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Coherent states in light-front QCD

Anuradha Misra
Department of Physics, University of Mumbai, Santa Cruz (E), Mumbai 400 098, India

~Received 21 June 2000; published 27 November 2000!

The method of asymptotic dynamics is used to construct a set of coherent states for light-front QCD. The
coherent states thus obtained are used to calculateO(g2) corrections to the quark gluon vertex using
x1-ordered perturbation theory. It has been shown that, in this order, the true infrared divergences, i.e., the
divergences appearing due to vanishing energy denominators, get canceled if the Hamiltonian matrix element
is calculated between the coherent states.

PACS number~s!: 11.15.Bt, 12.20.Ds, 36.10.Dr
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I. INTRODUCTION

Recently, there has been a lot of interest in light-fro
field theories~LFFT’s! as these theories provide a hope f
solving the relativistic bound state problem@1–3#. Light
front Hamiltonian methods have already been applied s
cessfully to theories such as Yukawa theory, QED,f4

theory, and (111)-dimensional QCD to obtain the mas
spectrum and wave functions@4–7#. However, there are stil
unresolved issues which must be addressed before one
develop nonperturbative methods for light-front quantu
chromodynamics~LFQCD! @3#. One of these important is
sues is the problem of infrared~IR! divergences@3,8#.

In LFFT’s there are two kinds of IR divergences—tru
and spurious@9#. Spurious IR divergences are divergenc
arising due tok1→0 and we have named them spurio
because they are actually a manifestation of the UV div
gences of the equal time theory only. Harindranath a
Zhang@8,10,11# have calculated the lowest order correctio
to the quark gluon vertex in LFQCD and have shown tha
consistent treatment of the boundary integrals leads to a
cellation of the spurious IR divergences. However, the t
IR divergences of the theory, which correspond to the ac
IR divergences of the equal time theory and which arise fr
thek1→0,k'→0 region have been avoided by these as w
as by other authors by putting a lower cutoff on bothk1 and
k' .

In a previous work@9#, we suggested the use of a cohere
state basis to deal with true IR divergences in LFFT’s. W
have obtained such a basis for light front QED by using
method of asymptotic dynamics proposed by Kulish a
Faddeev@12# in the context of equal time theories. This c
herent state basis was subsequently applied to a bound
calculation in QED to demonstrate the cancellation of true
divergences@13#. The procedure of Kulish and Faddeev h
been used in equal-time QCD by Nelson and Butler@14# to
generate a set of states in the asymptotic region of pertu
tive Q.C.D. Nelsonet al. have shown@15,16# that the
asymptotic states constructed by the method of asymp
dynamics lead to a cancellation of IR divergences in sepa
topological sets in the matrix element forq1q→q1q1g to
lowest order in perturbative QCD.

The relevance of the coherent state method to LFFT’s
in the observation that this method is specially suited
time (x1) ordered perturbation theory and the bound st
0556-2821/2000/62~12!/125017~15!/$15.00 62 1250
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calculations in LFFT’s are based onx1-ordered Hamiltonian
perturbation theory. The cancellation of IR divergences
this approach can be shown in an almost transparent ma
if one uses suitably defined coherent states instead of F
states to calculate the Hamiltonian matrix elements.

Relevance of a coherent state representation in LFF
has been discussed by other authors as well@17,18#. In the
context of two dimensionalf4 theory, it has been shown
using variational methods, that a coherent state may b
valid vacuum in LFFT’s@17#. In LF Scwinger model, it has
been shown that the physical vacuum is a gauge invar
superposition of coherent states of dynamical gauge fi
zero mode@18#.

There are two approaches to bound state calculations
the light-front–light-front Tamm-Dancoff~LFTD! method
@2# and the discretized light cone quantization~DLCQ!
method@1#. Both of these methods are based on diagonal
tion of the light cone Hamiltonian in Fock basis. The bas
input in such calculations are the matrix elements ofHLC in
Fock basis. In LFTD calculations, these matrix elements
obtained by using thex1-ordered perturbation theory. In
these calculations, the true IR divergences of equal t
theory appear as vanishing light cone energy denomina
in the loop integrals. On the other hand, the Kulish and F
dev approach to asymptotic dynamics leads to asympt
states in which the test functions also consist of similar
ergy denominators. It is the aim of this work to show,
means of an example, that these coherent states actually
to a cancellation of IR divergences inO(g2).

The paper is organized as follows. In Sec. II, we give t
Hamiltonian of LFQCD in two component formalism an
draw all possible diagrams forO(g2) corrections to the
quark gluon vertex~Fig. 1!. This is a summary of work done
by Harindranath and Zhang@11#. In Sec. III, we use the
Kulish and Faddeev procedure to obtain a set of cohe

FIG. 1. Lowest order quark gluon vertex in QCD.
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FIG. 2. O(g2) contribution to
qqg vertex represented byM2.
on
c
m
w

-

states showing explicitly the terms up-toO(g2). In Sec. IV,
we calculate explicitly the matrix elements of interacti
Hamiltonian between these coherent states and show the
cellation of true IR divergences. Section V contains a su
mary and discussion of results. In Appendixes A and B
summarize some details of calculations.

II. PRELIMINARIES

Our starting point is the LFQCD Hamiltonian in two com
ponent formalism in the light-front gaugeAa

15Aa
01Aa

350
@10#,

HLFQCD5E d2x' dx2~H01H1!, ~1!

whereH0 is the free Hamiltonian

H05E d2x' dx2F ~] iAa
j !~] iAa

j !1j†S 2]'
2 1m2

]1 D jG ~2!

andHI is the interaction Hamiltonian

HI5H11H21H31H41H41H5 , ~3!

where

H15Hqqg5E dx2 d2x' gj†F22
1

]1
~]'A'!1~s'A'!

3S 1

]1D ~s']'1m!1
1

]1
~s']'2m!s'A'Gj ~4!

FIG. 3. O(g2) contribution toqqg vertex represented byM3.
12501
an-
-

e

is theqqg interaction,

H25Hggg5E dx2 dx'Fg fabcH ] iAa
j Ab

j Ac
j

1~] iAa
i !S 1

]1D ~Ab
j ]1Ac

j !J G ~5!

represents the 3-gluon interaction

H35Hgggg
(1) 5E dx2 d2x'Fg2

4
f abcf adeAb

i Ac
j Ad

i Ae
j G ~6!

is the usual quartic interaction,

H45Hgggg
(2) 5E dx2 dx'Fg2

4
f abcf ade2S 1

]1D
3~Ab

i ]1Ac
i !S 1

]1D ~Ad
j ]1Ae

j !G ~7!

is the instantaneous 4-gluon interaction andH5 andH6 also
represent instantaneous interactions

H55Hqqgg5E dx2 d2x'F j†s'A'S 1

i ]1D ~s'A'!j

12S 1

]1D ~ f abcAb
i ]1Ac

i !S 1

]1D ~j†Taj!G , ~8!

FIG. 4. O(g2) contribution toqqg vertex represented byM4.
7-2
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H65Hqqqq5E dx2 d2x'F S 1

]1D ~j†Taj!S 1

]1D ~j†Taj!G .

~9!

Substituting the plane wave expansions

FIG. 5. O(g2) contribution toqqg vertex represented byM5.
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12501
A2~x!5(
l
E dq1 d2q'

2~2p!32q1
@el

i a~q,l!e2 iqx1H.c.#, ~10!

j~x!5(
l

xlE dp1 d2p'

2~2p!3
@b~p,l!e2 ipx1d†~p,2l!eipx#

~11!

one can expressH int in terms of creation and annihilatio
operators.

The coupling constant renormalization is obtained by c
culating the matrix element ofH int(0) between initial and
final states@10#
^c f uHint~0!uc i&5^F f uHint~0!uF i&1(
n1

^F f uHint~0!un1&^n1uHint~0!F i&

pf
22pn1

2 1 i e

1 (
n1,n2

^F f uHint~0!un1&^n1uHint~0!un2&^n2uHint~0!uF i&

~pf
22pn1

2 1 i e!~pf
22pn2

2 1 i e!
1•••. ~12!
en
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In a standard LFQCD calculation, the initial and fin
statesF i and F f are chosen to be the Fock states. Har
dranath and Zhang@11# have calculated the lowest order r
diative correction to quark-gluon coupling constant by us
Fock statesF i andF f in the perturbative expansion in Eq
~12!. In thex1 ordered Hamiltonian perturbation theory, on
has the following contributions toO(g2) correction corre-
sponding to diagrams in Figs. 2–9:

M25K p8,l8;qsUH1

1

p22H0

H1

1

p22H0

H1Up,lL ,

~13!

M35K p8l8;qsUH2

1

p22H0

H2

1

p22H0

H1UplL ,

~14!

M45K p8l8;qlUH1

1

p22H0

H2

1

p22H0

H1UplL ,

~15!

M55K p8l8;qsUH2

1

p22H0

H1

1

p22H0

H1UplL ,

~16!

M65K p8l8;qsUH1

1

p22H0

H5UplL , ~17!
-

g

M75K p8l8;qsUH5

1

p22H0

H1UplL , ~18!

M85K p8l8UH1

1

p22H0

H6UplL , ~19!

M95K p8l8;qsUH2

1

p22H0

H5UplL . ~20!

M22M9 can be evaluated using the Feynman rules giv
in Ref. @11# or by directly substitutingH int in the above
expressions and inserting appropriate number of comp
sets of states. However, authors in Ref.@11# have avoided the
infrared problems caused by massless gluons by choosi
suitable cutoff on transverse momentum. It is the aim of t
work to show that the true IR divergences inM22M9 get
canceled if one calculates the Hamiltonian matrix elemen
a coherent states basis which is obtained by using the me
of asymptotic dynamics@12#.

III. COHERENT STATES IN LFQCD

The coherent state method is based on the observa
that in the limit ux1u→`, the total Hamiltonian does no
reduce to the free field Hamiltonian, but to an asympto
Hamiltonian Has, which is obtained by puttingx150 in
H int . Each term inH int has a light cone dependence of th
form exp@2 i (p1

21p2
21•••pn

2)x1/2# and therefore, ifp1
2

1p2
21•••1pn

250 at some vertex, then the correspondi
term in H int will not vanish in largex1 limit.
7-3
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FIG. 6. O(g2) contribution toqqg vertex rep-
resented byM6.
te

n
ial
Therefore, the total Hamiltonian

H5H01HI ~21!

can also be written as

H5Has1HI8 , ~22!

where

Has~x1!5H01Vas~x1!. ~23!

The associatedx1 evolution operatorUas(x
1) in the

Schrödinger representation, which satisfies the equation

i
dUas~x1!

dx1
5Has~x1!Uas~x1! ~24!

can then be used to generate an initial asymptotic sta
space
12501
s’

Has5exp@2VA~x1!#HF ~25!

from the usual Fock spaceHF , in the limit x1→
2`. VA(x1) is asymptoticx1-evolution operator defined
by

Uas~x1!5exp@2 iH 0x1#exp@VA~x1!#. ~26!

VA(x1) is determined by solving Eq.~24! using Magnus
theorem@14# and is given by iterative integrations over a
infinite series of Lie elements of the asymptotic potent
Vas(x

1),

VA~x1!52Ex1

dx81Has
I ~x81!

2
1

2Ex1

dx81Ex81

dx91@Has
I ~x81!,Has

I ~x91!#

1••• . ~27!
FIG. 7. O(g2) contribution toqqg vertex rep-
resented byM7.
7-4
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~The lower end points of the integrations are dropped
causeH0 is modified toHasonly at largeux1u @14#.! Has

I (x1)
is obtained fromHI(x

1) by puttingx150.
Alternatively, one can also solve Eq.~24! as in time-

ordered perturbation theory,

exp@VA~x1!#511S~2 i !nEx1

dx1
1Ex1

1

dx2
1
•••

3Exn21
1

dxn
1 Vas~x1

1!•••Vas~xn
1!. ~28!

The above equation can then be used to define the coh
states@16#

FIG. 8. O(g2) contribution toqqg vertex represented byM8.
12501
-

ent

un:coh&5 lim
x1→`

exp@2VA#un&. ~29!

Up to 0(g2), VA is given by

exp@VA~x1!#5V f~x1!1Vc~x1!1Vq~x1!1Vqqgg~x1!

1Vgggg~x1!1Vqqqq1V f g
(2)1Vg f

(2)1V f f
(2)

1Vgg
(2) , ~30!

where

FIG. 9. O(g2) contribution toqqg vertex represented byM9.
V f~x1!52 i E Hqqgdx152g(
s

(
s8

(
l
E dp1 d2p'

2~2p!3 E dq1 d2q'

2~2p!3@q1#
E dp81 d2p'8

2~2p!3

3js8
1Fb†~p8,s8!Tab~p,s!aa~q,l!el

i F2qi

q1
2

s i~s'•p'2 im!

p1
2

„s'•~p'1q'!1 im…s i

p11q1 G
3d3~p82p2q!QD~p822p22q2!

ei /2(p82 2p2 2q2)x1

p82 2p2 2q2
1b†~p8,s8!Tab~p,s!aa

†~q,l!

3el
i* F2qi

q1
2

s i~s'•p'2 im!

p1
2

„s'•~p'2q'!1 im…s i

p12q1 Gd3~p82p1q!QD~p82 2p21q2!
ei /2(p82 2p22q2)x1

p82 2p21q2

1d~p8,s8!Tad†~p,s!aa~q,l!el
i F2qi

q1
2

s i~s'•p'1 im!

p1
2

„s'•~p'1q'!2 im…s i

q11p1 G
3d3~p82p1q!QD~p82 2p21q2!

ei /2(p82 2p21q2)x1

p82 2p21q2
1d(p8,s8)Tad†~p,s!aa

†~q,l!

3el
i* F2qi

q1
2

s i~s'•p'1 im!

p1
2

„s'•~p'1q'!2 im…s i

p11q1 Gd3~p82p2q!QD~p82 2p22q2!

3
ei /2(p82 2p22q2)x1

p82 2p22q2 Gjs . ~31!

HereQD(k2) is a step function which takes value one only when the denominator in the corresponding term 1/k2 is smaller
than some light cone energy cutoffD, which can be fixed by experimental resolution@19#. QD(k2) defines the asymptotic
region and also what is meant by a soft gluon in the definition of coherent state. For example, for theqqg vertex, the condition

p21k22p82 ,D ~32!
7-5
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leads to the following limits on the momentum of the soft gluon@9#:

k'
2 ,

k1D

p1
,k1,

p1D

m2
. ~33!

Similarly one can define the other terms inVA also:

Vc~x1!52 i Ex1

Hgggdx8152gi f abcE dq1 d2q'

2~2p3!@q1#

dq81 d2q'8

2~2p!3@q81#

dq91 d2q'9

2~2p!3@q91#

3F1

2
aai

† (q)ab j(q8)ack(q9)Vi jk(q1,2q8,2q9)QD(q22q82 2q92)e
i (q22q82 2q92)x1

2 d3(q2q82q9)
q811q91

q8•q9

1H.c.2
1

6
aai(q)ab j(q8)ack(q9)Vi jk8 (q,q8,q9)QD(q21q821q92)

q11q91

q•q8
d3(q1q81q9)

3e2 i (q21q821q92)x1/21H.c.2 iqi

q91

q8•q9
$aai(q)ab j(q8)ac j~q9!QD~q821q921q2!d3~q1q81q9!

3e2 i (q821q921q2)x1/21H.c.1aai~q!ab j~q8!ac j
† ~q9!d3~q2q81q9!ei (q922q22q82)x1/2QD~q922q22q82!

1H.c.1aai
† ~q!ab j~q8!ac j~q9!d3~q2q82q9!QD~q821q922q2!e2 i (q821q922q2)x1/2%G , ~34!
re
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where

Vi jk8 ~q,q8,q9!5d i j ~q2q8!k1d jk~q82q9! i1d ik~q92q! j
~35!

for q1q81q950.
Similarly Vq(x1), Vgggg(x

1), Vqqqq(x
1), and

Vqqgg(x
1) are defined by the following equations:

Vq~x1!52 i Ex1

H3~x81!dx81 ~36!

is the contribution toVA(x1) due to usual quartic coupling
of QCD

Vgggg~x1!52 i Ex1

H4~x81!dx81 ~37!

is due to instantaneous four gluon interaction

Vqqgg~x1!52 i Ex1

H5~x81!dx81 ~38!

results due to instantaneousqqgg interaction, and

Vqqqq~x1!52 i Ex1

H6~x81!dx81 ~39!

results due to instantaneous four fermion interaction. Exp
sions forVq , Vgggg, Vqqgg, andVqqqq are given in Ap-
pendix A.
12501
s-

V f g
(2) , Vg f

(2) , V f f
(2) , andVgg

(2) are the second order term
given by

V f f
(2)5Ex1

dx1
1Ex1

1

dx2
1 H1

as~x1
1!H1

as~x2
1!, ~40!

V f g
(2)5Ex1

dx1
1Ex1

1

dx2
1 H1

as~x1
1!H2

as~x2
1!, ~41!

Vg f
(2)5Ex1

dx1
1Ex1

1

dx2
1 H2

as~x1
1!H1

as~x2
1!, ~42!

Vgg
(2)5Ex1

dx1
1Ex1

1

dx2
1 H2

as~x1
1!H2

as~x2
1!. ~43!

In the coherent state approach, the Hamiltonian ma
elements are calculated between asymptotic states define
Eq. ~29!. We will show, in the next section, that the cohere
state contributions to matrix elements are similar to lo
integrals ofx1-ordered perturbation theory and if one us
x1-ordered perturbation theory to calculate matrix eleme
then the coherent state operator automatically generates
diagrams with signs and weights such that the matrix e
ments are finite inO(g2).

IV. HAMILTONIAN MATRIX ELEMENTS
IN COHERENT STATES BASIS

We will now show that there is an explicit cancellation
IR divergences in the matrix elements in lowest nontriv
order in perturbation theory, if one uses the coherent s
7-6
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basis constructed in Sec. III to calculate the matrix eleme
We calculate here theO(g2) corrections to theqqg vertex
by collecting theO(g2) terms in the following matrix ele-
ment:

M5K qg:cohUFHI1HI

1

p22H0

HI

1HI

1

p22H0

HI

1

p22H0

HI GUq:cohL , ~44!

where

uA:coh&5@12V f2Vc2Vq2Vqqgg2Vgggg2Vqqqq2V f f
(2)

2V f g
(2)2Vg f

(2)2Vgg
(2)#uA& ~45!

with uA& being a Fock state.
One may notice that in Eq.~44!, we are usingx1-ordered

perturbation theory by takingH0 as the unperturbed Hamil
tonian and notHas whereas it is the latter which we had us
to obtain the expressions for coherent states. The idea
work within conventional perturbation theory by using E
~21! to define the unperturbed Hamiltonian asH0 and to take
~only! the initial and final states as coherent states. The
termediate states are taken to be Fock states only. One c
have usedHas as the unperturbed Hamiltonian in Eq.~44!,
but that would not make any difference in the followin
calculations as up to the order in which we are working, i
O(g2) both the methods will lead to the same result.

On using the coherent state basis, there will be extra
grams in addition to those shown in Sec. II. These additio
diagrams correspond to processes in which emission or
sorption of soft gluons by initial or final state has been tak
into account. The full matrix element is represented by d
grams in Figs. 2–9 plus the processes involving soft glu
emission~absorption! by initial ~final! state and is given by

M5M11M281M381M481M581M681M781M881M98 ,
~46!

where

M15^qguHI uq& ~47!
12501
s.

to
.

-
uld

.,

a-
al
b-
n
-
n

and

Mi85Mi1Mi9 , ~48!

for i 52, . . . ,9. Here Mi is the corresponding matrix ele
ment between Fock states given by Eqs.~13!–~20! andMi9
is the additional contribution due to coherent state basis.
act expressions forMi8 andMi9 are given in the Appendix .
Here, we will give only the expressions forM481M58 and
will show that this sum is free of IR divergences. We ha
chosenM48 andM58 rather thanM28 because these involv
triple gluon vertex also which is not present in QED. Th
the following calculation is not just a trivial extension o
earlier work on QED but involves more complicated calc
lations due to non-Abelian nature of QCD.

Recall that in Fock basisM4 andM5 are represented by
Figs. 4 and 5, respectively. These are the only two diagra
which involve twoqqg vertices and one triple gluon vertex
Replacing the Fock states inM4 and M5 by their corre-
sponding coherent states, we arrive at the following expr
sions forM48 andM58 :

M485K qgUH1

1

p22H0

H2

1

p22H0

H1UqL
2K qgUH1

1

p22H0

H2V fUqL
1K qgUV fH2

1

p22H0

H1UqL 2^qguV fH2V f uq&

2^qguH1Vg f
(2)uq&1^qguV f g

(2)H1uq&, ~49!

M585K qgUH2

1

p22H0

H1

1

p22H0

H1UqL
2K qgUH2

1

p22H0

H1V fUqL
1K qgUVcH1

1

p22H0

H1UqL 2^qguVcH1V f uq&

1^qguVg f
(2)H1uq&2^qguH2V f f

(2)uq&. ~50!

M48 and M58 can be calculated by using the Feynma
rules given in Ref.@11# and the expression forV f , Vc , and
V (2)8s given in Sec. III. After some simple algebra, one o
tains

M485M4a1M4b1M4c1M4d1M4e1M4 f , ~51!

where
7-7
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M4a5K qgUH1

1

p22H0

H2

1

p22H0
H1UqL

5E @dq8#u~q81!Gq0
l ~p12q8,q82q,p2!

3
1

p1
22~p12q8!22~q82q!22q2

3G j l
i ~q,2q8,q2q8!

3
1

p1
22q822~p12q8!2

Gq0
j ~p1 ,p12q8,q8!,

~52!

where

@dq8#5
dq81d2q'8

16p3@q81#
, ~53!
12501
Gq0
i ~p,p2k,k!52

ki

@k1#
2

s j~pj2kj !2 im

@p12k1#
s i

2s i
s j pj1 im

@p1#
, ~54!

and

G j l
i ~p,2k,p2k!5F ~p22k! i2

pi

@p1#
~p122k1!Gd j l

1F ~k22p! j2
kj

@k1#
~k122p1!Gd i l

1F ~p1k! l2
pl2kl

@p12k1#
~p11k1!Gd i j ,

~55!
M4b52K qgUH1

1

p22H0

H2V fUqL 52E @dq8#u~q81!Gq0
l ~p12q8,q82q,p2!G j l

i ~q,2q8,q2q8!

3Gq0
j ~p1 ,p12q8,q8!

1

p1
22~p12q8!22~q82q!22q2

QD„p1
22q822~p12q8!2

…

1

p1
22q822~p12q8!2

, ~56!

M4c5K qgUV fH2

1

p22H0

H1UqL 52E @dq8#u~q81!Gq0
l ~p12q8,q82q,p2!G j l

i ~q,2q8,q2q8!Gq0
j ~p1 ,p12q8,q8!

3
QD„p2

22~q82q!22~p12q8!2
…

p2
22~q82q!22~p12q8!2

1

p1
22q822~p12q8!2

, ~57!

M4d52^qguV fH2V f uq&51E @dq8#u~q81!Gq0
l ~p12q8,q82q,p2!G j l

i ~q,2q8,q2q8!Gq0
j ~p1 ,p12q8,q8!

3
QD„p2

22~q82q!22~p12q8!2
…

p2
22~q82q!22~p12q8!2

QD„p1
22q822~p12q8!…

p1
22q822~p12q8!2

, ~58!

M4e52^qguH1Vg f
(2)uq&52E @dq8#u~q81!Gq0

l ~p12q8,q82q,p2!G j l
i ~q,2q8,q2q8!Gq0

j ~p1 ,p12q8,q8!

3
QD„p1

22q22~q82q!22~p12q8!2
…

p1
22q22~q82q!22~p12q8!2

1

p1
22q822~p12q8!2

, ~59!

M4 f5^qguV f g
(2)H1uq&52E @dq8#u~q81!Gq0

l ~p12q8,q82q,p2!G j l
i ~q,2q8,q2q8!Gq0

j ~p1 ,p12q8,q8!

3
1

p2
22~q82q!22~p12q8!2

QD„p2
21q22~q82q!22~p12q8!2

…

p2
21q22~q82q!22~p12q8!2

. ~60!

Similarly, M58 can be written as
7-8



COHERENT STATES IN LIGHT-FRONT QCD PHYSICAL REVIEW D62 125017
M585M5a1M5b1M5c1M5d1M5e1M5 f , ~61!

where

M5a5K qgUH2

1

p22H0

H1

1

p22H0

H1UqL 5E @dq8#u~q81!G j l
i ~q,2q8,q2q8!Gq0

j ~p1 ,p12q8,q8!Gq0
l ~p12q8,q82q,p2!

3
1

p1
22q821~q82q!22p2

2

1

p1
22q822~p12q8!2

, ~62!

M5b52^qguH2H1V f uq&52E @dq8#u~q81!G j l
i ~q,2q8,q2q8!Gq0

j ~p1 ,p12q8,q8!Gq0
l ~p12q8,q82q,p2!

3
1

p1
22q821~q82q!22p2

2

QD„p1
22q822~p12q8!2

…

p1
22q822~p12q8!2

, ~63!

M5c5K qgUVcH1

1

p22H0

H1UqL 5E @dq8#u~q81!G j l
i ~q,2q8,q2q8!Gq0

j ~p1 ,p12q8,q8!Gq0
l ~p12q8,q82q,p2!

3
QD„q822q22~q82q!2

…

q822q22~q82q!2

1

p1
22q822~p12q8!2

, ~64!

M5d52^qguVcH1V f uq&52E @dq8#u~q81!G j l
i ~q,2q8,q2q8!Gq0

j ~p1 ,p12q8,q8!Gq0
l ~p12q8,q82q,p2!

3
QD„q822q22~q82q!2

…

q822q22~q82q!2

QD„p1
22q822~p12q8!2

…

p1
22q822~p12q8!2

, ~65!

M5e52^qguH2V f f
(2)uq&52E @dq8#u~q81!G j l

i ~q,2q8,q2q8!Gq0
j ~p1 ,p12q8,q8!Gq0

l ~p12q8,q82q,p2!

3
QD„p1

22q821~q82q!22p2
2
…

p1
22q821~q82q!22p2

2

1

p1
22q822~p12q8!2

, ~66!

M5 f5^qguVg f
(2)H1uq&52E @dq8#u~q81!G j l

i ~q,2q8,q2q8!Gq0
j ~p1 ,p12q8,q8!Gq0

l ~p12q8,q82q,p2!

3
1

q822q22~q82q!2

QD„q822q21~p12q8!22p2
2
…

q822q21~p12q8!22p2
2

. ~67!
tors
Now, we make the following observations:~1! p1
22q82

2(p12q8)2→0 as q81→q1,qi8→qi , ~2! p1
22(q82

2q2)22(p12q8)2 and q822q22(q82q)2→0 as q81

→0,qi8→0, ~3! In the limit q81→q1,qi8→qi ,

p2
22~q82q!22~p12q8!25q822~q82q!22q2,

~68!

and therefore

M4c1M5c50 ~69!

and
12501
M4d1M5d50, ~70!

~4! q822q21(p12q8)22p2
2→0 when q81→q1,qi8

→qi , therefore, as before,

M4 f1M5 f50, ~71!

hence,

M481M585M4a1M4b1M4e1M5a1M5b1M5e ,
~72!

which does not have any vanishing energy denomina
and, hence, is free of true IR divergences.
7-9
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FIG. 10. Set of diagrams representingM48 .
States to the left~right! line represent the incom
ing ~outgoing! state. Region between the dash
lines represents the interaction region.
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This result can be expressed diagrammatically by rep
ing each of the diagrams in Figs. 4 and 5 by a set of f
diagrams and by using the diagrammatic notation of Nel
@16# to represent the additional contributions due to emiss
and absorption of soft gluons by initial and final states. F
example,M4a , M4b , M4e , andM4d will be represented
by Figs. 10~a!–10~d! respectively. In each of these diagram
states to the left and right of the dashed lines represent
initial and final states respectively.

In a similar manner, each of the diagrams in Figs. 2
will be replaced by a set of four diagrams, each one of
diagrams in a set having the same vertex structure and th
fore one can show, in an identical manner, that the sum
diagrams in a given topological set will be free of vanishi
energy denominators. Thus, theO(g2) corrections to the
qqg vertex do not have any true IR divergences.

V. SUMMARY

True infrared divergences of equal time theory appea
vanishing energy denominators in light front Hamiltoni
perturbation theory. However, if the Hamiltonian matrix e
ements are calculated between states of a suitably ch
coherent state basis, these divergences are expected to
cel, at least, in the lowest nontrivial order. We have appl
the method of asymptotic dynamics to LFQCD to obtain
set of coherent states and have used this set to calc
O(g2) corrections toqqg vertex. The method of Kulish and
Faddeev leads, in a natural way, to asymptotic states w
contain integrals involving energy denominator similar
those appearing in loop integrals ofx1-ordered perturbation
theory. This fact leads to a cancellation of IR divergences
diagrams with the same topological structure. For the p
ticular form of coherent states chosen here, the argum
used in this work to demonstrate the cancellation of IR
vergences can be generalized to other cases also in a stra
forward manner and IR finite matrix elements can be
tained inO(g2) of LFQCD.
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In an earlier work@9#, we have obtained the form of co
herent states for light-front QED and have used these st
to show thatO(e2) vertex corrections are free of true IR
divergences. A similar calculation in case of LFQCD
much more complicated due to the following reasons: Fi
the form of coherent states obtained by applying the met
of Kulish and Faddeev~KF! to LFQCD is much more com-
plicated due to the presence of cubic and quartic couplin
In other words, a physical incoming/outgoing state cons
ing of one quark and one gluon is much more complica
than a corresponding state consisting of one electron and
photon because in the former case, there is additional po
bility of the incoming-outgoing gluon also emitting
absorbing soft gluons apart from the usual soft gluons
companying the quark. This possibility is not there in QE
Secondly,O(g2) corrections to theqqg vertex involve many
more diagrams due to the presence of cubic and quartic
plings. The example that we have chosen for our calcula
involves a triple gluon vertex. This indicates that, in spite
the differences in QED and QCD, theO(g2) true IR diver-
gences get canceled in both the theories. Actually, up to
order, there are no contributions to theqqg vertex involving
the 4-gluon vertex and the sum of contributions involving t
instantaneous interactions is also zero@11#. However, it is
apparent from the derivation presented here that one
show the absence of vanishing energy denominators for e
set of diagrams represented by Figs. 2–9 separately.

It is worth mentioning that in this work we have used t
conventional definition of transition matrix by using the fre
particle HamiltonianH0 as the unperturbed Hamiltonian
The picture that we have is that at asymptotic limits t
dynamics is described by an asymptotic Hamiltonian o
tained by taking thex1→6` limit of the full Hamiltonian
but inside the interaction region the intermediate states
Fock states. If one usesHas in place ofH0 in the perturbative
expansion, then one will have to use coherent states as
intermediate states as well. However, at the order in wh
7-10
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COHERENT STATES IN LIGHT-FRONT QCD PHYSICAL REVIEW D62 125017
we are working both forms for the unperturbed Hamiltoni
lead to the same result. The choice of unperturbed Ha
tonian may be important in higher orders as far as cance
tion or noncancellation of divergences is concerned. The
sue of whether one should replaceH0 by Has in Eq. ~44! and
what are the implications of this is under study and will
addressed in a future work.

It is well known that in equal time QCD, the asymptot
states obtained by KF method do not lead to IR finite ma
elements beyond leading order@20#. There is no reason to
expect otherwise in LFQCD. The reason why IR divergen
cancel out in QED but not in QCD lies in confinement pro
erty of QCD.

The basic assumption in the Lehmann-Symanz
Zimmerman~LSZ! formalism is that in a scattering even
the free particle Hamiltonian describes the dynamics of
coming and outgoing particles. However, this picture bre
down for charged particles interacting via gauge theories
the standard model@21#. The KF method of asymptotic dy
namics takes into account the long range interaction betw
incoming and outgoing states by replacing the free Ham
tonian for a theory by an asymptotic Hamiltonian.In QE
the potential between static charges falls off as 1/r and mass-
lessness of photon causes IR divergences. A massless p
can travel over a large distance and an infinite number of
photons can be created for any finite amount of ener
Block-Nordsieck theorem takes into account these soft p
tons by summing over all processes in which the electro
accompanied by an infinite number of such photons. In
actual experiment also, due to finite resolution of the det
tor, there is no restriction on the number of photons wh
may accompany a charged particle. The method
asymptotic dynamics incorporates this fact in the formali
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by replacing the free particle states by coherent states. T
coherent states take into account emission and absorptio
soft photons at large distances. The Hamiltonian that is u
to obtain these states is the large time limit of QED Ham
tonian. It is well known that this method leads to IR fini
matrix elements in QED.

The procedure followed in case of QED can be applied
QCD also as has been done in this paper and in the work
Nelsonet al., but there it leads only to coherent states whi
take into account the large distance limit of QCD potenti
However, in QCD the incoming and outgoing systems
bound states of quarks and gluons and, therefore, if
method of asymptotic dynamics has to be applied, one m
add to the free particle Hamiltonian not just the large d
tance limit of the QCD potential but also the confining p
tential which is responsible for binding of quarks and gluo
in the hadrons. This is the reason why IR divergences do
cancel in higher orders of QCD even when coherent s
method is used.

The study of coherent state formalism in QCD is intere
ing because of this ‘‘noncancellation’’ of IR divergences.
has long been speculated that the clue to understanding c
confinement in QCD may lie in the noncancellation of
divergences@3,22–24#. The question to be addressed now
whether the suitability of coherent state formalism to lig
front Hamiltonian perturbation theory can be exploited
gain insight into the form of the artificial confining potenti
that is needed for the LFFT program of Wilsonet al.
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APPENDIX A

In this appendix we give the expressions forVq , Vgggg, Vqqgg, andVqqqq:

Vq~x1!52 i Ex1

H3~x81!dx815
g2

2 E dq1
1d2q1'

2~2p!3@q1
1#

dq2
1d2q2'

2~2p!3@q2
1#

dq3
1d2q3'

2~2p!3@q3
1#

dq4
1d2q4'

2~2p!3@q4
1#

Faai
† ~q3!ae j

† ~q4!abk~q1!acl~q2!

3Vi jkl
debc~q3 ,q4 ,2q1 ,2q2!3S q1

11q2
12q3

1

q1•q22q2•q32q3•q4
De2( i /2)(q1

2
1q2

2
2q3

2
2q4

2)x1
d3~q31q42q12q2!

3QD~q1
21q2

22q3
22q4

2!2
2

3
abi

† ~q1!ac j~q2!adk~q3!ael~q4!Vi jkl
bcdeS q1

12q2
12q3

1

q2•q32q1•q22q3•q1
DQD~q1

22q2
22q3

2

2q4
2!3d3~q12q22q32q4!e( i /2)(q1

2
2q2

2
2q3

2
2q4

2)x1
1

1

6
aai~q1!ab j~q2!ack~q3!ade~q4!Vi jkl

abcd~q1 ,q2 ,q3 ,q4!

3S q1
11q2

11q3
1

q1•q21q2•q31q3•q1
D d3~q11q21q31q4!e2( i /2)(q1

2
1q2

2
1q3

2
1q4

1)x1GQD~q1
21q2

21q3
21q4

2! ~A1!

with

Vi jkl
abcd~q1 ,q2 ,q3 ,q4!5 f abcf cde~d ikd j l 2d i l d jk!1 f acef bde~d i j dkl2d i l d jk!1 f adef cbe~d ikd j l 2d i j dkl!. ~A2!

Vgggg(x
1) is due to 4-gluon instantaneous interaction:
7-11
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Vgggg~x1!52 i Ex1

H4~x81!dx815
g2

2
f abcf adeE dq1

1d2q1'

2~2p!3@q1
1#

dq2
1d2q2'

2~2p!3@q2
1#

dq3
1d2q3'

2~2p!3@q3
1#

dq4
1d2q4'

2~2p!3@q4
1#

q2
1q4

1

3Fabi~q1!aci~q2!ad j~q3!ae j~q4!
q1

11q2
11q3

1

~q1
11q2

1!~q3
11q4

1!

ei (q1
2

1q2
2

1q3
2

1q4
2)x1/2

q1•q21q2•q31q3•q1
QD~q1

21q2
21q3

21q4
2!1H.c.

1abi~q1!aci~q2!ad j
† ~q3!ae j~q4!

q1
11q2

11q3
1

~q1
11q2

1!~q3
11q4

1!

e2 i (q1
2

1q2
2

2q3
2

2q4
2)x1/2

q1•q22q1•q32q2•q3
QD~q1

21q2
22q3

22q4
2!

3d3~q11q22q32q4!1H.c.2abi~q1!aci~q2!ad j~q3!ae j
† ~q4!

q1
11q2

11q3
1

~q1
11q2

1!~q3
12q4

1!

e2 i (q1
2

1q2
2

1q3
2

2q4
2)x1/2

q1•q21q2•q31q1•q3

3QD~q1
21q2

21q3
22q4

2!3d3~q11q21q32q4!2H.c.2abi~q1!aci~q2!ad j
† ~q3!ae j~q4!

3
q1

11q2
12q3

1

~q1
11q2

1!~q3
12q4

1!

e2 i (q1
2

1q2
2

2q3
2

1q4
2)x1/2

q1•q22q2•q32q1•q3
QD~q1

21q2
22q3

21q4
2!3d3~q11q22q31q4!1H.c.

2abi~q1!aci
† ~q2!ad j~q3!ae j~q4!

q1
12q2

12q3
1

~q1
12q2

1!~q3
11q4

1!

e2 i (q1
2

2q2
2

1q3
2

1q4
2)x1/2

q1q32q1q22q2q3
QD~q1

22q2
21q3

21q4
2!

3d3~q12q21q31q4!2H.c.2abi~q1!aci
† ~q2!ad j

† ~q3!ae j
† ~q4!

q1
12q2

12q3
1

~q1
12q2

1!~q3
11q4

1!

e2 i (q1
2

2q2
2

2q3
2

2q4
2)x1/2

q2•q32q1•q22q1•q3

3QD~q1
22q2

22q3
22q4

2!3d3~q12q22q32q4!2H.c.

1abi~q1!aci
† ~q2!ad j~q3!ae j

† ~q4!
q1

12q2
11q3

1

~q1
12q2

1!~q3
12q4

1!

e2 i (q1
2

2q2
2

1q3
2

2q4
2)x1/2

q1•q32q1•q22q2•q3
QD~q1

22q2
21q3

22q4
2!

3d3~q12q21q32q4!1H.c.1abi~q1!ac j
† ~q2!ad j

† ~q3!ae j~q4!
q1

12q2
12q3

1

~q1
12q2

1!~q3
12q4

1!

e2 i (q1
2

2q2
2

2q3
2

1q4
2)x1/2

q2•q32q1•q22q1•q3

3QD~q1
22q2

22q3
21q4

2!3d3~q12q22q31q4!1H.c.G . ~A3!

Vqqqq(x
1) results due to four fermion instantaneous interaction

Vqqqq~x1!52 i Ex1

dx81H6~x81!52g2(
spins

( E dp1
1d2p1'

2~2p3!

dp2
1d2p2'

2~2p!3

dp3
1d2p3'

2~2p!3

dp4
1d2p4'

2~2p!3

3js1
1 js2js3

1 js4[b†~p1 ,s1!Tab~p2 ,s2!b†~p3 ,s3!Tab~p4 ,s4!
ei (p1

2
2p2

2
1p3

2
2p4

2)x1/2

p1
22p2

21p3
22p4

2

d3~p12p21p32p4!

~p1
12p2

1!2

3QD~p1
22p2

21p3
22p4

2!2d~p1 ,2s1!Tad†~p2 ,s2!d~p3 ,2s3!Tad†~p4 ,2s4!

3
e2 i (p1

2
2p2

2
1p3

2
2p4

2)x1/2

p1
22p2

21p3
22p4

2

d3~p12p21p32p4!

~p1
12p2

1!2
QD~p1

22p2
21p3

22p4
2!1b†~p1 ,s1!Tab~p2 ,s2!d~p3 ,2s3!

3Tad†~p4 ,2s4!
ei (p1

2
2p2

2
2p3

2
1p4

2)x1/2

p1
22p2

22p3
21p4

2

d3~p12p22p31p4!

~p1
12p2

1!2
QD~p1

22p2
22p3

21p4
2!2d~p1 ,2s1!Tad†

~p2 ,2s2!b†~p3 ,s3!Tab~p4 ,s4!
e(2p1

2
2p2

2
2p3

2
1p4

2)x1/2

p1
22p2

22p3
21p4

2

d3~p12p22p31p4!

~p1
12p2

1!2
QD~p1

22p2
22p3

21p4
2!
125017-12



COHERENT STATES IN LIGHT-FRONT QCD PHYSICAL REVIEW D62 125017
1b†~p1 ,s1!Tad†~p2 ,2s2!b†~p3 ,s3!Tad†~p4 ,s4!
ei (p1

2
1p2

2
1p3

2
1p4

2)x1/2

p1
21p2

21p3
21p4

2

d3~p11p21p31p4!

~p1
11p2

1!2

3QD~p1
21p2

21p3
21p4

2!2d~p1 ,2s1!Tab~p2 ,s2!d~p3 ,2s3!Tab~p4 ,s4!

3
ei (p1

2
1p2

2
1p3

2
1p4

2)x1/2

p1
21p2

21p3
21p4

2

d3~p11p21p31p4!

~p1
11p2

1!2
QD~p1

21p2
21p3

21p4
2!

1b†~p1 ,s1!Tab~p2 ,s2!b†~p3 ,s3!Tad~p4 ,2s4!
ei (p1

2
2p2

2
1p3

2
1p4

2)x1/2

p1
22p2

21p3
21p4

2

d3~p12p21p31p4!

~p1
12p2

1!2

3QD~p1
22p2

21p3
21p4

2!1b†~p1 ,s1!Tab~p2 ,s2!d~p3 ,2s3!Tab~p4 ,s4!

3
ei (p1

2
2p2

2
2p3

2
2p4

2)x1/2

p1
22p2

22p3
22p4

2

d3~p12p22p32p4!

~p1
12p2

1!2
QD~p1

22p2
22p3

22p4
2!

2d~p1 ,2s1!Tad†~p2 ,2s2!b†~p3 ,s3!Tab~p4 ,s4!
ei (p1

2
2p2

2
2p3

2
2p4

2)x1/2

p1
22p2

22p3
22p4

2

d3~p12p22p32p4!

~p1
12p2

1!2

3QD~p1
22p2

22p3
22p4

2!2d~p1 ,2s1!Tad†~p2 ,2s2!d~p3 ,2s3!Tab~p4 ,s4!

3
e2 i (p1

2
2p2

2
1p3

2
1p4

2)x1/2

p1
22p2

21p3
21p4

2

d3~p12p21p32p4!

~p1
12p2

1!2
QD~p1

21p2
21p3

22p4
2!1b†~p1 ,s1!Tad†~p2 ,2s2!

3b†~p3 ,s3!Tab~p4 ,s4!
ei (p1

2
1p2

2
1p3

2
2p4

2)x1/2

p1
21p2

21p3
22p4

2

d3~p11p21p32p4!

~p1
11p2

1!2
QD~p1

21p2
21p3

22p4
2!

1b†~p1 ,s1!Tad†~p2 ,2s2!d~p3 ,2s3!Tab~p4 ,s4!
ei (p1

2
1p2

2
2p3

2
2p4

2)x1/2

p1
21p2

22p3
22p4

2

d3~p11p22p32p4!

~p1
11p2

1!2

3QD~p1
21p2

22p3
22p4

2!1b†~p1 ,2s1!Tab~p2 ,2s2!d~p3 ,2s3!Tad†~p4 ,2s4!

3
ei /2(p1

2
1p2

2
2p3

2
1p4

2)x1/2

p1
21p2

22p3
21p1

2

d3~p11p22p31p4!

~p1
11p2

1!2
QD~p1

21p2
22p3

22p4
2!

1d~p1 ,2s1!Tab~p2 ,s2!b†~p3 ,s3!Tab~p4 ,s4!
e2 i /2(p1

2
1p2

2
2p3

2
1p4

2)x1

p1
21p2

22p3
21p4

2

d3~p11p22p31p4!

~p1
11p2

1!2

3QD~p1
21p2

22p3
21p4

2!2d~p1 ,2s1!Tab~p2 ,s2!b†~p3 ,s3!Tad†~p4 ,2s4!

3
e2 i (p1

2
1p2

2
2p3

2
2p4

2)x1/2

p1
21p2

22p3
22p4

2

d3~p11p22p32p4!

~p1
11p2

1!2
QD~p1

21p2
22p3

22p4
2!2d~p1 ,2s1!Tab~p2 ,s2!

3d~p3 ,2s3!Tad†~p4 ,2s4!
e2 i (p1

2
1p2

2
1p3

2
2p4

2)x1/2

p1
21p2

21p3
22p4

2

d3~p11p21p32p4!

~p1
11p2

1!2
QD~p1

21p2
21p3

22p4
2!. ~A4!

Vqqgg(x
1) results due to instantaneousqqgg interaction
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Vqqgg~x1!52 i Ex1

H5~x1!dx15g2(
s,s8

(
l,l8

E dp1d2p'

2~2p!3 E dp8d2p'

2~2p!3

3E dq1d2q'

2~2p!3@q1#
E dq81d2q'8

2~2p!3@q81#
b†~p8,s8!a~q,l!a~q8,l8!b~p,s!el

i el
j ei (p282q22q82p2)x1/2

p282q22q82p2

3
d3~p82q2q82p8!

q81p1
QD~p282q22q282p28!

1b1~p8,s8!a1~q,l!a1~q8,l8!b~p,s!el
i* el8

j*
ei (p821q21q282p2)x1/2

p281q21q282p2

d3~p81q1q82p!

p12q81

3QD~p281q21q282p28!2b1~p8,s8!a~q,l!a1~q1,l!b~p,s!el
i el8

j*
e2 i (p822q21q822p2)x1/2

p822q21q822p2

3
d3~p82q1q82p!

p12q1
QD~p282q21q282p28!2b1~p8,s8!a1~q,l!a~q8,l8!b~p,s!el

i el8
j

3
e2 i (p821q822q22p2)x1/2

p821q22q822p2

d3~p81q2q82p!

p812q81
QD~p281q22q282p28!. ~A5!

APPENDIX B

We give below the expressions forM28 ,M38 , . . . ,M98 defined in Sec. IV

M285K qgUH1

1

p22H0

H1

1

p22H0

H1UqL 2K qgUH1

1

p22H0

H1V fUqL 2K qgUV f
†H1

1

p22H0
H1UqL 1^qguV f

†H1V f uq&,

~B1!

M385K qgUH2

1

p22H0

H2

1

p22H0

H1UqL 2K qgUH2

1

p22H0

H2V fUqL 2K qgUVc
†H2

1

p22H0

H1UqL 1^qguVc
†H2V f uq&,

~B2!

M485K qgUH1

1

p22H0

H2

1

p22H0

H1UqL 2K qgUH1

1

p22H0

H2V fUqL 2K qgUV f
†H2

1

p22H0

H1UqL 1^qguV f
†H2V f uq&,

~B3!

M585K qgUH2

1

p22H0

H1

1

p22H0

H1UqL 2K qgUH2

1

p22H0

H1V fUqL 2K qgUVc
†H1

1

p22H0

H1UqL 1^qguVc
†H1V f uq&,

~B4!

M685K qgUH1

1

p22H0

H5UqL 1^qguV f
†H5uq&2^qguH1Vqqgguq&, ~B5!

M785K qgUH5

1

p22H0

H1UqL 1^qgu~Vqqgg
† H1uq&2^qguH5V f uq&, ~B6!

M885K qgUH1

1

p22H0

H6UqL 2^qguH1Vqqqquq&, ~B7!

M985K qgUH2

1

p22H0

H5UqL 2^qguH2Vqqgguq&1^qguVc
†H5uq&. ~B8!
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The first term inMi8( i 52, . . . ,9) isMi given in Sec. II and represented by Figs. 2–9. We use the diagrammatic no
of Nelson @15,16# to represent the additional contributions due to emission and absorption of soft gluons. For ex
diagrams in Fig. 5 will now be grouped together with three additional diagrams shown in Fig. 11. In each of these di
states to the left and right of the dashed lines represents the initial and final states respectively. For example, in Fig. 1~b!, the
initial state consists of a quark and a soft gluon and it is obtained from the one quark state~ the Fock state! by applying the
asymptotic operatorV f to the one quark state:

uq~p!:coh&5V f uq~p!&. ~B9!

Contribution of each of these diagrams to the quark gluon vertex can be evaluated by using the Feynman rules give
@10# and the form of the asymptotic states in Sec. III.

FIG. 11. Set of diagrams representingM58 .
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