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Mass zeros in the one-loop effective actions of QED in 1¿1 and 3¿1 dimensions

M. P. Fry*
School of Mathematics, University of Dublin, Dublin 2, Ireland

~Received 4 August 2000; published 20 November 2000!

It is known that the one-loop effective action of QED2 is a quadratic in the field strength when the fermion
mass is zero: all potential higher order contributions beyond second order vanish. For a nonzero fermion mass
it is shown that this behavior persists for a general class of fields for at least one value of the fermion mass
when the external field’s fluxF satisfies 0,ueFu,2p. For QED4 with ~anti-!self-dual fields the mass-shell
renormalized one-loop effective action vanishes for at least one value of the fermion mass provided a plausible
zero-mass limit exists.

PACS number~s!: 12.20.Ds, 11.10.Kk, 11.15.Tk
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I. INTRODUCTION

In all gauge field theories coupled to fermions the ferm
onic determinant is fundamental. These determinants,
noted by det, produce an effective functional measure for
gauge fields when the fermionic fields are integrated. T
continuing lack of nonperturbative information on these d
terminants is reflected in the necessity to make loop exp
sions or the more extreme quenched approximation in wh
the determinant is ignored. Nonperturbative approaches s
as Monte Carlo evaluations with a discrete lattice regula
result in algorithms that currently dominate this area. M
analytic nonperturbative results obtained so far deal with
dependence of the determinants on the coupling cons
Little attention has been given to their dependence on
fermion mass. Here we will confine our attention to quant
electrodynamics in two and four dimensions in the belief t
any progress made might suggest how to proceed in o
cases. Furthermore, nonperturbative QED is of interest in
own right.

It might be objected that two-dimensional QED (QED2
is of no physical interest, certainly not the mass depende
of its fermionic determinant. This is not true. First, when t
Wick rotation to Euclidean space is made, detQED2

is calcu-
lated from the eigenfunctions of the two-dimensional Pa
operator (P2A)22s3B in a magnetic fieldB normal to a
plane. In what follows the coupling constante is assumed to
be absorbed by the potentialAm . Then detQED2

fully deter-

mines detQED3
@1# and detQED4

@2# for the same magnetic
field, namely

]

]m2
ln detQED4

52
L2

2p
ln detQED2

2
L2iBi2

24p2m2
, ~1.1!

ln detQED3
5

L

2pEm2

` dM2

AM22m2
ln detQED2

~M2!,

~1.2!
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where L is the edge length of a space-time box andiBi2

5*d2x B2(x). Equation ~1.1! assumes mass-shell chan
renormalization while Eq.~1.2! assumes a 232 representa-
tion of the Dirac g-matrices. By continuing back to
Minkowski space these equations give the effective act
iS5 ln det for a two-variable static magnetic field in 211 and
311 dimensions.

Secondly, suppose detQED2
is calculated for the single

variable magnetic fieldB5B0f (x/l). The duality transfor-
mation B→e2 ip/2E, whereE5E0f (t/t) and t5 il, gives
the pair nonproduction probabilitye22ImS with ImS311 and
ImS211 obtained from Eqs.~1.1! and ~1.2!. Duality in this
restricted sense has been demonstrated recently by D
and Hall @3,4#. Conditions for the validity of the more gen
eral duality transformationB(x,y)→e2 ip/2E(x,t) are un-
known.

There are no exact calculations ofS in any dimension for
two-variable fieldsB(x,y) or E(x,t), or even finite-flux
magnetic fields, except for the two-dimensional case o
magnetic field confined to the wall of a cylinder@5#. Actions
for slowly varying fields can be calculated in a derivati
expansion@6–10#. For more general fields semiclassical e
timates ofSare effective provided the analysis can be carr
through@3,11#. So far this has limited the background field
a dependence on a single space or time variable, effecti
special cases of QED2.

The Euclidean QED2 determinant can be expressed
@2,12–14#

ln detQED2
52

1

2pE d2k

~2p!2
uB̂~k!u2E

0

1

dz
z~12z!

k2z~12z!1m2

1 ln det3 , ~1.3!

whereB̂ is the Fourier transform of B and ln det3 may for the
present be viewed as the sum of all one-loop fermion grap
beginning in fourth order. It is gauge invariant, dependi
only onB. It is known that ln det3(m250)50. This was first
shown by Schwinger@15#. Seiler @12# later gave a compac
proof of Schwinger’s result and stated the precise condit
for it to be true, namelyAmPLn(IR2), n.2. Furthermore,

lim
m250

ln det3~m2!50, ~1.4!
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provided the magnetic field’s fluxF50. This result requires
several nontrivial estimates from analysis and will be pu
lished elsewhere. But it is plausible: ifB̂(0)50 or equiva-
lently, F50, then the infrared properties of ln det3 are im-
proved, allowing continuity atm250. In Sec. II we will
show that for potentialsAmPLn(IR2), n.2 and finite-range
magnetic fields with BPLn(IR2), n52,4 and
*d2x B2(]mB)2,` there is at least one value ofm2.0 for
which ln det350, provided 0,uFu,2p. Therefore, our re-
sult is this: when 0,uFu,2p the zero inm2 of ln det3
moves up fromm250 whenF50 to some finite value~s!
m2.0. For uFu>2p our analysis is unable to say anythin
about the zeros inm2 of ln det3. Apparently their presence o
absence is tied in with the formation of square-integra
zero modes of the two-dimensional Pauli operator wh
uFu.2p @16#.

The presence of zeros inm2 in ln det3 together with the
result@17# that ln det3 is bounded above and below by term
quadratic inB suggest that ln det3 is small in the sense that
is comparable to the second-order term in Eq.~1.3!. These
bounds are obtained from Eq.~9! in @17# and the definition
~1.3! above. The lower bound on ln det3 from @17# has been
established for fieldsB>0 or <0 over all space, a techni
cality that a better estimate might overcome.

In Sec. III we establish the conditions for the largem2

expansion of ln det3 to be an asymptotic series, a result r
quired in Sec. II and useful in Sec. IV.

For Euclidean QED4 we will present evidence in Sec. IV
that ln detQED4

vanishes for at least one value ofm2 for non-

constant self-dual~anti-self-dual! finite-range fieldsB52E
(B5E) provided AmPLn(IR4), n.4 and the integrals o
(]mB)2, (]m]nB)2, B4 and B6 over R4 are finite. We are
restricted to such fields in the absence of a theorem in
dimensions, analogous to the Aharonov-Casher theorem
two dimensions@16#, that counts the total number of zer
modes for general fields. Our result is tentative as it requ
the proof of the limit in Eq.~4.8! below. We believe Eq.
~4.8! can be proved, thereby validating new nonperturbat
information on QED4.

II. TWO-DIMENSIONAL QED

The fermionic determinant in Euclidean QED is defin
here by Schwinger’s@18# heat kernel representation

ln det5
1

2E0

`dt

t H TrXe2P2t2expF2S D21
1

2
sF D t GC

1
iFi2

24p2J e2tm2
. ~2.1!

Here D25(P2A)2, smn5@gm,gn#/2i , gm †52gm, and
iFi25*d4xFmn

2 . The last term in Eq.~2.1! is the second-
order mass-shell charge renormalization subtraction requ
for the smallt limit of the integral to converge. In two an
three dimensions this term should be omitted. If2 ln det is
combined with the Maxwell action to form an effective me
sure for Am then Am has to be concentrated onS8, the
12500
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Schwartz space of tempered distributions. Such poten
have to be temporarily smoothed until after the integrat
over Am if sense is to be made of the right-hand side of E
~2.1!. This procedure has been discussed elsewhere@1,5#.
Here we will simply assume thatAm andFmn are sufficiently
smooth and fall off rapidly enough for our analysis to g
through. More specific statements will be made below.

Specializing to QED2 and expanding the right-hand sid
of Eq. ~2.1! to second order gives the standard perturbat
result in the first term in Eq.~1.3!. The remainder, ln det3, is
given by Eq.~3.2! below. In coordinate space~1.3! is

ln detQED2
5E d2x d2y B~x! P~x2y!B~y!1 ln det3 ,

~2.2!

where

P~x!52
1

2pE d2k

~2p!2
eikxE

0

1

dz
z~12z!

k2z~12z!1m2

52
1

4p2E0

1

dz K0S umxu

Az~12z!
D . ~2.3!

Assuming thatB has finite range, them2→0 limit can be
interchanged with thex andy integrals in Eq.~2.2!, giving

E d2x d2y B~x! P~x2y!B~y! 5
m2→0

F2

8p2
ln m21O~1!.

~2.4!

We have shown that ifB is square integrable and has fini
range then@19#

ln detQED2
5

m2→0

uFu
4p

ln m21R~m2!, ~2.5!

where lim
m250

@R(m2)/ln m2#50. That ln detQED2
is negative

is a reflection of the paramagnetic property of charged
mions whereby the eigenvalues of the Pauli operator are
average lower relative to those of the free HamiltonianP2 in
the definition ~2.1! @20–22#. The mass singularity in
ln detQED2

at m250 is due to the formation of square
integrable zero modes and zero-energy unbound resona
in the continuum part of the Pauli operator’s spectrum. T
difference between Eqs.~2.4! and~2.5! makes the nonpertur
bative nature of the result~2.5! evident. Equations~2.2!,
~2.4! and ~2.5! give

ln det3 5
m2→0

uFu
4p S 12

uFu
2p D ln m21R~m2!, ~2.6!

from which one infers that ln det3,0 if 0,uFu,2p andm2

is sufficiently small.
The second piece of nonperturbative information requi

is
7-2
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ln det3 5
m2→`

1

90pm6E d2x B41R~m2!, ~2.7!

where

lim
m2→`

m6R~m2!50. ~2.8!

This will be shown in Sec. III. It shows that for sufficientl
large m2 ln det3 becomes positive before approaching ze
This establishes our claim that ln det3 has at least one zer
for m2.0 when 0,uFu,2p.

III. LARGE MASS BEHAVIOR OF det 3

Here we will demonstrate Eqs.~2.7! and~2.8!. Integration
over the fermions produces the formal result det(P” 2A”
1m)/det(P” 1m). Another formal operation reduces this
det(12SA” ), whereS5(P” 1m)21. Because neitherSA” nor
(SA” )2 are trace class while (SA” )3 is in QED2 ~see below! the
identity ln det(11A)5Tr ln(11A) for trace class operator
has to be modified to

ln det3~12SA” !5Tr F ln~12SA” !1SA” 1
1

2
~SA” !2G .

~3.1!

The right-hand side of Eq.~3.1! is the standard definition o
a regularized determinant@13,23–26#. Since Tr (SA” )350 by
Furry’s theorem, the first nonvanishing term in Eq.~3.1! be-
gins in fourth order. This leaves the second-order term
ln detQED2

to be defined by expanding definition~2.1! to sec-
ond order, giving~1.3!. Subtracting the second-order ter
from the heat kernel representation~2.1! of ln detQED2

gives a

definition of ln det3 equivalent to Eq.~3.1! @13#:

ln det35
1

2E0

`dt

t H TrXe2P2t2expF2S D21
1

2
sF D t GC

1
t

2pE0

1

dz z~12z!

3E d2k

~2p!4
uF̂mn~k!u2 e2k2z(12z)tJ e2tm2

. ~3.2!

It was stated above that (SA” )3 is trace class in two dimen
sions. This follows from the result@26,27# that the operator
S(P)A” (X) is a bounded operator onL2(R2) in the trace ideal
Cn , n.2 and

iS~P!A” ~X!in<iSiLniA” iLn. ~3.3!

Here Cn5$A uiAin
n5Tr (A†A)n/2 ,`%. By inspectioniSiLn

,` for n.2. We hereafter assume thatAmPLn(R2), n
.2, which is compatible with the 1/r fall off of Am in the
gauge]mAm50 whenFÞ0. SinceSA” PC21e it belongs to
all Cn with n.2, thus establishing our statement that (SA” )3

is trace class in two dimensions.
12500
.

n

In the coordinate space representation ofS(P)A” (X) the
propagator is given by

S~x!5
1

2p
~Am21 i ]” !K0~Am2x2!. ~3.4!

HenceS is an analytic function ofm2 throughout the com-
plex m2-plane cut along the negative real axis. Then t
following theorem of Gohberg and Kreıˇn @28# applies: Let
A(m)PC1 and be analytic inm in some region. Then the
determinant det„12A(m)… is analytic inm in the same re-
gion. In our caseSA” PC21e , requiring the two subtractions
in Eq. ~3.1!. These subtractions can be easily incorpora
into Gohberg and Kreıˇn’s proof forSA” PC1, provided use is
made of the inequality@23,25#

udetn~11A!u<eGniAin
n
, ~3.5!

if APCn and Gn is a constant. Therefore, det3(12SA” ) is
infinitely differentiable inm2 on the open interval (0,̀). In
addition, det3 has no zeros form2.0 and for real coupling.
This was proved in Sec. III C of@1# for the case of det4 in
three dimensions; the case of det3 in two dimensions follows
immediately from this proof. The regulated determina
ln detn , is analogous to~3.1! with n21 subtractions. Hence
ln det3 is also infinitely differentiable inm2 on (0,̀ ).

Next, we require a theorem of Ford@29#: Let f (x) be an
infinitely differentiable function ofx on (a,`) and let
f(x)5 f (1/x). If the limits f(10),f8(10), . . . exist then
for x on (a,`),

f ~x!;a01a1 /x1•••, ~3.6!

with ak5f (k)(10)/k!, k50,1, . . . . The series ~3.6! is
asymptotic in the sense that

lim
x→`

xn@ f ~x!2~a01a1 /x1•••1an /xn!#50 ~3.7!

for n50,1, . . . .
Now consider the asymptotic expansion of ln det3 for

large m2. Referring to Eq.~3.2!, this can be obtained from
the high-temperature expansion

Tr~e2[D21 1/2 sF] t2e2P2t!

5
1

4ptE d2xF 2

3
t2B21

2

15
t3B ]2B

1t4S 1

70
B ]4B2

2

45
B4D

1 t5 S 4

63
B2 ]mB ]mB1

1

945
B ]6BD1••• G . ~3.8!

The terms ofO(B2) are an easy consequence of seco
order perturbative theory; the term22t4B4/45 is an imme-
diate consequence of the Euler-Heisenberg result specia
to two dimensions@18,30#, and the term 4t5B2 ]mB ]mB/63
follows from the results in@7,10#, again specialized to two
7-3
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M. P. FRY PHYSICAL REVIEW D 62 125007
dimensions. As previously noted, the second-order term
~3.8!, when substituted into Eq.~3.2!, will be canceled by the
counterterm, giving

ln det35
1

90pm6E d2x B42
1

21pm8

3E d2x B2 ]mB ]mB1•••. ~3.9!

Note that as the expansion continues there are integrals
increasing derivatives and powers ofB. The finiteness of the
coefficients of increasing powers of 1/m2 requires additional
conditions onB. Since the remainder after summingn terms
in an asymptotic series is of the order of the first neglec
term @29# we must impose the additional condition
*d2x B4,` and *dx B2 ]mB ]mB,` if the series in Eq.
~3.9! is terminated at the first term. We have now satisfi
the conditions of Ford’s theorem, thereby establishing E
~2.7! and ~2.8!.

IV. FOUR DIMENSIONAL QED

In a representation in whichg5 takes the diagonal form
g55(0

1
21
0 ) the operator2D” 2 is

D21
1

2
sF5S H1 0

0 H2
D , ~4.1!

where

H65~P2A!22s•~B6E!. ~4.2!

Integration of the divergence of the axial current yields
global anomaly forD” in the form

1

4p2E d4x E•B~x!5m2Tr @~H11m2!212~H21m2!21#,

~4.3!

with * Fmn5 1
2 emnabFab , e012351, Fk05Ek, and Fi j

5e i jkBk. Them250 limit of Eq. ~4.3! gives a generalization
of the Atiyah-Singer index theorem@31# to noncompact
manifolds@32#,

1

4p2E d4x E•B~x!5n12n21
1

p (
l

m~ l !

3@d1
l ~0!2d2

l ~0!#, ~4.4!

wheren6 are the number of square-integrable zero mode
H6 ; d6

l (0) are the scattering phase shifts forH6 as the
energy tends to zero;l is a degeneracy parameter, andm( l ) is
a weight factor. By inspection of Eq.~4.2!, self-dual~anti-
self-dual! fields B52E (B5E) will have only negative
~positive! chirality square-integrable zero modes. Suppo
we chooseB5E.

Differentiating the definition~2.1! of ln detQED4
in the rep-

resentation~4.1! and ~4.2! gives
12500
in

ver

d

d
s.

e

of

e

m2
]

]m2
ln detQED4

5
1

2
m2 Tr @~H11m2!212~H21m2!21#

12m2 Tr @~D21m2!212~P21m2!21#

2
1

48p2
iFi2, ~4.5!

where the second trace in Eq.~4.5! is defined as

Tr @~D21m2!212~P21m2!21#

[E
0

`

dt e2tm2
Tr ~e2D2t2e2P2t!, ~4.6!

consistent with definition~2.1!; it is over space indices only
From Eq.~4.3! and the assumptionB5E, Eq. ~4.5! reduces
to

m2
]

]m2
ln detQED4

5
1

24p2
iBi212m2

3Tr @~D21m2!212~P21m2!21#.

~4.7!

If

lim
m2→0

m2 Tr @~D21m2!212~P21m2!21#50, ~4.8!

then form2→0

ln detQED4
5

1

24p2
iBi2 ln m21R~m2!, ~4.9!

where limm2→0@R(m2)/ln m2#50.
Is Eq. ~4.8! true? In two dimensions withF.0 the

square-integrable zero modes ofH65(P2A)27B are con-
fined to the positive chirality sector@16#. We then demon-
strated@19# that H2 has the property

lim
m2→0

m2E
0

`

dt e2tm2
Tr ~e2(D21B)t2e2P2t!50.

~4.10!

Even if F is positive,B can fluctuate in sign. We found tha
the integral in Eq.~4.10! only developed lnm2 type singu-
larities asm2→0. In four dimensions we chooseB5E to be
certain that the zero modes are in the positive chirality s
tor. Then the dangerous fluctuatingB-term is absent in the
negative chirality sector. This and the tendency for infrar
divergences to be less severe in higher dimensions lead
conjecture that Eq.~4.8! is true. In the case of self-dua
fields, H1 and H2 are interchanged in the above analys
Thus, in both cases Eq.~4.9! is true if Eq.~4.8! is true. Then
Eq. ~4.9! indicates that ln detQED4

becomes negative asm2

→0, which is a reflection of paramagnetism@22#.
7-4
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Now consider the large mass behavior of ln detQED4
. In

this caseSA” PCd , d.4 providedAmPLn(IR4), n.4 so that
@12–14#

ln detQED4
5

1

8p2E d4k

~2p!4
uF̂mn~k!u2

3E
0

1

dz z~12z!lnS z~12z!k21m2

m2 D
1E PmnlsAmAnAlAs1 ln det5~12SA” !.

~4.11!

The first two terms in Eq.~4.11! are obtained from the defi
nition ~2.1! by expanding it through fourth order. The fourth
order term in Eq.~4.11! has been dealt with explicitly by
Karplus and Neuman@33#. Inspection of their result contin
ued to Euclidean space shows that it is analytic in the co
plex m2-plane cut along the negative real axis. By Ford
theorem@29# it has an asymptotic expansion in 1/m2, whose
leading term is@33#

E PmnlsAmAnAlAs5
1

2880m4E d4x@14FmnFnaFabFbm

25~FmnFmn!2#1•••. ~4.12!

The remainder term, ln det5, in Eq. ~4.11! is like ln det3 in
Eq. ~3.1! except that it has four subtractions:

ln det5~12SA” !5Tr F ln~12SA” !1 (
n51

4

~SA” !n/nG .

~4.13!

In the coordinate space representation ofSA” the propagator
is

S~x!5
m2

4p2
~Am21]” !@K1~Am2x2!/Am2x2#, ~4.14!

which is analytic inm2 throughout the complexm2-plane cut
along the negative real axis. Therefore, the same analys
in Sec. III establishes that det5 is infinitely differentiable in
m2 on the interval (0,̀ ) provided use is made of Eq.~3.5!
for n55 to extend Gohberg and Kreıˇn’s theorem to det5.
Moreover, det5 has no zeros form2.0 for real coupling.
12500
-

as

Again, the proof of this follows immediately from the proo
in Sec. III C of Ref.@1# that det4 has no zeros in QED3 for
m2.0 and real coupling. Hence, ln det5 is also infinitely
differentiable inm2 on (0,̀ ) and will have an asymptotic
expansion in 1/m2 for a restricted class of fields. By Furry’
theorem and power counting we know that the first term
its expansion for ~anti-! self-dual fields will be
O(*d4x B6/m8).

This leaves the first term in Eq.~4.11!. By inspection we
now have, for largem2 and ~anti-! self-dual fields,

ln detQED4
5

1

60p2m2E d4x ~]mB!21R21R41R5 .

~4.15!

HereR2 is the remainder from the second-order term wh
is of order*d4x (]m]nB)2/m4; R4 is the remainder from the
fourth-order term and is of order*d4x B4/m4, andR5, the
remainder from ln det5, is of order*d4x B6/m8. Therefore,
providedAmPLn(IR4), n.4, and the integrals of (]mB)2,
(]m]nB)2, B4 andB6 are finite, ln detQED4

becomes positive

before dropping off to zero. This establishes that ln detQED4

has at least one zero form2.0, providedB ~and henceE)
satisfy the above conditions and Eq.~4.8! is valid.

The existence and location of a mass zero in ln detQED4
is

renormalization dependent. The connection between dif
ent renormalizations is simple: if instead of subtracting
k250 subtraction is made atk25l2, Eq. ~2.1! or Eq. ~4.11!
give

ln detQED4
~m2,l2!5 ln detQED4

~m2,0!1
iFi2

8p2E0

1

dz z

3~12z!lnS m2

z~12z!l21m2D .

~4.16!

This trivial shift in the value of ln detQED4
shows that a mass

zero of the experimentally relevant determina
ln detQED4

(m2,0) causes ln detQED4
(m2,l2) to reduce to a

simple quadratic in the field strength.
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