PHYSICAL REVIEW D, VOLUME 62, 125007

Mass zeros in the one-loop effective actions of QED inH1 and 3+1 dimensions
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It is known that the one-loop effective action of QEB a quadratic in the field strength when the fermion
mass is zero: all potential higher order contributions beyond second order vanish. For a nonzero fermion mass
it is shown that this behavior persists for a general class of fields for at least one value of the fermion mass
when the external field’s flu® satisfies 6<|e®|<2s. For QED, with (anti-)self-dual fields the mass-shell
renormalized one-loop effective action vanishes for at least one value of the fermion mass provided a plausible

zero-mass limit exists.

PACS numbses): 12.20.Ds, 11.10.Kk, 11.15.Tk

I. INTRODUCTION

where L is the edge length of a space-time box gii]?
= [d?x B?(x). Equation (1.1 assumes mass-shell change

In all gauge field theories coupled to fermions the fermi-renormalization while Eq(1.2) assumes a 22 representa-
onic determinant is fundamental. These determinants, ddgion of the Dirac y-matrices. By continuing back to
noted by det, produce an effective functional measure for thtlinkowski space these equations give the effective action
gauge fields when the fermionic fields are integrated. ThéS=Indet for a two-variable static magnetic field if-2 and
continuing lack of nonperturbative information on these de-3+1 dimensions.
terminants is reflected in the necessity to make loop expan- Secondly, suppose quz is calculated for the single-
sions or the more extreme quenched approximation in whickariable magnetic fiel®=B,f(x/\). The duality transfor-
the determinant is ignored. Nonperturbative approaches suGfjation B— e '™2E, where E=E,f(t/7) and =i\, gives
as Monte Carlo evaluations with a discrete lattice regulatogne pair nonproduction probability~ 2™ with ImS®* T and
result in algorithms that currently dominate this area. Most,s2+1 gptained from Eqgs(1.1) and (1.2). Duality in this

analytic nonperturbative results obtained so far deal with theastricted sense has been demonstrated recently by Dunne

dependence of the determinants on the coupling constant,q Ha|I[3,4]. Conditions for the validity of the more gen-
Little attention has been given to their dependence on thg g duality transformatiorB(x,y) e~ ™2E(x,t) are un-

fermion mass. Here we will confine our attention to quantu
electrodynamics in two and four dimensions in the belief that

nown.
There are no exact calculations fn any dimension for

any progress made might suggest how to proceed in othgpyq.yariable fieldsB(x,y) or E(x,t), or even finite-flux
cases. Furthermore, nonperturbative QED is of interest in 't§nagnetic fields, except for the two-dimensional case of a

own right.

magnetic field confined to the wall of a cylindé]. Actions

It might be objected that two-dimensional QED (QED) tor sjowly varying fields can be calculated in a derivative

is (_)f no physical intere_st, certai_nl)_/ not the mass dependenchpansior[s_lol For more general fields semiclassical es-
of its fermionic determinant. This is not true. First, when theijmates ofSare effective provided the analysis can be carried

Wick rotation to Euclidean space is made,&@g is calcu-

through[3,11]. So far this has limited the background field to

lated from the eigenfunctions of the two-dimensional Paulia dependence on a single space or time variable, effectively

operator P—A)?— 3B in a magnetic fieldB normal to a
plane. In what follows the coupling constamis assumed to
be absorbed by the potential,. Then de(thD2 fully deter-

mines debep, [1] and degep, [2] for the same magnetic

special cases of QED
The Euclidean QEB determinant can be expressed as
[2,12-14

- 1 %k . 1 2(1-2)
field, namely In detygp. = — —f B(k) 2J' dz————
R, " 2 (277)2| s K2z(1—2z) +m?
9 L2 L2|B|2 +Indet, 1.3
—Inde =——lInde -, (1.7 -
om? Qe = " o Geo, 24m?m? whereB is the Fourier transform of B and In dahay for the
present be viewed as the sum of all one-loop fermion graphs,
beginning in fourth order. It is gauge invariant, depending
L (= dMm?2 only onB. It is known that In def(m?=0)=0. This was first
In detyep, = —f ———=Indekep (M?), shown by Schwingef15]. Seiler[12] later gave a compact
2 Jn? \M?—m? ? proof of Schwinger’s result and stated the precise condition
12 foritto be true, namelA , e L"(IR?), n>2. Furthermore,
lim Indeg(m?)=0, (1.9
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0556-2821/2000/622)/1250076)/$15.00 62 125007-1 ©2000 The American Physical Society



M. P. FRY PHYSICAL REVIEW D 62 125007

provided the magnetic field’s fludk = 0. This result requires Schwartz space of tempered distributions. Such potentials
several nontrivial estimates from analysis and will be pub-have to be temporarily smoothed until after the integration

lished elsewhere. But it is plausible: #(0)=0 or equiva- OVerA, if sense is to be made of the right-hand side of Eq.
lently, ®=0, then the infrared properties of Ingatre im-  (2.1). This procedure has been discussed elsewfibg.
proved, allowing continuity am?=0. In Sec. Il we will Here we will simply assume that, andF ,, are sufficiently
show that for potentialé,, e L"(IR?), n>2 and finite-range  Smooth and fall off rapidly enough for our analysis to go
magnetic  fields with BeL"(IR?), n=24 and through._ More specific statements WI" be mz_;lde below. .
fd?x |32((;MB)2<OO there is at least one value oi?>0 for Specializing to QED and e>§pand|ng the right-hand S|d¢
which Indet=0, provided 6<|®|<2. Therefore, our re- of Eq._(2.1) to second_order gives the star_1dard pertur_batlve
sult is this: when &|®|<2 the zero inm? of Indet rgsult in the first term in Eq.1.3). T_he remainder, !n detis
moves up fromm?=0 when®=0 to some finite valu®) given by Eq.(3.2) below. In coordinate spagd.3) is

m?>0. For|®|=2 our analysis is unable to say anything

about the_zer_os im2 of In det,. Appar_ently their presence or In detyep, = J d2x d?y B(x) TT(x—y)B(y) +In det,
absence is tied in with the formation of square-integrable 2

zero modes of the two-dimensional Pauli operator when 2.2
|®|>27 [16].

The presence of zeros im? in Indet together with the
result[17] that In deg is bounded above and below by terms 5
quadratic inB suggest that In dgis small in the sense that it TI(x)= — i d<k e”"‘fldz 2(1-2)
is comparable to the second-order term in EQ3). These 2w ) (2)2 0o k%z(1-2z)+m?
bounds are obtained from E¢) in [17] and the definition
(1.3) above. The lower bound on Indeftom [17] has been |
established for field8=0 or <0 over all space, a techni- =" _J z(1 D)
cality that a better estimate might overcome.

In Sec. Il we establish the conditions for the largg
expansion of Indgtto be an asymptotic series, a result re-
quired in Sec. Il and useful in Sec. IV.

For Euclidean QERwe will present evidence in Sec. IV

where

2.3

Assuming thatB has finite range, then?>—0 limit can be
interchanged with the& andy integrals in Eq{(2.2), giving

2
that In de@ED4 vanishes for at least one valuerf for non- f d2x d?y B(x) [T(x—y)B(y) = @ In m2+0(1).
constant self-dualanti-self-dual finite-range fieldB= m2_ 087
(B=E) provided A, eL"(IR*), n>4 and the mtegrals of 2.4

(3,B)% (9,9,B)? 'B4 and B® over R* are finite. We are

restricted o such fields in the absence of a theorem in fouWVe have shown that iB is square integrable and has finite
dimensions, analogous to the Aharonov-Casher theorem ifange therj19]

two dimensiong16], that counts the total number of zero

modes for general fields. Our result is tentative as it requires || 5 5

the proof of the limit in Eq.(4.8) below. We believe Eq. In debEDz 2: Elnm +R(m, 2.9
(4.8) can be proved, thereby validating new nonperturbative m* =0

information on QER. where lim ,_ [R(m?)/Inm2]=0. That In degep, is negative
is a reflection of the paramagnetic property of charged fer-

mions whereby the eigenvalues of the Pauli operator are on
The fermionic determinant in Euclidean QED is definedaverage lower relative to those of the free Hamiltori®rin

Il. TWO-DIMENSIONAL QED

here by Schwinger'$18] heat kernel representation the definition (2.1) [20—-22. The mass singularity in
In debED2 at m*=0 is due to the formation of square-
Ind =dt T D2 1 E integrable zero modes and zero-energy unbound resonances
n et— 2)0 t rle Pt —exp - + 27 t in the continuum part of the Pauli operator’s spectrum. The

difference between Eq&2.4) and (2.5 makes the nonpertur-
|:||2} 2 bative nature of the resul2.5 evident. Equationg2.2),
m

(2. (2.9 and(2.5) give

247
v 1/ ) )
Here D?=(P—-A)%, o*'=[y*y"]I2i, y*'=—y* and Indeg = u(1—u)lnm2+R(m2), (2.6)
|F[|?=fd*xFZ,. The last term in Eq(2.1) is the second- m2 o7 2

order mass-shell charge renormalization subtraction required

for the smallt limit of the integral to converge. In two and from which one infers that In dgt: 0 if 0<|®|<27 andm?
three dimensions this term should be omitted—Iindet is is sufficiently small.

combined with the Maxwell action to form an effective mea- The second piece of nonperturbative information required
sure for A, then A, has to be concentrated off, the s
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In the coordinate space representationSOP)A(X) the

1
Indet = f d?x B*+R(m?), (2.77  propagator is given by
m2,90mm®
1 .
where S(x)= E(\/mzﬂﬂ)Ko( Vmex?). (3.9
lim méR(m?)=0. (2.9

HenceS is an analytic function om? throughout the com-
plex m?-plane cut along the negative real axis. Then the

This will be shown in Sec. IIl. It shows that for sufficiently following theorem of Gohberg and Kre(28] applies: Let
large m? In det, becomes positive before approaching zeroA(#) € C1 and be analytic inu in some region. Then the

This establishes our claim that In gétas at least one zero determinant def—A(u)) is analytic inu in the same re-
for m?>0 when 0<|®|< 2. gion. In our caseSAeC, ., ., requiring the two subtractions

in Eqg. (3.1). These subtractions can be easily incorporated
into Gohberg and Krais proof for SAe C;, provided use is
made of the inequality23,25

2

mc—o

Ill. LARGE MASS BEHAVIOR OF det ;

Here we will demonstrate Eq&2.7) and(2.8). Integration
over the fermions produces the formal result &et(A
+m)/det(P+m). Another formal operation reduces this to
det(1-SA), whereS=(P+m) . Because neithebAnor if AeC, andI', is a constant. Therefore, dét—SA) is
(SA)? are trace class whileSd)® is in QED, (see belowthe infinitely differentiable inm? on the open interval (8). In
identity Indet(1+A)=TrIn(1+A) for trace class operators addition, def has no zeros fom?>0 and for real coupling.
has to be modified to This was proved in Sec. Il C dfl] for the case of dgtin
three dimensions; the case of glat two dimensions follows
immediately from this proof. The regulated determinant,
Indet,, is analogous t43.1) with n—1 subtractions. Hence,
Indet is also infinitely differentiable im? on (0s°).

Next, we require a theorem of Fof@9]: Let f(x) be an
The right-hand side of Eq3.1) is the standard definition of infinitely differentiable function ofx on (a,») and let

|det,(1+A)|<elnlAl, (3.5

Indeg(1—SA)=Tr| In(1—SA +SA+ %(SA)Z}.
(3.2

a regularized determinafit3,23—28. Since Tr6A)3=0 by  ¢(x)=f(1/x). If the limits ¢(+0),4’(+0), ... exist then
Furry’s theorem, the first nonvanishing term in E8.1) be-  for x on (a,«),

gins in fourth order. This leaves the second-order term in

In detyep, to be defined by expanding definiti¢.1) to sec- f(x)~ap+ar/x+---, (3.6

ond order, giving(1.3). Subtracting the second-order term
from the heat kernel representatichl) of In detyep, gives a

definition of In def equivalent to Eq(3.1) [13]:
)

1 [=dt 1
In deg=§f T[ Tr(epzt—exp{ - ( D2+§oF
0

t 1
+ zfo dzz(1-2)

with a,=¢®(+0)/k!, k=0,1,....
asymptotic in the sense that

The series (3.6) is

limx"[f(x)—(ag+a/x+---+a,/x)]=0

X—00

(3.7)

forn=0,1,... .

Now consider the asymptotic expansion of Indébr
large m?. Referring to Eq.(3.2), this can be obtained from
the high-temperature expansion

2
Xf d k4||AZM,,(k)|2e*k22(lfz)t efthI (3.2) Tr(e‘[D2+ 1/2"F]t—e—P2t)
(2m)

2 2
—_ 2y —+2p2 4 43 2
It was stated above thaS@®)? is trace class in two dimen- T At d*x 3t B+ 15t BB
sions. This follows from the resu[26,27] that the operator
S(P)A(X) is a bounded operator drf(R?) in the trace ideal L iB 548—384
C,, n>2 and 70 45
[S(PYAX)[[n=<ISl[Lnl| Al n. (3.3 s[4 Lo “ 1
+ 15| 55B79,B "B+ 2B B |+ (3.9

Here C,={A||A|n=Tr(ATA)"2 <o}, By inspection|/S|.n
<w for n>2. We hereafter assume that, e L"(R?), n
>2, which is compatible with the d/fall off of A, in the
gauged ,A*=0 when®#0. SinceSAeC,, . it belongs to

The terms ofO(B?) are an easy consequence of second-
order perturbative theory; the term2t*B4/45 is an imme-
diate consequence of the Euler-Heisenberg result specialized

all ¢, with n>2, thus establishing our statement thay3
is trace class in two dimensions.

to two dimensiong18,30, and the term #B?g,B 9*B/63
follows from the results irf7,10], again specialized to two
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dimensions. As previously noted, the second-order terms in 1
(3.8), when substituted into E¢3.2), will be canceled by the  m?—In deten, =5 m?Tr[(H,+m?) 1= (H_+m? 1]
counterterm, giving Jm

+2m? Tr[(D?+m?) 1= (P?+m?) 1]
Indeg=

d?x B*—
9077m6f 21m® 1
4872

IFIIZ, (4.5

xf d’x B?9,B g*B+ - - -. (3.9
where the second trace in E@.5) is defined as
Note that as the expansion continues there are integrals over
increasing derivatives and powersBfThe finiteness of the
coefficients of increasing powers ofi? requires additional o ) ) )
conditions onB. Since the remainder after summingerms Ef dte "™ Tr(e P"—e "), (4.6
in an asymptotic series is of the order of the first neglected 0
term [29] we must impose the additional conditions
Jd?x B*<e and [d*B?3,B 9“B<= if the series in Eq.
(3.9 is terminated at the first term. We have now satisfied
the conditions of Ford’s theorem, thereby establishing Eqs.0
(2.7) and(2.9).

Tr[(D?+m?) = (P2+m?) 1]

consistent with definitiori2.1); it is over space indices only.
From Eg.(4.3) and the assumptioB=E, Eq. (4.5 reduces

J 1
m’ — Indetep, = —— [|B[|*+2m?
IV. FOUR DIMENSIONAL QED am 4 24w
In a representation in whiclys takes the diagonal form XTr[(D?+m?) 1= (P?+m?) 1]
vs=(§ °,) the operator-D? is @7
1 H, 0
2, T E= If
D +20'F ( 0 H_)’ 4.1
lim m?Tr[(D?+m?) 1= (P?+m?) %]=0, (4.9
where m2—0
H.=(P-A)’~ 0o (B*E). (42 then form?—0
Integration of the divergence of the axial current yields the
lobal anomaly forD in the form _ 2 2 2
g Yy In detyep, = 7T2||B|| In m*+R(m*?), (4.9

1
ﬁf d*XE-BO)=m*Tr[(H, +m*) "= (H_+m*) "], ynere fim,_ [R(m?)/In m]=0.

(4.3 Is Eq. (4.8 true? In two dimensions withb>0 the
) square-integrable zero modestdf. =(P—A)?+B are con-
with *Frr=1errePE o 912=1, FKO=EX and FI fined to the positive chirality sectdi6]. We then demon-

= €'KBX. Them?=0 limit of Eq. (4.3) gives a generalization strated[19] thatH _ has the property
of the Atiyah-Singer index theorerf3l] to noncompact
manifolds[32], im sz' gt e—tm? Tr(e‘(D2+B)t—e‘P2t)=0.

m2—0 0

B (4.10
47T2fd XE-B(X)=n, n_+W§|: w(l)

Even if ® is positive,B can fluctuate in sign. We found that
x[8.(0)—68-(0)], (4.4)  the integral in Eq.(4.10 only developed Im? type singu-

larities asm?— 0. In four dimensions we choog=E to be
wheren.. are the number of square-integrable zero modes ofertain that the zero modes are in the positive chirality sec-
H.; 5'1(0) are the scattering phase shifts fdr. as the tor. Then the dangerous fluctuatigterm is absent in the
energy tends to zerbjs a degeneracy parameter, ga@d) is  negative chirality sector. This and the tendency for infrared
a weight factor. By inspection of Ed4.2), self-dual(anti-  divergences to be less severe in higher dimensions lead us to
self-dua) fields B=—E (B=E) will have only negative conjecture that Eq(4.9) is true. In the case of self-dual
(positive chirality square-integrable zero modes. Supposdields, H, andH_ are interchanged in the above analysis.

we chooseB=E. Thus, in both cases E¢4.9) is true if Eq.(4.8) is true. Then
Differentiating the definitior{2.1) of In debED4 inthe rep-  Eq. (4.9 indicates that In d@ED4 becomes negative as’
resentation(4.1) and (4.2) gives —0, which is a reflection of paramagneti§@2].
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Now consider the large mass behavior of Inglgf. In  Again, the proof of this follows immediately from the proof
this caseSAe Cy, d>4 providedA, e L"(IR%), n>4 sothat  in Sec. lll C of Ref.[1] that def has no zeros in QEDfor

[12-14 m?>0 and real coupling. Hence, Indeis also infinitely
differentiable inm? on (0g) and will have an asymptotic
d*k . expansion in Ih? for a restricted class of fields. By Furry’s
In debeofﬁj (277)4| ,uv(k)|2 theorem and power counting we know that the first term in

its expansion for (anti-) self-dual fields will be
O(Sd*x BS/m?®).

This leaves the first term in E§4.11). By inspection we
now have, for largen? and (anti-) self-dual fields,

z(1-2)k’>+m?
m2

1
X fo dzZ1-2)In

_ 1
+ J’ HMV)\G.AMAVA)\AO.‘F In de%(l SA) In debED4= mf d4X (aMB)2+ R2+ R4+ RS'
m

(4.1 (4.19

The first two terms in Eq(4.11) are obtained from the defi- HereR, is the remainder from the second-order term which
nition (2.1) by expanding it through fourth order. The fourth- is of order f d*x (9,8,B)%m? Ry is the remainder from the
order term in Eq.(4.11) has been dealt with explicitly by fourth-order term and is of ordefid*x B4/m*, andRs, the
Karplus and NeumafB3]. Inspection of their result contin-  amainder from Indet is of order fd*x B®/m8. Therefore,
ued to Euclidean space shows that it is analytic in the COMprovidedA , e L"(IR%), n>4, and the integrals Of%B)z
plex mz-plan_e cut along the negative real "’_‘ﬁiiz' By Ford’s(aﬂayB)z, B* andB® are finite, In deyep, becomes positive
theorem{29] it has an asymptotic expansion imt, whose before dropping off to zero. This establishes that IRgst

leading term i433
g 133 has at least one zero fon®>0, providedB (and henceE)

1 satisfy the above conditions and Eg.8) is valid.
J o eALAANAG= 4J d*X[14F ,,F ,.F o5F g The existence and location of a mass zero in Ipgetis
2880m - . 4
renormalization dependent. The connection between differ-
—5(F 4, F u) %]+ - (4.12  ent renormalizations is simple: if instead of subtracting at

k?=0 subtraction is made &=\2, Eq.(2.1) or Eq.(4.11)
The remainder term, In dgtin Eq.(4.11) is like Indet in give
Eq. (3.1 except that it has four subtractions:

IF)? (2
4 In detyep (M2 N 2) =Inde (m2,0)+—J dzz
Indet(1—SA)=Tr|In(1-SA+ >, (SA)”/n}. Geo, Gen, 82 Jo
n=1
(4.13 2
In the coordinate space representatiorSéfthe propagator Z(1-z)A"+m

is (4.1

m? This trivial shift in the value of Ind shows that a mass
= ——(ymM?+ H)[ K (Vm?x?)/ym?x?], (4.1 . o, .
S(x) 4772( K x) X1, (419 zero of the experimentally relevant determinant

In detyep,(M?,0) causes Indgkp,(m*\?) to reduce to a
which is analytic inm? throughout the complem?-plane cut simple quadratic in the field strength.

along the negative real axis. Therefore, the same analysis as
in Sec. Il establishes that deis infinitely differentiable in

m? on the interval (0¢) provided use is made of E¢B.5

for n=5 to extend Gohberg and Krés theorem to dgt The author wishes to thank Gerald Dunne for helpful
Moreover, def has no zeros fom?>0 for real coupling. comments on duality transformations.
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