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Duality and noncommutative gauge theory
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We study the generalization ofS duality to noncommutative gauge theories. For rank-1 theories, we obtain
the leading terms of the dual theory by Legendre transforming the Lagrangian of the noncommutative theory
expressed in terms of a commutative gauge field. The dual description is weakly coupled when the original
theory is strongly coupled if we appropriately scale the noncommutativity parameter. However, the dual theory
appears to be noncommutative in space-time when the original theory is noncommutative in space. This
suggests that locality in time for noncommutative theories is an artifact of perturbation theory.

PACS number~s!: 11.15.Tk
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I. INTRODUCTION

Noncommutative gauge theory@1# provides an interesting
class of examples in which to explore the effects of spa
nonlocality. While it is easy to define the classical nonco
mutative gauge theory, it is much harder to determ
whether the quantum theory exists. Since noncommuta
gauge theories arise in particular string theory backgroun
we know that these theories can be embedded consisten
string theory. The decoupling argument of Seiberg and W
ten @2# suggests that some of these theories might exis
quantum theories independent of string theory.

We are primarily interested in four-dimensional gau
theories. Our goal is to understand howS duality @3,4# gen-
eralizes to noncommutative gauge theory. The generaliza
is not a straightforward consequence ofSduality in type-IIB
string theory. To see this, let us begin by briefly recalli
how S duality of N54 Yang-Mills theory arises from string
theory. In the limit a8→0, the theory on coincident D3
branes isN54 Yang-Mills theory. For simplicity, we set th
Ramond-Ramond~RR! scalarC(0) to zero. The gauge theor
coupling constantg2 is then related to the closed string co
pling constantgs5ef:

g2

4p
5gs . ~1.1!

The conjectured SL(2,Z) symmetry of string theory then de
scends to an SL(2,Z) symmetry of the field theory.

To obtain noncommutative Yang-Mills theory, we co
sider a system of coincident D3-branes with Neve
Schwarz–Neveu-Schwarz~NS-NS! B field nonzero along the
brane. In the decoupling limit@2#, the theory on the brane ha
a coupling constant related to the open string coupling c
stantGs rather than the closed string coupling:
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g252pGs . ~1.2!

In the decoupling limit, the closed string coupling consta
goes to zero, whileGs remains finite and dependent on theB
field. In this case,S duality of the closed string theory doe
not descend to a symmetry of the field theory.

For a U~1! gauge theory,S duality can be demonstrate
directly with a purely field theoretic argument. We start wi
the Minkowski space action1

S52E 1

4g2 F∧* F, ~1.3!

where F5dA is the field strength. We want to perform
Legendre transformation with respect toF. To implement the
Bianchi identity

dF50,

we introduce a dual gauge fieldAD :

S52E S 1

4g2 F∧* F1
1

2
AD∧dFD . ~1.4!

We can now treatF as an independent variable and perfo
the path integral overF. This amounts to solving the field
equations forF, which gives the relation

dAD5
1

g2* F ~1.5!

and the resulting dual action

S52E g2

4
FD∧* FD . ~1.6!

The aim of this discussion is to generalize this purely fie
theoretic argument to the noncommutative rank-1 theo

1We use* to denote the Hodge dual of a form rather than the s
product.
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Unlike ordinary Abelian gauge theory, the coupling const
cannot be scaled away even for the rank-1 noncommuta
theory.

In the following section, we explicitly show that the non
commutative action expressed in terms of a commuta
gauge field contains only powers ofF to orderu2. In par-
ticular, the gauge field does not appear explicitly. It is n
hard to argue that this must be true to all orders inu. This
implies that we can obtain a dual description by Legen
transforming with respect toF. The resulting dual theory is
classical since we neglect loops. However, to orderu, we
will see that no loops appear and the quantum and semic
sical dual descriptions agree. To orderu2, loops appear and
the bosonic theory needs to be regulated. At this point,
computation should be performed in the fullN54 theory.

Fortunately, our primary observations are already visi
at orderu. We find that, under the duality transformation,

u→ ũ5g2~* u!. ~1.7!

That this transformation does not square to 1 is not so
prising since (S)2 is not the identity operation, but charg
conjugation. We will also find thatũ must be held fixed if
the dual theory is to have a perturbative expansion in 1g.
Even more interesting is the observation that ifu is purely
spatial, thenũ involves a space direction and a time dire
tion. The theory becomes noncommutative in space-time.
though we will not obtain the complete quantum dual d
scription, it seems clear that this feature, visible at lead
order inu, persists to higher orders. Space-time noncomm
tative theories are highly unusual; see@5# for a recent discus-
sion. Our result suggests that we cannot avoid studying th
theories if we are to understand theories which perturbativ
have only spatial noncommutativity.

II. DUALITY TRANSFORMATION

A. Rewriting the noncommutative Lagrangian

The noncommutative theory is defined by the action

S52
1

4g2 E F̂∧* F̂. ~2.1!

The change of variables given in@2# allows us to expressF̂
in terms of a commutative gauge fieldA. We assume thatu is
purely spatial. The relation takes the form

F̂5F1Tu~A!1Tu2~A!1¯ . ~2.2!

The terms of orderu are given by

Tu~A!52FuF2Aku
kl] lF. ~2.3!

We follow the notation of@6# whereFuF5FikuklFl j . The
expression forTu2(A) is found in @6#:
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Tu2~A!5FuFgvF1
1

2
Aku

kl~] lAm1Flm!umn]nF

1uklAk] l~FuF !1
1

2
uklumnAkAm] l]nF.

~2.4!

The expression forF̂ explicitly containsA. However, we can
manipulate the action~2.1! so that it takes the following
form:

S52
1

4g2 E @F∧* F1Lu~F !1Lu2~F !1¯#. ~2.5!

The terms of orderu take the form

Lu~F !52 tr~uF3!2
1

2
tr~uF !tr~F2!, ~2.6!

where we define tr(AB)5Ai j B
ji . Since our theory is rank 1

there should be no confusion with traces over group indic
It is not too hard to find an expression forLu2(F) which
takes the form

Lu2~F !522 tr~uFuF3!1tr~uF2uF2!1tr~uF !tr~uF3!

2
1

8
tr~uF !2tr~F2!1

1

4
tr~uFuF !tr~F2!. ~2.7!

While we have explicitly demonstrated that it is possible
express Eq.~2.1! in terms ofF to orderu2, it must be the
case to all orders inu. The only gauge-invariant operator th
can be constructed fromA is F. While F̂ can depend onA
explicitly, the action must be gauge invariant under the co
mutative gauge invariance. This requires that the action
expressible in terms ofF alone.

B. Duality at O„u…

Since the action can be expressed in terms ofF, we can
implement a duality transformation in essentially the w
described in the Introduction. To perform the Legend
transform, we shift the action as before:

S→S1E 1

2
AD∧dF. ~2.8!

The equation of motion forF gives

g2FD5* F1
1

2

dLu

dF
~F !1O~u2!. ~2.9!

To lowest order inu, we can solve forF in terms ofFD :

* F5g2FD2
1

2

dLu

dF U
F52* g2FD

1O~u2!. ~2.10!
8-2
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At order u, loops play no role in the duality transformatio
so the quantum and semiclassical dual descriptions
equivalent. Plugging Eq.~2.10! into the action~2.5! gives

S52
g2

4 E S FD∧* FD12 tr~ ũFD
3 !2

1

2
tr~ ũFD!tr~FD

2 ! D
1O~ ũ2!. ~2.11!

Note that we useũ5g2(* u) as the new noncommutativit
parameter. The factor ofg2 in ũ is natural because of th
following scaling argument: we can schematically expa
F̂2,

F̂2;F2S 11(
n,l

un1 l~]!2lFnD , ~2.12!

on strictly dimensional grounds. This implies that, iter
tively, we can expressF in schematic form:

F;2g2* FDS 11(
n,l

un11~]!2l~g2* FD!nD . ~2.13!

In terms ofũ, we see that

F;2g2* FDS 11(
n,l

ũn1 l~]!2l S 1

g2D l

~* FD!nD .

~2.14!

The action now takes the form of a derivative expansion w
higher derivatives ofFD suppressed by powers ofg21.

There are a number of observations at this point. Sub
tuting even the lowest order expression
rg
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F52g2* FD1O~u! ~2.15!

into Eq.~2.5! results in an infinite number of terms involvin
higher powers ofũ. While terms beyondO( ũ) will receive
additional corrections from theO(u) corrections to Eq.
~2.15!, it seems quite clear—barring miraculou
cancellations—that there is no upper bound on the powe
ũ that appears in the dual action. This suggests that it will
difficult to quantize the theory nonperturbatively in any co
ventional way. We also note that the dual action to lead
order in ũ, expressed in dual noncommutative variabl
takes the form

S52
g2

4 E F̂D∧F̂D1O~ ũ2!. ~2.16!

As is natural, we defineF̂D with respect to a star produc
involving ũ. However, it is quite possible that the correctio
to Eq. ~2.16! of O( ũ2) are nonvanishing. It is not clear tha
the resulting dual action would then have a purely quadr
form.
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