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Coherent states in light-front QCD
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The method of asymptotic dynamics is used to construct a set of coherent states for light-front QCD. The
coherent states thus obtained are used to calcul{g?) corrections to the quark gluon vertex using
x*-ordered perturbation theory. It has been shown that, in this order, the true infrared divergences, i.e., the
divergences appearing due to vanishing energy denominators, get canceled if the Hamiltonian matrix element
is calculated between the coherent states.

PACS numbds): 11.15.Bt, 12.20.Ds, 36.10.Dr

I. INTRODUCTION calculations in LFFT's are based ari-ordered Hamiltonian
perturbation theory. The cancellation of IR divergences in

Recently, there has been a lot of interest in light-frontthis approach can be shown in an almost transparent manner
field theories(LFFT’s) as these theories provide a hope forif one uses suitably defined coherent states instead of Fock
solving the relativistic bound state problef@—3]. Light states to calculate the Hamiltonian matrix elements.
front Hamiltonian methods have already been applied suc- Relevance of a coherent state representation in LFFT’s
cessfully to theories such as Yukawa theory, QBB  has been discussed by other authors as [#&1]18. In the
theory, and (% 1)-dimensional QCD to obtain the mass context of two dimensional* theory, it has been shown,
spectrum and wave functiofid—7]. However, there are still using variational methods, that a coherent state may be a
unresolved issues which must be addressed before one c@alid vacuum in LFFT'§17]. In LF Scwinger model, it has
develop nonperturbative methods for light-front quantumbeen shown that the physical vacuum is a gauge invariant
chromodynamicgLFQCD) [3]. One of these important is- superposition of coherent states of dynamical gauge field
sues is the problem of infrard¢R) divergence$3,8]. zero modg18].

In LFFT’s there are two kinds of IR divergences—true  There are two approaches to bound state calculations on
and spurioug9]. Spurious IR divergences are divergencesthe light-front—light-front Tamm-Dancoff{LFTD) method
arising due tok*—0 and we have named them spurious[2] and the discretized light cone quantizati¢gBLCQ)
because they are actually a manifestation of the UV divermethod[1]. Both of these methods are based on diagonaliza-
gences of the equal time theory only. Harindranath andion of the light cone Hamiltonian in Fock basis. The basic
Zhang[8,10,11 have calculated the lowest order correctionsinput in such calculations are the matrix element$iof in
to the quark gluon vertex in LFQCD and have shown that &ock basis. In LFTD calculations, these matrix elements are
consistent treatment of the boundary integrals leads to a caebtained by using the"-ordered perturbation theory. In
cellation of the spurious IR divergences. However, the trughese calculations, the true IR divergences of equal time
IR divergences of the theory, which correspond to the actuaheory appear as vanishing light cone energy denominators
IR divergences of the equal time theory and which arise fromn the loop integrals. On the other hand, the Kulish and Fad-
thek* —0k, —0 region have been avoided by these as welldev approach to asymptotic dynamics leads to asymptotic
as by other authors by putting a lower cutoff on bkthand  states in which the test functions also consist of similar en-
K, . ergy denominators. It is the aim of this work to show, by

In a previous worK9], we suggested the use of a coherentmeans of an example, that these coherent states actually lead
state basis to deal with true IR divergences in LFFT’s. Weto a cancellation of IR divergences @(g?).
have obtained such a basis for light front QED by using the The paper is organized as follows. In Sec. II, we give the
method of asymptotic dynamics proposed by Kulish andHamiltonian of LFQCD in two component formalism and
Faddee\[12] in the context of equal time theories. This co- draw all possible diagrams foD(g?) corrections to the
herent state basis was subsequently applied to a bound sta&teark gluon vertexFig. 1). This is a summary of work done
calculation in QED to demonstrate the cancellation of true IRby Harindranath and Zhanfgl1]. In Sec. Ill, we use the
divergence$13]. The procedure of Kulish and Faddeev hasKulish and Faddeev procedure to obtain a set of coherent
been used in equal-time QCD by Nelson and Butlet] to
generate a set of states in the asymptotic region of perturba- qQ ©
tive Q.C.D. Nelsonet al. have shown[15,16 that the a
asymptotic states constructed by the method of asymptotic
dynamics lead to a cancellation of IR divergences in separate

topological sets in the matrix element fg#-g—q+q+g to o
lowest order in perturbative QCD.
The relevance of the coherent state method to LFFT's lies PN B p A
in the observation that this method is specially suited for
time (x*) ordered perturbation theory and the bound state FIG. 1. Lowest order quark gluon vertex in QCD.
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FIG. 2. O@?) contribution to

((gC ((gg\ gqg vertex represented hyt,.

(d) (e)

states showing explicitly the terms up®(g?). In Sec. IV, is theqqg interaction,

we calculate explicitly the matrix elements of interaction

Hamiltonian between these coherent states and show the can-

cellation of true IR divergences. Section V contains a sum- H,=H :f dx™ dx
. ) . 999 L

mary and discussion of results. In Appendixes A and B we

summarize some details of calculations.

gfabet o' ALALAL

+(d'AL) (ALdAL) (5)

Il. PRELIMINARIES a7t

Our starting point is the LFQCD Hamiltonian in two com-
ponent formalism in the light-front gaug@;=Ag+A§=0
[10],

represents the 3-gluon interaction

2
gz fabcfadeALAchijAL} (6)

@ _ -2
, ) H3—Hgggg—f dx™ d°x,
Hirgeo= | dx dx ™ (Ho+Hy), 1)

. o is the usual quartic interaction,
whereH,, is the free Hamiltonian

2
S — > +m? _a@ _ - 9° aborade,| L
Hozf d2x, dx” (a'AJa)(a'AgHgT(—;+ )g ) Ha=Hgggg= | dx—dx, | 5 P2 —=
andH, is the interaction Hamiltonian X (ALgTAL) (7_+) (A" Al )
H|:H1+H2+H3+H4+H4+H5, (3)
where is the instantaneous 4-gluon interaction &hgdandHg also

represent instantaneous interactions

1
Hl:qug:j dx” d?x, g¢"| —2—(9,A)+(0A)) PO
1 1
X| = |(o g +m+—(o, 9, —malA |§ (4 1 beni 1 N
J J +2| — | (FPAR T A — | (£TT29) |, 8
EXs gt
q
b4 q
q
q,
P, D, P, p-¢ P,
FIG. 3. O(g®) contribution togqqg vertex represented hj1s. FIG. 4. O(g®) contribution toqqg vertex represented hj1,.
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FIG. 5. O(g?) contribution togqg vertex represented b,

H6:quqq:de7 dzxi[( )({r a§)< )(‘fTTa'f)

Substituting the plane wave expansions

<¢f|H|nt 0)|¢|> <(I)f|H|nt(0)|q)
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[ela(g,\)e "™ +H.c], (10

A()Ef

2(2m )32 AL

dp* d?p,

2(2m) ——— [b(p,M)e” P +dT(p,— 1) e

11

&(x)= E X

one can expreshl;, in terms of creation and annihilation
operators.

The coupling constant renormalization is obtained by cal-
culating the matrix element dfl;,(0) between initial and
final stated10]

|>+2 < f|Hlnt(0)|n1><n1|H|nt(0)¢)|>

p pnl+ ie
<q)f|Hint(0)|n1><nl|Hint(0)|n2><n2|Hint(O)|q)i>+ 12
nin2 (Pf —Pniti€)(pr —Ppatie)
|
In a standard LFQCD calculation, the initial and final
states®; and ®; are chosen to be the Fock states. Harin- M7=< p’'\;qolH H, p)\>, (19
dranath and Zhanfl1] have calculated the lowest order ra- — Mo
diative correction to quark-gluon coupling constant by using
Fock statesb;, and®; in the perturbative expansion in Eq.
(12). In thex™ ordered Hamiltonian perturbation theory, one M8:< P'A I Hy _ He p>\>, (19)
has the following contributions t®(g?) correction corre- 0
sponding to diagrams in Figs. 2-9: 1
=<p')\’;qcr H, Hg p)\>. (20
< 1 1 > P —Ho
={p’,\;qo|H;— Hy— HilpA ),
p —Hy p —Hp M,— Mg can be evaluated using the Feynman rules given
(13)  in Ref. [11] or by directly substitutingH;,; in the above
expressions and inserting appropriate number of complete
1 1 sets of states. However, authors in Réfl] have avoided the
= < p'\';qo|H, H, Hilp ), infrared problems caused by massless gluons by choosing a
p —Hg p —Hp suitable cutoff on transverse momentum. It is the aim of this
(14)  work to show that the true IR divergences h,— Mg get
canceled if one calculates the Hamiltonian matrix element in
1 1 a coherent states basis which is obtained by using the method
= < PN g\ H; H, Hqp\ ), of asymptotic dynamicgl12].
p-—Ho p —Hp
(19 IIl. COHERENT STATES IN LFQCD
The coherent state method is based on the observation
:<p,)\,_qa H ! H 1 H.|p\ that in the limit [x"|—o, the total Hamiltonian does not
; 2 1 1/ PN/ . I .
p —Hy p —Hy reduce to the free field Hamiltonian, but to an asymptotic
(16 Hamiltonian H,, which is obtained by puttingc™=0 in
Hi:. Each term inH;,; has a light cone dependence of the
form exd —i(p; +p, +---p,)Xx*/2] and therefore, ifp;
= < p'\qo|H; He p)\> , (17 +p, +---+p, =0 at some vertex, then the corresponding
p —Ho term in H;,; will not vanish in largex™ limit.
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Therefore, the total Hamiltonian
can also be written as
H=H,t+H/, (22
where
HodxT)=Hg+Vadxh). (23

The associateck™ evolution operatorU,{x") in the
Schralinger representation, which satisfies the equation

FIG. 6. O(g?) contribution toqqg vertex rep-
resented byMs.

Has= qu_QA(X+)]HF (29

from the usual Fock spacé{g, in the limit x"—
-, OAx") is asymptoticx " -evolution operator defined
by

U dxT)=exd —iHex" Jexg QA(x™)]. (26)
OA(x") is determined by solving Eq24) using Magnus
theorem[14] and is given by iterative integrations over an

infinite series of Lie elements of the asymptotic potential
VadX),

+
QA(X+)= _f dX/+HIaS(X/+)

dU dx")
i%wmﬁxﬂuagxﬂ (24 L .
_EJX er+fx dX”+[H.|as(X,+)!Hlas(X”+)]
can then be used to generate an initial asymptotic states’
space +eee (27
q
q ,
q
<&
t
@ () FIG. 7. O(g?) contribution toqqg vertex rep-
resented byM-.
q q
&
D, | D,
©
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q q
(cgg\ , q .
q q q
b -¢ q >

p1 M ! ((%6\

d P, P P, P, P, P,
() (b) @ (®)

FIG. 8. 0(g?) contribution togqg vertex represented . FIG. 9. O(g®) contribution togqg vertex represented 1o,
(The lower end points of the integrations are dropped be- In:coly= lim exg —QA]|n). (29)
causeH is modified toH ,conly at largelx ™| [14].) HL{(x ") o oo
is obtained fromH,(x") by puttingx™=0.

Alternatively, one can also solve Eq24) as in time- ) A
ordered perturbation theory, Up to 0(g%), Q" is given by
exp[QA(x+)]=1+2(—i)”fx dxffxldx;- iy exf QAXT) = Qp(x ) + Qe(XT) +Qg(XT) + QgqgdXT)

2 2 2
fx+ Laxt v.dx Vo(x* 28 +Qgggg(x+)+9qqqq+9§g)+ ng)-f-ﬂgf)
X | . _
Ve Ve ) (29 +02, (30)
The above equation can then be used to define the coherent
stateq 16] where

» fdp*dzpif dg*d?q, [ dp’*d%p]

Qi(x) =] dxt=—
(x7) 'quqg )Y - 202m)?2 ) 22m3q'])  202m)°

[N

129" oi(o,-p.—im (p.+0q,)+im)d’
ng', bT(p',S’)Tab(p,S)aa(q,)\)e')\ _i_o-l(o-i F} )_(O-L (piJr Ch)Jr )U
q p p +q
g2’ —p~ —gq )x*
X 8%(p' —p—a)O,(p’ " —p —q )————————+b'(p’,s") T?(p,s)al(q,\)
pP’"—p —q
129" oi(o,-p,—im) (o,-(p,—q,)+im)d - L DL
Xt | —————— - = B(p'—p+q)O4(p' " —p +q )——————
q p P —q p'’" —p +q
; 2qi oi(o -p, +im) (Ul'(pi"'QL)_im)O'i
[ T = _
+d(p’,s")T%d (p,s)aa(q,\) €, = o e
gl/2(p’~ —p g )x" )
X &P —p+q)O,(p'” —p +q )——————+d(p’,s")Td"(p,s)a(q.\)
P’ —p +q
129" oo, -p,+im) (o, -(p,+qg,)—im)o , L
Xed| - &(p'—p=q)0,(p’” —p —q")
q p p +q
gif2(p’~ —p =g )x"
X (31)
p'"—p —q

Here® , (k™) is a step function which takes value one only when the denominator in the correspondingkterimsihaller
than some light cone energy cutdff, which can be fixed by experimental resolutid®]. ® ,(k~) defines the asymptotic
region and also what is meant by a soft gluon in the definition of coherent state. For example gfggthertex, the condition

p +kT—p' " <A (32
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leads to the following limits on the momentum of the soft glyéh

k*A prA
2
kf<—— k"< - (33
Similarly one can define the other terms@t* also:
+ d +d2 d r+d2 ’ d rr+d2 n”
QC(X+)=—ifx Hggng'Jr:Zgifabcf q a°q, q q. q ar
2(27%)[q"] 2(2m)%q’ "] 2(2m)%[q" "]
1 T ’ ” ’ " - ’r— "— w ’ ” q,++q”+
X| 5 aai(Map;(a")ac(a") Vik(d, —a", —q")05(a"—a'~ —q")e 2 (a9 —q")——

1 ! n ! ! n — = n— q++q"+ ! n
+H.c— zaai(d)ap(a’)ac(a") Vik(a.a’.9")0x(a" +a" +q )Wé\’(qw +q")

"+

X i@ ra"m a2y, H-C-—iqim{am(q)ab;(q’)ac,-(q”)@A(q"+q”’+q’)b*3(q+q’+q”)
e @A Ry e ag()ay(q')al(q) 8%(g g’ +q")el @ a9 Re (" —q —q' ")
+H-C-+ali(q)abj(q’)ac;(q”)53(q—q’—q”>®A(q"+q”‘—q‘)e‘“q'”q"_‘q_)”’z}l, (34)
[
where _ ), 0F, 0P, andQ{?) are the second order terms
Vii(4,0",0") = 6;;(a— ")+ Sj(a’ —q")i + 5ik(q”_Q(?3j5) given by

+ +
Q§$>=fx dx;fxldx; HSXDHE(x)),  (40)
for q+q'+q"=0.

Similarly  Q4(X"), Qgggg(X7), Qqgqaqx’),  and

+ +
Qqqedx ") are defined by the following equations: )= f Cdxg | ) HRXDHEKS), (4D
A kS I\ [ F + +
)= [ Hatx %9 o= [T axt [ ngig Rt @2
is the contribution ta)”(x™) due to usual quartic coupling o o
of QCD ngg):f dx;f Ldxg H3IX)HS(x3). (43
Qgggg(x*)z—ifx+H4(x’*)dx’* (37) In the coherent state approach, the Hamiltonian matrix

elements are calculated between asymptotic states defined by
Eq. (29). We will show, in the next section, that the coherent
state contributions to matrix elements are similar to loop
. integrals ofx™-ordered perturbation theory and if one uses
Qqgodx ) =i Jx Hs(x' H)dx'* (39 x"-ordered perturbation theory to calculgte matrix elements
then the coherent state operator automatically generates extra
diagrams with signs and weights such that the matrix ele-
ments are finite ir0(g?).

is due to instantaneous four gluon interaction

results due to instantaneogs gg interaction, and

+

QqaqdX") =1 fx He(x' H)dx’* (39) IV. HAMILTONIAN MATRIX ELEMENTS
IN COHERENT STATES BASIS

results due to instantaneous four fermion interaction. Expres- We will now show that there is an explicit cancellation of
sions forQy, Qggg9: Lgqge aNdQqqqq are given in Ap- IR divergences in the matrix elements in lowest nontrivial
pendix A. order in perturbation theory, if one uses the coherent state
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basis constructed in Sec. Il to calculate the matrix elementsand
We calculate here thz®(gz) corrections to thejqg vertex
%yerc];).llectmg theO(g”) terms in the following matrix ele M = M+ M (48)
for i=2,...,9. Here M, is the corresponding matrix ele-
ment between Fock states given by E@3)—(20) and M
is the additional contribution due to coherent state basis. Ex-
H act expressions fatt] and M are given in the Appendix .
p~—Hg ! Here, we will give only the expressions fdvl,+ M; and
will show that this sum is free of IR divergences. We have
chosenM, and M rather thanM; because these involve
H H, || g:con (44) triple gluop vertex aIsp Which is.not present in QEQ. Thus
'p—_HO ' P —H, HiH ' the following calculation is not just a trivial extension of
earlier work on QED but involves more complicated calcu-
where lations due to non-Abelian nature of QCD.
Recall that in Fock basia1, and M; are represented by
Figs. 4 and 5, respectively. These are the only two diagrams
which involve twoqqg vertices and one triple gluon vertex.
|Azcol =[1— Q= Q= Qq— Qqgoq— Lgggg— Lqaqq— Qi) Replacing the Fock states i, and Ms by their corre-
sponding coherent states, we arrive at the following expres-
sions forM, and Mg :
!

H,+H,

-

1 1

+H

-0{-0f-a@|A) (45)

1 1
Hy H> Hy

p-—Ho p —Hp

y

Q>_<qg|QfH29f|Q>

My= < a9
with |A) being a Fock state.
One may notice that in Eq44), we are using* -ordered <
—\49

perturbation theory by takingl, as the unperturbed Hamil-
tonian and noH ;swhereas it is the latter which we had used
to obtain the expressions for coherent states. The idea is to
+ < ag

Hy Ho (¢

0

work within conventional perturbation theory by using Eg.
(21) to define the unperturbed Hamiltoniantdg and to take
(only) the initial and final states as coherent states. The in- @) @)
termediate states are taken to be Fock states only. One could —(qg|H.1Qg¢|a) +(qa|Qiz’H,la), (49
have usedH . as the unperturbed Hamiltonian in E@4),

!

QH,——H
fHo— 1
P —Ho

but that would not make any difference in the following
calculations as up to the order in which we are working, i.e.,
0(g?) both the methods will lead to the same result.

On using the coherent state basis, there will be extra dia-

H ! H !
27T 17—
p-—Ho p —Hp

Hy

Mé=<qg

grams in addition to those shown in Sec. Il. These additional
diagrams correspond to processes in which emission or ab- —{ ag|Hz - H1Q¢\q
sorption of soft gluons by initial or final state has been taken 0
into account. The full matrix element is represented by dia-
grams in Figs. 2—9 plus the processes involving soft gluon +<qg QH;— H, q> —{(q9|QH1Q4|q)
emission(absorption by initial (final) state and is given by —Hp
+(ag|Q§PH1|a) —(ag|H20P|a). (50)
M= M+ Mot Ma+ M+ Mg+ Mg+ Mo+ Mg+ M, My and M{ can be calculated by using the Feynmann

(49 ryles given in Ref[11] and the expression fd2;, ., and

Q@' given in Sec. Ill. After some simple algebra, one ob-
tains

where
M= Mg+ Myp+ Myt Myg+ Maet Mys, (51
My=(qg|H|a) (47 where
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Ma={ ag/Hy———H,———H It (pup— k) =2 - ZPK)Zim
4a=\ d9 lp_—Ho 25 —H, 1|4 qol P, P—K,K)= (K] [0 —Kk']
_ ’ BN al r N O'Jp]+|m
—f [dg']6(q" " )4e(p1—a",9"—q,p2) 0 —, (54)
[p”]
1
>< —_ — —_ —
P; —(pP1—q") —(d'—q)"—q and
xTI'(q,-q'.a—q’)
1 ' i _ [ p + +
X — I‘ao(pl,pl—q”q’), F“(p,—k,p—k)— (p—2k)'— T (p™—2k™) 5j|
Py —d" —(p1—d')” (p"]
%2 +| (k—2p)I— j (kt—=2p™) |6
where (k"] !
| |
dq’*dzqi + I P— + +
e (p+K)'— ———(p"+k™) |5,
[dq ] 1677-3[q’+], (53) [p+_k+] 1
(55
M4b=—<qg Hy————H, 0, q>=—f[dq’]ﬂ(q”)Fho(pl—q’,q’—q,pz)Fh(q,—q’,q—q’)
— Mo
j "o 1 - ) — -
XTgo(P1,P1—0",0")— =01 —q"" = (p1—0q") ) ——= —,  (56)
p; —(P1—9') " —(a'—a) —q p; =9 —(p:—q’)
M4c=<qg QfH, — Hlq>:—f[dq']e<q'+>rgo<p1—q',q'—q,pz>r}.<q,—q',q—q'>rgo<pl,p1—q',q'>
— Mo
Ox(p; —(@'—a) —(p1—q")") 1
y Af)z (,q q, (P2 ,q, — — 57)
p,—(@'—a) —(p1—q’)" p;—a —(p:—q")
M4d=—<qglﬂszﬂf|q>=+f [da'16(q" T 4e(P1—a'.0" —a.p) T} (. —a",.a— ") ho(P1.p1—a".q")
@ ( - _ r__ - _ _ r\ - @ - _ = __ _ !
" AE’Z (Iq q_) (P2 q_)) Afpl (j (P1 ,q_)) 58
p, —(d'—d)"—(p1—d’) P —d" —(p1—1q")
M4e:_<qg|Hlﬂ(ng)|q>:_j [da']6(a" )T ge(P1—a',9" —a.p2) T} (0, —a",d—a" )T he(p1,p1—a'.0")
O,(p;—q —(q'—q) —(p1—q’)~ 1
» A(E)l ? (’q q} (P1 fq}) S . (59
Pr—d —(@'—=a) " —(p2—d)” p; =9 —(p1—0d’)
M4f=<qglﬂ$§’H1IQ>=—f [dq'16(q" )T ye(P1—a".0" —q,p) (A, —a".a— ") ho(P1.P1—a’.q")
1 0,(p, +q —(q'—q) —(p1—q')"
o APz +q"—(d"—a)" —(p1—q") )_ 60

P, —(d'—a) —(p1—0a)”  p2+q —(@'—q) —(p1—q")"

Similarly, Mg can be written as
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Mg= Msat+ Msp+ Msc+ Mg+ Mset+ Ms;, (61)
where
1 1 ' [E2Y all ' INT [ | [
M= qg|H— Hi— Hijg)=| [da']e(qa’" )T(a,—a",d—a")Tge(P1,P1—a",9" ) go(P1—d",d4" —q,p2)
p —Hy p —Hg
1 1
X — ’— ’ — - A ’— = (62)
p; =9 +(@'—a) —p, p; =4 —(p1—a")
M5b=—<qg|HzH19f|q>=—f [dq'16(q" )T(a,—a".a—q )T he(P1.P1—a".a" ) (P2 —0’,0" — 0. p2)
1 @,(p; -9 " —(p1—q')~
NS S— A(EJl Iq_ (P1 q_) ), 63
p; —q" " +(@'—-a) —p, pP;—q9"" —(p1—q")
M5c=<qg QcHy———H; q>=f[dq']ﬂ(q'+>r}.<q,—q'.q—q'>rgo<p1.p1—q',q'>rgo<p1—q',q'—q,pz>
— Mo
0,@ -9 —-(q'—-q)" 1
« A(,qi ? (,q q}) S . 64
9 -9 —(@ -~ p;—9 —(p1—q")
Msd=—<qglﬂcHlﬂf|q>=—f [da'16(q" )Tj(d,—a".a— )T he(P1.P1—a",a" ) e(P1—0a".q" —d.py)
e) P—_ ~— ’_ — @ - Nl P
« A(/q_ ? (f] q_)) A(EJl f]_ (P1 ,q_)) ©9
q'~ -9 —(a'—q) Py~ —(p1—a’)
M5e=—<qngzQ$?)IQ>=—f [da'T6(a’ )T (a,—a',a—a" )T ho(p1,p1—a".a )T he(P1—0a'.q" —d.p2)
O,(p1—q' " +(a'—q) " —p; 1
« A(E’l ,q_ (,q q_) ?2) S . 66)
P =9 +(@'—=aq) —p; pP;—9 —(p1—7q")
M5f=<qg|ﬂézf’H1IQ>=—f [da’'l6(a’ )T} (a,—a’,a—a")ho(p1,p1—a".a ) Te(P1—a'.q" —0.py)
l ® = __ *+ _ ' — -
N — A(f:l_ ? (P1 q_) ?2). 67
-9 —@-a9)° g —q +(p—a) —p;
[
Now, we make the following observationd) p; —q' "~ Mg+ Ms4=0, (70)

—(p1—q') =0 as q'"—q",q/—a;, (@ p;—(a'" . N ot
-q7) —(p1—9q')” andq’ —q —(q9'—q)"—0 asq’t (4 d'"—a +(p1—q) —p,—0 when q'"—q",q

—0,/—0, (3) Inthe limitq' *—q*,q/ —q;, —q;, therefore, as before,
— ’ - " — ’r— ’ — - + =V,
P, —(@'=a) —(p1—q") =9 —(q'—a) —q, Magt Mer=0 (71
(68) hence,
and therefore Mg+ Mg=Ma+ Map+ Myet Msa+ M5b+M5e£ :
72
Mg+ Ms.=0 (69)
which does not have any vanishing energy denominators
and and, hence, is free of true IR divergences.
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q
| I
| ;| 9-a |
! 1 |
p, | p, P l'pq D,
| |
®) FIG. 10. Set of diagrams representing} .
States to the leftright) line represent the incom-
ing (outgoing state. Region between the dashed
I q lines represents the interaction region.
|
| I
I 4 q-q
q |
P, : P, P R P,
© (@

This result can be expressed diagrammatically by replac- In an earlier work9], we have obtained the form of co-
ing each of the diagrams in Figs. 4 and 5 by a set of fouherent states for light-front QED and have used these states
diagrams and by using the diagrammatic notation of Nelsoio show thatO(e?) vertex corrections are free of true IR
[16] to represent the additional contributions due to emissiontivergences. A similar calculation in case of LFQCD is
and absorption of soft gluons by initial and final states. Formuch more complicated due to the following reasons: First,
example Mya, Mgy, Mae, andMyqg will be represented  the form of coherent states obtained by applying the method
by Figs. 10a)—10(d) respectively. In each of_these diagrams, of Kylish and FaddeeyKF) to LFQCD is much more com-
states to the left and right of the dashed lines represent ﬂﬁicated due to the presence of cubic and quartic couplings.

initial and final states respectively. o In other words, a physical incoming/outgoing state consist-
In a similar manner, each of the diagrams in Figs. 2—-9

il b laced b + of four di h f th ing of one quark and one gluon is much more complicated
Wil be replaced by a Set of four diagrams, each one o han a corresponding state consisting of one electron and one
diagrams in a set having the same vertex structure and ther

fore one can show, in an identical manner, that the sum hoton because in the former case, there is additional possi-

diagrams in a given topological set will be free of vanishingbgIty b(')f theft mlcomlng-ou:gfomg tr?luon ?Isoﬁ erlnlttlng-
energy denominators. Thus, ti®@(g?) corrections to the absorbing soft giuons apart from the usual soft giuons ac-

qqg vertex do not have any true IR divergences. companying the quark. This possibility is not there in QED.
SecondlyQ(g?) corrections to theqg vertex involve many

more diagrams due to the presence of cubic and quartic cou-
plings. The example that we have chosen for our calculation
True infrared divergences of equal time theory appear agvolves a triple gluon vertex. This indicates that, in spite of
vanishing energy denominators in light front Hamiltonian the differences in QED and QCD, tt@(g?) true IR diver-
perturbation theory. However, if the Hamiltonian matrix el- gences get canceled in both the theories. Actually, up to this
ements are calculated between states of a suitably chosender, there are no contributions to tfgg vertex involving
coherent state basis, these divergences are expected to céme 4-gluon vertex and the sum of contributions involving the
cel, at least, in the lowest nontrivial order. We have appliednstantaneous interactions is also z¢td]. However, it is
the method of asymptotic dynamics to LFQCD to obtain aapparent from the derivation presented here that one can
set of coherent states and have used this set to calculasbow the absence of vanishing energy denominators for each
0O(g?) corrections tagqg vertex. The method of Kulish and  set of diagrams represented by Figs. 2—9 separately.
Faddeev leads, in a natural way, to asymptotic states which It is worth mentioning that in this work we have used the
contain integrals involving energy denominator similar toconventional definition of transition matrix by using the free
those appearing in loop integrals xf -ordered perturbation particle HamiltonianH, as the unperturbed Hamiltonian.
theory. This fact leads to a cancellation of IR divergences inThe picture that we have is that at asymptotic limits the
diagrams with the same topological structure. For the pardynamics is described by an asymptotic Hamiltonian ob-
ticular form of coherent states chosen here, the argumeniained by taking the<* — =+ limit of the full Hamiltonian
used in this work to demonstrate the cancellation of IR di-but inside the interaction region the intermediate states are
vergences can be generalized to other cases also in a straighbck states. If one usés$,¢in place ofHg in the perturbative
forward manner and IR finite matrix elements can be ob-expansion, then one will have to use coherent states as the
tained inO(g?) of LFQCD. intermediate states as well. However, at the order in which

V. SUMMARY
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COHERENT STATES IN LIGHT-FRONT QCD PHYSICAL REVIEW B2 125017

we are working both forms for the unperturbed Hamiltonianby replacing the free particle states by coherent states. These
lead to the same result. The choice of unperturbed Hamileoherent states take into account emission and absorption of
tonian may be important in higher orders as far as cancellasoft photons at large distances. The Hamiltonian that is used
tion or noncancellation of divergences is concerned. The isto obtain these states is the large time limit of QED Hamil-
sue of whether one should repladg by H,<in Eq. (44) and tonian. It is well known that this method leads to IR finite
what are the implications of this is under study and will bematrix elements in QED. _
addressed in a future work. The procedure followed in case of QED can be applied to
It is well known that in equal time QCD, the asymptotic QCD also as has been done in this paper and in the work by
states obtained by KF method do not lead to IR finite matrix'\IEIsc.met al, but there it Ieads_ only to _co_herent states Wh!Ch
elements beyond leading ordg0]. There is no reason to take into account the large distance limit of QCD potential.
expect otherwise in LFQCD. The reason why IR divergencegowever’ in QCD the incoming and outgoing systems are

cancel out in QED but not in QCD lies in confinement prop- ound states of qu_arks anq gluons and, the_refore, if the
erty of QCD. method of asymptotic dynamics has to be applied, one must

The basic assumption in the Lehmann-Symanzik-add to the free particle Hamiltonian not just the large dis-
Zimmerman(LSZ) formalism is that in a scattering event, tanqe I|m|_t Of. the QCD .potentlal. bu_t also the confining po-
tential which is responsible for binding of quarks and gluons

the free particle Hamiltonian describes the dynamics of in- the had This is th hv IR di d
coming and outgoing particles. However, this picture breakd the hadrons. This Is the reason why Ivergences do not
ancel in higher orders of QCD even when coherent state

down for charged particles interacting via gauge theories of

: thod is used.
the standard modé¢R1]. The KF method of asymptotic dy- me o _
namics takes into account the long range interaction between The study of coherent state formalism in QCD is interest-

incoming and outgoing states by replacing the free Hamilln9 because of this “noncancellation” of IR divergences. It

tonian for a theory by an asymptotic Hamiltonian.In QED, has !ong bee’? speculated that _the clue to understanding color
the potential between static charges falls off asatid mass- cpnfmement in QCD may lie in the noncancellation of IR
lessness of photon causes IR divergences. A massless phot%' ergence$3,2_2—2_4. The question to e addre;sed now IS
can travel over a large distance and an infinite number of so ether th_e Sl."tab'l'ty of cqherent state formalism tp light
photons can be created for any finite amount of energy.ro.m.'_|"’.‘m'|t9nlan perturbation the.o_ry can pe. epr0|ted_ to
Block-Nordsieck theorem takes into account these soft phogaln_|n5|ght into the form of the artificial co_nflnmg potential
tons by summing over all processes in which the electron i%hat is needed for the LFFT program of Wilsenal.
accompanied by an infinite number of such photons. In an
actual experiment also, due to finite resolution of the detec-
tor, there is no restriction on the number of photons which We gratefully acknowledge the support for this work by
may accompany a charged particle. The method othe Department of Science and Technology, Government of
asymptotic dynamics incorporates this fact in the formalismindia.

ACKNOWLEDGMENTS

APPENDIX A

In this appendix we give the expressions &, Qgqqg: Lgqgg: ANAQgqqq-

dQIdzqu dq;dzcbl dquZQBi qudqu

2(2m)¥a; ] 2(2m)%[a5 ] 2(2m)°[as] 2(2m)%a, ]
a7 +0, — 03

J1-92—02-03—03-04

n 2
Qq(x+)=—if H3(X'+)dx'+=%f ali(ds)al;(qs)apk(d1)ac(dy)

Xvic}ﬁlbc(q:i'q‘ll_ql’_qz)x( )e—(i/Z)(q1+q2—q3—q4)x+§(q3+ q4_q1_q2)

bcde( q; —d; — 03

. .2 -
XO,(0; +0; —03 —04)— §agi(Ql)acj(q2)adk(QB)ael(Q4)Vijkl Q2'Q3_Q1'Q2—Q3'Q1)®A(ql —0; — 0

B |
—0,) X 8% (A1~ 0~ g3~ qy) e’ "% "9 q4)x++Eaai(Ql)abj(QZ)ack(qS)ade(q4)ViajE|Cd(q1aq21q3aQ4)

e )5\3( + 0ot Gt qg)e (2@ 10 a5 40" 1@ (gr +q; +05 +0;) (A1)
e 1 4
01-02+02-03+03-0; Q17927 957 Ga ally 702 703 70y
with
ViR A1, 02,03,94) = fancl cad 881 = 811 8ji0) + Facelbael 8ij Sia— 8 Sj) + Fagef coel G = 8ij Sia)- (A2)

Qgggg(x+) is due to 4-gluon instantaneous interaction:
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+ 2 d +d2 d +d2 d +d2 d +d2
Qgggg(x+)=_ijx H4(X'+)dxr+=g§fabcfadej " 3q1i i 3q2i x 3q3i - 3q4i a2,
22m)[a} 1 2(2m)[a3 1 2(2m a3 ] 2(2m) s ]
q; +q; +0sz gi(ay +a, +ag +a,)x"12

X

Api(d1)aci(d2)agj(ds)aej(da) 0,(9; +0; +d3 +q,) +H.c.

(7 +a3)(as +q;) d1-92102- G303y

q; +0; +03 e i(ay +ay —ag —g,)x /2

+8pi(01)2ci(A2) ag;(0s) aej( ) ©4(a; 92 —A3 —0q4)

(0f +95)(q3 +q;) 91°d2—d1-93— 92 s

itz +a; e 't

X 8%(Q1+ G~ q3— qa) + H.C.— api(qy)aci(gz)aq;(ds)as ()
(01t 0203~ 0qq) bi(d1)aci(d2)aqj(d3) ej(%(qf_i_q;)(q;_q:) 9102t 9o Gat 91- s

X O 5(qy +0; +03 —0g) X 8%(As+ GatGg— 0s) — H.C.— Bpi(d1) aci(d2)al(ds)aej(Ga)
Oy +05—qa e (A +d —dg +a)xT2

0,(q; +d; —0z +0, )X 8%(q1+q,— 3+ ds) +H.C.
(47 +93)(q3 —q)) G1-Go— o Ga— Gz - a(dy 0z =03 +0dy) (41+ 02— 03+ ds)

AT M T T A Yyt
0 O -ay e e e

t
— Api a.; aygi Agj
bi(d1)aci(d2)aqj(ds) e’(q4)(qf—q§)(q§+q2) 9195— 9192— 9203

©(a; —92 +d3 +0y)

AT —as —as —a )Xt
i T T Rl

(0f —93)(g3 +q;) 92-d3— 01929103

X 8%(q1 =02+ 03+ qs) —H.c.m abi(Q1)ali(Q2)a$j(Q3)alj(Q4)

XO,(0; —0; — 0z —dz )X 8%(q;— 02— 03— ds) —H.c.

s— == = o+
qi’—q;—{—q; e"(ql_qZ+Q3 =g )x" 12

+ani(q,)alk(g,)ay (g:)al:
bi(d1)aci(d2)aq;(gs) eJ(Q4)(qI_q2+)(q§_qI) 91 05— 01 Ga—Cp- O

©4(01 92 +0d3—0q4)

d; —d; —ds eiay —ay —dg +a,)x /2
(0f —03)(q5 —q;) 92:d3—91-G2— 01 U3

X 8%(0ly— U+ 3~ y) + H.C.+ api(d1)ag;(d2)al;(da) aej(da)

X0 4(d; —0z — 03 +04) X 8%(A1~ A2~ G3+ da) +H.C.|. (A3)
Qqqqq(x+) results due to four fermion instantaneous interaction
+ dp;d? dp, d? dps d? dp; d?
Qqqqq(x+):_ifx dx He(x' ) =225, S P1G"P1. AP2G"P2, AP35 0°P3 APy 07Pay
Somhs 20273 202m)®  202m)®  2(2m)3
@/(P1 P2 1P P2 8%(p, — pyt-py—py)
X £ €Lt (P1,5) T2D(P2.5,)bT(P3,55) T2D(Pyg 8y) ————————— ———————
P1 —P2 TP3— Py (P1 —P2)
X@4(Py —P2 +P3 —Ps)—d(py,—s)Td"(p2,5,)d(p3, —S5) T2d (P4, — S4)
e (PP P PR B (p —pptpy—py)
X R O(P; — P2 +P3 — P4 ) +bT(p1,51) T0(P2,S2)d(P3, —S3)

P; — Py +P3 — Py (P —p3)?

el(P1 Pz ~Ps P12 58(p, —p,—py+py)

xTed"(py,—sy) O,(p; —P2 —P3 + p;)_d(pla_sl)TadT

P; — P2 —P3 +Ps (p1 —p3)?

e("P1 P2 ~Ps P2 §¥(p) —p,—pytp,)
(P2, = S2)bT(P3,83) T0(ps,84) ———————— e
P1 = P2 —P3 T P4 (P1 —P2)

©s(P1 —P2 —P3 +Ps)
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€(P1*P2 *P3 *PX"12 55(p, +p,+ pa+ py)

Py +P; +P3 + Py (py +p3)?

+b'(ps1,51) T2 (P2, —$2)b"(p3,53) T2 (p4,S4)

XO,(py +P; +P3 +ps)—d(pr,—S1) T(p2,S,)d(p3, —S3) T2b(p4,Ss)

€L P2 P PN 2 B(p 4yt pgtpy)
X——————— I O4(py +P2 +P3 TPs)
p1 +Py +P3+Py (py +p2)

e/ (P1 =2 03 +P)X" 12 §3(p, — Pyt py)

P; — Pz +P3 +Ps (py —p3)?

+b'(p1,51)Th(p,,S,)b"(p3,53) T2d(P4, —S4)

XO,s(py =Pz +P3 +Pg)+ b(p1,51) T2b(P2,S2)d(P3, —S3) T2H(py4,Ss)

ePLPo P PR S(p —pypy—p,)
S —— Y O,(P; —P2 =Pz —P4)
P1 =P2 =P3 P4 (P1 —P2)

el (P1=Ps —Pg =Py )x"/2 8 (P1—P2—P3—Pa)
P; — P2, —P3 — Py (p1 —p3)?

—d(py,—s) T (P, —S2)b'(P3,53) T0(P4,Ss)

X O 5(pr —Pz —P3 —Ps)—d(p1,—S)Td (P2, —52)d(p3, — 83) T*0(P4,S4)

e (P P2 Py TP )X/ 53, —py+ py—py)
Xe——————— Ox(py +P; +P3 —Ps)+0T(py,s) T (s, —s2)
P1 —P; +Ps +Ps (p1 —p3)? e

el(PL P2 *Ps P X2 53(p, 4 py+ py—py)

p; +P, +P3 — Py (py +p3)?

Xb'(ps,53) Tb(P4,S4) O4(p; +P2 +P3 —Ps)

el(PL Pz ~Ps P12 53(p, 4+ p,—py—p,)

P; +P; —P3 — Py (py +p3)?

+b'(p1,51) T2 (P2, —S2)d(P3, —S3) T20(P4,S4)

XO,(p; +P; —P3 —Ps)+b(p1,—S1)T(p2, —S2)d(ps, —S3) T2 (ps, —S4)

e/2P1 P2 Py TP X2 $3(p 1 py—pa+tpy)
X Oa(py +P2 —P3 —Pg)
p1 +P; —P3 +P; (P +p3)? vore e

i - T n - +
e 2PL¥P2 TP TPAXT §3(py 4+ py— gt py)

p; +P; —P3 +Ps (p1 +p3)?

+d(py, —S1) T?0(P2,S2)bT(P3,53) T?b(P4,Ss)

XOx(py +P; —P3 +Pg) —d(py,—S1)T(p2,S2)b"(p3,53) T2 (ps, —S4)

e I(PL Py ~Pg —py X" 12 B (p1+P2—P3—Pa)
X OA(pPy + P2 —P3 —P4)—d(p1,—S1)T(P2,Sy)
P1+ P2 —P3 —Psa (pf"'p;)z ' 2 s N

e (P Py P3Py )12 B (p1+PatPs—pa)

Py +P; +P3 —Ps (py +p3)2

X d(ps, —S5) T2 (P4, —54) Oa(P1 +P2 +P3 —Pa)- (A4)

Qqqqe(x ") results due to instantaneogsgg interaction
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C(x* dp*d?p, [ dp’d?p
Qqqgg(x+):_'f Hs(x")dx =g2> > Lj S

s,s" AN 2(2’77)3 2(277)3
dg*d?q dq’ *d?q] el g =g T2
I — L pi(pr,shacan)ala’ A )b(p,s) el ek
2(2m)°[q™]) 2(27)°[q" "] —-q —q'—-p

53 Py
% (p’=a-q'—p’)
q'+p”

Ou(p'—q—q '—p ")

e|(p’_+q_+q_’fp_)x+/2 b€>(p/+q+q1_p)
p'+q +q '—p pr—q'"

—i(p' " =g +q’ " —p )x"/2

+b*(p’,s")a*(q,\)a*(q’,\")b(p,s)el* el

XO,(p~'+q +q '—p~)—b*(p’,s)a(g.N)a’(q" \)b(p,s) €, e —————————
p’T—q +q' " —p

53 '—g4+qg —
o (p'—a+q'—p)

@4(p~'—q +q '—p ")—b*(p’,sHat(q.N)a(q’ N )b(p,s)eLel,

p'—q*
efi(p”+q”7q’fp’)x+/2 b\’%(p/_’_q_qr_p)
X P Ox(p™'+d =g '=p7 ). (A5)
p’"+q —q' —p p'T—q'+

APPENDIX B

We give below the expressions fdrl;, M3, ..., Mj defined in Sec. IV

1 1 1 1
M= qg/H;— H,— H.lq g H1— H.Q¢q)—{qg QIHlfHqu +(qg/Q{H.Q4 ),
P —Ho p —Ho P —Ho P-—Ho
(B1)
’ 1 1 T 1 T
Mz={qg/H,— H, — Hilq g/H,— HoQ¢q ) —{ 99| QcH— Hqq ) +(qglQcH,0Q¢]q),
p —Hy p —Hyg p —Hp p —Hp
(B2)
, 1 1 1 o1 )
My={dqg/H;— H, — Hilq qg|H1— HoQ¢q ) —{ 99| Q¢H,— Hila) +(ag/QHQ¢q),
p - —Ho p —Hpg p —Hp p~—Hp
(B3)
, 1 1 1 o1 )
Mg={ qg|H,— Hy— Hilq qg|H,— H1Q¢q) —{ qg|QcH;— Hilq ) +(ag|QcH1Q¢la),
p-—Ho p —Hp p —Hp p —Ho
(B4)
’ 1 T
Mg=1{ ag Hlp " Hs|q ) +(ag|Q¢Hs|a) —(qg[H1Qqqed ), (B5)
—Hp
, 1
M;={ag Hsp, - Hala +(09/(QgqqH 119) — (ag[HsQ4|a), (B6)
—Hp
, 1
Mg=1{ ag Hlp, v He[d ) —(q9IH1Qqqqd D) (B7)
—Hp
! 1 T
Mg={ qg Hzp_ " Hs|d ) —(q9lH2Qqqed @) +(A9|QcHs|q). (B)
—Hp
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FIG. 11. Set of diagrams representings .
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The first term inM/ (i=2

.,9) isM; given in Sec. Il and represented by Figs. 2—9. We use the diagrammatic notation

of Nelson[15,16 to represent the additional contributions due to emission and absorption of soft gluons. For example,
diagrams in Fig. 5 will now be grouped together with three additional diagrams shown in Fig. 11. In each of these diagrams,
states to the left and right of the dashed lines represents the initial and final states respectively. For example,(b),Fie 11
initial state consists of a quark and a soft gluon and it is obtained from the one quark tstatEock stateby applying the
asymptotic operatof); to the one quark state:

la(p):coby= Q4 a(p)). (B9)

Contribution of each of these diagrams to the quark gluon vertex can be evaluated by using the Feynman rules given in Ref.

[10] and the form of the asymptotic states in Sec. Ill.
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