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We study the dynamics of the quantum mechan@@N) model as a specific example to investigate the
systematics of a N expansion. The closed time path formalism melded with an expansiomNiislused to
derive time evolution equations valid to ordelN1/(next-to-leading order The effective potential is also
obtained to this order and its properties are elucidated. In order to compare theoretical predictions against
numerical solutions of the time-dependent Sclimger equation, we consider two initial conditions consistent
with O(N) symmetry, one of them a quantum roll, the other a wave packet initially to one side of the potential
minimum, whose center has all coordinates equal. For the case of the quantum roll we map out the domain of
validity of the largeN expansion. We also discuss the existence of unitarity violation in this expansion, a
well-known problem faced by moment truncation techniques. Thergbults, both static and dynamic, are
contrasted with those given by a Hartree variational ansatz at given valubs Afcomparison against
numerical results leads us to conclude that late-time dynamical behavior, where nonlinear effects are signifi-
cant, is not well described by either approximation.

PACS numbsefs): 11.15.Pg, 11.30.Qc, 25.75q

[. INTRODUCTION since we are restricting ourselves to one-particle quantum
mechanics. Nevertheless, as discussed in more detail below,
Initial value problems in quantum field theory are of greatquantum mechanical examples provide excellent testbeds for
interest in areas such as heavy ion collisions, dynamics dfey issues such as positivity violation and late-time accuracy
phase transitions, and early Universe physics. However, thef the approximations.
solution of the corresponding functional Sctimger equa- The O(N) model has been extensively employed in time
tion is essentially impossible and one is forced to resort tandependent applications in statistical physics and quantum
approximate methods such as mean field approaches of tffield theory[1,2] and several recent applications have studied
Hartree type or the largh- expansion. The application of time-dependent phenomena. The dynamics of the chiral
variational techniques such as the Hartree type is limited iphase transition following the expansion of a quark-gluon
scope since the errors are uncontrolled. Whil dethods plasma produced during a relativistic heavy ion collision has
promise better error control since they are based on a sydeen modeled by a®(4) o model at leading order in i/
tematic expansion, at next-to-leading order these method8]. The nonequilibrium dynamics of a®(N)-symmetric
can become extremely complicated and expensive to implex¢* theory, again treated at leading order, has been investi-
ment. The motivation for our work in this paper is to imple- gated in detai[4]. Even at leading order, theN/expansion
ment the 1N expansion at the first nontrivial order in a quan- captures the phase transition, but does not contain enough of
tum mechanical example. Not only does this simplify thethe dynamics to allow for rethermalization, since direct scat-
analysis but it also opens the possibility of comparing thetering first occurs at next order. TH@&(N) model has been
approximate results with numerical simulations of the timeused in inflationary models of the early Univef&é with the
dependent Schdinger equation, a luxury not available in scalar field often starting at the top of a hill in the potential
the field theoretic case. However, it should be kept in mindand “rolling” down, giving rise to a quantum roll problem.
that quantum mechanics and quantum field theory are verlf has also been applied to study primordial perturbations
different. For example, in the quantum mechanics applicaarising from defect models of structure formatikg].
tions discussed below, tH@(1/N) corrections do not corre- The general method for obtaining the dynamicall Hp-
spond to inter-particle collision@s they do in field theojy proximation via path integral techniques in quantum field
theory was discussed earlier in R¢¥] and applied later
[8,9] to a quantum mechanical systemNf-1 coupled os-

*Electronic address: bogdan.mihaila@unh.edu cillators, a one-dimensional truncation of scalar electrody-
"Electronic address: athan@lanl.gov namics. Two different sets of approximate actions were con-
*Electronic address: fcooper@Ilanl.gov sidered, which differed by terms of ordeiNF, both of them
8Electronic address: john.dawson@unh.edu being energy conserving. The first method in Réi.was a
IElectronic address: habib@Ilanl.gov perturbative expansion of the generating functional in pow-
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ers of 1N. The second method was to first Legendre trans- The paper is organized as follows. In Sec. Il we present

form the action to order N, and then find the equations of the O(N) model as it pertains to quantum mechanics and in

motion. When these two methods diverged from each otheiSec. Il we derive equations of motion for the larbjeap-

they also diverged from an exact solution for the cake proximation to order M. We derive the corresponding equa-

=1. However, because of computational restrictions, it wagions for the time dependent Hartree approximatiobHA)

not possible to study numerically the accuracy of the apin Sec. IV. In Sec. V we show how the same TDHA equa-

proximation as a function dfl. Remedying that deficiency is tions can be obtained from an equal-time Green'’s function

the main motivation of the present study, since for the quanapproach which is computationally more attractive. The en-

tum roll problem numerical solutions can be obtained forergies for the various approximations are calculated in Sec.

arbitrary N. VI. Section VII describes the two initial conditions which
One of the subtle issues in expansions involving momentpreserve th®©(N) symmetry, namely a quantum roll and the

based truncation schemes such as, Which is present both time evolution of an offset Gaussian centered atGyiN)

in quantum field theory and in quantum mechanics, relates teymmetric point. In Sec. VIII we determine the effective

the imposition of constraints arising from the positivity of potential to both order N and for the Hartree approxima-

the underlying probability density function or functional. tion. Numerical results and comparisons with the approxima-

The importance of these constraints is well known in areasions are discussed in Sec. IX and our conclusions are stated

such as turbulence and beam dynanjit@]. In this paper, and discussed in Sec. X.

we show that possible violations of these constraints must be

tamed in 1IN expansions if the approximation is at all ex- Il. O(N) MODEL

pected to succeed at moderate valuesNofThis may be ) )

possible by using certain resummation schemes which will The Lagrangian for th&©(N) model in quantum mechan-

be discussed elsewhere. ics is given by

In this paper we show that evolutions based on the naive N
next-to-leading order N expansion 'violate'unitarity(or_, L(x,>'<)=l 2 $<i2—V(r), 2.1)
more generally, positivity of the density matriand that this 2i=1

violation is associated with a dynamical instability fédess
than some valueNt. We have numerical evidence for a WhereV(x) is a potential of the form
sharp threshold afl~N+, beyond which we have not been N
able to detect the instability. We also have evidence that this _ 9 5 20 2_ 2
behavior is related to the nature of the effective potential at V=g -ros r _21 X 2.2
next-to-leading order: At this order, theonvex effective
potential has the property of not being defined everywherd he time-dependent Schtimger equation for this problem is
for values ofN<N,, whereN, depends on the values of the given by
parameters specifying the potential. fgérN,., the effec- N
tive potential exists globally. What this means is that Kor OP(x,t) D 2
<N, one cannot associate a quantum state with the next-to- T T 24 %jLV(r) pxn. (23
leading order M expansion whereas such a state does exist '
for N>N.. Even though this statement relates to a staticFor arbitrary initial conditions, given present computational
property, our numerical results indicate that in fad  constraints, these equations can be numerically integrated
~Ne. only for smallN=<4. The initial conditions for the quantum

A comparison of the M expansion and the Hartree varia- roll problem allow a numerical solution for &, and in this
tional methodappropriately generalized to the case of finite case we can attempt to study fully the behavior of the large-
N) is of interest since both agree at infinle At finite N, the N expansion.(For the shifted Gaussian initial conditions,
next-to-leading order largh- and Hartree approximations however, this is not possible, and we used numerical solu-
differ and provide alternative routes to improving the leadingtions obtained foN=1 and 2 to benchmark the largé-
order result which, for the quantum roll problem, consists ofapproximations and the TDHA solutions at short times.
harmonic oscillations ifr2) wherer is the radial degree of The symmetry of the quantum roll problem is such that
freedom. At finiteN, the inclusion of nonlinearities leads to only the radial part of the wave function is of interest. As-
amplitude modulation effects on top of the harmonic motion.suming a solution of the form
The ability to capture this modulation is a good test for the
next-to-leading order largh- and Hartree approximations. P(r ) =rE=N2g(r 1), (2.4
Our numerical results provide evidence that neither of these . )
methods is satisfactory at late tim@elative to the oscilla- the time dependent Schtimger equation fogb(r,t) reduces

tion time), though they work reasonably well at short to in- to [11]

termediate times. )
Our results suggest that it is important to find ways to ir?d)(r,t) _ —1§—+U(r) H(r 1) (2.5
improve the naive N expansion at next-to-leading order. ot 2 gr2 ' '

Work using resummation schemes is in progress and short
discussions of relevant issues are included in this paper. with an effective one dimensional potentld(r) given by
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(N-1)(N-3) g , ,, The generating functiod[ j,J] is given by the path integral
U =—————+550"—rp-~ (2.6)  over the classical fields;(t):
8r2 8N
It is further useful to make the rescaling Z[j ,J]=e‘W[i'J]=f dyIT dx; exp{iS[x,x;j,J]1},
i
r’=Ny?, r3=Nys3. (2.7

The potential(2.6) then becomes

U
u(y,N)= |(\|y)

S[X,Xij,J]:Jdt{L”FE Jixi+JIx -
¢ i

_(N-1)(N-3) g

2 The effective action, to order M/ is obtained by integrating
toy
8N2y2 8

the path integral for the generating functional for the La-
grangian(3.2), over thex; variables, and approximating the
integral overy by the method of steepest descékeeping
terms up to order N). A Legendre transform of the result-
ing generating functional then yields the effective action,
which we find to be

2-y3)2, (2.9

corresponding to the new Schiiager equation

p(y,1) 1 az
| _

gt | 2N2g

+u(y,N) oy, D) (29

~ 1 .

wheret=Nt, o _ F[q,x]=J dt{g 2 [af)—xtaf(b)]
The method of choice to investigate the long-time behav- ¢ i

ior of the exact solution is the split-operator method, which 2

has been presented in detail in Reif2]. The wave function +3 2 IN[G;; X(t,t) ]+ X(t)+ 2(t)

is expanded as a Fourier series in the radial component, and g 2

the solution is obtained as the repeated application of a time-

evolution operator in symmetrically split form. As a result,

the use of a fast-Fourier transform algorithm is required. For

the purpose of the present implementation, 256 radial grid

points, a value of 20 for the radial grid boundary, and a timewhere the integral is over the closed time p@tlliscussed in

step size of 0.01 provide a conservation of the wave functiorRef. [7] and q;(t) =(x;(t)). Here Gﬁl(t,t’) and D~ (t,t")

unitarity to better than 9 significant figures. The accuracy ofare the lowest order in W inverse propagators fog and y,

the method has been established by comparing results withgiven by

second method, where we first solve for the eigenvalues and

eigenfunctions, and then use the expansion

+i§In[D‘1(t,t)]}, (3.3

-1  — d2 ’ —~-1 l
Gjj(t.t )—[@‘FX(U]%(U )6i=G (1) g,

¢<r,t>=; Cpe Entgn(r), (2.10

N
_ o g D H(t,t) =~ —d(t,t) —TI(L,t"),
whereC, was determined from the initial conditions. Results g9
from the two methods agreed in the cases where they were

used together. where

i
Ill. LARGE- N APPROXIMATION ntt)=-5 > G(tLt)Gj(t',b)
N

The largeN approximation has been worked out for the
O(N) model in 1+ 3 dimensions in Ref.7]. The Lagrangian
(2.1) with the potential function2.2) is obtained from that
paper by specializing to €1 dimensions, and replacing
da(t)—X;(t), v—rp, andr—g.

To implement the larg& expansion, it is useful2] to
rewrite the Lagrangian in terms of the composite figldby
adding a constraint term to E¢R.1), given by

+2 qOG LA t). (34
Here 6,(t,t") is the closed time path delta function.

The equations of motion for the classical fielgigt), to
order 1N, are

d? )
N 2 {—;x(t)]qi(tmz fdt’Gij(t,t')D<t,t'>qj<t’>=o,
—|x—5(r?=1d)| , 3.0 dt e
29| 2N (3.5
which yields an equivalent Lagrangian with the gap equation fox(t) given by
. 1. rs N g 9
' = 20— )+ 2y —y2 ———r24 (2)
L' (xx00= 20 50— x0)+ 5 xct 500 (32 X(O=— 55T+ 5N 2 [q (t++ LGPy (39
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The next-to-leading ordex; propagatorG{?'(t,t’) and self-
energy;(t,t") to order 1N turn out to be

gi(jZ)(t't,):Gii(tvt,)_E fdtlf dt, G (t,ty)
ki Je e
X2y (ty,12) Gjj(ta,t"),

2k|(t1t,):iG’kl(tit,)D(tvt,)_qk(t)D(Lt,)ql(t’)'
(3.7

These equations agree witR.18—(2.22 of Ref. [7]. We
mention here that the actual equation fpmwhich follows
from the effective action differs from Ed3.7) in that the
final G in the integral equation is replaced by the f@ll This
leads to a partial resummation of theN1¢orrections which
which guarantees positivity afx?(t)) (this restricted result
does not imply that the full positivity problem for the density
matrix has been solveédHowever, it does not improve the
long-time accuracy of the resulfg5].

In order to solve foD(t,t"), we first write

N N
—D(t,t")=—5:(t,t")+—=AD(t,t’). (3.9
g g
ThenAD(t,t") satisfies the integral equation

N g9

—AD(t,t’)z—H(t,t’)—fdt"H(t,t”)AD(t”,t’),

g N c

(3.9

in agreement with2.13—(2.16) of Ref.[7].

We are now in a position to solve these coupled equations

for the motion ofq;(t) and x(t) for given initial conditions.
For the initial conditions discussed in Sec. VI, we find

(3.10

wheref(t) andf*(t) satisfy the homogeneous equation,

Gij(t,t)i=0(t,t") 8, F(HF* (1),

¢ t ( He) ) 0 3.1
e x(1) £ (1) ; (3.1
with initial conditions
f(0)=G, f(0)=1/(2G). (3.12

However,AD(t,t’) cannot be factored into products of func-
tions like Gj;(t,t").
We solve Egs(3.5 and (3.6) simultaneously with Egs.

PHYSICAL REVIEW D 62 125015

generalization to the time-dependent case is given bHelow
For the O(N) problem this amounts to placing an
N-dimensional Gaussian sonteadial) distance away from
the origin and then carrying out the minimization procedure.
In contrast, the leading-order lar¢e-wave function is a
Gaussian which is locked at the origin. At infinité the
TDHA becomes exact and equivalent to the leading order
largeN approximation, a well-known resultSee, e.g., Refs.
[14,15. The TDHA being used here should not be confused
with the Hartree approximation fad=1 which does differ
from the leading-order largh- approximation). At finite N,

the TDHA and the next-to-leading order lartyeapproxima-
tion may be thought of as two competing schemes to im-
prove on the leading-order result.

There are several ways of implementing the Hartree ap-
proximation: The most common is by using the time-
dependent variational principle of Dirddé6—18. This has
the advantage of giving a classical Hamiltonian description
for the dynamics of the variational parameters, which can be
hidden in other formulations.

The idea behind this approach is that the variation of

J
Myt )= | auliZ-Hpn) @

is stationary for the exact solution of the Scttirmger equa-
tion, the time derivative acting in both directions. We con-
sider Gaussian trial wave functions of the form

Gii'(t)
4

_iHij(t)) z;(t)
(4.2

where NV is the normalization constant, and we have set
zi(t)=x;—q;(t). Hereqi(t), pi(t), Gj(t) and 1I;;(t) are
time-dependent variational parameters, to be determined by
minimizing the Dirac action. We note thék;;(t), which is
used only in this section, is conjugate@g;(t) and is not to
be confused with the self energy(t,t’) defined in Eq.
(3.4).

The n-point functions can be calculated from the generat-
ing functional using the formula

b(X,1) =Nexr{ ipi(Hz(t)— Zi(t)(

(3.7 and (3.9), using the Chebyshev expansion technique

[13] of Appendixes A and B of Ref9].

IV. TIME DEPENDENT HARTREE APPROXIMATION

It is useful to compare our results for the lafyeapproxi-

mation to the time dependent Hartree approximation suitably

formulated for theO(N) problem. The static Hartree ap-

(ziz;- - ~zn>=ﬂ , 4.3
: dJid)j- -+ dinl;_q
where
1
Z[j]:sz I1 dXseXF{_Ezi(t)Gilej(t)ﬂiZi(t)
ey
=ex;{% . (4.4

The expectation value of the time derivative is given by

[

d

E>:piqi_Gijﬁij (4.9

proximation is based on the idea of varying the parameters of

a Gaussian wave function so as to minimize the enéttyy

and the expectation value of the kinetic energy is

125015-4
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14 pipi 1 _
<_§z9_xi2>27+§en +20;GjdLi - (4.9

For the expectation value &f we first expand the potential

in a Taylor series abouwt =0,

1
V(q,z)=V(q)+Vi(q)zi+ivij(q)zizj+ e

where
9 2
Vi(@) =5 9i(Asds~ o),
9 2
Vij(Q):m[aij(qSQS_ ro)+29iq;l,
g
Vijk(Q)=N(5iJQk+ Oikdj * Sjkdi)
g
Vijk|(Q)=N(5ij5k|+ Si1 Ojk+ ik j1)- 4.7
Thus

g
V(0,2)=gql(a;a;=10)*+(z12)*+4(zi2)(z9) + 4(z,a)?
+2(22) (00— r§) + 4z (0~ r5)].

Taking the expectation value, we obtain
g
<V>:ﬁ[(%qj_rg)2+26ii(qjqj_rg)+4Gijquj+Giiij

+2G;;G; . (4.9

PHYSICAL REVIEW D 62 125015

Green'’s functions provides a way to avoid this technical dif-
ficulty [19,14,20. We begin by considering the time evolu-
tion of the one point functions,

Qi:pi,

. 1
Pi==Vi— 5 VikGijk,

9
:—m{Qi(quk-FGkk—rg)+qk(Gik+ Gki)} (51)

whereV; and Vj;, are given by Egs(4.7), as well as the
evolution of the two-point functions:

Gij(h=(zz), Ki=(zz),

1 L
Fij:§<[zi2j+2jzi]>. (52)

Here we have again sef(t) =x;—q;(t). All of the expecta-
tion values are taken with respect to the Gaussian trial wave
function, Eq.(4.2). To obtain the equations of motion for the
two-point functions, we use the exact equation of motion and
the factorization resulting from the Gaussian approximation.
This yields

Gy =Fi+F;, (5.3
Fij:Kij—<zij—)\(/_>, (5.4
J
kij=—< AL > 55
[ j

The Hartree equations of motion are Hamilton’s equationdiere we have used the Lagrange equations of motion

for the variational parameters:

ai= Pi»

. 1

Pi==Vi— 5 VikGijk,
GijZZ(Gikaj+ijHki):

) 1 . 1 1
I1ij=5 Gi "Gy — 2= 5 Vi~ 7 Vi G- (4.9

Solutions of this set of equations determine the time-

NV

A .
X; ox 0, (5.6
where
aVv 1 )
5_Xi =V;z +€Vijk| z;z,z,+terms with even powers af,

(5.7

and the fact that for our Gaussian wave packgh=0. The
canonical commutation relations give

dependent Hartree approximation to the true solution of the

Schralinger equation.

V. METHOD OF EQUAL-TIME GREEN’s FUNCTIONS

Solutions of the TDHA equatiof4.9) require computing
the matrix inverse oG;; . This can be difficult to carry out in
practice for largeN. Fortunately, the method of equal-time

<Zilzj_.iji>:<xi5(j_$(jxi>:i5ij , (58)
and we have
<ZiZjZkZ|>:Giij|+Gi|ij+ GiijI , (59)

<Zizjzk.zl>:Gij Fk|+ Fi|ij+Giij|

+i(Gjj 8+ Gji i + G 6;)/ 2, (5.10
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(z:Z242)) = F}iGy + FiGjx+ FiiGj)

_i(Gk|5ji+ij5|i+Gj|5ki)/2' (51])

Finally, from Egs.(5.4) and (5.5 we get

Fij VikGik= Vikim(GikGim+ GimGy + Gii Gym) /6,

(5.12

i

Kij= = VikFi;= VikFii = Vikim(GiF mj+ GimF
+ GkmF1j)/6 = Vikim(FkiGim* FmiGi+ FiiGkm) /6.

(5.13

For Gaussian initial conditions, the equal-time Green’s
function method is assured to give the same result as the

Hartree method, ifF;;(0) andK;;(0) satisfy the require-
ments

Fij(0)=0, K;j(0)=Gj*(0)/4
ChoosingK;j; independently ofG;; corresponds to a mixed
initial density matrix, rather than a pure state. If we further
chooseG;;(0) to be diagonal and equal to the same numbe
Go,

Gij(0)=6;;Go,
thenK;;(0) is given by

For the initial conditions pertinent to the quantum roll,
q;(t)=0 for all t. Then Gj;(t), Fj;(t), and K;;(t) are all
proportional to the unit matrix, and have no off diagonal
terms. For the offset initial condition, we choose laige-
symmetric initial conditions so that;(0)=qg,, and p;(0)
=0, andG;;(0)=G,gj; - In that case, all thg’s andp’s are
identical,

qi(H)=q(t), pi(H)=p(1),
and the matricesG;;(t), F;;(t) and K;;(t) become off-

diagonal in a simple way so that all the diagonal elements are
equal and all the off-diagonal elements are equal. That is, we

can write
Gij()=G(1)8;+G(1)(1— &),
Fij(D=F(t)&;+F(t)(1- &),
Kij (1) =K(t)&; +K(t)(1—&;).

For this case, Eqg5.1), (5.3, (5.12, and(5.13 simplify to
the following set of coupled equations:

a=p,

= iNq{NqZ—rg+(N+2)G+2(N—1)6},

PHYSICAL REVIEW D 62 125015

9 2
—m{G[(N+2)(q2+G)—r0]
+2(N-1)G(¢?+G)},

F= K——{G[(3N 2)q2+(N+4)G
+2(N=2)G—r2]+2Go?,

— HFLN+2)(@+G) 1]

+F2(N-1)(g?+G)},

- —{F[(3N 2)g?+(N+2)G+2(N-2)G—r2]

+F2(g%+G)}. (5.19
if we let r3=Ny3, and then take the limi— o, we recover
the leading order in larg®N result, as discussed in Refs.
[19,14.

The equal time Green’s function method is easier to
implement numerically than the Hamiltonian system de-
scribed by Eq(4.9), since no matrix inversion is involved.
However, if one wants to find the wave function or the en-
ergy, instead of just obtaining the Green’s functions, matrix
inversion is once again required.

VI. ENERGY

It is important to note that even though the Hartree and
largeN approximations are truncations of the true dynamics,
they are nevertheless energy conserving. In the [Brgg-
proximation, to order M, the expectation value of the
Hamiltonian is given by

- N .
E L(RD) + (O]~ 2 <x<t)>—5<x2<t>>-
(6.9
We write these expectation values in terms of the closed time

path (CTP) Green’s functions. By definition, the discon-
nected two-point Green’s functions are introduced as

Dais(t,t) =i(Te x(Dx(t) ) =ix(D)x(t") +D(t,t"),
(6.2

Gij,ailt,t") =T X (O)x;(t") ]) =iq;(t)g;(t") + G (t, E ) 5

where D and G,;,, denote theconnectedtwo-point Green’s
functions:
L,jo

S*WLJ,j]

POO= S5 st

125015-6
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S2W[J,j] tion for the same value o& will disagree with the exact
Gij(t,t")= —, . (6.4 energy bye;. This discrepancy disappears when we include
51106} (1) 15, the 1N corrections.

. _ Since the Hartree approximation leads to a canonical
To obtain the energy from Ed6.1), we require the expec- Hamiltonian dynamical system, the corresponding energy in
tation values that approximation is also a constant of the motion. It is

i b
(x(1)=x(1), given by

1 1 1
<;(2(t)>:X2(t)+D(t,t)/i, Ezzpi2+§Gii 1+2HijijHki+V(q)+EvijGij
2(t)y=g2 g i 1
(O =ai O+ G (LA, + 7 Vi (GijGu+ Gil G+ GiG;ji).- (6.7)
PG (t,t))]i

<5<i2(t))=qi2(t)+ We used this expression to check the accuracy of our nu-

atat’ |, merical solutions. As with the next-to-leading ordeN J&x-
pression, for the quantum roll initial condition, E¢6.7)
(X(OXE(0) = x(D[GH(D) + Gy (1,011 - K (L,L.1), agrees with the exact result.
whereKj; (t1,t5,t3) is the 3-point Green’s function defined VII. INITIAL CONDITIONS
as
A. Quantum roll
Kii(tg,t,ts)=— j dtGiy (t1,1)Gyi(to,1)D(1,ts). We wish to study initial conditions which are consistent
e [ ' with O(N) symmetry. This implies immediately that all the

_ . Xi(t) have to be identical, witk;(0)=0, andG;; (t) must be
The energy for the next-to-leading order lafgeapproxima-  diagonal. The quantum roll problem is defined by a Gaussian

tion is then given by initial wave function that is centered on the origin:
2
_ rO N 2 . 1 ") 1 r2
E——EX('[)—E{X (t)+AD(t,t)/|}+§§i: Iq|(t) wo(r)—mex Tk (7.2
PGt/ 1 5 _ In this sectionG=G(0).
Y *3 Z {x(O[ai () + G (t,1)/i] One of the difficulties in studying the systematics of the
t=t’ 1/N expansion is the fact that, at next to leading order, every
—Kii(t,t,0)}. (6.5 different value ofN (with all other parameters held constant

defines a different initial value problem. In this sense one

Using the equations of motion, we can show directly that Eqcannot naively compare individual solutions, exact or ap-
(6.5 is conserved. proximate, at different values ®. In effect one has to tune
It is easy to evaluate the energytatO for the quantum the parameters of the problem at e&¢tin order to maintain
roll problem using the initial condition.12. The result for ~ certain invariance properties which allow differeitevolu-
the leading and next-to-leading order lafgeapproximation ~ tions to be compared to each other. This parameter tuning

is process is described below.
Since the infiniteN limit has very precise properties, sev-
E 1 eral technical issues arise when one wants to approach this
N ftyeat limit starting atN=1 in a uniform manner. To study the
largeN limit it is convenient to make a rescaling to tlye
where variables, given in Eq92.7). At very largeN, the potential
energyu(y,N) is, as given earlier in Eq2.9):
Y Gyg+ e
€0=gg T g9o 79%% T gd%, " N):(N—l)(N—3)+g( 2 2)2~i+9( 222
7.2
e1=9G" 6.6 (7.2

In this limit, u(N,y) has a minimum which is independent of
Our initial wave function was chosen to be Gaussian, so thdy, and the largeN limit consists of harmonic oscillations
the parameters of the Hartree approximation agree exactlgbout this minimunithe reason for this is that the larde-
with the energy and parameters of the exact wave function dimit also corresponds to an effectively large mass limit in
t=0. However, the leading order in the lartjeapproxima-  the Schrdinger equatior(2.9)].
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One way to uniformly study the motion of a wave packet (N-1)(N-3) g —, ,
as a function oN is to choose initial conditions so that there = = m(r o), (7.7)
is a uniform overlap of the initial wave function with the set 4r
of eigenfunctions of the Hamiltonian in th¢— o limit. We —,
can obtain this constant overlap if we allow the coupling@dm® by
constantg to be a slowly varying function ofl. This can be
done in several ways that differ by terms of ordeX4/The 2 3(N—1)(N—3) +i(3r_2— 2) = g(3r—2_2rz)
method presented below leads to uniform results eved at 412 2N N o
=1 as we change the parameters withOur method is to (7.9
keep the distance between the centers of the initial wave

function and the position of the minimum of the potential aThe frequency of oscillation is determined b’_y and this is

constant ad is varied. ~ the quantity to be kept fixed a$ is changed.
Using Eq.(7.1), we definer by The last technical issue is to keep the distance between
the center of the initial wave function, and the minimum of
~ I'(N+1)/2) = .
r=(ry=+2G TR | (7.3  the potentialr, a constant as we valy. That is, we keep
andG., by the variance or=r—r
G.. T(N+1)/2)]2 constant for allN. B
- = (r?)—(r)?= G[ N— 2[w} ] With this strategy of keepinG.., m andér fixed, we can
now determine how the coupling constant must vary Wth
Solving the above equations f@&, we have We first de_finem2 to be the second derivative ¥f{r) evalu-
ated atr =r,
G(N) e (7.4
T oN_ 2" ) d?V(r —
2N—4[(N+1)/2)/T(N/2)] . (2 ) =%(3r2—r3). 7.9
r —
Substitution of this expression into E(.3) yields r=r
G Then, Eq.(7.8) becomes
(N)= \/ . (79
N[T(N/2)/T(N+1)/2)]*—2 ) —, 3(N—1)(N-3)
m“(N)=m R (7.10
r

In the limit whenN goes to infinity, we have

N TIN) T = JIN=T G Solving Eq.(7.9) for ry, substituting into Eq(7.7) and solv-
GN)=Cx,  1(N)=T2=V(N=1)C., ing for g gives

which definesr.., and agrees with the asymptotic form of

: o : ) N|— (N=1)(N-3)
the rescaled version of the initial wave functiohl): g(N):r—_z[ m2— = , (7.19)
1 r2 . N—1I
¢0(r)—(2WG)N/4ex ac " 2 T with r=T+ &r. The value ofr2 is then determined by Eq.
(7.7):

_ 7 \2
! exp{—(r =) +o<1/m)].

%(277(3)“/4 2G.. 2N (N—1)(N-3)

g(N) 4r?

(7.12

ra(N)=r2-
In order to ensure that the initial wave function has a finite

overlap with the energy eigenfunctions of the Sclinger Thus, forfixed values ofG.., m and &r, Eqgs.(7.4), (7.5),

equation at largéN, we will keep the value of5,, (and not (7.10, and(7.12 determine values fo&(N), T(N), g(N),

G) fixed in our simulations.
Another quantity that should be kept constant is the basié n(ljr:%ﬁlg)liﬁfitalll\l\flolieivgﬂyih d that

oscillation frequency. In order to do this, we first find the
Gaussian oscillations about the minimum of the one dimen-

. ) . 1 [ — 1
sional potential, defined by E¢2.6). We expandJ(r) as N vy Bl

p y EQ.6) p (r) g(=)=g-| m Gi) , (7.13

_ 1 _
U(r):U(r)+§m2(r—r)2+~-~, (7.6)
— 3

o m?(0) =m’— —. (7.14

wherer is given by the solution of the equation 4G;,

125015-8



EXACT AND APPROXIMATE DYNAMICS OF THE . ..

PHYSICAL REVIEW D 62 125015

= | | | ' E- v+ 9 IN(N+2)G2— NG+l (7.1
N — =3G TaniN(N+2) rotror. (717
N G
2 '\\\\\\ ----m’ T On the other hand, the height of the classical potential barrier
\ Tt Y is given by
\\ ---------------
15 ~ . g
,_ \\\\\ Ebzﬁrg. (7.18
g L — For N=1, the necessary requirement for tunneling is that
E<Ey.
In the general cas@rbitraryN), we have
0.5 - . 5
a°V(r) g N
M?2= ==r2 or ri=—M?2, 7.1
(9[‘2 N 0 0 g ( 9
0 1 1 1 1 rO
0 20 40 N 60 80 100 If the initial state is close to the ground state of a harmonic
potential that approximates the potential at the bottom of the
FIG. 1. Potential parameters as a function\bf well, then the widthG of the wave function is, approxi-
mately,
To summarize, in order to establish appropriate initial
conditions for the quantum roll problem, we have kept the 1

(7.20

varianceG,, constant instead o6, and have allowed the G= 2\/—W

parameters describing the potential functignand ry to

change withN in order to compare solutions that have closeyynich can be combined with E¢7.17 to give the desired

to the same oscillation frequencies. In our numerical runsenergy of the initial state in terms of the valueshoaindg.

we chose the values We are interested in initial conditions where the energy
per oscillator does not increase as a functiolNof o imple-

G.=1, m?=2, &r=2, g(»)=1. (7.15  ment this we fixM2=1, which corresponds t&=1/2 for
the initial width. The barrier height is then given by
Figure 1 displays the variation of the potential parameters
with N. £ N -
B. Shifted Gaussian initial conditions dth | b
. . - i . and the total ener
The second(N—1) invariant initial condition we inves- g9y by

tigated had a wave function localized in a wave packet near N+1 N+2
the center of the valley of the classical potential &tr . For =1 + T (7.22

N=1 this would be the standard double-well tunneling prob-
lem; for higher values oN, tunneling is avoided by going /e explored three caseE=0.56,, E=E,, andE=2E,.

around the barrier. Therefore this initial condition is qualita- o each of these cases E¢®21 and (7.22 determineg
tively different from the roll problem and provides a differ- f hN. I all ' 100k (0)=r o/ VN, X =0
ent arena for testing approximations. However, since this inifo" €ach N In all cases we took;(0)=ro/yN, x=0,

tial condition violates theD(N) symmetry of the potential, Gij(0)=Gd;;, andG;;(0)=0. As a consequence, all of the
numerical solution is at present possible only for very smalscillatorsx;(t) move identically.
N.

We take the initial wave function to be a shifted Gaussian
of the form

VIIl. EFFECTIVE POTENTIAL

It is well known that the static effective potential is not

1 (X —r /\/N)Z always a useful guide to the true dynamics of the system
lpo(x):—mexp[—E AR S (7.16  (see, e.g., Ref[4]). Nevertheless, one may seek to gain
(27G) ‘ 4G qualitative insight into some aspects of quantum dynamics

this way, though care is certainly indicatésee, e.g., Ref.
[21] for the Gaussian effective potenjialndeed, there ap-
pears to be an interesting connection with the properties of
the effective potential at next-to-leading order and with the
corresponding dynamical evolutiofdiscussed in the next
section.

The effective potential in the largd-approximation has

The energ)E of this state can be determined from E§.7)
by the substitutions

Gij— &G, a—ro/IN, p—0, II;—0,

from which we find
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been previously obtained by Rod@2] to order 1N; we re-
calculate it here using our equations. Whenand y are

independent of time, we can ignore the closed time path
ordering and use Fourier transforms, passing the poles b

using the Feynman contour. Then, from the action given in
Eq. (3.3), we find

Ny x| 1 N[ dk
[1] Al 2 Ay T2y | -1
1f K In[D~*(k 8.1
+5| 5 InD k)], 8.
wherey satisfies the requirement
(8.2

J

aveﬁ(rv)()zo-
In this section to make contact with Rd@2], we haveu?
= —gré/(ZN)<0. In order to examine the largedimit, we

again rescale Eq92.7) to they variables. Then for the
Green’s functions, we find

G (k)= (k= ),

~ N ~ iN(dp~ -
B 00= 5 ~NyB(+ 5 [ SEBPIBK-p)

N L y> g 1
g kK2—y 2\x k2—4y
N (k?—m?)(k?—m?)

g (K-4x)(k®—x)

wherem? =b=+ \b%—c, with

b:

+=| y2+ !

2X 2\ Yo
1

c=4X2+g(4y2X+§\/;).

For the Feynman contour, we have

dk
f ﬁln(kz—x)z\/;Jrconstantterms. (8.3
Thus the effective potentidB.1) becomes
VYY) x o, 0 X% W 1
—N 2V —YO)—E+7+m(m++mf—3\Fx)-
(8.9

The gap equation which determings follows from Eq.
(8.2:

g(N=3) g d(m,+m._)

9 2 2
=—(y?-yd)+ + 8.

VN
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4 T T

—— 1st order
...... -~ N=1 |
----N=5 ol |
——-N=10 ,' I

—-— N=50 / ]

FIG. 2. V¢4/N vs y=r/yN for the leading and next-to-leading

order largeN approximation for different values .

To leading order in the largh- expansion, Eqs8.4), (8.5
reduce to the parametric set

Vx

VA0 X x
4 ’

N 2g

2(1)=y24 2y

Equations(8.4) and(8.5) agree with Root; however he used
the leading order expression fgrin Eg. (8.6), rather than
the full x of Eq. (8.5).

There exist two real solutions of E¢B.5) for y with y
greater than some minimum valyg,;,,. The next-to-leading
order largeN effective potential, from Eq8.4), is therefore
double valued fory>y,,, and does not exist for smaller
values ofy. The physical solution branch corresponds to the
one that matches on to the leading order result; the other
branch is an unphysical solution. Since it follows from a
Legendre transformation, the effective potentalany order
in 1/N) has to be a convex function. The nonexistence of the
effective potential ay <y, implies that no quantum state
can be associated with the next-to-leading order |&tgp-
proximation in this range.

In Fig. 2, we plot the physical branch of the effective
potential as a function of, for values ofN from 1 to 100, for
the caseg=1 andy,=2. For comparison, we also show in
this figure the leading order potential function from Eq.
(8.6), which is single valued and finite for all (In contrast
to the next-to-leading order case we can always associate a
Gaussian wave function with the leading order approxima-
tion.)
In the case of the Hartree approximation, one can define
an “effective potential” as the expectation value of the
Hamiltonian using the variational wave functiga.2) for
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static configurationd21,15. Setting p;(t)=0 and IT;;(t) .
=0, and putting2;g”=r? and Gjj=6;;G in Egs.(4.6) and

(4.8), we find

—— 1st order

Vily.6) 1 g
“ N se gV W’
VN
N+2 1 g
| vy2ye = _ 2.2
+tIN y+ZG) 4yOG. (8.7

The value ofG is fixed by the requirement that

N (1:8) _
G

which gives the gap equation for the Hartree approximation:

g

:—( 9
x=5(y

m;

where we have séb=1/2./y. Parametric equations for the
Hartree effective potential are then given by

g 1
2 2,92, &
y0)+N yo+ 2y + (8.8

FIG. 3. Vg /N vsy=r//N for the Hartree approximation using
the parameters found in E¢7.15.

tant to know how this limit is reached. For instance, is there
a finite value ofN beyond whichy ;=07 In Fig. 5, we plot
Ymin @S a function ofN, for the Hartree and next-to-leading

Vi 1 N2 N N+4 N, To
N 2g m) X — 2y°X+4(N+2)\/; order IgrgeN approxmatlops. As already stated,. 'Fhe Hartree
9 (N+2) approximation displays a first order phase transition between
P the broken and unbroken symmetry solutionsNat6.2,
+ 9 ya+ 9 Yo 9 l whereas for the next-to-leading order lafgeapproximation
2(N+2)2°% 4(N+2) [, 16N x a different type of behavior is found: fdd<18.6, y, iS
finite, but for N=18.6, it hits the origin. Thus foN=18.6,
() N 2, 2 1 1 vx:e)canhaskfociate a ciuagtum stc(jitmugh not known explic-
Y X) = o\ Yot X~ - = T iNTo o itly) with the next-to-leading order approximation.
N+2 9 2\/; (N+2)x The critical value ofN is fixed by the value ofy at the

(8.9 gap equation at the inflection point. If we write the gap equa-

Note that in the limitN— =, Eq. (8.9 reduces to Eq(8.6),  tion (8.5 as

the leading order largBt result. Note also that the Hartree
effective potential is not derived from a Legendre transform
and hence is not subject to a convexity constraint.

In Fig. 3, we plot the Hartree effective potential from Eg.
(8.9 as a function ofy, for our chosen parametegs=1 and
yo=2, for different values oN. In contrast to the smooth
behavior exhibited by the largd- effective potentials, the
Hartree effective potential shows a “first-order transition” in
the placement of the minimum of the potential as a function
of N.

The minimum of the effective potential corresponds to a=z
determination of the ground state energy. In Fig. 4, we show &
values of the minimum energies of the laryeand Hartree
effective potentials as a function bf ForN=2, the Hartree
minimum is generally greater than that for the next-to-
leading order largéN approximation. Since the Hartree ap-
proximation is a variational ansatz, it gives an upper bound
to the minimum energy. The fact that the next-to-leading
order largeN results are lower than this bound is encourag-
ing, although no guarantee of absolute accuracy.

It is interesting to ask the question how the pojnt,,
below which the next-to-leading order larjeeffective po-

1
FOny? N =fo(x.y?) + Nfl(XayZ):Oa (8.10

25

—— 2nd order large-N

2
15 f
1

0.5

20

FIG. 4. V¢4 /N at the minimum for the Hartree and 2nd order

tential does not exist, changes as a functiomNoWWe know
that at “infinite N” (leading order, y,,i,=0, but it is impor-

largeN effective potentials, as a function bf for the same set of
parameters as in Fig. 3.
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5 5 T T T ! !
4 _ —— 2nd order large-N 4
U [ Hartree
3r 4
ymin
2 - ]
! exact
1+ & T T I 1st order large-N
---- 2nd order large-N
——- Hartree
0 L 0 1 1
0 5 10 15 20 0 i P 3
N t
FIG. 5. The value of at the minimum of the effective potential FIG. 6. (r2)/N for N=20, for the exact, leading and next-to-

for the Hartree and 2nd order lar§eapproximation, as a function

Shatl leading order larg®N, and Hartree approximations for short times.
of N, for the same set of parameters as in Fig. 3.

solution, the leading and next-to-leading order lakj@p-
proximations, and the Hartree approximation fb+20 and
100. The next-to-leading order lar¢e-approximation for
N=20 blows up at~84. This instability is connected to a
violation of unitarity in the particular implementation of this
approximation and will be discussed in greater detail below.

3g 1 ga(m,+m.) In general, at these moderate valuedlpthe approximations
f1(x.y?)=— 2T track the numerical solutions reasonably well though they do

‘/; X get out of phase as time progresses.Mss increased, the

phase errors are considerably reduced as is apparent in the
results forN=100.

where

fo(X,y2)=—(y YO)+4\/— X

then the critical point is determined by

- Y The energy of the next-to-leading order lafgeand Har-
f f
N.=— 1(£0) __Y 1(£0)/0L (8.1)  tree approximations is the same as the exact one, but the
fo(x.,0) afo(x,0)/dx energy of the leading order lardé-approximation differs

from it by terms of order M. (This is because we need to
wherey is given by the solution of this system of equations.keep the initial values of the parameters the sarfie.make
For the parameters of Eq7.19, we find numerically that a comparison between the approximations this difference has
N.=18.60, in excellent agreement with the results shown ino be compensated for; we do this by rescaling time by a
Fig. 5. constant multiplicative factor so as to match the last oscilla-
tion maxima. This effect is of order N/ For N=100, we
IX. NUMERICAL RESULTS find that for 0<t<100, the next-to-leading orderN/ap-
proximation is always more accurate than the leading order;
however, when comparing the next-to-leading order with the
We begin with a discussion of our results for the quantumHartree, although less accurate fior 50, the Hartree ap-
roll problem. We first examine the short time behavior, proximation starts becoming more accurate-at0 (how-
0<t<3, to see if the next-to-leading order laryeapproxi-  ever, the errors are very similar in magnitude, of the order of
mation gives an improvement over the leading order solua few percent
tions. In Fig. 6, we plot the values @f2)/N from the nu- We now return to a discussion of the blowups first en-
merical solution, the leading and next-to-leading order largecountered in thé&N=20 case discussed above. The failure of
N approximations, and the Hartree approximation, for truncation scheme®f which 1N is an examplgto maintain
=20. The next-to-leading order lardé-approximation is  a rigid connection with the existence of a probability distri-
clearly better than the leading order solution and also bettepution function is a well-known problem in nonequilibrium
than the Hartree results. Similar behavior is seen for othestatistical mechanics. It is often the case that, when this con-
values ofN (we also rarN=50, 80, and 100 nection is lost(failure of reality or positivity conditions
The long time behavior of these approximations is typi-instability soon follows. In our case, the violation of unitarity
cally of much more interest. We examined behavior ovelis manifest in that positive expressions such(&d/N can
times 0<t<100 to see how long the approximations re-turn out to be negative. Note that since both the Hartree and
mained viable. Figure 7 displays?)/N for the numerical leading order M approximations are variational in nature,

A. Quantum roll
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3.5 T T T T 100 T T T T

80 E

25 H |

/N

2

<r >

t-failure

40 | -

1.5
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0.5

FIG. 8. Failure time for the next-to-leading order lafgeap-
4 proximation, as a function dfl, for the same set of parameters as in
1 N Fig. 3. Here failure time is defined as the time at whicf)/N
|

becomes negative.

infinite-N effective potential. For any finite value df how-
i ever, at sufficiently large times the pure harmonic motion is
151 1 ] overcome by nonlinear effects, and interesting behavior is
' | found, as shown in Fig. 10, indicating the presence of a very
‘ non-Gaussian wave function. The ability to capture this long
| time behavior is an important test ofNLimethods.
Wi ] ‘l.p i In order to test whether Hartree or the next-to-leading
: ,‘I i : B U b 'Hl order approximation incorporate nonlinearities correctly so
1Y Wi W i \l"i ] as to capture the late time modulation behavior, we ran a
v i ) | “ IR RE comparison against the numerical results Kbx 21, the re-
0 20 40 60 80 100 sults being displayed in Fig. 11. It is clear that both approxi-
t mations do not give satisfactory results. This provides addi-
) . , tional motivation for the development of alternativeN1/
FIG. 7. (r*)/N for the exact, leading and next-to-leading order gy yansions which would incorporate selective resummations

largeN, and Hartree approximations for long times. The top figurein order to reduce the coefficient of the error term at late
is for N=20 while the bottom figure is foN=100. The labeling times

conventions are the same as in the previous figure.

/N

2
<r >

they can never violate unitarity. In Fig. 8, we show the B. Shifted Gaussian initial conditions

blowup or failure time for the next-to-leading order large- We now discuss the time evolution of a quantum state
approximation as a function i, the failure time being de- having an initial wave function given by E¢7.16). For this
fined as the time at Whicl(1r2)/N becomes negative. It is problem, because of the lack of symmetry, exact solutions
interesting to note that for values Nfnear the critical value were only obtained forN<2. For N=1, depending on
N.=18.60 where the effective potential extends down to thewvhether the energy is above or below the barrier height, one
origin, the failure time starts to increase rapidgonsistent observes either slow tunneling with rapid oscillations in one
with our interpretation of the connection of the static effec-well or slower oscillation in the complete range. At these low
tive potential to an associated quantum gtef®r values of  values ofN, the largeN expansion breaks down quickly, as
N greater than 21, we could not find failure fer 150. Thus, in the quantum roll, but even here ldt=1, the 1N correc-
it may well be that above a certain value Nf the unitarity ~ tions improve the short time accuracy @ft).
violation is pushed out to times of no practical significance, A more relevant comparison is to consider larger values
or may even disappear altogether. of N at which the approximations have a better chance of
We discussed previously how to choose initial conditionscapturing the exact behavior. In the next figure, we compare
so as to reach the largedimit in a controlled manner. Start- the Hartree with the leading and next-to-leading order large-
ing with these initial conditions, we show in Fig. 9 results N approximation forg(t), at N=50. Figure 12 displays the
from numerical solutions of the Schtimger equation for the results for a run withE>E, using the equal time Green’s
time evolution of(r?)/N. In the strict largeN limit one ex-  function approximation(see Sec. Y method for obtaining
pects pure harmonic oscillations about the minimum of thehe Hartree results. Unlike the situation for the roll initial
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FIG. 10. Very long-time behavior of the exact results{of)/N
for 0<t=<500. The top figure is foN=1 and the bottom figure for
o 20 a0 60 80 100 N=10.

t

FIG. 9. Exact solutions fo(r?)/N as a function of time. From
top to bottomN=1, 5, 10, and 20. 35

condition where the Hartree and next-to-leading order large-
N results are not dramatically different, here the qualitative
behavior is quite dissimilajwhereas the Hartree and leading

order results are in fact very close 25

/N

X. CONCLUSIONS

Testing the IN approximation in quantum mechanics has
already enabled us to arrive at some useful conclusions. Ir 15
order to interpret our results, it is important to keep in mind
that 1N approximations are a form of resummed perturba-
tion theory and are therefore only valid at weak coupling.
Thus for couplings of order unity, it is unrealistic to expect
the approximation to give good results for small valuedlof 0.5 : : : :
Our results have shown that at sufficiently lafgé¢he next- 0 25 S0 75 00 125 150
to-leading order approximation is a clear improvement over
the leading order approximation; however, at late times this FIG. 11. (r2)/N for N=21, for the exact, next-to-leading order
approximation(as well as Hartreefails to capture the non- largeN, and Hartree approximations for late times.

<r >

125015-14



EXACT AND APPROXIMATE DYNAMICS OF THE . .. PHYSICAL REVIEW D 62 125015

2 . I . . First, the time at which breakdown occurs appears to be
— ETGF strongly connected to the behavior of the effective potential.
o ;z?o“rj;; For values ofN not very much bigger than the critical value
) . ) v N, (beyond which the effective potential exits over the entire
1 : iy range ofy), the breakdown time increases extremely steeply
A . and may even be pushed to times long enough to be no
] , “ ) 1 longer an obstacle to practical calculatidgttss still needs to
\ Ab 40 be demonstrated Second, it is important to point out that
ST R ARV AN W SV N avoiding the breakdown via a partial resummation does not
Y ¥t automatically guarantee better late time accur@cyconver-
/ . . B gence since such a scheme is also only next-to-leading order
' " | accurate. However, it will help in the sense that one may
carry out simulations at smaller values M¥f thus making it
easier to compare against the late-time numerical solutions
of the corresponding Schidinger equation.
» . . . . One possible way of correcting the problem of a mani-
o 20 40 60 80 100 festly positive operator such &s%) becoming negative is to
t solve for the full Green’s functio; (t,t"):

FIG. 12. Plot ofq(t) vst for E>Ey with N=50.

att)
o

gij(t,t'):Gij(t,t')_%z jdtldeZGik(tvtl)

linear effects that lead to nontrivial amplitude modulation of ne ¢

the radial oscillations in the quantum roll problem. X Zp(ty,t2)G(to,t"), (10.1
variant iniial sondiions. While ofher inial condiions can FAner than the next-to-leading order ane as inf@d. This
certainly be entertaine(k.g., the off-centered Gaussians we equation s Fhe exact equation one obtains by varying the
considered aboyethe difficulty is that whereas results from €fféctive action and it contains terms of all orders itN 1/
the approximations can be more or less easily obtained, theﬁ:us' strictly speaking, one is no longer truncating at some

cannot be benchmarked against numerical solutions at evdi€d order.

moderate values oN (for more general initial conditions, prever,.just m_aklng .th's correction do‘?s not increase
one needs to solve ax-dimensional Schidinger equation the time period during which the approximation is accurate.

for which the memory cost rises # wherel is the number In °“?'er to _extend the accuracy of theNlapproximation to .
of grid points in a single dimensionMoreover, it is unlikely late times, it appears necessary to use a more robust approxi-

that our(pessimisti¢ conclusions will be changed by making mation_ baged on th? Schwinger-Dys_on equqtions. Several
the exact evolution more, rather than less, complicated. ~ @PProximations of this sort are possible, which may both

We have noted the presence of a finite-time breakdown igure the positivity problem as well as lead to accurate results

the evolution given by the next-to-leading order approxima-at late times. These will be discussed separd28}.

tion. This result is related to the fact that the lafgexpan-
sion for the expectation values does not necessarily corre-
spond to a positive semi-definite density matrix when The authors acknowledge helpful conversations with Luis
truncated at any finite order inN/ (At lowest order, the ™ Bettencourt, Yuval Kluger, and Emil Mottola. S.H. acknowl-
approximation is equivalent to a Gaussian variational ansatedges stimulating discussions with Larry Yaffe. The authors
for the density matrix and does not have this probjefinis  also thank Larry Yaffe for his comments on, and close read-
last aspect is already clear even in static situations such asg of, the manuscript. The work of B.M. and J.F.D. at UNH
the lack of a real effective potential for @\l in the next-to-  is supported in part by the U.S. Department of Energy under
leading order approximation. This type of finite-time break-grant DE-FG02-88ER40410. B.M. and J.F.D. thank the El-
down induced by unitarity and positivity violation has also ementary Particles and Field Theory Gro(p-8) at Los
been noted in simulations of quantum systems where th@lamos National Laboratory and the Institute for Nuclear
coupled equal time Green'’s function approach was truncate@heory at the University of Washington for hospitality dur-
at fourth orde{23] or where high order cumulant expansion ing the course of this work. F.C. would like to thank the
methods were usel@4]. Physics Department at Yale University for their hospitality
Two aspects of this breakdown deserve further mentionwhere some of this research was carried out.
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