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Flow equations for quark-gluon interactions in light-front QCD
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The flow-equation method of continuous unitary transformations is used to eliminate the minimal quark-
gluon interaction in the light-front quantized QCD Hamiltonian. The coupled differential equations in the two
lowest Fock sectors correspond to the renormalization of the light-front gluon mass and the generation of an
effective quark-antiquarkas well as gluon-gluoninteraction. The original gauge field coupling is completely
eliminated, even in the presence of degenerate states connected by this interaction. Further, a more singular
1/g* behavior for the quark and gluon effective interactions at small gluon momenta is obtained, due to the
asymptotic behavior of the effective gluon mass for small cutoff. We discuss the consequences of this
asymptotic behavior and possible confinement implications.

PACS numbgs): 12.38.Lg, 12.38.Aw, 11.10.Hi, 11.30.Cp

[. INTRODUCTION Previous light-front studies of confinement and bound
states have been conducted using the methods of similarity

The perturbative aspects of quantum chromodynamicsenormalization8] and transverse lattick9]. Significantly,
(QCD) were understood many years ago with the convincindight-front QCD in 3+ 1 rigorously contains a confining in-
documentation that QCD is asymptotically free. Howeverteraction in the form of the instantaneous four-fermion inter-
the calculational techniques for nonperturbative QCD areaction, 162, which is the complete confining interaction in
still under development. Thus, quantitative analysis of lowl+1 QCD for the light-front spatial dimensior; . Wilson
energy and momentum transfer phenomena remains difficuuggested that a starting point for analyzing full Q@th
even though the qualitative features are reasonably describednfinement in light-front coordinates is the light-front in-
due to chiral symmetry and the phenomenological success dfared divergences. When an infrar€dR) cutoff is intro-
the constituent quark picture. Nevertheless, it is widely beduced, appropriate counterterms are necessary to restore the
lieved that pure Yang-Mills theory, without dynamical attending physics below the cutoff. Based on light-front
quarks, exhibits confinement represented by a linear poterpower counting, these counterterms can involve color charge
tial between static color sources. Confinement may be attribdensities and exhibit an unknown nonlocal behavior in the
uted to mass generation from transmutation of dimensions itransverse direction which represents a possible source for
QCD. Adding dynamical quarks also breaks chiral symmetntransverse confinement. In the similarity renormalization ap-
spontaneously. An ultimate aim of nonperturbative QCDproach, it has been claimé8] that IR divergences from the
studies is to understand both confinement and chiral symménstantaneous gluon exchange potential are not completely
try breaking and how the constituent quark picture ariseganceled, leading to a remnant potential that increases loga-
from fundamental QCD. rithmically with either increasing separatiohs™| or |x,|.

In the past few years there were several studies addressittpwever, the issue of a nonzero gluon mass and local gauge
the issue of confinement and mass gap generation in thavariance is not yet completely understood and the task of
framework of the Schidinger picturg1,2]. Using path inte-  restoring rotational symmetry is still difficult to achieve.
gral techniques, Refl] utilized a vacuum wave functional In this work, we also introduce an IR longitudinal cutoff
ansatz suggested by Kogan and Kovner, and integrated ovand generate a light-front counterterm which sets a scale for
all possible gauge configurations. Since calculations ara dynamical mass gap and string tension. While our calcula-
quite formidable, this study only solves a field theory prob-tions for the flow equation are only to ordgf, our results
lem in 1+ 1 dimension$2] and restricts (3-1)-dimensional challenge the conventional notion that weak-coupling Hamil-
[1] analyses to ground states. For earlier investigations, seenians derived from QCD have only Coulomb-like poten-
Ref. [3]. tials, and definitely no confining interactions. Introducing a

Alternatively, nonperturbative studies have used a Hamildongitudinal IR cutoff in light-front dynamics makes it im-
tonian framework with the QCD Hamiltonian quantized in a possible to create particles from a bare vacuum by a transla-
specific gauge. In particular the Coulomb gauge has recentlyonally invariant Hamiltonian and thus the number of con-
been investigatef4,5]. In this paper we also use a Hamil- stituents in a given eigenstate is fixed. However, light-front
tonian approach but utilize the light-front gaude; =0 [6].  counterterms for the longitudinal IR cutoff dependence can
There are arguments that the light-front gauge may be thgenerate a nonzero amplitude of particle creation and are
most suitable framework to study nonperturbative Q@D  therefore a possible source for features associated with a
This conjecture is also supported by the success of phenomontrivial vacuum structure in equal-time dynamics, includ-
enological constituent light-front quark modé¢lg]. To pro- ing confinement and spontaneous symmetry breaking. Note
vide further insight concerning this issue, we have appliedhat the small light-front longitudinal momentum fractian
the flow equations to the light-front QCD Hamiltonian to corresponds to the high light-front energy. Therefore, in or-
generate dynamical gluons and quarks as well as their effeder to remove smaltk divergences and maintain the cutoff
tive interactions. independence, one should use a renormalization group,
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which is appropriate to high energies. renormalized effective gluon masg,en(\), is obtained by

In this work we address the above issue using the flowntroducing a mass counterterm. As a result, the asymptotic
equation method10]. More specifically, we adopt Suss- behavior of u,en(\) is obtained for small cutoffh which
kind’s idea of the “long arm” of the vacuunill] which  approaches the renormalization poing from above {
addresses chiral symmetry breaking in the light-front formu-=X\). The properties ofie,(\) ensure that the quark-gluon
lation. In the parton model, one pictures a high momentuntoupling is eliminated even in the degenerate case of zero
hadron as a collection of constituents each also having larggluon momenta. A similar idea was used for the spin-boson
momentum, such that under a boost, both the hadron and thBodel by Kehrein, Mielke and Neji2], who argued that the
partons change their momenta by the same factor. Therefor80UPling to a bosonic bath is always eliminated by renormal-

one can formulate an effective field theory on the axis of thdZNd the tunneling frequency. Also, in complete analogy to
light-front longitudinal momentum fractior (or on the axis °Ur Problem, Lenz and Wegngt3] showed for interacting

of rapidity which is logarithm of). The partons, both va- electrons in BCS theory that the elimination of electron-

lence and sea, have positixeand, according to Feynman rr:)::(;]rcr)r:qalci:z()ilﬁlplltrr]]ge f%roﬁgns;{?éeﬁeﬁca g'i:]eaﬁr Ctohnesigevegfcfhgf
and Bjorken, are distributed along thexis with the density g P q Y. Y

¢ . . ina " dina todxd/x. H gluon mass with\ produces for small momentuma poten-
of'sea partons Increasing for smaaccording X. HETe, —ial of form 1/g* which is more singular than the Coulomb

the vacuum is ak=0. The fundamental property of light- 2

front Hamiltonians is that under a rescaling of the light-front “,; the next sectioriSec. 1), we consider flow equations as
momentum,x— ax, the light-front Hamiltonian scale#l 5 renormalization group transformation for Hamiltonians and
—H/a. This may be interpreted as a dilatation symmetryformylate them for one- and two-body sectors explicitly. In
along thex axis. This symmetry only holds classically and is sec. 111 the flow equations are applied to the light-front QCD
broken on the quantum level by an anomaly. Now, the longHamiltonian to generate a gluon gap equation and an effec-

arm of the vacuum occurs because the coupling, i.e., thge qa (as well asgg) interaction. This section also ad-

interaction between neighboring partons, gets stronger anglesses solving these equations. The concluding discussion
stronger as one approaches 0 so rapidly that the system is ¢5110ws in Sec. IV.

able to hold itself together despite the fact that there is an
infinite number of steps betweerr=0 and finitex [11]. To
illustrate the long arm effect of the vacuum, we introduce a Il. FLOW EQUATIONS FOR GAUGE THEORIES
cutoff for small x. A natural cutoff is provided bydx _ o _
=g¢*x, the minimal spacing between constituents, which A. Flow equations as renormalization group transformations
plays the role of UV regulator. As long as the density of The basic element of the renormalization group transfor-
partons on the rapidity axis is not infinite,” or 6x is finite mation is a unitary transformation that renders the Hamil-
and one obtains finite matrix elements. The cutdforeaks  tonian matrix band diagonal; i.e., matrix elements with en-
dilatation symmetry in thex axis and generates an energy ergy differences |Ei_Ej| exceeding a cutoff\ are
scale or mass gap governing the strength of the effectiveliminated[14]. This procedure converges well when there is
interaction between quarks, in our case a string tension in thg hierarchy of scales in the problem. The goal is to decouple
quark-antiquark potential. Hence the long arm of the “light- the high- and low-energy scales of the band-diagonal effec-
front vacuum” enables the formation of @q bound state tive Hamiltonian, which is renormalized order by order in
through the breaking of an internal symmetry, analogous tgerturbation theory. Usingith order perturbation theory to
the creation of Cooper pairs in a superconducter. Because tlionnect high and low energy states of an effective renormal-
results must be independent of the cutoff, a renormalizatiofized Hamiltonian with ultraviolet regulating cutof (which
group equation is required, which in this work is provided byis the size of the full Hamiltonian matrix in the energy space,
the Hamiltonian flow equation methddoO]. eventually taken to infinity requires N=2(A—X\)/\.
Incorporating effects from sma¥ into an effective light- Assuming a coupling constamg<1, g2 "M*<1 for A
front Hamiltonian is equivalent to integrating over the high —«~. One has therefore isolated the low energy scale
light-front-energy modes in the asymptotically free domain.effective Hamiltonian which can then be diagonalized
In terms of the renormalization group, regulating small nonperturbatively for the few lowest eigenstates. This
introduces a mass gap, which together with asymptotic freeshould be simpler than solving the full Hamiltonian
dom leads to a renormalization group invariant scale andnatrix exactly. The unitary transformation which connects
dimensional transmutation along tReaxis. This transmuta- Hamiltonian matrices with different widthsH(\,,A)
tion in turn produces a linear effective interaction more sin-=U(\1,\5;A)H(A1;A)UT(N1,\5;A), is the renormaliza-
gular than the Coulomb potential. tion group transformation formulated by Glazek and Wilson
At the technical level our thrust is to use the flow equa-[14] called the similarity renormalization.
tions to renormalize the gluon energy and eliminate the cou- In terms of an effective Hamiltonian, one removes large
pling between the gluon and quark Fock sectors. We focuenergy differences by squeezing the width of the band,
upon zero gluon momentum and obtain a gap equation forx\;<A. This is done sequentially from high to low energy
the renormalized light-front gluon magg\). This equation to construct a low-energy effective Hamiltonian. Since the
can be solved by imposing a renormalization conditionlight-front energy has an inverse relationship to the light-
Hren(N=Xg) = uo, Where g is the “physical” value. The front momentum,E -~ 1/P", this scaling to lower\ is
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equivalent to moving from sma# (high energy to largex  equations for the single gluon energy angl effective inter-
(low energy for an effective light-front theory formulated on ge¢tion.

the x axis. The elimination of large energy differences is
governed by a dimensionless form factor, called the similar-
ity function, f(|E; — Ej|/\), which is of order unity for small
arguments(no elimination, and approaches zero for large  We consider a canonical Hamiltonian operator for a gauge
argumentsicomplete elimination of the off-diagonal matrix field theory, where the gauge field is minimally coupled to
elements Note that squeezing the bandwidth to zero isthe matter field(for example, minimally coupled QED or
equivalent to exactly diagonalizing the Hamiltonian matrix. simple Abelian QCD. In terms of bare quark and gluon
The flow equation approach entails an infinitesimal uni-fields the eigenfunctions of this Hamiltonian contain infi-

B. Flow equations in the two lowest Fock sectors

tary transformation written in differential form nitely many Fock states. For the two lowest Fock states
glecting the regt the Hamiltonian matrix in particle number
dH(I) space is
—gr=Ln(h.H()]
( PHP PHQ 2.2
n(D=[Ha(1),H, (1], 2.1 QHP QHQ

where P and Q are projection operators for one- and two-
wherel is the flow parameter related to the cutoff scalby ~ body Fock states. For Abelian, minimally coupled QU®D,
|=1/\2. The choice of the transformation generatpthas ~ projects on a one-gluon state a@lon a quark-antiquark
been suggested by WegngO] as the commutator of the pair, P|#)=|g) andQ|#)=|qq). One-quark states are omit-
diagonalH4, and off-diagonalresd, H, , Hamiltonian com-  ted because there are no dynamical quarks in this analysis
ponents. As shown by Wegner, fbrc the off-diagonal (we prefer to disentangle complexities from chiral symmetry
part of Hamiltonian is eliminated, producing an effective di- breaking. Matrix elements of the operatd®HQ describe
agonal Hamiltonian. quark-gluon minimal coupling, th&@HP term is a gluon

One of the purposes for renormalization is to remove theective energy an@HQ describes theq effective inter-

UV divergent high-energy contributions. Since they arise,ction, Flow equations for particle number changing matrix
from the particle-number-changing terms of the Ham'lton'a”elementshpq are given by

(at least in gauge theorig®nly these terms should be elimi-
nated. Wegner suggested assigning the off-diagonal part to dhyg(1)
the particle-number-changing terfhy =H,,_,,, and the diag- - —[Ep(1) =Eq()]7pq(h)
onal part to the particle-number-conserving terhhy
=H,_,. Thus, instead of diagonalization, one can imple-
ment flow equations to block-diagonalize the Hamiltonian in
particle number space. Also, block diagonalization in particle
number space precludes convergence problems associated
with exact diagonalization in energy spdddé]. Most note- zpq(l)zl[Ep(I)—Eq(I)]z, (2.3
worthy is the practical aspect of block-diagonalization when
applied to field theory. By block-diagonalizing the Hamil- wherep andq span all(free single particleenergy states in
tonian in particle number space the high and low Fock secthe P and Q subspaces, respectivelg,(I) and E4(l) are
tors are uncoupled, enabling separate eigenstate problerfliagonal matrix elements of block HamiltoniaR$HP and
with an effective Hamiltonian in each particle number sector QHQ. In the first equation the off-diagonal matrix elements
For most calculations, solving an effective sector-uncoupledip,r and hqq are neglected to leading order in coupling
Hamiltonian should be simpler than solving the original O(h,,) (this uncouples the flow equations féty and H,
Hamiltonian [15]. Note, however, that the flow equations terms. With the generator,, defined by Eq(2.3), elimi-
eliminate the particle number changing matrix elements, nohation of the coupling between thieand Q sectors,
in one step, but rather continuously for different energy dif-
ferences, sequentially from high to low energ@watrix ele- hpg(1) =hpa(0) F(Zp4(1)), 2.9
ments between degenerate stakgs; E;, can also be elimi- o _
nated by flow equations as discussed in the next subsgctioris governed by the similarity functiof(I[ Ey(1) —Eq(1)1%),
Here, the link between the similarity and flow equationWwhich vanishes for matrix elements with energy differences
schemes and renormalization clearly emerges. The distirexceeding the cutoffx, |E,(1)—Eq(1)|>1\1=X\. Also,
guishing feature for flow equations, however, is the separahpg(0) is the initial value, and () andE(l) flow too[see
tion of the particle-number-conserving and particle-numberEqg. (2.6)]. Eliminating the couplingh,, generates effective
changing terms, with only the particle-number-changinginteractions in the particle number conservidgnd Q sec-
terms contributing in the renormalization of an effective tors. The corresponding flow equation reads
Hamiltonian.

In this work, we run flow equations for the two lowest dhpp (1)

Fock sectors |gq) and|g)) in a gauge theory and obtain dl

0
Npg(l)=— m a[lnf(zpq(l))]

=§ [ 756D Ngp (D —hog(D 740 (D], (2.5
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with a similar equation foh, . Using the generator defined also permit renormalization. Renormalizing the gluon effec-

in Eg. (2.3 these equations reduce to tive energy yieldingE,(l) leads to two important conse-
quences. First, the quark-gluon coupling is eliminated for all
dE,(1) 1 d energies, even for degenerate states. Second, eliminating the
di =->, ED—E,0) m[hpq(l)hqp(l)] quark-gluon coupling wittEy(l) for degenerate states, the
a Ep q

effective qainteraction is obtained of the formd¥, which
is more singular than the perturbative resulg?1/This po-

dhgq (1) dhgp(l) 1 tential provides confinement and bound state of quarks.
ar > dl Eg()—El) Npar (1) We conclude this section with a synopsis of previous flow
P a P equation applications in other fields. The situation with de-
1 dh, o (1) generate states was first treated by flow equations in solid
+hgp() pa , (2.6)  state physics. Lenz and Wegner showed for systems of inter-
Eq (1) —Ep(l) di acting electrong13] that the original electron-phonon cou-

pling can be completely eliminated, even when the states

first tion in Ea42 6 onlv the di | matrix el " connected by this interaction are degenerate. Lenz and Weg-
irst equation in Eqs2.6) only the diagonal matrix elements ner found[13] that the induced electron-electron interaction

in the P space enter. In our application these equations repgigrars - from Frdnlich’'s, whose unitary transformation is

resent the gap equation for an effective gluon energy and %ased on second order perturbation theory. Moreover, this

equation for an effective q interaction, both investigated in interaction is attractive for any momentum, binding electrons
the next section. in Cooper pairs. Also, Kehrein, Mielke and Ngii2] have
Generally, the set of Hamiltonian flow equations is notshown for the spin-boson problem that flow equations allow
finite and the equations are coupled by kernels, which alsg complete elimination of the coupling to the bosonic bath
flow with I, which are only known after solving the flow even for real processes. Finally, Kehrein and Mielke ob-
equations. Obviously, practical computations require truncateajned similar modifications due to ardependent generator
ing to the few lowest sectors, assuming that higher sectorgy eliminating the hybridization term in the Anderson model
are not very important at low energies. In the light-front[16]. The authors showed that their approach generates a
framework, this approximation is valid because pair creationspin-spin interaction which differs from the one obtained by
from the light-front vacuum is forbidden and generally thethe famous Schrieffer-Wolff transformation. Their induced
higher Fock component@with large particle numbercarry  interaction has the right high-energy cutoff, as compared to
large light-front energies. Neglecting the high Fock compo-Schrieffer-Wolff's result. Thus, within flow-equation ap-
nents reduces the problem to an effective low-energy theorroach it is possible to obtain new results which can not be
In this way, we close the set of equations and reduce thgptained by perturbation theory.
number of unknown couplings, leaving only the canonical | the next section, we use the above formulation to solve
operator couplings. Note that the truncation in number ofhe flow equations for the effective gluon energy and the
particles participating in intermediate states is not equivalenguark-antiquark interactiofsee Eq.(2.6)] using the light-
to perturbation theory in coupling constant, but rather isfront quantized QCD Hamiltonian.
closer to the Tamm-Dancoff approach. The flow equations
are still coupled, and should be solved self-consistently in-
cluding the flow dependences of the couplings. [ll. FLOW EQUATIONS IN LIGHT-FRONT QCD
In this work on minimally coupled gauge theory, the set
of flow equations was truncated at the two-body sector, in-
cluding at most three-particles in intermediate states. Hence In the light-front formulation, the flow equation for a
the renormalization of the QCD strong coupling constant issingle particle energyp‘z[pf4—,41,2()\)]/p+ is actually
not considered, but the single particle energy, &46) for  written for the mass:?(\) since the ternp?/p™ is indepen-
Ep(l), is renormalized. In particular, as shown in the nextdent of flow. The set of the coupled light-front equations for
section, the renormalization of a gluon energy is importanthe cutoff dependent quark and gluon masses was first de-
for constructing an effectiveq interaction over all energy rived by Glazek17]. We uncouple this set of equations by
ranges. assuming that the quark mass does not flow with the cutoff,
Flow equations not only eliminate the quark-gluon cou-m(\)=m, wheremis the current quark mass. The light-front
pling, which renders the Hamiltonian block diagonal, theygluon gap equation is

with the couplingh,, given by Eq.(2.4). Note that for the

A. Gluon gap equation

du®(\) fl dx [=d%k, 2\ 1 df2(Q3(\);N)
dx N Jox(T=x)Jo 16720 Qi)  dr

k? + m?2
—_____2K?
X(1—x)

Lodx (=d%k, , 1 dPR@QIOVN[ L[ 1 1
_ZCafox(l—x)fo 1%399()‘)@(7\) d\ {kl 1Jr?Jr(l—x)Z

: (3.9
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where operation and the renormalization group fixed point can be

s 5 5 identified as the infinite momentum limit. The corresponding

2 KT +up(N) 5 2 ki+m 2 renormalization group fixed point in the flow equations is
Q1(N) = X1-x M (M), QZ(M:X(l_X) “#° (N thenn=0. Therefore, in Eq(3.4), the renormalization point

(3.2 is set to zerohg=0, at the end of calculations. Also, the

“physical” gluon mass, which is used as an arbitrary mass
Here, the group factors foBU(N,) are T;8,,=Tr(T?T®)  parameter, can be taken to zero to restore gauge invariance
=18, and the number of flavors N¢=6. The adjoint Ca- (see below
simir is defined byC,8,,= f2°4"4=N_45,;, with the num- Even with these simplifications, solving E.1) is still
ber of colorsN.= 3 (the subscripts i€, andN, should not  quite involved. The solution can only be found numerically.
be confused with the group indicesandc). In the integral In order to proceed analytically, a mass parameigr
kernel, the gluon couples to quark-antiquark pairs and gluor“physical” mass, which corresponds to the choice of the
pairs with quark-gluon couplinggy(A), and three-gluon renormalization point ap®= 3, is substituted fopu(\) in
coupling, g4(\), respectively. For non-zera these cou- the integral kernel on the right-hand side of Eg.1). The
plings are different functions of momenta. The light-front same procedure is used to calculate the perturbative mass
momentum flowing in the loops has componemtsk(). In - correction in[19]. Therefore the energy differences in Eq.
our derivation, the connection between flow parameter ang3.2) are given by
the cutoff,| =1/A?, is used.

In Eq. (3.1, the effective gluon mass is defined at trans- 2 4 2 K2 4 2
verse gluon momentump, =0, as in light-front perturbation F2_ LT Ho — 2 0%= Lrm — 2 (3.5
theory for the gluon mass correcti¢@8g]. Following other Lox(1-x) 70 F2ox(1-x) T '
gluon gap equation studies, we assume the effective gluon

mass vanishes for large gluon momenta. Therefore, evefising Eq. (3.5, Eq. (3.1 is solved iteratively angu2()\)
though the effective gluon mass depends on momentum_,,ug is the first iteration.

only its A cutoff dependence at zero momentum is given by "z iher problem in Eq(3.1) is that the loop integrals

Eq. (3.D), €., #(\,p(p,p.)=0). Howe\{er, _the?\ depen- have an UV divergence in the transverse directiknsand
dence ofu is the only relevant renormalization issue. an IR divergence in the longitudinal direction The flow
Generally, it is difficult to solve Eq(3.1) because the g4, ations naturally regulate these divergences via the simi-
running couplingsgq(A) andgg(X), are not known. There- |5ty function in each vertekfor example, the gluon loop in
fore, the coupling cutoff dependence is neglected. Also, theEq_ (3.1) is regulated byQ?(\)<\?]. This type of regular-
initial condition for Eq.(3.1) is not known. Accordingly, the ization is known as “Jacolbi cutoffs,” because of the Jacobi
following two renormalization conditions are imposed to de'momenta of a constituefit is also célled “global” regular-

'ﬁrm[?te 'ghe rl:nnln%grlluon .maast()‘t)' Flrtsrt], t_he effelc“l’e ization in[19]). The advantage of this regularization in the
amiitonian at scale. has eigenstates with €1genvalus — ight_front approach is that it preserves both transverse and

— (2 2 + i ;
=(pT+ug)/p™ [17], satisfying longitudinal boost invariancgl8]. For a nonzero mass such
5 5 ) ) as a current quark mass in the quark loop, this regularization
DL+M0< Ipy= pL+u(N) ®'lp restrictsk, and the light-frontx integrations. Thus, the simi-
+ +

larity function f(Q3;\), with Q3 given by Eq.(3.5), ensures
N that O<k, <(A\2+ ud)x(1—x)—m? and m?/(A\?+ ud)=<x
_f 'y [7prq(\ )hgp(X') <1-m?/(\?+ u3). However, for zero gluon mass in the
q gluon loop,k; is restricted from above andruns the entire
g\ 7)), 3.3 range Gsx=1, .co.ntr_ibuting inergeznt terms at=0 andx
=1 [see the similarity functiorf(Q7;\)]. Even when the
where ., denotes the “physical” gluon mass, anp) de-  instantaneous diagrams are included, the gluon loop is still
notes a single effective gluon stdt® subspace, Eq2.2)]  divergent inx [19]. For a massive case the cutoffhas a
with momentum p*,p,) and (p’|p)=16m3p* 53)(p’  lower bound from a mass in the theory=m=0, which
—p). The generator,,, given by Eq.(2.9), eliminates the limits the x integration. The reason why flow equations do
quark_g|uon(three_g|§g,), couplingh,q. Second, the effec- not regulate the light-front divergences in a massless case is
tive gluon mass, renormalized in second order perturbatioRecause the cutoff can evolve ton =0 with the similarity

theory, equals the “physical” mass function f(z—%)=1, andx spans the entire 0 to 1 range,
where the loop integral with massless intermediate states di-
Bean(N=Ng) = i3, (3.4  verges ak=0 andx=1. To regulate these divergences in a
massless case, Zhang and Harindranath suggested restricting
at the renormalization poirk,,. thek, integration also from below by some scaleThis is

From the definition of flow equations, a resulting effective equivalent in our approach to integrating the flow equation
Hamiltonian is given in the limit of the flow parametér (3.1) for finite limits, from \ to u [19], which restricts inter-
—o or \=0. In the parton picture described in the introduc- vals in thex axis to above 0 and below 1. It was also shown
tion, the boost may be regarded as a renormalization grouim [18] and[19] that for the scalei, even if ug=0 is zero,
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the gluon mass correction does not vanish. Effectively, introvacuum expectation value, since strongly coupled configura-
ducing the scalel mimics the situation of a non-zero mass, tions are frozen. This vacuum expectation valM&V) re-

m=u, in intermediate states.

In terms of effective light-front theory formulated on the

placement in gluodynamics is consistent with a composite
field, ¢, creating O glueballs having a finite VEV2]. The

axis, the Hamiltonian below the first light-front cutoff, Hamiltonian in the intermediate regioH,.<y<(1-,), iS then

Ho<yx<., and the Hamiltonian above the second cutoff
=1, H(1—;)<x=1, describe the strongly correlated high en-

treated by flow equations.
Integrating the gluon flow equatiof3.1) for finite limits

ergy states. Thus, they can be replaced by the Hamiltoniaju;\ ] yields

L

1 [
pZ(N) = p(u)= —292Tfof0 dxjo

wi(2x2—2x+1) 2m

d?k ~ ~
16773[f2(Q§;>\)—f2(Q§;U)]

1

K2 +m2—x(1—x)u5

1 )
—2g2caf dxj
0 0

1
X| 1+ —+

L

X2 (1—x>2)’

k2 +m?—x(1—Xx)ud

dzk 2/ N2 2/A\2
Lo sl ~ (@] | 1+

+| -2+

X(1—Xx)

pox(l=x) 1o
kKE=x(1=X)ug+ug  KE—x(1=X) o+ ph

(3.6

where the renormalization point = w3, and the energy Assuming the renormalization conditions of E¢8.3) and
differences are defined in E¢3.5). Though the quark loop (3.4), the effective gluon mass at scaleis

does not diverge witlx, the gluon flow equation is integrated
the same way for the gluon and quark loops. Similarity func-

tions restrict the transverse momentakiq,i»<k, <K, max.
with

Ky max= (N + ud)X(1=x) — ud

Ky min= (U+ 1) X(1=X) = u5, (3.7
and, forx,
2 2
o
0 sx<1-———. (3.9
U+ ug U+ ug

Analogous expressions hold for the quark loop.
Integration over momentax(k, ) in Eq. (3.6) yields

2
Lok

3#0 n?

9°TN;
2)\—2u:_
() — () 1.7

A% 1
2 SN2 .2
+m|nu2+3()\ u))

2 2 2 2

g°Ca| , A ( u u 5)
— poln—| ——=+In———
am® [T\ wf o pg 12
+(N2=u?)| | v ou 3.9
(\=u?)| In— =5 (3.9

mA(N)=pg+ Suhr(N)+ (N hg).  (3.10
Here, Eq.(3.3 fixes the integration constahwvhen integrat-
ing the flow equation(3.1)] to 3. In Eq. (3.10 the pertur-
bative term reproduces the result from light-front perturba-
tion theory[19], i.e.,

g2
Subr(N)=——5\?
Hpr( A2

2

1
In—— — +Tfo— .
212 3

(3.11

Ca

Renormalizing the effective Hamiltonian to second oder
O(g?), the perturbative mass correction is absorbed by the
mass countertermmar(Ayy)=— Sud(Ayy) with Ayy
—oo, and the renormalized effective gluon mass is

2 _ 2 2

Mren(N) = p(N) +me(N), (3.12

for A= Ayy—. Though perturbative renormalization is ap-
plied at large cutoff scaleg\, we assume that the leading
cutoff dependence in second order is absorbed by the mass
counterterm for all\, and the renormalized gluon mass is
given by Eq.(3.12 for any \. Explicitly from Eq. (3.9), the
renormalized gluon mass reads

2

Mrzen(x) = ,ch2)+ SuP(N,Ng)= Mé"‘ O'(,MO,U)mF
0
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2 u W@ 5 lated by a current electron mass One can therefore argue
2 . . . - .
o(po,U)=———uo| Ca| —— + In— — I that the scglel carries mformatlon about strongly interacting
4 Mo Mo fields and is present only in QCD.
5 In asymptotic free theories, such as QCD, the regulating
FTN =+ m (3.13 scale can be related to the gauge invariant scale using the
IR ' Callan-Symanzik equation. In our case, the saalean be

expressed in terms ofo¢cp by solving the third order flow

where the renormalization condition, E§.4), at scaleryis ~ equations for the strong coupling constamf(\). Such cal-
satisfied. Recall, this solution, E€3.13, describes an effec- culations have been recently performed for an asymptotic
tive gluon mass at zero gluon momentum. Since the effectivéee toy model[20] and for the three-gluon vertex in QCD
Hamiltonian generated by flow equations is defined at cutoff21]. However, here we forgo this procedure and simply as-
scalex—0, the resulting gluon mass equals the “physical” Sumeu is given by the hadron scalg:~ Apaqron, Which also
massu2, (A =\o=0)= 2. In particular, when the “physi- establishes the string tension scale.

cal” mass is set to zergu,=0, the effective QCD Hamil- The asymptotic behavior of the effective gluon mass near
tonian has zero mass gauge fields, and our unitary transfof?€ renormalization point is important for self-consistently
mation no longer violates gauge invariance. Then, only forS0IVing the flow equations for effective interactions, Eq.
color singlet gauge invariant matrix elements are IR singu{2.6), at vanishing gluon momenta. In the next subsection,
larities associated with soft collinear gluons canceled exthis dependenc¢Eq. (3.13] is used to find an effective
actly, satisfying the Kinoshita-Lee-NauenbeiigLN) theo- ~ duark potential generated by the flow equations.

rem[23]. This was demonstrated in detail perturbatively for

the e"e™ annihilation amplitudg24]. In our situation this B. Effective quark-antiquark interaction

zero gluon mass, gauge invariant limit also produces IR di-

. . . Eliminating the quark-gluon coupling generates an effec-
vergent quark and gluon seli-energies. This may be INt€live interaction in the quark-antiquark sectghe second

preted as color confinement because the infinite self-energi L :

suppress the quark and gluon propagation amplitudes. Hovigsgumailzgpolrg ;gi(z't?i ngrﬁpne_r)gy t;ndsfgrrfstsi.eu;nlgg_)y d,e-
ever and, consistent with the above theorem, in the Bethe: - along e quarp, —po nta 2P
Salpeter equatiotand the simpler Tamm-Dancoff equatjpn '"©S are given YD1 =p; =P =(P1=P2)~ andD,=p;

the IR divergent contributions from the kinetic self-energy ~P1 ~(P2—P1) ", iespectlvely. We denote the exchange
and potential interaction kernel parts cancel exactly for colofomentum ag|=(q",q,)=p;—pP,. These energy transfers

singlet states. Our generated two-bagly andgg potentials ~ ©2" bet relatezd_to tEe cgireispggdmg dsquza_re 9f_ tr}ez four-
satisfy these conditions, providing finite masses for singlefnome;n a af;=(p, p2.) -9 Pran Q.Z_(pz P1)
states of mesons and glueballs. =-q'D, [22]. In the I|g+ht—_front_fo+rmulat|on, the scalar
From Eq.(3.13, one has, in the limify—0, product is defineg-k=(p"k™+p k™)/2—p, -k, and the
four-momentum transfers for quark momentumk(;) and

g2C. antiquark momentum (£x,—Kk,) are given by
o= lim o(ug,u)=u? , 3.1
m T =T (319 QAN = Q2+ (V)
where, as shown belows; plays the role of the string tension Q5(N)=Q3+ uZ,(\), (3.15

between quark and antiquark. In E®.13, u? determines
the rate at which the effective gluon mass asymptoticallywhere the asymptotic form for the renormalized effective
approaches the “physical” value; u?In(\/\o). gluon mass,u’,(\)=ui+ o(umo,u)In(\#\d) [Eq. (3.13],

We note here how one may expect a difference in thenters. The four-momentum transfers are now dependent on

gauge group and strong interactions, which distinguishes it

from QED. Both canonical light-front QCD and QED Ham-

iltonians have the instantaneous interactiom? Iwhich has Qi
a singular behavior for smal. For QED a smalk regular- xx'
ization scheme can be found where divergent contributions
from this instantaneous term are canceled in the matrix ele-
ments[19]. This is not true for QCO19]. Because of the
non-Abelian triple-gluon vertex, it is necessary to introduce
regulating scalau for the divergences at~0 andx~1 in
the gluon self-energgthe quark loop is regulated in the same g )
fashion in order to combine quark and gluon loppe fact, ~Mmomentum exchangeq® with q(q,,q.), while energy
the string tension in Eq3.14) is proportional to the eigen- transfers with non-zero cutoffs, E(8.19, correspond to an
value of quadratic Casimir operator in the adjoint represeneffective energy (with effective masp exchange, g2
tation, reflecting this non-Abelian character. There is no sucht ,u,zen(k). Near the renormalization point the energy trans-
scale in the QED self-energy operators, which are all regufers given by Eq(3.15 and Eq.(3.16) coincide asymptoti-

(x"k, —xk])2+m2(x—x")?

Qg:QﬂXH(lfx); x'—(1=x") "+ (316)

s shown below, in the instant formulation, energy transfers
with zero gluon mass, EQq(3.16, describe a three-
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cally, i.e. for A—Aq~0 and uy~0, Q*(\)—Q?, i=1,2.  gluon coupling even for vanishing gluon momenta, i.e.,
Using Eq.(3.15), the gluon four-momentum can be written when Q?=Q3=0 (x=x’ andk, =k|). If Q?=0 and u,

as —0, the similarity form factorf =exd — Q2(\)/\?], with
Q?(\) given by Eq.(3.15, decays at smalk—0 (with A
7 ' ’ 7 >N\ ) as
qM:plu_p2M+ Zq_iQi()\)ZPZ,u_plp,—{_ qujr Qg()\)’ °
(317) )\2 (—a/\?)
. . . . f~(—2) . (3.19
where the light-front unit vecton,, is »* = (27,0,0,), with Ao
n-k=k™. In subsequent calculations, we use the average
and difference of four-momenta transfers Note this is a power suppression, not exponential, with
D r D 5 o2 specified by Eq(3.14). Only for A=\ doesf=1; however,
Q* (M) =[Q1(M)+Q2(M)1/2=Q+ ufen(N) for other values\ # )\, f decays and the integral ovirin
Eq. (2.6 is finite in the effective interaction.
20y Y =T (2 2 — 502
8Q°(N)=[QI(N)—Q3(\)]/2=6Q?, (3.18 In the light-front formulation, an effective quark-

antiquark interaction is given by a matrix element of an ef-
yfective light-front QCD Hamiltonian in theyq sector Q
transfers for non-zera define effective interactions between SPacéand includes dynamical interactions generated by flow
quarks as specified by E@.6). Thus, the similarity form €guationgthe second equation in Eq.6)] as well as in-
factors in each verteX(Qi()\);)\) andf(Qg()\);)\) provide stantaneous terms present in the_llght—front gauge. These
an effective interactiorisee below. However, for largen ~ terms are embodied in the effectige) interaction

only high energies are eliminated and the momenta transfer

cutoff dependenceQ?(\) is minimal. Reducingy, energy an:—4wascf(y“7”/) lim B,,, (3.20
transfers are eliminated continuously from high to low en- (1o :10)—0

ergy. Only for small\ and corresponding momentum trans-

fers is the asymptotic behavior Qf()\) essential. This is WhereCf=TaT""=(N§—1)/2NC is the eigenvalue of Casimir
important in solving for the effective interaction, sintsee  operator in the fundamental representation, and the current-
Sec. 1B this asymptotic behaviofthe cutoff dependent current term in the exchange channel is given(tpyark he-
gluon effective energy at smal) eliminates the quark- licity notation is suppresséd

whereQ?=(Q3+ Q3)/2 and 5Q%= (Q7— Q3)/2.
Solving the flow equations self-consistently, the energ

[u(—k, ,(1=x))y“u(k, x) 1l (k] X )y* v(—k| ,(1=x'))]

XX (L=x)(1—x") 329

(yhyHy=

The interaction kernelB,, ., is analogous to the effective For the following three explicit forms for the similarity
electron-positron interaction in the light-front QER2], ex-  function, the leading behavior of the integral factor, Eg.
cept for the cutoff dependence in the energy transfers (3.23, is given by the following:

(1) Exponential:
2

0Q
BW,:gMM,(I1+I2)+n#nM,F(Il—IZ). (3.22 f=exgd —Q%(\)/\?],
1
Hereg,,  is the light-front metric tensor ang, is given l1=— 5 (1+ U(go’u) .
previously [see Eq.(3.17)]. The cutoff dependent energy Q1(N) +Q3%(No) Q1(N\o)

(four-momentum transfer, Eq.(3.15), along the quark and

antiquark lines is included in the integral (2) Gaussian:

f=exd —Q*N)/\,

= 1 df(Q3(\);N)
I1=f d QN (2. (329

AQim dx

1

_ Qi) (1+0'(,U~0au)
Q1(\o)+Q3(No) Qi(No)

I, is obtained by interchanging indices 1 and 2 in E323.

As discussed previously, the sensitivity to the renormaliza- (3) Sharp:
tion scheme and renormalization point is eliminated by set-

ting both uy and\ to zero after integration. f=0(0\2—Q?*()\)),
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o(pg,u)
Q%(N\o)

2 A2
= Q00— Q300) ( -
Q1(Ao)

(3.29

where from Eg.(3.15 the four-momenta are given by
Q?(No)=Q?%+ uj with i=1,2. Several properties of the

similarity function were used to approximate the integral in

Eq.(3.23. The similarity functionf(z) decays for arguments
z=1; thus the integral saturates for values<xX?
s(Qf()\o),Qg()\o)) at small energy transfer. Alsgyo~\g
~0. Note that Eq.(3.24 has a form consistent with the
exchange of a gluon with an effective mass paramgigr
between quark and antiquark at distancesl/u,. The re-
sulting qq interaction is defined in the limit of vanishing
mass parameter,—0 and at the zero renormalization cut-
off point A\;— 0, Eg.(3.20. In this limit, the average four-
momentum transfer reduces to [;;Q,AO)HOQZ()\OFQZ,

Eq. (3.18, and the string tension is given
lim(,,  np)—00(ro,u) =0, Eq.(3.14. Using Egs.(3.22 and

by

(3.24), the resulting interaction kernel for the three similarity

function choices is the following:
(1) Exponential:

lim B ( L. 0)
Im r:g | ——= —
(10N 0)—0 s s Q2 Q4
+(g,u,u’ - 7]/1,’7,(4')1 5Q4 .
Q? Q% Q*-sQ*
(2) Gaussian:
lim B ( L, U)
m /:g 2 —
(kg .Np)—0 s s QZ Q4
_ g,u,p,’ 1+1 _ NuMu 5Q4
QZ QZ q+2 Q4+ 5Q4
(3) Sharp:
li B ( ! + U)
m r:g | —= i
(g .Ng)—0 s s Q2 Q4
2
_ Yuu 1+i 1+Q—
Q? Q? Q%+]6Q?|
. s ( + 1 Q2
q*? Q% Q*+[6Q?
S 2
X&, (325)
Q*+[6Q7

whereQ*=(Q?)? and 6Q*=(8Q?)?. The four-momenta in
Eq. (3.25 can be represented in the “mixed” light-front and
instant representations as

PHYSICAL REVIEW D52 125012
Q?=q?— 1(2x—1)(2x'—1)(|\/| —M,)?
a—z 1 2

8Q%=— %(x—x')(Mi—MS), (3.26

where, together with the light-front momenturr,k, ), the
instant momentunk= (k,,k,) enters with the connection

1( k,
X=—|1+
2

\/E2+m2)’

and k?=k?+k2. The gluon three-momentum transfer is
given byq k—k' = (d,,9,) and the total energies of the
initial and fmaqu states are given by

(3.27

MZ=4(k?+m?)

M2=4(k'2+m?). (3.28
Our results, Eq(3.25), are not rotationally invariant due
to truncation of Fock space. However, on the energy shell
(M2=M3 and 6Q?=0), the second term in Eq3.29 is
identically zero and the effectivgq interaction is given by

the first term

Vag=— (7"

4 8w
Cfast+UfT4 . (329)
q q

It is significant to note that all three choices yield the same
effective interaction. Here';= o-a;C;/2 with o given by Eq.
(3.14). Further, and interestingly, we also obtain a Cornell
type interaction with Coulomb and linear confining poten-
tials

o

qu=<y“7#><—CfTS+a'f-r . (3.30
If the external particles are all on the energy shell, our light-
front formulation yields a rotationally invariant potential as
expected. The confining term in E.30 [or Eqg. (3.29]
arises from the elimination of the quark-gluon coupling at
small gluon momenta, which is governed by the asymptotic
behavior of the effective gluon mass at small cutoff. It is also
significant to note that the same quark effective interaction,
Egs.(3.29 and(3.30, emerges in the limit of stati@nfinite
heavym— o) quarks.

The N, behavior of the confining term in E§3.30 with
the string tension given by

u® g*C.Cy  u?

8m2 4w 872

g*(NZ-1)
8

(3.31)

g¢=

can be compared with availablet2L lattice datd25] for the
expectation value of the Wilson loop in the fundamental rep-
resentation{W(C))=exp(—0,, 1), whereS; is the area

of the loop C. Though the data are for 21, the same
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N, behavior is expected for 81 and higher dimensions limit §— 0, where the dominant contribution to the spectrum
[25]. Monte Carlo calculations of the string tension ir-2 is obtained. Corrections from theg, 7, term are finite and
give the values/o, ., ;/g?>=0.3354, 0.553, 0.758 and 0.966 shift the entire spectrum by a constant since they are diago-
for the gauge groupSU(2), SU(3), SU(4) andSU(5)  nal in spin space.
respectively{ 25] (note that the coupling constant in-2L has As numerically documented in the positronium QED ef-
dimension,g2~energy). The corresponding values calcu-fective interaction applicatior{22], rotational symmetry
lated from Eq.(3.31) are 2m\20¢/(ug?)=0.345, 0.564, holds with high accuracy even if the on-energy-shell condi-
0.772 and 0.977. We see that there is excellent agreemefien for the external particles is removed. This holds for
(up to ~3%) for this N, behavior betweerf3.31) and the ~smooth cutoff functions and even for a sharp cutoff if the
Monte Carlo results. It is further interesting to notice that ourcollinear singular part is subtracted. Based on our analysis
analytic expression for the string tension, E8.31), has the here, we may anticipate similar results for the QCD effective
appropriateN, dependence as expected from laMjecalcu-  Interaction.
lations.

Similarly the quark-quark potential can be obtained and is C. Effective gluon-gluon interaction

related to the quark-antiquark potential b
a g P y In full analogy with Sec. Il B, eliminating the three-gluon

1 coupling generates an effective interaction between two glu-

Vag=— qug, (3.32 ons. Again, in leading order, the asymptotic behavior of the
effective mass of the exchanged gluon is included. Using the

same notation as Sec. Il B, an effective gluon-gluon interac-
tion is again generated by the flow equations. It contains both
dynamical and instantaneous gluon exchange and is given by

since only the commutatofb'ba,b’ba’] contributes to
Vqq. While [b'ba,d'da’] and[d'da,b'ba'] contribute to
Vqq- Assuming the relation Eq(3.32, Basdevant and
Boukraa[26] showed that the ground state of baryons can be V. = —AmraC (1“”1““') im B . (3.34
calculated with good accuracy. 99 sTa pp

Note that, because we use perturbation theory, we do not
claim to have completed the derivation of a confining poteny, 1 ore NOWC,8,,= F2°%P¢d=N_6,, is the eigenvalue of Ca-

tial in QCD. However, our * quark-antiquark potential simir operator in the adjoint representation. Here, the

might be a precursor to quark confinement. Perhaps equallyyrrent-current term in the exchange channel is given by
as important, our results conflict with the notion that a weak-

coupling expansion will never produce a confining potential. wp ul ! , ,
Finally, there are correction®(5Q%/Q?) to the leading (rers'y= I#P(—q,p1, —pa)T (9,P1,—P2)
effective interaction, which depend on the directigrap- VXX (1=x)(1—x")

proaches zerdas was investigated if22]). An important N o
limiting case is the collinear limit X €,(P1)€, (P2) €, (P1)€, (P2), (3.39

(ko) —0

q"—0. (3.33  where

This is special for light-front calculations and may cause

wvpl_ _ w'v'p! A
divergences. From Eg3.26) in this limit, 5Q?~q™*, and for T#(=a,p, = p)T (A,p1,=P2)

sufficiently smooth similarity function$(z), like exponen- =[(p1+ P2)“gP + (—2p1)Pgr + (—2p,) "g~*]
tial or Gaussian, the effective interaction E@3.25 o o

does not contain a collinear singularity, because X[(p1+pa)* gV +(—2py)* g*”

(.m0 1972 8Q* is finite. Thus the interaction only be- C

comes singular iff approaches zero asqf/ (“Coulomb” +(=2px)" g* 7], (3.3

singularity or 1/g* (“confining” singularity), namely the

leading behavior given by Eq3.29. Note that for mass and the light-front momenta arp;=(x,k;), p;=(1-Xx,
spectrums both singularities are controllable. The “Cou-—k;) and p,=(x’",k}), p,=(1—x’,—k}). The gluon po-
lomb” singularity is integrable, because the integfdPq/q? larizations are omitted for simplicity. The interaction kernel
is finite for smallq and the “confining” singularity can be B, is given by Eq.(3.22, which is again defined for dif-
regulated in the IR. However, this is not true for the sharpferent cutoff functions in Eq(3.25. The polarization vector
cutoff where then, 7,  term diverges as @/, because it property, q-e=7-e=0, and representation for the gluon
appears in the combinatiompnw/q*2)|5Q2|. We do not momentum, Eq(3.17), have been used to simplify the above
attach physical significance to this singularity, which is aexpressions.

consequence of the arbitrary cutoff choice leading to a sin- Both quark-antiquark and gluon-gluon interactions have
gular unitary transformation generator at small momenta, Ecthe same kerneB,, -, and differ only in prefactors. Follow-
(2.3. In summary, the collinear singularity is completely ab-ing arguments detailed in Sec. Il B, the leading gluon-gluon
sent for a smooth cutoff and only the rotationally invariantinteraction is also independent of cutoff function form and is
part of the effective interaction Eq3.29 remains in the given by
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s malization result, where the collinear singular part of the
—Catoa r), (3.37  remnant instantaneous interaction {/q*?) yields a loga-
rithmic potential which is not rotationally symmetric. These
which is, again, a Coulomb plus linear potential between twdlifferences stem from the coupling’s flow parameter depen-
color sources in the adjoint representation widh, dence. o
= ¢ .C,/2. The only difference between thﬂE Eq.(3.30, Further, due to complete elimination of the quark-gluon

and gg, Eq. (3.37), potentials is given by the ratio of the coupling, the flow equation for an effective quark-antiquark
fundarr;ental to ad,joint Casimir operators interaction can be integrated for all cutoffs including- 0.

In the similarity renormalization approach one removes cou-
Vq/Vgg=Ci/Ca=(N2—1)/2N2=4/9, ~ (3.38  plings perturbatively, reaching a minimum scétetoff), be-
low which perturbation theory breaks down. The value of
since both potentials have the same Coulomb plus confininthis cutoff depends on the problem considered, and might be
behavior. ambiguous. For QCD this cutoff introduces a scale in the
theory, which breaks gauge and rotational invarigi@&eln
IV. CONCLUDING DISCUSSION our approach, the regulator of small light-fronestablishes
) S ) a scale in the effective theory corresponding to the string
An effective QCD Hamiltonian in the light-front gauge tensjon in the effective quark-antiquark potential. Besides
has been obtained, solving the flow equations for the tWQne nonzero scale, the resulting renormalized gluon mass
lowest Fock sectors self-consistently. It has been shown thafgnishes asymptotically, maintaining gauge invariance. Also,
it is possible to eliminate the minimal quark-gluon interac-ye effective quark-antiquark interaction is rotationally sym-
tion by using a continuous unitary transformation. In this metric when the external particles are on the energy shell. A
elimination, the coupling functions of the Hamiltonian de- shortcoming in this work is that the small light-frontutoff
scribed by the flow equations are renormalized. In the tWascaleu enters as an input parameter, fitted to the string ten-
lowest Fock sectors this change of the couplings correspondgon from lattice calculations. This can be improved by re-
to the re_normalizatior_1 of t_he one-_particle energies and to thﬁiﬂng the cutoffu to the renormalization group invariant
generation of effective interactions between gluons andcaje Ao, which necessitates higher Fock sector interme-

quarks, in particular the quark-antiquark interaction. In ob-gjate states. This would also permit confirmation of our regu-
taining the flow differential equations, intermediate stategyization scheme independent results.

with more than three particles were omitted. Fock number oyr yitimate goal is to solve the coupled chain of flow
truncation in intermediate states is quite different from a peraquations in different sectors self-consistently. As shown in
turbation coupling constant treatment and more similar to thenis work, even an approximate solution of the gluon gap
Tamm-Dancoff approach. _ _ equation combined with the flow equation for the effective
Our ?pproa‘;h has several advantages. F_|rs_t, the ongmala interaction provides new information beyond standard
gauge field coupling can be completely eliminated, eVe’terturbation theory. The next step is to address the quark

Vgg=(I'*I,)

when the states connected by this interaction are degenera ee'ctor, formulating the quark gap equation and obtaining the

The continuous t_rans_formatlon IS des'gf‘ed su_ch that_ th'F’enormalized light-front quark mass and attending improved
transformed Hamiltonian does not contain any interactions

X I effective quark interaction.
between ondantiquark and the creation or annihilation of Finally, reflecting on the above discussions, we note that
one gluon. These unwanted interactions, connecting statt?ﬁ ' '

with energy differences less than a cutoff schie—E,| e light-front flow equations can now avail themselves of
gy FE% a self-consistent computer generated solutions. It would be

bge)::’as; girr?SIZ nt ;r:titg: Zgg'rlaigtg ;?g?}r;]arg%t:?nnaﬁfepéo?r%h uite interesting to confront hadronic data with large scale,
gep 9 ' t feasible applications of this approach.

can mix low and high Fock sectors, and are not amenable to | | summary, the light-front formulation appears quite vi-

a perturbative treatment. Furthe_r, ignoring these_ Iow-en_ergyible for examining the long range aspects of QCD. Imple-
interactions may break gauge invariance and, in the light-

front formulation. rotational svmmetry as well. Second anmenting the flow equations within this framework has gen-
rormutation, rotational symmetry wetl. '’ “ ‘erated new insight regarding nonperturbative phenomena

effective quark-antiquark interaction is rotationally symmet-, : -

. ; ncluding confinement.

ric when the external particles are on the energy shell. Al

small gluon momentay, also the collinear singular terms

~1/q* and ~1/q*? cancel. Most interestingly, in addition

to a Coulomb term 42, which can be obtained in second

order, there is also a more singular, confining teraf 10ur This work was supported by U.S. DOE grants DE-FG02-

inducedqq interaction also differs from the similarity renor- 97ER41048 and DE-FG02-96ER40947.
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