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Exact and approximate dynamics of the quantum mechanicalO„N… model
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We study the dynamics of the quantum mechanicalO(N) model as a specific example to investigate the
systematics of a 1/N expansion. The closed time path formalism melded with an expansion in 1/N is used to
derive time evolution equations valid to order 1/N ~next-to-leading order!. The effective potential is also
obtained to this order and its properties are elucidated. In order to compare theoretical predictions against
numerical solutions of the time-dependent Schro¨dinger equation, we consider two initial conditions consistent
with O(N) symmetry, one of them a quantum roll, the other a wave packet initially to one side of the potential
minimum, whose center has all coordinates equal. For the case of the quantum roll we map out the domain of
validity of the large-N expansion. We also discuss the existence of unitarity violation in this expansion, a
well-known problem faced by moment truncation techniques. The 1/N results, both static and dynamic, are
contrasted with those given by a Hartree variational ansatz at given values ofN. A comparison against
numerical results leads us to conclude that late-time dynamical behavior, where nonlinear effects are signifi-
cant, is not well described by either approximation.

PACS number~s!: 11.15.Pg, 11.30.Qc, 25.75.2q
a
s
t

t t
f
f

sy
o
pl
e-
n-
he
th

e
n
in
e

ica
-

tum
low,

s for
acy

e
tum
ied
iral
on
as

sti-

h of
at-

ial
.
ns

ld

dy-
on-

w-
I. INTRODUCTION

Initial value problems in quantum field theory are of gre
interest in areas such as heavy ion collisions, dynamic
phase transitions, and early Universe physics. However,
solution of the corresponding functional Schro¨dinger equa-
tion is essentially impossible and one is forced to resor
approximate methods such as mean field approaches o
Hartree type or the large-N expansion. The application o
variational techniques such as the Hartree type is limited
scope since the errors are uncontrolled. While 1/N methods
promise better error control since they are based on a
tematic expansion, at next-to-leading order these meth
can become extremely complicated and expensive to im
ment. The motivation for our work in this paper is to impl
ment the 1/N expansion at the first nontrivial order in a qua
tum mechanical example. Not only does this simplify t
analysis but it also opens the possibility of comparing
approximate results with numerical simulations of the tim
dependent Schro¨dinger equation, a luxury not available i
the field theoretic case. However, it should be kept in m
that quantum mechanics and quantum field theory are v
different. For example, in the quantum mechanics appl
tions discussed below, theO(1/N) corrections do not corre
spond to inter-particle collisions~as they do in field theory!
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since we are restricting ourselves to one-particle quan
mechanics. Nevertheless, as discussed in more detail be
quantum mechanical examples provide excellent testbed
key issues such as positivity violation and late-time accur
of the approximations.

The O(N) model has been extensively employed in tim
independent applications in statistical physics and quan
field theory@1,2# and several recent applications have stud
time-dependent phenomena. The dynamics of the ch
phase transition following the expansion of a quark-glu
plasma produced during a relativistic heavy ion collision h
been modeled by anO(4) s model at leading order in 1/N
@3#. The nonequilibrium dynamics of anO(N)-symmetric
lf4 theory, again treated at leading order, has been inve
gated in detail@4#. Even at leading order, the 1/N expansion
captures the phase transition, but does not contain enoug
the dynamics to allow for rethermalization, since direct sc
tering first occurs at next order. TheO(N) model has been
used in inflationary models of the early Universe@5# with the
scalar field often starting at the top of a hill in the potent
and ‘‘rolling’’ down, giving rise to a quantum roll problem
It has also been applied to study primordial perturbatio
arising from defect models of structure formation@6#.

The general method for obtaining the dynamical 1/N ap-
proximation via path integral techniques in quantum fie
theory was discussed earlier in Ref.@7# and applied later
@8,9# to a quantum mechanical system ofN11 coupled os-
cillators, a one-dimensional truncation of scalar electro
namics. Two different sets of approximate actions were c
sidered, which differed by terms of order 1/N2, both of them
being energy conserving. The first method in Ref.@9# was a
perturbative expansion of the generating functional in po
©2000 The American Physical Society15-1
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ers of 1/N. The second method was to first Legendre tra
form the action to order 1/N, and then find the equations o
motion. When these two methods diverged from each ot
they also diverged from an exact solution for the caseN
51. However, because of computational restrictions, it w
not possible to study numerically the accuracy of the
proximation as a function ofN. Remedying that deficiency i
the main motivation of the present study, since for the qu
tum roll problem numerical solutions can be obtained
arbitraryN.

One of the subtle issues in expansions involving mome
based truncation schemes such as 1/N, which is present both
in quantum field theory and in quantum mechanics, relate
the imposition of constraints arising from the positivity
the underlying probability density function or functiona
The importance of these constraints is well known in ar
such as turbulence and beam dynamics@10#. In this paper,
we show that possible violations of these constraints mus
tamed in 1/N expansions if the approximation is at all e
pected to succeed at moderate values ofN. This may be
possible by using certain resummation schemes which
be discussed elsewhere.

In this paper we show that evolutions based on the na
next-to-leading order 1/N expansion violate unitarity~or,
more generally, positivity of the density matrix! and that this
violation is associated with a dynamical instability forN less
than some valueNT . We have numerical evidence for
sharp threshold atN;NT , beyond which we have not bee
able to detect the instability. We also have evidence that
behavior is related to the nature of the effective potentia
next-to-leading order: At this order, the~convex! effective
potential has the property of not being defined everywh
for values ofN,Nc , whereNc depends on the values of th
parameters specifying the potential. ForN.Nc , the effec-
tive potential exists globally. What this means is that forN
,Nc one cannot associate a quantum state with the nex
leading order 1/N expansion whereas such a state does e
for N.Nc . Even though this statement relates to a sta
property, our numerical results indicate that in factNT
;Nc .

A comparison of the 1/N expansion and the Hartree vari
tional method~appropriately generalized to the case of fin
N) is of interest since both agree at infiniteN. At finite N, the
next-to-leading order large-N and Hartree approximation
differ and provide alternative routes to improving the lead
order result which, for the quantum roll problem, consists
harmonic oscillations in̂r 2& wherer is the radial degree o
freedom. At finiteN, the inclusion of nonlinearities leads t
amplitude modulation effects on top of the harmonic motio
The ability to capture this modulation is a good test for t
next-to-leading order large-N and Hartree approximations
Our numerical results provide evidence that neither of th
methods is satisfactory at late times~relative to the oscilla-
tion time!, though they work reasonably well at short to i
termediate times.

Our results suggest that it is important to find ways
improve the naive 1/N expansion at next-to-leading orde
Work using resummation schemes is in progress and s
discussions of relevant issues are included in this paper
12501
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The paper is organized as follows. In Sec. II we pres
the O(N) model as it pertains to quantum mechanics and
Sec. III we derive equations of motion for the largeN ap-
proximation to order 1/N. We derive the corresponding equ
tions for the time dependent Hartree approximation~TDHA!
in Sec. IV. In Sec. V we show how the same TDHA equ
tions can be obtained from an equal-time Green’s funct
approach which is computationally more attractive. The
ergies for the various approximations are calculated in S
VI. Section VII describes the two initial conditions whic
preserve theO(N) symmetry, namely a quantum roll and th
time evolution of an offset Gaussian centered at anO(N)
symmetric point. In Sec. VIII we determine the effectiv
potential to both order 1/N and for the Hartree approxima
tion. Numerical results and comparisons with the approxim
tions are discussed in Sec. IX and our conclusions are st
and discussed in Sec. X.

II. O„N… MODEL

The Lagrangian for theO(N) model in quantum mechan
ics is given by

L~x,ẋ!5
1

2 (
i 51

N

ẋi
22V~r !, ~2.1!

whereV(x) is a potential of the form

V~r !5
g

8N
~r 22r 0

2!2, r 25(
i 51

N

xi
2 . ~2.2!

The time-dependent Schro¨dinger equation for this problem i
given by

i
]c~x,t !

]t
5H 2

1

2 (
i 51

N
]2

]xi
2

1V~r !J c~x,t !. ~2.3!

For arbitrary initial conditions, given present computation
constraints, these equations can be numerically integr
only for smallN<4. The initial conditions for the quantum
roll problem allow a numerical solution for allN, and in this
case we can attempt to study fully the behavior of the lar
N expansion.~For the shifted Gaussian initial condition
however, this is not possible, and we used numerical s
tions obtained forN51 and 2 to benchmark the large-N
approximations and the TDHA solutions at short times.!

The symmetry of the quantum roll problem is such th
only the radial part of the wave function is of interest. A
suming a solution of the form

c~r ,t !5r (12N)/2f~r ,t !, ~2.4!

the time dependent Schro¨dinger equation forf(r ,t) reduces
to @11#

i
]f~r ,t !

]t
5H 2

1

2

]2

]r 2
1U~r !J f~r ,t ! ~2.5!

with an effective one dimensional potentialU(r ) given by
5-2
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U~r !5
~N21!~N23!

8r 2
1

g

8N
~r 22r 0

2!2. ~2.6!

It is further useful to make the rescaling

r 25Ny2, r 0
25Ny0

2 . ~2.7!

The potential~2.6! then becomes

u~y,N!5
U~y!

N
5

~N21!~N23!

8N2y2
1

g

8
~y22y0

2!2, ~2.8!

corresponding to the new Schro¨dinger equation

i
]f~y, t̃ !

] t̃
5H 2

1

2N2

]2

]y2
1u~y,N!J f~y, t̃ ! ~2.9!

where t̃ 5Nt.
The method of choice to investigate the long-time beh

ior of the exact solution is the split-operator method, wh
has been presented in detail in Ref.@12#. The wave function
is expanded as a Fourier series in the radial component,
the solution is obtained as the repeated application of a ti
evolution operator in symmetrically split form. As a resu
the use of a fast-Fourier transform algorithm is required.
the purpose of the present implementation, 256 radial g
points, a value of 20 for the radial grid boundary, and a ti
step size of 0.01 provide a conservation of the wave func
unitarity to better than 9 significant figures. The accuracy
the method has been established by comparing results w
second method, where we first solve for the eigenvalues
eigenfunctions, and then use the expansion

f~r ,t !5(
n

Cne2 iEntfn~r !, ~2.10!

whereCn was determined from the initial conditions. Resu
from the two methods agreed in the cases where they w
used together.

III. LARGE- N APPROXIMATION

The large-N approximation has been worked out for th
O(N) model in 113 dimensions in Ref.@7#. The Lagrangian
~2.1! with the potential function~2.2! is obtained from that
paper by specializing to 011 dimensions, and replacin
fa(t)→xi(t), v→r 0, andl→g.

To implement the large-N expansion, it is useful@2# to
rewrite the Lagrangian in terms of the composite fieldx by
adding a constraint term to Eq.~2.1!, given by

N

2g Fx2
g

2N
~r 22r 0

2!G2

, ~3.1!

which yields an equivalent Lagrangian

L8~x,ẋ,x!5(
i

1

2
~ ẋi

22xxi
2!1

r 0
2

2
x1

N

2g
x2. ~3.2!
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The generating functionZ@ j ,J# is given by the path integra
over the classical fieldsxi(t):

Z@ j ,J#5eiW[ j ,J]5E dx)
i

dxi exp$ iS@x,x; j ,J#%,

S@x,x; j ,J#5E
C
dtH L81(

i
j ixi1JxJ .

The effective action, to order 1/N, is obtained by integrating
the path integral for the generating functional for the L
grangian~3.2!, over thexi variables, and approximating th
integral overx by the method of steepest descent~keeping
terms up to order 1/N). A Legendre transform of the result
ing generating functional then yields the effective actio
which we find to be

G@q,x#5E
C

dtH 1

2 (
i

@ q̇i
2~ t !2x~ t !qi

2~ t !#

1
i

2 (
i

ln @Gii
21~ t,t !#1

r 0
2

2
x~ t !1

N

2g
x2~ t !

1
i

2
ln@D21~ t,t !#J , ~3.3!

where the integral is over the closed time pathC, discussed in
Ref. @7# and qi(t)5^xi(t)&. HereGi j

21(t,t8) and D21(t,t8)
are the lowest order in 1/N inverse propagators forxi andx,
given by

Gi j
21~ t,t8!5H d2

dt2
1x~ t !J dC~ t,t8!d i j [G21~ t,t8!d i j ,

D21~ t,t8!52
N

g
dC~ t,t8!2P~ t,t8!,

where

P~ t,t8!52
i

2 (
i , j

Gi j ~ t,t8!Gji ~ t8,t !

1(
i , j

qi~ t !Gi j ~ t,t8!qj~ t8!. ~3.4!

HeredC(t,t8) is the closed time path delta function.
The equations of motion for the classical fieldsqi(t), to

order 1/N, are

H d2

dt2
1x~ t !J qi~ t !1 i(

j
E

C
dt8Gi j ~ t,t8!D~ t,t8!qj~ t8!50,

~3.5!

with the gap equation forx(t) given by

x~ t !52
g

2N
r 0

21
g

2N (
i

Fqi
2~ t !1

1

i
G i i

(2)~ t,t !G . ~3.6!
5-3
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The next-to-leading orderxi propagatorG i j
(2)(t,t8) and self-

energyS i j (t,t8) to order 1/N turn out to be

G i j
(2)~ t,t8!5Gi j ~ t,t8!2(

k,l
E

C
dt1EC

dt2Gik~ t,t1!

3Skl~ t1 ,t2!Gl j ~ t2 ,t8!,

Skl~ t,t8!5 iGkl~ t,t8!D~ t,t8!2qk~ t !D~ t,t8!ql~ t8!.
~3.7!

These equations agree with~2.18!–~2.22! of Ref. @7#. We
mention here that the actual equation forG which follows
from the effective action differs from Eq.~3.7! in that the
final G in the integral equation is replaced by the fullG. This
leads to a partial resummation of the 1/N corrections which
which guarantees positivity of̂x2(t)& ~this restricted result
does not imply that the full positivity problem for the densi
matrix has been solved!. However, it does not improve th
long-time accuracy of the results@25#.

In order to solve forD(t,t8), we first write

N

g
D~ t,t8!52dC~ t,t8!1

N

g
DD~ t,t8!. ~3.8!

ThenDD(t,t8) satisfies the integral equation

N

g
DD~ t,t8!5

g

N
P~ t,t8!2E

C
dt9P~ t,t9!DD~ t9,t8!,

~3.9!

in agreement with~2.13!–~2.16! of Ref. @7#.
We are now in a position to solve these coupled equati

for the motion ofqi(t) andx(t) for given initial conditions.
For the initial conditions discussed in Sec. VII, we find

Gi j ~ t,t8!/ i 5uC~ t,t8!d i j f ~ t ! f * ~ t8!, ~3.10!

where f (t) and f * (t) satisfy the homogeneous equation,

H d2

dt2
1x~ t !J S f ~ t !

f * ~ t !
D 50, ~3.11!

with initial conditions

f ~0!5AG, ḟ ~0!51/~2AG!. ~3.12!

However,DD(t,t8) cannot be factored into products of fun
tions like Gi j (t,t8).

We solve Eqs.~3.5! and ~3.6! simultaneously with Eqs
~3.7! and ~3.9!, using the Chebyshev expansion techniq
@13# of Appendixes A and B of Ref.@9#.

IV. TIME DEPENDENT HARTREE APPROXIMATION

It is useful to compare our results for the large-N approxi-
mation to the time dependent Hartree approximation suita
formulated for theO(N) problem. The static Hartree ap
proximation is based on the idea of varying the parameter
a Gaussian wave function so as to minimize the energy~the
12501
s

e

ly

of

generalization to the time-dependent case is given belo!.
For the O(N) problem this amounts to placing a
N-dimensional Gaussian some~radial! distance away from
the origin and then carrying out the minimization procedu
In contrast, the leading-order large-N wave function is a
Gaussian which is locked at the origin. At infiniteN the
TDHA becomes exact and equivalent to the leading or
large-N approximation, a well-known result.~See, e.g., Refs
@14,15#. The TDHA being used here should not be confus
with the Hartree approximation forN51 which does differ
from the leading-order large-N approximation.! At finite N,
the TDHA and the next-to-leading order large-N approxima-
tion may be thought of as two competing schemes to
prove on the leading-order result.

There are several ways of implementing the Hartree
proximation: The most common is by using the tim
dependent variational principle of Dirac@16–18#. This has
the advantage of giving a classical Hamiltonian descript
for the dynamics of the variational parameters, which can
hidden in other formulations.

The idea behind this approach is that the variation of

G@c,c* #5E dt^c~ t !u i
]

]t
2Huc~ t !& ~4.1!

is stationary for the exact solution of the Schro¨dinger equa-
tion, the time derivative acting in both directions. We co
sider Gaussian trial wave functions of the form

c~x,t !5N expF ipi~ t !zi~ t !2zi~ t !S Gi j
21~ t !

4
2 iP i j ~ t ! D zj~ t !G ,

~4.2!

where N is the normalization constant, and we have
zi(t)5xi2qi(t). Here qi(t), pi(t), Gi j (t) and P i j (t) are
time-dependent variational parameters, to be determined
minimizing the Dirac action. We note thatP i j (t), which is
used only in this section, is conjugate toGi j (t) and is not to
be confused with the self energyP(t,t8) defined in Eq.
~3.4!.

Then-point functions can be calculated from the gener
ing functional using the formula

^zizj•••zn&5
]nZ@ j #

] j i] j j•••] j n
U

j 50

, ~4.3!

where

Z@ j #5N 2E )
s

dxs expF2
1

2
zi~ t !Gi j

21zj~ t !1 j izi~ t !G
5expF j iGi j j j

2 G . ~4.4!

The expectation value of the time derivative is given by

K i
]

]t L 5pi q̇i2Gi j Ṗ i j ~4.5!

and the expectation value of the kinetic energy is
5-4
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K 2
1

2

]2

]xi
2L 5

pipi

2
1

1

8
Gii

2112P i j GjkPki . ~4.6!

For the expectation value ofV we first expand the potentia
in a Taylor series aboutzi50,

V~q,z!5V~q!1Vi~q!zi1
1

2
Vi j ~q!zizj1•••

where

Vi~q!5
g

2N
qi~qsqs2r 0

2!,

Vi j ~q!5
g

2N
@d i j ~qsqs2r 0

2!12qiqj #,

Vi jk~q!5
g

N
~d i j qk1d ikqj1d jkqi !,

Vi jkl ~q!5
g

N
~d i j dkl1d i l d jk1d ikd j l !. ~4.7!

Thus

V~q,z!5
g

8N
@~qjqj2r 0

2!21~zizi !
214~zizi !~zjqj !14~ziqi !

2

12~zizi !~qjqj2r 0
2!14~ziqi !~qjqj2r 0

2!#.

Taking the expectation value, we obtain

^V&5
g

8N
@~qjqj2r 0

2!212Gii ~qjqj2r 0
2!14Gi j qiqj1Gii Gj j

12Gi j Gji #. ~4.8!

The Hartree equations of motion are Hamilton’s equatio
for the variational parameters:

q̇i5pi ,

ṗi52Vi2
1

2
Vi jkGjk ,

Ġi j 52~GikPk j1GjkPki!,

Ṗ i j 5
1

8
Gik

21Gk j
2122P ikPk j2

1

2
Vi j 2

1

4
Vi jkl Gkl . ~4.9!

Solutions of this set of equations determine the tim
dependent Hartree approximation to the true solution of
Schrödinger equation.

V. METHOD OF EQUAL-TIME GREEN’s FUNCTIONS

Solutions of the TDHA equation~4.9! require computing
the matrix inverse ofGi j . This can be difficult to carry out in
practice for largeN. Fortunately, the method of equal-tim
12501
s

-
e

Green’s functions provides a way to avoid this technical d
ficulty @19,14,20#. We begin by considering the time evolu
tion of the one point functions,

q̇i5pi ,

ṗi52Vi2
1

2
Vi jkGjk ,

52
g

2N
$qi~qkqk1Gkk2r 0

2!1qk~Gik1Gki!% ~5.1!

where Vi and Vi jk are given by Eqs.~4.7!, as well as the
evolution of the two-point functions:

Gi j ~ t !5^zizj&, Ki j 5^żi żj&,

Fi j 5
1

2
^@zi żj1 żjzi #&. ~5.2!

Here we have again setzi(t)5xi2qi(t). All of the expecta-
tion values are taken with respect to the Gaussian trial w
function, Eq.~4.2!. To obtain the equations of motion for th
two-point functions, we use the exact equation of motion a
the factorization resulting from the Gaussian approximati
This yields

Ġi j 5Fi j 1F ji , ~5.3!

Ḟ i j 5Ki j 2 K zi

]V

]xj
L , ~5.4!

K̇ i j 52 K F ]V

]xi
żj2 żi

]V

]xj
G L . ~5.5!

Here we have used the Lagrange equations of motion

ẍi1
]V

]xi
50, ~5.6!

where

]V

]xi
5Vi j zj1

1

6
Vi jkl zjzkzl1terms with even powers ofzi ,

~5.7!

and the fact that for our Gaussian wave packet,^zi&50. The
canonical commutation relations give

^zi żj2 żjzi&5^xi ẋj2 ẋ jxi&5 id i j , ~5.8!

and we have

^zizjzkzl&5Gi j Gkl1Gil Gjk1GikGjl , ~5.9!

^zizjzkżl&5Gi j Fkl1Fil Gjk1GikF jl

1 i ~Gi j dkl1Gjkd i l 1Gikd j l !/2, ~5.10!
5-5
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^żizjzkzl&5F ji Gkl1Fli Gjk1FkiGjl

2 i ~Gkld j i 1Gjkd l i 1Gjl dki!/2. ~5.11!

Finally, from Eqs.~5.4! and ~5.5! we get

Ḟ i j 5Ki j 2VjkGik2Vjklm~GikGlm1GimGkl1Gil Gkm!/6,
~5.12!

K̇ i j 52VikFk j2VjkFki2Viklm~GklFm j1GlmFk j

1GkmFl j !/62Vjklm~FkiGlm1FmiGkl1Fli Gkm!/6.

~5.13!

For Gaussian initial conditions, the equal-time Gree
function method is assured to give the same result as
Hartree method, ifFi j (0) and Ki j (0) satisfy the require-
ments

Fi j ~0!50, Ki j ~0!5Gi j
21~0!/4.

ChoosingKi j independently ofGi j corresponds to a mixed
initial density matrix, rather than a pure state. If we furth
chooseGi j (0) to be diagonal and equal to the same num
G0,

Gi j ~0!5d i j G0 ,

thenKi j (0) is given by

Ki j ~0!5d i j /~4G0!.

For the initial conditions pertinent to the quantum ro
qi(t)50 for all t. Then Gi j (t), Fi j (t), and Ki j (t) are all
proportional to the unit matrix, and have no off diagon
terms. For the offset initial condition, we choose largeN
symmetric initial conditions so thatqi(0)5q0, and pi(0)
50, andGi j (0)5G0d i j . In that case, all theq’s andp’s are
identical,

qi~ t !5q~ t !, pi~ t !5p~ t !,

and the matricesGi j (t), Fi j (t) and Ki j (t) become off-
diagonal in a simple way so that all the diagonal elements
equal and all the off-diagonal elements are equal. That is
can write

Gi j ~ t !5G~ t !d i j 1Ḡ~ t !~12d i j !,

Fi j ~ t !5F~ t !d i j 1F̄~ t !~12d i j !,

Ki j ~ t !5K~ t !d i j 1K̄~ t !~12d i j !.

For this case, Eqs.~5.1!, ~5.3!, ~5.12!, and~5.13! simplify to
the following set of coupled equations:

q̇5p,

ṗ52
g

2N
q$Nq22r 0

21~N12!G12~N21!Ḡ%,
12501
s
he

r
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Ġ52F, GG 52FG ,

Ḟ5K2
g

2N
$G@~N12!~q21G!2r 0

2#

12~N21!Ḡ~q21Ḡ!%,

FG 5K̄2
g

2N
$Ḡ@~3N22!q21~N14!G

12~N22!Ḡ2r 0
2#12Gq2%,

K̇52
g

N
$F@~N12!~q21G!2r 0

2#

1F̄2~N21!~q21Ḡ!%,

KG 52
g

N
$F̄@~3N22!q21~N12!G12~N22!Ḡ2r 0

2#

1F2~q21Ḡ!%. ~5.14!

If we let r 0
25Ny0

2, and then take the limitN→`, we recover
the leading order in largeN result, as discussed in Ref
@19,14#.

The equal time Green’s function method is easier
implement numerically than the Hamiltonian system d
scribed by Eq.~4.9!, since no matrix inversion is involved
However, if one wants to find the wave function or the e
ergy, instead of just obtaining the Green’s functions, ma
inversion is once again required.

VI. ENERGY

It is important to note that even though the Hartree a
large-N approximations are truncations of the true dynami
they are nevertheless energy conserving. In the large-N ap-
proximation, to order 1/N, the expectation value of the
Hamiltonian is given by

E5
1

2 (
i

@^ẋi
2~ t !&1^x̂~ t !xi

2~ t !&#2
r 0

2

2
^x̂~ t !&2

N

2g
^x̂2~ t !&.

~6.1!

We write these expectation values in terms of the closed t
path ~CTP! Green’s functions. By definition, the discon
nected two-point Green’s functions are introduced as

Ddis~ t,t8!5 i ^TC@ x̂~ t !x̂~ t8!#&5 ix~ t !x~ t8!1D~ t,t8!,
~6.2!

Gi j ,dis~ t,t8!5 i ^TC@xi~ t !xj~ t8!#&5 iqi~ t !qj~ t8!1Gi j ~ t,t8!,
~6.3!

where D and Gab denote theconnectedtwo-point Green’s
functions:

D~ t,t8!5F d2W@J, j #

dJ~ t !dJ~ t8!
G

J, j 50

,

5-6
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EXACT AND APPROXIMATE DYNAMICS OF THE . . . PHYSICAL REVIEW D 62 125015
Gi j ~ t,t8!5F d2W@J, j #

d j i~ t !d j j~ t8!
G

J, j 50

. ~6.4!

To obtain the energy from Eq.~6.1!, we require the expec
tation values

^x̂~ t !&5x~ t !,

^x̂2~ t !&5x2~ t !1D~ t,t !/ i ,

^xi
2~ t !&5qi

2~ t !1Gi i ~ t,t !/ i ,

^ẋi
2~ t !&5q̇i

2~ t !1
]2Gi i ~ t,t8!/ i

]t]t8
U

t5t8

,

^x̂~ t !xi
2~ t !&5x~ t !@qi

2~ t !1Gi i ~ t,t !/ i #2Kii ~ t,t,t !,

whereKi j (t1 ,t2 ,t3) is the 3-point Green’s function define
as

Ki j ~ t1 ,t2 ,t3!52E
C
dtGik~ t1 ,t !Gk j~ t2 ,t !D~ t,t3!.

The energy for the next-to-leading order large-N approxima-
tion is then given by

E52
r 0

2

2
x~ t !2

N

2g
$x2~ t !1DD~ t,t !/ i %1

1

2 (
i H q̇i

2~ t !

1
]2Gi i ~ t,t8!/ i

]t]t8
U

t5t8
J 1

1

2 (
i

$x~ t !@qi
2~ t !1Gi i ~ t,t !/ i #

2Kii ~ t,t,t !%. ~6.5!

Using the equations of motion, we can show directly that
~6.5! is conserved.

It is easy to evaluate the energy att50 for the quantum
roll problem using the initial conditions~3.12!. The result for
the leading and next-to-leading order large-N approximation
is

E

N
5e01

1

N
e11•••

where

e05
1

8G
1

1

8
gy0

42
1

4
gGy0

21
1

8
gG2,

e15
1

4
gG2. ~6.6!

Our initial wave function was chosen to be Gaussian, so
the parameters of the Hartree approximation agree exa
with the energy and parameters of the exact wave functio
t50. However, the leading order in the large-N approxima-
12501
.

at
tly
at

tion for the same value ofG will disagree with the exact
energy bye1. This discrepancy disappears when we inclu
the 1/N corrections.

Since the Hartree approximation leads to a canon
Hamiltonian dynamical system, the corresponding energy
that approximation is also a constant of the motion. It
given by

E5
1

2
pi

21
1

8
Gii

2112P i j GjkPki1V~q!1
1

2
Vi j Gi j

1
1

4!
Vi jkl ~Gi j Gkl1Gil Gjk1GikGjl !. ~6.7!

We used this expression to check the accuracy of our
merical solutions. As with the next-to-leading order 1/N ex-
pression, for the quantum roll initial condition, Eq.~6.7!
agrees with the exact result.

VII. INITIAL CONDITIONS

A. Quantum roll

We wish to study initial conditions which are consiste
with O(N) symmetry. This implies immediately that all th
xi(t) have to be identical, withxi(0)50, andGi j (t) must be
diagonal. The quantum roll problem is defined by a Gauss
initial wave function that is centered on the origin:

c0~r !5
1

~2pG!N/4
expH 2

r 2

4GJ . ~7.1!

In this section,G[G(0).
One of the difficulties in studying the systematics of t

1/N expansion is the fact that, at next to leading order, ev
different value ofN ~with all other parameters held constan!
defines a different initial value problem. In this sense o
cannot naively compare individual solutions, exact or a
proximate, at different values ofN. In effect one has to tune
the parameters of the problem at eachN in order to maintain
certain invariance properties which allow differentN evolu-
tions to be compared to each other. This parameter tun
process is described below.

Since the infiniteN limit has very precise properties, sev
eral technical issues arise when one wants to approach
limit starting at N51 in a uniform manner. To study th
large-N limit it is convenient to make a rescaling to they
variables, given in Eqs.~2.7!. At very largeN, the potential
energyu(y,N) is, as given earlier in Eq.~2.8!:

u~y,N!5
~N21!~N23!

8N2y2
1

g

8
~y22y0

2!2;
1

8y2
1

g

8
~y22y0

2!2.

~7.2!

In this limit, u(N,y) has a minimum which is independent o
N, and the large-N limit consists of harmonic oscillations
about this minimum@the reason for this is that the large-N
limit also corresponds to an effectively large mass limit
the Schro¨dinger equation~2.9!#.
5-7
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One way to uniformly study the motion of a wave pack
as a function ofN is to choose initial conditions so that the
is a uniform overlap of the initial wave function with the s
of eigenfunctions of the Hamiltonian in theN→` limit. We
can obtain this constant overlap if we allow the coupli
constantg to be a slowly varying function ofN. This can be
done in several ways that differ by terms of order 1/N2. The
method presented below leads to uniform results even aN
51 as we change the parameters withN. Our method is to
keep the distance between the centers of the initial w
function and the position of the minimum of the potentia
constant asN is varied.

Using Eq.~7.1!, we definer̃ by

r̃ 5^r &5A2GFG„~N11!/2…

G~N/2! G , ~7.3!

andG` by the variance

G`

2
5^r 2&2^r &25GH N22FG„~N11!/2…

G~N/2! G2J .

Solving the above equations forG, we have

G~N!5
G`

2N24@G„~N11!/2…/G~N/2!#2
. ~7.4!

Substitution of this expression into Eq.~7.3! yields

r̃ ~N!5A G`

N@G~N/2!/G„~N11!/2…#222
. ~7.5!

In the limit whenN goes to infinity, we have

G~N!→G` , r̃ ~N!→ r̃ `5A~N21!G`,

which definesr̃ ` , and agrees with the asymptotic form
the rescaled version of the initial wave function~7.1!:

f0~r !5
1

~2pG!N/4
expH 2

r 2

4G
1

N21

2
ln r J

'
1

~2pG!N/4
expH 2

~r 2 r̃ `!2

2G`
1O~1/AN!J .

In order to ensure that the initial wave function has a fin
overlap with the energy eigenfunctions of the Schro¨dinger
equation at largeN, we will keep the value ofG` ~and not
G) fixed in our simulations.

Another quantity that should be kept constant is the ba
oscillation frequency. In order to do this, we first find th
Gaussian oscillations about the minimum of the one dim
sional potential, defined by Eq.~2.6!. We expandU(r ) as

U~r !5U~ r̄ !1
1

2
m̄2~r 2 r̄ !21•••, ~7.6!

where r̄ is given by the solution of the equation
12501
t

e

ic

-

~N21!~N23!

4r̄ 4
5

g

2N
~ r̄ 22r 0

2!, ~7.7!

andm̄2 by

m̄25
3~N21!~N23!

4r̄ 4
1

g

2N
~3r̄ 22r 0

2!5
g

N
~3r̄ 222r 0

2!.

~7.8!

The frequency of oscillation is determined bym̄, and this is
the quantity to be kept fixed asN is changed.

The last technical issue is to keep the distance betw
the center of the initial wave function,r̃ , and the minimum of
the potential,r̄ , a constant as we varyN. That is, we keep

dr 5 r̄ 2 r̃

constant for allN.
With this strategy of keepingG` , m̄ anddr fixed, we can

now determine how the coupling constant must vary withN.
We first definem2 to be the second derivative ofV(r ) evalu-
ated atr 5 r̄ ,

m25
d2V~r !

dr 2 U
r 5 r̄

5
g

2N
~3r̄ 22r 0

2!. ~7.9!

Then, Eq.~7.8! becomes

m2~N!5m̄22
3~N21!~N23!

4r̄ 4
. ~7.10!

Solving Eq.~7.9! for r 0, substituting into Eq.~7.7! and solv-
ing for g gives

g~N!5
N

r̄ 2 H m̄22
~N21!~N23!

r̄ 4 J , ~7.11!

with r̄ 5 r̃ 1dr . The value ofr 0
2 is then determined by Eq

~7.7!:

r 0
2~N!5 r̄ 22

2N

g~N!

~N21!~N23!

4r̄ 4
. ~7.12!

Thus, for fixed values ofG` , m̄ and dr , Eqs. ~7.4!, ~7.5!,
~7.11!, and ~7.12! determine values forG(N), r̃ (N), g(N),
and r 0(N) at all values ofN.

In the limit, N→`, we find that

g~`!5
1

G`
S m̄22

1

G`
2 D , ~7.13!

m2~`!5m̄22
3

4G`
2

. ~7.14!
5-8
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To summarize, in order to establish appropriate init
conditions for the quantum roll problem, we have kept t
varianceG` constant instead ofG, and have allowed the
parameters describing the potential functiong and r 0 to
change withN in order to compare solutions that have clo
to the same oscillation frequencies. In our numerical ru
we chose the values

G`51, m̄252, dr 52, g~`!51. ~7.15!

Figure 1 displays the variation of the potential paramet
with N.

B. Shifted Gaussian initial conditions

The secondO(N21) invariant initial condition we inves-
tigated had a wave function localized in a wave packet n
the center of the valley of the classical potential atr 5r 0. For
N51 this would be the standard double-well tunneling pro
lem; for higher values ofN, tunneling is avoided by going
around the barrier. Therefore this initial condition is quali
tively different from the roll problem and provides a diffe
ent arena for testing approximations. However, since this
tial condition violates theO(N) symmetry of the potential
numerical solution is at present possible only for very sm
N.

We take the initial wave function to be a shifted Gauss
of the form

c0~x!5
1

~2pG!N/4
expH 2(

i

~xi2r 0 /AN!2

4G J . ~7.16!

The energyE of this state can be determined from Eq.~6.7!
by the substitutions

Gi j →d i j G, qi→r 0 /AN, pi→0, P i j →0,

from which we find

FIG. 1. Potential parameters as a function ofN.
12501
l
e
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s

ar

-

-

i-

ll

n

E5
N

8G
1

g

8N
$N~N12!G222NGr0

21r 0
4%. ~7.17!

On the other hand, the height of the classical potential bar
is given by

Eb5
g

8N
r 0

4 . ~7.18!

For N51, the necessary requirement for tunneling is th
E,Eb .

In the general case~arbitraryN), we have

M25
]2V~r !

]r 2 U
r 0

5
g

N
r 0

2 or r 0
25

N

g
M2. ~7.19!

If the initial state is close to the ground state of a harmo
potential that approximates the potential at the bottom of
well, then the widthG of the wave function is, approxi-
mately,

G5
1

2AM2
, ~7.20!

which can be combined with Eq.~7.17! to give the desired
energy of the initial state in terms of the values ofN andg.

We are interested in initial conditions where the ener
per oscillator does not increase as a function ofN. To imple-
ment this we fixM251, which corresponds toG51/2 for
the initial width. The barrier height is then given by

Eb5
N

8g
~7.21!

and the total energy by

E5
N11

4
1

N12

32
g. ~7.22!

We explored three cases:E50.5Eb , E5Eb , andE52Eb .
For each of these cases, Eqs.~7.21! and ~7.22! determineg

for each N. In all cases we tookxi(0)5r 0 /AN, ẋi50,
Gi j (0)5Gd i j , andĠi j (0)50. As a consequence, all of th
oscillatorsxi(t) move identically.

VIII. EFFECTIVE POTENTIAL

It is well known that the static effective potential is n
always a useful guide to the true dynamics of the syst
~see, e.g., Ref.@4#!. Nevertheless, one may seek to ga
qualitative insight into some aspects of quantum dynam
this way, though care is certainly indicated~see, e.g., Ref.
@21# for the Gaussian effective potential!. Indeed, there ap-
pears to be an interesting connection with the properties
the effective potential at next-to-leading order and with t
corresponding dynamical evolution~discussed in the nex
section!.

The effective potential in the large-N approximation has
5-9
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been previously obtained by Root@22# to order 1/N; we re-
calculate it here using our equations. Whenxi and x are
independent of time, we can ignore the closed time p
ordering and use Fourier transforms, passing the poles
using the Feynman contour. Then, from the action given
Eq. ~3.3!, we find

Veff
[1]~r ,x!5

Nx

g S m22
x

2D1
1

2
xr 21

N

2E dk

2p i
ln@G̃21~k!#

1
1

2E dk

2p i
ln@D̃21~k!#, ~8.1!

wherex satisfies the requirement

]

]x
Veff~r ,x!50. ~8.2!

In this section to make contact with Root@22#, we havem2

52gr0
2/(2N),0. In order to examine the large-N limit, we

again rescale Eqs.~2.7! to the y variables. Then for the
Green’s functions, we find

G̃21~k!52~k22x!,

D̃21~k!52
N

g
2Ny2G̃~k!1

iN

2 E dp

2p
G̃~p!G̃~k2p!

52
N

g H 12g
y2

k22x
2

g

2Ax

1

k224x
J

52
N

g

~k22m1
2 !~k22m2

2 !

~k224x!~k22x!
,

wherem6
2 5b6Ab22c, with

b5
5

2
x1

g

2 S y21
1

2Ax
D

c54x21gS 4y2x1
1

2
Ax D .

For the Feynman contour, we have

E dk

2p i
ln~k22x!5Ax1constant terms. ~8.3!

Thus the effective potential~8.1! becomes

Veff
[1]~y,x!

N
5

x

2
~y22y0

2!2
x2

2g
1

Ax

2
1

1

2N
~m11m223Ax!.

~8.4!

The gap equation which determinesx follows from Eq.
~8.2!:

x5
g

2
~y22y0

2!1
g~N23!

4NAx
1

g

2N

]~m11m2!

]x
. ~8.5!
12501
th
by
n

To leading order in the large-N expansion, Eqs.~8.4!, ~8.5!
reduce to the parametric set

Veff
[0]~x!

N
5

x2

2g
1

Ax

4
,

y2~x!5y0
21

2

g
x2

1

2Ax
. ~8.6!

Equations~8.4! and ~8.5! agree with Root; however he use
the leading order expression forx in Eq. ~8.6!, rather than
the full x of Eq. ~8.5!.

There exist two real solutions of Eq.~8.5! for x with y
greater than some minimum valueymin . The next-to-leading
order large-N effective potential, from Eq.~8.4!, is therefore
double valued fory.ymin , and does not exist for smalle
values ofy. The physical solution branch corresponds to t
one that matches on to the leading order result; the o
branch is an unphysical solution. Since it follows from
Legendre transformation, the effective potential~at any order
in 1/N) has to be a convex function. The nonexistence of
effective potential aty,ymin implies that no quantum stat
can be associated with the next-to-leading order large-N ap-
proximation in this range.

In Fig. 2, we plot the physical branch of the effectiv
potential as a function ofy, for values ofN from 1 to 100, for
the caseg51 andy052. For comparison, we also show i
this figure the leading order potential function from E
~8.6!, which is single valued and finite for ally. ~In contrast
to the next-to-leading order case we can always associa
Gaussian wave function with the leading order approxim
tion.!

In the case of the Hartree approximation, one can de
an ‘‘effective potential’’ as the expectation value of th
Hamiltonian using the variational wave function~4.2! for

FIG. 2. Veff /N vs y5r /AN for the leading and next-to-leadin
order large-N approximation for different values ofN.
5-10
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static configurations@21,15#. Setting pi(t)50 and P i j (t)
50, and putting( iqi

25r 2 and Gi j 5d i j G in Eqs. ~4.6! and
~4.8!, we find

Veff
[H]~y,G!

N
5

1

8G
1

g

8
~y22y0

2!2

1g
N12

4N S y21
1

2
GDG2

g

4
y0

2G. ~8.7!

The value ofG is fixed by the requirement that

]Veff
[H]~y,G!

]G
50,

which gives the gap equation for the Hartree approximati

x5
g

2
~y22y0

2!1
g

N S y21
1

2x D1
g

4Ax
, ~8.8!

where we have setG51/2Ax. Parametric equations for th
Hartree effective potential are then given by

Veff
[H]~x!

N
5

1

2g S N

N12D 2

x22
N

~N12!2
y0

2x1
N14

4~N12!
Ax

1
g

2~N12!2
y0

41
g

4~N12!

y0
2

Ax
2

g

16N

1

x

y2~x!5
N

N12 S y0
21

2

g
x2

1

2Ax
D 2

1

~N12!x
.

~8.9!

Note that in the limitN→`, Eq. ~8.9! reduces to Eq.~8.6!,
the leading order large-N result. Note also that the Hartre
effective potential is not derived from a Legendre transfo
and hence is not subject to a convexity constraint.

In Fig. 3, we plot the Hartree effective potential from E
~8.9! as a function ofy, for our chosen parametersg`51 and
y052, for different values ofN. In contrast to the smooth
behavior exhibited by the large-N effective potentials, the
Hartree effective potential shows a ‘‘first-order transition’’
the placement of the minimum of the potential as a funct
of N.

The minimum of the effective potential corresponds to
determination of the ground state energy. In Fig. 4, we sh
values of the minimum energies of the large-N and Hartree
effective potentials as a function ofN. ForN>2, the Hartree
minimum is generally greater than that for the next-
leading order large-N approximation. Since the Hartree a
proximation is a variational ansatz, it gives an upper bou
to the minimum energy. The fact that the next-to-lead
order large-N results are lower than this bound is encoura
ing, although no guarantee of absolute accuracy.

It is interesting to ask the question how the pointymin ,
below which the next-to-leading order large-N effective po-
tential does not exist, changes as a function ofN. We know
that at ‘‘infinite N’’ ~leading order!, ymin50, but it is impor-
12501
:

n

w

-

d
g
-

tant to know how this limit is reached. For instance, is the
a finite value ofN beyond whichymin50? In Fig. 5, we plot
ymin as a function ofN, for the Hartree and next-to-leadin
order large-N approximations. As already stated, the Hartr
approximation displays a first order phase transition betw
the broken and unbroken symmetry solutions atN56.2,
whereas for the next-to-leading order large-N approximation
a different type of behavior is found: forN<18.6, ymin is
finite, but for N>18.6, it hits the origin. Thus forN>18.6,
we can associate a quantum state~though not known explic-
itly ! with the next-to-leading order approximation.

The critical value ofN is fixed by the value ofx at the
gap equation at the inflection point. If we write the gap equ
tion ~8.5! as

f ~x,y2,N!5 f 0~x,y2!1
1

N
f 1~x,y2!50, ~8.10!

FIG. 3. Veff /N vs y5r /AN for the Hartree approximation usin
the parameters found in Eq.~7.15!.

FIG. 4. Veff /N at the minimum for the Hartree and 2nd ord
large-N effective potentials, as a function ofN, for the same set of
parameters as in Fig. 3.
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where

f 0~x,y2!5
g

2
~y22y0

2!1
g

4

1

Ax
2x,

f 1~x,y2!52
3g

4

1

Ax
1

g

2

]~m11m2!

]x
,

then the critical point is determined by

Nc52
f 1~ x̄,0!

f 0~ x̄,0!
52

] f 1~ x̄,0!/]x̄

] f 0~ x̄,0!/]x̄
, ~8.11!

wherex̄ is given by the solution of this system of equation
For the parameters of Eq.~7.15!, we find numerically that
Nc518.60, in excellent agreement with the results shown
Fig. 5.

IX. NUMERICAL RESULTS

A. Quantum roll

We begin with a discussion of our results for the quant
roll problem. We first examine the short time behavi
0,t,3, to see if the next-to-leading order large-N approxi-
mation gives an improvement over the leading order so
tions. In Fig. 6, we plot the values of^r 2&/N from the nu-
merical solution, the leading and next-to-leading order lar
N approximations, and the Hartree approximation, forN
520. The next-to-leading order large-N approximation is
clearly better than the leading order solution and also be
than the Hartree results. Similar behavior is seen for ot
values ofN ~we also ranN550, 80, and 100!.

The long time behavior of these approximations is ty
cally of much more interest. We examined behavior o
times 0,t,100 to see how long the approximations r
mained viable. Figure 7 displayŝr 2&/N for the numerical

FIG. 5. The value ofy at the minimum of the effective potentia
for the Hartree and 2nd order large-N approximation, as a function
of N, for the same set of parameters as in Fig. 3.
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solution, the leading and next-to-leading order large-N ap-
proximations, and the Hartree approximation forN520 and
100. The next-to-leading order large-N approximation for
N520 blows up att;84. This instability is connected to
violation of unitarity in the particular implementation of th
approximation and will be discussed in greater detail belo
In general, at these moderate values ofN, the approximations
track the numerical solutions reasonably well though they
get out of phase as time progresses. AsN is increased, the
phase errors are considerably reduced as is apparent in
results forN5100.

The energy of the next-to-leading order large-N and Har-
tree approximations is the same as the exact one, but
energy of the leading order large-N approximation differs
from it by terms of order 1/N. ~This is because we need t
keep the initial values of the parameters the same.! To make
a comparison between the approximations this difference
to be compensated for; we do this by rescaling time b
constant multiplicative factor so as to match the last osci
tion maxima. This effect is of order 1/N. For N5100, we
find that for 0,t,100, the next-to-leading order 1/N ap-
proximation is always more accurate than the leading ord
however, when comparing the next-to-leading order with
Hartree, although less accurate fort,50, the Hartree ap-
proximation starts becoming more accurate att;50 ~how-
ever, the errors are very similar in magnitude, of the orde
a few percent!.

We now return to a discussion of the blowups first e
countered in theN520 case discussed above. The failure
truncation schemes~of which 1/N is an example! to maintain
a rigid connection with the existence of a probability dist
bution function is a well-known problem in nonequilibrium
statistical mechanics. It is often the case that, when this c
nection is lost~failure of reality or positivity conditions!,
instability soon follows. In our case, the violation of unitari
is manifest in that positive expressions such as^r 2&/N can
turn out to be negative. Note that since both the Hartree
leading order 1/N approximations are variational in natur

FIG. 6. ^r 2&/N for N520, for the exact, leading and next-to
leading order large-N, and Hartree approximations for short time
5-12
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they can never violate unitarity. In Fig. 8, we show t
blowup or failure time for the next-to-leading order large-N
approximation as a function ofN, the failure time being de-
fined as the time at whicĥr 2&/N becomes negative. It is
interesting to note that for values ofN near the critical value
Nc518.60 where the effective potential extends down to
origin, the failure time starts to increase rapidly~consistent
with our interpretation of the connection of the static effe
tive potential to an associated quantum state!. For values of
N greater than 21, we could not find failure fort,150. Thus,
it may well be that above a certain value ofN, the unitarity
violation is pushed out to times of no practical significan
or may even disappear altogether.

We discussed previously how to choose initial conditio
so as to reach the large-N limit in a controlled manner. Start
ing with these initial conditions, we show in Fig. 9 resu
from numerical solutions of the Schro¨dinger equation for the
time evolution of^r 2&/N. In the strict large-N limit one ex-
pects pure harmonic oscillations about the minimum of

FIG. 7. ^r 2&/N for the exact, leading and next-to-leading ord
large-N, and Hartree approximations for long times. The top figu
is for N520 while the bottom figure is forN5100. The labeling
conventions are the same as in the previous figure.
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infinite-N effective potential. For any finite value ofN, how-
ever, at sufficiently large times the pure harmonic motion
overcome by nonlinear effects, and interesting behavio
found, as shown in Fig. 10, indicating the presence of a v
non-Gaussian wave function. The ability to capture this lo
time behavior is an important test of 1/N methods.

In order to test whether Hartree or the next-to-lead
order approximation incorporate nonlinearities correctly
as to capture the late time modulation behavior, we ra
comparison against the numerical results forN521, the re-
sults being displayed in Fig. 11. It is clear that both appro
mations do not give satisfactory results. This provides ad
tional motivation for the development of alternative 1/N
expansions which would incorporate selective resummati
in order to reduce the coefficient of the error term at la
times.

B. Shifted Gaussian initial conditions

We now discuss the time evolution of a quantum st
having an initial wave function given by Eq.~7.16!. For this
problem, because of the lack of symmetry, exact soluti
were only obtained forN<2. For N51, depending on
whether the energy is above or below the barrier height,
observes either slow tunneling with rapid oscillations in o
well or slower oscillation in the complete range. At these lo
values ofN, the large-N expansion breaks down quickly, a
in the quantum roll, but even here atN51, the 1/N correc-
tions improve the short time accuracy ofq(t).

A more relevant comparison is to consider larger valu
of N at which the approximations have a better chance
capturing the exact behavior. In the next figure, we comp
the Hartree with the leading and next-to-leading order lar
N approximation forq(t), at N550. Figure 12 displays the
results for a run withE.Eb using the equal time Green’
function approximation~see Sec. V! method for obtaining
the Hartree results. Unlike the situation for the roll initi

FIG. 8. Failure time for the next-to-leading order large-N ap-
proximation, as a function ofN, for the same set of parameters as
Fig. 3. Here failure time is defined as the time at which^r 2&/N
becomes negative.
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condition where the Hartree and next-to-leading order lar
N results are not dramatically different, here the qualitat
behavior is quite dissimilar~whereas the Hartree and leadin
order results are in fact very close!.

X. CONCLUSIONS

Testing the 1/N approximation in quantum mechanics h
already enabled us to arrive at some useful conclusions
order to interpret our results, it is important to keep in mi
that 1/N approximations are a form of resummed perturb
tion theory and are therefore only valid at weak couplin
Thus for couplings of order unity, it is unrealistic to expe
the approximation to give good results for small values ofN.
Our results have shown that at sufficiently largeN the next-
to-leading order approximation is a clear improvement o
the leading order approximation; however, at late times
approximation~as well as Hartree! fails to capture the non

FIG. 9. Exact solutions for̂r 2&/N as a function of time. From
top to bottom,N51, 5, 10, and 20.
12501
-
e

In

-
.
t

r
is

FIG. 10. Very long-time behavior of the exact results for^r 2&/N
for 0<t<500. The top figure is forN51 and the bottom figure for
N510.

FIG. 11. ^r 2&/N for N521, for the exact, next-to-leading orde
large-N, and Hartree approximations for late times.
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linear effects that lead to nontrivial amplitude modulation
the radial oscillations in the quantum roll problem.

The main conclusions presented here are for radially
variant initial conditions. While other initial conditions ca
certainly be entertained~e.g., the off-centered Gaussians w
considered above!, the difficulty is that whereas results from
the approximations can be more or less easily obtained,
cannot be benchmarked against numerical solutions at e
moderate values ofN ~for more general initial conditions
one needs to solve anN-dimensional Schro¨dinger equation
for which the memory cost rises asl N wherel is the number
of grid points in a single dimension!. Moreover, it is unlikely
that our~pessimistic! conclusions will be changed by makin
the exact evolution more, rather than less, complicated.

We have noted the presence of a finite-time breakdow
the evolution given by the next-to-leading order approxim
tion. This result is related to the fact that the large-N expan-
sion for the expectation values does not necessarily co
spond to a positive semi-definite density matrix wh
truncated at any finite order in 1/N. ~At lowest order, the 1/N
approximation is equivalent to a Gaussian variational an
for the density matrix and does not have this problem.! This
last aspect is already clear even in static situations suc
the lack of a real effective potential for allN in the next-to-
leading order approximation. This type of finite-time brea
down induced by unitarity and positivity violation has al
been noted in simulations of quantum systems where
coupled equal time Green’s function approach was trunca
at fourth order@23# or where high order cumulant expansio
methods were used@24#.

Two aspects of this breakdown deserve further ment

FIG. 12. Plot ofq(t) vs t for E.Eb with N550.
. D
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First, the time at which breakdown occurs appears to
strongly connected to the behavior of the effective potent
For values ofN not very much bigger than the critical valu
Nc ~beyond which the effective potential exits over the ent
range ofy), the breakdown time increases extremely stee
and may even be pushed to times long enough to be
longer an obstacle to practical calculations~this still needs to
be demonstrated!. Second, it is important to point out tha
avoiding the breakdown via a partial resummation does
automatically guarantee better late time accuracy~or conver-
gence! since such a scheme is also only next-to-leading or
accurate. However, it will help in the sense that one m
carry out simulations at smaller values ofN, thus making it
easier to compare against the late-time numerical solut
of the corresponding Schro¨dinger equation.

One possible way of correcting the problem of a ma
festly positive operator such as^r 2& becoming negative is to
solve for the full Green’s functionGi j (t,t8):

Gi j ~ t,t8!5Gi j ~ t,t8!2(
k,l

E
C
dt1EC

dt2Gik~ t,t1!

3Skl~ t1 ,t2!Gl j ~ t2 ,t8!, ~10.1!

rather than the next-to-leading order one as in Eq.~3.7!. This
equation is the exact equation one obtains by varying
effective action and it contains terms of all orders in 1N
~thus, strictly speaking, one is no longer truncating at so
fixed order!.

However, just making this correction does not increa
the time period during which the approximation is accura
In order to extend the accuracy of the 1/N approximation to
late times, it appears necessary to use a more robust app
mation based on the Schwinger-Dyson equations. Sev
approximations of this sort are possible, which may bo
cure the positivity problem as well as lead to accurate res
at late times. These will be discussed separately@25#.
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