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Rotation symmetry breaking condensate in a scalar theory
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Motivated by an analogy with the conformal factor problem in gravitational theories of theR1R2-type we
investigate ad-dimensional Euclidean field theory containing a complex scalar field with a quartic self-
interaction and with a nonstandard inverse propagator of the form2p21p4. Nonconstant spin-wave configu-
rations minimize the classical action and spontaneously break the rotation symmetry to a lower-dimensional
one. In classical statistical physics this corresponds to a spontaneous formation of layers. Within the effective
average action approach we determine the renormalization group flow of the dressed inverse propagator and of
a family of generalized effective potentials for nonzero-momentum modes. Already in the leading order of the
semiclassical expansion we find strong ‘‘instability induced’’ renormalization effects which are due to the fact
that the naive vacuum~vanishing field! is unstable towards the condensation of modes with a nonzero mo-
mentum. We argue that the~quantum! ground state of our scalar model indeed leads to spontaneous breaking
of rotation symmetry.

PACS number~s!: 11.10.Hi, 11.30.Qc, 04.20.Fy
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I. INTRODUCTION

It is a common feature of several Euclidean field theor
of physical interest that spatially inhomogeneous, i.e. n
constant field configurations have a lower value of the ac
functional than homogeneous ones. This means that, at
semiclassically, the inhomogeneous configurations are lik
to dominate the functional integral and thus determine
quantum vacuum stateu0&. In this case we expect that th
essential features of the true vacuum state can be unders
by an expansion in the quantum fluctuations about a se
configurations with a position-dependent, non-translatio
invariant value of the field variable. In the quantum vacuu
this ‘‘condensation’’ of spatially inhomogeneous modes co
tributes to certain expectation values^0uOu0&Þ0 whereO is
a scalar operator constructed from the derivatives of the
damental fields in such a way that it is sensitive to the n
vanishing kinetic energy of the contributing configuration
~For instance, in a scalar model,O5]mf]mf.! We shall
generically refer to such contributions as ‘‘kinetic conde
sates.’’ They are to be distinguished from the familiar tra
lational invariant ‘‘potential condensates’’ characterizing t
conventional Higgs mechanism which is triggered by a n
zero but constant scalar field expectation value.

In this context one should distinguish two different phy
cal situations. If the degenerate minimum of the effect
action corresponds to configurations which are not invar
under some global symmetry, such as translations or r
tions, such a symmetry is spontaneously broken and only
remaining unbroken symmetry can be used for a classifi
tion of the spectrum of excitations. This spectrum will typ
cally contain massless ‘‘Goldstone excitations.’’ In this ca
one typically has an order parameter whose expecta
value breaks the symmetry, in addition to the invariant
netic operators mentioned above. In the second case
dominant configurations break a local symmetry. Then i
0556-2821/2000/62~12!/125021~27!/$15.00 62 1250
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well known that there is no true spontaneous symme
breaking and no nonzero expectation value of a noninvar
order operator exists. Also the ‘‘Goldstone excitations’’ a
absent from the physical spectrum. Nevertheless, we h
learned from the Higgs mechanism in the electroweak s
dard model that a language in terms of ‘‘spontaneous s
metry breaking’’ can be very useful. This spontaneous sy
metry breaking manifests itself in nonperturbati
contributions to invariant operators for ‘‘kinetic conde
sates.’’

A typical example of a kinetic condensate is the glu
condensate in QCD. While the classical Yang-Mills acti
1/4*d4xFmn

a Fmn
a is minimized byFmn50, already the one-

loop effective action assumes its minimum forFmnÞ0. The
Savvidy vacuum@1# tries to model the true ground state as
covariantly constant color magnetic field. The effective a
tion of this state is indeed lower than that forFmn50. It is
known, however, that the Savvidy vacuum is unstable in
infrared ~IR!, and it has been speculated that the domin
configurations may be spatially inhomogeneous~perhaps
domain-like! in order to provide an IR cutoff at a scale set b
LQCD

21 . Those nontrivial properties of the QCD vacuum a
parametrized1 by ^0uFmn

a Fmn
a u0& and similar condensates o

more complicated gauge- and Lorentz-invariant operator
Another important example is Euclidean gravity bas

upon the Einstein-Hilbert action@2#

SEH@gmn#52
1

16pGE d4xAgR ~1!

1Invariant operators likê0uFmn
a Fmn

a u0& receive also perturbative
contributions which are not related to ‘‘kinetic condensates.’’ W
do not discuss here the difficult problem how they can be separ
from ‘‘kinetic condensates.’’
©2000 The American Physical Society21-1
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which is not positive definite. In fact, decomposing the m
ric asgmn5 exp(2f)ḡmn whereḡmn is a fixed reference met
ric, we obtain

SEH@gmn#52
1

16pGE d4xAḡe2f@R̄16ḡmnD̄mfD̄nf#.

~2!

This shows thatSEH can become arbitrarily negative if th
conformal factorf(x) varies rapidly enough so that (D̄mf)2

is large. Leaving aside for a moment the well known pro
lems in setting up a consistent theory of quantum gravity
is tempting to speculate that the theory cures this instab
caused by the unboundedness ofSEH in a dynamical way.
Nonconstantf-modes could condense in such a way that
resulting quantum vacuum state is stable and constitutes
absolute minimum of some yet unknowneffectiveaction
functional. The expectation value of the metric in this st
should be close to the metric for flat space~which is not the
minimum of SEH). Also, operators like (D̄mf)2, appropri-
ately covariantized, should acquire nonzero expectation
ues. This would indicate that the true vacuum arises from
‘‘dynamical stabilization’’ of the bare theory due to the co
densation of nonconstantf modes.

A further model in which the existence of a variant of t
‘‘kinetic condensate’’ has been speculated about is Liouv
field theory@3#,@4#. The expectation value of its operatori
equation of motion reads

^0uhfu0&1
m2

b
^0uebfu0&50. ~3!

Provided it is possible to make the operator exp(bf) well
defined and that the regularized operator is still positive d
nite, Eq. ~3! implies that ^0uhfu0& is nonzero and, as a
consequence, that the vacuumu0& is not translational invari-
ant.

In the examples mentioned above the determination of
vacuum state is a formidable task which has not been m
tered yet. In the present paper we shall therefore study
formation of a ‘‘kinetic condensate’’ within the framewor
of a scalar toy model. On the one hand, this model is sim
enough to be treated analytically, on the other hand i
found to have the feature of a ‘‘dynamical stabilization
which we hope to occur in QCD and in quantum gravity.

The model is formulated ind Euclidean dimensions. I
contains a massless complex scalar fieldx with a conven-
tional luxu4-self interaction but with a higher-derivative k
netic term:

S@x#5E ddxH x* V~2h !x1
l

2
uxu4J . ~4!

The kinetic operatorV is taken to be

V~2h !5h1
h2

2M2
, h5]m]m , ~5!

so that in momentum space
12502
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V~p2!52p21
~p2!2

2M2
~6!

whereM is a constant with the dimension of a mass. On
Euclidean spacetime wherep2[pmpm>0, the kinetic opera-
tor is positive forp2.2M2 but negative for momenta be
tween p250 and p252M2. It has a minimum atp25M2

where it assumes the value2M2/2, see Fig. 1. The action~4!
has a global U~1!-invariance under phase rotationsx
→x exp(iw) with a constantw, and it is invariant under the
Euclidean Poincare´ group ISO(d) of rigid spacetime trans-
lations and rotations.

We will see that in this model the rotation symmetry
spontaneously broken whereas a modified translation s
metry is preserved. As a classical statistical system ind53
dimensions or the~zero temperature! ground state of a quan
tum statistical system (d54) this models the spontaneou
formation of two-dimensional layers which break the ro
tion symmetry. An effective translation symmetry rotates t
phase factor of the complex fieldf by 2p as one translates
from one layer to the next. In two dimensions it correspon
to the spontaneous generation of line-like structures. We
phasize that the microscopic action has rotation and tran
tion symmetry, in contrast to lattice models. Our mod
therefore describes situations where already a tiny pertu
tion of these symmetries results in nontrivial geomet
structures.

The model shares some essential features with the con
mal sector of a gravitational model of the typeS@gmn#
5*ddxAg$aR1bR2%, for instance.~Here ‘‘R2’’ stands for
any invariant quadratic in the Riemann tensor.! The Euclid-
ean classical action of this model is bounded below, in c
trast to the Einstein-Hilbert action. It is therefore a go
starting point for the definition of a Euclidean function
integral if the problems of UV regularization can be ma
tered. The Einstein-Hilbert termAgR leads to a negative
contribution to the kinetic term of the conformal factor of th
metric, which dominates at small momenta, while t
R2-term gives rise to a positive contribution dominating
large momenta. The instability at small and the stability
large momenta is modeled by the ansatz~6! with M playing
the role of the Planck mass.

The ‘‘wrong sign’’ p2-term in Eq.~6! induces an instabil-
ity of the naive vacuum withx50 towards the formation of

FIG. 1. Classical inverse propagatorV and quantum inverse
propagatorVeff ~for zero background field! as functions of p[upu.
1-2



st
tic
x
on
th
e

r-
ith

i

l

w
y

ea

to

ti
in

-
d

be

o
ia

e

e.

r

e

ta

th

m-
try

d by

e
ieve
t to

king
o-
ys-

ruc-

ion
ry.
the
s
ee-
he

by a
del
d

ly

a-
c-

te
sate

fol-
de-

ose
e

s the
ll
ory
r

ROTATION SYMMETRY BREAKING CONDENSATE IN A . . . PHYSICAL REVIEW D62 125021
a spatially inhomogeneous ground state because the sy
tends to lower its Euclidean action by making the kine
action*pV(p2)ux̃(p)u2 as negative as possible. Thus we e
pect that the vacuum of this model is dominated by nonc
stant field configurations whose typical momenta are of
order of the scaleM. We shall see that this is actually th
case.

The true vacuum configuration̂x(x)& of any theory can
be found from its~standard! effective actionG@f# by solv-
ing the ‘‘dressed’’ field equationdG/df50. In this paper
we considerG as the zero-cutoff limit of the effective ave
age actionGk@f#, a type of coarse grained free energy w
a variable infrared~IR! cutoff at the mass scalek @5#. It
satisfies an exact renormalization group equation, and it
terpolates between the classical actionS5Gk→` and the
standard effective actionG5Gk→0. For our model we shal
determine the renormalization group trajectoryk→Gk in the
leading order of the semiclassical expansion which, as
shall argue, provides a qualitatively correct picture alread

The functionalGk@f# has the sameU~1! and ISO(d)
symmetry as the classical action. In particular, the bilin
term of G[G0 has the same structure as the one inS but
V(p2) is replaced by the dressed inverse propaga
Veff(p2). In Fig. 1 we have plotted our result forVeff . Quite
remarkably, due to the renormalization effects, the kine
term has become positive semidefinite even for a vanish
‘‘background field’’ f. For all modes withp2ÞM2 it
‘‘costs’’ energy ~action! to excite them. By including renor
malization effects these modes have been stabilized in a
namical way. On the other hand, modes withp25M2 can be
excited ‘‘for free.’’ This indicates that those modes might
unstable towards the formation of a condensate.

We shall analyze this phenomenon in terms of a family
generalized momentum dependent effective potent
Uk(A;p2) which are obtained by evaluatingGk@f# for
plane-wave argumentsf5A exp(ipmxm1ib). It turns out that
for k→0 and p2ÞM2 all Uk’s have their minimum atA
50 so that the corresponding modes do not acquir
vacuum expectation value. Forp25M2 the situation is dif-
ferent: in the limitk→0 the potentialUk(A;M2) develops a
flat bottom which signals a nonzero expectation value, i.
condensation of the plane-wave modes with momentapm
5Mnm . Here nm is an arbitrary unit vector. Indeed, fo
small but nonzerok the absolute minimum ofGk occurs
~within our approximation! for AÞ0 in the modep25M2.

In leading order we find the following expectation valu
of the fundamental field:

^x~x!&5
M

A2l
exp~ iMnmxm1 ia!. ~7!

It is characterized by the phasea and the vectornm . This
means that the above expectation value leads to a spon
ous breaking of both theU~1! and theISO(d) symmetry. For
the translations in the directionsnm only a remaining sym-
metry corresponding to combined transformations of
form
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xm8 5xm1
j

M
nm

a85a2j ~8!

is left unbroken, wherej represents a real, constant para
eter. For such combined transformations the symme
breaking from the spacetime translations is compensate
an appropriate phase rotation so thatMnmxm1a5Mnmxm8
1a8. The casej52pm, m integer, is special in the sens
that no compensating phase rotation is needed to ach
invariance. Therefore we obtain a symmetry with respec
discrete spacetime translations given by

xm8 5xm1
2pm

M
nm . ~9!

As was already mentioned above the spontaneous brea
of the ISO(d) symmetry to this discrete symmetry is anal
gous to the spontaneous formation of layers in statistical s
tems where the transformation~9! describes a translation
from one layer to another. We emphasize that the layer st
ture involves the internal degrees of freedom whereasU~1!
invariant operators have translationally invariant expectat
values due to the combined effective translation symmet

By analyzing the spectrum of small fluctuations about
vacuum configuration~7! we find that all those fluctuation
are stable. This dynamical stabilization of an apparent tr
level instability is formally analogous to what happens in t
familiar situation of an ordinary kinetic term ‘‘1p2’’ along
with a symmetry breaking potential V52m2uxu2
1(l/2)uxu4. In this case the naive vacuumx50 is unstable
because of the negative mass term, and shifting the field
constant is sufficient to reach the true vacuum. In our mo
the analogous ‘‘shift to the new vacuum’’ is more involve
since the field variable is shifted by an explicit
xm-dependent field.

The various candidates for the ‘‘vacuum field configur
tion’’ can be distinguished by their contribution to the expe
tation value of]mx* ]mx. Clearly ^]mx* ]mx&50 for the
perturbative vacuum, while we find, for the ground state~7!,

^]mx* ]mx&5
M4

2l
. ~10!

This is a translational invariant ‘‘kinetic condensate’’ qui
analogous to the gluon condensate in QCD. The conden
~10! is nonanalytic in the couplingl, i.e., it could not be
seen in any finite order of perturbation theory.

The remaining sections of this paper are organized as
lows. In Sec. II we discuss the classical vacua, i.e., the
generate absolute minimum of the functionalS@x#, and we
determine the spectrum of small fluctuations about th
field configurations. In Secs. III and IV we review som
aspects of the average action approach, and we discus
phenomenon of ‘‘classical renormalization.’’ It is we
known that in theories where standard perturbation the
about the trivial vacuumx50 is applicable the lowest orde
1-3
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O. LAUSCHER, M. REUTER, AND C. WETTERICH PHYSICAL REVIEW D62 125021
~i.e., classical! approximation of the loop expansion yield
G5S and, more generally,Gk5S. We shall see that for un
stable theories such as the one investigated hereG doesnot
equal S plus terms induced by loops. There are nontriv
renormalization effects even at the classical level. The rea
is that in this case the loop expansion must be perform
about the true minimum of the classical action rather than
false vacuum configurationx50. Within the loop expansion
this type of classical renormalization@6# is referred to as
‘‘instability induced’’ @7# as opposed to the familiar ‘‘fluc
tuation induced’’ renormalization coming from the loops.2 In
order to understand the full quantum theory at a qualita
level it is often sufficient to take the classical renormalizat
of the effective action into account. It encodes the phys
related to the shift to the true vacuum.

The average actionGk is defined in terms of a functiona
integral which contains a modified classical actionSk

J con-
taining the IR-cutoff and source terms. The semiclassical
pansion will be applied to this integral. Therefore we need
know the absolute minimumxmin(x;J,k) of this functional.
In Sec. V we derive a sufficient condition for a configurati
to be the global minimum ofSk

J . This is used in Sec. VI in
order to establish that for vanishing sources the minimum
constituted by spin waves of the type~7!. For JÞ0 the situ-
ation is more complicated and the corresponding discus
can be found in Appendix A.

In Sec. VII we compute the bilinear term ofGk and derive
the renormalization group flow of the dressed inverse pro
gatorSk(p2) for vanishing background field. In particular,
the end pointk50, we obtain the full quantum invers
propagatorVeff(p2). In Sec. VIII we identify regions in field
space with no classical renormalization, i.e., configurati
f for which Gk@f#5S@f# is indeed true in lowest order
Then, in Sec. IX, we combine all pieces of information ava
able in order to draw a global picture of the effective avera
action Gk . We introduce the momentum dependent pot
tials Uk(A;p2) and use them to discuss the structure of
true vacuum. Some calculational details are given in App
dixes B, C and D. The conclusions are given in Sec. X.

II. SPIN WAVES AND THEIR FLUCTUATION
SPECTRUM

For every Euclidean field theory the field configurati
xmin with the smallest possible value of the actionS is of
special importance. For a masslessuxu4 theory with an ordi-
nary kinetic termV51p2 this configuration isxmin(x)50
which puts to zero the potential and the kinetic energy se
rately. In our case the situation is less trivial becauseV(p2)
can assume negative values and hence it is able to com
sate for positive contributions coming from the potential.
fact, we shall prove later on in a more general context t
the absolute minimum of the action~4! is achieved for the
‘‘spin’’ wave configurations

2From the point of view of the exact renormalization group eq
tion this distinction disappears@8#.
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xmin~x!5
M

A2l
exp~ iMnmxm1 ia!. ~11!

Herenm is an arbitrary unit vector~a point onSd21) anda is
a free phase. Thus the global minimum is degenerate and
corresponding ‘‘vacuum manifold’’ isS13Sd21. Different
points of this manifold correspond to different classic
ground states of the theory. If we pick one of those grou
states, characterized by a fixed pair (n,a), this amounts to a
spontaneous breaking of theISO(d) symmetry of spacetime
rotations and translations as well as of theU~1! group of
global phase transformations.

The classical (n,a)-vacua are characterized by a nonze
expectation value of the operator]mx* ]mx, for instance.
The spin wave solution~11! yields

^]mx* ]mx&[]mxmin* ]mxmin5
M4

2l
. ~12!

In order to further illustrate the physics of this kind o
spontaneous symmetry breaking let us look at the spect
of small fluctuationsdx ~particle excitations! about the
ground state. Insertingx5xmin1dx into Eq. ~4! yields

S@xmin1dx#5S@xmin#1Sfluct@xmin ,dx#1O~dx3!
~13!

with

Sfluct@xmin ,dx#5
1

2E ddx~dx* ,dx!Ŝ(2)@xmin#S dx

dx* D
~14!

where Ŝ(2) is the 232 matrix differential operator corre
sponding to the second functional derivatives ofS with re-
spect tox and x* . In Appendix B we diagonalize this op
erator by a linear transformation from (dx,dx* ) to new, real
fields F1 andF2. In terms of the new fieldsSfluct reads, in
momentum representation,

Sfluct@xmin ,dx#5
1

2E ddp

~2p!d
$F1~2p!K1~p2,u!F1~p!

1F2~2p!K2~p2,u!F2~p!% ~15!

whereu is the angle betweennm andpm . The kinetic terms
K1/2 are given by

-

1-4
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FIG. 2. K1 ~lower curve! andK2 in units of M2 as functions ofupu/M plotted for ~a! u50 and~b! u5p/2.
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K1~p2,u!5M214 cos2 up21
p4

M2
2AM4116

cos2 u

M2
p6

54 cos2 up21O~p4!

K2~p2,u!5M214 cos2 up21
p4

M2
1AM4116

cos2 u

M2
p6

52M214 cos2 up21O~p4!

54 cos2 uS M2

2 cos2 u
1p2D 1O~p4!. ~16!

In Fig. 2 we plotK1 and K2 for u50 andu5p/2 which
amounts to excitations propagating parallel and perpend
lar to the vacuum directionnm , respectively. For other val
ues ofu the behavior is qualitatively similar.

The modeF1 is a massless excitation with an inver
propagatorK1 which vanishes atp50 for any u. It repre-
sents the Goldstone boson of the spontaneously broken
bal U~1! symmetry. The spontaneous breaking of theSO(d)
rotation symmetry manifests itself in theu-dependence o
the propagator. In particular, one should note that mome
orthogonal toQ0m5Mnm ~i.e. cosu50) correspond to the
‘‘Goldstone direction’’ with K15p4/M2. The modeF2 is
massive for all values ofu. Its direction-dependent mass
given by M /(A2 cosu). It is the analog of the ‘‘Higgs’’ or
‘‘radial’’ mode in the more familiar case of a spontaneo
symmetry breaking by a Mexican-hat potential.

III. THE EFFECTIVE AVERAGE ACTION

Before embarking on the detailed analysis of the the
let us briefly comment on the method we are going to e
ploy. In order to find the true vacuum state we need nonp
turbative information about the~conventional! effective ac-
tion G@f# wheref is the vacuum expectation value ofx. As
we mentioned in the introduction we regardG as the physical
limit of the effective average actionGk@f# which was intro-
duced in Refs.@5#. The functionalGk results from the clas-
sical actionS by integrating out only the field modes wit
12502
u-
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ta

y
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momenta larger than the infrared cutoffk. Changingk corre-
sponds to a Wilson type renormalization. The conventio
effective actionG is recovered in the limitk→0. In the space
of all actions, the renormalization group trajectoryGk , k
P@0,̀ ), interpolates between the classical actionS5Gk→`

and the standard effective actionG5Gk→0. It can be ob-
tained by solving an exact functional renormalization gro
equation.

The infrared cutoff is implemented by modifying the pa
integral for the generating functional of the connect
Green’s functions according to

exp$Wk@J#%5E Dx expH 2S@x#2E ddxx* ~x!

3Rk~2h !x~x!1E ddx$x* ~x!J~x!

1J* ~x!x~x!%J . ~17!

HereRk(p2) is a to some extent arbitrary positive functio
which interpolates smoothly betweenRk(p2)→k2 for p2

→0 andRk(p2)→0 for p2→`. It suppresses the contribu
tion of the small-momentum modes by a mass term}k2

which acts as the IR cutoff. In practical computatio
Rk(p2)5p2@exp(p2/k2)21#21 has been used often. In cas
where this does not lead to UV divergences the condit
Rk(p2)→0 for p2→` can be relaxed and one may also u
a constant cutoff functionRk5k2 which amounts to a mo-
mentum independent mass term. For the purposes of
present investigation this simple cutoff will be sufficient.

The Legendre transform ofWk reads

G̃k@f#5E ddx$f* J1J* f%2Wk@J# ~18!

where the functionalJ5J(f) is obtained by inverting the
relations

f~x!5
dWk

dJ* ~x!
, f* ~x!5

dWk

dJ~x!
~19!
1-5
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O. LAUSCHER, M. REUTER, AND C. WETTERICH PHYSICAL REVIEW D62 125021
which define thek-dependent average fieldf5^x&. The ef-
fective average action is obtained from Eq.~18! by subtract-
ing the cutoff term at the level of the average fields:

Gk@f#5G̃k@f#2E ddxf* Rk~2h !f. ~20!

It can be represented by an implicit functional integral

exp$2Gk@f#%5E Ds expH 2S@f1s#2E ddxs* Rks

1E ddxS s*
dGk

df*
@f#1s

dGk

df
@f# D J .

~21!

Here we introduced the shifted field

s[x2f. ~22!

It has been shown@5# that the functional defined in this wa
has the interpolating properties stated above, and that it
isfies an exact renormalization group equation. In the pre
paper we shall not use this flow equation but rather calcu
Gk directly from the above definition. We shall evaluate t
path integral~21! or ~17! by means of a saddle point approx
mation. It will turn out that the global minimum of the Eu
clidean action can be found analytically. By expanding ab
this minimum and properly taking its degeneracies into
count we will be able to deduce the essential features of
true vacuum already from the lowest order of the sad
point approximation. In the following we shall disrega
loop effects. Because of the nontrivial vacuum structure
the theory, already the ‘‘tree-level’’ approximation yield
nontrivial renormalization effects.

For configurationsfsw close to the spin wave solution~7!
the saddle point approximation for the effective average
tion obeys for allk

Gk@fsw#5S@fsw#. ~23!

This follows directly from Eq.~21! by an expansion offsw
around Eq.~7! and an expansion in powers ofs. The terms
linear in s cancel and the term quadratic ins is positive by
virtue of the discussion in the last section. If the solution~7!
corresponds to the absolute minimum ofGk for small posi-
tive k the rotation symmetry is spontaneously broken.
deed, if one adds a small source termJ(qW ) the degeneracy o
the minimum is lifted and the absolute minimum will occ
for the same momentum direction and the same phaseJ.
In the limit J→0 the spin-wave configuration and its orie
tation persist—this is spontaneous symmetry breaking.
will see below that this spontaneous symmetry breaking
rotation symmetry is indeed realized for our scalar mode
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IV. EFFECTIVE AVERAGE ACTION NEAR THE ORIGIN
AND CLASSICAL RENORMALIZATION EFFECTS

In order to establish that the spin-wave configuration~7!
corresponds to the absolute minimum ofGk for small posi-
tive k we need to understand the behavior ofGk for arbitrary
f. In this section we concentrate on small values off, i.e.
configurations that are far away from the spin-wave soluti
In particular, we want to understand the issue of convexity
the effective action fork→0 in case of spontaneous breakin
of rotation symmetry.

We are interested in the expansion ofGk quadratic inf,
i.e. the two-point function at the origin. For this purpose w
exploit the fact that the originf50 always corresponds to
stationary point ofGk by virtue of the symmetries. By con
tinuity we infer that—except for the phase with spontaneo
symmetry breaking—small values off correspond to smal
sourcesJ. In this case we will directly evaluate the sca
dependent generating functionalWk for the theory~4! which
is given by the path integral

exp$Wk@J#%5E Dx exp$2Sk
J@x;J#% ~24!

with

Sk
J@x;J#5Sk@x#2E ddx$J* x1Jx* % ~25!

and

Sk@x#5E ddxH x* vk~2h !x1
l

2
uxu4J . ~26!

Here

vk~2h ![V~2h !1Rk~2h ! ~27!

is the complete kinetic operator. In momentum space it re

vk~p2!52p21Rk~p2!1
~p2!2

2M2
. ~28!

For values of the cutoffk which are larger than some critica
valuekcr the modified inverse propagatorvk(p2) is positive
for any value of the momentump since the regulator term
Rk(p2) overrides any negative contribution which cou
come fromV(p2). Every admissible functionRk(p2) leads
to a kcr which equalsM times a number of order unity. Th
mass-type cutoffRk5k2 yieldskcr5M /A2, for instance. As
a consequence, for large values ofk, and in particular fork
close to the UV cutoffL where we start the renormalizatio
group evolution, there is no instability. As we lower the cu
off k below the critical value,vk(p2) becomes negative fo
certain modes. Obviously the modes with momenta in a b
centered atp25M2 become unstable first. Finally, atk50,
all modes withp2 in the interval (0,2M2) have become un-
stable in the sense that by exciting such modes we can p
the value of the Euclidean action below its value for t
trivial configurationx(x)50. We suspect that this instabilit
1-6
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causes the modes with typical momenta of the order ofM to
‘‘condense,’’ and it is this phenomenon which we are goi
to investigate.

The functionalsWk@J# andGk@f# enjoy the same invari-
ance properties as the classical action. In addition to Poin´
symmetry they are invariant underJ→J exp(iw) and f
→f exp(iw), respectively. This implies that the series expa
sion of Wk in powers of the sources, provided that it exis
contains only terms with an equal number ofJ and J* . In
particular, the quadratic term displaying the effective pro
gator reads

Wk
quad@J#5E ddxddyJ* ~x!Gk~x,y!J~y!

[E ddxJ* ~x!Gk~2h !J~x! ~29!

so that

Wk@J#5Wk@0#1Wk
quad@J#1••• ~30!

where the dots stand for terms of orderJ2J* 2. Likewise,
Legendre-transforming~29! and using Eq.~20! leads to

Gk@f#52Wk@0#1Gk
quad@f#1O~f2f* 2! ~31!

where

Gk
quad@f#5E ddxddyf* ~x!Sk~x,y!f~y!

[E ddxf* ~x!Sk~2h !f~x! ~32!

with

Sk~2h !5Gk~2h !212Rk~2h !. ~33!

Henceforth we interpretSk as the differential operato
Sk(2h) or as the functionSk(p2) in momentum space.

Frequently we shall evaluate the effective average ac
for plane-wave configurationsf(x)5A exp(ipmxm1ia).
ThenU~1!-invariance leads to

Gk@A exp~ ipmxm1 ia!#[VUk~A;p2! S V[E ddxD
~34!

where we refer toUk(A;p2) as the effective potential for th
mode with momentump. Note that whileGk gives rise to an
infinity of such ‘‘effective potentials,’’ one for each momen
tum, it is clear that the totality of all those potentials conta
much less information thanGk since the correlations betwee
different momentum modes are not specified.

In the subsequent sections we evaluate the functiona
tegral ~24! by means of a saddle point approximation a
determineGk directly from its definition ~18!–~20! rather
than by solving a flow equation. Denoting the global min
mum of Sk

J by xmin(J) the lowest order approximation read
12502
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Wk@J# ‘ ‘ 5 ’ ’ 2Sk
J@xmin~J!;J#. ~35!

Under certain conditions~for instance forJ50 andk suffi-
ciently small! the global minimum is degenerate. In this ca
Eq. ~35! is only symbolic ~indicated by the equality sign
‘‘ 5’’ ! and one should sum over the degenerate minima.
ignore this subtlety for a moment.

We shall see that already the lowest order approxima
~35! encapsulates all the essential physics which leads
dynamical stabilization. At first sight this might seem su
prising because one could suspect that Eq.~35! leads to the
trivial result Gk5S. In fact, if one performs a conventiona
perturbative loop expansion in a theory with a positive de
nite HessianS(2)[d2S/dxdx* one has the standard lowes
order resultsG5S andxmin5f. Since all contributions from
fluctuations~one-loop determinant etc.! are neglected in Eq
~35! one might wonder how, nevertheless, nontrivial ren
malization effects can occur.

This point can be understood by looking at the integ
differential equation forGk given by Eq.~21!. Now we try to
find the (k-dependent! global minimumsmin[smin(f) of
the complete action in the exponential of Eq.~21!. It satisfies

dS

df*
@f1smin#1Rksmin5

dGk

df*
@f#. ~36!

For very large values ofk, the term*ddxs* Rks in Eq. ~21!
strongly suppresses fluctuations withsÞ0, so the main con-
tributions to the integral Eq.~21! will come from small os-
cillations aboutsmin50, which is indeed the global mini
mum in this case. In this case one hasxmin[smin1f5f
and Eq.~36! is obeyed forGk5S. When we lowerk towards
zero it often happens thatsmin50 continues to be the abso
lute minimum of the action. This is the case for classica
stable theories with a positive definite HessianS(2) where no
condensation phenomena occur.

On the other hand, Eq.~36! may admit also nontrivial
solutions withsminÞ0 for k small enough. They are relevan
in the case of instabilities where the HessianS(2)@f# devel-
ops negative eigenvalues. Settings5smin1c and expand-
ing up to second order inc one has, withxmin[f1smin ,

exp$2Gk@f#%5 expH 2S@xmin#2E ddxsmin* Rksmin

1E ddxS smin*
dGk

df*
@f#1smin

dGk

df
@f# D J

3E Dc expH 2E ddxc*

3~S(2)@xmin#1Rk!cJ . ~37!

For the ‘‘correct’’ saddle pointS(2)@xmin#1Rk should be
positive semidefinite. The zero modes in case of degene
of the minimum lead to an integration over the vacuu
1-7
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manifold. In lowest order one neglects the remaining Ga
integral involving the positive eigenvalues ofS(2)@xmin# and
finds

Gk@f# ‘ ‘ 5 ’ ’ S@xmin#1E ddxsmin* Rksmin

2E ddxS smin*
dGk

df*
@f#1smin

dGk

df
@f# D .

~38!

For sminÞ0 ~i.e., if xminÞf) this is still a complicated dif-
ferential equation forGk whose solution isnot given byGk
5S. Hence the lowest order~classical! term of the saddle
point approximation does indeed give rise to nontriv
renormalization effects leading toGkÞS. In fact, all the
qualitative features of the condensation phenomena we
interested in are described by this classical term alone.
higher order corrections yield minor quantitative correctio
only. For this to be the case it is important to correctly ide
tify the absolute minimumxmin of the ~total! action. At next-
to-leading order the fluctuationsc modify the right-hand
side ~RHS! of Eq. ~38! by a one-loop term
lnDet8(S(2)@xmin#1Rk) where the prime at the determina
indicates that the zero modes ofS(2)@xmin# are excluded. For
our case of interest this correction is typically small, at le
for d.2.

In Ref. @6# this formalism has been applied to the famili
spontaneous symmetry breaking by a Mexican-hat poten
It was found that the classical term of the saddle point
pansion describes all salient features of the effective po
tial such as the approach of convexity fork→0, and that the
one-loop determinant does not modify its qualitative prop
ties. In Ref.@7# similar classical instability driven renorma
ization effects have been found in the framework of t
Wegner-Houghton equation. For an investigation of a diff
ent scalar theory with a higher derivative kinetic term co
taining the usual positive quadratic kinetic term see Ref.@9#.

V. A SUFFICIENT CONDITION FOR THE ABSOLUTE
MINIMUM

Later on we shall use the saddle point approximation
calculate the effective average action. This requires
knowledge of the absolute minimum of the actionSk

J ~25!. In
order to identify the absolute minimum, we use a meth
similar to the one outlined in@6#. First we split the fieldx
into a classical solution that minimizes the action and
arbitrary, not necessarily small deformationdx:

x~x!5xmin~x!1dx~x!. ~39!

If we insert this ansatz into the action~25! and take advan-
tage of the fact thatxmin is a solution of the equation o
motion ~e.o.m.!

dSk
J

dx*
50⇔@V~2h !1Rk~2h !1luxu2#x5J ~40!
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we obtain

Sk
J@x;J#5Sk

J@xmin ;J#1DSk@xmin ,dx# ~41!

whereDSk is defined as

DSk@xmin ,dx#[E ddxH dx* @V~2h !1Rk~2h !#dx

1
l

2
@xmin

2 ~dx* !21xmin* 2~dx!2

14uxminu2udxu212xmindx* udxu2

12xmin* dxudxu21udxu4#J . ~42!

One can read off immediately that a solution of the e.o
corresponds to the absolute minimum ofSk

J if

DSk@xmin ,dx#>0 ~43!

is satisfied for any deformationdx. BecauseDSk does not
explicitly contain the sources this condition is the same
Sk

J andSk
J505Sk .

It is useful to rewrite the expression forDSk in the fol-
lowing manner:

DSk@xmin ,dx#5E ddxdx* @V~2h !1Rk~2h !

1luxminu2#dx1
l

2E ddx~xmindx*

1xmin* dx1udxu2!2. ~44!

Becausexmindx* 1xmin* dx52Re(xmindx* ) is real the inte-
grand of the second integral in Eq.~44! cannot become nega
tive. Therefore we may conclude that

E ddxdx* @V~2h !1Rk~2h !1luxminu2#dx>0

~45!

for any dx(x) is a sufficient condition forxmin being the
absolute minimum of the actionSk

J for some suitable source
J given by the solution of Eq.~40!.

VI. SEARCHING FOR THE ABSOLUTE MINIMUM

The aim of this section is to find the field configuratio
that minimizes the actionSk

J globally. Here we start with the
case of vanishing external sources and relegate the caJ
Þ0 to Appendix A1. From now on we use the mass-ty
cutoff functionRk5k2. It simplifies the algebra and allow
for particularly transparent results.

We are searching for the minimum ofSk , so we have to
solve the e.o.m.
1-8
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@vk~2h !1luxu2#x50, vk[V1k25h1
h2

2M2
1k2.

~46!

Its most obvious solution is the one of vanishingx, xmin
50. We can now employ the tool we developed in the l
section to find out whetherxmin50 constitutes the globa
minimum. First we insert this solution into Eq.~44! which
yields

DSk@x50,dx#5E ddxdx* @V~2h !1k2#dx

1
l

2E ddxudxu4. ~47!

The next step is to use the Fourier representation

dx~x!5E ddp

~2p!d
dx̃~p!exp~ ipmxm! ~48!

and to go over to momentum space for the first term:

DSk@x50,dx#5E ddp

~2p!d
udx̃~p!u2@V~p2!1k2#

1
l

2E ddxudxu4. ~49!

For k2>M2/2 one finds thatvk(p2)5V(p2)1k2>0 and, as
a consequence,DSk is always positive~or zero!. In this range
of k xmin50 represents the field configuration that minimiz
the action globally. However, ifk2,M2/2, then, for certain
deformations with a sufficiently small amplitude,DSk be-
comes negative. In that casexmin50 cannot be the absolut
minimum.

In order to find the global minimum fork2,M2/2 we try
the plane wave ansatz

xmin~x!5x0 exp~ iQmxm1 ia!, x0 ,a real. ~50!

Inserting Eq.~50! into the e.o.m. leads to the condition

x0~Q2!5A2vk~Q2!/l. ~51!

Obviouslyx0(Q2) is real only if vk(Q
2)<0.

It will be useful to calculate the action for the solutio
xmin determined above. We obtain

Sk@x5x0~Q2!exp~ iQmxm1 ia!#52
V

2l
vk

2~Q2!. ~52!

The action~52! still depends on a free3 parameter, the mo
mentum squaredQ2. Hoping to find the absolute minimum
for the region of smallk-values by using the plane wav

3Q2 is free only within certain bounds, because we chosex0 to be
real.
12502
t

ansatz, we minimize the expression~52! with respect toQ2.
This leads to the conditionQ25M2. Thus we have found a
candidate for the global minimum in the regionk2<M2/2
which is given by

xmin~x!5x̂0 exp~ iQ0mxm1 ia!;Q0m[Mnm . ~53!

Here nm is an arbitrary unit vector (n251), the phasea is
taken to be in@0,2p) and

x̂0[A2
1

l
vk~M2!5A1

l S 1

2
M22k2D ; k2<

1

2
M2.

~54!

By inserting the solution~53! into DSk ~44! we can check
whether it corresponds to the global minimum. In mome
tum space, the LHS of Eq.~45! takes the form

E ddp

~2p!d
udx̃~p!u2FV~p2!1

1

2
M2G . ~55!

Because ofV(p2)>2M2/2, this integral is nonnegative an
thus the sufficient condition for a global minimum is fu
filled.

Equation~53! actually describes a whole family of dege
erate minima parametrized by the phasea and the unit vec-
tor nm . As a consequence, the ‘‘vacuum manifold’’ isS1

3Sd21.
We conclude that the nontrivial solution~53! corresponds

to the absolute minimum ofSk for the regionk2<M2/2,
while the solutionxmin50 constitutes the absolute minimum
for k2>M2/2. The two solutions coincide atk25M2/2.

VII. RENORMALIZATION GROUP FLOW OF THE ZERO
FIELD PROPAGATOR

In this section we compute the scale dependent 2-p
function Sk ~inverse propagator! which was introduced in
Eq. ~32!. The saddle point expansion about the global mi
mum of Sk

J leads to

exp$Wk@J#%5Nk(
xmin

expH 2Sk
J@xmin ;J#

2
1

2
lnDet8Ŝk

(2)@xmin#1•••J . ~56!

Here (xmin
denotes a symbolic summation or integrati

over the possibly degenerate absolute minima. The first t
inside the curly brackets of Eq.~56! represents the dominan
classical term. The second one contains the one-loop effe
and it will be neglected in the following. The normalizatio
constantNk depends on the nature of the minimum and
degeneracy. It will be adjusted such thatWk@0# is continuous
with the initial conditionWk→`@0#50.

Becausexmin(x) is now the minimum of the actionSk
J in

presence of a source it becomes here a functional of
sourceJ(x). The determination ofxmin5xmin(J) for an ar-
bitrary source would be a formidable task. The fact that
1-9
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only want to study the bilinear term inWk simplifies the
problem considerably, since in this case the minimum
needed only for an infinitesimal sourceJ, andxmin(J) can be
obtained by a perturbative expansion about the source-
minimum xmin(J50)[w (0) given by Eq. ~53!. We write
J(x)[« j (x) where« counts the powers ofJ ~with j taken to
be of order«0) and we expand the saddle point according

xmin~x!5w (0)~x!1«w (1)~x!1«2w (2)~x!1•••. ~57!

In order to compute theJ* J-term in Wk it is sufficient to
know the first order correctionw (1). It satisfies the linearized
equation of motion

S J

J* D 5«Ŝk
(2)@w (0)#S w (1)

w (1)* D . ~58!

The operatorŜk
(2) is defined as
dd

on

E

, a
t

12502
s

ee Ŝk
(2)@x#dd~x2y!5S d2Sk

dx* ~x!dx~y!

d2Sk

dx* ~x!dx* ~y!

d2Sk

dx~x!dx~y!

d2Sk

dx~x!dx* ~y!

D
~59!

which yields

Ŝk
(2)@x#[S vk~2h !12luxu2 lx2

lx* 2 vk~2h !12luxu2D .

~60!

For x5w (0) this matrix operator is nonsingular except f
the case where ‘‘2h5M2’’ which corresponds to the
vacuum degeneracy fork2<M2/2. For sourcesJ(p2ÞQ0

2)
one can obtainw (1) by inverting Eq.~58!. This leads to the
following expansion ofSk

J up to terms quadratic in the
sources:
Sk
J@xmin ;J#5Sk

J@w (0)1«w (1)1•••;J#

5Sk
J@w (0);J#2«E ddx$Jw (1)* 1J* w (1)%1

1

2
«2E ddx~w (1)* ,w (1)!Ŝk

(2)@w (0)#S w (1)

w (1)* D 1O~«3!

5Sk
J@w (0);J#2

1

2E ddx~J* ,J!Ŝk
(2)@w (0)#21S J

J* D 1O~J2J* 2!. ~61!
the

-

e
f
rdi-
are

ide-
ol-
From now on no reference to theJ-dependence ofxmin is
made any more, and knowledge of the source-free sa
point w (0) is sufficient in order to determineGk from Eq.
~56!.

Let us first look at the upper region of the renormalizati
group evolution wherek2>kcr

2 5M2/2. Thenxmin5w (0)[0
is the relevant nondegenerate global minimum, and from
~56! with Eq. ~61! we obtain

Wk@J#5E ddxJ* vk~2h !21J1•••. ~62!

(Wk@0#50 is achieved by settingNk51 for all k>kcr .)
HenceGk equals the tree level~cutoff! propagator so that by
Eqs.~32! and ~33!

Sk~p2!5V~p2!, ;k2>M2/2. ~63!

We conclude that during the early stage of the evolution
long ask is larger thankcr , the inverse propagator is no
renormalized,~except for the loop effects neglected here!.

The situation changes oncek drops belowkcr . Then the
relevant saddle point is given by Eq.~53! which represents a
degenerate minimum parametrized by the unit vectornm and
the phasea. Hence the ‘‘summation’’ overxmin in Eq. ~56!
amounts to an integration over the vacuum manifoldS1

3Sd21. This integration will turn out crucial in order to
le

q.

s

restoreU~1!- and Poincare´ invariance.~In Appendix B we
comment on the situation where the integration over
vacuum manifold is omitted.! In Eq. ~61! we also need

Sk
J@w (0);J#5Sk@w (0)#2E ddx$Jw (0)* 1J* w (0)%

52
V

2l
vk

2~M2!2A2
1

l
vk~M2!„J̃~Q0!e2 ia

1 J̃* ~Q0!eia
… ~64!

where J̃(p) denotes the Fourier-transform ofJ(x). For
source functionsJ(x) which do not contain Fourier compo
nents withp25Q0

25M2 the last term of Eq.~64! drops out.
Upon expanding also the LHS of eq.~56! the latter boils
down to4

4The limits J→0 andV→` may not commute. Here we take th
infinite volume limit at the end. Obviously the ‘‘correct’’ order o
limits depends on the physical situation one has in mind. In o
nary quantum field theories or in statistical mechanics the limits
usually performed in reverse order, i.e. firstV→` and thenJ→0.
But since we would like to use the present scalar result as a gu
line for Euclidean quantum gravity on spacetimes with a finite v
ume (Sd, etc.! we have to perform the limitJ→0 first.
1-10
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exp$Wk@0#%~11Wk
quad@J#1••• !

5Nk expH V
2l

vk
2~M2!J E

0

2p

daE
Sd21

dm~n!

3H 11
1

2E ddx~J* ,J!Ŝk
(2)@w (0)#21S J

J* D 1•••J .

~65!

Here *dm(n) denotes theSO(d)-invariant measure on
Sd21. Sincevkcr

(M2)50, we see thatWk@0# is continuous

at k5kcr[M /A2 if we set

Nk5@2pVd21#21 ~66!

for k,kcr whereVd21[*Sd21dm(n) is the volume of the
(d21)-sphere. Thus we are left with
or
e

a

te

12502
Wk@0#52CkV ~67!

where

Ck52
1

2l
vk

2~M2!52
1

8l
~M222k2!2 ~68!

and

Wk
quad@J#5@2pVd21#21E

0

2p

daE
Sd21

dm~n!

3
1

2E ddx~J* ,J!Ŝk
(2)@w (0)#21S J

J* D . ~69!

Before we can perform the integration over the vacu
manifold in the above expression we need to know the
verse of the matrix operatorŜk

(2)@w (0)# ~60!. This inverse is
found to be given by
Ŝk
(2)@w (0)#215S @vk~2D * 2!22vk~M2!#Pk~h,D * 2! vk~M2!e2iMnmxm12iaPk~h,D 2!

vk~M2!e22iMnmxm22iaPk~h,D * 2! @vk~2D 2!22vk~M2!#Pk~h,D 2!
D ~70!
si-

the
-
y

e
on
r

a

where

Pk~h,D 2!5†@vk~2D 2!22vk~M2!#

3@vk~2h !22vk~M2!#2vk
2~M2!‡21 ~71!

and

Dm5]m12iMnm , Dm* 5]m22iMnm . ~72!

After inserting the expression~70! into Eq. ~69! we turn our
attention to the integration overa first. Due to this integra-
tion the off-diagonal entries of the matrix operat
Ŝk

(2)@w (0)#21 yield vanishing contributions. This removes th
J2 and J* 2 terms and thus guarantees theU~1! invariance.
For the diagonal entries which are independent of the ph
a the effect of this integration is just a factor of 2p.

Next we go over to momentum space and then in
se

r-

change the two remaining~up to this point, independent!
integrations over the momentump and the direction of the
unit vectorn such that the latter is performed first. The ea
est way to solve this integral is to choose then-coordinate
system in such a way that one of its axes is parallel to
momentump. After introducing polar coordinates for the in
tegration over the (d21)-sphere we have to deal with onl
one nontrivial angular integral since apart from the volum
element of the (d21)-sphere the integrand just depends
the angleu enclosed byp andn which enters via the scala
product pmnm5upucosu. The remainingd22 angular inte-
grals amount to the volume of a (d22)-sphere and thus to
factor Vd22. This leads to

Wk@J#5Wk@0#1E ddp

~2p!d
J̃* ~p!G̃k~ upu!J̃~p!1O~J2J* 2!

~73!

where (k[k/M )
G̃k5Mk~ upu5Mq!5M 22
Vd22

Vd21
E

0

(11dd,2)p

du sind22 uF S ~q221!2

2
1

1

2
2k2D S q4

2
24q3 cosu1q2~318 cos2 u!

212q cosu152k2D2
1

4
1k22k4G21S q4

2
24q3 cosu1q2~318 cos2 u!212q cosu152k2D .

~74!
1-11
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FIG. 3. Kinetic termS̃k ~in units of M2) in ~a! d53 and~b! d54 dimensions as a function ofupu/M plotted for distinctk values. The
lowest curve corresponds tok[k/M5kcr /M51/A2 whereas the remaining curves correspond tok values 0.65, 0.55, 0.45, 0.3, and 0
increasing order.
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Here we can identifyGk(p2)[G̃k(upu[(pmpm)1/2) as the
propagator defined in Eq.~29!.

In summary the effective average action for smallf is
given by

Gk@f#52
V

8l
~M222k2!21E ddp

~2p!d
f̃* ~p!S̃k~ upu!f̃~p!

1O~f2f* 2! ~75!

such that the bilinear or kinetic termSk(p2)[S̃k(upu
[(pmpm)1/2) is obtained asS̃k(upu)[G̃k(upu)212k2.

We have calculated the remaining integral overu for d
52, 3 and 4 and found explicit analytic expressions for
kinetic term at arbitrary values ofk. The expressions ford
53, k50 andd54, k50 can be found in Appendix C. We
omitted the one ford52 dimensions and those fork.0
because the formulas are extremely lengthy.

The behavior of the various kinetic terms is illustrated
Figs. 3 and 4 by means of two different kinds of plots. In t
12502
e

3D plot the kinetic term is presented as a function of the t
variablesupu andk whereas the 2D plots show certain slic
of the corresponding 3D plots at distinctk values.~We have
displayed only one of the 3D plots here.! Since for k
>M /A2 the kinetic term is not renormalized and thus do
not flow at all, each plot starts atk5M /A2[kcr .

Obviously the plots reflect the same qualitative behav
for the values ofd considered here. Atk5kcr the kinetic
term is given byV(p2) which is characterized by the fea
tures discussed above. As we move on towards sma
scalesk the whole function is lifted so that thep-region
where the kinetic termS̃k(upu) takes negative values shrink
more and more. Finally, atk50, S̃k(upu) has become com
pletely nonnegative rendering the theory stable. In the cou
of this evolution the kinetic term builds up a downward pe
at upu5M which grows sharper while the theory is evolve
towards smaller values ofk. At the pointupu5M , S̃k50(upu)
has a cusp-type singularity at which it is nondifferentiab
but still continuous. It is the shape of this cusp that makes
the main difference between the results ford52 ~which we
FIG. 4. Kinetic termS̃k in d54 dimensions
as a function of p[upu and the cutoffk.
1-12
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have determined but not displayed here!, d53 and d54.
Obviously it turns sharper as we increase the dimensiona
The dressed inverse propagatorVeff[Sk50 had been pre-
sented in the introduction already~Fig. 1!.

VIII. REGIONS IN FIELD SPACE WITHOUT CLASSICAL
RENORMALIZATION

The results for the effective average action derived so
concentrated on the structure of its kinetic term for smallf.
In the following sections we discuss the essential feature
the complete effective average action and of the potentia
our model.

In Sec. IV it was pointed out that there are regions
f-space where no classical renormalization occurs and

Gk@f#5S@f#5E ddxH f* V~2h !f1
l

2
ufu4J . ~76!

Obviously we obtainGk5S for the whole f-space if k

>kcr , since thenŜk
(2)@x# is positive definite for anyx.

Let us now consider the casek,kcr . It follows immedi-
ately from the discussion in Sec. IV that no classical ren
malization is expected for thosef which differ only slightly
from xmin . Furthermore, it is easy to see that as long asufu
is sufficiently large we havexmin5f in leading order and
thusGk5S. To show this we assume that

J5luxminu2xmin ~77!

provides a good approximation to the e.o.m.~40! which
means thatxmin , and thusJ, are large enough to render th
vk(2h)-term negligible. For sources leading to Eq.~77! the
generating functionalWk is then approximately given by

Wk@J#52Sk
J@xmin ;J#

52E ddxH l

2
uxminu42Jxmin* 2J* xminJ ~78!

which coincides with the Legendre transform of

G̃k@f#5E ddx
l

2
ufu45S@f# ~79!

wheref5xmin . If *ddxf* vk(2h)f is at least of the same
order of magnitude as*ddxk2ufu2 this impliesGk5S. Oth-
erwise we have to assume in addition thatk2ufu2!lufu4 in
order to obtain the same resultGk5S. Obviously, in both
cases it is the large fieldf5xmin which causes the Hessia
Ŝk

(2)@xmin# to be positive definite, thereby acting as a cuto
In order to make this argument more precise we rest

our considerations from now on to the subspace of pla
wave fields

f~x!5A exp~ ipmxm1 ib! ~80!
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whereA is a real, positive amplitude. We start from the a
sumption that indeed

Gk@A exp~ ipmxm1 ib!#5S@A exp~ ipmxm1 ib!# ~81!

Then the results obtained in Appendix A1 may be applied
Eq. ~81! in order to determine conditions on the parameteA
which tell us whenGk5S is satisfied.

Inserting Eq.~80! into Eq.~76! and adding the cutoff term
k2*ddxufu2 leads to

G̃k@A exp~ ipmxm1 ib!#[V @Uk~A;p2!1k2A2#

5VFvk~p2!A21
l

2
A4G ~82!

from which we obtain

J5
dG̃k

df*
@A exp~ ipmxm1 ib!#

5@vk~p2!A1lA3# exp~ ipmxm1 ib!. ~83!

By settingJ5« exp(ipmxm1ib) this equation takes the form

vk~p2!A1lA35« ~84!

which is equivalent to Eq.~A5! with x̂0 replaced withA.
Thus we can read off the solution of Eq.~84! from Appendix
A1 which is given by

A~«;p!5H x0~«;p!, vk~p2!>0,

x̃0~«;p!, vk~p2!,0,
~85!

where x0(«;p) and x̃0(«;p) are defined by Eqs.~A6!,
~A11!, respectively.5 Equations~84!, ~85! may now be used
to perform the Legendre transformation fromG̃k to Wk
which yields

Wk@J5« exp~ ipmxm1 ib!#

52VFvk~p2!A2~«;p!1
l

2
A4~«;p!22«A~«;p!G

52Sk
J@A~«;p!exp~ ipmxm1 ib!;« exp~ ipmxm1 ib!#.

~86!

According to Appendices A1,A2 this expression equa
2Sk

J@xmin ;J# if and only if either~I! k>kcr or ~II ! k,kcr and
A(«;p)>Atriv . Here

5In case ofvk(p2),0 we only consider the solution which i
continuous atD50 @see Eq.~A7!# and omit the other two branches
1-13
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Atriv[x̂05A 1

2l
~M222k2! ~87!

denotes the critical value of the amplitude beyond whichGk
becomes trivial, i.e., equal to6 S. It depends onk but is inde-
pendent of the momentump. At the initial point k5kcr we
have Atriv50, but when we lowerk Atriv grows and the
A-interval with nontrivial renormalization effects expands

In terms of the effective potentialsUk(A;p2) for plane-
wave fields which we defined in Eq.~34! the statementGk
5S means thatUk(A;p2) equals the classical potential

U (cl)~A;p2![V~p2!A21
l

2
A4. ~88!

Its minimum is located at

Amin
(cl)~p!5A2

1

l
V~p2! ~89!

where it assumes the value

U (cl)
„Amin

(cl)~p!;p2
…52

V2~p2!

2l
. ~90!

For k not too far belowkcr , the classical minimum lies in the
region with no renormalization (Atriv,Amin

(cl)). But, at k50,
Atriv is always larger thanAmin

(cl) , except forp25M2 where
Atriv5Amin

(cl) .

IX. STRUCTURE OF THE EFFECTIVE AVERAGE
ACTION

In the previous section it was shown that the effect
average action for plane-wave fields equalsS as long asA
>Atriv(k), which will be referred to as the ‘‘outer region’’ o
the effective potential. The inner region forA,Atriv(k) is
characterized by nontrivial instability induced classic
renormalization. Fork>kcr no inner region occurs. Fork
,kcr the determination ofUk(A;p2) in the inner region is
more involved. Depending on the momentump several cases
are to be distinguished.

A. zpzÅM

First of all let us consider the caseupuÞM . The definition
of the effective potential

Gk@A exp~ ipmxm1 ib!#[VUk~A;p2! ~91!

corresponds to sources which are plane waves of the f
J5« exp(ipmxm1ib). Here« is related toA, p andk via the
source-field relation

6If k,kcr andupu5M , A5Atriv is assumed for«50 which means
that, in this special case, we have to insert the free, degen
minimum ~53! into Sk

J in Eq. ~86!. However, the result for
Sk

J@xmin ;J# is not influenced by the degeneracy of this solution.
12502
l

m

«5
1

2

]Uk~A;p2!

]A
1k2A. ~92!

Since according to Sec. VIII and Appendix A1 the out
regionA>Atriv is already parametrized by the«-values lying
in the interval@«k(p2),`) the inner region ofUk must cor-
respond to«-values in@0,«k(p2)). The problem is that, in
case of«,«k(p2), we do not have an exact expression f
the field configurationsxmin which minimize the actionSk

J

globally. Thus we are not able to determine the inner reg
of the potentialUk(A;p2) exactly. However, it is still pos-
sible to deduce the qualitative structure ofUk(A;p2) for A
,Atriv by patching up the available pieces of information

As in Sec. VII we assume that, at least for sufficien
small ufu, Gk is analytic inf andf* . Then it follows from
U~1!-invariance7 thatUk(A;p2) is an even function ofA and
may be expanded aboutA50 according to

Uk~A;p2!52
1

8l
~M222k2!21 (

n51

`

uk
(2n)~p!A2n.

~93!

In Sec. VII we already calculated the first coefficient of th
expansionuk

(2)(p)5Sk(p2). In addition, an expression fo
uk

(4) is derived in Appendix D. It is given by

uk
(4)~p!52„Sk~p2!1k2

…

4Gk
(4)~p2!. ~94!

The 4-point functionGk
(4)(p2) has an extremely complicate

structure; it has been evaluated numerically for some spe
values of p and k only. Thus we know the behavior o
Uk(A;p2) for small values ofA.

On the other hand, we know thatUk(A;p2)5V(p2)A2

1(l/2)A4 for A>Atriv .
For the intermediate range ofA-values where Eq.~93! is

not applicable any more butA is still below Atriv we have to
find an interpolation which connects the small-A region to
the outer regionA>Atriv in a qualitatively correct manner
We make the most natural assumption that this interpola
is a minimal one in the sense that it leads to as few as p
sible extrema of Uk . For instance, if Uk(0;p2)
,U (cl)(Atriv ;p2) and if the slope atA50, i.e.Sk , is positive
we interpolate with a monotonically increasing function fro
the small-A region up toAtriv . Likewise, if the slope atA
50 is negative the interpolating function is assumed to h
a single minimum in the intermediate region.

The justification for this scheme comes from thr
sources:

~i! The inclusion of theA4-term confirms this picture in a
part of the parameter space.

~ii ! In the limit k→0 it leads to the expected convexity o
U0(A;p2).

te7Since the parameterA is chosen to be real theU~1!-invariance of
Uk is not manifest. It is nevertheless present, sinceA has to be
regarded as absolute value of a complex number.
1-14
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~iii ! The resulting Uk(A;p2) connects smoothly to
Uk(A;M2) which can be evaluated exactly.

We shall discuss momentap with V(p2)>0 andV(p2)
,0 separately.

1. The caseV(p2)Ð0

The caseV(p2)>0 corresponds top2-values lying in
$0%ø@2M2,`). In particular it includes the standard effe
tive potential forp50. Since in this caseSk.0 for all k
,kcr the minimal interpolation leads to the monotonica
increasing function shown in Fig. 5. The shape of this cu
changes only insignificantly in the course of the evolutio
The only change is a decrease ofCk compensated by an
increase of the slope of the curve forA,Atriv such that~a!
the inner and the outer region join smoothly atA5Atriv and
~b! Uk2

(A;p2),Uk1
(A;p2) is valid for all A,Atriv , if k2

,k1<kcr . The inclusion of theA4-term gives additional
support to this picture. It turns out that theA2-term domi-
nates the behavior ofUk for all A<Atriv if the difference
betweenupu andM is large enough. Then higher order term
like uk

(4) yield only minor corrections.
In Fig. 6 we plottedU (cl)(A;p2) ~which coincides with

FIG. 5. Qualitative scaling behavior ofUk(A;p2) for p2

P$0%ø@2M2,`), illustrated by three curves corresponding to thek
valuesk5kcr ~upper curve!, k5kl where 0,kl,kcr ~curve in the
middle! andk50.
12502
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the true Uk for k>kcr , A arbitrary and for k,kcr , A
>Atriv) and the approximations

Uk
(2)~A;p2![Ck1Sk~p2!A2

Uk
(4)~A;p2![Ck1Sk~p2!A22„Sk~p2!1k2

…

4

3Gk
(4)~p2!A4 ~95!

for p50,k50 and forupu53M ,k50. Obviouslyp50 is not
sufficiently far away fromM becauseU0

(2) is a good approxi-
mation only for very smallA-values and then grows too fas
to be able to merge withU (cl) at Atriv . The effect of the
A4-term is to bend this curve downward. HenceU0

(4) is al-
ready fairly accurate for a larger range ofA-values and it gets
closer to theU (cl)-curve. ForA approachingAtriv also the
A4-approximation breaks down and it is clear that high
orders are needed in order to hit theU (cl)-curve atAtriv .

For upu53M the situation is much better.U (cl), U0
(2) and

U0
(4) are virtually identical for allA<Atriv5M /A2l. @This is

becauseSk50(p2)'V(p2) for large p.# Due to the correc-
tions coming from theA4-term we expect thatU0

(4) agrees
better with the exactU0 thanU0

(2) but the difference between
the two approximations is too tiny to be visible. Howeve
we surely can infer from Fig. 6 that bothU0

(2) andU0
(4) are

convex. For even larger momenta the quality of the appro
mation ~93! increases.

From the general properties of Legendre transforms
expect lim

k→0
Uk(A;p2) to be a convex function ofA, for all

values ofp. For the momenta considered here this convex
is indeed achieved, albeit in a somewhat trivial fashion sin
the potential was convex from the outset.

2. The caseV(p2)Ë0

Let us now turn to the caseV(p2),0, upuÞM , which is
satisfied by all values ofp2 contained in (0,2M2)\$M2%. For
such momenta theA2-expansion~93! yields no reliable re-
sults because the higher order terms begin to dominate
ready at small values ofA,Atriv . Those results are at mos
FIG. 6. U (cl), Uk50
(2) andUk50

(4) ~in units of M4/l) as functions ofA ~in units of M /Al). ~a! Casep50. The curves forUk50
(2) andUk50

(4)

are those which coincide atA50, whereUk50
(4) corresponds to the curve that develops a negative slope for largeA. The remaining curve

corresponds toU (cl). ~b! Caseupu53M . The difference between the three curves is hardly visible. NearAtriv5M /A2l we haveUk50
(4)

,U (cl),Uk50
(2) .
1-15
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as reliable as the one forp50, k50 and they become in
creasingly worse asupu approachesM. Hence we have to
apply a different method to determine the properties ofUk in
the inner region.

First of all it should be noted that in the course of t
evolutionSk(p2) changes its sign which is obvious from th
Figs. 3 and 4. There exists a scalek̂(p),kcr at which
S k̂(p2)50; we haveSk,0 for k. k̂ andSk.0 for k, k̂.

Along with the evolution ofSk , i.e., the slope ofUk at
A50, the constant termUk(A50;p2)5Ck drops fromCk
50 at k5kcr to Ck52M4/(8l) at k50. If one minimally
interpolates between this small-A behavior andU (cl) one ob-
tains the curves shown in Fig. 7. Note that the change of s
of Sk is crucial for achieving convexity in the limitk→0. As
long ask. k̂(p), Uk is not convex since the negative kinet
term Sk causesUk to decrease for very small values ofA.

In Fig. 7 we included an additional piece of informatio
which is easy to obtain. There exists a certain scalek0(p)
P(0,kcr) at which the value of the potential atA50 equals
its value at Atriv : Uk0(p)(0;p2)5Uk0(p)(Atriv ;p2). This

means thatCk0(p)5U (cl)(Atriv ;p), and by Eq.~68! this con-

dition is equivalent toV(p2)5k0
22M2/2. Hence

k0~p!5
1

A2M
uM22p2u. ~96!

Numerically we find thatk0(p), k̂(p) for any value ofp
considered here. Therefore the slope at the origin is pos
for k5k0. Since, atAtriv , U (cl) has a positive slope too thi
means thatUk has~at least! one maximum and one minimum
in the inner region.~The minimum is the expected one, o
course, essentially the minimum ofU (cl), corrected by the
renormalization effects.! In order to obtain a convex poten
tial in the limit k→0 this local maximum must shrink as th
theory is evolved towards smallerk until it vanishes at some
scale betweenk0(p) and zero.

The results derived so far are sufficient to give a qual
tive description ofUk in the inner region. Fig. 7 illustrates it
essential features as well as theexactstructure of the effec-

FIG. 7. Qualitative scaling behavior ofUk(A;p2) for p2

P(0,2M2)\$M2%, illustrated by three curves corresponding to thek
valuesk5kcr ~upper curve!, k5k0 where 0,k0,kcr ~curve in the
middle! andk50.
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tive potential in the outer region. Again, the effective ave
age potential becomes convex in the limitk→0, this time in
a less trivial fashion though.

B. zpzÄM

Let us finally come to the ‘‘resonant’’ caseupu5M . It will
turn out that anexactexpression forUk can be derived in
this case.

As in the case before we obtain fromU~1!-invariance

Gk@A exp~ iQ0mxm1 ib!#[VUk~A;M2! ~97!

where the corresponding sources are plane waves satis
the source-field relation~92! with p replaced withQ0. From
Sec. VIII and Appendix A1 we know that any sourc
amplitude«.0 is related to a field-amplitudeAP(Atriv ,`)
via Eq. ~92! and that«50 yields Atriv . Actually «50 cor-
responds to thecomplete inner region A,Atriv as well. To
see this we have to look at the generating functionalWk
evaluated atJ5% exp(iQ0mxm) where%[« exp(ib) is com-
plex. Inserting the global minimumxmin in presence of
plane-wave sources, Eq. ~A10!, into Wk@J#5
2Sk

J@xmin(J);J# and expanding this expression with respe
to u%u[« aboutu%u50 yields

Wk@J5% exp~ iQ0mxm!#

5V Fvk
2~M2!

2l
12u%uA2

1

l
vk~M2!

2
u%u2

2vk~M2!
G1O~ u%u3!. ~98!

The crucial point is that the term linear inu%u causes
dWk /d% to be discontinuous at%50. In fact we obtain from
Eq. ~98!

lim
u%u→0

F d

d%
Wk@% exp~ iQ0mxm!#G

%5u%uexp(ib)

5A2
1

l
vk~M2!exp~2 ib![Atriv exp~2 ib! ~99!

which shows that this derivative depends onb, i.e., on the
direction in the complex plane from whichr50 is ap-
proached.

This singular behavior has the effect that the conventio
Legendre transformation is not applicable. In such cases
has to refer to the more general supremum definition of
Legendre transformation, see e.g.@10#. In our case it
amounts to

Uk~A;M2!52k2A21sup
«>0

$2A«2Fk~«;Q0!% ~100!

where
1-16
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Fk~«;Q0![
1

VWk@« exp~ iQ0mxm1 ib!#

52«x̃0~«;Q0!2vk~M2!x̃0
2~«;Q0!2

l

2
x̃0

4~«;Q0!

~101!

with x̃0 defined in Eq.~A11!. Using Eq.~A5! Fk may be
rewritten as

Fk~«;Q0!5
3

2
«x̃0~«;Q0!2

1

2
vk~M2!x̃0

2~«;Q0!.

~102!

Sincex̃0(«;Q0) is a strictly monotonically increasing func
tion of « we can infer from Eq.~102! that Fk is strictly
convex. ~This is of course as it should be because in o
classical approximationWk is related toSk via a Legendre
transformation.! Therefore the strict inequality

]Fk

]«
~«!.

]Fk

]«
~«50![2A2

1

l
vk~M2![2Atriv

~103!

is satisfied for all«.0. It implies that as long as we hav
A,Atriv the supremum of 2A«2Fk(«;Q0) is always
achieved for«50 where it has the valueCk . As a conse-
quence the complete inner region@0,Atriv# corresponds to«
50 and the length of this interval is determined by the line
term of Fk . For A.Atriv the supremum-definition coincide
with the familiar definition of the Legendre-transformatio
so that Eq.~100! leads to

Uk~A;M2!5H Ck2k2A2 if A<Atriv

U (cl)~A;M2! if A.Atriv .
~104!

The behavior ofUk is illustrated in Fig. 8 which contains
several curves obtained from Eq.~104! for distinct values of
k. The caseupu5M is special in thatCk50 equals exactly the
value of U (cl) at its minimumAmin

(cl) , and also because it i
precisely Amin

(cl) which separates the inner from the out

FIG. 8. Scaling behavior ofUk(A;M2), illustrated by six curves
corresponding to different values ofk. With decreasingk the inner
region approaches a constant value.
12502
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region,8 i.e., Atriv5Amin
(cl) . As a consequence the inner regio

of Uk approaches a constant value as the cutoff is lowe
from k5kcr towardsk50. At k50 the inner region is en-
tirely flat and thusUk50 is found to be convex.

Note that, as it should be, the functionalG̃k is always
convex even in situations whereUk , i.e. Gk is not. Compar-
ing Eq. ~34! to Eq. ~82! we see thatG̃k yields Ũk[Uk
1k2A2 when evaluated for plane waves. For instance, fr
Eq. ~104! it follows that Ũk5Ck if A<Atriv and Ũk5U (cl)

1k2A2 if A.Atriv , which is perfectly convex for any value
of k.

The physical interpretation of this behavior ofWk andGk
is as follows. Equation~99! is nothing but the standard for
mula

dWk

dJ*
U

J50

5^x&uJ50[^x& ~105!

evaluated for plane waves. Let us look at this equation
k50. The nonvanishing right-hand side~RHS! of Eq. ~99!
shows that the modes withupu5M acquire a vacuum expec
tation value. After the sourceJ has been switched off adia
batically the expectation value

^x~x!&5
M

A2l
exp~ iMnmxm1 ib! ~106!

‘‘remembers’’ both the directionnm and the phaseb of the
source. This singles out a point (n,b) of the vacuum mani-
fold and leads to a spontaneous breaking of both theISO(d)
symmetry of spacetime rotations and of theU~1! phase sym-
metry.

This formation of a vacuum condensate happens only
the modes withupu5M but not for upuÞM . The difference
of the two cases is nicely illustrated by the plots of the va
ous effective potentials. Let us look at Fig. 7 forupuÞM ,
say, and let us put a ‘‘ball’’ into the minimum of the poten
tial Uk at k5kcr . Then, when we lowerk, at a certain point
the ball rolls down from the local minimum atAÞ0 to the
minimum atA50. Thus, fork50, the corresponding field
mode has no expectation value. The situation is differen
Fig. 8 for upu5M . Until the very last moment of the evolu
tion the ball always sits at the global minimum of the pote
tial and has no tendency to roll towardsA50. Only for a
strictly vanishing cutoffk, Uk(A50;M2) is as low asUk at
the minimum. This means that the corresponding mode
quires an expectation value. In fact, our discussion her
remarkably similar to the analogous treatment of the fami
spontaneous symmetry breaking by a Mexican-hat poten
In the latter case it is the (p50)-modes which condense, bu

8The potential~104! exhibits the special property thatUk results
from the symmetric vacuum state~53! not only forA,Atriv but also
for A5Atriv whereas in the caseupuÞM the symmetry of the rel-
evant quantum vacuum state is already brokenat A5Atriv . For
upu5M the region of spontaneously broken symmetry is restric
to values ofA larger thanAtriv .
1-17
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in the language of the generalized effective average po
tials Uk for arbitrary momenta this makes no conceptual d
ference.

Within the present approximation the true vacuum co
sists of a single plane wave. Therefore this field configu
tion serves as a ‘‘master field’’ from which the expectati
value of any composite operator can be computed by sim
inserting the RHS of Eq.~106!. For]mx* ]mx, say, this leads
to the kinetic condensate~10! announced in the introduction

X. CONCLUSION

In this paper we investigated a scalar model with a n
standard inverse propagator consisting of a destabilizi
2p2 term and a stabilizing1p4 term. We find that this
model exhibits both spontaneous breaking of transla
symmetry and of a globalU~1! phase symmetry. The groun
state respects, nevertheless, a modified combined transl
symmetry which also involves phase rotations. The rotat
symmetry is broken fromSO(d) to SO(d21). In classical
or quantum statistical systems our model describes the s
taneous formation of layers in an otherwise homogene
and isotropic setting. For such models already a tiny per
bation leads to the formation of a geometrical structure.

In order to gain a detailed understanding how the ins
bilities are removed from the effective action by includin
the effects of fluctuations we have performed a renormal
tion group analysis. In particular, we have calculated
renormalization group flow of the dressed inverse propag
Sk(p2) for zero fields and of the finite-momentum effectiv
potentialsUk(A;p2) in leading order of the semiclassical e
pansion. We found strong renormalization effects which
‘‘instability induced’’ rather than ‘‘fluctuation induced.’’
They are driven by the classical instability of the trivi
saddle point in certain regions in the space of field confi
rations. This is related to the fact that the global minimum
the Euclidean actionS@x# is not atx50. Instead, it is real-
ized by nontrivial spin-wave configurations which form
spaceS13Sd21 of classical vacua. At the level of theeffec-
tive theory, we found that the theory stabilizes itself in
dynamical way. The dressed kinetic operatorVeff[Sk50
gives a strictly positive action to all field modes with m
mentaupuÞM . For modes withupu5M it vanishes. These
modes are stabilized by a ‘‘shift to the true vacuum’’ whi
is similar to what happens in standard spontaneous symm
breaking with a Mexican-hat potential. The modes withupu
5M form a spatially nonuniform, Poincare´- and phase-
symmetry breaking condensate. Within the semiclassical
proximation, the true vacuum consists of a single spin w
of momentumM and amplitudeM /(2l), and is of an obvi-
ously nonperturbative nature therefore. The fixed phase
direction of this spin wave lead to a spontaneous breakin
the classicalU~1!3 ISO(d) symmetry.

In this paper we only have considered a model withou
classical mass term. Due to our particular choice of the
frared cutoffRk5k2 generalized results for models with
mass term can easily be inferred from our results for non
nishingk.

In the Introduction we mentioned that a strong motivati
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for studying this model is its similarity with Euclidean qua
tum gravity based upon actions such as*ddxAg$aR
1bR2%. For the conformal factor of the metric such an a
tion contains a negative contribution to the kinetic ener
coming fromAgR and dominating at momenta small com
pared to the Planck mass. At large momenta the action
comes positive and all modes are stable because of the m
festly positive contribution arising fromAgR2. In view of
this analogy it is plausible to speculate that also quant
gravity dynamically stabilizes the conformal factor by dev
oping a nontrivial vacuum structure, with nonzero conde

sates such aŝ(D̄mf)2&, so that all excitations about thi
ground state are stable.

In the scalar model the semiclassical expansion ab
xmin , the global minimum ofSk

J , has led to an effective
kinetic operatorVeff(p2) which has stabilized~almost! all
modes which were unstable with respect to the class
V(p2). In gravity we might expect a similar mechanism
be at work when we expand about the global minimum
*ddxAg$aR1bR2%. Roughly speaking, leaving finer detai
of the momentum dependence aside, theVeff(p2)-curve is
obtained fromV(p2) by shifting it upward by a constan
(mass)2-term M2/2; see Fig. 1. So the dynamical stabiliz
tion of the scalar model is essentially a ‘‘mass generatio

This mass generation also provides the justification
our loop expansion and retaining the lowest order contri
tion only. Contrary to the case of massless models with
ordinary kinetic term where the loop expansion does not l
to reliable results@11#, in our model the mass generation cu
off loops so that the loop correction tol, for instance, is
negligible.

It is an important question how a similar mass generat
would manifest itself in the effective average action for gra
ity, Gk@gmn#, and which type of truncations should be used
order to obtain it from the flow equation@12#. It is clear that
a naive mass term for the conformal factor is forbidden
general coordinate invariance. But also local curvature
variantsR2, RmnRmn etc. are of no help because they vani
for flat space and will not lead to an effective action who
minimum is atgmn5dmn @13#. This suggests that the releva
terms inG andGk must benonlocal if expressed in a gauge
invariant way.~After gauge fixing, they may be local, nev
ertheless.! For instance, a higher dimensional analogue of
2d induced gravity action*ddxAgRh21R, added to the
Einstein-Hilbert term, is known to have flat space as its g
bal minimum@13#. Hence all fluctuations about this groun
state, including those of the conformal factor, are stab
Therefore it would be very interesting to study the renorm
ization group flow ofGk@gmn# using a truncation of the spac
of actions which includes nonlocal invariants. Work alo
these lines is in progress.

One may wonder if the analogy between our model a
gravity can be put even further. In a gauge fixed version
gravity the local symmetry of general coordinate transform
tions may be ‘‘spontaneously broken,’’ similar to the Higg
picture for local gauge theories. This language is usua
employed in order to describe spontaneous compactifica
of higher dimensional theories. The fact that the minimum
1-18
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the Euclidean action occurs for a non-translationally inva
ant field configuration then strongly suggests the existenc
additional space dimensions,d.4. Otherwise, ford54, the
spectrum of excitations may not exhibit the full fou
dimensional Poincare´ symmetry, similar to the spectrum
shown in Fig. 2. In higher dimensions, thed-dimensional
Poincare´ symmetry may be reduced to a four-dimension
Poincare´ symmetry, again similar to our example. Actuall
classical solutions with spontaneous compactification wh
have a lower Euclidean action than flatd-dimensional space
have been discussed a long time ago@14#. In view of the
present paper it would be very interesting to find realis
classical solutions corresponding to the absolute minimum
the Euclidean action.

APPENDIX A: GLOBAL MINIMUM FOR PLANE-WAVE
SOURCES

In this part of the appendix we concentrate on determ
ing the global minimum of the actionSk

J for plane-wave
sourcesJ5« exp(ipmxm1ib). In the first subsection we dis
cuss two kinds of solutions, each of them yielding the glo
minimum in a certain range of the («,p,k)-parameter space
In the second subsection the function«k(p2), which de-
scribes the region in the parameter space separating t
ranges, is exactly derived. The third subsection of this
pendix contains additional calculational details needed
obtaining some of the results given in the first subsection

1. Solutions of the e.o.m.

For the calculation of the effective average action
plane-wave average fields~see Sec. IX! it is necessary to find
out some properties of the solutions corresponding to non
nishing sources which are plane waves of the form

J~x!5« exp~ ipmxm1 ib! ~A1!

with a real ‘‘amplitude’’ «>0 andbP@0,2p). This restric-
tion allows us to calculate the minimizing field configur
tions either exactly~for k2>M2/2) or at least approximately
for small values of« ~for k2<M2/2).

For the source~A1!, the e.o.m. we have to solve takes t
form

@V~2h !1k21luxu2#x5« exp~ ipmxm1 ib!. ~A2!

a. The solutionxÊ exp(ipx¿ib)

The simplest solution one can think of is a fieldx which
does not ‘‘know’’ about the existence of the nontrivial, d
generate minimum found forJ50 and oscillates with the
same frequency and phase as the source. If we inser
corresponding ansatz

x~x!5x0 exp~ ipmxm1 ib! ~A3!

into the e.o.m., the result is thex-independent equation

vk~p2!x01lux0u2x05«. ~A4!
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As we chose« to be real,x0 must also be real, so that Eq
~A4! boils down to a simple cubic equation in the real va
ablex0:

x0
31

vk~p2!

l
x02

«

l
50. ~A5!

The general solution of this equation is given by

x0~«;p!5S «

2l
1A «2

4l2
1

vk
3~p2!

27l3 D 1/3

1S «

2l
2A «2

4l2
1

vk
3~p2!

27l3 D 1/3

. ~A6!

We have to distinguish the two cases where

D[
«2

4l2
1

vk
3~p2!

27l3
~A7!

is either positive or negative. If it is positive, the above a
plitudex0(«;p) represents a single real solution of Eq.~A5!.
But if it is negative, the square root ofD becomes imaginary
so that x0(«;p) comprises three different real solution
Those can be rewritten in the manifestly real form

x0
(n)~«;p!52A2

vk~p2!

3l

3cosF1

3
arccosS «

2A2
27l

vk
3~p2!

D 1
2pn

3 G ,

n50,1,2. ~A8!

However, one can check easily that the only candidate
the global minimum isx0

(n50) , because the action corre
sponding to this branch is lower than the action correspo
ing to the other two branches.9 Taking into account that the
branchx0

(n50) is the only one that coincides with Eq.~A6! at
D50, this result is not very surprising.

Combining the above expressions, which describe po
tial minima in the two complementary regions ofD, we can
formulate solutions for the whole range ofD and thus also of
«. We have to consider two distinct cases. Forvk(p2)>0, D
is always nonnegative, so the candidate for the global m
mum reads

xmin~x!5F S «

2l
1AD D 1/3

1S «

2l
2AD D 1/3G

3exp~ ipmxm1 ib!. ~A9!

For vk(p2),0, we have to fit together the two relevant s
lutions for D>0 andD,0, so that

xmin~x!5x̃0~«;p!exp~ ipmxm1 ib! ~A10!

where

9The appertaining proof can be found in Appendix A3.
1-19
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x̃0~«;p!55 S «

2l
1AD D 1/3

1S «

2l
2AD D 1/3

, D>0,

2A2
vk~p2!

3l
cosF1

3
arccosS «

2A2
27l

vk
3~p2!

D G , D,0.

~A11!
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b. Is xÊ exp(ipx¿ib) the global minimum?

What remains to be dealt with is the question whether
solutions ~A9!, ~A10! constitute absolute minima or jus
saddle points. First we check this for large values ofk, k2

>M2/2: In this region the relationvk(p2)>0 is always sat-
isfied which means thatD cannot become negative. If w
take the corresponding solution, Eq.~A9!, and send« to
zero, we end up withxmin50, which was already shown t
be the minimizing field configuration forJ50. In addition, it
is clear that the integral

E ddq

~2p!d
udx̃~q!u2H V~q2!1k21lF S «

2l
1AD D 1/3

1S «

2l
2AD D 1/3G2J ~A12!

is always nonnegative~remember thatvk(q
2)5V(q2)1k2

>0 for k2>M2/2) and thusDSk>0 is satisfied.10 Conse-
quently we can identify Eq.~A9! as the field that correspond
to the absolute minimum fork2>M2/2; it coincides with the
result of Sec. V if we set«50.

Next we investigate the casek2,M2/2. The amplitudes of
the solutions corresponding to bothvk(p2)>0 andvk(p2)
,0 grow monotonically, as we increase«, without ap-
proaching any finite bound. This means that, for sufficien
large values of«, luxminu2 will always compensate any pos
sible negative value ofvk(q

2)>2M2/2, rendering the inte-
grals ~A12! or

E ddq

~2p!d
udx̃~q!u2@V~q2!1k21lx̃0

2~«;p!# ~A13!

and thusDSk positive. On the other hand, the solutions~A9!,
~A10! do not approach the nontrivial, degenerate solut
~53! as we send« to zero.@Even for momentapm5Mnm ,
unu51, the limit «→0 produces only a unique solution o
the form~53!, with the unit vectorn and the phaseb fixed.#
In view of this behavior we can state that for any moment
p with upuÞM there exists a certain value«k(p2).0, so that
for all «>«k(p2) one of the solutions~A9! or ~A10! yields
the absolute minimum; it depends on the value ofvk(p2)
whether Eq.~A9! or Eq. ~A10! is the right one. This implies
that for «-values below the corresponding boundary va

10The momentumq is not to be confused with the momentum
the sourcep.
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«k(p2) any of the above solutions becomes unstable un
certain deformations and therefore is a saddle point or a lo
extremum. For sufficiently small«-values the true globa
minimum must be a generalization of the nontrivial min
mum we calculated for the case of vanishing sources.

An upper bound for«k. Because of the condition~43! we
can find an upper bound«̃k(p2) for the amplitude«k(p2),
where the transition from one«-region to the other takes
place. All we have to do is to insertx05x̂0—this is the
lowest value forx0, for which the first integral of Eq.~44! is
manifestly positive~or zero!—into Eq. ~A5! and calculate
the corresponding amplitude«. The result is

«̃k~p2!5
1

2M2
A2vk~M2!/l~p22M2!2. ~A14!

We can turn the above condition on« into a condition on the
momentum of the sourcep. It follows immediately that for
all « there exists a momentumpk(«), so that for allp2 sat-
isfying the relation

max„0,M22pk
2~«!…<p2<M21pk

2~«! ~A15!

the solutions~A9! and ~A10! represent absolute minima. A
lower boundp̃k

2(«) for pk
2(«) is given by the expression

p̃k
2~«!5A 2M2«

A2vk~M2!/l
<pk

2~«!. ~A16!

@In Appendix A2 we prove that indeed«̃k(p2)5«k(p2) and
thus p̃k

2(«)5pk
2(«).#

The exceptional caseupu5M . For momentapm5Q0m
5Mnm , unu51, the situation is more subtle. For all«.0 we
have x̃0(«;Q0).x̂0. Hence, if«.0, the corresponding so
lution ~A10! represents the absolute minimum. The pha
and the direction of the momentum vector of this solution
uniquely determined by the corresponding parameters of
source. This is still the case for«→0, where the solution
takes the formx̂0 exp(iMnmxm1ib) with nm , b fixed. De-
spite of the fact that the integral~A13! is nonnegative for this
solution, it does not really yield the true vacuum for vanis
ing sources, which is degenerate with respect to the ph
and the direction of the momentumQ0. Thus we recognize a
discontinous behavior concerning the degeneracy of the
vacuum when we switch on sources of the for
« exp(iQ0mxm1ib). This is analogous to the ‘‘tilting’’ of a
Mexican-hat potential caused by a symmetry break
source.
1-20
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c. Perturbative expansion aboutxmin(JÄ0)

Let us now return to the casepmÞMnm . As mentioned
before, the solution for sufficiently small« has to depend on
« in such a way that it approaches the degenerate solu
~53! for «→0. As we show below it is a function of the sam
free parameters as Eq.~53! and is degenerate as well, wit
the vacuum manifold given byS13Sd21.

There are two important points concerning this solut
that we do not really know. Neither do we know if the tra
sition ‘‘degenerate↔ nondegenerate’’ is discontinuous as
the case above~a smoothly vanishing dependence on the f
parameters would be conceivable as well!, nor do we know
the point where this transition takes place, since we have
proof that there are no intermediate solutions connecting
degenerate solution to the solution which is valid for«
>«k(p2). It is natural to assume that no such intermedi
solutions exist and that the transition point is given
«k(p2). This would mean that, contrary to the casepm
5Mnm , the degeneration occursbelowand notat a certain
boundary value of«, since the source is nonzero at«k(p2)
and still dictates the phase and the direction of the mom
tum.

From now on we will identify the domain of validity o
this solution for small values of« with the region «
,«k(p2). One should bear in mind that in principle the
could be additional, intermediate solutions in this regio
However, the numerical evidence which we present in S
IX strongly supports the assumption that those intermed
solutions do not exist.

Let us have a closer look at the structure of the solut
for «,«k(p2). Due to the information we have about th
solution we may expand it in a power series of the form

xmin~x!5x̂0 exp~ iQ0mxm1 ia!1 (
n51

`

«nw (n)~x!.

~A17!
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In order to calculate the first order termw (1), we insert the
ansatz

xmin~x!5x̂0 exp~ iQ0mxm1 ia!1«w (1)~x!1O~«2!
~A18!

into the e.o.m. and obtain at order«

@vk~2D2!22vk~M2!#w (1) exp~2 iQ0mxm2 ia!

2vk~M2!w (1)* exp~ iQ0mxm1 ia!

5 exp„i ~pm2Q0m!xm1 i ~b2a!… ~A19!

where

Dm[]m1 iQ0m . ~A20!

It is convenient to introduce the field

c~x![w (1)~x!exp~2 iQ0mxm2 ia! ~A21!

in terms of which Eq.~A19! looks more transparent:

@vk~2D2!22vk~M2!#c2vk~M2!c*

5 exp„i ~pm2Q0m!xm1 i ~b2a!…. ~A22!

Obviously the most general solution to this equation can
obtained from the ansatz

c~x!5 f exp„i ~pm2Q0m!xm1 i ~b2a!…1g

3exp„2 i ~pm2Q0m!xm2 i ~b2a!…. ~A23!

After some simple manipulations we find the following e
pressions for the parametersf andg:
f 5
vk„~2Q02p!2

…22vk~M2!

@vk„~2Q02p!2
…22vk~M2!#@vk~p2!22vk~M2!#2vk

2~M2!
~A24!

g5
vk~M2!

@vk„~2Q02p!2
…22vk~M2!#@vk~p2!22vk~M2!#2vk

2~M2!
. ~A25!

By inserting the above expressions into Eq.~A23! and multiplying the result by exp(iQ0mxm1ia) we obtain the desired
expression forw (1). Thus, in the regionk2<M2/2, the absolute minimum of the actionSk

J , containing sources with sufficiently
small amplitudes«, reads

xmin~x!5x̂0 exp~ iQ0mxm1 ia!1«
@vk„~2Q02p!2

…22vk~M2!#1vk~M2!exp„2i ~Q0m2pm!xm12i ~a2b!…

@vk„~2Q02p!2
…22vk~M2!#@vk~p2!22vk~M2!#2vk

2~M2!

3exp~ ipmxm1 ib!1O~«2! ~A26!
1-21
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which is of course equivalent to Eq.~57! combined with Eq.
~58!. Like the free one, the minimum~A26! is parametrized
by the directions ofQ0 and the phasea. At the ‘‘resonance’’
upu5M the expansion~A26! is not well defined for all direc-
tions of pm which, again, illustrates why this case is speci
see the discussion following Eq.~A16!.

2. A necessary condition for the absolute minimum

A given field configurationxmin minimizes the actionSk
J

globally if and only ifDSk@xmin ,dx#, defined by Eq.~42!, is
nonnegative for all deformationsdx. In Sec. V we decom-
posedDSk appropriately and derived a sufficient conditio
Eq. ~45!, which tells us thatDSk is always nonnegative fo
plane waves xmin5x0 exp(ipmxm1ia) provided that k2

>M2/2 or x0>x̂0 if k2,M2/2. In this section we proof that
for plane-wave sources, this condition is alsonecessary, i.e.,
that, for k2,M2/2, the solutions~A9! and ~A10! represent
saddle points rather than absolute minima ifx0(«;p),x̂0 ,
x̃0(«;p),x̂0. We show that there always exist certain~in-
finitesimal! deformations which renderDSk negative.

We start our proof by writing downDSk in the form

DSk@xmin ,dx#5
1

2E ddx~dx* ,dx!Ŝk
(2)@xmin ,dx#S dx

dx* D
1

l

2E ddx$2~xmin* dx1xmindx* !

3udxu21udxu4%. ~A27!

After inserting xmin5x0 exp(ipmxm1ib) into Eq. ~A27! we
diagonalize the matrix operatorŜk

(2) and obtain in analogy
with Appendix B for the part ofDSk which is quadratic in
the deformations

DSk
quad@x0 exp~ ipmxm1 ib!,dx#

5
1

2E ddx$C1~dx!L̃k,1~2Dp
2!C1~dx!

1C2~dx!L̃k,2~2Dp
2!C2~dx!% ~A28!

where

L̃k,1/2~2Dp
2![vk~Dp

2!1vk~Dp*
2!14lx0

2

7A4l2x0
41„V~2Dp*

2!2V~2Dp
2!…2

Dpm[]m1 ipm ; Dpm* []m2 ipm .
~A29!

Thereal fieldsC1 andC2 depend ondx by relations similar
to those betweenK1/2 andJ given by Eq.~B7!. They may be
treated as new, independent variables.

It is important to note that the operatorL̃k,1(2Dp
2), when

applied to exp(6iqmxm) with qm perpendicular topm (qmpm
50), yields the expression
12502
;

L̃k,1„~qm6pm!2
…522~q21p2!1

1

M2
~q21p2!212k2

12lx0
2 . ~A30!

For q25M22p2 we obtain

L̃k,1„~qm6pm!2
…52k22M212lx0

2 ~A31!

which is obviously negative for all x0,x̂0

[A(M222k2)/(2l). This implies that ~for all x0,x̂0)
DSk

quad,0 can be achieved by any deformation of the for

~C1 ,C2!5AH „cos~AM22p2mmxm!,0… if p2,M2,

„exp~2Ap22M2mmxm!,0… if p2.M2,
~A32!

whereA represents a nonvanishing, real parameter andmm is
a unit vector perpendicular topm . It is not difficult to show
that the above deformations~A32! are related to our origina
deformationsdx via

dx~x!5C1~x!exp~ ipmxm1 ib!. ~A33!

Thus inserting Eqs.~A32!, ~A33! into DSk leads to

DSk@x0 exp~ ipmxm1 ib!,C1~x!exp~ ipmxm1 ib!#

5
1

2E ddx$~2k22M212lx0
2!C1

2~x!

14lx0C1
3~x!1lC1

4~x!%. ~A34!

By putting the system in a box with a finite volumeV
[*ddx, we may now introduce an appropriateV-dependent
amplituded/N(V) instead of the parameterA such that, in
the limit V→`, the integral*ddxC1

n(x) remains finite for
n52,3,4 and isÞ0 for n52. This means that for all suffi-
ciently small values of the (V-independent! parameterd.0
the terms of third and fourth order inC1 are negligible,
which leads toDSk,0 if x0,x̂0.

A possible choice forN(V) is given by

N~V!

5H AV if p2,M2,

C~Vn!E ddx exp~2Ap22M2mmxm! if p2.M2,

~A35!

whereVn[*dxn and C(Vm)51 if mnÞ0 for all n, C(Vm)
51/()n:mn50AVn) otherwise.

From the above result we deduce that, in case ofk,kcr ,
x̂0 equals the boundary value forx0(«;p) and x̃0(«;p)
which separates the region where the plane wave solut
~A9! and ~A10! represent the absolute minimum from th
1-22
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region where the absolute minimum is given by the deg
erate solution~A17!. This implies that«̃k(p2)5«k(p2).

3. How to choose the correctx0
„n…

In this part of the appendix we present the still missi
prove that only one of the three solutions

x0
(n)~«;p!exp~ ipmxm1 ib!,n50,1,2, ~A36!

that we found in the region, wherevk(p2),0 is satisfied,
constitutes a genuine candidate for the global minimum
Sk

J , and that is the solution forn50. What we have to do
here is to show that this solution produces a lower act
than the other two. We start the proof by recalling the e
pression for the amplitudex0

(n)(«;p), which takes the form

x0
(n)~«;p!52A2

vk~p2!

3l
cosS u12pn

3 D , n50,1,2,

~A37!

whereu is defined as

u5arccosS «

2A2
27l

vk
3~p2!

D . ~A38!

Inserting Eq.~A36! into Sk
J leads to

Sk
J@x0

(n)~«;p!exp~ ipmxm1 ib!;J#5V
4vk

2~p2!

3l
@22z41z2#,

~A39!

where we introduced the parameter

z[ cosS u12pn

3 D , ~A40!

and used the relation

cosu54z323z. ~A41!

The function f (z)522z41z2 has zeros atz521/A2, z
50 andz51/A2 and exhibits a local minimum atz50 and
two absolute maxima atz561/2. This means thatf (z) de-
scribes a reverse double well. If we know the range of v
ues, whichz covers forn51,2,3, we can use this informatio
concerning the behavior off (z) to show that the solution fo
n50 always yields the least action. For thez-intervals we
need to know we find

n50:arccoszPF0,
p

6 G⇒zPFA3

2
,1G

n51:arccoszPF2p

3
,
5p

6 G⇒zPF2
A3

2
,2

1

2G
~A42!

n53:arccoszPF4p

3
,
3p

2 G⇒zPF21

2
,0G .
12502
-

f

n
-

l-

Since the symmetric functionf (z) grows monotonically for
zP(2`,21/2#, decreases monotonically forzP@1/2,̀ ) and
is smaller than zero only forzP(2`,21/A2)ø(1/A2,`)
one realizes immediately that the solution corresponding
n50 always produces the least action, except for
z-values belonging to the angleu5p/2, where the action for
n50 is identical with the one forn51. Thus we have
proved that our statement is correct.

APPENDIX B: SYMMETRY BREAKING BY A FIXED
SPIN-WAVE CONFIGURATION

In this appendix we diagonalize the matrix differenti
operator Ŝk

(2)@w (0)#21 for w (0)[xmin(J50) given by Eq.
~53!. From the technical point of view this amounts to th
computation ofWk or Gk with the integration over the
vacuum manifold omitted, i.e., we consider a plane wa
w (0) with a fixed directionnm and phasea.

We start from the definition

Wk
n,a@J#[

1

2E ddx~J* ,J!Ŝk
(2)@w (0)#21S J

J* D 1O~J2J* 2!

~B1!

which is analogous to Eq.~69! but does not include an inte
gration overnm and a. Then, diagonalizing the operato
Ŝk

(2)@w (0)#21 via the unitary transformation

Ŝk
(2)@w (0)#21→VUŜk

(2)@w (0)#21U†V† ~B2!

where

U5
1

A2
S e2 iMnmxm2 ia eiMnmxm1 ia

2e2 iMnmxm2 ia eiMnmxm1 iaD
V5@Ak

2~2D2!1B2~2D2!#21/2

3S Ak~2D2! 2B~2D2!

B~2D2! Ak~2D2!
D ~B3!

with

Ak~2D2![2vk~M2!1A4vk
2~M2!1B2~2D2!,

B~2D2![V~2D* 2!2V~2D2!,

Dm[]m1 iMnm , Dm* []m2 iMnm ,
~B4!

we find

Wk
n,a@J#[

1

2E ddx$K1~J;x,n,a!Lk,1~2D2!21K1~J;x,n,a!

1K2~J;x,n,a!Lk,2~2D2!21K2~J;x,n,a!%

1O~J2J* 2!. ~B5!

Here the operators
1-23
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Lk,1/2~2D2![vk~2D2!1vk~2D* 2!24vk~M2!

7A4vk
2~M2!1B2~2D2! ~B6!

represent the inverse propagators for thereal fields K1 and
K2 which are defined as

K1~J;x,n,a![@Ak
2~2D2!1B2~2D2!#21/2

3$Ak~2D2!Re„J~x!e2 iMnmxm2 ia
…

1 iB~2D2!Im„J~x!e2 iMnmxm2 ia
…%

K2~J;x,n,a![@Ak
2~2D2!1B2~2D2!#21/2

3$Ak~2D2!Im~J~x!e2 iMnmxm2 ia!

1 iB~2D2!Re„J~x!e2 iMnmxm2 ia
…%.

~B7!

Since we dropped the integration over the vacuum manif
we can now perform the Legendre-transformation directly
Eq. ~B5! so that the analog of the effective average act
takes the form
12502
d,
n
n

Gk
n,a@f#5

1

2E ddx$F1~f;x,n,a!@Lk,1~2D2!22k2#

3F1~f;x,n,a!1F2~f;x,n,a!@Lk,2~2D2!

22k2#F2~f;x,n,a!%1O~f2f* 2!. ~B8!

The relations between thereal average fieldsF1 andF2 and
the complex average fieldf[dWk

n,a/dJ can be read off
from Eq. ~B7! if one replacesJ with f andKi with F i .

Obviously the effective kinetic terms for the fieldsF1 ,
F2 are given bysk,1/2(2D2)[Lk,1/2(2D2)22k2. After
going over to momentum space it is easy to see that
kinetic terms yield nonnegative expressions fork50. In fact,
s0,2„(p1Mn)2

…5L0,2„(p1Mn)2
….0 for all p. Further-

more, s0,1„(p1Mn)2
…5L0,1„(p1Mn)2

….0 for all pÞ0,
while s0,1(M2)5L0,1(M2)50. Thus, for the vacuum con
sisting of a single plane wave, all modes of the theory ak
50 are found to be stable.

For k50, Gk
n,a coincides with the actionSfluct discussed in

Sec. II. In momentum space we have

Kj~p2,u!5Lk50,j„~pm1Mnm!2
… ~B9!

with cosu5pmnm /upu.
APPENDIX C: EFFECTIVE KINETIC TERM IN THREE AND FOUR DIMENSIONS

d53:S̃k→0~ upu5Mq!5M2H 4~q1024q817q626q412q2!1/22arctanFq~q624q51q418q324q228q16!

~q1024q817q626q412q2!1/2 G
4~q422q212!~q1024q817q626q412q2!1/2

1

4~q1024q817q626q412q2!1/21arctanFq~q614q51q428q324q218q16!

~q1024q817q626q412q2!1/2 G
4~q422q212!~q1024q817q626q412q2!1/2

J 21

~C1!

d54:S̃k→0~ upu5Mq!58M2q2H 16q6232q4132q222

~q422q212!2
12~q21!21~q422q212!25/2

3S ~q727q6113q515q4227q315q2129q219!2

~q11!2~q12222q101163q82436q61731q42670q21361!
D 1/2

3H ~q21!~q422q212!1/2F1

2

~q11!~q6211q4121q2219!

q727q6113q515q4227q315q2129q219

1
1

2 S ~q11!2~q12222q101163q82436q61731q42670q21361!

~q727q6113q515q4227q315q2129q219!2 D 1/2G 1/2

1sgnS q~q422q212!1/2

q727q6113q515q4227q315q2129q219
D ~q513q422q326q212q16!
1-24
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3F2
1

2

~q11!~q6211q4121q2219!

q727q6113q515q4227q315q2129q219

1
1

2 S ~q11!2~q12222q101163q82436q61731q42670q21361!

~q727q6113q515q4227q315q2129q219!2 D 1/2G 1/2J J 21

. ~C2!

APPENDIX D: THE FOUR-POINT FUNCTION

In this part of the appendix we calculate the coefficientuk
(4)(p) which represents the fourth-order contribution to t

expansion~93! of the effective potentialUk , valid for A,Atriv .
We start from the assumptions thatk,kcr and that the sources are plane wavesJ5« exp(ipmxm1ib) satisfying upuÞM ,

«,«k(p2). This implies that the global minimum is degenerate and corresponds to the fieldxmin given by the expansion~A17!
of Appendix A1. Then it follows from Sec. VII that, in the classical approximation, the generating functionalWk is obtained fro

exp$Wk@J#%5NkE
0

2p

daE dm~n!exp$2Sk
J@xmin ;J#%. ~D1!

Let us consider the LHS of this equation first. Because ofU~1!-invariance and analyticity inJ andJ* , which we assume for
sufficiently smalluJu, Wk has an expansion of the form

Wk@J5« exp~ ipmxm1 ib!#5V@2Ck1„Sk~p2!1k2
…

21«21Gk
(4)~p2!«41O~«6!# ~D2!

where the first two coefficients were already determined in Sec. VII. We will deal with the four-point functionGk
(4)(p2) for the

rest of this section. Note that it depends here only on one single momentum,p, which is due to the fact that we have insert
plane-wave sources.

Next we also expand the exponent on the RHS of Eq.~D1! up to the fourth order in«. By a lengthy calculation~which we
omit here for the sake of simplicity, except forn54, see below! one finds that the corresponding coefficients consist of te
proportional toV and terms containingd-functions of momenta. Since the latter terms do not contribute we obtain

]m

]«m
Sk

J@xmin ;J5« exp~ ipmxm1 ib!#u«50[Vsk
(m)~p,n;a,b! ~D3!

at least form50, . . . ,4.Thus Eq.~D1! takes the form

exp$V @2Ck1„Sk~p2!1k2
…«21Gk

(4)~p2!«41O~«6!#%5NkE
0

2p

daE dm~n!expH 2V (
m50

4
1

m!
sk

(m)~p,n;a,b!«m1O~«5!J .

~D4!

Expanding both sides of Eq.~D4! with respect to« andV and comparing the coefficients ofV«4 then leads to

Gk
(4)~p2!52

Nk

4!VE0

2p

daE dm~n!
]4

]«4
Sk

J@xmin ;J5« exp~ ipmxm1 ib!#u«50 . ~D5!

In order to deduce an explicit expression for the integrand of Eq.~D5! we insert the expansion for the nontrivial, degener
minimum ~A17! into Sk

J and find

]4

]«4
Sk

J@xmin ;J5« exp~ ipmxm1 ib!#u«50512lE ddxH uw (1)u412uw (1)u2~w (2)* ,w (2)!S w (0)

w (0)* D 1~w (2)* ,w (2)!S ~w (1)!2w (0)*

~w (1)* !2w (0)D J
~D6!

wherew (0) andw (1) are determined by Eq.~A26!. w (2) can be derived from

]2

]«2

dSk@xmin#

dx*
U

«50

50 ~D7!

which represents the quadratic part of the e.o.m.~A2! and leads to

S w (2)

w (2)* D 52lŜk
(2)@w (0)#21F2uw (1)u2S w (0)

w (0)* D 1S ~w (1)!2w (0)*

~w (1)* !2w (0)D G . ~D8!
125021-25
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After inserting Eq.~D8! into Eq. ~D6! the resulting expression just depends on the fieldsw (0) and w (1). Using the explicit
expressions for these fields, Eq.~D5! eventually yields

G̃k5Mk
(4) ~ upu5Mq!5

l

2M8

Vd22

Vd21
E

0

(11dd,2)p

du sind22 uH F S 1

2
2k21

1

2
~q221!2Dh~q,u,k!2S k22

1

2D 2G24

3H 3h~q,u,k!418S k22
1

2Dh~q,u,k!318S k22
1

2D 2

h~q,u,k!218S k22
1

2D 3

h~q,u,k!13S k22
1

2D 4

2S k22
1

2D F2S k22
1

2D 2

1S 1

2
2k218q2 cos2 u216q3 cosu18q4D S 65

2
2k2296q cosu

1~32172 cos2 u!q2248q3 cosu18q4D G21F2S 65

2
2k2296q cosu1~32172 cos2 u!q2248q3 cosu

18q4Dh~q,u,k!418S k22
1

2D „32296q cosu1~32172 cos2 u!q2248q3 cosu18q4
…h~q,u,k!3

18S k22
1

2D 2S 127

4
1

k2

2
296q cosu1~32180 cos2 u!q2264q3 cosu116q4Dh~q,u,k!218S k22

1

2D 3

3~8q2 cos2 u216q3 cosu18q4!h~q,u,k!12S k22
1

2D 4S 1

2
2k218q2 cos2 u216q3 cosu18q4D G J J

~D9!

whereGk
(4)(p2)[G̃k

(4)(upu) and

h~q,u,k![52k2212q cosu1~318 cos2 u!q224q3 cosu1
q4

2
. ~D10!

Since the integral overu can be evaluated numerically for fixed values ofp andk an explicit expression forGk
(4)(p2) is at our

disposal and therefore also for the expansion ofWk given by Eq.~D2!.
Introducingf5A exp(ipmxm1ib) and applying the definition

VUk~A;p2!5Gk@f5A exp~ ipmxm1 ib!#5V @2A«~A!2k2A2#2Wk@J5«~A!exp~ ipmxm1 ib!# ~D11!

we may now determine the corresponding approximate effective potentialUk as described in Sec. IX. The relation«(A)
appearing in Eq.~D11! is obtained by inverting

A5
1

2V
]

]«
Wk@J5« exp~ ipmxm1 ib!#5@~Sk~p2!1k2!21«12Gk

(4)~p2!«31O~«5!# ~D12!

which yields

«~A!5„Sk~p2!1k2
…A22„Sk~p2!1k2

…

4Gk
(4)~p2!A31O~A5!. ~D13!

Inserting this expression into Eq.~D11! finally leads to

Uk~A;p2!5Ck1Sk~p2!A22„Sk~p2!1k2
…

4Gk
(4)~p2!A41O~A6!. ~D14!

Thus we can identify the coefficientuk
(4)(p) as

uk
(4)~p!52„Sk~p2!1k2

…

4Gk
(4)~p2!. ~D15!
125021-26
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