#!. Witten generalized this construction, an
showed that all branes in type-IIB theory can be construc
as topological defects in the space-time-filling world vo
umes of D9-branes and D9-antibranes@10#. Hořava extended
this construction to the case of type-IIA theory, and show
that all D-branes in type-IIA theory can emerge as topolo
cal solutions in space-time-filling non-BPS D9-brane
Hořava also proposed an intriguing conjecture about ma
theory and construction of D0-branes in K-theory@11,12#.
For a review of the subject of D-branes and K-theory, s
Ref. @13#, where many references can be found.

In a recent paper, Sen@14# proposed an supersymmetr
invariant action for non-BPS D-branes. Because non-B
branes break all supersymmetries, it seems to be strang
construct supersymmetric action describing this brane. H
ever, although there is no manifest supersymmetry of wo
volume theory, we still expect world-volume theory to b
supersymmetric, with the supersymmetry realized as a sp
taneously broken symmetry. From these arguments
showed that an action has to contain a full number of fer
onic zero modes~32!, because they are fermionic Goldsto
modes of completely broken supersymmetry, while the B
D-brane contains 16 zero modes, because it breaks one
of the supersymmetry. Sen showed that the Dirac-Bo
Infeld ~DBI! action for a non-BPS D-brane~without the pres-
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ence of a tachyon! is the same as the supersymmetric act
describing a BPS D-brane. This action is manifestly symm
ric under all space-time supersymmetries. Sen argued
the ordinary action for a BPS D-brane contains a DBI te
and a Wess-Zumino term, which are invariant under sup
symmetry but only when they both are present in the act
for the D-brane; the action is invariant under local symme
on the branek symmetry that is needed for gauging aw
one-half of the fermionic degrees of freedom, so that o
BPS D-brane only 16 physical fermionic fields live, a
should be the case for an object breaking 16 bulk supers
metries. Sen showed that the DBI term for a non-B
D-brane is exactly the same as the DBI term in the action
a BPS D-brane~when we suppose that other massive fie
are integrated out, including tachyons! that is invariant under
sypersymmetric transformations, but has no ak symmetry;
thus the number of fermionic degrees of freedom is
which is an appropriate number of fermionic Goldsto
modes for an object that breaks bulk supersymmetry co
pletely.

Sen also showed how we could include the tachyonic fi
in the action. Because the mass of a tachyon is of the orde
a string scale, there is no systematic way to construct
effective action for a tachyon; however, on the grounds
invariance under supersymmetry and general covariance
proposed a form of this term expressing an interaction
tween a tachyon and other light fields on the world volum
of a non-BPS D-brane. This term has a useful property; fo
constant tachyon field it is zero, so that the action for
non-BPS D-brane vanishes identically.

In the present paper we would like to extend the analy
of Ref. @14#. We propose a form of the term containing
tachyon, and we show that the condition of invariance un
a supersymmetric transformation places strong constraint
the form of this term. Then we show that tachyon conden
tion in the form of a kink solution leads to a DBI action fo
a BPS D-brane of codimension 1 with a gauged localk
symmetry. In conclusion, we will discuss other problem
with non-BPS D-branes, and the relation of this construct
to the K-theory.

II. ACTION FOR A NON-BPS D-BRANE IN TYPE-IIA
THEORY

We start this section by recapitulating the basic fa
about non-BPS D-branes in type-IIA theory, following Re
@14#. Let sm , m50, . . . ,p, are world-volume coordinate
©2000 The American Physical Society02-1
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J. KLUSOŇ PHYSICAL REVIEW D 62 126002
on a D-brane. Fields living on this D-brane arise as the lig
est states from the spectrum of an open string ending on
D-brane. These open strings have two Chan-Paton~CP! sec-
tors @2#: the first, with a unit 232 matrix, corresponds to th
states of an open string with a typical Gliozzı´-Scherk-Olive
~GSO! projection (21)Fuc&5uc&, where F is the world-
sheet fermion number anduc& is the state from the Hilber
space of an open string living on Dp-brane. The second CP
sector has a CP matrixs1, and contains states having opp
site GSO projections (21)Fuc&52uc&. The massless field
living on the Dp-brane are ten components ofXM(s), M
50, . . . ,9; aU(1) gauge fieldA(s)m ; and a fermionic field
u with 32 real components transforming as a Majorana s
nor under a transverse Lorenz group SO~9,1!. We can write
u as the sum of a left-handed Majorana-Weyl spinor an
right-handed Majorana-Weyl spinor:

u5uL1uR , G11uL5uL , G11uR52uR . ~1!

All fields exceptuR come from a CP sector with an identit
matrix, whileuR comes from a sector with as1 matrix.1

As Sen @14# argued, the action for a non-BPS D-bra
~without tachyon! should lead to the action for a BP
D-brane, when we setuR50 ~we have the opposite conven
tion from that in Ref.@14#!. For this reason, the action for th
non-BPS D-brane in Ref.@14# was constructed as a supe
symmetric DBI action, which is manifestly supersymmet
invariant but does not havek symmetry, so we cannot gaug
away one-half of the fermionic degrees of freedom; thus
action describes a non-BPS D-brane.

Next we include the effect of the tachyon. In order
obtain some relation between tachyon condensation and
persymmetric D-branes, we need an effective action
massless fields and a tachyon living on the world volume
a non-BPS D-brane. This effective action should appear a
integrating out all massive modes of an open string end
on a Dp-brane. Because the tachyon mass is of the orde
the string scale, there is no systematic way to obtain an
fective action for this field, but we can still study some ge
eral properties of this action. Following Ref.@14#, the effec-
tive action for a non-BPS Dp-brane with a tachyonic field on
its world volume should have the forms

S52CpE dp11sA2det~Gmn1~2pa8!Fmn!

3F~T,]T,uL ,uR ,G, . . . !, ~2!

Pm
M5]mXM2 ūGM]mu, Gmn5hMNPm

MPn
N ~3!

and

1Our conventions are the following.GM are 32332 Dirac matri-
ces appropriate to 10d, with relation $GM,GN%52hMN, with hMN

5(21,0, . . . ,0). Forthis choice ofg matrices the massive Dira
equation is (GM]M2M )C50. We also introduce G11

5G0•••G9 ,(G11)
251.
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Fmn5Fmn2@ ūG11GM]mu~]nXM2 1
2 ūGM]nu!2~m↔n!#.

~4!

The constant

Cp5A2Tp5
2pA2

g~4p2a8!(p11)/2

is the tension for a non-BPS Dp-brane, whereTp is the ten-
sion for a BPS Dp-brane andg is a string coupling constant

We must say a few words about the functionF, which
expresses the presence of a tachyon on the world volum
an unstable non-BPS D-brane. We know that this funct
must be invariant under Poincare´ symmetry and supersym
metry. We also expect that this function should express
interaction between light massless fields living on the wo
volume of a non-BPS D-brane and a tachyon. We will a
suppose, in the construction of this function, that other m
sive fields were integrated out. Finally, following Ref.@14#,
we demand that this function is zero for a tachyon equa
its vacuum expectation valueT0, and forT50 is equal to the
Tp tension of a BPS D-brane. This corresponds to
(21)FL projection, which projects out the tachyon field an
also the fermionic field from thes1 sector, so that the result
ing Dp-brane is a BPS Dp-brane in type-IIB theory@8#:2

F~T5T0!50, F~T50!5
1

A2
. ~5!

Now we propose the form of this function. First, it mu
contain the kinetic term for a tachyon, which should be wr
ten in a manifestly supersymmetry invariant way,

I KT5G̃S
mn]mT]nT, ~6!

whereG̃ denotes the matrix inverse ofG1(2pa8)F, andG̃S
is the symmetric part of the matrix. As argued in Ref.@14#,
the choice of this metric was motivated by Ref.@15#, where it
was argued that in a constant background fieldB the natural
metric for open strings isG̃S ; and an ordinary product be
tween functions becomes a noncommutative product. On
other hand, in Refs.@16,17# it was shown that a natural non
commutative parameter is a gauge-invariant combination
F 2p2 B, whereF is a constant background field strength
a gauge field living on a world-volume Dp-brane. For these

2In fact, Sen argued, that in the case of a constantT, F reduces to
the potential for a tachyon; as a consequence of the general for
the potential for a tachyon, this term is zero forT5T0. In this
paper, we slightly change the behavior of this function, because
only demand that in the world volume, where the tachyon is eq
to its vacuum valueT0, we should recover a supersymmetr
vacuum, so that there are no fields living on a non-BPS D-bra
thus we have Eq.~5!. Sen also argued that, forT50, function F
should be equal toCp ; however, we think that this function shoul
rather be equal toTp , for reasons explained above.
2-2
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REMARK ABOUT A NON-BPS D-BRANE IN TYPE-IIA THEORY PHYSICAL REVIEW D62 126002
reasons, we take the same metric as in Ref.@14#, but, due to
the vanishing of theB field and backgroundF field strengths,
we expect that noncommutative effects do not appear in
case; hence we will consider ordinary products between
functions. We will see that functionF is really invariant
under all symmetries presented above.

There should be a potential term for a tachyon in funct
F. The precise form of the tachyon potential was obtain
recently in Ref.@18#. In the zeroth-order approximation, th
tachyon potential has a form

V~T!52m2T21lT41
m4

4l
. ~7!

This potential has a vacuum value equal to

dV

dT
50⇒T0

25
m2

2l
, V~T0!50. ~8!

The precise form of parametersm and l will be obtained
later.

We also expect that some interaction terms betwee
tachyon andX fields and gauge fields will be presented byF.
In fact, the interaction betweenT andX andA is presented in
kinetic terms for a tachyon, which can be seen from the fo
of G̃S . We must also stress that a tachyon is not charged w
respect to the gauge field, because transforms in the ad
representation of a gauge group andU(1) have no adjoint
representation. For this reason there are no covariant de
tives in the action.

Finally, we will consider the interaction term between t
tachyon and fermionic fieldsuL and uR . We propose this
term in the form

I TF5g~T!~uR
TG0GMPm

MG̃S
mn]nuR1uL

TG0GMPm
MG̃S

mn]nuL!

1 f ~T!G̃S
mn]muR

TG0]nuL

1G̃S
rk]rh~T2!Pk

MG̃S
mn]mūLGM]nuL

1G̃S
rk]rh~T2!Pk

MG̃S
mn]mūRGM]nuR , ~9!

whereg(T) and h(T) are even functions ofT, and f (T) is
odd function ofT, which comes from the fact that in pertu
bative diagrams in string theory,T comes with a CP facto
s1 , uL with a CP matrix1, anduR with a CP factors1. Then
it is clear thatuRuL gives s1, so in order to have nonzer
trace over CP factors, we must havef (T), with odd powers
of T, which gives a factors1. In the same way it can be
shown thatg(T) andh(T) must be even functions ofT. We
have also used important properties of Majorana-Weyl s
nors, which state that the expression of two Weyl spinors
the same chirality with an odd number ofg matrices is zero,
and the expression of two Weyl spinors of opposite chir
ties with an even number ofg matrices is zero. This can b
seen from the following simple arguments

uL
T~G i•••G2k11!uL5uL

TG11~G i•••G2k11!G11uL

52uL
T~G i•••G2k11!uL , ~10!
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where we have used the fact thatG11 commutes with an even
number ofg matrices, and anticommutes with an odd nu
bers ofg matrices.

There is a question of whether higher-order derivatives
fermionic fields should be included in Eq.~9!. In fact, we
expect that there is no reason to include the higher der
tives of fermionic fields. The argument for this goes as f
lows. We know that the DBI action describes a D-brane
the approximation of slowly varying fields. In other word
in the DBI action only the first derivatives of massless fie
are included. When we consider the higher derivatives
fermions in Eq.~9!, we should then also consider high
corrections with higher derivatives of massless fields in
DBI action. Since we would like to study the DBI actio
only, we expect that this action gives a good descripti
hence we should consider only slowly varying fields whe
the first derivatives are good enough. For this reason
include only the terms with the first derivatives in Eq.~9!.

In summary, we expect thatF has a form

F5@ G̃S
mn]mT]nT1V~T!1I TF#. ~11!

We know thatF must be invariant under supersymmetr
transformations as well as under Lorenz transformations
translations. We will see that the requirement of supersy
metric invariance places important conditions on vario
terms in the action.

Under space-time translation, which has forms

djX
M5jM, djuL,R50, djT50, ~12!

we have

djPm
M50⇒djG50, djF50, ~13!

so thatF is invariant.
Under SO~1,9! Lorenz symmetry, various fields transform

as

X8M5LN
MXN, u85R~L!u, ū85 ūR~L!21, T85T.

~14!

We then obtain

Pm8
M5LN

M]mXN2 ūR~L!21GMR~L!u5LN
MPm

N , ~15!

where we have usedR(L)21GMR(L)5LN
MGN. Then

Gmn8 5hMNLK
MPm

KLL
NPn

L5Gmn , ~16!

usingLK
MhMNLL

N5hKL . In a similar way we can show tha
dLF50, and consequently

dLG̃S50. ~17!

To prove the Lorenz invariance of fermionic terms, we u

uR5 1
2 ~11G11!u,uL5 1

2 ~12G11!u, ~18!
2-3
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J. KLUSOŇ PHYSICAL REVIEW D 62 126002
as well as basic properties of aG11 matrix, G11
T 5G11 and

R(L)21G11R(L)5G11, to rewrite the expression
]muRG0]nuL as

1
4 ]muT~11G11!G

0~12G11!]nu5 1
2 ]mū~12G11!]nu,

~19!

which transforms under Lorenz transformation as

1
2 ]mū8~12G11!]nu85 1

2 ]mūR~L!21~12G11!R~L!]nu

5 1
2 ]mū]nu, ~20!

which prove the Lorenz invariance of this term. In the sa
way we can prove the invariance of the expression

uR
TG0GMPm

M]nuR5 1
2 ūGM~11G11!Pm

M]nu. ~21!

This term transforms under Lorenz transformation as

1
2 ūR21GM~11G11!LK

MPm
KR]nu

5 1
2 ūLM

L GL~11G11!LK
MPm

K]nu

5 1
2 ūGM~11G11!Pm

M]nu. ~22!

Then it is also easy to see that the term in Eq.~9! propor-
tional to ]rh(T2) is invariant under a Lorenz transformatio
as well. This comes from the fact that the fermionic part
this term is the same as the term above, except for the p
ence of the derivative]muR,L

T . However, this does not spo
the invariance under a Lorenz transformation, because
renz transformations are global transformations from
point of view of world-sheet theory, and consequently a
not functions ofsm @19#. We see that the all integratio
terms between fermions and tachyons are Lorenz invaria

Now we come to the crucial question of supersymme
transformation, which has forms

deu5e, deX
M5 ēGMu.

It is well known that these transformations leavePm
M , and

consequentlyG, invariant. It can be also shown@19# thatF is
invariant as well. As a result, we have

deG̃S50. ~23!

Now we are ready to prove the invariance of the term

f ~T!G̃S
mn]muR

TG0]nuL5 1
2 f ~T!G̃S

mn]mū~12G11!]nu.
~24!

This term is clearly invariant under supersymmetry transf
mations, due to the presence of a partial derivative. In
same way we can prove the invariance of a term proportio
to ]rh(T2). On the other hand, the term
12600
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2 g~T!G̃S

mnūGM~11G11!Pm
M]nu ~25!

leads, after a supersymmetric transformation, to a varia
of the action

dS5E D ēGM~11G11!Pm
M]nu

52E ]n~DPm
M !ēGM~11G11!u, ~26!

where we have used

D5A2det~G1~2pa8!F! 1
2 g~T!G̃S

mn . ~27!

We see that the requirement of invariance under a trans
mation of the supersymmetry leads to the conclusion that
termg(T) . . . should not be present in the action for a no
BPS D-brane; thus we consider the interaction term betw
fermions and tachyons in the form

I TF5 f ~T!G̃S
mn]muR

TG0]nuL

1G̃S
rk]rh~T2!Pk

MG̃S
mn]muLG0GM]nuL

1G̃S
rk]rh~T2!Pk

MG̃S
mn]muRG0GM]nuR . ~28!

It is important to stress that this term is consistent with
requirements thatf (T) should be an odd function ofT and
h(T2) should be an even function ofT. This can be seen
from the fact thatG̃S has a CP factor equal to the unit matri
To prove this, we expandG as follows:

Gmn5hMN]mXM]nXN22hMN]mXM ūGN]nu

1hMN~ ūGM]mu!~ ūGN]nu!. ~29!

We know thatXM comes from a CP sector with a unit ma
trix, so that only one ‘‘dangerous’’ term is

ūGN]nu5~uR1uL!TG0GN]n~uR1uL!

5uR
TG0GN]nuR1uL

TG0GN]nuL . ~30!

These two terms give CP factors of either1151 ~for uL) or
(s1s1)51 for (uR). ~In Sec. I we used the resu
uR

TG0GM]muL52uR
TG11G0GMG11]muL52uR

TG0GM]muL .)
In the same way we can prove thatF comes with

a unit matrix of CP factors. For example, th
expression ūG11GM]mu is equal to uR

TG0G11GM]muR

1uL
TG0G11GM]muL , where we have used the identity

uL
TG0G11GMuR52uL

TG11G0G11GMG11uR

52uL
TG0G11GMuR . ~31!

It seems to us that the requirement of supersymme
places a strong constraint on the coupling between the
mions and tachyon. In particular, we have seen that fermi
must always come with a partial derivative. In Sec. III w
2-4
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will show that tachyon condensation in the form of a ki
solution leads to the correct supersymmetric invariant D
action of the BPS D(p21)-brane.

III. TACHYON CONDENSATION ON WORLD-VOLUME
OF A NON-BPS D-BRANE

In this section we will consider tachyon condensation
the world volume of a non-BPS Dp-brane in the form of a
kink solution, in a way similar to that used in Ref.@18#. In
that paper it was shown that tachyon condensation in
form of a kink solution gives approximately the correct val
of tension of a D(p21)-brane. We show, on the grounds
the action given in Eq.~2!, that the tachyon condensation
the form of the kink solution really leads to the supersy
metric action for BPS D(p21)-brane.

We will consider the situation where the tachyon field is
function of one single coordinatex on world-volume of a
non-BPS D-brane. We obtain equation of motion for
tachyon from a variation of Eq.~2!, which gives~we con-
sider a dependence of a tachyon only onx, say ap coordi-
nate!

GF d

dx S dF

d]xT
D2

dF

dTG1]mG]mT50, ~32!

whereF has a form

F5@ G̃S
mn]mT]nT1V~T!1I TF#, ~33!

and we have used

G5A2det~Gmn1~2pa8!Fmn!. ~34!

Using the fact that the tachyon field is a function ofx only,
from the last term in Eq.~32! we obtain the condition

]xGmn5]xFmn50, ~35!

in order to obey the equation of motion for a tachyon.
Now we return to the first bracket in Eq.~32!. The first

equation in Eq.~32! gives

2]m@ G̃S
mx]xT~x!#52]m~ G̃S

mx!]xT12G̃S
xx]x]

xT, ~36!

where we have used the fact that the tachyon field is a fu
tion of x only. Since for a tachyon in the form of a kin
solution the first derivative is nonzero, the first term in E
~36! leads to the result

G̃S
mx5const. ~37!

Since the constant in Eq.~37! does not have any physica
meaning, we can take solution in the form

G̃S
mx50, xÞm, G̃S

xx51⇒~ G̃S!xx51, ~ G̃S!xm50.
~38!

Using the definition@15#

G̃S5G2~2pa8!2FG 21F, ~39!
12600
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we obtain

15Gxx2~2pa8!2F xaG abFbx , ~40!

where a,b50, . . . ,p21,x5xp. Since G abÞ0, we obtain
the natural solution of the previous equation in the form

Gxx51, Gxa5Fab50. ~41!

Then we obtain

det@Gmn1~2pa8!Fmn#5detS Gab1~2pa8!Fab 0

0 1D
5det@Gab1~2pa8!Fab#. ~42!

The second term in the first bracket in Eq.~32! gives

2
dV

dT
2

dITF

dT
. ~43!

In order to obtain the kink solution for a tachyon, the seco
term in the previous equation must vanish separately.
return to this term in a moment. When we combine the fi
term in the previous equation with the second term in E
~36!, we obtain the equation

2]x]
xT2

dV

dT
50, ~44!

which is a precisely the equation for the tachyon kink so
tion. The solution of the previous equation can be found
many textbooks about topological configurations in fie
theory ~see, for example, Refs.@20,21#!:

2T9T85
dV

dT
T8⇒~T8!25V~T!. ~45!

In order to find an exact solution of the previous equatio
we take the zeroth-order form of the potential for a tachy
@18,22#,

V~T!52m2T21lT41
m4

4l
, ~46!

with the propertiesV(T0)50 andT05m2/2l.
Using Eq.~46!, we can easily solve Eq.~45! as

T~x!5T0 tanhS mx

A2
D . ~47!

Due to the fact thatm51/A2a8, we see that the tachyo
field is in its vacuum value almost on the whole axisx,
except for the small region of size of string lengthl s;Aa8.
In other words, through tachyon condensation in the form
kink solution we obtain the object, which is approximate
localized around the pointx50 on the world volume of a
non-BPS Dp-brane. In the zero slope limita8→0⇒m→`,
the tachyon fieldT(x) will be equal to its vacuum value
almost on the wholex axis, except the small region aroun
2-5
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the pointx50, and the derivative of the tachyon field, whic
is equal todT/dx5(m/A2)@12tanh2(mx/A2)# will be zero
almost on the wholex axis except the small region aroun
the pointx50.

Now we come to the second term in Eq.~32!. In order to
obtain the tachyon solution in the form of a kink solution, w
must demand

dITF

dT
50, ~48!

whereI TF is given in Eq.~28!. It is easy to see that the term
proportional to]rh(T2) does not contribute to the equatio
of motion. This follows from the fact that all massless fiel
are independent ofx, so we can symbolically write

E D•••]xh~T2!•••5E ]x@D•••h~T2!•••#, ~49!

where the dots mean terms which are present in the se
and third terms in Eq.~28!. We see that this term contribute
to the action as a total derivative, and so do not contribut
the equation of motion for a tachyon. Then the only no
trivial term in Eq. ~28! is the term proportional tof (T).
Since f (T) is an odd function ofT, we can expect that its
derivatived f(T)/dT is nonzero. The only possibility to obe
the equation of motion for a tachyon is to pose the condit
that ]muR or ]muL should be equal to zero. We choose t
condition

]muR50 ~50!

for all sm, m50, . . . ,p. In other words, through tachyo
condensation we have eliminated one-half of the fermio
degrees of freedom with a direct parallel to gauge thek
symmetry on the world volume of a BPS D-brane.

We now come to the final result. When we use Eq.~45!,
we obtain

F~T5kink!52V~T!. ~51!

In the previous equation we used Eq.~50!, and the fact that
the term proportional to]xh(T2) gives a zero contribution to
the action, since~we again use the independence of all ma
less fields onx)

E D•••]xh~T!25h@T~`!2#2h@T2~2`!#D•••50.

~52!

Previous result comes from the fact thath(T2) is an even
function.

As a last step, we put Eq.~51! into Eq. ~2!; then we will
integrate overx and we obtain the final result, which is a DB
action for a D(p21)-brane:

S52Tp21E dpsA2det@Gab1~2pa8!Fab#, ~53!

where
12600
nd

to
-

n

c

-

Tp2152CpE
2`

`

dxV@T~x!#. ~54!

For the tachyon kink solution@Eq. ~47!#, which corre-
sponds to zeroth order approximation of the tachyon pot
tial @18,22#, we obtain

V~Tkink!5
m4

4l F12tanh2S mx

A2
D G 2

, ~55!

and Eq.~54! gives

Tp215
8A2

3m
CpVk , ~56!

where we have denotedVk5m4/4l. Using m51/A2a8 and
Cp5A22p/(4p2a8)(p11)/2g, we obtain

Tp215S 8A2Vk

3p D S 2p

~4p2a8!p/2g
D . ~57!

In Ref. @18# it was shown that for the zeroth-order approx
mation of potential2m2T21lT4 the vacuum value of the
potentialVk cancels about 0.60 of the tension of the non-B
D-brane. ThenVk50.60, and we obtain the final result

Tp2150.72Tp21
c , ~58!

where Tp21
c is the correct value of the tension for a D(p

21)-brane. This result is similar to the result given in R
@18# in the zeroth-order approximation.3

As a final point we must also discuss the situation wheT
is equal to its vacuum value everywhere. Naively we co
expect from the form of Eq.~33! that for this value of a
tachyon we would not obtain a supersymmetric vacuum
to the presence of the interaction term between the tach
and fermions. However, the tachyon vacuum value must b
solution of the equation of motion, and, as we have seen,
leads to the requirement of a constant spinor fielduR . Then
the interaction term between the fermions and tachyon
equal to zero, and from this definitionV(T5T0)50, ]xT
50; thus we will obtain the result that the second bracke

3We must stress two important points. First, we do not claim t
the solution given above is the most general one. Rather, we wa
to show that there is a one particular solution which leads to
emergence of a BPS D-brane. It would certainly be illuminating
study other possible solutions. Second, from the previous analys
is not completely clear why the world-volume field should be co
fined nearx50. This can be seen from the form of the kink sol
tion, which is nonzero only in the small region of the size; l s

around the core of the kink solution. Moreover, we have shown
the dimension of the world volume of the resulting D-brane is
fectively reduced by 1, thanks to the fact that all fields are indep
dent ofx, which is a nontrivial requirement arising from the form o
the kink solution. It is also important to note that we are not wo
ing in a static gauge, in which we would find that the resulti
D-brane sits in the pointx50.
2-6
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equal to zero, and consequently that the whole action dis
pears, in agreement with Ref.@14#.

IV. CONCLUSION

In previous sections we proposed a possible form of
persymmetric DBI action for a non-BPS D-brane in type-I
theory. ~For type-IIB theory the situation will be basicall
the same, with the difference that both spinors have the s
chirality.! We have seen that the requirement of invarian
under supersymmetric transformations places strong c
straints on the possible form of this action. Then we stud
the kink solution of a tachyon on the world volume of
non-BPS Dp-brane in type-IIA theory, and showed that th
12600
p-

-

e
e
n-
d

solution truly describes the BPS D(p21)-brane in type-IIA
theory. This is in agreement with the results of Re
@1,10,11#, and in some sense can serve as a further suppo
their results. We have also seen a striking similarity with t
results in Ref.@18#.

We would like to outline the other possible extension
this work. It would certainly be illuminating to study a situ
ation when we haveN non-BPS D-branes, and a tachyo
condenses in a more general configuration. It would also
interesting to study tachyon condensation on a system
D9-branes and antibranes in type-IIB theory, following R
@10#. We hope to return to these important questions in
future.
ys.
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