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We study the generalization &duality to noncommutative gauge theories. For rank-1 theories, we obtain
the leading terms of the dual theory by Legendre transforming the Lagrangian of the noncommutative theory
expressed in terms of a commutative gauge field. The dual description is weakly coupled when the original
theory is strongly coupled if we appropriately scale the noncommutativity parameter. However, the dual theory
appears to be noncommutative in space-time when the original theory is noncommutative in space. This
suggests that locality in time for noncommutative theories is an artifact of perturbation theory.

PACS numbds): 11.15.Tk

I. INTRODUCTION 9°=27Gq. (1.2

Noncommutative gauge theof¥] provides an interesting In the decoupling limit, the closed string coupling constant
class of examples in which to explore the effects of spatiapoes to zero, whil&g remains finite and dependent on te
nonlocality. While it is easy to define the classical noncom-field. In this caseS duality of the closed string theory does
mutative gauge theory, it is much harder to determinglot descend to a symmetry of the field theory.
whether the quantum theory exists. Since noncommutative For a U1) gauge theorysS duality can be demonstrated
gauge theories arise in particular string theory backgroundslirectly with a purely field theoretic argument. We start with
we know that these theories can be embedded consistently the Minkowski space actidn
string theory. The decoupling argument of Seiberg and Wit-
ten[2] suggest_s that some of these_ theories might exist as S=— J %FD*F, (1.3
guantum theories independent of string theory. 4

We are primarily interested in four-dimensional gauge _ i
theories. Our goal is to understand h&duality [3,4] gen- where F=dA is the fl_eld s.trength. We wa_nt to perform a
eralizes to noncommutative gauge theory. The generalization9endre transformation with respectftoTo implement the
is not a straightforward consequenceSduality in type-1IB  Bianchi identity
string theory. To see this, let us begin by briefly recalling
how S duality of N=4 Yang-Mills theory arises from string
theory. In the limita’—0, the theory on coincident D3- e introduce a dual gauge fieh, :
branes ilN=4 Yang-Mills theory. For simplicity, we set the
Ramond-Ramon¢RR) scalarC(®) to zero. The gauge theory
coupling constang? is then related to the closed string cou- S=- f
pling constangs=e?:

dF=0,

1 1
22O F+ 3 AodF . (1.9

We can now treaF as an independent variable and perform

92 the path integral oveF. This amounts to solving the field
77 =9s- (1.1)  equations forF, which gives the relation
a
dA ! F 1
= —%
The conjectured SL(2) symmetry of string theory then de- D™ g? (1.9

scends to an SL(2) symmetry of the field theory.

To obtain noncommutative Yang-Mills theory, we con- and the resulting dual action
sider a system of coincident D3-branes with Neveu- 2
Schwarz—Neveu-Schwa(kS-NS B field nonzero along the S=— J g_,: (% En (1.6
brane. In the decoupling limj&], the theory on the brane has 4P P

a coupling constant related to the open string coupling con- , o o ) ) i
stantG; rather than the closed string coupling: The aim of this discussion is to generalize this purely field

theoretic argument to the noncommutative rank-1 theory.
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Unlike ordinary Abelian gauge theory, the coupling constant
cannot be scaled away even for the rank-1 noncommutative
theory.

In the following section, we explicitly show that the non-
commutative action expressed in terms of a commutative
gauge field contains only powers Bfto order #2. In par-
ticular, the gauge field does not appear explicitly. It is not
hard to argue that this must be true to all orderg.iThis A
implies that we can obtain a dual description by Legendrélrhe expression foF explicitly containsA. However, we can
transforming with respect t6. The resulting dual theory is manipulate the actiori2.1) so that it takes the following
classical since we neglect loops. However, to ordewwve  form:
will see that no loops appear and the quantum and semiclas-
sical dual descriptions agree. To ord#; loops appear and
the bosonic theory needs to be regulated. At this point, the
computation should be performed in the fME4 theory.

Fortunately, our primary observations are already visiblera terms of ordes take the form
at orderd. We find that, under the duality transformation,

1
T2(A)=F6FguF+ EAkak'(a,Am+ Fim) 6™, F

1
+ A, (FOF)+ > 64 9™ AL AL IF

(2.9

1
5= 32 | [FOFHLPI+Lp(FI 4] 29

1
Lo(F)=2 tr(9F3)— Etr( OF )tr(F?), (2.6)

6— 6=g3(* ). 1.7
That this transformation does not square to 1 is not so suwhere we define tAB)=Aij_B“- Since our theory is rank 1,
prising since §)? is not the identity operation, but charge there should be no confusion with traces over group indices.

conjugation. We will also find thaP must be held fixed if It 1S not too hard to find an expression fayz(F) which
the dual theory is to have a perturbative expansion g 1/ 1@Kes the form
Even more interesting is the observation thavifs purely

spatial, thend involves a space direction and a time direc-
tion. The theory becomes noncommutative in space-time. Al- 1 1
though we will not obtain the complete quantum dual de- — gl OF )*tr(F?) + Z r(oF OF )tr(F2).
scription, it seems clear that this feature, visible at leading

orc_jer Ing, persists to higher orde_rs. Space-time NONCOMMUR ije we have explicitly demonstrated that it is possible to
tative theories are highly unusual; & for a recent discus-

. ; . express Eq(2.1) in terms of F to order 62, it must be the
sion. Our result suggests that we cannot avoid studying thescease to all orders . The onlv gaude-invariant operator that
theories if we are to understand theories which perturbatively ’ y gaug P

have only spatial noncommutativity. can _bg construct_ed from is F. Whilt_a F can depend o\
explicitly, the action must be gauge invariant under the com-
mutative gauge invariance. This requires that the action be
expressible in terms df alone.

L y2(F)=—2 tr(9F OF %)+ tr( OF 20F %) + tr( OF ) tr( 9F )

(2.7)

II. DUALITY TRANSFORMATION

A. Rewriting the noncommutative Lagrangian
B. Duality at O(0)

Since the action can be expressed in term§,ofve can
implement a duality transformation in essentially the way
described in the Introduction. To perform the Legendre
transform, we shift the action as before:

The noncommutative theory is defined by the action

1 (. .
s=—@f FOF. (2.0

The change of variables given j@] allows us to expresb 1
in terms of a commutative gauge fiedd We assume thatis S-S+ J EADDd F. 2.9
purely spatial. The relation takes the form
The equation of motion foF gives
F=F+TyA)+Tgp(A)+:. (2.2)
16L,
, g% Fp=*F+ - —(F)+0(6?). (2.9
The terms of ordep are given by 2 oF
T,(A)= —F 6F — A6Ma/F. 2.3 To lowest order ing, we can solve foF in terms ofFp:
S )
We follow the notation of6] whereF §F = F; 6“'F ;. The *F=9"Fp—5 ¢ +0(69). (2.10
expression fofT 22(A) is found in[6]: F=—*g%Fp
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At order 6, loops play no role in the duality transformation, F=—g%Fp+0(0) (2.15
so the quantum and semiclassical dual descriptions are
equivalent. Plugging E¢(2.10 into the action(2.5) gives into Eq.(2.5) results in an infinite number of terms involving
g 1 . higher powers o). While terms beyond(8) will receive
S=-— T (FDD* Fp+2 tr(aF )— Etr( 0FD)tr(F2D) additional corrections from thé(6) corrections to Eq.
(2.15, it seems quite clear—barring miraculous

+0(8?). 2.1 Eancellations—that there is no upper bound on the power of
6 that appears in the dual action. This suggests that it will be

Note that we usé=g?(* 6) as the new noncommutativity difficult to quantize the theory nonperturbatively in any con-

parameter. The factor a§? in @ is natural because of the ventional | way. We also note that the dual action to leading

fo||0W|ng Sca“ng argument we can schemaﬂca”y expan@rder in 6 eXpressed in dual noncommutative Varlables
g2 takes the form

2
F2-F2 1+2I a”“(a)z'l:“), (2.12 S=—ng FoOFp+0(6?). (2.16

on strictly d|menS|onaI_ grounds. .Th|s implies that, itera- ¢ g natural, we definép with respect to a star product
tively, we can expresBE in schematic form: . L~ o . . .
involving 6. However, it is quite possible that the corrections

to Eq.(2.16 of O(#?) are nonvanishing. It is not clear that
+1 2l ~2
1+% 0" ()" (g *FD)n)' (2.13 the resulting dual action would then have a purely quadratic

form.

F~—g*Fp

In terms of @, we see that
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