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Flow equations for quark-gluon interactions in light-front QCD
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The flow-equation method of continuous unitary transformations is used to eliminate the minimal quark-
gluon interaction in the light-front quantized QCD Hamiltonian. The coupled differential equations in the two
lowest Fock sectors correspond to the renormalization of the light-front gluon mass and the generation of an
effective quark-antiquark~as well as gluon-gluon! interaction. The original gauge field coupling is completely
eliminated, even in the presence of degenerate states connected by this interaction. Further, a more singular
1/q4 behavior for the quark and gluon effective interactions at small gluon momenta is obtained, due to the
asymptotic behavior of the effective gluon mass for small cutoff. We discuss the consequences of this
asymptotic behavior and possible confinement implications.

PACS number~s!: 12.38.Lg, 12.38.Aw, 11.10.Hi, 11.30.Cp
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I. INTRODUCTION

The perturbative aspects of quantum chromodynam
~QCD! were understood many years ago with the convinc
documentation that QCD is asymptotically free. Howev
the calculational techniques for nonperturbative QCD
still under development. Thus, quantitative analysis of l
energy and momentum transfer phenomena remains diffi
even though the qualitative features are reasonably desc
due to chiral symmetry and the phenomenological succes
the constituent quark picture. Nevertheless, it is widely
lieved that pure Yang-Mills theory, without dynamic
quarks, exhibits confinement represented by a linear po
tial between static color sources. Confinement may be at
uted to mass generation from transmutation of dimension
QCD. Adding dynamical quarks also breaks chiral symme
spontaneously. An ultimate aim of nonperturbative QC
studies is to understand both confinement and chiral sym
try breaking and how the constituent quark picture ari
from fundamental QCD.

In the past few years there were several studies addres
the issue of confinement and mass gap generation in
framework of the Schro¨dinger picture@1,2#. Using path inte-
gral techniques, Ref.@1# utilized a vacuum wave functiona
ansatz suggested by Kogan and Kovner, and integrated
all possible gauge configurations. Since calculations
quite formidable, this study only solves a field theory pro
lem in 111 dimensions@2# and restricts (311)-dimensional
@1# analyses to ground states. For earlier investigations,
Ref. @3#.

Alternatively, nonperturbative studies have used a Ham
tonian framework with the QCD Hamiltonian quantized in
specific gauge. In particular the Coulomb gauge has rece
been investigated@4,5#. In this paper we also use a Hami
tonian approach but utilize the light-front gauge,A150 @6#.
There are arguments that the light-front gauge may be
most suitable framework to study nonperturbative QCD@6#.
This conjecture is also supported by the success of phen
enological constituent light-front quark models@7#. To pro-
vide further insight concerning this issue, we have appl
the flow equations to the light-front QCD Hamiltonian
generate dynamical gluons and quarks as well as their e
tive interactions.
0556-2821/2000/62~12!/125012~12!/$15.00 62 1250
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Previous light-front studies of confinement and bou
states have been conducted using the methods of simil
renormalization@8# and transverse lattice@9#. Significantly,
light-front QCD in 311 rigorously contains a confining in
teraction in the form of the instantaneous four-fermion int
action, 1/q12, which is the complete confining interaction i
111 QCD for the light-front spatial dimension,x2. Wilson
suggested that a starting point for analyzing full QCD~with
confinement! in light-front coordinates is the light-front in
frared divergences. When an infrared~IR! cutoff is intro-
duced, appropriate counterterms are necessary to restor
attending physics below the cutoff. Based on light-fro
power counting, these counterterms can involve color cha
densities and exhibit an unknown nonlocal behavior in
transverse direction which represents a possible source
transverse confinement. In the similarity renormalization
proach, it has been claimed@8# that IR divergences from the
instantaneous gluon exchange potential are not comple
canceled, leading to a remnant potential that increases l
rithmically with either increasing separationsux2u or ux'u.
However, the issue of a nonzero gluon mass and local ga
invariance is not yet completely understood and the task
restoring rotational symmetry is still difficult to achieve.

In this work, we also introduce an IR longitudinal cuto
and generate a light-front counterterm which sets a scale
a dynamical mass gap and string tension. While our calc
tions for the flow equation are only to orderg2, our results
challenge the conventional notion that weak-coupling Ham
tonians derived from QCD have only Coulomb-like pote
tials, and definitely no confining interactions. Introducing
longitudinal IR cutoff in light-front dynamics makes it im
possible to create particles from a bare vacuum by a tran
tionally invariant Hamiltonian and thus the number of co
stituents in a given eigenstate is fixed. However, light-fro
counterterms for the longitudinal IR cutoff dependence c
generate a nonzero amplitude of particle creation and
therefore a possible source for features associated wi
nontrivial vacuum structure in equal-time dynamics, inclu
ing confinement and spontaneous symmetry breaking. N
that the small light-front longitudinal momentum fractionx
corresponds to the high light-front energy. Therefore, in
der to remove smallx divergences and maintain the cuto
independence, one should use a renormalization gro
©2000 The American Physical Society12-1
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which is appropriate to high energies.
In this work we address the above issue using the fl

equation method@10#. More specifically, we adopt Suss
kind’s idea of the ‘‘long arm’’ of the vacuum@11# which
addresses chiral symmetry breaking in the light-front form
lation. In the parton model, one pictures a high moment
hadron as a collection of constituents each also having la
momentum, such that under a boost, both the hadron and
partons change their momenta by the same factor. There
one can formulate an effective field theory on the axis of
light-front longitudinal momentum fractionx ~or on the axis
of rapidity which is logarithm ofx). The partons, both va
lence and sea, have positivex and, according to Feynma
and Bjorken, are distributed along thex axis with the density
of sea partons increasing for smallx according todx/x. Here,
the vacuum is atx50. The fundamental property of light
front Hamiltonians is that under a rescaling of the light-fro
momentum,x→ax, the light-front Hamiltonian scalesH
→H/a. This may be interpreted as a dilatation symme
along thex axis. This symmetry only holds classically and
broken on the quantum level by an anomaly. Now, the lo
arm of the vacuum occurs because the coupling, i.e.,
interaction between neighboring partons, gets stronger
stronger as one approachesx50 so rapidly that the system i
able to hold itself together despite the fact that there is
infinite number of steps betweenx50 and finitex @11#. To
illustrate the long arm effect of the vacuum, we introduce
cutoff for small x. A natural cutoff is provided bydx
5«1x, the minimal spacing between constituents, wh
plays the role of UV regulator. As long as the density
partons on the rapidity axis is not infinite,«1 or dx is finite
and one obtains finite matrix elements. The cutoffdx breaks
dilatation symmetry in thex axis and generates an ener
scale or mass gap governing the strength of the effec
interaction between quarks, in our case a string tension in
quark-antiquark potential. Hence the long arm of the ‘‘ligh
front vacuum’’ enables the formation of aqq̄ bound state
through the breaking of an internal symmetry, analogous
the creation of Cooper pairs in a superconducter. Becaus
results must be independent of the cutoff, a renormaliza
group equation is required, which in this work is provided
the Hamiltonian flow equation method@10#.

Incorporating effects from smallx into an effective light-
front Hamiltonian is equivalent to integrating over the hi
light-front-energy modes in the asymptotically free doma
In terms of the renormalization group, regulating smalx
introduces a mass gap, which together with asymptotic fr
dom leads to a renormalization group invariant scale
dimensional transmutation along thex axis. This transmuta-
tion in turn produces a linear effective interaction more s
gular than the Coulomb potential.

At the technical level our thrust is to use the flow equ
tions to renormalize the gluon energy and eliminate the c
pling between the gluon and quark Fock sectors. We fo
upon zero gluon momentum and obtain a gap equation
the renormalized light-front gluon massm(l). This equation
can be solved by imposing a renormalization conditio
m ren(l5l0)5m0, wherem0 is the ‘‘physical’’ value. The
12501
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renormalized effective gluon mass,m ren(l), is obtained by
introducing a mass counterterm. As a result, the asympt
behavior ofm ren(l) is obtained for small cutoffl which
approaches the renormalization pointl0 from above (l
>l0). The properties ofm ren(l) ensure that the quark-gluo
coupling is eliminated even in the degenerate case of z
gluon momenta. A similar idea was used for the spin-bos
model by Kehrein, Mielke and Neu@12#, who argued that the
coupling to a bosonic bath is always eliminated by renorm
izing the tunneling frequency. Also, in complete analogy
our problem, Lenz and Wegner@13# showed for interacting
electrons in BCS theory that the elimination of electro
phonon coupling for all states is a direct consequence
renormalizing the phonon frequency. Finally, the flow of t
gluon mass withl produces for small momentumq a poten-
tial of form 1/q4 which is more singular than the Coulom
1/q2.

In the next section~Sec. II!, we consider flow equations a
a renormalization group transformation for Hamiltonians a
formulate them for one- and two-body sectors explicitly.
Sec. III the flow equations are applied to the light-front QC
Hamiltonian to generate a gluon gap equation and an ef
tive qq̄ ~as well asgg) interaction. This section also ad
dresses solving these equations. The concluding discus
follows in Sec. IV.

II. FLOW EQUATIONS FOR GAUGE THEORIES

A. Flow equations as renormalization group transformations

The basic element of the renormalization group transf
mation is a unitary transformation that renders the Ham
tonian matrix band diagonal; i.e., matrix elements with e
ergy differences uEi2Ej u exceeding a cutoff l are
eliminated@14#. This procedure converges well when there
a hierarchy of scales in the problem. The goal is to decou
the high- and low-energy scales of the band-diagonal ef
tive Hamiltonian, which is renormalized order by order
perturbation theory. UsingNth order perturbation theory to
connect high and low energy states of an effective renorm
ized Hamiltonian with ultraviolet regulating cutoffL ~which
is the size of the full Hamiltonian matrix in the energy spac
eventually taken to infinity! requires N52(L2l)/l.
Assuming a coupling constantg,1, g2(L2l)/l!1 for L
→`. One has therefore isolated the low energy sc
effective Hamiltonian which can then be diagonaliz
nonperturbatively for the few lowest eigenstates. T
should be simpler than solving the full Hamiltonia
matrix exactly. The unitary transformation which connec
Hamiltonian matrices with different widths,H(l2 ,L)
5U(l1 ,l2 ;L)H(l1 ;L)U†(l1 ,l2 ;L), is the renormaliza-
tion group transformation formulated by Glazek and Wils
@14# called the similarity renormalization.

In terms of an effective Hamiltonian, one removes lar
energy differences by squeezing the width of the band,l2
,l1!L. This is done sequentially from high to low energ
to construct a low-energy effective Hamiltonian. Since t
light-front energy has an inverse relationship to the lig
front momentum,ELF;1/P1, this scaling to lowerl is
2-2
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equivalent to moving from smallx ~high energy! to largex
~low energy! for an effective light-front theory formulated o
the x axis. The elimination of large energy differences
governed by a dimensionless form factor, called the simi
ity function, f (uEi2Ej u/l), which is of order unity for small
arguments~no elimination!, and approaches zero for larg
arguments~complete elimination of the off-diagonal matri
elements!. Note that squeezing the bandwidth to zero
equivalent to exactly diagonalizing the Hamiltonian matri

The flow equation approach entails an infinitesimal u
tary transformation written in differential form

dH~ l !

dl
5@h~ l !,H~ l !#

h~ l !5@Hd~ l !,Hr~ l !#, ~2.1!

wherel is the flow parameter related to the cutoff scalel by
l 51/l2. The choice of the transformation generatorh has
been suggested by Wegner@10# as the commutator of the
diagonal,Hd , and off-diagonal~rest!, Hr , Hamiltonian com-
ponents. As shown by Wegner, forl→` the off-diagonal
part of Hamiltonian is eliminated, producing an effective d
agonal Hamiltonian.

One of the purposes for renormalization is to remove
UV divergent high-energy contributions. Since they ar
from the particle-number-changing terms of the Hamilton
~at least in gauge theories!, only these terms should be elim
nated. Wegner suggested assigning the off-diagonal pa
the particle-number-changing termHr5Hn→m and the diag-
onal part to the particle-number-conserving termHd
5Hn→n . Thus, instead of diagonalization, one can imp
ment flow equations to block-diagonalize the Hamiltonian
particle number space. Also, block diagonalization in parti
number space precludes convergence problems assoc
with exact diagonalization in energy space@10#. Most note-
worthy is the practical aspect of block-diagonalization wh
applied to field theory. By block-diagonalizing the Ham
tonian in particle number space the high and low Fock s
tors are uncoupled, enabling separate eigenstate prob
with an effective Hamiltonian in each particle number sect
For most calculations, solving an effective sector-uncoup
Hamiltonian should be simpler than solving the origin
Hamiltonian @15#. Note, however, that the flow equation
eliminate the particle number changing matrix elements,
in one step, but rather continuously for different energy d
ferences, sequentially from high to low energy~matrix ele-
ments between degenerate states,Ei5Ej , can also be elimi-
nated by flow equations as discussed in the next subsect!.
Here, the link between the similarity and flow equati
schemes and renormalization clearly emerges. The dis
guishing feature for flow equations, however, is the sepa
tion of the particle-number-conserving and particle-numb
changing terms, with only the particle-number-chang
terms contributing in the renormalization of an effecti
Hamiltonian.

In this work, we run flow equations for the two lowe
Fock sectors (uqq̄& and ug&) in a gauge theory and obtai
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equations for the single gluon energy andqq̄ effective inter-
action.

B. Flow equations in the two lowest Fock sectors

We consider a canonical Hamiltonian operator for a gau
field theory, where the gauge field is minimally coupled
the matter field~for example, minimally coupled QED o
simple Abelian QCD!. In terms of bare quark and gluo
fields the eigenfunctions of this Hamiltonian contain in
nitely many Fock states. For the two lowest Fock states~ne-
glecting the rest!, the Hamiltonian matrix in particle numbe
space is

H5S PHP PHQ

QHP QHQD , ~2.2!

whereP and Q are projection operators for one- and tw
body Fock states. For Abelian, minimally coupled QCD,P
projects on a one-gluon state andQ on a quark-antiquark
pair, Puc&5ug& andQuc&5uqq̄&. One-quark states are omi
ted because there are no dynamical quarks in this ana
~we prefer to disentangle complexities from chiral symme
breaking!. Matrix elements of the operatorPHQ describe
quark-gluon minimal coupling, thePHP term is a gluon
effective energy andQHQ describes theqq̄ effective inter-
action. Flow equations for particle number changing mat
elements,hpq , are given by

dhpq~ l !

dl
52@Ep~ l !2Eq~ l !#hpq~ l !

hpq~ l !52
hpq~ l !

Ep~ l !2Eq~ l !

d

dl
@ lnf „zpq~ l !…#

zpq~ l !5 l @Ep~ l !2Eq~ l !#2, ~2.3!

wherep andq span all~free single particle! energy states in
the P and Q subspaces, respectively;Ep( l ) and Eq( l ) are
diagonal matrix elements of block HamiltoniansPHP and
QHQ. In the first equation the off-diagonal matrix elemen
hpp8 and hqq8 are neglected to leading order in couplin
O(hpq) ~this uncouples the flow equations forHd and Hr
terms!. With the generatorhpq defined by Eq.~2.3!, elimi-
nation of the coupling between theP andQ sectors,

hpq~ l !5hpq~0! f „zpq~ l !…, ~2.4!

is governed by the similarity functionf „l @Ep( l )2Eq( l )#2
…,

which vanishes for matrix elements with energy differenc
exceeding the cutoffl, uEp( l )2Eq( l )u@1/Al 5l. Also,
hpq(0) is the initial value, andEp( l ) andEq( l ) flow too @see
Eq. ~2.6!#. Eliminating the couplinghpq generates effective
interactions in the particle number conservingP andQ sec-
tors. The corresponding flow equation reads

dhpp8~ l !

dl
5(

q
@hpq~ l !hqp8~ l !2hpq~ l !hqp8~ l !#, ~2.5!
2-3
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GUBANKOVA, JI, AND COTANCH PHYSICAL REVIEW D 62 125012
with a similar equation forhqq8 . Using the generator define
in Eq. ~2.3! these equations reduce to

dEp~ l !

dl
52(

q

1

Ep~ l !2Eq~ l !

d

dl
@hpq~ l !hqp~ l !#

dhqq8~ l !

dl
52(

p
S dhqp~ l !

dl

1

Eq~ l !2Ep~ l !
hpq8~ l !

1hqp~ l !
1

Eq8~ l !2Ep~ l !

dhpq8~ l !

dl D , ~2.6!

with the couplinghpq given by Eq.~2.4!. Note that for the
first equation in Eqs.~2.6! only the diagonal matrix element
in the P space enter. In our application these equations r
resent the gap equation for an effective gluon energy and
equation for an effectiveqq̄ interaction, both investigated in
the next section.

Generally, the set of Hamiltonian flow equations is n
finite and the equations are coupled by kernels, which a
flow with l, which are only known after solving the flow
equations. Obviously, practical computations require trun
ing to the few lowest sectors, assuming that higher sec
are not very important at low energies. In the light-fro
framework, this approximation is valid because pair creat
from the light-front vacuum is forbidden and generally t
higher Fock components~with large particle number! carry
large light-front energies. Neglecting the high Fock comp
nents reduces the problem to an effective low-energy the
In this way, we close the set of equations and reduce
number of unknown couplings, leaving only the canoni
operator couplings. Note that the truncation in number
particles participating in intermediate states is not equiva
to perturbation theory in coupling constant, but rather
closer to the Tamm-Dancoff approach. The flow equatio
are still coupled, and should be solved self-consistently
cluding the flow dependences of the couplings.

In this work on minimally coupled gauge theory, the s
of flow equations was truncated at the two-body sector,
cluding at most three-particles in intermediate states. He
the renormalization of the QCD strong coupling constan
not considered, but the single particle energy, Eq.~2.6! for
Ep( l ), is renormalized. In particular, as shown in the ne
section, the renormalization of a gluon energy is import
for constructing an effectiveqq̄ interaction over all energy
ranges.

Flow equations not only eliminate the quark-gluon co
pling, which renders the Hamiltonian block diagonal, th
12501
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also permit renormalization. Renormalizing the gluon effe
tive energy yieldingEp( l ) leads to two important conse
quences. First, the quark-gluon coupling is eliminated for
energies, even for degenerate states. Second, eliminatin
quark-gluon coupling withEp( l ) for degenerate states, th
effectiveqq̄ interaction is obtained of the form 1/q4, which
is more singular than the perturbative result, 1/q2. This po-
tential provides confinement and bound state of quarks.

We conclude this section with a synopsis of previous fl
equation applications in other fields. The situation with d
generate states was first treated by flow equations in s
state physics. Lenz and Wegner showed for systems of in
acting electrons@13# that the original electron-phonon cou
pling can be completely eliminated, even when the sta
connected by this interaction are degenerate. Lenz and W
ner found@13# that the induced electron-electron interacti
differs from Fröhlich’s, whose unitary transformation i
based on second order perturbation theory. Moreover,
interaction is attractive for any momentum, binding electro
in Cooper pairs. Also, Kehrein, Mielke and Neu@12# have
shown for the spin-boson problem that flow equations all
a complete elimination of the coupling to the bosonic ba
even for real processes. Finally, Kehrein and Mielke o
tained similar modifications due to anl-dependent generato
by eliminating the hybridization term in the Anderson mod
@16#. The authors showed that their approach generate
spin-spin interaction which differs from the one obtained
the famous Schrieffer-Wolff transformation. Their induce
interaction has the right high-energy cutoff, as compared
Schrieffer-Wolff’s result. Thus, within flow-equation ap
proach it is possible to obtain new results which can not
obtained by perturbation theory.

In the next section, we use the above formulation to so
the flow equations for the effective gluon energy and
quark-antiquark interaction@see Eq.~2.6!# using the light-
front quantized QCD Hamiltonian.

III. FLOW EQUATIONS IN LIGHT-FRONT QCD

A. Gluon gap equation

In the light-front formulation, the flow equation for
single particle energyp25@p'

2 1m2(l)#/p1 is actually
written for the massm2(l) since the termp'

2 /p1 is indepen-
dent of flow. The set of the coupled light-front equations f
the cutoff dependent quark and gluon masses was first
rived by Glazek@17#. We uncouple this set of equations b
assuming that the quark mass does not flow with the cut
m(l)5m, wherem is the current quark mass. The light-fron
gluon gap equation is
dm2~l!

dl
522TfNfE

0

1 dx

x~12x!
E

0

` d2k'

16p3
gq

2~l!
1

Q2
2~l!

d f2
„Q2

2~l!;l…

dl S k'
2 1m2

x~12x!
22k'

2 D
22CaE

0

1 dx

x~12x!
E

0

` d2k'

16p3
gg

2~l!
1

Q1
2~l!

d f2
„Q1

2~l!;l…

dl Fk'
2 S 11

1

x2
1

1

~12x!2D G , ~3.1!
2-4
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where

Q1
2~l!5

k'
2 1m2~l!

x~12x!
2m2~l!, Q2

2~l!5
k'

2 1m2

x~12x!
2m2~l!.

~3.2!

Here, the group factors forSU(Nc) are Tfdab5Tr(TaTb)
5 1

2 dab and the number of flavors isNf56. The adjoint Ca-
simir is defined byCadab5 f acdf bcd5Ncdab with the num-
ber of colorsNc53 ~the subscripts inCa andNc should not
be confused with the group indicesa andc). In the integral
kernel, the gluon couples to quark-antiquark pairs and gl
pairs with quark-gluon coupling,gq(l), and three-gluon
coupling, gg(l), respectively. For non-zerol these cou-
plings are different functions of momenta. The light-fro
momentum flowing in the loops has components (x,k'). In
our derivation, the connection between flow parameter
the cutoff, l 51/l2, is used.

In Eq. ~3.1!, the effective gluon mass is defined at tran
verse gluon momentump'50, as in light-front perturbation
theory for the gluon mass correction@18#. Following other
gluon gap equation studies, we assume the effective g
mass vanishes for large gluon momenta. Therefore, e
though the effective gluon mass depends on moment
only its l cutoff dependence at zero momentum is given
Eq. ~3.1!, i.e., m„l,p(pz ,p')50…. However, thel depen-
dence ofm is the only relevant renormalization issue.

Generally, it is difficult to solve Eq.~3.1! because the
running couplings,gq(l) andgg(l), are not known. There
fore, the coupling cutoff dependence is neglected. Also,
initial condition for Eq.~3.1! is not known. Accordingly, the
following two renormalization conditions are imposed to d
termine the running gluon massm(l). First, the effective
Hamiltonian at scalel has eigenstates with eigenvaluesp2

5(p'
2 1m0

2)/p1 @17#, satisfying

p'
2 1m0

2

p1
^p8up&5

p'
2 1m2~l!

p1
^p8up&

2El

dl8(
q

@hp8q~l8!hqp~l8!

2hp8q~l8!hqp~l8!#, ~3.3!

wherem0 denotes the ‘‘physical’’ gluon mass, andup& de-
notes a single effective gluon state@P subspace, Eq.~2.2!#
with momentum (p1,p') and ^p8up&516p3p1d (3)(p8
2p). The generatorhpq , given by Eq.~2.3!, eliminates the
quark-gluon~three-gluon! coupling hpq . Second, the effec
tive gluon mass, renormalized in second order perturba
theory, equals the ‘‘physical’’ mass

m ren
2 ~l5l0!5m0

2, ~3.4!

at the renormalization pointl0.
From the definition of flow equations, a resulting effecti

Hamiltonian is given in the limit of the flow parameterl
→` or l50. In the parton picture described in the introdu
tion, the boost may be regarded as a renormalization gr
12501
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operation and the renormalization group fixed point can
identified as the infinite momentum limit. The correspondi
renormalization group fixed point in the flow equations
thenl50. Therefore, in Eq.~3.4!, the renormalization point
is set to zero,l050, at the end of calculations. Also, th
‘‘physical’’ gluon mass, which is used as an arbitrary ma
parameter, can be taken to zero to restore gauge invari
~see below!.

Even with these simplifications, solving Eq.~3.1! is still
quite involved. The solution can only be found numerical
In order to proceed analytically, a mass parameterm0
~‘‘physical’’ mass!, which corresponds to the choice of th
renormalization point atp25m0

2, is substituted form(l) in
the integral kernel on the right-hand side of Eq.~3.1!. The
same procedure is used to calculate the perturbative m
correction in@19#. Therefore the energy differences in E
~3.2! are given by

Q̃1
25

k'
2 1m0

2

x~12x!
2m0

2, Q̃2
25

k'
2 1m2

x~12x!
2m0

2. ~3.5!

Using Eq. ~3.5!, Eq. ~3.1! is solved iteratively andm2(l)
5m0

2 is the first iteration.
Another problem in Eq.~3.1! is that the loop integrals

have an UV divergence in the transverse directionsk' and
an IR divergence in the longitudinal directionx. The flow
equations naturally regulate these divergences via the s
larity function in each vertex@for example, the gluon loop in
Eq. ~3.1! is regulated byQ1

2(l)<l2]. This type of regular-
ization is known as ‘‘Jacobi cutoffs,’’ because of the Jaco
momenta of a constituent~it is also called ‘‘global’’ regular-
ization in @19#!. The advantage of this regularization in th
light-front approach is that it preserves both transverse
longitudinal boost invariance@18#. For a nonzero mass suc
as a current quark mass in the quark loop, this regulariza
restrictsk' and the light-frontx integrations. Thus, the simi
larity function f (Q̃2

2 ;l), with Q̃2
2 given by Eq.~3.5!, ensures

that 0<k'<(l21m0
2)x(12x)2m2 and m2/(l21m0

2)<x
<12m2/(l21m0

2). However, for zero gluon mass in th
gluon loop,k' is restricted from above andx runs the entire
range 0<x<1, contributing divergent terms atx50 andx

51 @see the similarity functionf (Q̃1
2 ;l)]. Even when the

instantaneous diagrams are included, the gluon loop is
divergent inx @19#. For a massive case the cutoffl has a
lower bound from a mass in the theory,l>mÞ0, which
limits the x integration. The reason why flow equations d
not regulate the light-front divergences in a massless cas
because the cutoffl can evolve tol50 with the similarity
function f (z→`)51, andx spans the entire 0 to 1 range
where the loop integral with massless intermediate states
verges atx50 andx51. To regulate these divergences in
massless case, Zhang and Harindranath suggested restr
the k' integration also from below by some scaleu. This is
equivalent in our approach to integrating the flow equat
~3.1! for finite limits, from l to u @19#, which restricts inter-
vals in thex axis to above 0 and below 1. It was also show
in @18# and @19# that for the scaleu, even if m050 is zero,
2-5
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the gluon mass correction does not vanish. Effectively, in
ducing the scaleu mimics the situation of a non-zero mas
m5u, in intermediate states.

In terms of effective light-front theory formulated on thex
axis, the Hamiltonian below the first light-front cutof
H0<x<« , and the Hamiltonian above the second cutoffx
51, H (12«)<x<1, describe the strongly correlated high e
ergy states. Thus, they can be replaced by the Hamilto
d
c

12501
-

n

vacuum expectation value, since strongly coupled configu
tions are frozen. This vacuum expectation value~VEV! re-
placement in gluodynamics is consistent with a compo
field, f, creating 01 glueballs having a finite VEV@2#. The
Hamiltonian in the intermediate region,H«<x<(12«) , is then
treated by flow equations.

Integrating the gluon flow equation~3.1! for finite limits
@u;l# yields
m2~l!2m2~u!522g2TfNfE
0

1

dxE
0

` d2k'

16p3
@ f 2~Q̃2

2 ;l!2 f 2~Q̃2
2 ;u!#

3F m0
2~2x222x11!

k'
2 1m22x~12x!m0

2
1

2m2

k'
2 1m22x~12x!m0

2
1S 221

1

x~12x! D G
22g2CaE

0

1

dxE
0

` d2k'

16p3
@ f 2~Q̃1

2 ;l!2 f 2~Q̃1
2 ;u!#S 11

m0
2x~12x!

k'
2 2x~12x!m0

21m0
2

2
m0

2

k'
2 2x~12x!m0

21m0
2D

3S 11
1

x2
1

1

~12x!2D , ~3.6!
a-

er
the

p-
g
ass

is
where the renormalization point isq25m0
2, and the energy

differences are defined in Eq.~3.5!. Though the quark loop
does not diverge withx, the gluon flow equation is integrate
the same way for the gluon and quark loops. Similarity fun
tions restrict the transverse momenta tok'min<k'<k'max,
with

k'max5~l21m0
2!x~12x!2m0

2

k'min5~u21m0
2!x~12x!2m0

2, ~3.7!

and, forx,

m0
2

u21m0
2
<x<12

m0
2

u21m0
2

. ~3.8!

Analogous expressions hold for the quark loop.
Integration over momenta (x,k') in Eq. ~3.6! yields

m2~l!2m2~u!52
g2TfNf

4p2 S 1

3
m0

2ln
l2

u2

1m2ln
l2

u2
1

1

3
~l22u2!D

2
g2Ca

4p2 Fm0
2ln

l2

u2 S 2
u2

m0
2

1 ln
u2

m0
2

2
5

12D
1~l22u2!S ln

u2

m0
2

2
11

12D G . ~3.9!
-

Assuming the renormalization conditions of Eqs.~3.3! and
~3.4!, the effective gluon mass at scalel is

m2~l!5m0
21dmPT

2 ~l!1dm2~l,l0!. ~3.10!

Here, Eq.~3.3! fixes the integration constant@when integrat-
ing the flow equation~3.1!# to m0

2. In Eq. ~3.10! the pertur-
bative term reproduces the result from light-front perturb
tion theory@19#, i.e.,

dmPT
2 ~l!52

g2

4p2
l2FCaS ln

u2

m0
2

2
11

12D 1TfNf

1

3G .

~3.11!

Renormalizing the effective Hamiltonian to second od
O(g2), the perturbative mass correction is absorbed by
mass counterterm,mCT

2 (LUV)52dmPT
2 (LUV) with LUV

→`, and the renormalized effective gluon mass is

m ren
2 ~l!5m2~l!1mCT

2 ~l!, ~3.12!

for l5LUV→`. Though perturbative renormalization is a
plied at large cutoff scales,LUV , we assume that the leadin
cutoff dependence in second order is absorbed by the m
counterterm for alll, and the renormalized gluon mass
given by Eq.~3.12! for any l. Explicitly from Eq. ~3.9!, the
renormalized gluon mass reads

m ren
2 ~l!5m0

21dm2~l,l0!5m0
21s~m0 ,u!ln

l2

l0
2

2-6
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s~m0 ,u!52
g2

4p2
m0

2FCaS 2
u2

m0
2

1 ln
u2

m0
2

2
5

12D
1TfNfS 1

3
1

m2

m0
2D G , ~3.13!

where the renormalization condition, Eq.~3.4!, at scalel0 is
satisfied. Recall, this solution, Eq.~3.13!, describes an effec
tive gluon mass at zero gluon momentum. Since the effec
Hamiltonian generated by flow equations is defined at cu
scalel→0, the resulting gluon mass equals the ‘‘physica
mass,m ren

2 (l5l050)5m0
2 . In particular, when the ‘‘physi-

cal’’ mass is set to zero,m050, the effective QCD Hamil-
tonian has zero mass gauge fields, and our unitary trans
mation no longer violates gauge invariance. Then, only
color singlet gauge invariant matrix elements are IR sin
larities associated with soft collinear gluons canceled
actly, satisfying the Kinoshita-Lee-Nauenberg~KLN ! theo-
rem @23#. This was demonstrated in detail perturbatively f
the e1e2 annihilation amplitude@24#. In our situation this
zero gluon mass, gauge invariant limit also produces IR
vergent quark and gluon self-energies. This may be in
preted as color confinement because the infinite self-ener
suppress the quark and gluon propagation amplitudes. H
ever and, consistent with the above theorem, in the Be
Salpeter equation~and the simpler Tamm-Dancoff equation!,
the IR divergent contributions from the kinetic self-ener
and potential interaction kernel parts cancel exactly for co
singlet states. Our generated two-bodyqq̄ andgg potentials
satisfy these conditions, providing finite masses for sing
states of mesons and glueballs.

From Eq.~3.13!, one has, in the limitm0→0,

s5 lim
m0→0

s~m0 ,u!5u2
g2Ca

4p2
, ~3.14!

where, as shown below,s plays the role of the string tensio
between quark and antiquark. In Eq.~3.13!, u2 determines
the rate at which the effective gluon mass asymptotica
approaches the ‘‘physical’’ value,;u2ln(l/l0).

We note here how one may expect a difference in
result between QCD and QED. QCD has a non-Abel
gauge group and strong interactions, which distinguishe
from QED. Both canonical light-front QCD and QED Ham
iltonians have the instantaneous interaction, 1/x2, which has
a singular behavior for smallx. For QED a smallx regular-
ization scheme can be found where divergent contributi
from this instantaneous term are canceled in the matrix
ments@19#. This is not true for QCD@19#. Because of the
non-Abelian triple-gluon vertex, it is necessary to introduc
regulating scaleu for the divergences atx;0 andx;1 in
the gluon self-energy~the quark loop is regulated in the sam
fashion in order to combine quark and gluon loops!. In fact,
the string tension in Eq.~3.14! is proportional to the eigen
value of quadratic Casimir operator in the adjoint repres
tation, reflecting this non-Abelian character. There is no s
scale in the QED self-energy operators, which are all re
12501
e
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lated by a current electron massm. One can therefore argu
that the scaleu carries information about strongly interactin
fields and is present only in QCD.

In asymptotic free theories, such as QCD, the regulat
scale can be related to the gauge invariant scale using
Callan-Symanzik equation. In our case, the scaleu can be
expressed in terms ofLQCD by solving the third order flow
equations for the strong coupling constant,as(l). Such cal-
culations have been recently performed for an asympt
free toy model@20# and for the three-gluon vertex in QCD
@21#. However, here we forgo this procedure and simply
sumeu is given by the hadron scale,u;Lhadron, which also
establishes the string tension scale.

The asymptotic behavior of the effective gluon mass n
the renormalization point is important for self-consisten
solving the flow equations for effective interactions, E
~2.6!, at vanishing gluon momenta. In the next subsecti
this dependence@Eq. ~3.13!# is used to find an effective
quark potential generated by the flow equations.

B. Effective quark-antiquark interaction

Eliminating the quark-gluon coupling generates an eff
tive interaction in the quark-antiquark sector@the second
equation in Eqs.~2.6!#. The energy transfers~i.e. energy de-
nominators! along the quarkp1→p2 and antiquarkp28→p18
lines are given byD15p1

22p2
22(p12p2)2 and D25p28

2

2p18
22(p282p18)

2, respectively. We denote the exchan
momentum asq5(q1,q')5p12p2. These energy transfer
can be related to the corresponding square of the fo
momenta asQ1

25(p12p2)252q1D1 and Q2
25(p282p18)

2

52q1D2 @22#. In the light-front formulation, the scala
product is definedp•k5(p1k21p2k1)/22p'•k' and the
four-momentum transfers for quark momentum (x,k') and
antiquark momentum (12x,2k') are given by

Q1
2~l!5Q1

21m ren
2 ~l!

Q2
2~l!5Q2

21m ren
2 ~l!, ~3.15!

where the asymptotic form for the renormalized effecti
gluon mass,m ren

2 (l)5m0
21s(m0 ,u)ln(l2/l0

2) @Eq. ~3.13!#,
enters. The four-momentum transfers are now dependen
the cutoffl and for zero gluon mass are given@22# by

Q1
25

~x8k'2xk'8 !21m2~x2x8!2

xx8

Q2
25Q1

2ux→(12x); x8→(12x8) . ~3.16!

As shown below, in the instant formulation, energy transf
with zero gluon mass, Eq.~3.16!, describe a three-
momentum exchange,qW 2 with qW (qz ,q'), while energy
transfers with non-zero cutoffs, Eq.~3.15!, correspond to an
effective energy ~with effective mass! exchange, qW 2

1m ren
2 (l). Near the renormalization point the energy tran

fers given by Eq.~3.15! and Eq.~3.16! coincide asymptoti-
2-7
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cally, i.e. for l→l0;0 and m0;0, Qi
2(l)→Qi

2 , i 51,2.
Using Eq.~3.15!, the gluon four-momentum can be writte
as

qm5p1m2p2m1
hm

2q1
Q1

2~l!5p2m8 2p1m8 1
hm

2q1
Q2

2~l!,

~3.17!

where the light-front unit vectorhm is hm5(22,01,0'), with
h•k5k1. In subsequent calculations, we use the aver
and difference of four-momenta transfers

Q2~l!5@Q1
2~l!1Q2

2~l!#/25Q21m ren
2 ~l!

dQ2~l!5@Q1
2~l!2Q2

2~l!#/25dQ2, ~3.18!

whereQ25(Q1
21Q2

2)/2 anddQ25(Q1
22Q2

2)/2.
Solving the flow equations self-consistently, the ene

transfers for non-zerol define effective interactions betwee
quarks as specified by Eq.~2.6!. Thus, the similarity form
factors in each vertexf „Q1

2(l);l… and f „Q2
2(l);l… provide

an effective interaction~see below!. However, for largel
only high energies are eliminated and the momenta tran
cutoff dependence,Qi

2(l) is minimal. Reducingl, energy
transfers are eliminated continuously from high to low e
ergy. Only for smalll and corresponding momentum tran
fers is the asymptotic behavior ofQi

2(l) essential. This is
important in solving for the effective interaction, since~see
Sec. II B! this asymptotic behavior~the cutoff dependen
gluon effective energy at smalll) eliminates the quark-
e

y

za
e

12501
e

y

er

-

gluon coupling even for vanishing gluon momenta, i.
when Q1

25Q2
250 (x5x8 and k'5k'8 ). If Q250 and m0

→0, the similarity form factorf 5exp@2Q2(l)/l2#, with
Q2(l) given by Eq.~3.15!, decays at smalll→0 ~with l
.l0) as

f ;S l2

l0
2D (2s/l2)

. ~3.19!

Note this is a power suppression, not exponential, withs
specified by Eq.~3.14!. Only for l5l0 doesf 51; however,
for other values,lÞl0 , f decays and the integral overl in
Eq. ~2.6! is finite in the effective interaction.

In the light-front formulation, an effective quark
antiquark interaction is given by a matrix element of an
fective light-front QCD Hamiltonian in theqq̄ sector (Q
space! and includes dynamical interactions generated by fl
equations@the second equation in Eqs.~2.6!# as well as in-
stantaneous terms present in the light-front gauge. Th
terms are embodied in the effectiveqq̄ interaction

Vqq̄524pasCf^g
mgm8& lim

(m0 ,l0)→0
Bmm8 , ~3.20!

whereCf5TaTa5(Nc
221)/2Nc is the eigenvalue of Casimi

operator in the fundamental representation, and the curr
current term in the exchange channel is given by~quark he-
licity notation is suppressed!
^gmgm8&5
@ ū„2k' ,~12x!…gmu~k' ,x!#@ v̄~k'8 ,x8!gm8v„2k'8 ,~12x8!…#

Axx8~12x!~12x8!
. ~3.21!
q.

The interaction kernel,Bmm8 , is analogous to the effectiv
electron-positron interaction in the light-front QED@22#, ex-
cept for the cutoff dependence in the energy transfers

Bmm85gmm8~ I 11I 2!1hmhm8

dQ2

q12
~ I 12I 2!. ~3.22!

Here gmm8 is the light-front metric tensor andhm is given
previously @see Eq.~3.17!#. The cutoff dependent energ
~four-momentum! transfer, Eq.~3.15!, along the quark and
antiquark lines is included in the integral

I 15E
0

`

dl
1

Q1
2~l!

d f„Q1
2~l!;l…

dl
f „Q2

2~l!;l…. ~3.23!

I 2 is obtained by interchanging indices 1 and 2 in Eq.~3.23!.
As discussed previously, the sensitivity to the renormali
tion scheme and renormalization point is eliminated by s
ting bothm0 andl0 to zero after integration.
-
t-

For the following three explicit forms for the similarity
function, the leading behavior of the integral factor, E
~3.23!, is given by the following:

~1! Exponential:

f 5exp@2Q2~l!/l2#,

I 15
1

Q1
2~l0!1Q2

2~l0!
S 11

s~m0 ,u!

Q1
2~l0!

D .

~2! Gaussian:

f 5exp@2Q4~l!/l4#,

I 15
Q1

2~l0!

Q1
4~l0!1Q2

4~l0!
S 11

s~m0 ,u!

Q1
2~l0!

D .

~3! Sharp:

f 5u„l22Q2~l!…,
2-8
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I 15
u„Q1

2~l0!2Q2
2~l0!…

Q1
2~l0!

S 11
s~m0 ,u!

Q1
2~l0!

D ,

~3.24!

where from Eq. ~3.15! the four-momenta are given b
Qi

2(l0)5Qi
21m0

2 with i 51,2. Several properties of th
similarity function were used to approximate the integral
Eq. ~3.23!. The similarity functionf (z) decays for argument
z>1; thus the integral saturates for values 0<l2

<„Q1
2(l0),Q2

2(l0)… at small energy transfer. Also,m0;l0

;0. Note that Eq.~3.24! has a form consistent with th
exchange of a gluon with an effective mass parameterm0
between quark and antiquark at distancesr;1/m0. The re-
sulting qq̄ interaction is defined in the limit of vanishin
mass parameterm0→0 and at the zero renormalization cu
off point l0→0, Eq. ~3.20!. In this limit, the average four-
momentum transfer reduces to lim(m0 ,l0)→0Q2(l0)5Q2,
Eq. ~3.18!, and the string tension is given b
lim(m0 ,l0)→0s(m0 ,u)5s, Eq. ~3.14!. Using Eqs.~3.22! and
~3.24!, the resulting interaction kernel for the three similar
function choices is the following:

~1! Exponential:

lim
(m0 ,l0)→0

Bmm85gmm8S 1

Q2
1

s

Q4D
1S gmm8

Q2
2

hmhm8

q12 D s

Q2

dQ4

Q42dQ4
.

~2! Gaussian:

lim
(m0 ,l0)→0

Bmm85gmm8S 1

Q2
1

s

Q4D
2Fgmm8

Q2 S 11
s

Q2D 2
hmhm8

q12 G dQ4

Q41dQ4
.

~3! Sharp:

lim
(m0 ,l0)→0

Bmm85gmm8S 1

Q2
1

s

Q4D
2H gmm8

Q2 F11
s

Q2 S 11
Q2

Q21udQ2u
D G

2
hmhm8

q12 S 11
s

Q2

Q2

Q21udQ2u
D J

3
udQ2u

Q21udQ2u
, ~3.25!

whereQ45(Q2)2 anddQ45(dQ2)2. The four-momenta in
Eq. ~3.25! can be represented in the ‘‘mixed’’ light-front an
instant representations as
12501
Q25qW 22
1

4
~2x21!~2x821!~M12M2!2

dQ252
1

2
~x2x8!~M1

22M2
2!, ~3.26!

where, together with the light-front momentum (x,k'), the
instant momentumkW5(kz ,k') enters with the connection

x5
1

2 S 11
kz

AkW21m2
D , ~3.27!

and kW25k'
2 1kz

2 . The gluon three-momentum transfer

given by qW 5kW2kW85(qz ,q') and the total energies of th
initial and finalqq̄ states are given by

M1
254~kW21m2!

M2
254~kW821m2!. ~3.28!

Our results, Eq.~3.25!, are not rotationally invariant due
to truncation of Fock space. However, on the energy s
(M1

25M2
2 and dQ250), the second term in Eq.~3.25! is

identically zero and the effectiveqq̄ interaction is given by
the first term

Vqq̄52^gmgm&S Cfas

4p

qW 2
1s f

8p

qW 4 D . ~3.29!

It is significant to note that all three choices yield the sa
effective interaction. Heres f5sasCf /2 with s given by Eq.
~3.14!. Further, and interestingly, we also obtain a Corn
type interaction with Coulomb and linear confining pote
tials

Vqq̄5^gmgm&S 2Cf

as

r
1s f•r D . ~3.30!

If the external particles are all on the energy shell, our lig
front formulation yields a rotationally invariant potential a
expected. The confining term in Eq.~3.30! @or Eq. ~3.29!#
arises from the elimination of the quark-gluon coupling
small gluon momenta, which is governed by the asympto
behavior of the effective gluon mass at small cutoff. It is a
significant to note that the same quark effective interacti
Eqs.~3.29! and~3.30!, emerges in the limit of static~infinite
heavym→`) quarks.

The Nc behavior of the confining term in Eq.~3.30! with
the string tension given by

s f5
u2

8p2

g4CaCf

4p
5

u2

8p2

g4~Nc
221!

8p
~3.31!

can be compared with available 211 lattice data@25# for the
expectation value of the Wilson loop in the fundamental re
resentation,̂ Wf(C)&5exp(2s211SC), whereSC is the area
of the loop C. Though the data are for 211, the same
2-9
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GUBANKOVA, JI, AND COTANCH PHYSICAL REVIEW D 62 125012
Nc behavior is expected for 311 and higher dimension
@25#. Monte Carlo calculations of the string tension in 211
give the valuesAs211/g250.3354, 0.553, 0.758 and 0.96
for the gauge groupsSU(2), SU(3), SU(4) and SU(5)
respectively@25# ~note that the coupling constant in 211 has
dimension,g2;energy). The corresponding values calc
lated from Eq. ~3.31! are 2pA2s f /(ug2)50.345, 0.564,
0.772 and 0.977. We see that there is excellent agreem
~up to ;3%) for this Nc behavior between~3.31! and the
Monte Carlo results. It is further interesting to notice that o
analytic expression for the string tension, Eq.~3.31!, has the
appropriateNc dependence as expected from largeNc calcu-
lations.

Similarly the quark-quark potential can be obtained and
related to the quark-antiquark potential by

Vqq52
1

2
Vqq̄ , ~3.32!

since only the commutator@b†ba,b†ba†# contributes to
Vqq , while @b†ba,d†da†# and @d†da,b†ba†# contribute to
Vqq̄ . Assuming the relation Eq.~3.32!, Basdevant and
Boukraa@26# showed that the ground state of baryons can
calculated with good accuracy.

Note that, because we use perturbation theory, we do
claim to have completed the derivation of a confining pot
tial in QCD. However, our 1/qW 4 quark-antiquark potentia
might be a precursor to quark confinement. Perhaps equ
as important, our results conflict with the notion that a we
coupling expansion will never produce a confining potent

Finally, there are correctionsO(dQ2/Q2) to the leading
effective interaction, which depend on the directionqW ap-
proaches zero~as was investigated in@22#!. An important
limiting case is the collinear limit

q1→0. ~3.33!

This is special for light-front calculations and may cau
divergences. From Eq.~3.26! in this limit, dQ2;q1, and for
sufficiently smooth similarity functionsf (z), like exponen-
tial or Gaussian, the effective interaction Eq.~3.25!
does not contain a collinear singularity, becau
(hmhm8 /q12)dQ4 is finite. Thus the interaction only be
comes singular ifqW approaches zero as 1/qW 2 ~‘‘Coulomb’’
singularity! or 1/qW 4 ~‘‘confining’’ singularity!, namely the
leading behavior given by Eq.~3.29!. Note that for mass
spectrums both singularities are controllable. The ‘‘Co
lomb’’ singularity is integrable, because the integral*d3q/q2

is finite for smallq and the ‘‘confining’’ singularity can be
regulated in the IR. However, this is not true for the sha
cutoff where thehmhm8 term diverges as 1/q1, because it
appears in the combination (hmhm8 /q12)udQ2u. We do not
attach physical significance to this singularity, which is
consequence of the arbitrary cutoff choice leading to a
gular unitary transformation generator at small momenta,
~2.3!. In summary, the collinear singularity is completely a
sent for a smooth cutoff and only the rotationally invaria
part of the effective interaction Eq.~3.29! remains in the
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limit qW→0, where the dominant contribution to the spectru
is obtained. Corrections from thehmhm8 term are finite and
shift the entire spectrum by a constant since they are dia
nal in spin space.

As numerically documented in the positronium QED e
fective interaction application@22#, rotational symmetry
holds with high accuracy even if the on-energy-shell con
tion for the external particles is removed. This holds f
smooth cutoff functions and even for a sharp cutoff if t
collinear singular part is subtracted. Based on our anal
here, we may anticipate similar results for the QCD effect
interaction.

C. Effective gluon-gluon interaction

In full analogy with Sec. III B, eliminating the three-gluo
coupling generates an effective interaction between two g
ons. Again, in leading order, the asymptotic behavior of
effective mass of the exchanged gluon is included. Using
same notation as Sec. III B, an effective gluon-gluon inter
tion is again generated by the flow equations. It contains b
dynamical and instantaneous gluon exchange and is give

Vgg524pasCa^G
mGm8& lim

(m0 ,l0)→0
Bmm8 , ~3.34!

where nowCadab5 f acdf bcd5Ncdab is the eigenvalue of Ca
simir operator in the adjoint representation. Here,
current-current term in the exchange channel is given by

^GmGm8&5
Gmnr~2q,p1 ,2p2!Gm8n8r8~q,p18 ,2p28!

Axx8~12x!~12x8!

3en~p1!er* ~p2!en8~p18!er8
* ~p28!, ~3.35!

where

Gmnr~2q,p1 ,2p2!Gm8n8r8~q,p18 ,2p28!

5@~p11p2!mgrn1~22p1!rgmn1~22p2!ngmr#

3@~p181p28!m8gr8n81~22p18!r8gm8n8

1~22p28!n8gm8r8#, ~3.36!

and the light-front momenta arep15(x,k'), p185(12x,
2k') and p25(x8,k'8 ), p285(12x8,2k'8 ). The gluon po-
larizations are omitted for simplicity. The interaction kern
Bmm8 is given by Eq.~3.22!, which is again defined for dif-
ferent cutoff functions in Eq.~3.25!. The polarization vector
property, q•e5h•e50, and representation for the gluo
momentum, Eq.~3.17!, have been used to simplify the abov
expressions.

Both quark-antiquark and gluon-gluon interactions ha
the same kernelBmm8 , and differ only in prefactors. Follow-
ing arguments detailed in Sec. III B, the leading gluon-glu
interaction is also independent of cutoff function form and
given by
2-10
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Vgg5^GmGm&S 2Ca

as

r
1sa•r D , ~3.37!

which is, again, a Coulomb plus linear potential between t
color sources in the adjoint representation withsa

5sasCa/2. The only difference between theqq̄, Eq. ~3.30!,
and gg, Eq. ~3.37!, potentials is given by the ratio of th
fundamental to adjoint Casimir operators,

Vqq̄ /Vgg5Cf /Ca5~Nc
221!/2Nc

254/9, ~3.38!

since both potentials have the same Coulomb plus confin
behavior.

IV. CONCLUDING DISCUSSION

An effective QCD Hamiltonian in the light-front gaug
has been obtained, solving the flow equations for the
lowest Fock sectors self-consistently. It has been shown
it is possible to eliminate the minimal quark-gluon intera
tion by using a continuous unitary transformation. In th
elimination, the coupling functions of the Hamiltonian d
scribed by the flow equations are renormalized. In the t
lowest Fock sectors this change of the couplings correspo
to the renormalization of the one-particle energies and to
generation of effective interactions between gluons a
quarks, in particular the quark-antiquark interaction. In o
taining the flow differential equations, intermediate sta
with more than three particles were omitted. Fock num
truncation in intermediate states is quite different from a p
turbation coupling constant treatment and more similar to
Tamm-Dancoff approach.

Our approach has several advantages. First, the orig
gauge field coupling can be completely eliminated, ev
when the states connected by this interaction are degene
The continuous transformation is designed such that
transformed Hamiltonian does not contain any interacti
between one~anti!quark and the creation or annihilation o
one gluon. These unwanted interactions, connecting st
with energy differences less than a cutoff scaleuEp2Equ
<l, are present in the similarity renormalization approa
because single particle energies are not renormalized. T
can mix low and high Fock sectors, and are not amenabl
a perturbative treatment. Further, ignoring these low-ene
interactions may break gauge invariance and, in the lig
front formulation, rotational symmetry as well. Second,
effective quark-antiquark interaction is rotationally symm
ric when the external particles are on the energy shell.
small gluon momentaq, also the collinear singular term
;1/q1 and ;1/q12 cancel. Most interestingly, in additio
to a Coulomb term 1/q2, which can be obtained in secon
order, there is also a more singular, confining term 1/q4. Our
inducedqq̄ interaction also differs from the similarity reno
te
et
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malization result, where the collinear singular part of t
remnant instantaneous interaction (;1/q12) yields a loga-
rithmic potential which is not rotationally symmetric. Thes
differences stem from the coupling’s flow parameter dep
dence.

Further, due to complete elimination of the quark-glu
coupling, the flow equation for an effective quark-antiqua
interaction can be integrated for all cutoffs includingl50.
In the similarity renormalization approach one removes c
plings perturbatively, reaching a minimum scale~cutoff!, be-
low which perturbation theory breaks down. The value
this cutoff depends on the problem considered, and migh
ambiguous. For QCD this cutoff introduces a scale in
theory, which breaks gauge and rotational invariance@8#. In
our approach, the regulator of small light-frontx establishes
a scale in the effective theory corresponding to the str
tension in the effective quark-antiquark potential. Besid
the nonzero scale, the resulting renormalized gluon m
vanishes asymptotically, maintaining gauge invariance. A
the effective quark-antiquark interaction is rotationally sy
metric when the external particles are on the energy shel
shortcoming in this work is that the small light-frontx cutoff
scaleu enters as an input parameter, fitted to the string t
sion from lattice calculations. This can be improved by
lating the cutoff u to the renormalization group invarian
scaleLQCD which necessitates higher Fock sector interm
diate states. This would also permit confirmation of our reg
larization scheme independent results.

Our ultimate goal is to solve the coupled chain of flo
equations in different sectors self-consistently. As shown
this work, even an approximate solution of the gluon g
equation combined with the flow equation for the effecti
qq̄ interaction provides new information beyond standa
perturbation theory. The next step is to address the qu
sector, formulating the quark gap equation and obtaining
renormalized light-front quark mass and attending improv
effective quark interaction.

Finally, reflecting on the above discussions, we note t
the light-front flow equations can now avail themselves
self-consistent computer generated solutions. It would
quite interesting to confront hadronic data with large sca
but feasible applications of this approach.

In summary, the light-front formulation appears quite v
able for examining the long range aspects of QCD. Imp
menting the flow equations within this framework has ge
erated new insight regarding nonperturbative phenom
including confinement.
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