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Remark about a non-BPS D-brane in type-IIA theory
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In this paper we show simple mechanisms of how, from the Dirac-Born-Infeld supersymmetric action for
non-BPS [p-brane, we can obtain the Dirac-Born-Infeld supersymmetric action describing a BPS
D(p—1)-brane in type-lIA theory.

PACS numbds): 11.25.Mj

[. INTRODUCTION ence of a tachyonis the same as the supersymmetric action
describing a BPS D-brane. This action is manifestly symmet-

In recent years many new results about D-branes in stringic under all space-time supersymmetries. Sen argued that
theories have emerged. In a remarkable series of paper e ordinary action for a BPS D-brane contains a DBI term
Sen[1,2,4—6, the problem of the nonsupersymmetric con-and a Wess-Zumino term, which are invariant under super-
figuration in string theories was studied. It is clear that non-Symmetry but only when they both are present in the action
Bogomol'nyi-Prasad-Sommerfiel(BPS D-branes in type- for the D-brane; the action is invariant under local symmetry
lIA, and -1IB theories are as important as supersymmetric®®n the branex symmetry that is needed for gauging away
ones[3]. On the other hand it is known that non-BPS one-half of the fermionic degrees of freedom, so that on a
D-branes are not stable, so that they can decay into a supdpPS D-brane only 16 physical fermionic fields live, as
symmetric string vacuum. The instability of this system is ashould be the case for an object breaking 16 bulk supersym-
consequence of the tachyon field that lives on the world volimetries. Sen showed that the DBI term for a non-BPS
ume of the non-BPS D-brane. But the presence of a non-BPB-brane is exactly the same as the DBI term in the action of
brane in string theory is important for one reason. We car BPS D-branéwhen we suppose that other massive fields
construct the kink solution of the tachyonic field on the are integrated out, including tachyorkat is invariant under
world volume of a non-BPS D-brane, which forms a D-branesypersymmetric transformations, but has na aymmetry;
of a dimension smaller than original non-BPS D-brane. lithus the number of fermionic degrees of freedom is 32,
can be shown on the basis of topological arguments that thighich is an appropriate number of fermionic Goldstone
solution is stabléfor a review of this subject, see Refg,8])  modes for an object that breaks bulk supersymmetry com-
(also see Refl9]). Witten generalized this construction, and pletely.
showed that all branes in type-1IB theory can be constructed Sen also showed how we could include the tachyonic field
as topological defects in the space-time-filling world vol- in the action. Because the mass of a tachyon is of the order of
umes of D9-branes and D9-antibrar&6]. Horava extended @ string scale, there is no systematic way to construct this
this construction to the case of type-lIA theory, and showeceffective action for a tachyon; however, on the grounds of
that all D-branes in type-IIA theory can emerge as topologiinvariance under supersymmetry and general covariance Sen
cal solutions in space-time-filling non-BPS D9-branes.proposed a form of this term expressing an interaction be-
Horava also proposed an intriguing conjecture about matrixween a tachyon and other light fields on the world volume
theory and construction of DO-branes in K-thedfiyl,12. of a non-BPS D-brane. This term has a useful property; for a
For a review of the subject of D-branes and K-theory, se€onstant tachyon field it is zero, so that the action for a
Ref.[13], where many references can be found. non-BPS D-brane vanishes identically.

In a recent paper, Sgri4] proposed an supersymmetric In the present paper we would like to extend the analysis
invariant action for non-BPS D-branes. Because non-BPSf Ref. [14]. We propose a form of the term containing a
branes break all supersymmetries, it seems to be strange t@chyon, and we show that the condition of invariance under
construct supersymmetric action describing this brane. Howa supersymmetric transformation places strong constraints on
ever, although there is no manifest supersymmetry of worldthe form of this term. Then we show that tachyon condensa-
volume theory, we still expect world-volume theory to be tion in the form of a kink solution leads to a DBI action for
supersymmetric, with the supersymmetry realized as a spor® BPS D-brane of codimension 1 with a gauged logal
taneously broken symmetry. From these arguments Sesymmetry. In conclusion, we will discuss other problems
showed that an action has to contain a full number of fermiwith non-BPS D-branes, and the relation of this construction
onic zero mode$32), because they are fermionic Goldstone to the K-theory.
modes of completely broken supersymmetry, while the BPS
D-brane contains 16 zero modes, because it brea_ks one-half |, A ~Tio0N FOR A NON-BPS D-BRANE IN TYPE-IIA
of the supersymmetry. Sen showed that the Dirac-Born- THEORY
Infeld (DBI) action for a non-BPS D-brar(githout the pres-

We start this section by recapitulating the basic facts
about non-BPS D-branes in type-IIA theory, following Ref.
*Email address: klu@physics.muni.cz [14]. Let o,, u=0,...p, are world-volume coordinates
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on a D-brane. Fields living on this D-brane arise as the light- _ s M_ 1M _

est states from the spectrum of an open string ending on thisj:’” Py~ [T 12l w7, 6(0,X7 = 36170,0) (’W_)V)]('Af)
D-brane. These open strings have two Chan-Pé&fid sec-

tors[2]: the first, with a unit 22 matrix, cor,responds to the The constant

states of an open string with a typical Glio&cherk-Olive

(GSO projection (—1)F|#)=|), whereF is the world- 2m\2
sheet fermion number and) is the state from the Hilbert Cp= \/§Tp= ’
space of an open string living onpBbrane. The second CP g(4m?a’)PH D)2

sector has a CP matrix;, and contains states having oppo-

site GSO projections— 1)F|¢) = —| ). The massless fields is the tension for a non-BPSbrane, wherdl; is the ten-
living on the Dp-brane are ten components X! (o), M sion for a BPS [p-brane andj is a string coupling constant.
=0,...,9; aU(1) gauge fieldA(o),, ; and a fermionic field We must say a few words about the functiBn which

6 with 32 real components transforming as a Majorana spi€xpresses the presence of a tachyon on the world volume of
nor under a transverse Lorenz group(gﬂ) We can write an unstable non-BPS D-brane. We know that this function

9 as the sum of a left-handed Majorana-Weyl spinor and anust be invariant under Poincasgmmetry and supersym-

right-handed Majorana-Weyl spinor: metry. We also expect that this function should express the
interaction between light massless fields living on the world
0=0,+0r, T10,=0,, T1,0r=— 0. (1)  Vvolume of a non-BPS D-brane and a tachyon. We will also

suppose, in the construction of this function, that other mas-
sive fields were integrated out. Finally, following R&f4],

we demand that this function is zero for a tachyon equal to
its vacuum expectation valul), and forT=0 is equal to the

(without tachyom should lead to the action for a BPS To tanS|on_ of_a BPS D—brane. This correspond_s to a
D-brane, when we seiz=0 (we have the opposite conven- (=1) prolegthn, .Wh'Ch projects out the tachyon field and
tion from that in Ref[14]). For this reason, the action for the 2/SC the fermionic field from ther, sector, so that the resuilt-

non-BPS D-brane in Ref14] was constructed as a super- "9 Dp-brane is a BPS p-brane in type-IIB theory8]:*
symmetric DBI action, which is manifestly supersymmetric
invariant but does not hawe symmetry, so we cannot gauge F(T=T,)=0, F(T=0)= i
away one-half of the fermionic degrees of freedom; thus this 0 ' V2
action describes a non-BPS D-brane.

Next we include the effect of the tachyon. In order to  Now we propose the form of this function. First, it must
obtain some relation between tachyon condensation and sdpntain the kinetic term for a tachyon, which should be writ-

persymmetriC D-branes, we need an effective action fO[en in a manifesﬂy supersymmetry invariant way,
massless fields and a tachyon living on the world volume of

a non-BPS D-brane. This effective action should appear after lr=Ct% To.T (6)
i i R H H KT—YSs Yu vis
integrating out all massive modes of an open string ending

on a Dp-brane. Because the tachyon mass is of the order of

the string scale, there is no systematic way to obtain an efh€reg denotes the matrix inverse Gf+ (27a’) 7, andgs
fective action for this field, but we can still study some gen-iS the symmetric part of the matrix. As argued in Ref],

eral properties of this action. Following RéL.4], the effec-  the choice of this metric was motivated by Ref5], where it

tive action for a non-BPS Pbrane with a tachyonic field on Was argued that in a constant background figlthe natural

its world volume should have the forms metric for open strings i§js; and an ordinary product be-
tween functions becomes a noncommutative product. On the
other hand, in Ref4.16,17] it was shown that a natural non-

All fields exceptfr come from a CP sector with an identity
matrix, while 6z comes from a sector with a; matrix!
As Sen[14] argued, the action for a non-BPS D-brane

®)

S= —Cpf dP oy — det(G,,+(2ma’)F,,) commutative parameter is a gauge-invariant combination of
F 272 B, whereF is a constant background field strength of
XF(T,dT,6.,6r,G, ...), (2) a gauge field living on a world-volumedbrane. For these
=g, xM=oTMa,0, G,,=nunII)TI) 3

2In fact, Sen argued, that in the case of a constait reduces to
the potential for a tachyon; as a consequence of the general form of
the potential for a tachyon, this term is zero for=Ty. In this
paper, we slightly change the behavior of this function, because we
only demand that in the world volume, where the tachyon is equal
YOur conventions are the following:™ are 3232 Dirac matri-  to its vacuum valueT,, we should recover a supersymmetric
ces appropriate to 1) with relation{T™,'N}=27MN with sMN  vacuum, so that there are no fields living on a non-BPS D-brane;

and

=(—1,0,...,0). Forthis choice ofy matrices the massive Dirac thus we have Eq(5). Sen also argued that, far=0, function F
equation is [Moy—M)¥=0. We also introduce I'j; should be equal t€, ; however, we think that this function should
=Ty - -Tg,(T1)?=1. rather be equal t@,, for reasons explained above.
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reasons, we take the same metric as in Ref], but, due to  where we have used the fact that; commutes with an even
the vanishing of thé field and backgrouné& field strengths, number ofy matrices, and anticommutes with an odd num-
we expect that noncommutative effects do not appear in oupers ofy matrices.
case; hence we will consider ordinary products between any There is a question of whether higher-order derivatives of
functions. We will see that functioff is really invariant fermionic fields should be included in E¢Q). In fact, we
under all symmetries presented above. expect that there is no reason to include the higher deriva-
There should be a potential term for a tachyon in functiontives of fermionic fields. The argument for this goes as fol-
F. The precise form of the tachyon potential was obtainedows. We know that the DBI action describes a D-brane in
recently in Ref[18]. In the zeroth-order approximation, the the approximation of slowly varying fields. In other words,

tachyon potential has a form in the DBI action only the first derivatives of massless fields
. are included. When we consider the higher derivatives of
m fermions in Eq.(9), we should then also consider higher
V(T)= —mPT2 N T4+ —. 7 . -9-(9), oula er g
M A 4\ Y corrections with higher derivatives of massless fields in the

DBI action. Since we would like to study the DBI action

This potential has a vacuum value equal to only, we expect that this action gives a good description;
dv m2 hence we should consider only slowly varying fields where
— =0=T2=— =0 8 the first derivatives are good enough. For this reason we
To , V(To)=0. ® ! _ : Por TR
dT 2\ include only the terms with the first derivatives in E@).

. . . In summary, we expect th&t has a form
The precise form of parameters and N\ will be obtained y P

later.

We also expect that some interaction terms between a
tachyon and fields and gauge fields will be presentedmy
In fact, the interaction betweehandX andA is presented in

F=[CL",Ta,T+V(T)+l1g]. (11)

We know thatF must be invariant under supersymmetric
n{ransformations as well as under Lorenz transformations and

kinetic terms for a tachyon, which can be seen from the for . . .

(T W | h h . h d wi translations. We will see that the requirement of supersym-
of gs. We must also stress that a tachyon is not charged withoie invariance places important conditions on various
respect to the gauge field, because transforms in the adlo“ﬂ-{'rms in the action

representation of a gauge group addl) have no adjoint
representation. For this reason there are no covariant deriva-
tlverinlgllthe action. _ _ _ 5§XM:gM, 5:0,r=0, 5,T=0, (12)

y, we will consider the interaction term between the
tachyon and fermionic field®, and #5. We propose this
term in the form

Under space-time translation, which has forms

we have

- ~ 51MM=0=6,6=0, 6.F=0, 13
1= G(T)(PRTOT TN 3, 6+ 6TTOT , TIMGEY9, 0,) i =0=2 ‘f =

so thatF is invariant.

+ Suv T10

F(T)G6"9,0rT0, 61 Under S@1,9) Lorenz symmetry, various fields transform
+G89,h(TAHIINGE 5,6, T a6, as
+G&%9,h(TAI1)GE" 9, 0rT 3, bR, @  XM=ANXN, #'=R(A)6, 6'=6R(A)Y T'=T.

14
whereg(T) andh(T) are even functions of, and f(T) is 19
odd function ofT, which comes from the fact that in pertur- We then obtain
bative diagrams in string theory{f, comes with a CP factor
o1, 6, with a CP matrixl, andég with a CP factoro;. Then I'M=AMa XN—6R(A) " ITMR(A)o=ANTIY, (15)
it is clear thatfg6, gives o, so in order to have nonzero ® # “
trace over CP factors, we must haM@), with odd powers where we have useB(A) TMR(A)=ANMTN. Then
of T, which gives a factofr,. In the same way it can be N
shown thatg(T) andh(T) must be even functions af. We G = AMITEANIT =G
have also used important properties of Majorana-Weyl spi- ™ TIMNAK ALy
nors, which state that the expression of two Weyl spinors of . M N -
the same chirality with an odd number pfmatrices is zero, USMIAK 7unAL= 7k . In @ similar way we can show that
and the expression of two Weyl spinors of opposite chirali—5/\f:0’ and consequently
ties with an even number of matrices is zero. This can be

(16)

urvs

seen from the following simple arguments 8,Gs=0. (17)
O (T Tous1)0=0T (T T os )T 126, To prove the Lorenz invariance of fermionic terms, we use
=6l Taen)b, (10 Or=13(1+T190,6,=3 (1-T11)9, (18)
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. . . T _ ~—

as W?”1 as basu:_ properties ofl?aﬂ_matnx, =Ty anq %g(T)ggverm(Hrn)ijava (25)
R(A) " T'(4R(A)=T4;, to rewrite the expression

ﬁueRFOﬁﬁL as leads, after a supersymmetric transformation, to a variation

o of the action
79,0 (1+T19)I%1-T19)d,6=33,0(1-T11)9,0,
(19 5s=f Del (141N 4,0

which transforms under Lorenz transformation as .
=—f d,(DI1Y) el'yy(1+T19) 6, (26)
59,0'(1-T193,0'= 3 3,0R(A) " (1-T1)R(A)d,0
— where we have used
=33,00,0, (20

D=\-det(g+(2ma’)F) 3 9(T)GL". 27

which prove the Lorenz invariance of this term. In the same
way we can prove the invariance of the expression We see that the requirement of invariance under a transfor-

mation of the supersymmetry leads to the conclusion that the

0;FOFMH;’\:|&V0R: %ZFM(lﬂLFn)H,'\fﬂV@- (21) term a(T) ... .should not be_present_ln the action for a non-

BPS D-brane; thus we consider the interaction term between
This term transforms under Lorenz transformation as fermions and tachyons in the form
_ lre=f(T)G4%a, 08 %0,6,
YR IT (14T 1) AYTIER, 0 2o
_ + 089, (TG4 9,6, T°T ya,0
= LOAGT (14T AVTTG, 0 5 S TeTkn T ML
_ +G29 h(THTINGE 9, 05T °T 0, 0r. (28
= 10Ty (1+T )T 9,6. (22) S s

It is important to stress that this term is consistent with the
Then it is also easy to see that the term in E).propor-  requirements that(T) should be an odd function af and
tional to d,h(T?) is invariant under a Lorenz transformation h(T?) should be an even function &. This can be seen
as well. This comes from the fact that the fermionic part offrom the fact thatis has a CP factor equal to the unit matrix.
this term is the same as the term above, except for the preso prove this, we expangd as follows:
ence of the derivativ@MHE,L. However, this does not spoil

the invariance under a Lorenz transformation, because Lo- G o= nd, XM3, XN =2 pynd XMOT NG, 6
renz transformations are global transformations from the o o
point of view of world-sheet theory, and consequently are + un(0IMa,0)(61N3,0). (29)

not functions ofo* [19]. We see that the all integration y ) )
terms between fermions and tachyons are Lorenz invariantVe know thatx™ comes from a CP sector with a unit ma-
Now we come to the crucial question of supersymmetryirix, so that only one “dangerous” term is

transformation, which has forms _
6TNg,0=(0x+ 6,) 'TTNG (6+ 6,)

s.0=¢, O6XM=eI'My. =OrTTNg, 6+ 6] T°T NG, 6, . (30)

It is well known that these transformations Ieaﬂé{' ,and  These two terms give CP factors of eitter=1 (for 6,) or
consequently, invariant. It can be also showWa9] thatFis  (oi07)=1 for (6g). (In Sec. | we used the result

invariant as well. As a result, we have ORITMa, 0, = — OFT 13,0 oIMI 139,60, = — 0RT°T M3, 6, )
In the same way we can prove th& comes with
8.5s=0 (23) a unit matrix of CP factors. For example, the
€ . J—
expression 6I';,1"yd,60 is equal to GEFOFHFM(?MGR
Now we are ready to prove the invariance of the term +6{T°T ;' 6, , where we have used the identity

o T10 __ T
f(T)GE"3,0810,6, =% F(T)G4",0(1—T11)0,6. O Tl 0r= =6 Tl ol wal w16k

(24) = HEFOF llFM 0R . (31)
This term is clearly invariant under supersymmetry transfor- It seems to us that the requirement of supersymmetry
mations, due to the presence of a partial derivative. In th@laces a strong constraint on the coupling between the fer-

same way we can prove the invariance of a term proportionahions and tachyon. In particular, we have seen that fermions
to aph(TZ). On the other hand, the term must always come with a partial derivative. In Sec. Il we
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will show that tachyon condensation in the form of a kink we obtain
solution leads to the correct supersymmetric invariant DBI o s
action of the BPS D§— 1)-brane. 1=Gy— (2ma’ ) FyaG " Fpx, (40)

where a,8=0, ... p—1x=xP. Since G*#+#0, we obtain
the natural solution of the previous equation in the form

Ox=1, gxa:"faB:O' (41)

IlI. TACHYON CONDENSATION ON WORLD-VOLUME
OF A NON-BPS D-BRANE

In this section we will consider tachyon condensation on
the world volume of a non-BPS brane in the form of &  Then we obtain
kink solution, in a way similar to that used in R¢L8]. In
that paper it was shown that tachyon condensation in the Gapt (2ma’)Fopg O
form of a kink solution gives approximately the correct value de{G,,+(2ma")F,,]= de< 0 1
of tension of a Dp—1)-brane. We show, on the grounds of
the action given in Eq(2), that the tachyon condensation in
the form of the kink solution really leads to the supersym- =defGpt (2ma’) Fupl.  (42)
metric action for BPS Df— 1)-brane.

We will consider the situation where the tachyon field is a
function of one single coordinate on world-volume of a dV  dige
non-BPS D-brane. We obtain equation of motion for a - .
tachyon from a variation of Eq.2), which gives(we con- dT  dT
sider a dependence of a tachyon only>grsay ap coordi-

The second term in the first bracket in E§2) gives

(43

In order to obtain the kink solution for a tachyon, the second

nate term in the previous equation must vanish separately. We
d | oF dF return to this term in a moment. When we combine the first
G —(—> - —=|+3d,Gd*T=0, (32)  term in the previous equation with the second term in Eq.
dx| 66T/ dT (36), we obtain the equation
whereF has a form dv
_ 20T~ ot 0, (44)
F=[C&"9,Ta,T+V(T)+I1el, (33

which is a precisely the equation for the tachyon kink solu-

tion. The solution of the previous equation can be found in

Gz\/—de(gﬁ,,+(27m’)fw). (34) many textbooks about topological configurations in field
theory (see, for example, Ref§20,21):

and we have used

Using the fact that the tachyon field is a functionxobnly,

from the last term in Eq(32) we obtain the condition T = d—VT’=>(T’)2=V(T) (45)

dT '
&xg;w: c7x.7:/“,=0, (39

_ _ _ In order to find an exact solution of the previous equation,

in order to obey the equation of motion for a tachyon. we take the zeroth-order form of the potential for a tachyon

Now we return to the first bracket in E¢32). The first  [18,27,
equation in Eq(32) gives .

- _ . 272 4 .
29, [CE0T(X)]= 29, (CE) 9, T+ 2059,T,  (36) V(T)=—m T+ AT + 7, (46)

where we have used the fact that the tachyon field is a funGyith the properties/(T,)=0 andTy,=m?/2\.

tion of x only. Since for a tachyon in the form of a kink  Using Eq.(46), we can easily solve Eq45) as
solution the first derivative is nonzero, the first term in Eq.

(36) leads to the result o= r( mx) an
X)= Otan =
Gi*= const. (37) V2
Since the constant in E¢37) does not have any physical Due to the fact tham=1/y2a’, we see that the tachyon
meaning, we can take solution in the form field is in its vacuum \{alue allmost on'the whole axis
except for the small region of size of string lendth- Ja'.
G&=0, x#u, G&=1=(G9x=1, (Gs)x,=0 In other words, through tachyon condensation in the form of

.(38) kink solution we obtain the object, which is approximately
localized around the point=0 on the world volume of a

Using the definitior{ 15] non-BPS p-brane. In the zero slope limit’ —0=m— o,
5 the tachyon fieldT(x) will be equal to its vacuum value
Gs=G— (2ma')?FG 1F, (39 almost on the whole axis, except the small region around
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the pointx=0, and the derivative of the tachyon field, which o
is equal tod T/dx=(m/\/2)[ 1—tant(mxy2)] will be zero Tp-1=2C; f dxVT(x)]. (54)
almost on the wholex axis except the small region around -
the pointx=0. For the tachyon kink solutiofEq. (47)], which corre-

Now we come to the second term in H§2). In order to  sponds to zeroth order approximation of the tachyon poten-
obtain the tachyon solution in the form of a kink solution, we tjg| [18,22], we obtain

must demand

dl V(Tiini) m 1-tank| = 2 (55)
ink=>—| 1—tantf| —=| | ,
TF:O, (48) kink 4)\ \/E
dT
and Eq.(54) gives
wherel ¢ is given in Eq.(28). It is easy to see that the term a-54 9
proportional toaph(Tz) does not contribute to the equation 8.2
of motion. This follows from the fact that all massless fields Tp_1=3—meVk, (56)

are independent of, so we can symbolically write

where we have denoted,=m?*4\. Usingm=1/\/2«’ and
f D---axh(TZ)-.:f a[D---h(T?).--1, (49  Cp=\227/(4x’a’)P* Vg, we obtain

82V 2
Tp—lz( \/— k) u ) (57

where the dots mean terms which are present in the second
3 (477_2“/)p/2g

and third terms in E¢(28). We see that this term contributes
to the action as a total derivative, and so do not contribute to ] )
the equation of motion for a tachyon. Then the only non-In Ref.[18] it was shown that for the zeroth-order approxi-
trivial term in Eq. (28) is the term proportional tdf(T). ~ Mation of potential-m“T°+AT" the vacuum value of the
Since f(T) is an odd function off, we can expect that its PotentialVy cancels about 0.60 of the tension of the non-BPS
derivatived f(T)/dT is nonzero. The only possibility to obey D-brane. Therv,=0.60, and we obtain the final result

the equation of motion for a tachyon is to pose the condition

— C
that d,,6g or 9,6, should be equal to zero. We choose the Tp-1=0.72Tp_, (58)
condition where Tg_l is the correct value of the tension for a (
_ —1)-brane. This result is similar to the result given in Ref.
d,0r=0 (50) i al 1o
[18] in the zeroth-order approximatich.
for all o*, w=0,...p. In other words, through tachyon  As afinal point we must also discuss the situation wien

condensation we have eliminated one-half of the fermionidS €qual to its vacuum value everywhere. Naively we could
degrees of freedom with a direct parallel to gauge &he €Xpect from the form of Eq(33) that for this value of a

symmetry on the world volume of a BPS D-brane. tachyon we would not obtain a supersymmetric vacuum due
We now come to the final result. When we use ), to the presence of the interaction term between the tachyon
we obtain and fermions. However, the tachyon vacuum value must be a
solution of the equation of motion, and, as we have seen, this

F(T=kink)=2V(T). (51) leads to the requirement of a constant spinor figld Then

the interaction term between the fermions and tachyon is
In the previous equation we used E§0), and the fact that equal to zero, and from this definitio(T=Ty) =0, J,T
the term proportional té,h(T?) gives a zero contribution to  =0; thus we will obtain the result that the second bracket is
the action, sincéwe again use the independence of all mass-
less fields orx)

SWe must stress two important points. First, we do not claim that
f D---dh(T)?=h[T()?]—h[T?(—x)]D---=0. the solution given above is the most general one. Rather, we wanted
to show that there is a one particular solution which leads to the
(52 emergence of a BPS D-brane. It would certainly be illuminating to
study other possible solutions. Second, from the previous analysis it
) is not completely clear why the world-volume field should be con-
function. _ , fined nearx=0. This can be seen from the form of the kink solu-
~ As alast step, we put E¢S1) into Eq. (2); then we will  tjon \which is nonzero only in the small region of the sizé.
integrate ovex and we obtain the final result, which is a DBl around the core of the kink solution. Moreover, we have shown that
action for a Dp—1)-brane: the dimension of the world volume of the resulting D-brane is ef-
fectively reduced by 1, thanks to the fact that all fields are indepen-
_ 7 dent ofx, which is a nontrivial requirement arising from the form of
S= _Tp’lj Ao\~ defGug+ (2ma’) Fugl, (53 the kink solution. It is also important to note that we are not work-
ing in a static gauge, in which we would find that the resulting
where D-brane sits in the poimt=0.

Previous result comes from the fact thgtT?) is an even
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equal to zero, and consequently that the whole action disagolution truly describes the BPS P 1)-brane in type-lIA

pears, in agreement with RefL4]. theory. This is in agreement with the results of Refs.
[1,10,11, and in some sense can serve as a further support of
IV. CONCLUSION their results. We have also seen a striking similarity with the

In previous sections we proposed a possible form of Su[esults n Ref[_18]. i , .
persymmetric DBI action for a non-BPS D-brane in type-IIA 'We would like to outl.lne the'othe.r p955|ble extensmh of
theory. (For type-1IB theory the situation will be basically th!s work. It would certainly be illuminating to study a situ-
the same, with the difference that both spinors have the sanf#ion when we have\ non-BPS D-branes, and a tachyon
chirality.) We have seen that the requirement of invariancecondenses in a more general configuration. It would also be
under supersymmetric transformations places strong cordteresting to study tachyon condensation on a system of
straints on the possible form of this action. Then we studied®9-branes and antibranes in type-11B theory, following Ref.
the kink solution of a tachyon on the world volume of a[10]. We hope to return to these important questions in the
non-BPS [p-brane in type-lIA theory, and showed that this future.
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