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Rotation symmetry breaking condensate in a scalar theory
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Motivated by an analogy with the conformal factor problem in gravitational theories d® the*-type we
investigate ad-dimensional Euclidean field theory containing a complex scalar field with a quartic self-
interaction and with a nonstandard inverse propagator of the fopf+ p*. Nonconstant spin-wave configu-
rations minimize the classical action and spontaneously break the rotation symmetry to a lower-dimensional
one. In classical statistical physics this corresponds to a spontaneous formation of layers. Within the effective
average action approach we determine the renormalization group flow of the dressed inverse propagator and of
a family of generalized effective potentials for nonzero-momentum modes. Already in the leading order of the
semiclassical expansion we find strong “instability induced” renormalization effects which are due to the fact
that the naive vacuurfvanishing field is unstable towards the condensation of modes with a nonzero mo-
mentum. We argue that tHguantum ground state of our scalar model indeed leads to spontaneous breaking
of rotation symmetry.

PACS numbes): 11.10.Hi, 11.30.Qc, 04.20.Fy

[. INTRODUCTION well known that there is no true spontaneous symmetry
breaking and no nonzero expectation value of a noninvariant
It is a common feature of several Euclidean field theoriesorder operator exists. Also the “Goldstone excitations” are
of physical interest that spatially inhomogeneous, i.e. nonabsent from the physical spectrum. Nevertheless, we have
constant field configurations have a lower value of the actioféarned from the Higgs mechanism in the electroweak stan-
functional than homogeneous ones. This means that, at legd@rd model that a language in terms of “spontaneous sym-
semiclassically, the inhomogeneous configurations are likelyjnetry breaking” can be very useful. This spontaneous sym-
to dominate the functional integral and thus determine thdnetry —breaking manifests itself in nonperturbative
quantum vacuum stat®). In this case we expect that the contributions to invariant operators for “kinetic conden-
essential features of the true vacuum state can be understo8@tes.” o _
by an expansion in the quantum fluctuations about a set of A typical example of a kinetic condensate is the gluon
configurations with a position-dependent, non-translationafondensate in QCD. While the classical Yang-Mills action
invariant value of the field variable. In the quantum vacuuml/4fd*xF F?  is minimized byF ,,=0, already the one-
this “condensation” of spatially inhomogeneous modes conJoop effective action assumes its minimum fef,#0. The
tributes to certain expectation valu@¥ ©|0)+0 whereO is  Savvidy vacuunil] tries to model the true ground state as a
a scalar operator constructed from the derivatives of the funcovariantly constant color magnetic field. The effective ac-
damental fields in such a way that it is sensitive to the nontion of this state is indeed lower than that féy,,=0. It is
vanishing kinetic energy of the contributing configurations.known, however, that the Savvidy vacuum is unstable in the
(For instance, in a scalar modef=d,¢d“¢.) We shall infrared (IR), and it has been speculated that the dominant
generically refer to such contributions as “kinetic conden-configurations may be spatially inhomogenedgerhaps
sates.” They are to be distinguished from the familiar trans-domain-likg in order to provide an IR cutoff at a scale set by
lational invariant “potential condensates” characterizing theAééD. Those nontrivial properties of the QCD vacuum are
conventional Higgs mechanism which is triggered by a nonparametrizeti by (O|F%,F%,|0) and similar condensates of
zero but constant scalar field expectation value. more complicated gauge- and Lorentz-invariant operators.
In this context one should distinguish two different physi-  Another important example is Euclidean gravity based
cal situations. If the degenerate minimum of the effectiveupon the Einstein-Hilbert actiof2]
action corresponds to configurations which are not invariant
under some global symmetry, such as translations or rota- 1
tions, s.uch a symmetry is spontaneously broken and onl_y. the SeH[9,]= — _f d‘&ng (1)
remaining unbroken symmetry can be used for a classifica- 16mG
tion of the spectrum of excitations. This spectrum will typi-
cally contain massless “Goldstone excitations.” In this case
one typically has an order parameter whose expectationlinvariant operators likgO[F F%,|0) receive also perturbative
value breaks the symmetry, in addition to the invariant ki-contributions which are not related to “kinetic condensates.” We
netic operators mentioned above. In the second case thi not discuss here the difficult problem how they can be separated
dominant configurations break a local symmetry. Then it isfrom “kinetic condensates.”
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which is not positive definite. In fact, decomposing the met- 2M? ¢
ric asg,,= exp(2$)g,, whereg,,, is a fixed reference met- 1 s5m |
ric, we obtain '
M E
1 -
S 90)= 5.5 f d*x\/ge2[R+6g*'D 4D, 1. 0.5 |

)

This shows thaSg, can become arbitrarily negative if the

conformal factorg(x) varies rapidly enough so thaiD(u(z))2
is large. Leaving aside for a moment the well known prob- -7 b
lems in setting up a consistent theory of quantum gravity, it
is tempting to speculate that the theory cures this instabilit
caused by the unboundednessSgf, in a dynamical way.
Nonconstantp-modes could condense in such a way that the 212
resulting quantum vacuum state is stable and constitutes the Q(p?)=—p2+ ﬁ (6)
absolute minimum of some yet unknowgffective action 2M?
functional. The expectation value of the metric in this state
should be close to the metric for flat spaeehich is not the WhereM is a constant with the dimension of a mass. On a
minimum of Sgyy). Also, operators like D, $)?, appropri- Euqlldean.s.pacetlrr;e Wheng'z P.P.=0, the kinetic opera-
ately covariantized, should acquire nonzero expectation vafOr 1S positive forpz = 2M but negative for momenta Ee'
ues. This would indicate that the true vacuum arises from 4veenp“=0 andp”=2M=. It has a minimum ap“=M
“dynamical stabilization” of the bare theory due to the con- Where it assumes the valueM /2, see Fig. 1. The actio)
densation of nonconstagt modes. has a global U(1)-invariance under phase rotationg

A further model in which the existence of a variant of the — X €xPl¢) with a constant, and it is invariant under the
“kinetic condensate” has been speculated about is LiouvilleEuclidean Poincargroup1SO(d) of rigid spacetime trans-

field theory[3],[4]. The expectation value of its operatorial lations and rotations. _ _
equation of motion reads We will see that in this model the rotation symmetry is

spontaneously broken whereas a modified translation sym-
m metry is preserved. As a classical statistical systerd=iB
(0] [0) + F<O|eﬁ¢|o>:0- 3 dimensions or thézero temperatujeground state of a quan-
tum statistical systemd=4) this models the spontaneous
Provided it is possible to make the operator ¢ well ~ formation of two-dimensional layers which break the rota-
defined and that the regularized operator is still positive defition symmetry. An effective translation symmetry rotates the
nite, Eq. (3) implies that(0|(J¢|0) is nonzero and, as a phase factor of the complex fieldl by 27 as one translates
consequence, that the vacul@) is not translational invari- from one layer to the next. In two dimensions it corresponds
ant. to the spontaneous generation of line-like structures. We em-
In the examples mentioned above the determination of thehasize that the microscopic action has rotation and transla-
vacuum state is a formidable task which has not been magion symmetry, in contrast to lattice models. Our model
tered yet. In the present paper we shall therefore study thinerefore describes situations where already a tiny perturba-
formation of a “kinetic condensate” within the framework tion of these symmetries results in nontrivial geometric
of a scalar toy model. On the one hand, this model is simplstructures.
enough to be treated analytically, on the other hand it is The model shares some essential features with the confor-
found to have the feature of a “dynamical stabilization” mal sector of a gravitational model of the tyf®g,,]
which we hope to occur in QCD and in quantum gravity. =fddx\/§{aR+ BR%, for instance (Here “R?” stands for
The model is formulated il Euclidean dimensions. It any invariant quadratic in the Riemann tensdhe Euclid-
contains a massless complex scalar figlavith a conven- ean classical action of this model is bounded below, in con-
tional \| x|*-self interaction but with a higher-derivative ki- trast to the Einstein-Hilbert action. It is therefore a good

-0.5M%

FIG. 1. Classical inverse propagattr and quantum inverse
ropagatoiQ . (for zero background fiejdas functions of g=|p|.

2

netic term: starting point for the definition of a Euclidean functional
\ integral if the problems of UV regularization can be mas-

= | d%! v Q=) v+ = |y]4} 4 tered.. The Einstein'—HiI'l:)ert terrygR leads to a negative
St f [X ( )X 2 X @ contribution to the kinetic term of the conformal factor of the

o ] metric, which dominates at small momenta, while the
The kinetic operatof) is taken to be R?-term gives rise to a positive contribution dominating at
large momenta. The instability at small and the stability at
5) large momenta is modeled by the ansd@gzwith M playing
the role of the Planck mass.
The “wrong sign” p?-term in Eq.(6) induces an instabil-
so that in momentum space ity of the naive vacuum withy=0 towards the formation of

2
Q(-0)=0+——, 0O=4,0
(—0) VE

wluo
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a spatially inhomogeneous ground state because the system

tends to lower its Euclidean action by making the kinetic X, =X, t M e
actionf,JQ(pz)|;((p)|2 as negative as possible. Thus we ex-
pect that the vacuum of this model is dominated by noncon- o' =a—¢ @)

stant field configurations whose typical momenta are of the

order of the scaleM. We shall see that this is actually the g |oft unbroken, wheré represents a real, constant param-

case. _ _ eter. For such combined transformations the symmetry
The true vacuum configuratiofy(x)) of any theory can  preaking from the spacetime translations is compensated by

be found from its(standarg effective actionl'[ ¢] by solv- an appropriate phase rotation so thah x,+a=Mn X’

i “ "of i — ; j m

ing the .dressed field equaﬂonjl“/.é(b—o. In th|§ PAPEr 1 ' The caset=2mm, m integer, is special in the sense

we congded‘ as the zero-cutoff limit C.)f the effective aver: that no compensating phase rotation is needed to achieve

age a_ctlori“_k[cﬁ], a type of coarse grained free energy with invariance. Therefore we obtain a symmetry with respect to

a variable infrared(IR) cutoff at the mass scalk [5]. It jiscrete spacetime translations given by

satisfies an exact renormalization group equation, and it in-

terpolates between the classical acti6sI'_,.. and the 2m

standard effective actioh=1I",_, . For our model we shall xsz,ﬁ Tn/" 9

determine the renormalization group traject&ry: I, in the

leading order of the semiclassical expansion which, as w

shall argue, provides a qualitatively correct picture already.
The functionall',[ ¢] has the saméJ(1) and ISO(d)

symmetry as the classical action. In particular, the bilineal

term of '=I" has the same structure as the oneSibut

2 . .
Q(p7) is replaced by the dressed inverse propagato ure involves the internal degrees of freedom whelgél

2 . .
g?ggekgbllr;/ F('jgu'el tvc\)l etr?:vriﬁé?ﬁesi;:tzgssgggggﬁ tr% u::ﬁ]eticinvariant operators have translationally invariant expectation

g g ... _values due to the combined effective translation symmetry.
term has become positive semidefinite even f%“ a vzanlsh|ng By analyzing the spectrum of small fluctuations gbout t?lle
“Esgtksg,rzzg? f|(e a:gti Og.toFg;Cii! trr::a orge; v:/r|1t(r:1|5 diTerer:tor— vacuum configuratiori7) we find that all those fluctuations
malization ef?gcts these modes have 'bein stabilizged ina d)z(a_re stable. This dynamical stabilization of an apparent tree-
namical way. On the other hand, modes wift= M2 can be evel instability is formally analogous to what happens in the

HH H - H - - (20
excited “for free.” This indicates that those modes might bef/?im“a;s'tia%);;: an g:ggﬁ:]y kmegt(;;?igr\j_p_ a2'|°”|%
unstable towards the formation of a condensate. y y 9 P T oKX

4 H . .
We shall analyze this phenomenon in terms of a family Of+e(c)\a/52|e)(|of. tlhnet:::es (;3\5/2 tmhgsr;ag;/remva;:r?éjgﬁ f?ir:S ?f?esﬁ‘?eblljeb a
generalized momentum dependent effective potentialg 9 ' 9 y

U(A:p?) which are obtained by evaluating[¢] for constant is sufficient to reach the true vacuum. In our model

_ . the analogous “shift to the new vacuum” is more involved
plane-wave argumeni= A exp(p x,+ipB). It turns out that . : . : X -
for k—0 and p2£M?2 all U,s hgvg their minimum a@  S"ce the field variable is shifted by an explicitly

k

=0 so that the corresponding modes do not acquire é(”-dependgnt field. . ) .

vacuum expectation value. Fpf=M? the situation is dif- . The various qand!dates for th_e “vac_uum field configura-

ferent: in the limitk—0 the' otentiall (A:M?) develops a tlo_n” can be distinguished by their contribution to the expec-
' P KV b tation value ofd, x*d,x. Clearly (9,x*d,x)=0 for the

flat bottom which signals a nonzero expectation value, i.e. %erturbative vacuum, while we find, for the ground stabe
condensation of the plane-wave modes with momeg)ta ' '

=Mn,. Heren, is an arbitrary unit vector. Indeed, for M4
small but nonzerdk the absolute minimum of’, occurs (9, X* 0 X)= 5. (10)
(within our approximationfor A+#0 in the modep?=M?. 2\

In leading order we find the following expectation value _ _ _ o )
of the fundamental field: This is a translational invariant “kinetic condensate” quite

analogous to the gluon condensate in QCD. The condensate
(10) is nonanalytic in the coupling, i.e., it could not be
M . ) seen in any finite order of perturbation theory.

(x(x))= EGXK'M nX,tia). () The remaining sections of this paper are organized as fol-
lows. In Sec. Il we discuss the classical vacua, i.e., the de-
generate absolute minimum of the functio@ly], and we

It is characterized by the phageand the vecton,. This  determine the spectrum of small fluctuations about those
means that the above expectation value leads to a spontarfeeld configurations. In Secs. lll and IV we review some
ous breaking of both thg(1) and thelSO(d) symmetry. For aspects of the average action approach, and we discuss the
the translations in the directions, only a remaining sym- phenomenon of *“classical renormalization.” It is well
metry corresponding to combined transformations of theknown that in theories where standard perturbation theory
form about the trivial vacuuny=0 is applicable the lowest order

%\s was already mentioned above the spontaneous breaking
of the ISO(d) symmetry to this discrete symmetry is analo-
gous to the spontaneous formation of layers in statistical sys-
tems where the transformatiof®) describes a translation
Fom one layer to another. We emphasize that the layer struc-
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(i.e., classical approximation of the loop expansion yields M
I'=S and, more generallyl],=S. We shall see that for un- Xmin(X) = ——=—=exp(iMn X, +ia). (11
stable theories such as the one investigated Redeesnot V2n

equal S plus terms induced by loops. There are nontrivial

renormalization effects even at the classical level. The reason

is that in this case the loop expansion must be performetiieren,, is an arbitrary unit vectofa point onS"~*) anda is
about the true minimum of the classical action rather than the free phase. Thus the global minimum is degenerate and the
false vacuum configuratiop= 0. Within the loop expansion corresponding “vacuum manifold” isS*x S~ 1. Different

this type of classical renormalizatidi®] is referred to as points of this manifold correspond to different classical
“instability induced” [7] as opposed to the familiar “fluc- ground states of the theory. If we pick one of those ground
tuation induced” renormalization coming from the Ioozplsm states, characterized by a fixed pair ), this amounts to a

order to understand the full quantum theory at a qualitativespontaneous breaking of th&O(d) symmetry of spacetime
level it is often sufficient to take the classical renormalizationotations and translations as well as of tHél) group of

of the effective action into account. It encodes the physicgiohal phase transformations.

related to the shift to the true vacuum. _ The classical if, @)-vacua are characterized by a nonzero

. The average acthﬁk is deflr!gd in terms of a functional expectation value of the operatar,y*d,x, for instance.

mFe.graI which contains a modified classical ac@hco.n- The spin wave solutiofl1) yields

taining the IR-cutoff and source terms. The semiclassical ex-

pansion will be applied to this integral. Therefore we need to

know the absolute minimung,n(x;J,k) of this functional. M4

In Sec. V we denvg g sufficient copd{tlon for {:1 conﬁgurapon <%X* %X>E%X:mnf7ﬂ)(min:ﬁ- (12)

to be the global minimum o8, . This is used in Sec. VI in

order to establish that for vanishing sources the minimum is

constituted by spin waves of the typ@. ForJ#0 the situ- ) ) o

ation is more complicated and the corresponding discussion !N order to further illustrate the physics of this kind of

can be found in Appendix A. spontaneous symmetry breaking let us look at the spectrum
In Sec. VIl we compute the bilinear term Bf, and derive ~ 0f small fluctuationsSy (particle excitations about the

the renormalization group flow of the dressed inverse propaground state. Inserting= xmin+ dx into Eq. (4) yields

gator3,(p?) for vanishing background field. In particular, at

the end pointk=0, we obtain the full quantum inverse

propagatof) .«(p?). In Sec. VIl we identify regions in field S xmint Ox1= S Xmin) + Stucd Xmin» Ox 1+ O(Sx>)

space with no classical renormalization, i.e., configurations 13

¢ for which I'\[ ¢]=9 ¢] is indeed true in lowest order.

Then, in Sec. IX, we combine all pieces of information avail-

able in order to draw a global picture of the effective averagavith

actionT",. We introduce the momentum dependent poten-

tials U, (A;p?) and use them to discuss the structure of the

true vacuum. Some calculational details are given in Appen- o . 22) ox

dixes B, C and D. The conclusions are given in Sec. X. Stucd Xmin, OX1= Ef d"™x(ox* ., 6x) S Xmin] Sx*

(14

II. SPIN WAVES AND THEIR FLUCTUATION

SPECTRUM where S@ is the 2<2 matrix differential operator corre-

For every Euclidean field theory the field configuration sponding to the second functional derivativesSofvith re-
Xmin With the smallest possible value of the actiSris of ~ spect toxy and x*. In Appendix B we diagonalize this op-
special importance. For a masslég$* theory with an ordi- ~ erator by a linear transformation frondx, 5x*) to new, real
nary kinetic termQ =+ p? this configuration isymn(x)=0  fields®; and®,. In terms of the new fieldS$;,; reads, in
which puts to zero the potential and the kinetic energy sepahomentum representation,
rately. In our case the situation is less trivial becaQg@?)
can assume negative values and hence it is able to compen-
sate for positive contributions coming from the potential. In dp
fact, we shall prove later on in a more general context that Stucd Xmin, Sx1= if ——{®1(—p)K1(p?, O)P1(p)
the absolute minimum of the actig@) is achieved for the (2m)

“spin” wave configurations +D,(—p)K(p?,0)P,(p)} (15)

2From the point of view of the exact renormalization group equa-where ¢ is the angle between, andp,, . The kinetic terms
tion this distinction disappeaf$]. KCq)p are given by
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(a) (b)
FIG. 2. K, (lower curvg and X, in units of M? as functions ofp|/M plotted for(a) #=0 and(b) 8= /2.
4 co< 6 momenta larger than the infrared cut&ffChangingk corre-
K1(p% 6)=M?2 2 gp? r_ 4 6 sponds to a Wilson type renormalization. The conventional
1(p%,0)=M<+4 cos p°+ — M*+16———p p yp :
M M effective actiorl” is recovered in the limik—0. In the space

of all actions, the renormalization group trajectdry, k
e[0,°), interpolates between the classical act®al’,_. .,

4 20 and the standard effective actidh=I",_,o. It can be ob-
p co tained by solving an exact functional renormalization grou
Kz(p2,0)=M2+4co§0p2+W+\/M4+16—M2 p® y 9 group

=4 cog 6p?+ O(p*)

equation.
The infrared cutoff is implemented by modifying the path
=2M?+4 cog 6p?+ O(p*) integral for the generating functional of the connected
Green'’s functions according to
M 2
=4 cog 9( +p? | +0(pY. (16)
2 cos ¢ eXIO{Wk[J]}=J Dx GX% _S[X]—f d%x* (x)

In Fig. 2 we plotXC; and IC, for 6=0 and 6= 7/2 which
amounts to excitations propagating parallel and perpendicu- ka(—D)X(x)Jrf d%{ x* (x)J(x)
lar to the vacuum direction,,, respectively. For other val-
ues of @ the behavior is qualitatively similar.

The mode®, is a massless excitation with an inverse +J*(X)X(X)}]- (17)
propagatorC; which vanishes ap=0 for any 6. It repre-
sents the Goldstone boson of the spontaneously broken gletere R, (p?) is a to some extent arbitrary positive function
bal U(1) symmetry. The spontaneous breaking of 8@(d)  which interpolates smoothly betweeR,(p?)—k? for p?
rotation symmetry manifests itself in th-dependence of .0 andR,(p?)—0 for p?>—. It suppresses the contribu-
the propagator. In particular, one should note that momentgon of the small-momentum modes by a mass terik?
orthogonal toQq,=Mn,, (i.e. cos#=0) correspond to the which acts as the IR cutoff. In practical computations
“Goldstone direction” with ’C]_:p4/|\/|2. The modeCDz is Rk(pz):pz[exp([)zlkz)—l]_l has been used often. In cases
massive for all values o#. Its direction-dependent mass is where this does not lead to UV divergences the condition
given by M/(\/ECOSQ). It is the analog of the “Higgs” or Rk(pz)—>0 for p2—>oo can be relaxed and one may also use
“radial” mode in the more familiar case of a spontaneousa constant cutoff functiorR,=k? which amounts to a mo-

symmetry breaking by a Mexican-hat potential. mentum independent mass term. For the purposes of our
present investigation this simple cutoff will be sufficient.
Il. THE EFFECTIVE AVERAGE ACTION The Legendre transform o#/ reads

Before embarking on the detailed analysis of the theory _
let us briefly comment on the method we are going to em- Fk[d)]:f d9%{ p* I+ I* p} — W, [ J] (18
ploy. In order to find the true vacuum state we need nonper-
turbative information about théconventional effective ac-

tion T'[ 6] whered is the vacuum expectation value pf As where the functionall=J(¢) is obtained by inverting the

we mentioned in the introduction we regdrdas the physical relations

limit of the effective average actioh,[ ¢#] which was intro- SW SW

duced in Refs[5]. The functionall' results from the clas- B(x)= K ()= (19)
sical actionS by integrating out only the field modes with 85J* (X) 6J(x)
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IV. EFFECTIVE AVERAGE ACTION NEAR THE ORIGIN
AND CLASSICAL RENORMALIZATION EFFECTS

which define thek-dependent average fiettl=(y). The ef-
fective average action is obtained from E#8) by subtract-

ing the cutoff term at the level of the average fields: In order to establish that the spin-wave configuration

corresponds to the absolute minimumIgf for small posi-
tive k we need to understand the behaviod gffor arbitrary
¢. In this section we concentrate on small valuespofi.e.
configurations that are far away from the spin-wave solution.
In particular, we want to understand the issue of convexity of
the effective action fok— 0 in case of spontaneous breaking
of rotation symmetry.

We are interested in the expansionlgf quadratic ing,
i.e. the two-point function at the origin. For this purpose we
exploit the fact that the origigp=0 always corresponds to a
stationary point ofl", by virtue of the symmetries. By con-
tinuity we infer that—except for the phase with spontaneous
symmetry breaking—small values @f correspond to small

N61-To)- [ a5 R(-D1p. 20

It can be represented by an implicit functional integral

exp[—l“k[d)]}:f Daex;{ —S[¢+a]—f d%o* Ryor

or or
+f ddx( o* 5¢:[¢]+a-5—¢k[¢])].

(21 sourcesd. In this case we will directly evaluate the scale
dependent generating function&j, for the theory(4) which

Here we introduced the shifted field Is given by the path integral

o=x—¢. (22) exp{Wi[J]} = f Dx eXp{_Si[X;J]} (24)

: R with

It has been showfb] that the functional defined in this way
has the interpolating properties stated above, and that it sat- g
isfies an exact renormalization group equation. In the present SUx:I1=Sdx1- f df%{J* x+JIx*} (25)

paper we shall not use this flow equation but rather calculate
I'\ directly from the above definition. We shall evaluate thegnd
path integral21) or (17) by means of a saddle point approxi-
mation. It will turn out that the global minimum of the Eu-
clidean action can be found analytically. By expanding about
this minimum and properly taking its degeneracies into ac-
count we will be able to deduce the essential features of theere
true vacuum already from the lowest order of the saddle
point approximation. In the following we shall disregard (27)
loop effects. Because of the nontrivial vacuum structure of
the theory, already the “tree-level” approximation yields is the complete kinetic operator. In momentum space it reads
nontrivial renormalization effects. 22

For configurationsp,,, close to the spin wave solutidd) 2y _ 12 2 Q

: hie : wi(P)=—p +Ry(p9) +

the saddle point approximation for the effective average ac- 2M?2
tion obeys for allk

A
Sk[X]:f ddX[X* w (—0)x+ §|X|4]- (26)
o (—O)=0(-0O)+R(—0)

(28)

For values of the cutofk which are larger than some critical
valuek,, the modified inverse propagatai(p?) is positive
for any value of the momentump since the regulator term
Ri(p?) overrides any negative contribution which could

L dsul =S dsul- (23

This follows directly from Eq(21) by an expansion o,
around Eq(7) and an expansion in powers of The terms
linear in o cancel and the term quadratic énis positive by
virtue of the discussion in the last section. If the soluti@n
corresponds to the absolute minimumIgf for small posi-

come fromQ(p?). Every admissible functio®,(p?) leads
to akg which equalavl times a number of order unity. The
mass-type cutoffR,=k? yieldsk,=M//2, for instance. As
a consequence, for large valueskpfand in particular fok
close to the UV cutoffA where we start the renormalization

tive k the rotation symmetry is spontaneously broken. In-group evolution, there is no instability. As we lower the cut-
deed, if one adds a small source tettq) the degeneracy of off k below the critical valuew,(p?) becomes negative for
the minimum is lifted and the absolute minimum will occur certain modes. Obviously the modes with momenta in a band
for the same momentum direction and the same phase as centered ap®=M? become unstable first. Finally, &t=0,

In the limit J—0 the spin-wave configuration and its orien- all modes withp? in the interval (0,212) have become un-
tation persist—this is spontaneous symmetry breaking. Wetable in the sense that by exciting such modes we can push
will see below that this spontaneous symmetry breaking ofhe value of the Euclidean action below its value for the
rotation symmetry is indeed realized for our scalar model. trivial configurationy(x)=0. We suspect that this instability
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causes the modes with typical momenta of the ordevl @b
“condense,” and it is this phenomenon which we are going
to investigate.

The functionalswW,[J] andT',[ ¢] enjoy the same invari-
ance properties as the classical action. In addition to Poinca
symmetry they are invariant undel—Jexpi¢) and ¢

— ¢ expl¢), respectively. This implies that the series expan-

sion of W, in powers of the sources, provided that it exists,
contains only terms with an equal number bfnd J*. In

P

PHYSICAL REVIEW D62 125021

W[ J]* =" = S xmin(3);J]- (35

Under certain conditiongfor instance forJ=0 andk suffi-
ciently smal) the global minimum is degenerate. In this case
€q. (35 is only symbolic (indicated by the equality sign
“=") and one should sum over the degenerate minima. We
ignore this subtlety for a moment.

We shall see that already the lowest order approximation
(35) encapsulates all the essential physics which leads to a

particular, the quadratic term displaying the effective propagynamical stabilization. At first sight this might seem sur-

gator reads
wieq )= f d9xd%y J* () Gy(x,y)I(y)

_ f %3 () Gi(— ) I(X) (29

so that
W, [J]=W,[0]+Wta]+ - - (30)

where the dots stand for terms of ord#J*2. Likewise,
Legendre-transforming29) and using Eq(20) leads to

T\ ¢]=—W[0]+T I p]+O(p%4*?) (3D
where
PRt g1= | d'xayg* (0390
= f d%* (X)Z(— ) B(x) (32)
with
S (—0)=G(—0) 1=Ry(—-0). (33)

Henceforth we interpre, as the differential operator
> (—0) or as the functior® (p?) in momentum space.

prising because one could suspect that ) leads to the
trivial resultI",=S. In fact, if one performs a conventional
perturbative loop expansion in a theory with a positive defi-
nite Hessiar8(?)= §°S/ 8y Sx* one has the standard lowest-
order resultd’=S and x,in= ¢. Since all contributions from
fluctuations(one-loop determinant ejcare neglected in Eq.
(35 one might wonder how, nevertheless, nontrivial renor-
malization effects can occur.

This point can be understood by looking at the integro-
differential equation fof", given by Eq.(21). Now we try to
find the (k-dependentglobal minimum o =0 min(¢$) of
the complete action in the exponential of ER1). It satisfies

T,

pom IR

*

[ &+ Ominl + RO min= (36)

Sop*

For very large values df, the termfd%o* R0 in Eq. (21)
strongly suppresses fluctuations witk* 0, so the main con-
tributions to the integral Eq.21) will come from small os-
cillations abouto,;,=0, which is indeed the global mini-
mum in this case. In this case one hgs,=0omint+ ¢=¢
and Eq.(36) is obeyed fod",=S. When we lowelk towards
zero it often happens that,,;,=0 continues to be the abso-
lute minimum of the action. This is the case for classically
stable theories with a positive definite Hess&® where no
condensation phenomena occur.

On the other hand, Eq.36) may admit also nontrivial
solutions witho,j,# 0 for k small enough. They are relevant
in the case of instabilities where the Hess®f[ ¢] devel-

Frequently we shall evaluate the effective average actiopps negative eigenvalues. Setting: oy, + # and expand-

for plane-wave configurationseé(x)=A exp(p X, +ia).
ThenU(1)-invariance leads to

T Aexplip X, +ia)][=VU(A;p?) ddx)

(34)

o

where we refer tdJ (A;p?) as the effective potential for the
mode with momentunp. Note that whilel", gives rise to an
infinity of such “effective potentials,” one for each momen-

tum, it is clear that the totality of all those potentials contains

much less information thahi, since the correlations between
different momentum modes are not specified.

In the subsequent sections we evaluate the functional in-

tegral (24) by means of a saddle point approximation and
determinel’} directly from its definition(18)—(20) rather

ing up to second order igk one has, withymin=®+ omin,
exp{—I'[¢]}= exp{ _S[Xmin]_J dX 0 iR min
+ f ddx( o
xf szexp{—f dxy*

X (8(2)[Xmin] +Ry) w] .

* .
min

LI IT

37

For the “correct” saddle pointS®)[ ymin] + R« should be

than by solving a flow equation. Denoting the global mini- positive semidefinite. The zero modes in case of degeneracy
mum ofSll by xmin(J) the lowest order approximation reads of the minimum lead to an integration over the vacuum
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manifold. In lowest order one neglects the remaining Gausge obtain
integral involving the positive eigenvalues %) xin] and

finds Si[X;J]:31[Xmin;~]]+ASk[Xmin15X] (41
T[] =" S[Xmm]JrJ' A9, R min whereAS, is defined as
_f ddx((,*_ k14 o k| Ask[xmm,ax]zf ddx[ SX*[Q(= D)+ Ry~ 0)]6x
min 5¢* min 5¢
(39) + %[szin( OX* )2+ Xinin (9X)?

For omin# 0 (i.e., if xmin# ¢) this is still a complicated dif-
ferential equation fol", whose solution isiot given by T,
=S. Hence the lowest ordgclassical term of the saddle
point approximation does indeed give rise to nontrivial +2X:1in5X|5X|2+|5X|4]]- (42
renormalization effects leading tb,#S. In fact, all the
qualitative features of the condensation phenomena we ar . . .
interested in are described by this classical term alone. Th ne can read off |mmed|ately_that a SOI_UUO” of the e.o.m.
higher order corrections yield minor quantitative correctionsCOrrésponds to the absolute minimumfif
only. For this to be the case it is important to correctly iden-
tify the absolute minimuny i, of the (total) action. At next- ASd Xmin,0x]=0 (43
to-leading order the fluctuationg modify the right-hand
side (RHS) of Eq. (38 by a one-loop term is satisfied for any deformatiody. BecauseAS, does not
InDet’ (S xmin] + Ri) Where the prime at the determinant explicitly contain the sources this condition is the same for
indicates that the zero modes$#)[ x,.] are excluded. For S, andS) °=S;.
our case of interest this correction is typically small, at least It is useful to rewrite the expression f&rS, in the fol-
for d>2. lowing manner:

In Ref.[6] this formalism has been applied to the familiar
spontaneous symmetry breaking by a Mexican-hat potential. b o
It was found that the classical term of the saddle point ex- ASk[XminﬁX]:f d*ox*[Q(—D) + R (— 1)
pansion describes all salient features of the effective poten-
tial such as the approach of convexity for-0, and that the
one-loop determinant does not modify its qualitative proper-
ties. In Ref.[7] similar classical instability driven renormal-
ization effects have been found in the framework of the + XminOx +]6x[%)?. (44)
Wegner-Houghton equation. For an investigation of a differ-
ent scalar theory with a higher derivative kinetic term con-Becauseymindx* + xmindx=2Re(mindx*) is real the inte-
taining the usual positive quadratic kinetic term see R8f.  grand of the second integral in E@4) cannot become nega-

tive. Therefore we may conclude that

+4|Xmin|2|5X|2+2Xmin5X*|5X|2

TENTRRLIP WL [
|Xm|n| 1ox 2 X(XminOX

V. A SUFFICIENT CONDITION FOR THE ABSOLUTE

MINIMUM f d9%Sx*[Q(—O)+Ry( =) + N | xmin216x=0

Later on we shall use the saddle point approximation to (45)
calculate the effective average action. This requires the

knowledge of the absolute minimum of the actﬁh(ZS). In for any Sx(x) is a sufficient condition fory,;, being the

%hbsolute minimum of the actio®, for some suitable source

similar to the one outlined if6]. First we split the fieldy given by the solution of Eq(40).
n

into a classical solution that minimizes the action and a

arbitrary, not necessarily small deformatiéy:
VI. SEARCHING FOR THE ABSOLUTE MINIMUM

XOO= XminX) + 0x(X). (39 The aim of this section is to find the field configuration

that minimizes the actioﬁl globally. Here we start with the
case of vanishing external sources and relegate the rase
#0 to Appendix Al. From now on we use the mass-type
cutoff function R, =Kk2. It simplifies the algebra and allows

If we insert this ansatz into the actig@5) and take advan-
tage of the fact thaj,, is a solution of the equation of
motion (e.0.m)

531 for particularly transparent results.
— =0=[Q(-O)+R(—O)+\|x|Zx=J (40 We are searching for the minimum 8f, so we have to
ox* solve the e.o.m.
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DZ
[o(—O)+\|x]?1x=0, w=Q+k*=0+ erkz.

(46)

Its most obvious solution is the one of vanishifg xmin

=0. We can now employ the tool we developed in the last

section to find out whethey,,,=0 constitutes the global
minimum. First we insert this solution into E€44) which
yields

ASk[X=O,6X]=f dixSx*[Q(—0O) +k?] 8y

A
+ Ef d|5x|*. 47
The next step is to use the Fourier representation
dp ~ _
ox(x)= f Gox(p)explip,X,,) (48)
(27)

and to go over to momentum space for the first term:
dp
(2m)

ASx=0,8x]= f ~|ox(p) [ Q(p?) + K]

A
+3 f d|sx|*. (49

Fork?=M?2/2 one finds thatv(p?) = Q(p?) + k?=0 and, as
a consequencd, S, is always positivéor zerg. In this range

PHYSICAL REVIEW D62 125021

ansatz, we minimize the expressitG®) with respect taQ?.
This leads to the conditio@?=M?2. Thus we have found a
candidate for the global minimum in the regiti<M?/2
which is given by

Xrmin(¥) = X0 €XHiQo,X, +1@);Qo,=Mn,. (53
Heren,, is an arbitrary unit vectorr?=1), the phaser is
taken to be i 0,27) and

R CUSENG

By inserting the solutiori53) into AS, (44) we can check
whether it corresponds to the global minimum. In momen-
tum space, the LHS of Eq45) takes the form

[ o

(2m)°
Because of)(p?)=—M?2/2, this integral is nonnegative and
thus the sufficient condition for a global minimum is ful-
filled.

Equation(53) actually describes a whole family of degen-
erate minima parametrized by the phasand the unit vec-
tor n,. As a consequence, the “vacuum manifold” &

x Si7L

We conclude that the nontrivial solutidB3) corresponds
to the absolute minimum o8, for the regionk?<M?/2,
while the solutiony,,=0 constitutes the absolute minimum
for k?=M?/2. The two solutions coincide &=M?/2.

%Mz—kz); k2< 1M2.

2y_ -
2
(54)

o

1
L M2
2M

|’5’x<p)|2[ﬂ<p2> . (55)

of k xmin="0 represents the field configuration that minimizes

the action globally. However, ik><M?/2, then, for certain
deformations with a sufficiently small amplituda,S, be-
comes negative. In that cagg,,=0 cannot be the absolute
minimum.

In order to find the global minimum fd¢><M?/2 we try
the plane wave ansatz

Xmin(X)= X0 €XpiQ X, +ia), xo,a real. (50)

Inserting Eq.(50) into the e.0.m. leads to the condition

Xo(Q%)=1=wx(Q?)/\.

Obviously xo(Q?) is real only if w,(Q?%)<0.
It will be useful to calculate the action for the solution
Xmin determined above. We obtain

(51)

.
Sdx=xo(QYeXHIQ,x, Fia)]= =~ F-wi(Q?). (52

The action(52) still depends on a fréeparameter, the mo-
mentum square®?. Hoping to find the absolute minimum
for the region of smalk-values by using the plane wave

3Q? is free only within certain bounds, because we chgséo be
real.

VIl. RENORMALIZATION GROUP FLOW OF THE ZERO
FIELD PROPAGATOR

In this section we compute the scale dependent 2-point
function X (inverse propagatdrwhich was introduced in
Eqg. (32). The saddle point expansion about the global mini-
mum of S} leads to

exp{W, [ J]} =Ny >, exp{ — S Xmin3J]

Xmin

1 (2
- EInDet’S& )[Xmin]+ o[- (56)

Here =, _ denotes a symbolic summation or integration

over the possibly degenerate absolute minima. The first term
inside the curly brackets of E¢56) represents the dominant
classical term. The second one contains the one-loop effects,
and it will be neglected in the following. The normalization
constantN, depends on the nature of the minimum and its
degeneracy. It will be adjusted such thgt[ O] is continuous
with the initial conditionW, _,..[0]=0.

Becausey yin(X) is now the minimum of the actioal in
presence of a source it becomes here a functional of the
sourceJ(x). The determination Ofin= xmin(J) for an ar-
bitrary source would be a formidable task. The fact that we
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only want to ;tudy the pilinegr term iV simplifigs the . 525, 52S,
problem considerably, since in this case the minimum is " " -
needed only for an infinitesimal sourdgand y,i,(J) can be 2 15y v Ox™ (X)éx(y)  ox™ (X)x*(y)
obtained by a perturbative expansion about the source-free SCTxIo (x=y)= 55, 525,
minimum ymin(J=0)=¢® given by Eq.(53). We write
J(x)=ej(x) wheree counts the powers aof (with j taken to SX(X)OX(Y)  Sx(x) dx* (y)
be of orders®) and we expand the saddle point according to (59)

Knl0)= 6O) + 8600 +626D00+ . 57 O

sy | @D+ 2xx]? X

In order to compute thd*J-term in W, it is sufficient to Scxl= Ax*? o (—0)+ 2\ x|?)
know the first order correctiom(l). It satisfies the linearized (60)

equation of motion ©) thi _ . .
For x=¢'"’ this matrix operator is nonsingular except for

J JED the case where “[J=M?" which corresponds to the

( *):SA(Z)[(P(O)]< (1)*). (58)  vacuum degeneracy fd®<M?/2. For sources)(p?# Q)

J ® one can obtainp® by inverting Eq.(58). This leads to the
following expansion ofSﬂ up to terms quadratic in the

The operatoS{?) is defined as sources:

<P(1)

1 A
= STe:3] - [ dix{ae* 4% 60+ o2 ddx«om*,so<1>>s<k2>[go<°>]( (e | +O(?)
¢

+O(J23*?). (61)

1 .
- ST 5 [ a0 D) Y,

From now on no reference to thkdependence of i, iS restoreU(1)- and Poincardénvariance.(In Appendix B we
made any more, and knowledge of the source-free saddieomment on the situation where the integration over the
point ¢(© is sufficient in order to determin&, from Eq.  vacuum manifold is omitteglin Eq. (61) we also need
(56).
Let us first look at the upper region of the renormalization
0). 17— 0 d 0 0
group evolution wheré?=kZ%=M?/2. Then ymin=¢@=0 SLe®;3]1=5{ ¢ )]—f dx{J@* +3* (O}

is the relevant nondegenerate global minimum, and from Eq. v 1 B _
(56) with Eq. (61) we obtain =— Xwﬁ(MZ)— \/ — ka(Mz)(J(QO)e"“

Wi J]= f Ex T o(—0) Lt (62 +3*(Qo)e) (64

(W,[0]=0 is achieved by setting,=1 for all k=k.) where j(p) .denotes the Fourier-transfprm o]f(x). For
HenceG, equals the tree levétutoff) propagator so that by Source functiongl(x) which do not contain Fourier compo-

Egs.(32) and (33 nents withp?=Q3=M? the last term of Eq(64) drops out.
Upon expanding also the LHS of e(p6) the latter boils
SpH=Q(p?), Vk*=MZ2. (63  down td

We conclude that during the early stage of the evolution, as—
long ask is larger thank., the inverse propagator is not
renormalllzed_(except for the loop effects neglected here infinite volume limit at the end. Obviously the “correct” order of
The situation changes onéedrops belowkc,. Then the  jiits depends on the physical situation one has in mind. In ordi-
relevant saddle point is given by EG3) which represents a  nary quantum field theories or in statistical mechanics the limits are
degenerate minimum parametrized by the unit vesfpand  ysyally performed in reverse order, i.e. fitst>o and thenJ—0.
the phasex. Hence the “summation” ovefmi, in EQ. (56)  But since we would like to use the present scalar result as a guide-
amounts to an integration over the vacuum manif8fd line for Euclidean quantum gravity on spacetimes with a finite vol-
xS971 This integration will turn out crucial in order to ume (S°, etc) we have to perform the limid— O first.

“The limits J—0 andV— may not commute. Here we take the
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exp{W,[OTH( 1+ Wf a1+ - +) W,[0]=—C,V (67)
- h
=Nkexp[%w§(M2)]J2 daJdild,u(n) et 1 1
0 S 2,002 2 2,2
Ci=— oy @(M?) = — o= (M?=2k?) (68)
1 dy/ 1% 1y (0)7-1
X 1+§fdx(J DS ]+ and
2
©3 Wt a1=[270 11 e, duin

Here [du(n) denotes theSO(d)-invariant measure on
s'7L Sincew, (M?) =0, we see thaw,[0] is continuous

atk=ky=M//2 if we set
Ne=[27mQq-1]"" (66)  Before we can perform the integration over the vacuum
manifold in the above expression we need to know the in-

for k<k where Q4_,=/<-1du(n) is the volume of the verse of the matrix operat&>)[ ¢(*] (60). This inverse is
(d—1)-sphere. Thus we are left with found to be given by

J

I ) (69)

1 N
X5 f d"x(J*J)S&z)[@“)’]l(

[o(—D*?) =20 (M) ]P(0,D*2)  w (M?)e2MNwXut2ap, ([0, D?)

@) ,(07-1= _ _
SO M2 2Mnn-20p (0,0 [y~ D)~ 20 (M2)IP(T,D?) (70
|
where change the two remainingup to this point, independent
integrations over the momentumand the direction of the
P(0,D2) =[[wp(—D2)— 2w (M?)] unit vectorn such that the latter is performed first. The easi-

est way to solve this integral is to choose tixeoordinate
X[wk(—D)—2wk(M2)]—w§(M2)]’1 (72) system in such a way that_ one of its axes is parallel to the
momentump. After introducing polar coordinates for the in-
and tegration over thed—1)-sphere we have to deal with only
one nontrivial angular integral since apart from the volume
element of the d—1)-sphere the integrand just depends on
D,=d,+2iMn,, D;=d,—2iMn,. (72)  the angled enclosed byp andn which enters via the scalar
productp,n,=|p|cosé. The remainingd—2 angular inte-

) ) ) ) grals amount to the volume of @{ 2)-sphere and thus to a
After inserting the expressiof70) into Eq.(69) we turn our  factor )4_,. This leads to

attention to the integration over first. Due to this integra-
tion the off-diagonal entries of the matrix operator d
S 9171 yield vanishing contributions. This removes the Wk[‘]]:Wk[o]_}_j d’p 3¢ (0) G| p)I(p) + O(323*2)
J? and J*? terms and thus guarantees tbél) invariance. (2m)°
For the diagonal entries which are independent of the phase (73
« the effect of this integration is just a factor ofr2

Next we go over to momentum space and then interwhere (k=k/M)

QdZJ‘(1+ dg2)m™

(9°-1)% 1 2)<q4
Q41

désini~2 0[(—+ ——k ?—4q3 cosf+qg%(3+8 cog 0)

Gu-mnllp[=Ma)=M~2 5+ 5

0

—1/ 4
(%—4q3 cosf+g%(3+8 co ) —12q cosf+5— k?|.

1
—12q COS(9+5—K2> - Z+K2—K4

(74)
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FIG. 3. Kinetic termik (in units ofM?) in (a8 d=3 and(b) d=4 dimensions as a function b|/M plotted for distinctk values. The
lowest curve corresponds to=k/M =k, /M =1/\/2 whereas the remaining curves correspone tealues 0.65, 0.55, 0.45, 0.3, and 0 in
increasing order.

Here we can identify(;k(p2)5’ék(|p|E(p#pﬂ)llz) as the 3D plot the kinetic term is presented as a function of the two

propagator defined in Eq29). variables|p| andk whereas the 2D plots show certain slices
In summary the effective average action for smalis  ©of the corresponding 3D plots at distiricvalues.(We have
given by displayed only one of the 3D plots hereSince for k

=M//2 the kinetic term is not renormalized and thus does

Y di - ~ ~ not flow at all, each plot starts &t= M/\2= Ker-

Ll ¢]l=— ﬁ(MZ*ZKZ)ZJFJ' ——¢*(P)2(p)) d(p) Obviously the plots reflect the same qualitative behavior

(2m) for the values ofd considered here. Ak=k. the kinetic
+O(p2¢p*?) (75)  termis given byQ(p?) which is characterized by the fea-

tures discussed above. As we move on towards smaller
such that the bilinear or Kkinetic terrTIk(pz)Eik(lpl scalesk the whole function is lifted so that thp-region
=(p,p,)"?) is obtained as (|p|)=8(|p|) - K2 where the kinetic ternk . (|p|) takes negative values shrinks
o :

We have calculated the remaining integral ovefor d ~ more and more. Finally, =0, X,(|p|) has become com-
=2, 3 and 4 and found explicit analytic expressions for thepletely nonnegative rendering the theory stable. In the course
kinetic term at arbitrary values &€ The expressions fod of this evolution the kinetic term builds up a downward peak
=3, k=0 andd=4, k=0 can be found in Appendix C. We at |p|=M which grows sharper while the theory is evolved
omitted the one ford=2 dimensions and those fde>0  towards smaller values & At the point|p|=M, S._o(|p|)
because the formulas are extremely lengthy. has a cusp-type singularity at which it is nondifferentiable

The behavior of the various kinetic terms is illustrated inbut still continuous. It is the shape of this cusp that makes up
Figs. 3 and 4 by means of two different kinds of plots. In thethe main difference between the results der 2 (which we

FIG. 4. Kinetic term3, in d=4 dimensions
as a function of g=|p| and the cutofik.
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have determined but not displayed heré=3 andd=4. whereA is a real, positive amplitude. We start from the as-
Obviously it turns sharper as we increase the dimensionalitysumption that indeed
The dressed inverse propagaf@rs=2,_, had been pre-

sented in the introduction alreadfig. 1). T\ A expip,x,+i8)]=SAexgip,x, +iB8)] (81
VIIl. REGIONS IN FIELD SPACE WITHOUT CLASSICAL Then the results obtained in Appendix A1 may be applied to
RENORMALIZATION Eq. (81) in order to determine conditions on the paraméter

. . . which tell us whenl" =S is satisfied.
The results for the effective average action derived so far Inserting Eq.(80) into Eq.(76) and adding the cutoff term

concentrated on the structure of its kinetic term for srgall 2 d 5
In the following sections we discuss the essential features ol? Jd%|¢|* leads to
the complete effective average action and of the potential for

our model. T Aexp(ip,x,+iB) 1=V [UkA;p?) +k?A?]
In Sec. IV it was pointed out that there are regions in
¢-space where no classical renormalization occurs and thus —V[w (pZ)A2+ A Al 82)
= ‘ —

Fk[¢]:5[¢]=f ddx{ ¢*Q(_D)¢+%|¢|4 . (76) from which we obtain

Obviously we obtainI',=S for the whole ¢-space if k
=k, since therS{?)[ x] is positive definite for any.

Let us now consider the cage<k,,. It follows immedi-
ately from the discussion in Sec. IV that no classical renor- =[wr(p?) A+ NA%] explip X, +ip). (83
malization is expected for thosg which differ only slightly
from xmin- Furthermore, it is easy to see that as long#ls ~ BY settingJ=e¢ exp(p,x,+ipB) this equation takes the form
is sufficiently large we haveg = ¢ in leading order and
thusT'y=S. To show this we assume that o (P)A+FANAS=¢ (84)

STy . .
J= g[A expip X, +ip)]

J= N Xmin 2Xmin (77 which is equivalent to Eq(A5) with y, replaced withA.
Thus we can read off the solution of E&4) from Appendix
provides a good approximation to the e.o.0) which A1 which is given by
means thajmin, and thusl, are large enough to render the
wi(—)-term negligible. For sources leading to Eg7) the ) 2
generating functionalV, is then approximately given by A(s:p)= Xolz;p),  @(p)=0,

Xo(e:p), oy (p?)<0, ©9

Wi I]= — S Xmin;J] ~
“ Sxmin where xo(e;p) and xo(e;p) are defined by Eqs(A6),

(A11), respectively. Equations(84), (85 may now be used
to perform the Legendre transformation frofy to W,
which yields

= [ ] X ol = I 3 X 78
X 2|Xmln| Xmin Xmin (78

which coincides with the Legendre transform of
Wi [J=e explip X, +iB)]

~ N

Fk[¢]:f ddX§|¢|4:S[¢] (79) N
= —V[wk(pz)Az(s;pH 5AYeip)—2eA(e:p)
whereg= xmin. If [d%%¢* w (— )¢ is at least of the same
order of magnitude agd®xk?|¢|? this impliesT' =S. Oth- = —S[A(e;p)explip X, +iB);e expip X, +i8)].
erwise we have to assume in addition tk&tp|?<\|¢|* in 86)
order to obtain the same resul{,=S. Obviously, in both

cases it is the large fielgp= x i, which causes the Hessian according to Appendices A1,A2 this expression equals
S xmin] to be positive definite, thereby acting as a cutoff. — )l y,,,; 3] if and only if either(1) k=ke or (Il) k<k and
In order to make this argument more precise we restrici\(¢;p)=A,;, . Here
our considerations from now on to the subspace of plane-
wave fields

SIn case ofw,(p?)<0 we only consider the solution which is
d(X)=Aexpip,X,+iB) (80) continuous at\ =0 [see Eq(A7)] and omit the other two branches.
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“ 1 ) )
Ariv=X0= E(M —2k?)

denotes the critical value of the amplitude beyond wHigh
becomes trivial, i.e., equal%&® It depends ork but is inde-
pendent of the momentum At the initial pointk=k. we
have Ay;y,=0, but when we lowerk Ay, grows and the
A-interval with nontrivial renormalization effects expands.
In terms of the effective potentiald(A;p?) for plane-
wave fields which we defined in E¢34) the statement’,
=S means that),(A;p?) equals the classical potential

87

A
U (A;p)=Q(p?)A%+ §A4- (88)
Its minimum is located at
(cl) 1 2
Amin(p)= - XQ(p ) (89)
where it assumes the value
QZ 2
U ARNP);pY) =~ z(f . (90)

Fork not too far belowk,,, the classical minimum lies in the
region with no renormalizationAy, <A'S)). But, atk=0,
Ay is always larger thai\(©) , except forp?=M? where
|
Atriv:AST?i%'
IX. STRUCTURE OF THE EFFECTIVE AVERAGE
ACTION

PHYSICAL REVIEW B2 125021

19U (A;p?
oo L IUAP)

2
5 A kA.

(92

Since according to Sec. VIII and Appendix Al the outer
regionA=A,,;, is already parametrized by tlevalues lying
in the interval[ e, (p?),) the inner region olJ, must cor-
respond toe-values in[0,e,(p?)). The problem is that, in
case ofe<g,(p?), we do not have an exact expression for
the field configurationg,i, which minimize the actiorﬁl
globally. Thus we are not able to determine the inner region
of the potentialU(A;p?) exactly. However, it is still pos-
sible to deduce the qualitative structure @f(A;p?) for A
<Ay by patching up the available pieces of information.
As in Sec. VII we assume that, at least for sufficiently
small|¢|, T’y is analytic in¢ and ¢*. Then it follows from
U(1)-invariancé thatU,(A;p?) is an even function oA and
may be expanded aboAt=0 according to

1 0
U(Aip?) == gr(MZ=2k)%+ 3 U2V (p)A%".
(93)

In Sec. VIl we already calculated the first coefficient of this
expansionu{®)(p) =3 ,(p?). In addition, an expression for
u,(f) is derived in Appendix D. It is given by
U (p) == E(p?) +KGP(p?). (94
The 4-point functiorG{*(p?) has an extremely complicated
structure; it has been evaluated numerically for some special

values ofp and k only. Thus we know the behavior of
U(A;p?) for small values ofA.

In the previous section it was shown that the effective o the other hand, we know that,(A;p2)=Q(p?)A2

average action for plane-wave fields equélas long asA
= Ayiv(K), which will be referred to as the “outer region” of
the effective potential. The inner region f&<A;, (k) is

+(N2)A* for A=Ay, .
For the intermediate range éfvalues where Eq93) is
not applicable any more but is still below A;, we have to

renormalization. Fok=k. no inner region occurs. Fdk
<k the determination ofJ,(A;p?) in the inner region is
more involved. Depending on the momentpreeveral cases
are to be distinguished.

A. |pl#M

First of all let us consider the cage| # M. The definition
of the effective potential

the outer regiomM=A;, in a qualitatively correct manner.
We make the most natural assumption that this interpolation
is a minimal one in the sense that it leads to as few as pos-
sible extrema of U,. For instance, if U,(0;p?)
<U© (A, ;p?) and if the slope ah=0, i.e.3,, is positive
we interpolate with a monotonically increasing function from
the smallA region up toAy;, . Likewise, if the slope ai
=0 is negative the interpolating function is assumed to have
a single minimum in the intermediate region.

The justification for this scheme comes from three
sources:

corresponds to sources which are plane waves of the form (i) The inclusion of theA*-term confirms this picture in a

J=e exp(p,x,+iB). Heree is related toA, p andk via the
source-field relation

81f k<kg and|p|=M, A=A, is assumed fos =0 which means

part of the parameter space.
(i) In the limit k— 0 it leads to the expected convexity of
Uo(A;p?).

that, in this special case, we have to insert the free, degenerate’Since the parametekis chosen to be real tHe(1)-invariance of

minimum (53) into Sﬂ in Eq. (86). However, the result for
Sﬂ[)(mm;\]] is not influenced by the degeneracy of this solution.

U, is not manifest. It is nevertheless present, siAchas to be
regarded as absolute value of a complex number.
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/ 0.4 0.6 0.8

FIG. 5. Qualitative scaling behavior of) (A;p?) for p?
e{0}U[2M?2,%), illustrated by three curves corresponding to khe
valuesk=Kk,, (upper curvg k=k; where 0<k <k (curve in the
middle) andk=0.

(i) The resulting U (A;p?) connects smoothly to
U(A;M?) which can be evaluated exactly.

We shall discuss momengawith Q(p?)=0 andQ(p?)
<0 separately.

1. The caseQ(p?)=0

The caseQ(p?)=0 corresponds tg2-values lying in
{0}U[2M?2,). In particular it includes the standard effec-
tive potential forp=0. Since in this cas& ;>0 for all k
<k¢ the minimal interpolation leads to the monotonically

increasing function shown in Fig. 5. The shape of this curve
changes only insignificantly in the course of the evolution.

The only change is a decrease ©f compensated by an
increase of the slope of the curve fArK A, such that(a)
the inner and the outer region join smoothlyfat A, and
(b) Uy, (A;p?)<Uy (A;p?) is valid for all A<Ay, if k;
<k,;<k. The inclusion of theA*-term gives additional
support to this picture. It turns out that t#&¢-term domi-
nates the behavior o), for all A<A,,, if the difference

PHYSICAL REVIEW D62 125021

the true U, for k=k, A arbitrary and fork<kg, A
= Ayqy) and the approximations

UP(A;p?)=Cy+ 3, (p?) A

U(A;p?)=C+ 3 (p?)A2— (34(p?) + k)

x G{H(p?)A* (95

for p=0k=0 and for|p|=3M,k=0. Obviouslyp=0 is not
sufficiently far away fromM because)(?) is a good approxi-
mation only for very smallA-values and then grows too fast
to be able to merge withJ(®) at A,;,. The effect of the
A*-term is to bend this curve downward. Henid§" is al-
ready fairly accurate for a larger range/f#/alues and it gets
closer to theU(®)-curve. ForA approachingA;, also the
A“-approximation breaks down and it is clear that higher
orders are needed in order to hit thé™)-curve atA,, .

For |p|=3M the situation is much bettet®), U{?) and
Ul are virtually identical for allA< A, =M/2\. [This is
because_o(p?)~Q(p?) for large p.] Due to the correc-
tions coming from theA*-term we expect that!§") agrees
better with the exadtl, thanU{?) but the difference between
the two approximations is too tiny to be visible. However,
we surely can infer from Fig. 6 that both(?) andU{" are
convex. For even larger momenta the quality of the approxi-
mation (93) increases.

From the general properties of Legendre transforms we
expect Iin?(éouk(A; p?) to be a convex function oA, for all

values ofp. For the momenta considered here this convexity
is indeed achieved, albeit in a somewhat trivial fashion since
the potential was convex from the outset.

2. The case)(p?)<0

Let us now turn to the cas@(p?)<0, |p|# M, which is
satisfied by all values gb? contained in (0,R12)\{M?}. For

between p| andM is large enough. Then higher order terms such momenta thé2-expansion(93) yields no reliable re-

like u* yield only minor corrections.
In Fig. 6 we plottedU()(A;p?) (which coincides with

0.2
0.1
0.2 . B i, 0.8
-0.1
-0.2

(a)

sults because the higher order terms begin to dominate al-
ready at small values dA<A,;, . Those results are at most

20}
15}
10}
5
0.2 0.4 0.6 A, 0.8
(b)

FIG. 6. U, U@, andU®, (in units of M*/\) as functions ofA (in units of M/\\). (a) Casep=0. The curves fot)(?, andU{®,

4)

are those which coincide #&=0, whereU f(zo corresponds to the curve that develops a negative slope for Aargilbe remaining curve
corresponds tdJ(®). (b) Case|p|=3M. The difference between the three curves is hardly visible. Mgg=M/\2\ we haveU(?;

| 2
<U@<y@,.
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0.1} tive potential in the outer region. Again, the effective aver-
age potential becomes convex in the litkit: 0, this time in
0 o5l a less trivial fashion though.
B. |p|=M

Let us finally come to the “resonant” casp|=M. It will
turn out that anexactexpression folJ, can be derived in
this case.

As in the case before we obtain frod{1)-invariance

T [AexpiQo,X,+iB)]=W(AM?) (97)

-0.05¢

FIG. 7. Qualitative scaling behavior of) (A;p?) for p?
€ (0,2M2)\{M?}, illustrated by three curves corresponding to khe
valuesk=k,, (upper curvg k=k, where 0<ko<k,, (curve in the
middle) andk=0.

where the corresponding sources are plane waves satisfying
the source-field relatio®2) with p replaced withQ,. From

Sec. VIII and Appendix A1 we know that any source-
amplitudee >0 is related to a field-amplitud& e (Ayiy ;)

via Eq. (92 and thate =0 yields A;,. Actually e=0 cor-
responds to theomplete inner region A A, as well. To

see this we have to look at the generating functiongl
evaluated atl= o exp(Qo,X,) where g=e exp(p) is com-

. . . plex. Inserting the global minimuny,,, in presence of
First of all it should be noted that in the course of theplane—wave sources, Eq. (A10), into W,[J]=

evolution3,(p?) changes its sign which is obvious from the _Sl[Xmin(‘J);‘J] and expanding this expression with respect

as reliable as the one fgr=0, k=0 and they become in-
creasingly worse afp| approachesv. Hence we have to
apply a different method to determine the propertietl pin
the inner region.

+0(|el?). (99)

Figs. 3 and 4. There exists a sceﬁép)<kcr at which g |o|=¢ about|e|=0 yields
Si(p?)=0; we have>, <0 for k>k and3,>0 for k<k.

Along with the evolution of,, i.e., the slope ofJ, at W[J= 0 exp(iQq,X,)]
A=0, the constant tern, (A=0;p?)=C, drops fromC,
=0 atk=k to C,=—M?*/(8\) atk=0. If one minimally 2, 0n2
interpolates between this smallbehavior andJ() one ob- Y (M) +2o\/ - lw (M2)
tains the curves shown in Fig. 7. Note that the change of sign 2\ Nk
of X is crucial for achieving convexity in the limk—0. As )
long ask>k(p), Uy is not convex since the negative kinetic 4
term 3, causedJ, to decrease for very small values Af 2w (M?)

In Fig. 7 we included an additional piece of information
which is easy to obtain. There exists a certain ségl®)  The crucial point is that the term linear ifp| causes
e (Oker) at which the value of the potential &=0 equals g, /dp to be discontinuous at=0. In fact we obtain from
its value at Ay : Uko(p)(o;pz)=Uk0(p)(Am\,;p2). This  Eq.(98)
means thaCy () =U (A :p), and by Eq.(68) this con-
dition is equivalent td)(p?) =k3—M?/2. Hence

d
lim [@Wk[g expiQo,X,) ]

le|—0 o=|elexp(B)

_ 1 e 1
KolP)= 5y Ml 58 =\~ L odM2exa—i)=Ay exa—iB) (99

Numerically we find thatk,(p)<k(p) for any value ofp  which shows that this derivative depends gni.e., on the
considered here. Therefore the slope at the origin is positivdirection in the complex plane from which=0 is ap-
for k=k,. Since, atA;,, U has a positive slope too this proached.
means that, has(at least one maximum and one minimum This singular behavior has the effect that the conventional
in the inner region(The minimum is the expected one, of Legendre transformation is not applicable. In such cases one
course, essentially the minimum &f(®), corrected by the has to refer to the more general supremum definition of the
renormalization effectsIn order to obtain a convex poten- Legendre transformation, see e.plO]. In our case it
tial in the limit k— 0 this local maximum must shrink as the amounts to
theory is evolved towards smallkmuntil it vanishes at some
scale betweek,(p) and zero. Uk(A;M?)=—k?A%+ sug2As —Fi(£;Qp)} (100

The results derived so far are sufficient to give a qualita- &=0
tive description olU, in the inner region. Fig. 7 illustrates its
essential features as well as theactstructure of the effec- where

125021-16



ROTATION SYMMETRY BREAKING CONDENSATE IN A . .. PHYSICAL REVIEW D62 125021

region? i.e., Ayiy=A') . As a consequence the inner region
of Uy, approaches a constant value as the cutoff is lowered
from k=K., towardsk=0. At k=0 the inner region is en-
tirely flat and thudJ,_ is found to be convex.
Note that, as it should be, the functionB} is always
0.8 1.2 convex even in situations whet#, , i.e.I', is not. Compar-
ing Eq. (34) to Eq. (82 we see thafl'y yields U,=U,
+k?A? when evaluated for plane waves. For instance, from
Eq. (104 it follows that U,=C, if A<Ay, andU,=U®
+k2A? if A>Ay,, , Which is perfectly convex for any value
of k.
FIG. 8. Scaling behavior dfl (A;M?), illustrated by six curves The physical interpretati_on of this behaviorW andl’,
corresponding to different values kf With decreasind the inner 1S @s follows. Equatiort99) is nothing but the standard for-
region approaches a constant value. mula

-0.05F

SW,
83 |

1 =(0=0=(x) (109
Fk(s;QO)E]_)Wk[S expiQou X, TiB)] 0
N evaluated for plane waves. Let us look at this equation for
=2&x0(£;Qp) — wx(M?)x2(£;Q0) — mxa(g; Qo) k=0. The nonvanishing right-hand sidBHS) of Eq. (99)
2 shows that the modes witlp| =M acquire a vacuum expec-
(101  tation value. After the sourcé has been switched off adia-
batically the expectation value

with 'y, defined in Eq.(A11). Using Eq.(A5) F, may be M ) _
rewritten as (x(x))= \/T—)\eXmM n,X,+ip) (106
3 - 1 ~
Fi(e:Qo) = 5exo0(e:Qo) ~ Ewk(Mz)X(Z)(S;Qo)- “remembers” both the directiom, and the phasg@ of the

(102 source. This singles out a point,(8) of the vacuum mani-
fold and leads to a spontaneous breaking of botH $i&(d)
L~ . . . . . symmetry of spacetime rotations and of t hase sym-
Since xo(e;Qy) is a strictly monotonically increasing func- n¥etry. y P @p y

tion of ¢ we can infer from Eq(102) that F is strictly This formation of a vacuum condensate happens only for
convex. (This is _of course as it should bg because in oulo modes withp|=M but not for|p|#M. The difference
classical approximatiohV is related toS, via a Legendre ¢ the two cases is nicely illustrated by the plots of the vari-

transformation. Therefore the strict inequality ous effective potentials. Let us look at Fig. 7 fig#M,

IF IF 1 say, and let us put a “ball” into the minimum of the poten-

—(g)>—(£=0)=2\/ — — o (M) =2A4, tial U, atk=k.,. Then, when we lowek, at a certain point

de e A the ball rolls down from the local minimum #&+0 to the
(103 minimum atA=0. Thus, fork=0, the corresponding field

) o o mode has no expectation value. The situation is different in

is satisfied for alle>0. It implies that as long as we have Fig. 8 for |p|=M. Until the very last moment of the evolu-

A<Ay, the supremum of Re—F(e;Qo) is always ijon the ball always sits at the global minimum of the poten-

achieved fore =0 Whe.re it has _the valu€,. As a conse- sl and has no tendency to roll towards=0. Only for a

guence the complete inner regipd®A;,] corresponds te strictly vanishing cutofk, U (A=0:M?) is as low asJ, at

=0 and the length of this interval is determined by the lineakne minimum. This means that the corresponding mode ac-

term of .. For A>Ay;, the supremum-definition coincides gyires an expectation value. In fact, our discussion here is

with the familiar definition of the Legendre-transformation remarkably similar to the analogous treatment of the familiar

so that Eq(100) leads to spontaneous symmetry breaking by a Mexican-hat potential.

Co—K2A2 if A<A.. In the latter case it is thep=0)-modes which condense, but

k =MMriv

U (A;M?)= (104

UA;M2) i A>Ayy.

. . . . . . The potential(104) exhibits the special property thak, results
The behavior ofUy 1S illustrated in Fig. 8 Wh'Ch contains  fom the symmetric vacuum staf®3) not only forA<A;, but also
several curves obtained from EG.04) for distinct values of ¢, A=A, whereas in the cas®|#M the symmetry of the rel-

k. The Cas(¢£| = M is SP?Cial in Eg?cho equals exactly 'Fh.e evant quantum vacuum state is already brokem=A,;, . For
value of Ut at its minimumA.;, and also because it is |p|=M the region of spontaneously broken symmetry is restricted
precisely A) which separates the inner from the outerto values ofA larger than Ay, .
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in the language of the generalized effective average poterfor studying this model is its similarity with Euclidean quan-
tials U, for arbitrary momenta this makes no conceptual dif-tum gravity based upon actions such ds%.g{aR
ference. + BR?}. For the conformal factor of the metric such an ac-
Within the present approximation the true vacuum con+jon contains a negative contribution to the kinetic energy,
sists of a single plane wave. Therefore this field configura-coming from ygR and dominating at momenta small com-
tion serves as a "master field” from which the expectation ,aeq 1o the Planck mass. At large momenta the action be-
value of any composite operator can be computed by simpl, a5 positive and all modes are stable because of the mani-

inserting the RHS of Eq106). Ford, x* d,,x, say, this leads L _— o 5 .
to the kinetic condensatd0) announced in the introduction. fe;tly posﬂwg c.ontr|but|.on arising fromng - In view of
this analogy it is plausible to speculate that also quantum

gravity dynamically stabilizes the conformal factor by devel-
X. CONCLUSION oping a nontrivial vacuum structure, with nonzero conden-

In this paper we investigated a scalar model with a nonSates such ag(D,$)?), so that all excitations about this
standard inverse propagator consisting of a destabilizingground state are stable. _ _ .
—p? term and a stabilizing+ p* term. We find that this In the scalar model the semiclassical expansion about
model exhibits both spontaneous breaking of translatiortmin. the global minimum ofS;, has led to an effective
symmetry and of a global(1) phase symmetry. The ground kinetic operatorQ.(p? which has stabilizedalmos} all
state respects, nevertheless, a modified combined translatiohodes which were unstable with respect to the classical
symmetry which also involves phase rotations. The rotatiod2(p?). In gravity we might expect a similar mechanism to
symmetry is broken fron8O(d) to SO(d—1). In classical be at work when we expand about the global minimum of
or quantum statistical systems our model describes the spolﬁddx\/ﬁ{aR+ BR?}. Roughly speaking, leaving finer details
taneous formation of layers in an otherwise homogeneousf the momentum dependence aside, fhg(p?)-curve is
and isotropic setting. For such models already a tiny perturebtained fromQ(p?) by shifting it upward by a constant
bation leads to the formation of a geometrical structure.  (massf-term M?/2; see Fig. 1. So the dynamical stabiliza-
In order to gain a detailed understanding how the instation of the scalar model is essentially a “mass generation.”
bilities are removed from the effective action by including This mass generation also provides the justification for
the effects of fluctuations we have performed a renormalizaeur loop expansion and retaining the lowest order contribu-
tion group analysis. In particular, we have calculated thdion only. Contrary to the case of massless models with an
renormalization group flow of the dressed inverse propagataordinary kinetic term where the loop expansion does not lead
> (p?) for zero fields and of the finite-momentum effective to reliable result§11], in our model the mass generation cuts
potentialsU (A;p?) in leading order of the semiclassical ex- off loops so that the loop correction to, for instance, is
pansion. We found strong renormalization effects which arenegligible.
“instability induced” rather than “fluctuation induced.” It is an important question how a similar mass generation
They are driven by the classical instability of the trivial would manifest itself in the effective average action for grav-
saddle point in certain regions in the space of field configuity, I',[g,,,], and which type of truncations should be used in
rations. This is related to the fact that the global minimum oforder to obtain it from the flow equatidd2]. It is clear that
the Euclidean actiol x] is not aty=0. Instead, it is real- a naive mass term for the conformal factor is forbidden by
ized by nontrivial spin-wave configurations which form a general coordinate invariance. But also local curvature in-
spaceS' x S of classical vacua. At the level of theffec-  variantsR?, R,,R*” etc. are of no help because they vanish
tive theory, we found that the theory stabilizes itself in afor flat space and will not lead to an effective action whose
dynamical way. The dressed kinetic operafogs=2,_; minimum is atg,,,= J,,,, [13]. This suggests that the relevant
gives a strictly positive action to all field modes with mo- terms inI" andI', must benonlocalif expressed in a gauge
menta|p|# M. For modes withjp|=M it vanishes. These invariant way.(After gauge fixing, they may be local, nev-
modes are stabilized by a “shift to the true vacuum” which ertheless.For instance, a higher dimensional analogue of the
is similar to what happens in standard spontaneous symmet&d induced gravity actionfd®x.gRO 'R, added to the
breaking with a Mexican-hat potential. The modes With  Einstein-Hilbert term, is known to have flat space as its glo-
=M form a spatially nonuniform, Poincareand phase- bal minimum[13]. Hence all fluctuations about this ground
symmetry breaking condensate. Within the semiclassical agstate, including those of the conformal factor, are stable.
proximation, the true vacuum consists of a single spin wav& herefore it would be very interesting to study the renormal-
of momentumM and amplitudeVi/(2\), and is of an obvi- ization group flow ofl",[g,,, ] using a truncation of the space
ously nonperturbative nature therefore. The fixed phase anaf actions which includes nonlocal invariants. Work along
direction of this spin wave lead to a spontaneous breaking ahese lines is in progress.
the classicalJ(1)X 1SO(d) symmetry. One may wonder if the analogy between our model and
In this paper we only have considered a model without gravity can be put even further. In a gauge fixed version of
classical mass term. Due to our particular choice of the ingravity the local symmetry of general coordinate transforma-
frared cutoffR,=k? generalized results for models with a tions may be “spontaneously broken,” similar to the Higgs-
mass term can easily be inferred from our results for nonvapicture for local gauge theories. This language is usually
nishingk. employed in order to describe spontaneous compactification
In the Introduction we mentioned that a strong motivationof higher dimensional theories. The fact that the minimum of
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the Euclidean action occurs for a non-translationally invari-As we choses to be real,y, must also be real, so that Eq.
ant field configuration then strongly suggests the existence dA4) boils down to a simple cubic equation in the real vari-
additional space dimensiong>4. Otherwise, fod=4, the  able x,:

spectrum of excitations may not exhibit the full four-
dimensional Poincaresymmetry, similar to the spectrum
shown in Fig. 2. In higher dimensions, tlikdimensional
Poincaresymmetry may be reduced to a four-dimensional
Poincaresymmetry, again similar to our example. Actually,

w(p?) e
Xt X0~ 5 =0 (AS)

The general solution of this equation is given by

- . . e - . 1/3
classical solutions with spontaneous compactification which € g2 wi(p?
have a lower Euclidean action than ftatlimensional space Xo(g;p)= §+ — Tt 3
have been discussed a long time ddd]. In view of the 4N 27\
present paper it would be very interesting to find realistic > 3 2.\ 13
classical solutions corresponding to the absolute minimum of +(i_ A /8_+ @i(P )> (A6)
the Euclidean action. 2\ AN2 27\3 '

We have to distinguish the two cases where
APPENDIX A: GLOBAL MINIMUM FOR PLANE-WAVE

SOURCES A=8—2+ wi(p?) (A7)
In this part of the appendix we concentrate on determin- 4\2 273
ing the global minimum of the actioﬁ;i for plane-wave = . ) . .
sources)=e exp(p,x,+if). In the first subsection we dis- is either positive or negative. If it is positive, the above am-

cuss two kinds of solutions, each of them yielding the globaP!itude xo(&;p) represents a single real solution of £45).
minimum in a certain range of the (p,k)-parameter space. But if it is negative, the square root &f becomes imaginary,

In the second subsection the functiep(p?), which de- SO that xo(e;p) co_mprises three Qiﬁerent real solutions.
scribes the region in the parameter space separating the&80S€ can be rewritten in the manifestly real form

ranges, is exactly derived. The third subsection of this ap- (P9
pendix contains additional calculational details needed for Xg“)(s;p)=2 T

obtaining some of the results given in the first subsection.
y 3{1 {s 27\ )+ 2wnl
COS zarcco$ = \/ — —,
1. Solutions of the e.o.m. 3 2 wﬁ(pz) 3
For the calculation of the effective average action for n=0,1,2. (A8)

plane-wave average fieldsee Sec. IXit is necessary to find
out some properties of the solutions corresponding to nonvadowever, one can check easily that the only candidate for
nishing sources which are plane waves of the form the global minimum ing“:‘”, because the action corre-
_ ; ; sponding to this branch is lower than the action correspond-
J(X) =2 explip X, +14) (AL) ing to the other two branchésTaking into account that the
branchy{'=? is the only one that coincides with EGA6) at
A =0, this result is not very surprising.

Combining the above expressions, which describe poten-
tial minima in the two complementary regions &f we can
formulate solutions for the whole range &fand thus also of
e. We have to consider two distinct cases. E(p?)=0, A
is always nonnegative, so the candidate for the global mini-

[Q(—0)+k2+\|x|2]x=¢ exglip x,+iB). (A2) ~Mumreads

with a real “amplitude” e=0 andB[0,27). This restric-
tion allows us to calculate the minimizing field configura-
tions either exactlyfor k?=M?/2) or at least approximately
for small values of (for k?<M?/2).

For the sourcéAl), the e.0.m. we have to solve takes the
form

1/3
+

e e 13
SRR

The simplest solution one can think of is a figtdwhich xexpip X, +i8). (A9)
does not “know” about the existence of the nontrivial, de- o
generate minimum found foJ=0 and oscillates with the For w,(p?)<0, we have to fit together the two relevant so-
same frequency and phase as the source. If we insert thgtions forA=0 andA <0, so that

corresponding ansatz

a. The solution yoc exp(ipx+iB) Xmin(X) =

_ _ XminlX)=Xo(&:P)eXMip,x,+iB)  (A10)
X(X)= xo exXplip X, +iB) (A3)
where
into the e.o.m., the result is theindependent equation
o (PP xo+ N xol*x0=¢. (A4) 9The appertaining proof can be found in Appendix A3.
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1/3

&
ﬁJ“\/K) +

b. Is yoc exp(ipx+iB) the global minimum?

&
ﬁ_

YoleiP)= NEZCINE \/T
2\/ — 3 co §arcco§ —m
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1/3
JK) , A=0,
(A11)
, A<O.

e (p?) any of the above solutions becomes unstable under

What remains to be dealt with is the question whether th&ertain deformations and therefore is a saddle point or a local

solutions (A9), (A10) constitute absolute minima or just
saddle points. First we check this for large valueskok?
=M?/2: In this region the relatiom,(p?)=0 is always sat-
isfied which means thaA cannot become negative. If we
take the corresponding solution, EGA9), and sends to
zero, we end up withy,,i=0, which was already shown to
be the minimizing field configuration fat=0. In addition, it
is clear that the integral

1/3

E
o VA

ddq Y 2 2 2
f(zw)dlﬁx(q)l Q(g°) +k*+

+

=l

(A12)

is always nonnegativécemember thato,(q?) = Q(q?) +k?
=0 for k’>=M?/2) and thusAS,=0 is satisfied” Conse-

extremum. For sufficiently smalt-values the true global
minimum must be a generalization of the nontrivial mini-
mum we calculated for the case of vanishing sources.

An upper bound fog,. Because of the conditiof#3) we

can find an upper bound,(p?) for the amplitudes,(p?),
where the transition from one-region to the other takes

place. All we have to do is to insepz():)}o—this is the
lowest value fory,, for which the first integral of Eqi44) is

manifestly positive(or zerg—into Eq. (A5) and calculate
the corresponding amplitude The result is

~ 1
ex(p?) = VAR o(MPIN(PP=M?2 (A14)

We can turn the above condition eninto a condition on the
momentum of the sourcpg. It follows immediately that for
all & there exists a momentumy(¢), so that for allp? sat-

quently we can identify EqA9) as the field that corresponds isfying the relation

to the absolute minimum fde®>=M?2/2; it coincides with the
result of Sec. V if we set=0.

Next we investigate the cag8<M?/2. The amplitudes of
the solutions corresponding to both(p?)=0 and w(p?)
<0 grow monotonically, as we increasg without ap-

proaching any finite bound. This means that, for sufficiently

large values ok, \|xmin® Will always compensate any pos-
sible negative value ob,(q?)=—M?/2, rendering the inte-
grals (A12) or

dq ~ _
f (27:;d|5X(q)|2[Q(q2)+k2+ Axa(e;p)] (A13)

and thusA S, positive. On the other hand, the solutiqA®),

max(0M?—pZ(e))<p?<M?+pZ(e) (A15)

the solutions(A9) and (A10) represent absolute minima. A
lower boundpZ (&) for p2(e) is given by the expression

- 2M?%e )
pi(e)= WS pi(e). (A16)

[In Appendix A2 we prove that indeesl(p?) = &(p?) and

thus pi(e) = pi(e) ]
The exceptional casgp|=M. For momentap,=Q,
=Mn,, |n|=1, the situation is more subtle. For al>0 we

have yo(e; Qo) > xo. Hence, ife>0, the corresponding so-

(A10) do not approach the nontrivial, degenerate solutionytion (A10) represents the absolute minimum. The phase

(53) as we send: to zero.[Even for momentg,=Mn,,,

and the direction of the momentum vector of this solution are

In|=1, the limit e—0 produces only a unique solution of uniquely determined by the corresponding parameters of the

the form(53), with the unit vectom and the phas@ fixed.]
In view of this behavior we can state that for any momentu
p with | p|# M there exists a certain valug(p?) >0, so that
for all e=¢,(p?) one of the solution$A9) or (A10) yields
the absolute minimum; it depends on the valuewg{p?)
whether Eq(A9) or Eq.(AL0) is the right one. This implies

source. This is still the case fer— 0, where the solution

Makes the form)}o expMn,x,+ig) with n,, B fixed. De-

spite of the fact that the integréA13) is nonnegative for this
solution, it does not really yield the true vacuum for vanish-
ing sources, which is degenerate with respect to the phase
and the direction of the momentu®y. Thus we recognize a

that for e-values below the corresponding boundary valuegiscontinous behavior concerning the degeneracy of the true

vacuum when we switch on sources of the form
£ exp(Qo,X,+iB). This is analogous to the “tilting” of a

1%The momentuny is not to be confused with the momentum of MeXican-hat potential caused by a symmetry breaking

the sourcep.

source.
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c. Perturbative expansion aboug,n(J=0) In order to calculate the first order teraf'), we insert the

Let us now return to the cage,#Mn,,. As mentioned ~a"SatZ

before, the solution for sufficiently smaillhas to depend on - . , 1) O(e2
& in such a way that it approaches the degenerate solution ~ Xmin(X) = Xo €XRiQo,X,+ia)+ e (X)+O(e )A18
(53) for e—0. As we show below it is a function of the same (A18)
free parameters as E(p3) and is degenerate as well, With ,i0 the e.o.m. and obtain at order
the vacuum manifold given bgx S%~1.

There are two important points concerning this solution 2 231..(1) . .
that we do not really know. Neither do we know if the tran- [@(=D%)—20(M?)]¢™ exp(—iQo,X, ~ia)
sition “degenerate—~ nondegenerate” is discontinuous as in 2y (1) : .
the case abov@ smoothly vanishing dependence on the free —odM9e eXAiQouX, +ic)
parameters would be conceivable as yeibor do we know B . :
the point where this transition takes place, since we have no = expli (P~ Qou)X, +i (S~ a)) (A19)
proof that there are no intermediate solutions connecting thﬁ/here
degenerate solution to the solution which is valid for
=g (p?). It is natural to assume that no such intermediate

solutions exist and that the transition point is given by D,=3,+iQoy- (A20)
2 -

S_k(p ). This would mean that, contrary to the capg It is convenient to introduce the field

=Mn,, the degeneration occubelowand notat a certain

boundary value o, since the source is nonzero gi(p?) " _ _

and still dictates the phase and the direction of the momen- P(x)= @V (x)exp(—iQq X, ~ia) (A21)

tum.
From now on we will identify the domain of validity of
this solution for small values okt with the region e

in terms of which Eq(A19) looks more transparent:

<eg,(p?). One should bear in mind that in principle there [0 (—D?) = 2w (M?)]y— w (M?) y*
could be additional, intermediate solutions in this region. B . .
However, the numerical evidence which we present in Sec. = expli(p,~ Qou) X, +1(B~ a)). (A22)

IX strongly supports the assumption that those intermediatgyy,,;iosly the most general solution to this equation can be

solutions do not exist. . obtained from the ansatz
Let us have a closer look at the structure of the solution

for e<e(p?). Due to the information we have about this . .
solution we may expand it in a power series of the form P(x)=fexpli(p,—Qop)Xu Ti(B—a))tg
® Xexp(—i(p,—Qou)X,—1(B—a)). (A23)
in(X) = xo exp(i +ia)+ "o(M(x).
Xmin(X) = Xo @XX1Qo, X, +a) ngl el () After some simple manipulations we find the following ex-
(A17) pressions for the parameterandg:

o ((2Qo—p)) — 2w (M?)

f= A24)
[@((2Qo— P)?) — 2w(M?) J[wi(p?) — 2w (M?) ]~ wi(M?) (

wx(M?)

= . A25
[@0((2Q0— P)?) — 2w0(M?) J[@i(p?) — 2w (M?) ]~ wi(M?) "2

g

By inserting the above expressions into E423) and multiplying the result by exi@,,x,+ia) we obtain the desired
expression for Y. Thus, in the regiok®<M?/2, the absolute minimum of the acti@d, containing sources with sufficiently
small amplitudes:, reads

[0 ((2Q0— P)®)— 2w(M?)]+ wi(M?)expl2i (Qo, — P )X, + 2 (a— B))
[@((2Q0— P)?) — 2w(M?) L@ (p?) — 2w (M?) ]~ wk(M?)

X explip X, +iB)+O(e?) (A26)

Xmin(x):%o eXF(iQOMX#'Ha)-i-s
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which is of course equivalent to E7) combined with Eq.
(58). Like the free one, the minimurfA26) is parametrized
by the directions of), and the phase. At the “resonance”
|[p|=M the expansioriA26) is not well defined for all direc-

tions of p,, which, again, illustrates why this case is special;

see the discussion following EGAL6).

2. A necessary condition for the absolute minimum

A given field configurationy i, minimizes the actiors,
globally if and only if AS[ xmin,Sx 1, defined by Eq(42), is
nonnegative for all deformationgy. In Sec. V we decom-

posedAS, appropriately and derived a sufficient condition,

Eq. (45), which tells us tha\ S, is always nonnegative for
plane waves ymin= xo €Xp(p,X,+ia) provided that k?

=M?2/2 or o= xo if K*<M?/2. In this section we proof that,
for plane-wave sourceshis condition is alsmecessaryi.e.,
that, for k?<M?/2, the solutiongA9) and (A10) represent

saddle points rather than absolute minimavi{e;p)<xo.

Yo(£:P)< xo. We show that there always exist certin-
finitesima) deformations which rendekS, negative.
We start our proof by writing dowd S, in the form

1 R )
AS{ Xmin:OX]= 5 f dx( 5x*,5x>s<k2>[xmm,5x]( 5 ;‘ )

A
+ Ef ddx{z()(:niné)("—)(ming/\/*)
X[ x|+ x| (A27)
After inserting x min= X0 €Xp{p,X,+ipB) into Eq. (A27) we
diagonalize the matrix operat@? and obtain in analogy

with Appendix B for the part oA S, which is quadratic in
the deformations

ASP xo explip X, +i18),5x]
1 -
=5 f dO%{ ¥ 1(8x) A 2(— D) W1(dx)
+Wo(Sx) Ao — DO W,(Sx)} (A28)

where

A1 —D2)=w(D2)+ (D) +4Nx}

F VAN X+ (=D %) —Q(-Dp))°
Dpu=9d,+ip,;

. .
pu=0u"1Ppu-

(A29)

Thereal fieldsWV,; andW¥, depend orsy by relations similar
to those betweeK ,, andJ given by Eq.(B7). They may be
treated as new, independent variables.

It is important to note that the operatay ;(—Dp), when

PHYSICAL REVIEW B2 125021

5 1
Av1((9,2p)HD=—2(g*+p?) + W(q2+ p?)2+2k?

+2Nx2. (A30)

For g>=M?2— p? we obtain
Aa(a,xp)H)=2k2=M?+ 21 x5 (A3D)
which is obviously negative for all xo<xo

=/(M?—2k?)/(2\). This implies that(for all xo<xo)
ASM<0 can be achieved by any deformation of the form
(cog yM?—p°m,x,),00 if p?<M?

(exp(—\/pz—MzmeM),O) if p>>M2,
(A32)

(U, W,)=A

whereA represents a nonvanishing, real parametermapas
a unit vector perpendicular o, . It is not difficult to show
that the above deformatiori832) are related to our original
deformationséy via

Ox(x) =W (x)explip X, +iB). (A33)

Thus inserting Eqs(A32), (A33) into AS, leads to
ASK[XO exqip,u.x/i_'—iﬁ)!qjl(x)exqipuxy—’_iﬁ)]
1
= Ef d9%{(2k?— M2+ 2\ x3) ¥2(x)

+ AN xoP3(X) +ANTL(X)}. (A34)
By putting the system in a box with a finite volumg
= [d%, we may now introduce an appropriatedependent
amplitude s/ V() instead of the parameté such that, in
the limit V—oo, the integral/d'¥(x) remains finite for
n=2,3,4 and is#0 for n=2. This means that for all suffi-
ciently small values of theW-independentparameters>0
the terms of third and fourth order i, are negligible,
which leads toA S, <0 if xo< xo-
A possible choice foM(V) is given by

NY)
v

C(Vv)fddxexp(—\/pz—MZmeM) if p>>M?2,
(A35)

if p?<M?,

whereV,=[dx, andC(V,)=1 if m,#0 for all », C(V,)
=1/(I1,.m —0VV,) otherwise.

From the above result we deduce that, in cask-ok,,,
Xo equals the boundary value fogy(e;p) and xo(e;p)

which separates the region where the plane wave solutions
(A9) and (A10) represent the absolute minimum from the

applied to exptiq,x,) with g, perpendicular tp, (q,p,
=0), yields the expression
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region where the absolute minimum is given by the degenSince the symmetric functiofi(z) grows monotonically for

erate solution(A17). This implies thais,(p?) = e, (p?).

3. How to choose the correcty{"

Ze (—,—1/2], decreases monotonically fae [ 1/2~) and
is smaller than zero only foze (—%,—1/\2)U(1/y2 %)
one realizes immediately that the solution corresponding to
n=0 always produces the least action, except for the

In this part of the appendix we present the still missing,.ajyes belonging to the angte= /2, where the action for

prove that only one of the three solutions

XV (e;p)exp(ip,x,+iB),n=0,1,2, (A36)

that we found in the region, where,(p?) <0 is satisfied,
constitutes a genuine candidate for the global minimum of
S, and that is the solution fan=0. What we have to do
here is to show that this solution produces a lower action

n=0 is identical with the one fom=1. Thus we have
proved that our statement is correct.

APPENDIX B: SYMMETRY BREAKING BY A FIXED
SPIN-WAVE CONFIGURATION

In this appendix we diagonalize the matrix differential

than the other two. We start the proof by recalling the ex-Operator §¥[¢®@]* for ¢©=y,(J=0) given by Eq.

pression for the amplitudg!”(¢;p), which takes the form

2
LY B w(p?) 6+2mn
xo (e:p)=21/ an 0 3 :

n=0,1,2,
(A37)
where§ is defined as
0= arcco{ g \/ — ﬂ) . (A38)
2N wi(p?)
Inserting Eq.(A36) into S, leads to
Sﬂ[xg“)(s;p)exmpuxﬂ+iﬁ);J]=V@[—224+ 7°],
(A39)
where we introduced the parameter
0+2n
7= co{ 3 ) , (A40)
and used the relation
cosf=4z°—3z. (A41)

The function f(z)=—2z*+2% has zeros at=—1/2, z
=0 andz=1/\/2 and exhibits a local minimum at=0 and
two absolute maxima a= *+1/2. This means thaft(z) de-

scribes a reverse double well. If we know the range of val-
ues, whiclz covers fom=1,2,3, we can use this information
concerning the behavior df z) to show that the solution for

n=0 always yields the least action. For tkéntervals we
need to know we find

=0: 077 31
n= .arCCOZE_ ,g =Ze 7,
" 27 5 V3 o1
n= .arccoz:z_?,? =Ze —7,—5
(A42)
_3. 47 37 —10
n= .arCCOZE_?,T-:ZE_T,

(53). From the technical point of view this amounts to the
computation of W, or I'y with the integration over the
vacuum manifold omitted, i.e., we consider a plane wave
¢(© with a fixed directiom,, and phasex.

We start from the definition

+0(323*?)
(B1)

) 3
WE'“[J]E%f ddX(J*.J)S(kZ)[‘P(O)]_1<J*

which is analogous to Eq69) but does not include an inte-
gration overn, and a. Then, diagonalizing the operator

S (171 via the unitary transformation

SO 1 vUS @] 1y VT (B2)
where
1 e*iMnﬂXIL*ia eiMnMXM+ia
:E<_eiMnﬂxMia eiMnMxlﬁia)
V=[AZ(—-D?)+B%—D?] 2
A(—D?) -—B(-D?
2 2 (B3)
B(—-D?) A(-D?
with
Ai(—D?)=2w(M?) + 4w (M?) +B2(~D?),
B(—D?)=Q(-D*?)-Q(-D?),
D,=d,+iMn,, D;E&#—iMnM,
(B4)

we find

1

WpJd]= Ej d9%{K1(J;x,n, @) Ay 1(—D?) 1K1 (I;x,n, )
+Ko(Jix,m, @) Ay o( —D?) " HKp(3;x,n, @)}
+0(J23%2). (B5)

Here the operators

125021-23



O. LAUSCHER, M. REUTER, AND C. WETTERICH PHYSICAL REVIEW B2 125021

Ay 12(—DH)=w(—D?) + w(—D*?) — 4w (M?)

1
F2T1= 5 [ a%(@ydien @ Ava(~D?) - 2K)
T 4wz (M?)+B?(—D?) (B6)

XD (XN, )+ Do x,n,a)[ Ay —D?
represent the inverse propagators for thal fields K; and il é @) 2 @)l Al )

K, which are defined as —2K2)D,(p;x,n, )} + O(p2p*?). (B8)
Ky (J:x,n,a)= [A (—D?)+B%(—D?)] 12 The relations between threal average field®, and®, and
the complex average field=6W“/8J can be read off
X{A(—DY)Re(J(x)e~ MnuXu~ie) from Eq. (B7) if one replaces] with ¢ andK; with ®;.
Obviously the effective kinetic terms for the fields,,
+iB(—D?)ImJ(x)e” MMXu~Tay @, are given byoy 1(—D?)=Ayy5(—D?)—2k? After

going over to momentum space it is easy to see that the
) ) o112 kinetic terms yield nonnegative expressionsker0. In fact,
Ka(J;x,n,@) =[Af(—D?)+B*~D?)]" oo A(p+Mn)?)= Aoz((p+Mn)2)>0 2for all p. Further-
. i more, o 1((p+Mn) )=Ao1((p+Mn)9)>0 for all p#0,
X{A(=D?)Im(I(x)e” MMk 1e) while crOOl(M )= AOl(MZ)0 0. Thus, for the vacuum con-
sisting of a single plane wave, all modes of the theork at
=0 are found to be stable.
(B7) Fork=0,'y'* coincides with the actioSy,; discussed in
Sec. Il. In momentum space we have
Since we dropped the integration over the vacuum manifold,

+iB(—D?)Re(J(x)e MnuXu—iay,

we can now perform the Legendre-transformation directly on Ki(p%,0)=Ax_o;(p,+Mn,)?) (B9)
Eqg. (B5) so that the analog of the effective average action
takes the form with cosé=p,n,/|p|.

APPENDIX C: EFFECTIVE KINETIC TERM IN THREE AND FOUR DIMENSIONS

q(9°-49°+q*+89°~49>—8q+6)
(qlo_ 4q8+ 7q6_ 6q4+ 2q2) 1/2
4(9*-29°+2)(q'°- 4q°+79°~ 69" +29)*?

4(q'°-4q8+79°-6q*+29%) 12— arcta{

d=3:5, o(lp|=Mqg)=M?

6+ 4¢5+q~8q°~4q>+8q+6)]]
4(qlo—4q8+7q6—6q4+2q2)1’2+arcta q(q - q q q q q )
(q _4q8+7q6_6q4+2q2)ll2

+ c1
4(9*-29°+2)(q'°-4q°+79°—~ 69" +20?)*? ©r

16q°—32q*+ 32022
(q%-20%+2)?

d=4:3 o(lpl= Mq)=8M2q2[ +2(9-1) H(a*-2¢2+2)"*"?

(a7 79°+13¢°+5q*— 27q°+ 502+ 299 — 19)° )1’2
(g+1)%(q**— 229"+ 1639°— 4360°+ 7319" ~ 6709°+ 361)

x| (a-1)(q~2q2+2)¥ 3 (9+1)(a°~11g*+219”~ 19)
2 q7_7q6+ 13q5+5q4_27q3+5q2+2%_19

1/271/2

. 1((a+ 1)%(q*?—22q%+ 1630°— 4369°+ 7319*— 67092+ 361)
2 (a4’ —79%+ 139>+ 5q*— 27¢°+ 502+ 299 — 19)?

2 /2
+sg a(d’=2q°+2)" (9°+39*—20g%-6qg%+2q+6)
q’—7q%+130°+50%— 2793+ 59%+ 299 — 19
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1 (q+1)(g®—119*+219%—19)

2 q"-79%+13¢°+5q*—279°+ 50+ 299 — 19

(a+1)%(q'2- 229"+ 16318—436q6+731q4—670q2+361)) T
(q’—79%+139°+5q*—27q%+ 592+ 290 — 19)? '

L
2

(C2

APPENDIX D: THE FOUR-POINT FUNCTION

In this part of the appendix we calculate the coefﬁcia{g‘P(p) which represents the fourth-order contribution to the
expansion(93) of the effective potentiall,, valid for A<Ay;, .

We start from the assumptions tHet k., and that the sources are plane wavese exp(p,x,+ipB) satisfying|p|# M,
e<e(p?). This implies that the global minimum is degenerate and corresponds to thg figlgiven by the expansiofA17)
of Appendix Al. Then it follows from Sec. VIl that, in the classical approximation, the generating funciigrialobtained from

2
XL} =N, | e [ () xpt ~ Sl (DY

Let us consider the LHS of this equation first. Becaus&df)-invariance and analyticity id andJ*, which we assume for
sufficiently small|J|, W, has an expansion of the form

Wi[J=¢ exp(ip,X,+iB) =M — Cit (Ek(p) + k) e+ G (p?)e?+ O(c°)] (D2)
where the first two coefficients were already determined in Sec. VII. We will deal with the four-point fuﬁﬁﬁ&rp)z) for the
rest of this section. Note that it depends here only on one single momeptwhich is due to the fact that we have inserted
plane-wave sources.

Next we also expand the exponent on the RHS of(Bd,) up to the fourth order ir. By a lengthy calculatiotwhich we

omit here for the sake of simplicity, except for=4, see belowone finds that the corresponding coefficients consist of terms
proportional toy and terms containing-functions of momenta. Since the latter terms do not contribute we obtain

" . .
o S Xmini I =2 eXqip,X, +18) 1| ~0=VS" (P, B) (D3)
at least form=0, . .. ,4.Thus Eq.(D1) takes the form

4
exp{V [ Cit (B(p?) + K?)e+ G (p?) e+ O(e®) [} =N foz da f dmn)exp{—VE_o%s&’m(p,n;a,ﬁ)smww% :

(D4)
Expanding both sides of E¢D4) with respect toe and) and comparing the coefficients v&* then leads to
(4)) -2\ _ Nk 2m ‘94 1 . .
G '(P) =~ 71y . da du(n)QSl[xmm,J—s explip X, +iB)]le-o- (D5)

In order to deduce an explicit expression for the integrand of(B§) we insert the expansion for the nontrivial, degenerate
minimum (A17) into S, and find

P ©(© ()20
Qsll[)(min;\]:&‘ explip X, +iB)]|s=0= 12)\f ddx[|<P(l)|4+2|¢(1)|2(¢(2)* ,QD(Z))( (O +(®*, ) (¢(1)*)2¢(0))J
(D6)
where¢©® and ¢ are determined by EqA26). ¢(?) can be derived from
@ 8 i
v Sl Xmin] -0 (D7)
de?  Ox* a0
which represents the quadratic part of the e.dA2) and leads to
(2) (0) (1\2,.(0)%
@ . @ ()%
= ASP[e @] 2] M 2( ) ( : (D8)
((P(z)*) SK le™] (0 (e1%)24(0)
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After inserting Eq.(D8) into Eq. (D6) the resulting expression just depends on the figlfé and ¢(*). Using the explicit
expressions for these fields, H@p5) eventually yields

- N Qg (e 1 1 1\2]
(4) - -~ Tde2 ' id-2 24 T (g2—1)2 -
Giupl=Ma) ZMSlefO do sir «9”(2 K2+ S (a7 =1) )h(q,a,x) (K 2) }

1\? 1\3
K>— 5) h(q,a,K)2+8(K2— E) h(q,6,x)+3

1 1\4
X[3h(q,9,K)4+8( K>— E)h(q,@,K)3+8 K>— E)

1 1\2 (1
—| k= 3|| —| k¥*= 5| +|5—«*+80g°cog —16qg° cosh+8q*
2 2 2
-1
+(32+ 72 cog 0)q>—48q° cosh+ 8q* }
1
K>— E) (32— 960 cosf+ (32+ 72 cog )2 —48q° cosé+ 8gH)h(q, 6, x)>

3
-
2

I

(D9)

65
> k2—96q cosf

65
— — k%— 960 cosf+ (32+ 72 cog 0)q>—48q° cosé

2\

+89*|h(q,6,x)*+8

+8

) 1\2/127 K2
2/ | 4

k2= 35| |+ —96q coso+(32+80 cog 0)q>— 64q° cosh+ 16q4> h(q,6,x)?+8

1\4/1
X (802 cog 6— 16q° cosd+8q*)h(q, 0,«) + 2( K>— E) (5— k>+8q? cog #—16q° cosd+8q*

whereG{"(p?)=G{(|p|) and

4

h(q,0,x)=5— k?>—12q cosf+ (3+ 8 cog 0)g?—4q° cosh+ % (D10)

Since the integral ove# can be evaluated numerically for fixed valuepandk an explicit expression fo@fj‘)(pz) is at our
disposal and therefore also for the expansiomMgfgiven by Eq.(D2).
Introducing ¢ = A exp(ip,X,+iB) and applying the definition
W(A;p?) =T p=Aexpip,X,+iB) 1=V [2Ae(A) —k*A?] - W[ J=e(A)exp(ip X, +iB)] (D11)

we may now determine the corresponding approximate effective potdéhtias described in Sec. IX. The relatiafA)
appearing in Eq(D11) is obtained by inverting

19
A= 53 75 Wl I =& explip,x, +18)1=[(2(p?) + k) ~le+2G{7(p?)e*+ O(%)] (D12)

which yields
£(A)=(2(p?) +K)A—2(Z(p?) + K2 *GP(p?) A3+ O(A). (D13)
Inserting this expression into E¢D11) finally leads to
UK(A;p?) = Cy+ Zi(p?) A% = () + KO 'G{V(p?) A®+ O(A®). (D14)
Thus we can identify the coefficien{(“)(p) as

uP(p)=— i (p?) + kG (p?). (D15)
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