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Back reaction in light cone QED
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We consider the back reaction of quantum electrodynamics upon an electric fieldE(x1)52A28 (x1) which
is parallel tox3 and depends only on the light cone coordinatex15(x01x3)/A2. Novel features are that the
mode functions have simple expressions for arbitraryA2(x1) and that one cannot ignore the usual light cone
ambiguity at zero1 momentum. Each mode of definite canonical momentumk1 experiences pair creation at
the instant when its kinetic momentump15k12eA2(x1) vanishes, at which point operators from the surface
at x252` play a crucial role. Our formalism permits a more explicit and complete derivation of the rate of
particle production than is usually given. We show that the system can be understood as the infinite boost limit
of the analogous problem of an electric field which is homogeneous on surfaces of constantx0.

PACS number~s!: 11.15.Kc, 12.20.Ds
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I. INTRODUCTION

Many interesting things happen when quantum fi
theory is formulated on a non-trivial gauge field or met
background. One of these is that the background can c
virtual particles to move so as to engender currents
stresses which act to change it. This is the phenomeno
back reaction.

Our own fascination with back reaction concerns a qu
tum gravitational process which occurs on an inflating ba
ground. Superluminal expansion rips apart virtual pairs
gravitons—or any other effectively massless particle wh
is not conformally invariant. Although the total energy
these pairs grows exponentially with the co-moving time,
corresponding growth of the 3-volume results in only a co
stant energy density. The interesting secular effect come
the next order when one considers the gravitational po
tials engendered by the pairs. As each pair recedes t
potentials remain behind to add with those of newly crea
pairs, and the accumulated gravitational self-interact
grows. Because gravity is attractive, this self-interact
must act to slow inflation. Because gravity is a weak int
action at typical inflationary scales, inflation can proceed
a very long time before the slowing becomes significa
Because the process is infrared, it can be studied by nai
quantizing general relativity, without regard to that theory
lack of perturbative renormalizability. And explicit perturb
tive computations confirm that the slowing effect eventua
becomes non-perturbatively strong, both for pure gravity@1#
and for certain scalar models@2#.

The potential phenomenological implications of th
mechanism are staggering. It at once provides a real
model of inflationand an explanation for why the currentl
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observed cosmological constant is so small. If one forb
unnaturally light scalars, the model has only a single f
parameter—the dimensionless product of Newton’s cons
and the bare cosmological constant. It can therefore m
unique and cosmologically testable predictions in a way t
scalar-driven inflation, with its arbitrary potential, can nev
do. This was exploited recently to make predictions for t
tensor-to-scalar ratio and for the tensor and scalar spe
indices of anisotropies in the cosmic microwave backgrou
@3#.

There is nonetheless a widespread dissatisfaction with
model. For one thing, its most interesting predictions are
easy to infer because they come after the slowing effect
become strong and perturbation theory has broken do
Even in the perturbative regime there are well-motivated
jections to the use of gauge fixed expectation values in
explicit computations which have been done@4#. On a more
subjective level there is the feeling that nothing can be
derstood about quantum gravity without first resolving t
ultraviolet problem and that the new physics behind t
should also resolve the problem of the cosmological c
stant. Finally, conventional particle physicists lack intuitio
about the locally de Sitter background in which the proc
occurs. For all these reasons it is interesting to study
phenomenon of back reaction in a simpler and more conv
tional setting for which there is no doubt either about wh
happens qualitatively or how it can be computed analytica
One such setting is the response of quantum electrodyna
to a homogeneous electric field.

What happens initially when a prepared state is relea
in the presence of a homogeneous electric field is t
electron-positron pairs emerge from the vacuum to form
current which diminishes the electric field. If the state
released on a surface of constantx0 with no initial charge,
then the electric field at later times depends only uponx0.
This process was considered long before the ultraviolet pr
lem of quantum electrodynamics was resolved@5,6#.
Schwinger invented what we now know as the in-out ba
©2000 The American Physical Society05-1



cle
n

p-

ur
sc
ha

he
r

nd

ar
a
in
e

th

gn
n

nl
d
o
tu
ac
th
la
tiv

i
in
in

y
v
io
n

uc
g

of
n
D

f t

gh
n

is
th

e
it

ni
ut
b
nc

x-
nd
ith-
the
tive
is
ly

ht
di-

of

ed
ry

e

m

t
of

en-

ly
n-

T. N. TOMARAS, N. C. TSAMIS, AND R. P. WOODARD PHYSICAL REVIEW D62 125005
ground field effective action to compute the rate of parti
production per unit volume in the presence of a strictly co
stant electric field@7#. Since then, a variety of articles@8–14#
and monographs@15,16# have treated the issue of what ha
pens when the effect becomes strong.

We cannot hope to add much to the physical pict
which has emerged through the efforts of so many fine
entists. Indeed, our motive for studying this system is t
the physics of what happens isnot in doubt. However, we do
have a technical contribution to make by working out t
closely related process in which a source-free state is
leased on a surface of constantx1[(x01x3)/A2 in the pres-
ence of an electric field which is parallel tox3. The resulting
evolution yields a homogeneous electric field which depe
upon x1 rather thanx0. An interesting feature of Dirac
theory inanysuch background is that the mode functions
simple. This fact was noted recently by Srinivasan and P
manabhan@17,18# for the special case of a charged scalar
a constant electric field, although we do not agree with th
WKB solution.

It should be pointed out that our background is not
plane wave treated by Wolkow@19# and Schwinger@7#. In
that background the electric field is perpendicular tox3,
there is a perpendicular magnetic field of the same ma
tude, and the two together obey the free Maxwell equatio
In our background the electric field isparallel to x3, there is
no magnetic field, and the free Maxwell equations are o
obeyed when the field is constant. What we have instea
an explicit form for the fermion mode functions for a class
backgrounds which is general enough to include the ac
evolution of the electric field as it changes under the imp
of a quantum electrodynamic back reaction. By taking
expectation value of the current operator in this general c
of backgrounds we obtain the source term for the effec
field equation obeyed by the actual electric field. This
precisely what we should like to do for quantum gravity
order to treat the problem of what happens when the slow
effect becomes non-perturbatively strong. Therefore man
the same issues of gauge fixing, the use of expectation
ues, renormalization and the breakdown of perturbat
theory can be examined in a setting where the answer is
in doubt.

This paper contains seven sections of which this introd
tion is the first. In Sec. II our light cone coordinate and gau
conventions are stated and we work out the dynamics
classical charged particle moving in our general backgrou
In Sec. III we give a complete operator solution for free QE
in the presence of this background, expressed in terms o
field operators on the surfaces ofx150 and x252`. It
turns out that pair creation is a discrete event on the li
cone. Each mode passes from positive to negative freque
at a certain value ofx1 depending upon the mode. At th
instant each mode experiences a drop in amplitude with
missing amplitude taken up by operators from the surfac
x252`. We use these results in Sec. IV to give an explic
analytic derivation for the rate of particle production per u
volume for our general background. In Sec. V we comp
the one loop expectation value of the current induced
such a background. As expected, the ultraviolet diverge
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resolves itself into a renormalization of local terms in Ma
well’s equations. Here, as in gravity, pair production a
back reaction are infrared effects which can be studied w
out understanding the ultraviolet provided one subtracts
divergences and uses the physical couplings in the effec
field equations. A peculiar feature of our one loop result
that the back reaction becomes infinitely strong infinite
fast. This is explained in Sec. VI by noting that our lig
cone system is the singular, infinite boost limit of the tra
tional system in which the state is prepared on a surface
constantx0 and the electric field depends uponx0 rather than
x1 . Similar correspondence limits have been recogniz
since the earliest work on light cone quantum field theo
@20#. Our conclusions comprise Sec. VIII.

II. CLASSICAL ELECTRODYNAMICS ON THE LIGHT
CONE

All the analysis of this paper is done with a flat, timelik
metric. We define the light cone coordinates as follows:

x6[
1

A2
~x06x3!. ~1!

The other~‘‘transverse’’! components ofxm comprise the
2-vector x̃. The same conventions apply to the momentu
vectorpm, so one might write

xmpm5x0p02x3p32 x̃• p̃5x1p21x2p12 x̃• p̃. ~2!

Note, however, that Eq.~1! results in derivatives with respec
to x1 and x2 having their natural expression in terms
derivatives with lowered indices:

]65
1

A2
~]06]3!. ~3!

Since we define¹̃ as the transverse components of]m , one
can write

pm]m5p0]01p3]31 p̃•¹̃5p1]11p2]21 p̃•¹̃. ~4!

We define the light cone components of the vector pot
tial Am in analogy with those of the derivative operator]m :

A6[
1

A2
~A06A3!. ~5!

Our gauge condition isA150 and we restrict our attention
to configurations for whichA2 andÃ vanish atx150. This
means that onlyA2 is ever nonzero, and it depends on
uponx1 . The nonzero components of the field strength te
sor are

F3052F035F0352F3052A28 ~x1!. ~6!

Since we want the electric fieldEW 5 ẑF30 to be initially di-
rected along the positivez axis, it follows thatA28 (0),0.
5-2
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BACK REACTION IN LIGHT CONE QED PHYSICAL REVIEW D62 125005
When necessary, we will therefore assume thatA2(x1) is a
decreasingfunction of x1 . Since the electron’s charge
negative (e,0), our nominal assumption is thateA2(x1) is
an increasingfunction of x1 .

It is instructive to consider the dynamics of a point pa
ticle of massm and chargee,0 which moves under the
influence ofA2(x1). From the differential form of the Lor-
entz force law,

dpm5eFmndxn , ~7!

we infer the following relations for the light cone coordinat
and momenta:

dp152eA28 ~x1!dx1 , ~8!

dp25eA28 ~x1!dx2 , ~9!

dp̃50. ~10!

SinceA28 (x1)dx15dA2 , the relation forp1 implies that

k1[p1~x1!1eA2~x1! ~11!

is a conserved quantity. Sincedx25(p2 /p1)dx1 , the re-
lation for p2 implies that the productp2(x1)3p1(x1) is
also conserved. This product cannot involveA2(x1), be-
cause the latter depends uponx1 , so the correspondenc
limit in which A2 vanishes determines the mass shell re
tion

2p1~x1!p2~x1!5 p̃• p̃1m2[ṽ2. ~12!

In the free quantum field theory which corresponds to
motion of such a point particle, the conserved quantityk1 is
the Fourier conjugate to the coordinatex2 of the field which
creates charge2e and annihilates chargee. We shall follow
the convention of Klugeret al. @11# in distinguishing be-
tween the constantcanonical momentum k1 and thex1 de-
pendent kinetic momentum p1(x1)5k12eA2(x1). We
will also see that

p2~x1!5
ṽ2/2

p1~x1!
5

ṽ2/2

k12eA2~x1!
~13!

is indeed the eigenvalue of the operatori ]1 . A fact of cru-
cial importance is that it changes sign whenp1(x1) passes
through zero.

We conclude by following the trajectory of a point pa
ticle of massm and chargee,0 as it moves under the influ
ence ofA2(x1). Sincedx25(p2 /p1)dx1 we can integrate
to find

x2~x1!5x2~0!1E
0

x1

1

2
ṽ2du

@k12eA2~u!#2
. ~14!

Under our nominal assumption thateA2(u) is an increasing
function,k12eA2(u) must pass through zero at some val
ucrit.0, at least for modes whose initial momentumk1 is
12500
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small. The integral diverges ifk12eA2(u) goes to zero
even as fast asAucrit2u — and note thateA2(x1) is grow-
ing linearly at x150. What this divergence means phys
cally is that the electron accelerates to the speed of light
leaves the manifold moving parallel to thex2 axis as shown
in Fig. 1.

The result for positrons is obtained by simply changinge
to 2e. Note that although positrons also accelerate to
speed of light they move parallel to thex1 axis and do not
leave the manifold. We can therefore anticipate that,
E(x1).0, pair creation on the light cone manifests itself
the accumulation of a charge density of positrons wh
electron partners have left the manifold. Since electrons
the manifold by reaching the speed of light we can also
ticipate that they induce an infinite current. These suspici
will be confirmed by the detailed calculations of Secs.
and V. Why the light cone must show an infinite effect w
be explained by the correspondence limit of Sec. VI.

III. QED ON THE LIGHT CONE

The light cone components of the gamma matrices ar

g6[
1

A2
~g06g3!. ~15!

Note that (g6)250. We follow Kogut and Soper@20# in
defining light cone spinor projection operators:

P6[
1

2
~ I 6g0g3!5

1

2
g7g6 . ~16!

These act on the Dirac bispinor to give its ‘‘1 ’’ and ‘‘ 2 ’’
components:

FIG. 1. The evolution of ane1e2 pair created atx15x250.
5-3
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c6[P6c, c6
† [c†P6 . ~17!

It is convenient to Fourier transform on the transverse co
dinates:

c̃6~x1 ,x2 ,k̃![E d2x̃e2 i k̃• x̃c6~x1 ,x2 ,x̃!. ~18!

Note that the transverse derivative operator¹̃ becomesi k̃ in
the Fourier representation. Because transverse coordin
play so little role, we shall often omitk̃ from the argument
list to simplify the notation.

With these conventions the Dirac equation becomes

~gmi ]m2gmeAm2m!c̃

5@g1i ]11g2~ i ]22eA2!2g̃• k̃2m#c̃,

~19!

where it should be noted thate52ueu is the charge of the
electron. Multiplication alternately withg2 andg1 gives

i ]1c̃1~x1 ,x2!5~m2g̃• k̃!
1

2
g2c̃2~x1 ,x2!, ~20!

@ i ]22eA2~x1!#c̃2~x1 ,x2!

5~m2g̃• k̃!
1

2
g1c̃1~x1 ,x2!. ~21!
r

te

12500
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One can integrate Eq.~20! from the initial value surface a
x150:

c̃1~x1 ,x2!5c̃1~0,x2!

2E
0

x1

du~m2g̃• k̃!
i

2
g2c̃2~u,x2!. ~22!

A similar integration of Eq.~21! from the surface atx25
2L can be achieved by multiplyingeieA2x2:

c̃2~x1 ,x2!5e2 ieA2(x1)(x21L)c̃2~x1 ,2L !

2e2 ieA2(x1)x2E
2L

x2

dveieA2(x1)v

3~m2g̃• k̃!
i

2
g1c̃1~x1 ,v !. ~23!

Substituting this into the previous equation forc̃1 and iter-

ating gives the complete initial value solution forc̃1 on the
regionx1.0 andx2.2L:
c̃1~x1 ,x2!5 (
n50

` S 2
1

2
ṽ2D nE

0

x1

du1e2 ieA2(u1)x2E
2L

x2

dv1eieA2(u1)v1
•••E

0

un21
dune2 ieA2(un)vn21

3E
2L

vn21
dvneieA2(un)vnH c̃1~0,vn!2E

0

un
due2 iA2(u)vn~m2g̃• k̃!

i

2
g2e2 ieA2(u)Lc̃2~u,2L !J . ~24!
x-
A similar expansion forc̃25ṽ22(m2g̃• k̃)g1i ]1c̃1 fol-
lows from Eq.~20!.

Of course we are interested in the limit asL becomes
infinite, in which case the series~24! can be summed. Fo
n.0 we first extend the integration overvn to the full real
line using the identity

u~vn212vn!eieA2(un)[vn2vn21]

5E
2`

` dk1

2p

iei (k11 i e)[vn2vn21]

k12eA2~un!1 i e
. ~25!

Owing to the factor ofe2evn, the integration overvn only
makes sense provided the integration overk1 is done first.
To change the order of integration one must appropria
regulate the lower limit:
ly

E
2`

`

dvnF~vn!E
2`

` dk1

2p
G~k1!

5 lim
e→01

E
2`

` dk1

2p
G~k1!E

21/e

`

dvF~v !. ~26!

The limit e→01 will be understood in all subsequent e
pressions, as per the usual convention~for a differente) in
quantum field theory.

The next step is to move thek1 integration all the way to
the left and perform the integrations overv i successively,
from i 5n21 to i 51, using

E
2`

v i 21
dv ie

2 i [k12eA2(ui )1 i e]v i5
ie2 i [k12eA2(ui )1 i e]v i 21

k12eA2~ui !1 i e
.

~27!
5-4
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Since the integrand at this stage is the product over the s
function of eachui — f (ui)[@k12eA2(ui)1 i e#21 — one
can factor theui integrations:

E
0

x1

du1f ~u1!•••E
0

un21
dunf ~un!

5
1

n! F E
0

x1

du1f ~u1!Gn

, ~28!

E
0

x1

du1f ~u1!•••E
0

un
dug~u!

5E
0

x1

du
g~u!

n! F E
u

x1

du1f ~u1!Gn

. ~29!

The n50 term can be included using the Fourier inversi
theorem:

h~x2!5E
2`

` dk1

2p
e2 i (k11 i e)x2E

21/e

`

dvei (k11 i e)vh~v !.

~30!

The resulting series gives an exponential. For the terms
portional toc̃2 we get

(
n50

`
1

n! F2
i

2
ṽ2E

u

x1 du1

k12eA2~u1!1 i eGn

5expF2
i

2
ṽ2E

u

x1 du1

k12eA2~u1!1 i eG
[E @A2#~u,x1 ;k1 ,k̃!. ~31!

The terms proportional toc̃1 give E @A2#(0, x1 ;k1 ,k̃).
It remains to perform the final integration overv. For the

terms proportional toc̃1 this gives oure-regulated Fourier
transform

J0~k1 ,k̃![E
21/e

`

dvei (k11 i e)vc̃1~0,v,k̃!. ~32!

For the terms proportional toc̃2 the integral overv results
in a delta sequence

D~k12eA2~u!;e![
ie2 i [k12eA2(u)1 i e]/ e

k12eA2~u!1 i e
, ~33!

whose distributional limit would be 2pd(k12eA2) if it
were multiplied by a test function. The final result is
12500
e

o-

c̃1~x1 ,x2 ,k̃!5E
2`

` dk1

2p
e2 i (k11 i e)x2H E @A2#

3~0,x1 ;k1 ,k̃!J0~k1 ,k̃!

2E
0

x1

duD„k12eA2~u!;e…

3E @A2#~u,x1 ;k1 ,k̃!F`~u,k̃!J ,

~34!

where we define

F`~u,k̃![ lim
L→`

~m2g̃• k̃!
i

2
g2c̃2~u,2L,k̃!e2 ieA2(u)L.

~35!

Because the factor ofE @A2#(u,x1 ;k1 ,k̃) develops a sin-
gular phase ask1 approacheseA2(u), the distributional
limit of the delta sequence in the second term must be ta
with care. We shall postpone this to the next section.

It is worth commenting on two exceptional properties
our solution~34!. First, it is validfor arbitrary vector poten-
tial A2(x1). If the state atx150 is translation invariant in
x2 and x̃, then the back reaction will change the wayA2

depends uponx1 but it cannot induce other potentials o
dependence upon other coordinates. Of course the ph
propagator is not affected by the background, nor are
vertices. So we can evaluate the expectation value of
current operator — to as high an order in the loop expans
as is desired — for a class of vector potentials which c
tainly includes the actual solution. The only additional sim
plification one would obtain by making the electric field co
stant@A2(x1)52Ex1# is that then the integral overu1 in
the mode functions~31! can be explicitly performed. We
shall see, in Secs. IV and V, that this is not required in or
to be able to compute either the rate of particle production
the expectation value of the current operator.

The second property is that ouri e prescription provides a
precise definition for the ambiguity at zero1 momentum
which, for mÞ0 and/or more than two spacetime dime
sions, is traditionally left unresolved in light cone quantu
field theory.~See, for example, footnote No. 12 in the wo
of Kogut and Soper@20#.! One can usually avoid doing thi
because the analyticity of scattering amplitudes perm
one to infer the zero momentum limit from the resu
for nonzero momentum. In our background the proble
is aggravated by the fact thatevery mode with positive
canonical momentumk1 becomes singular when its ki
netic momentump1(x1)5k12eA2(x1) passes through
zero. At this instant the mode functionsE @A2#

3(0,x1 ;k1 ,k̃) oscillate with infinite rapidity and one re
quires thei e prescription to precisely define what happen
Note too that we havederived it rather than simply making
an ad hocguess. As an essential part of the derivation
have found thatc1(x1 ,x2 ,x̃) is determined not just by
5-5
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c1(0, x2 ,x̃) but also byc2(x1 ,2`,x̃). WhenA250 ~and
mÞ0 and/or the number of spacetime dimensions is gre
than 2! one can ignore the data from the surface atx25
2` because it remains segregated in thek150 mode whose
contribution to scattering processes is inferred by anal
cally continuing the result fromk1Þ0. We shall see in the
next section that these data cannot be ignored in our b
ground and that they play an essential role in the proces
particle production.

To complete our operator construction of free Dir
theory in the presence ofA2(x1) we must specify how the
fundamental operatorsJ0(k1 ,k̃) andF`(u,k̃) act upon one
another. Of course the operator algebra derives from can
cal quantization. The Fourier transform~in x̃) of the Dirac
Lagrangian is1

L5c̃†g0~gmi ]m2gmeAm2m!c̃, ~36!

5A2c̃1
† F i ]1c̃12~m2g̃• k̃!

1

2
g2c̃2G

1A2c̃2
† F ~ i ]22eA2!c̃2

2~m2g̃• k̃!
1

2
g1c̃1G . ~37!

The variable conjugate toc̃1 underx1 evolution isiA2c̃1
† ,

so we must have

$c̃1~x1 ,x2 ,k̃!,c̃1
† ~x1 ,y2 ,q̃!%

5
1

A2
P1d~x22y2!~2p!2d2~ k̃2q̃!. ~38!

Since the variable conjugate toc̃2 under x2 evolution is
iA2c̃2

† , we must similarly have

$c̃2~x1 ,x2 ,k̃!,c̃2
† ~y1 ,x2 ,q̃!%

5
1

A2
P2d~x12y1!~2p!2d2~ k̃2q̃!. ~39!

Operators on an arbitrary surface of constantx1 do not gen-
erally anti-commute with those on an arbitrary surface
constantx2 . However, by causality we know that the oper
tors atx150 do anti-commute with those atx252`. So
the only nonzero anti-commutators among the fundame
operators are

1Note that the quantityc̃† is computed by Fourier transformin
first and then taking the adjoint.
12500
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$J0~k1 ,k̃!,J0
†~q1 ,q̃!%5

1

A2
P1~2p!3d~k12q1!

3d2~ k̃2q̃!, ~40!

$F`~x1 ,k̃!,F`
† ~y1 ,q̃!%5

ṽ2

2A2
P1d~x12y1!~2p!2

3d2~ k̃2q̃!. ~41!

IV. PARTICLE PRODUCTION ON THE LIGHT CONE

Equation~34! expresses the free fieldc̃1(x1 ,x2 ,k̃) in
terms of the fundamental operatorsJ0(k1 ,k̃) andF`(u,k̃).
We have just seen in Eqs.~40!,~41! how these fundamenta
operators act upon one another and upon their adjoints. T
particle interpretation in free field theory derives from t
light cone ‘‘Hamiltonian’’—that is, from the generator ofx1

evolution. Since the Dirac Lagrangian vanishes as a con
quence of the field equations, the Hamiltonian density is j
the pq̇ term:

H~x1 ,x2 ,x̃!5A2c1
† ~x1 ,x2 ,x̃!i ]1c1~x1 ,x2 ,x̃!.

~42!

The Hamiltonian is the integral of this overx̃ and our
e-truncated portion of thex2 axis. We can express it in
terms ofc̃1(x1 ,x2 ,k̃) using Parseval’s theorem

H~x1!5E
21/e

`

dx2E d2k̃

~2p!2
A2c̃1

† ~x1 ,x2 ,k̃!i ]1

3c̃1~x1 ,x2 ,k̃!. ~43!

As might have been expected from this system’s inva
ance under translations inx2 and x̃, the Hamiltonian be-
comes diagonal in momentum space. To see this we take
field’s e-regulated Fourier transform onx2 :

C~x1 ,k1 ,k̃![E
21/e

`

dx2ei (k11 i e)x2c̃1~x1 ,x2 ,k̃!

~44!

5E @A2#~0, x1 ;k1 ,k̃!J0~k1 ,k̃!

2E
0

x1

duD~k12eA2~u!;e!

3E @A2#~u,x1 ;k1 ,k̃!F`~u,k̃!. ~45!

In the limit of smalle the Hamiltonian becomes

H~x1!5E
2`

` dk1

2p E d2k̃

~2p!2
A2C†~x1 ,k1 ,k̃!

3 i ]1C~x1 ,k1 ,k̃!. ~46!
5-6
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This last expression forH(x1) implies that the
x1-dependent ‘‘energy’’ carried byC(x1 ,k1 ,k̃) is its ei-
genvalue under2 i ]1 . From the first term of Eq.~45! we
see that, ifC(x1 ,k1 ,k̃) is an eigenfunction of2 i ]1 , its
eigenvalue must be

2 i ]1ln$E @A2#~0, x1 ;k1 ,k̃!%5
2ṽ2/2

k12eA2~x1!1 i e
.

~47!

When e vanishes this is precisely minus the result~13! we
found at the end of Sec. II for thep2 momentum of a clas-
sical charged particle moving in our vector potential. W
therefore expectC(x1 ,k1 ,k̃) to annihilate electrons fo
k1.eA2(x1) and to create positrons fork1,eA2(x1).

It remains to show thatC(x1 ,k1 ,k̃) is actually an eigen-
state of2 i ]1 . Since the first term of Eq.~45! obviously has
this property, our task reduces to taking the distributio
limit of the delta sequenceD(k12eA2 ;e) in the second
term. We shall do this under the assumption thatk1 is well
separated from the singular points atk150 and at k1

5eA2(x1). Two pieces of notation we shall find useful a
the inverse vector potentialX(k1),

k15eA2„X~k1!…, ~48!

and the dimensionless ratio ofṽ2 to (22e times! the electric
field:

l~k1 ,k̃![
ṽ2

2eA28 „X~k1!…
. ~49!

The first step in transforming the second term of Eq.~45!
is to change variables fromu to z5@k12eA2(u)#/e,

2E
l

U

dz
ie2 i (z1 i )

z1 i
E„X~k12ez!,x1 ;k1 ,k̃…

3
F`„X~k12ez!,k̃…

eA28 „X~k12ez!…
, ~50!

where the upper and lower limits are

U[
k1

e
, l[

k12eA2~x1!

e
. ~51!

As e approaches zero they go to positive and negative in
ity, respectively, fork1 in the range 0,k1,eA2(x1). This
is the only case in which one gets a nonzero result.

We can absorb the Jacobian in Eq.~50! by defining a new
fundamental field

J`~k1 ,k̃![A 2p

l~k1 ,k̃!

F`„X~k1!,k̃…

eA28 „X~k1!…
. ~52!

This brings us to the form
12500
l

-

2E
l

U dz

2p

ie2 i (z1 i )

z1 i
E„X~k12ez!,x1 ;k1 ,k̃…

3A2plJ`~k12ez,k̃!. ~53!

Note from Eq.~41! that the anti-commutator ofJ`(k1 ,k̃)
with its adjoint is the same as that ofJ0 with J0

† :

$J`~k1 ,k̃!,J`
† ~q1 ,q̃!%5

1

A2
P1~2p!3d~k12q1!

3d2~ k̃2q̃!. ~54!

Now consider the mode function in expression~53!:

E„X~k12ez!,x1 ;k1 ,k̃…

5expF2
i

2
ṽ2E

X(k12ez)

x1 du1

k12eA2~u1!1 i eG .
~55!

For z,0 the lower limit of the integral is a little below the
singular point where the real part of the denominator v
ishes. Forz.0 the lower limit is a little above this point
Straddling the singular point like this leads to great sensi
ity with respect toz, even ase goes to zero. To isolate thisz
dependence we factor the mode function

E„X~k12ez!,x1 ;k1 ,k̃…5E„X~k12ez!,X~k1!;k1 ,k̃…

3E„X~k1!,x1 ;k1 ,k̃…. ~56!

The second factor is independent ofz and can be pulled
outside the integral. We can also takee to zero in l(k1

2ez,k̃) and inJ`(k12ez,k̃).
Taking the smalle limit of the first factor requires care

We first change variables in the exponent fromu1 to y
[@k12eA2(u1)#/e and then expand the Jacobian for sm
e:

2
i

2
ṽ2E

X(k12ez)

X(k1) du1

k12eA2~u1!1 i e

52 il~k1 ,k̃!E
0

z dy

y1 i
3

A28 ~X~k1!!

A28 „X~k1!2ey…
~57!

52 il~k1 ,k̃!ln~z1 i !2
p

2
l~k1 ,k̃!1O~e!.

~58!

Dropping the terms which vanish withe and combining Eqs.
~53!, ~56! and ~58! gives the following result for the secon
term of Eq.~45!:

2u~k1!u~eA2~x1!2k1!

3E @A2#„X~k1!,x1 ;k1 ,k̃…A2plg~l!J`~k1 ,k̃!,

~59!
5-7
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where

g~l![e2(p/2)lE
2`

` dz

2p

ie2 i (z1 i )

z1 i
e2 il ln(z1 i ). ~60!

Substituting Eq.~59! into Eq.~45! results in the following
for C(x1 ,k1 ,k̃):

C~x1 ,k1 ,k̃!

→E @A2#~0, x1 ;k1 ,k̃!J0~k1 ,k̃!2u~k1!u~eA22k1!

3E @A2#~X, x1 ;k1 ,k̃!A2plg~l!J`~k1 ,k̃!. ~61!

We mention again that this is only valid for modes which a
well separated from the singular points atk150 and k1

5eA2(x1). If one wishes to study the behavior of mod
which are arbitrarily near either point, there is no alternat
to taking a new distributional limit for the delta sequence
Eq. ~45!.

Since E @A2#„X(k1),x1 ;k1 ,k̃… has the same2 i ]1 ei-
genvalue~13! as the first mode function,C(x1 ,k1 ,k̃) is
indeed an eigenfunction of2 i ]1 . This means that it carrie
a definite energy:

@H~x1!,C~x1 ,k1 ,k̃!#5
2ṽ2/2

k12eA2~x1!
C~x1 ,k1 ,k̃!.

~62!

That has implications for the fundamental operators fr
which it is constructed and for the state upon which they a
The latter is supposed to be ‘‘empty’’ atx150. At that
instant Eq.~45! implies

C~0,k1 ,k̃!5J0~k1 ,k̃!. ~63!

Since the potential vanishes atx150, we can see from Eq
~62! that the modes withk1.0 carry negative energy while
those withk1,0 carry positive energy. It follows that th
state should obey

J0~k1 ,k̃!uV&505J0
†~2k1 ,2 k̃!uV& ;k1.0. ~64!

TheJ`(k1 ,k̃) operators@or, equivalently, theF`(u,k̃) op-
erators# are not present atx150. However, when they do
appear — for 0,k1,eA2(x1) — it is always with positive
energy. It is therefore natural to regard them as creators
to define the state to be annihilated by their adjoints:

J`
† ~k1 ,k̃!uV&50 ;k1.0⇔F`

† ~u,k̃!uV&50 ;u.0.
~65!

What this seems to mean physically is that we allow
particles to enter the manifold from the surface atx25
2`.

Now consider what happens as the system evolves inx1 .
Under the assumption thateA2(x1) is an increasing func-
tion of x1 , modes withk1,0 begin as positron creatio
operators and remain that way, although their kinetic m
menta increase according to the relation,p1(x1)52k1
12500
e

t.

nd

o

-

1eA2(x1). The associated mode functions begin as unity a
retain unit magnitude in the limit thate vanishes. Fork1

.0 the picture is more complicated. These modes begin
electron annihilation operators, also with mode functions
unit magnitude. However, whenx15X(k1) the energy each
mode carries passes from2` to 1` and we must regard the
mode as creating a positron. It is not possible to follow t
process using Eq.~61! because that expression was deriv
under the assumption that the mode was not arbitrarily cl
to singularity. But wecan use Eq.~61! a little before and a
little after the singularity. Before the singularit
C(x1 ,k1 ,k̃) consists of only the term proportional t
J0(k1 ,k̃), and it has unit magnitude. After singularity th
magnitude of this term has dropped toe2pl(k1 ,k̃), and the
term proportional toJ`(k1 ,k̃) has appeared. Let us pause
this point to evaluate the functiong(l) in order to show that
the J`(k1 ,k̃) term acquires the missing amplitude.

Evaluatingg(l) is complicated by the branch cut of th
integrand. However, whenl52 in the integrand is mero-
morphic and elementary methods giveg(2 in)51/n!. By
partial integration one can also derive the recursion rela
g(l)5(11 il)g(l2 i ). These results together imply tha
we are dealing with an inverse gamma function

g~l!5
1

G~11 il!
. ~66!

Its magnitude follows from a result of Lobachevskiy@24#

1

G~11 il!G~12 il!
5

epl2e2pl

2pl
. ~67!

As previously noted, the magnitude of the first mode fun
tion E(0,x1 ;k1 ,k̃) is e2pl following the singularity. Be-
cause the integral in the exponent of the second mode fu
tion E„X(k1),x1 ;k1 ,k̃… begins precisely at the singularity
the magnitude of the second mode function ise(2p/2)l. Put-
ting everything together gives the following result for th
magnitude of the various terms multiplyingJ`(k1 ,k̃):

I A2pl

G~11 il!
E„X~k1!,x1 ;k1 ,k̃…I5A12e22pl. ~68!

SinceJ0(k1 ,k̃) andJ`(k1 ,k̃) are independent and canon
cally normalized operators, this is precisely the correct fac
for C(x1 ,k1 ,k̃) to retain unit magnitude after singularity

Heisenberg states cannot change but our interpretatio
them can. Before the singularityC(x1 ,k1 ,k̃) is propor-
tional to J0(k1 ,k̃), which annihilates uV&. Since
C(x1 ,k1 ,k̃) is an electron annihilation operator before t
singularity, this means that both electron spin states w
p15k12eA2(x1) and p̃5 k̃ are empty. After the singular
ity C(x1 ,k1 ,k̃) must be a positron creation operator b
cause it carries positive charge and energy. IfC(x1 ,k1 ,k̃)
were still proportional toJ0(k1 ,k̃), it would annihilateuV&
and we should have to conclude that both positron spin st
5-8
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with p152k11eA2(x1) and p̃52 k̃ had been filled with
unit probability. To see what actually happens pick the p
itron spin created by thei th spinor component o
C(x1 ,k1 ,k̃) and note that any state can be written as
sum of a state containing this particle and a state which d
not contain it:

uV&5AProb~k1 ,k̃!uFull&1A12Prob~k1 ,k̃!uEmpty&.
~69!

Now act with 21/4C i(x1 ,k1 ,k̃) and make sequential use o
its expansion in terms ofJ0 andJ` and the fact that it fills
the one particle state with unit amplitude:

21/4C i~x1 ,k1 ,k̃!uV&5
21/4A2pl

G~11 il!
E~X,x1 ;k1 ,k̃!J` i uV&

~70!

5A12Prob~k1 ,k̃!uFull&. ~71!

Use of the anti-commutation relations to compute the no
and comparison with Eq.~68! shows that the probability fo
the state to contain a positron of this spin is Prob(k1 ,k̃)
5e22pl(k1 ,k̃).

Note that we do not see the electron of the electr
positron pair. This is because electrons and positrons
both created withp1;01 on the light cone. As explained in
Sec. II, the positrons accelerate in the1z direction to p1

→1`, and eventually move parallel to thex1 axis. But the
electrons accelerate in the2z direction top150 and there-
fore leave the manifold moving parallel to thex2 axis im-
mediately after creation. Wewill see their contribution to the
J2 current in Sec. V.

The picture we have just developed of particle product
on the light cone is probably the most complete we shall e
have of this otherwise obscure phenomenon. To illustrate
power it confers we shall compute the rate per unit volu
of particle production. Forx1.0 all modes with 0,k1

,eA2(x1) will have passed through singularity, so th
probability for the entire state to still be in vacuum at th
instant is

Pvac~x1!5 )
0,k1,eA2

)
k̃

~12e22pl(k1 ,k̃)!2, ~72!

5expFV2E
0

eA2(x1)dk1

2p
Ṽ

3E d2k̃

~2p!2
2ln~12e22pl(k1 ,k̃)!G , ~73!
12500
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e

5expF2V2ṼE
0

eA2(x1)

dk1

3
eA28 „X~k1!…

4p3 (
n51

`
1

n2
e2npm2/eA28 (X)G , ~74!

whereV2 and Ṽ are the volumes ofx2 and x̃ respectively.
The rate of production per 4-volume is minus the logarithm
derivative of this probability:

2
] ln@Pvac~x1!#

]x1]V2]Ṽ
5

eA28 ~x1!2

4p3 (
n51

`
1

n2
e2npm2/eA28 (x1).

~75!

Note that we do not need to work asymptotically, lik
Schwinger@7#; nor do we require anad hocinterpretation for
the momentum integral, like Klugeret al. @14#.

It is significant that our result~75! applies for any mono-
tonically increasing functioneA2(x1). Although the restric-
tion to increasing functions was made only for simplicit
and would be easy enough to remove, it has succeede
concealing the essentially nonlocal character of particle c
ation. The system really preserves a memory of the exten
which each mode has been filled, and this must affect
subsequent rate of production.~In the literature this sort of
effect is termed, ‘‘non-Markovian’’@14,21,22#.! Our formula
shows no such effect for two reasons. First, particles of
tial momentumk1 are only created, on the light cone, at th
instant wheneA2(x1)5k1 . Second, under the assumptio
that eA2(x1) is an increasing function ofx1 , creation can
occur at most once for any fixed spin andk1 . So there is
never a previous Pauli blocking factor to overcome. Had
allowedeA2(x1) to pass through the same valuek1 several
times the probability of creation would depend upon wh
happened during previous passages.

Our formula~75! for the rate of particle production is als
deceptively simple in that it is the same as Schwinger’s w
the instantaneous electric field2A28 (x1) replacing the con-
stant electric field he used. This is a special feature of elec
fields which are homogeneous on surfaces of constantx1 .
To see that it does not generalize even to electric fie
which are homogeneous on surfaces of constantx0 consider
the recent work of Dunne and Hall@23#. Their formula~63!
gives the imaginary part of the effective action, to first ord
in the derivative expansion, for the case of an electric fi
which is homogeneous on surfaces of constantx0. There is
no conflict between their result and ours; they merely expl
the dependence upon different directions in the space
backgrounds.
f the
he
V. BACK REACTION ON THE LIGHT CONE

The6 current operators are nominallyA2ec6
† c6 . To enforce invariance under charge conjugation we take one-half o

commutator of the two field operators. To deal with the singularity of coincident operators we shall point split in tx1
5-9
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direction. SinceA150, this procedure is gauge invariant. Since point splittingdoesbreak Hermiticity, we shall take the rea
part

J6~x1 ,x2 ,x̃![
e

A2
lim

Dx1→0
Re$c6

† ~x1 ,x2 ,x̃!c6~x11Dx1 ,x2 ,x̃!2Tr@c6~x11Dx1 ,x2 ,x̃!c6
† ~x1 ,x2 ,x̃!#%. ~76!

To compute the expectation value ofJ1 it is sufficient to use the simplified expansion~61! derived in the last section:

c1~x11Dx1 ,x2 ,x̃!→E
2`

` dk1

2p
e2 ik1x2E d2k̃

~2p!2
eik̃• x̃H E~0, x11Dx1 ;k1 ,k̃!J0~k1 ,k̃!2u~k1!

3u~eA2~x11Dx1!2k1!
A2pl

G~11 il!
E„X~k1!,x11Dx1 ;k1 ,k̃…J`~k1 ,k̃!J , ~77!

c1
† ~x1 ,x2 ,x̃!→E

2`

` dk1

2p
eik1x2E d2k̃

~2p!2
e2 i k̃• x̃H E* ~0, x1 ;k1 ,k̃!J0

†~k1 ,k̃!2u~k1!

3u„eA2~x1!2k1…

A2pl

G~12 il!
E* ~X,x1 ;k1 ,k̃!J`

† ~k1 ,k̃!J . ~78!

We note also two important identities concerning the mode functionE:

E* ~0, x1 ;k1k̃!E~0, x11Dx1 ;k1 ,k̃!5e22plu(k1)u(eA22k1)E~x1 ,x11Dx1 ;k1 ,k̃! ~79!

5@u~2k1!1u~k12eA2!1u~k1!u~eA22k1!e22pl#

3E~x1 ,x11Dx1 ;k1 ,k̃!, ~80!

E* ~X,x1 ;k1k̃!E~X,x11Dx1 ;k1 ,k̃!5e2plE~x1 ,x11Dx1 ;k1 ,k̃!. ~81!

Combining these relations with the conditions~64!,~65! which define the state and the anti-commutation relations~40! and~54!
we obtain the following result for the expectation value ofJ1 :

^VuJ1~x1 ,x2 ,x̃!uV&5e lim
Dx1→01

E d2k̃

~2p!2
ReH E

2`

0 dk1

2p
1E

0

eA2dk1

2p
@12e22pl(k1 ,k̃)#2E

0

eA2dk1

2p
e22pl(k1 ,k̃)

2E
eA2

` dk1

2p J E~x1 ,x11Dx1 ;k1 ,k̃!, ~82!

522eE
0

eA2dk1

2p E d2k̃

~2p!2
e22pl(k1 ,k̃)1e lim

Dx1→01

ReH E
0

` dq

2pE d2k̃

~2p!2

3@E~x1 , x11Dx1 ;2q1eA2 ,k̃!2E~x1 ,x11Dx1 ;q1eA2 ,k̃!#J . ~83!

The final term in Eq.~83! vanishes. To see this first perform the integration overk̃,

E d2k̃

~2p!2
E~x1 ,x11Dx1 ;6q1eA2 ,k̃!5

2 i

2p

e2( i /2)m2I (Dx1 ,6q)

I ~Dx1 ,6q!
, ~84!

where we define

I ~Dx1 ,6q![E
x1

x11Dx1 du

6q1eA2~x1!2eA2~u!1 i e
. ~85!

This brings the final term in Eq.~83! to the form
125005-10
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e

4p2 lim
Dx1→01

ImH E
0

`

dqFe(2 i /2)m2I (Dx1 ,2q)

I ~Dx1 ,2q!
2

e(2 i /2)m2I (Dx1 ,1q)

I ~Dx1 ,1q!
G J . ~86!

The functionI (Dx1 ,6q) can be expanded in powers of the splitting parameterDx1 :

I ~Dx1 ,6q!5
Dx1

6q1 i e H 11
1

2 FeA28 Dx1

6q1 i e G1
1

6 FeA29 Dx1
2

6q1 i e G1
1

3 FeA28 Dx1

6q1 i e G2

1O~Dx1
3 !J . ~87!

SinceI (Dx1 ,6q) goes to zero withDx1 , and for largeq, we can expand the exponentials of Eq.~86! inside theq integration.
When this is done it is easy to see that every term vanishes either in taking the imaginary part or in takingDx1 to zero:

lim
Dx1→01

ImH e(2 i /2)m2I (Dx1 ,2q)

I ~Dx1 ,2q!
2

e(2 i /2)m2I (Dx1 ,1q)

I ~Dx1 ,1q!
J 5 lim

Dx1→01

ImH 1

I ~Dx1 ,2q!
2

i

2
m21•••2

1

I ~Dx1 ,1q!
1•••J

~88!

5 lim
Dx1→01

ImH 2q1 i e

Dx1
2

1

2
eA28 1•••2

~q1 i e!

Dx1
1

1

2
eA28 1•••J

~89!

50. ~90!
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J1 gives the charge density on surfaces of constantx1

and we have seen that its expectation value is

^VuJ1~x1 ,x2 ,x̃!uV&

522eE
0

eA2dk1

2p E d2k̃

~2p!2
e22pl(k1 ,k̃) ~91!

52
e

pE0

x1

duFeA28 ~u!

2p G2

expF2
pm2

eA28 ~u!
G . ~92!

The first form ~91! is actually the simplest to understan
physically. It says that the charge density accumulates e
of the two positron spin states with probabilitye22pl as the
mode with canonical momentak1 and k̃ passes through sin
gularity. As noted before, the electron partners in the p
creation event accelerate to the speed of light in the2z
direction and leave the manifold moving parallel to thex2

axis. It might seem that since the manifold becomes char
the vector potential must depend uponx2 , and we have
therefore not solved the problem for a sufficiently gene
class of potentials to include the actual back reacted solut
However, we shall see that the response fromJ2 is actually
infinite and infinitely fast — preciselybecausethe electrons
have exited by reaching the speed of light. This means
back-reaction drives the actual potential to zero infinit
fast, beforeJ1 can become nonzero.

Evaluating the expectation value ofJ2(x1 ,x2 ,x̃) is
complicated because the result must diverge ase approaches
zero. To see this note that since the expectation value
J̃(x1 ,x2 ,x̃) vanishes, current conservation and our res
~91! for the expectation value ofJ1(x1 ,x2 ,x̃) imply
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]2^VuJ2~x1 ,x2 ,x̃!uV&

52]1^VuJ1~x1 ,x2 ,x̃!uV& ~93!

5
1

p
e2A28 ~x1!E d2k̃

~2p!2
e22pl(eA2 ,k̃). ~94!

Integration from the lower limit of oure-regulated range of
x2 gives

^VuJ2~x1 ,x2 ,x̃!uV&5^VuJ2~x1 ,2e21,x̃!uV&

1S x21
1

e D 1

p
e2A28 ~x1!E d2k̃

~2p!2

3e22pl(eA2 ,k̃). ~95!

The final term has a simple physical interpretation.J2 is a
charge flux, so it must register the newly created electr
which rush off the manifold parallel to thex2 axis ~because
they are moving in the2z direction at the speed of light!.
The rate at which this charge is created, per unit volume
x2 and x̃, is just 2]1J1 . An electron created at positio
(x1 ,x2 ,x̃) must pass through all points (x1 ,y2 ,x̃), for
y2.x2 , on its way off the manifold. So the net electron
flux through any point x2 is the integral of
2]1J1(x1 ,y2 ,x̃) over all pointsy2,x2 . We have cut the
lower limit off at 21/e, so the electronic contribution to th
expectation value ofJ2 must diverge ase goes to zero.

Although there is a good physical reason for it, the fa
that the expectation value ofJ2 diverges like 1/e means that
we must use special care in evaluating distributional lim
5-11
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which involve e. For example, the field equations can
inverted to givec̃2 in terms ofc̃1 :

c̃2~x1 ,x2 ,k̃!5S m2g̃• k̃

ṽ2 D g1i ]1c̃1~x1 ,x2 ,k̃!.

~96!

However, we cannot simply substitute thex1 derivative of
expression~61! because the distributional limit in the secon
term of that formula was computed assuming thatk1 is sepa-
rated from zero andeA2(x1). When]1 acts upon the sec
ondu function in Eq.~61! it gives ad function which invali-
dates that assumption by settingk15eA2(x1). One can tell
from the ultralocality of this term atk15eA2(x1) that it is
responsible for the electronic contribution computed abo
Rather than forcing everything through from the cumb
some, initial expressions we shall just compute the expe
tion value ofJ2 without this term and then compensate
adding in the electron current found above.

Our computational shortcut amounts to making the f
lowing replacements:

c2~x11Dx1 ,x2 ,x̃!

→E
2`

` dk1

2p
e2 ik1x2E d2k̃

~2p!2

3eik̃• x̃

1
2 ~m2g̃• k̃!g1C~x11Dx1 ,k1 ,k̃!

k12eA2~x11Dx1!1 i e
, ~97!
12500
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c2
† ~x1 ,x2 ,x̃!

→E
2`

` dk1

2p
eik1x2E d2k̃

~2p!2

3e2 i k̃• x̃
C†~x1 ,k1 ,k̃! 1

2 g2~m1g̃• k̃!

k12eA2~x1!2 i e
. ~98!

The integrand of this expression forc2 is just the same as
for c1 multiplied by a factor1

2 (m2g̃• k̃)g1 and divided by
p11 i e at the appropriate value ofx1 . Hence the contribu-
tion to the expectation value ofJ2 is the same as toJ1 but
with an additional factor of

1
2 ~m2g̃• k̃!g1

p1~x11Dx1!1 i e

1
2 g2~m1g̃• k̃!

p1~x1!2 i e

5

1
2 ṽ2P2

@p1~x11Dx1!1 i e#@p1~x1!2 i e#
. ~99!

The expectation value ofJ2 , without its electronic compo-
nent, can therefore be obtained by simply including this f
tor in our previous expression~83! for the expectation value
of J1 :
the
^VuJ2~x1 ,x2 ,x̃!uV&2~electronic contribution!

5e lim
Dx1→01

E d2k̃

~2p!2
ReH F E

2`

0 dk1

2p
1E

0

eA2dk1

2p
~12e22pl!2E

0

eA2dk1

2p
e22pl2E

eA2

` dk1

2p G

3

1

2
ṽ2E~x1 ,x11Dx1 ;k1 ,k̃!

@k12eA2~x11Dx1!1 i e#@k12eA2~x1!2 i e#
J ~100!

522eE
0

eA2dk1

2p E d2k̃

~2p!2

1

2
ṽ2e22pl(k1 ,k̃)

@k12eA2~x1!#21e2
1e lim

Dx1→01

]

]Dx1
ReH E

0

` dq

2pE d2k̃

~2p!2

3F2
ie(2 i /2)ṽ2I (Dx1 ,2q)

q1 i e
2

ie(2 i /2)ṽ2I (Dx1 ,1q)

q2 i e
G J , ~101!

where the functionI (Dx1 ,q) is defined in Eq.~85!.
The first term of Eq.~101! has a simple interpretation as the (e-regulated! current due to the created positrons. Each of

two positron spin states is created with probabilitye2pl(k1 ,k̃), and each contributes a factor of2ep2 /p1 to the current

density. It is simple to perform the integration overk̃ and to recast the remaining integration to one overx1 :
5-12
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22eE
0

eA2dk1

2p E d2k̃

~2p!2

1

2
ṽ2e22pl(k1 ,k̃)

@k12eA2~x1!#21e2
52

e

8p4E
0

x1

du@eA28 ~u!#2
@pm21eA28 ~u!#e2pm2/eA28 (u)

@eA2~u!2eA2~x1!#21e2
. ~102!

Although the positron current can diverge like 1/e, it must vanish atx150. This crucial fact distinguishes it from th
electron current:

S x21
1

e D 1

p
e2A28 ~x1!E d2k̃

~2p!2
e22pl(eA2 ,k̃)5S x21

1

e De3A28
2~x1!

4p3
e2pm2/eA28 (x1). ~103!

Even though the state is initially empty, there is no way to prevent particle production atx150 because there are modes wi
k1 arbitrarily close to zero. The electron current comes entirely from particles which are created moving with the s
light at the same instant that the current is being measured, so it must be present even atx150. This means that the negativ
electron current must initially dominate the positive positron current. Hence the back reaction acts in the physically
direction to reduce the initial electric field. Since the initial electron current is not only negative definite but infinite, ase goes
to zero, the back reaction becomes infinitely strong, infinitely fast.

The final term in Eq.~101! is the charge renormalization. One sees this because it contains the logarithmic ultra
divergence and because it is proportional to the right hand side of the relevant one of Maxwell’s equations for this back

2A29 ~x1!5^VuJ2~x1 ,x2 ,x̃!uV&. ~104!

We evaluate it by the same strategy as for the analogous~vanishing! contribution toJ1 . First perform the integration overk̃,
then expand in powers of the functionI (Dx1 ,6q), expandI (Dx1 ,6q) in powers ofDx1 according to Eq.~87!, and finally
take the derivative, the real part and the limit inside the integration overq. The result is

e

4p2 lim
Dx1→01

]

]Dx1
ReH E

0

`

dqF2
e(2 i /2)m2I (Dx1 ,2q)

~q1 i e!I
2

e(2 i /2)m2I (Dx1 ,1q)

~q2 i e!I
G J

5
e

4p2 lim
Dx1→01

]

]Dx1
ReH E

0

`

dqF2
1

q1 i e S 1

I ~Dx1 ,2q!
2

i

2
m22

1

8
m4I ~Dx1 ,2q!1••• D

2
1

q2 i e S 1

I ~Dx1 ,1q!
2

i

2
m22

1

8
m4I ~Dx1 ,1q!1••• D G J ~105!

5
e

4p2 lim
Dx1→01

]

]Dx1
ReH E

0

`

dqF 1

Dx1
1

1
2 eA28

q1 i e
1

1
6 eA29 Dx1

q1 i e
2

@ 1
12 ~eA28 !21 1

8 m4#Dx1

q21e2
1•••2

1

Dx1

1

1
2 eA28

q2 i e
1

1
6 eA29 Dx1

q2 i e
1

@ 1
12 ~eA28 !21 1

8 m4#Dx1

q21e2
1•••G J ~106!

5
e

12p2 eA29 ~x1!E
0

`

dq
q

q21e2 . ~107!

It is interesting to contrast this ultraviolet divergence in the expectation value ofJ2 with the finite result~92! we found for
J1 . Of course the expectation values ofboth current operators diverge for a general background; it is just that the dive
term happens to vanish forJ1 in the restricted class of backgrounds we considered. The one loop divergence in the expe
value ofJm(x) must reside on]nFnm(x). In the class of backgrounds we considered this happens to be]1

2 A2(x1) for J2 . For
J1 it is2]1]2A2(x1)50, which is why Eq.~92! is ultraviolet finite.
125005-13
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To get the one loop correction to Maxwell’s equatio
~104! we must combine the constituents of the expectat
value ofJ2 : expressions~102!, ~103! and ~107!. Since Eq.
~107! is a charge renormalization, its proper place is on
left hand side of the equation. The result is

2F11
e2

12p2E
0

`

dq
q

q21e2GA29 ~x1!

5S x21
1

e De3A
2

82
~x1!

4p3
e2pm2/eA28 (x1)2

e

8pE0

x1

du

3FeA28 ~u!

p G2Fm21
eA28 ~u!

p Ge2pm2/eA28 (u)

@eA2~u!2eA2~x1!#21e2
.

~108!

Now recall from standard QED that the renormalized cha
eR and fieldAR(x1) are related to the unrenormalized on
by square roots of the field strengthZ:

eR[AZe, AR~x1![
1

AZ
A2~x1!. ~109!

Note particularly thateA2(x1)5eRAR(x1). Multiplying
Eq. ~108! by AZ we obtain

2FZ1
eR

2

12p2E
0

`

dq
q

q21e2GAR9 ~x1!

5S x21
1

e De3A
2

82
~x1!

4p3
e2pm2/eA28 (x1)

2
eR

8pE0

x1

duFeRAR8 ~u!

p G2

3

Fm21
eRAR8 ~u!

p Ge2pm2/eRAR8 (u)

@eRAR~u!2eRAR~x1!#21e2
. ~110!

If we recognize the one loop field strength renormalization

Z512
eR

2

12p2E
0

`

dq
q

q21e2 ~111!

~up to finite renormalizations!, then the equation assumes
standard form
12500
n

e

e

s

2AR9 ~x1!5S x21
1

e DeR
3AR8

2~x1!

4p3
e2pm2/eRAR8 (x1)

2
eR

8pE0

x1

duFeRAR8 ~u!

p G2

3

Fm21
eRAR8 ~u!

p Ge2pm2/eRAR8 (u)

@eRAR~u!2eRAR~x1!#21e2
.

~112!

For small e ~which we must take to zero anyway! the
instantaneous electron current dominates the positron cu
and the equation becomeslocal:

2AR9 ~x1!'
eR

3AR8
2~x1!

4p3e
e2pm2/eRAR8 (x1). ~113!

When compared with the sorts of equations one finds for
traditional problem of evolving from a surface of constantx0

~for example, see Sec. III of@11#! expression~113! is almost
unbelievably simple. We can simplify it further by rescalin
both the evolution variable

t[S eRm

2p D 2 x1

e
~114!

and the electric field,

F~t![
eRAR8 ~x1!

pm2 . ~115!

The result is a first order, ordinary differential equation

d

dt
eF21

51. ~116!

The solution is straightforward:

F~t!5
1

ln~e1/F01t!
. ~117!

Sincet approaches infinity for any fixed, positive value
x1 our solution means that the back reaction forces the e
tric field to zero before any fixed, positive value ofx1 . This
is as far as the equations can be used because they
derived under the assumption thateRAR(x1) is an increasing
function of x1 . Note that our solution also implies the van
ishing of the vector potential before any fixed, positive val
of x1 . So the expectation value ofJ1 is really zero at the
physical solution, and there is no need to consider ba
grounds which depend uponx2 .

VI. INFINITE BOOST CORRESPONDENCE LIMIT

The results of the past section have a single unsatisfy
feature: the factors of 1/e in the expectation value ofJ2
5-14
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mean that the back reaction on the light cone becomes
nitely strong, infinitely fast. This seems to be in drama
distinction with what happens for the traditional problem
which the state is released on a surface of constantx0. There
the induced current grows smoothly fromx050, and it re-
mains finite for finitex0. The purpose of this section is t
show that our result is not distinct from the traditional on
Rather the problem we have worked out can be viewed as
infinite boost limit of the traditional problem, in the sam
way that light cone quantum field theory can always
viewed as the infinite momentum frame@20#.

To fix the notation let us consider two inertial frames. T
one in which we have been working will be denoted t
unprimed frame. The primed frame moves with speedb
along the minusz axis, so the Lorentz transformation b
tween the two systems is

t85g~ t1bz!, ~118!

z85g~z1bt !, ~119!

where g[1/A12b2. Note that the time coordinate of th
primed frame has the following expression in terms of
light cone coordinates in the unprimed frame:

t85A11b

12b

x1

A2
1A12b

11b

x2

A2
. ~120!

The relation between the two frames is shown in Fig. 2.
We wish to compare evolution inx1 in the unprimed

frame with evolution in primed frame in the limit thatb
approaches one. We assume that the vector potential an
current density of the primed frame depend only upont8 and
have the form

FIG. 2. The various coordinate systems.
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A08~ t8!50, A38~ t8!5A~ t8!, ~121!

J80~ t8!50, J83~ t8!5J~ t8!. ~122!

Transforming the vector potential covariantly gives

A05g~A081bA38!5bgA~ t8!, ~123!

A35g~A381bA08!5gA~ t8!. ~124!

The current density transforms as a contravariant vecto
give

J05g~J802bJ83!52bgJ~ t8!, ~125!

J35g~J832bJ80!5gJ~ t8!. ~126!

The light cone componentsA65(A06A3)/A2 of the
unprimed frame vector potential are

A1~x1 ,x2!5
1

A2
A11b

12b
ASA11b

12b

x1

A2
1A12b

11b

x2

A2
D ,

~127!

A2~x1 ,x2!5
21

A2
A12b

11b
ASA11b

12b

x1

A2

1A12b

11b

x2

A2
D . ~128!

We can enforce ourA150 gauge condition with the tranfor
mation

Â6~x1 ,x2!5A6~x1 ,x2!2]6E
0

t8
ds8A~s8!, ~129!

which gives

Â2~x1 ,x2!52A2A12b

11b
ASA11b

12b

x1

A2

1A12b

11b

x2

A2
D . ~130!

The ~gauge invariant! electric field is

E~x1 ,x2!52]1Â2~x1 ,x2!

5A8SA11b

12b

x1

A2
1A12b

11b

x2

A2
D . ~131!

The light cone componentsJ65(J06J3)/A2 of the
unprimed frame current vector are
5-15



th
i
t

e
ls

e

as
i

th
e
e

th

e

h
l

si

of
ed

he
an

cil-

il-

the

ials

s

nds

olu-
tion
s.

ec.
op
the
ith

T. N. TOMARAS, N. C. TSAMIS, AND R. P. WOODARD PHYSICAL REVIEW D62 125005
J1~x1 ,x2!5
1

A2
A12b

11b
JSA11b

12b

x1

A2
1A12b

11b

x2

A2
D ,

~132!

J2~x1 ,x2!5
21

A2
A11b

12b
JSA11b

12b

x1

A2
1A12b

11b

x2

A2
D .

~133!

The key relations are Eqs.~130!–~133!. Let us consider
them asb approaches 1; first under the assumption that
back reaction is turned off. In this case the electric field
constant, so the vector potential and the current density in
primed frame both grow linearly int8:

A~ t8!5E0t8, J~ t8!5J0t8. ~134!

From relations~130! and ~131! we see that the light con
vector potential is also linear, and the electric field is a
constant:

Â2~x1 ,x2!→2E0x1 , E~x1 ,x2!→E0 . ~135!

Relation~132! reveals a linearly growing light cone charg
density,

J1~x1 ,x2!→ 1

2
J0x1 , ~136!

just as our field theoretic computation produces for the c
of a constant electric field. The really interesting relation
Eq. ~133! which gives aninfinite ~andx2 dependent! result
for J2 :

J2~x1 ,x2!→2
1

2
J0S 11b

12b
x11x2D . ~137!

The physics of these results is quite simple. First note
any e1e2 pair which is created with finite speed in th
primed frame must be moving at the speed of light in th
2z direction after the infinite boost needed to reach
unprimed frame. Recall that an on-shell particle has

p35
1

A2
S p12

ṽ2

2p1
D , ~138!

so p3→2` corresponds top1501. This is why we only
see particle production on the light cone atp150. Since
electrons must accelerate in the2z direction, they immedi-
ately leave the manifold, moving parallel to thex2 axis.
Positrons accelerate in the1z direction, so they stay on th
manifold and, at late values ofx1 , move parallel to thex1

axis. This is why the light cone charge densityJ1 grows.
The reasonJ2 tends to beinfinite is that both particles of
each pair are created moving at the speed of light, so t
contribute an infinitep2 /p1 . Of course they tend to cance
by virtue of their opposite charges. The reasonJ2 is infi-
nitely negativeis that the electrons speed up while the po
12500
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trons slow down. Finally, we can anticipate from the form
Eq. ~120! that any nontrivial time dependence in the prim
frame must give rise to infinitely rapid evolution inx1 on the
unprimed frame.

Now consider the situation in the primed frame with t
back reaction turned on. What one sees at one loop is
approximately oscillatory electric field and current@11#. Let
us assume, for simplicity, that the behavior is exactly os
latory and consistent with the Maxwell equation2A9(t8)
5J(t8):

A~ t8!5
E0

v
sin~vt8!, J~ t8!5vE0sin~vt8!. ~139!

From relation~130! one sees that the vector potential osc
lates infinitely fast with infinitely small amplitude:

Â2~x1 ,x2!→2A12b
E0

v
sinS vx1

A12b
D . ~140!

The electric field oscillates with the same amplitude as in
primed frame but with infinite frequency:

E~x1 ,x2!→E0cosS vx1

A12b
D . ~141!

From relation~132! we see thatJ1 goes to zero:

J1~x1 ,x2!→ 1

2
A12bvE0sinS vx1

A12b
D , ~142!

which means we do not need to consider vector potent
that depend uponx2 in addition tox1 . Of course the source
of the infinitely rapid oscillations is theJ2 current which has
infinite amplitude in addition to infinite frequency:

J2~x1 ,x2!→ 2vE0

A12b
sinS vx1

A12b
D . ~143!

This all looks very much like what we found in the previou
section.

VII. DISCUSSION

We have constructed a complete operator solution~34! for
free QED in the presence of an electric field that depe
arbitrarily upon the light cone coordinatex1 . This class of
backgrounds is general enough to include the actual ev
tion of the electric field as it changes due to the back reac
from the current of electron-positron pairs which it induce
One determines the actual electric field~to some order in the
loop expansion! by computing the expectation value ofJ2

~to this order!, setting this equal to2A29 (x1), and solving
the resulting equation. We did this to one loop order in S
VI and there is no essential obstacle to including higher lo
effects. The vertices of QED do not even depend upon
background, nor does the photon propagator. And w
5-16
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our operator solution we have the essential elements of
electron propagator.

It might be useful to recapitulate the rather subtle way
equations of motion can be satisfied within our class of ba
grounds. We started with the mode functions in a gene
A2(x1) gauge field. One consequence was expression~91!
which states that the expectation value ofJ1 grows with
eA2(x1). But then the Maxwell equation]2]1A25J1 im-
plies thatA2 must depend onx2 , contradicting our initial
ansatz. The resolution of this apparent contradiction der
from Eq. ~112! for the renormalized expectation value
J2 . In the limit thate goes to zero the leading contributio
to this source is negative infinite and independent ofx2 .
Hence so too is]1E. In other words, having a finite, positiv
electric field causes thex1 derivative of the electric field to
become infinitely negative, which of course drives the el
tric field to zero. At this point one of the assumptions of o
formalism breaks down, but it is easy to see, on phys
grounds, that the electric field must fall below zero and t
the resulting negative electric field engenders apositiveinfi-
nite J2 current. This would lift it back up through zero
whereupon the~not necessarily periodic! cycle would start
again. Since the induced currents are infinite, the respo
time is zero. So the picture is of an electric field undergo
oscillations of finite amplitude with infinite frequency. Sinc
our vector potential vanishes atx150, we can recover it
from the electric field by integration:

A2~x1!52E
0

x1

dy1E~y1!. ~144!

But this integral must vanish for an electric field undergoi
oscillations of finite amplitude with infinite frequency
Therefore our result~91! giveszerofor the expectation value
of J1 , and there is no need for the solution to depend up
x2 .

One of the novel features of our solution is that the p
nomenon of pair creation is a discrete event on the li
cone. Evolution is diagonal in the Fourier basis ofk1 andk̃;
however, it is the minimally coupled,kinetic momentum
p15k12eA2(x1) which determines whether a particul
Fourier component creates or annihilates particles at
given value ofx1 . Whenp1 passes from negative to pos
tive that particular Fourier component experiences pair c
ation with probabilitye22pl(k1 ,k̃), wherel is given by Eq.
~49!. We exploited this at the end of Sec. IV to give a simp
and explicit derivation of the particle production rate per u
volume, in real time and without resorting toad hoc inter-
pretations for formally meaningless expressions.

Why pair creation is so simple on the light cone w
explained in Sec. VI. Quantum field theory on surface
constantx1 can be viewed as the infinite boost limit of th
conventional problem formulated on surfaces of constant8
@20#. Pair production is not localized in time when the ele
tric field is homogeneous on surfaces of constantt8. Each of
the various momentum modes has a nonzero probabilit
appearing inany time interval. However, when subject to a
infinite boost one sees that the newly created particles m
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appear, to the light cone observer, to be moving withp3→
2`. This corresponds top1→01, which is why particles
are created on the light cone only when their kinetic mom
tum p15k12eA2(x1) passes through zero.

Before a particular Fourier component undergoes p
production, the field atx1 is a mode function of modulus
unity times the same Fourier component of the field atx1

50. After pair production the modulus of the mode functio

drops by a factor ofe2pl(k1 ,k̃). The missing amplitude is
acquired by new operators which come in fromx252`.
This may be one of the more interesting features of our
lution for light cone experts. It has long been known th
specifying the fields on a surface of constantx1 cannot com-
pletely determine their future evolution. This is obvious f
massless fields in two spacetime dimensions. However,
problem has always been hidden atk150 when eitherm
Þ0 or D.2. It never needed to be resolved if one on
desired scattering amplitudes; these can be computed a
from k150 and then analytically continued. In our analys
the problem could not be avoided because more and m
modes are pulled through zero kinetic momentump15k1

2eA2(x1) as long as the electric field remains positive.
What the light cone is not at all good for is studyin

plasma oscillations. In Sec. V we could follow the elect
field only as far as its first zero owing to our assumption t
eA2(x1) is an increasing function. Had this assumpti
been relaxed we could, in prinicple have followed many o
cillations, but they would still have come with infinite fre
quency in the limit thate vanishes. We saw in Sec. VI tha
this is the right result for the light cone, but it still leaves
without quantitative control over the frequency of oscillatio
in the primed frame where the electric field is homogene
on surfaces of constant time. Of course wecan get the am-
plitude of the electric field, which is unchanged by the in
nite boost limit, and we can count the number of oscillatio
We should also be able to see dissipation by going to hig
order. In 311 dimensions one expects energy to flow out
the electron-positron plasma through the emission of p
tons. This should begin at two loop order in the Schwing
Keldysh result for the expectation value of the current ope
tor.

Our original motivation for studying this problem was
see what it can teach us about techniques for treating
related problem of quantum gravitational back reaction
inflation. It is worth summarizing what we have learned
that context. First, there does not seem to be any gen
problem with using expectation values to study the back
action. The results we obtained by doing this in Sec. VI ha
a transparently correct physical interpretation. We sho
caution, however, that the current operator is a gauge inv
ant, unlike the metric.

The second point of relevance is that the back reactio
an infrared effect. The important physics is associated w
the finite range of modes whose kinetic momentum h
passed through zero. We saw in Sec. VI that the ultravio
divergent contribution to the expectation value ofJ2 comes
from different terms and has a different dependence upon
fields. Had we merely subtracted these terms and repla
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the bare charge and field everywhere with the renormali
ones we would have gotten the correct result. Thishad to
work from the context of effective field theory, but it is com
forting to see it actually do so.

Finally, there is at least the possibility that one can follo
the system into the regime where the back reaction i
strong effect. This can happen if the one-particle-irreduci
~1PI! diagrams past some finite order in the loop expans
make no large contribution to the effect. Then one will g
the right result by simply solving the effective field equatio
obtained by evaluating the expectation value of the curr
operator to that finite order. Note especially that one does
have to simply do this andhope that it works. Once the
solution from the truncated effective field equations is o
tained one can always check to see whether the higher
ys

hr

,’’

E

12500
d
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t

nt
ot

-
op

diagrams are in fact negligibly small in this background.
the way is open to making a potentially self-consistent c
culation.
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