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We consider the back reaction of quantum electrodynamics upon an electri&ield)= — A’ (x.) which
is parallel tox® and depends only on the light cone coordinate= (x°+x3)/y2. Novel features are that the
mode functions have simple expressions for arbitraryx, ) and that one cannot ignore the usual light cone
ambiguity at zero+ momentum. Each mode of definite canonical momenkynexperiences pair creation at
the instant when its kinetic momentym =k, —eA_(x.) vanishes, at which point operators from the surface
atx_= —o play a crucial role. Our formalism permits a more explicit and complete derivation of the rate of
particle production than is usually given. We show that the system can be understood as the infinite boost limit
of the analogous problem of an electric field which is homogeneous on surfaces of cafistant

PACS numbd(s): 11.15.Kc, 12.20.Ds

[. INTRODUCTION observed cosmological constant is so small. If one forbids
unnaturally light scalars, the model has only a single free
Many interesting things happen when quantum fieldparameter—the dimensionless product of Newton’s constant
theory is formulated on a non-trivial gauge field or metricand the bare cosmological constant. It can therefore make
background. One of these is that the background can causmique and cosmologically testable predictions in a way that
virtual particles to move so as to engender currents oscalar-driven inflation, with its arbitrary potential, can never
stresses which act to change it. This is the phenomenon afo. This was exploited recently to make predictions for the
back reaction. tensor-to-scalar ratio and for the tensor and scalar spectral
Our own fascination with back reaction concerns a quanindices of anisotropies in the cosmic microwave background
tum gravitational process which occurs on an inflating back{3].
ground. Superluminal expansion rips apart virtual pairs of There is nonetheless a widespread dissatisfaction with the
gravitons—or any other effectively massless particle whichmodel. For one thing, its most interesting predictions are not
is not conformally invariant. Although the total energy of easy to infer because they come after the slowing effect has
these pairs grows exponentially with the co-moving time, thebecome strong and perturbation theory has broken down.
corresponding growth of the 3-volume results in only a con-Even in the perturbative regime there are well-motivated ob-
stant energy density. The interesting secular effect comes @ctions to the use of gauge fixed expectation values in the
the next order when one considers the gravitational poterexplicit computations which have been ddd¢. On a more
tials engendered by the pairs. As each pair recedes thesebjective level there is the feeling that nothing can be un-
potentials remain behind to add with those of newly createdlerstood about quantum gravity without first resolving the
pairs, and the accumulated gravitational self-interactiorultraviolet problem and that the new physics behind this
grows. Because gravity is attractive, this self-interactionshould also resolve the problem of the cosmological con-
must act to slow inflation. Because gravity is a weak inter-stant. Finally, conventional particle physicists lack intuition
action at typical inflationary scales, inflation can proceed forabout the locally de Sitter background in which the process
a very long time before the slowing becomes significantoccurs. For all these reasons it is interesting to study the
Because the process is infrared, it can be studied by naivelghenomenon of back reaction in a simpler and more conven-
guantizing general relativity, without regard to that theory’stional setting for which there is no doubt either about what
lack of perturbative renormalizability. And explicit perturba- happens qualitatively or how it can be computed analytically.
tive computations confirm that the slowing effect eventuallyOne such setting is the response of quantum electrodynamics
becomes non-perturbatively strong, both for pure graiify to a homogeneous electric field.
and for certain scalar mod€]g]. What happens initially when a prepared state is released
The potential phenomenological implications of thisin the presence of a homogeneous electric field is that
mechanism are staggering. It at once provides a realistielectron-positron pairs emerge from the vacuum to form a
model of inflationand an explanation for why the currently current which diminishes the electric field. If the state is
released on a surface of constafitwith no initial charge,
then the electric field at later times depends only ugn

*Email address: tomaras@physics.uoc.gr This process was considered long before the ultraviolet prob-
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ground field effective action to compute the rate of particleresolves itself into a renormalization of local terms in Max-
production per unit volume in the presence of a strictly con-well’'s equations. Here, as in gravity, pair production and
stant electric field7]. Since then, a variety of articl§8—14]  back reaction are infrared effects which can be studied with-
and monographEl5,16 have treated the issue of what hap- out understanding the ultraviolet provided one subtracts the
pens when the effect becomes strong. divergences and uses the physical couplings in the effective
We cannot hope to add much to the physical picturefield equations. A peculiar feature of our one loop result is
which has emerged through the efforts of so many fine scithat the back reaction becomes infinitely strong infinitely
entists. Indeed, our motive for studying this system is thafast. This is explained in Sec. VI by noting that our light
the physics of what happensnistin doubt. However, we do  cone system is the singular, infinite boost limit of the tradi-
have a technical contribution to make by working out thetional system in which the state is prepared on a surface of
closely related process in which a source-free state is reconstan® and the electric field depends upehrather than
leased on a surface of Constmtz (XO+X3)/\/§ in the pres- X4 . Similar Correspondence limits have been reCOgnized
ence of an electric field which is parallel 13. The resulting ~ Since the earliest work on light cone quantum field theory
evolution yields a homogeneous electric field which depend§20]. Our conclusions comprise Sec. VIII.
upon x, rather thanx®. An interesting feature of Dirac
theory inany such background is that the mode functions are Il. CLASSICAL ELECTRODYNAMICS ON THE LIGHT
simple. This fact was noted recently by Srinivasan and Pad- CONE
manabhar17,18 for the special case of a charged scalar in

a constant electric field, although we do not agree with their AI.I the analygs of th.'s Paper Is dong with a flat, t|me!|ke
metric. We define the light cone coordinates as follows:

WKB solution.
It should be pointed out that our background is not the 1
plane wave treated by Wolkoyd 9] and Schwingef7]. In Xo=—(x0=x3). )

that background the electric field is perpendicularxtt 2

there is a perpendicular magnetic field of the same magni-

tude, and the two together obey the free Maxwell equationsThe other(“transverse’) components of* comprise the

In our background the electric field Farallel to x3, there is  2-vectorx. The same conventions apply to the momentum
no magnetic field, and the free Maxwell equations are onlwectorp*, so one might write

obeyed when the field is constant. What we have instead is o o

an explicit form for the fermion mode functions for a class of x“p,=x0p°—x3pd—X-p=x, p_+x_p —X-p. (2
backgrounds which is general enough to include the actual

evolution of the electric field as it changes under the impaciNote, however, that Ed1) results in derivatives with respect
of a quantum electrodynamic back reaction. By taking thelo X, and x_ having their natural expression in terms of
expectation value of the current operator in this general clasderivatives with lowered indices:

of backgrounds we obtain the source term for the effective

field equation obeyed by the actual electric field. This is P _i(a +3,) 3)
precisely what we should like to do for quantum gravity in = 2 0—%3/:

order to treat the problem of what happens when the slowing
effect becomes non-perturbatively strong. Therefore many o
the same issues of gauge fixing, the use of expectation vaﬁ
ues, renormalization and the breakdown of perturbation
theory can be examined in a setting where the answer is not
in doubt.

This paper contains seven sections of which this introduc- We define the light cone components of the vector poten-

tion is the first. In Sec. Il our light cone coordinate and gaugg; : : P .
. _ ial A, in analogy with those of the derivative operatyy:
conventions are stated and we work out the dynamics of a~  # 24 perator

classical charged particle moving in our general background.

ince we defind as the transverse componentsdgf, one
an write

p“3,=p%o+ P33+ p-V=p,d,+p_d_+p-V. (4

In Sec. lll we give a complete operator solution for free QED A.= i(AoiAs)- (5)
in the presence of this background, expressed in terms of the V2
field operators on the surfaces f =0 andx_=—o. It

turns out that pair creation is a discrete event on the lighPur gauge condition i#\, =0 and we restrict our atention
cone. Each mode passes from positive to negative frequendg configurations for whiclA_ andA vanish atx, =0. This

at a certain value ok, depending upon the mode. At this means that onlyA_ is ever nonzero, and it depends only
instant each mode experiences a drop in amplitude with theponx, . The nonzero components of the field strength ten-
missing amplitude taken up by operators from the surface ator are

x_=—x. We use these results in Sec. IV to give an explicit,

analytic derivation for the rate of particle production per unit F¥= —F®=F = —Fg=—AL(X,). (6)
volume for our general background. In Sec. V we compute o

the one loop expectation value of the current induced bySince we want the electric field=zF*° to be initially di-
such a background. As expected, the ultraviolet divergenceected along the positive axis, it follows thatA’ (0)<O0.
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When necessary, we will therefore assume thafx ) is a t
decreasingfunction of x, . Since the electron’s charge is e et
negative €<0), our nominal assumption is thaA_(x,) is x
anincreasingfunction ofx, . N .
It is instructive to consider the dynamics of a point par- ,
ticle of massm and chargee<0 which moves under the AN e
influence ofA_(x, ). From the differential form of the Lor- AN e

entz force law, N .

dp*=eF*”dx,, (7)

we infer the following relations for the light cone coordinates B 4

and momenta:
dp,=—eA (x,)dx,, (8
dp_=eA’ (x,)dx_, (9)

dp=0. (10)
SinceA’ (x,)dx,=dA_, the relation forp. implies that
kKi=p,(Xy)+eA (Xy) (11

is a conserved quantity. Sinekx_=(p_/p,)dx, , the re-
lation for p_ implies that the producp_(x,)Xp,(X;) is
also conserved. This product cannot invol&ke (x.), be-

FIG. 1. The evolution of ar*e™~ pair created ak, =x_=0.

small. The integral diverges ik, —eA_(u) goes to zero
even as fast agug;;—u — and note thaeA_(x,) is grow-

cause the latter depends upgn, so the correspondence ing linearly at x, =0. What this divergence means physi-
limit in which A_ vanishes determines the mass shell relacally is that the electron accelerates to the speed of light and

tion

2. (X)p-(X4)=p-p+mP=w?. (12)

motion of such a point particle, the conserved quarkitityis

the Fourier conjugate to the coordinate of the field which
creates charge e and annihilates charge We shall follow
the convention of Klugeet al. [11] in distinguishing be-
tween the constartanonical momentum_kand thex, de-

pendent kinetic momentum p(x.)=k,—eA_(x,). We

will also see that

) w?[2 w?I2
_ X = =
P P(Xy) ky—eA (Xy)

13

is indeed the eigenvalue of the operattér . A fact of cru-
cial importance is that it changes sign when(x, ) passes
through zero.

We conclude by following the trajectory of a point par-

leaves the manifold moving parallel to tke axis as shown
in Fig. 1.
The result for positrons is obtained by simply changing

to —e. Note that although positrons also accelerate to the
espeed of light they move parallel to tlxe axis and do not
leave the manifold. We can therefore anticipate that, for
E(x,)>0, pair creation on the light cone manifests itself by
the accumulation of a charge density of positrons whose
electron partners have left the manifold. Since electrons exit
the manifold by reaching the speed of light we can also an-
ticipate that they induce an infinite current. These suspicions
will be confirmed by the detailed calculations of Secs. IV
and V. Why the light cone must show an infinite effect will
be explained by the correspondence limit of Sec. VI.

Ill. QED ON THE LIGHT CONE

The light cone components of the gamma matrices are

ticle of masan and chargee<0 as it moves under the influ- SES i(yoi 3. (15)
ence ofA_(x,). Sincedx_=(p_/p,)dx, we can integrate V2
to find
Note that ¢.)?=0. We follow Kogut and Sopef20] in
lz;zdu defining light cone spinor projection operators:

X_(x4)=x_(0)+ (14)

Jo [k, —eA_(W)]?

Under our nominal assumption tha#\_(u) is an increasing

function, k. —eA_(u) must pass through zero at some valueThese act on the Dirac bispinor to give its-*” and *“ —

Ugii=>0, at least for modes whose initial momentkm is

p.=2 3—1 16
i=§( ) 27+7+' ( )

components:
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p.=P.y, yl=yP.. (17) One can integrate Eq20) from the initial value surface at
N X, =0:

It is convenient to Fourier transform on the transverse coor-

dinates:

_ _ _ Ui (Xy X2)= 1 (0X0)
wi(x+ X 1k)Ej dz‘;(eilk'xl;bi(x+ X !X)' (18) X |
+ ~ o~ ~
) ) - [Faum-3® 5y I wx. @2
Note that the transverse derivative operatobecomesk in 0
the Fourier representation. Because transverse coordinates
play so little role, we shall often omk from the argument
list to simplify the notation.
With these conventions the Dirac equation becomes

A similar integration of Eq.(21) from the surface ak_=
—L can be achieved by multiplying®A-*-:

(Y"id,—y eA,—m)y
=[y o, +y_(io-—eA)~y-k—m]y, )
(19 —e1eA- b f CdyeleA-()
—-L

where it should be noted that=—|e| is the charge of the
electron. Multiplication alternately witly_ and y, gives

Po(xy xo) = ADETY (x, - L)

(M-3R 5. 0. 00.0). (23

~ ~~ 1 _
if7+‘//+(x+yx—):(m_Y‘k)E')’—l//—(X+1X—)a (20

Substituting this into the previous equation #6r and iter-

[19-—eA-(x)]g- (X %) ating gives the complete initial value solution fgr. on the
_ -1 _ regionx, >0 andx_>—L:
=(M=y-K) 5 v+ s (Xe x). (2D

©

- 1. \"rx ) X_ ) Up— .
l/f+(X+ ,X_) = 2 ( — sz) f +du1e7'eA—(U1)X—f dvlem‘A—(Ul)Ul. .. f " 1d unef'eA—(Un)Un—l
0 —L 0

n=0

Un— . ~ Un . _ ) ~
xf ldvne'EA(“n)”n{ ¢+(o,vn)—f due'A(”)”n(m—y~k)§y_e'eA(”)Ldf_(u,—L)]. (24)
—L 0

A similar expansion fory_=w 2(m—7y-Kk)y.id, ¢, fol- °° = dk,
lows from Eq.(20). medvn':(”n) fﬁmﬁe(k”
Of course we are interested in the limit Asbecomes
infinite, in which case the serig®4) can be summed. For i = dk, o
n>0 we first extend the integration ovey, to the full real = lim J’,w . G(k*)J,l,edvF(U)' (26)
line using the identity 0"

_ The limit e—0" will be understood in all subsequent ex-
O(vn-1—vp)e A (Unlvn=vn-dl pressions, as per the usual conventifor a differente) in
o dk. jeikstialvn=on_1l quantum field the_ory. _ _
= _ The next step is to move the, integration all the way to
—. (25 . ] i
— 2m Ky —€A (Up)tie the left and perform the integrations over successively,
fromi=n—1toi=1, using

Owing to the factor ofe™ <“n, the integration over, only

. ) ) ) ) . ia—ilk, —eA_(up)+ielvi_
makes sense provided the integration okeris done first. f”"ldv,efim7eA_(ui)+ie]ui:'e - ' .U' '
To change the order of integration one must appropriately J-« ' ki—eA (u)+ie
regulate the lower limit: (27
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Since the integrand at this stage is the product over the same dk

. . ~ T “ +
function of eachu; — f(u;)=[k, —eA_(u;)+ie] * —one i (X4 X .k)=J >. €

—i(k++i5)x[5 [A,]
can factor they; integrations: o

X(0X4 ;ky K)Eo(ks k)

| duttun- [ aut) .
0 0 —fo duA(k,—eA_(u);e)

1 X+ n
:m|: J;) dulf(ul)

X4 Un
fo dusf(uy)--- fo dug(u) where we define

f du glu )[f dulf(ul)

The n=0 term can be included using the Fourier inversion _
theorem: Because the factor of [A_](u,x, ;k. ,k) develops a sin-
gular phase a%, approachesA_(u), the distributional

(28)

X E[A_T(u,X; 1K ,T<)c1>x(u,T<)+,

(34)

(29 ®..(u,k)= lim (m—"y- k) y_ ¥ (u,—LK)e ieA-(L,
L—oo
(39

limit of the delta sequence in the second term must be taken

h(x_)= foc dk, efi(k++ie)x_jw doel (< F19vh (). with care. We shall po_stpone this to the _next section._
—w 27T ~1le It is worth commenting on two exceptional properties of

(30 our solution(34). First, it is validfor arbitrary vector poten-

tial A_(x,). If the state aix, =0 is translation invariant in

The resulting series gives an exponential. For the terms prot- andX, then the back reaction will change the way
portional toj_ we get depends uporx, but it cannot induce other potentials or

dependence upon other coordinates. Of course the photon

propagator is not affected by the background, nor are the

1 du,
SR, |
n=0 n! 2 u k+—eA_(u1)+I6

F{ du,
=exg — —w

tainly includes the actual solution. The only additional sim-
plification one would obtain by making the electric field con-
stant[A_(x,)=—EXx,] is that then the integral over; in

=E[A (ux. k. K). (31) the mode functiong31) can be explicitly performed. We

k+ eA_(uy)tie

n vertices. So we can evaluate the expectation value of the
current operator — to as high an order in the loop expansion
as is desired — for a class of vector potentials which cer-

shall see, in Secs. IV and V, that this is not required in order
to be able to compute either the rate of particle production or

The terms proportional tgr, give £ [A_](0, X, ;k, k). the expectation value Of. the current oper.atgr. _
It remains to perform the final integration over For the The second property is that ol prescription provides a

terms proportional tdj, this gives oure-regulated Fourier Precise definition for the ambiguity at zere momentum
transform which, for m#0 and/or more than two spacetime dimen-

sions, is traditionally left unresolved in light cone quantum

field theory.(See, for example, footnote No. 12 in the work

=4k, )= J” do e+ (0 ). (32) of Kogut and Sopef20].) One can usually avoid doing this
He one to infer the zero momentum limit from the result
5 for nonzero momentum. In our background the problem
For the terms proportional t¢_ the integral ovew results is aggravated by the fact thavery mode with positive
in a delta sequence canonical momentunk, becomes singular when its ki-
netic momentump,(x,)=k,—eA (x,) passes through

[k, —eA_(u)+ielle zero. At this instant the mode functions [A_]
(33 X(0,x, ;k, k) oscillate with infinite rapidity and one re-
quires thei e prescription to precisely define what happens.
Note too that we haveerivedit rather than simply making
whose distributional limit would be 25(k, —eA_) if it an ad hocguess. As an essential part of the derivation we

were multiplied by a test function. The final result is have found thaty, (x. ,x_,X) is determined not just by

ie”
k,—eA (u)+ie ’

Ak, —eA_(u);e)=

125005-5
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¥, (0,x_ ,X) but also byy_(x, ,—%,x). WhenA_=0 (and

m= 0 and/or the number of spacetime dimensions is greater

than 2 one can ignore the data from the surfacexat=

—o because it remains segregated inkhe=0 mode whose
contribution to scattering processes is inferred by analyti-
cally continuing the result frork, #0. We shall see in the
next section that these data cannot be ignored in our back-
ground and that they play an essential role in the process of

particle production.

To complete our operator construction of free Dirac
theory in the presence & _(x,) we must specify how the

fundamental operatof= o(k, ,k) and®..(u,k) act upon one

PHYSICAL REVIEW B2 125005

~ ~ 1
{Eo(ks k), Ed(a ,q>}=EP+<2w>35<k+—q+)
x 8%(k—1q), (40)
_ LW
{(I)oo(x+ 1k)vq);rc(y+ vq)}: mp+5(x+_y+)(2’ﬂ)2

x 8%(k—1). (41)

IV. PARTICLE PRODUCTION ON THE LIGHT CONE

another. Of course the operator algebra derives from canoni-

cal quantization. The Fourier transforim X) of the Dirac
Lagrangian i$

L= (v, — yreA,~—m), (36)
I -1 -
:\/§¢+ Io"+1,/1+—(m—'y~k)§‘y,1//,
+\/§TﬁT[(ia—eA)Tp
-1
_(m_’)"k)z’}’+l//+ . (37

The variable conjugate t¢, underx, evolution isi 24" ,
so we must have

{Ter(XJr X 1’E)7~¢1(X+ !yf 1a)}

1 -
=—=P,8(x_—y_)(2m)*5*(k—q).

V2

(38)

Since the variable conjugate #_ underx_ evolution is
i V29" , we must similarly have

{;jf—(x-%— :X— a’R):’J/t(y+ ,X_ !a)}

1 ~ o~
=—P_8(x,—y.)(2m)?28(k—Q).

V2

(39

Operators on an arbitrary surface of constantdo not gen-

Equation(34) expresses the free fielg, (x, ,x_ k) in
terms of the fundamental operatds(k, ,k) and®..(u,k).
We have just seen in Eq§40),(41) how these fundamental
operators act upon one another and upon their adjoints. Their
particle interpretation in free field theory derives from the
light cone “Hamiltonian”—that is, from the generator &f.
evolution. Since the Dirac Lagrangian vanishes as a conse-
guence of the field equations, the Hamiltonian density is just

the pq term:

H(X+ X ”)‘(): \/§¢1(X+ X ,’;()i(?_'_ ¢+(X+ X !;()
(42)

The Hamiltonian is the integral of this over and our
e-truncated portion of thex_ axis. We can express it in

terms of . (X ,X_ ,K) using Parseval’s theorem

@ dK ~
o= [ ax | oV 0 xR

><";/'/-%—(X+ X "‘R) (43)

As might have been expected from this system’s invari-
ance under translations x_ and’x, the Hamiltonian be-
comes diagonal in momentum space. To see this we take the
field’s e-regulated Fourier transform on_ :

W(x, kK, ,R)Ef dx_e 1% (x, ,x_ k)

—1le

erally anti-commute with those on an arbitrary surface of

constani_ . However, by causality we know that the opera-

tors atx, =0 do anti-commute with those at. = —«. So

the only nonzero anti-commutators among the fundamentah the limit of small e the Hamiltonian becomes

operators are

!Note that the quantitys™ is computed by Fourier transforming

first and then taking the adjoint.

(44)
=E[A_1(0, X, ki K Eo(ky k)
- | “auatk, —ea e
X E[AJ(ux; ki J)®..(uk). (45
o= [~ 5= (Sizﬁwm Ko K
Xid, W(xy Ky K). (46)

125005-6
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This last expression forH(x,) implies that the
X, -dependent “energy” carried by (x. k. k) is its ei-
genvalue under-id. . From the first term of Eq(45) we

see that, if¥(x, .k, ,K) is an eigenfunction of-id, , its
eigenvalue must be

— %2
—eA_(Xxy)+ie’
(47)

When e vanishes this is precisely minus the reqdl8) we
found at the end of Sec. Il for the. momentum of a clas-

_ia+|n{g [A—](01X+ 1k+ !’R)}: k

sical charged particle moving in our vector potential. We

therefore expect¥(x, ,k, k) to annihilate electrons for
k,>eA _(x,) and to create positrons fér, <eA (x.).

It remains to show tha¥ (x.. ,k. ,K) is actually an eigen-
state of—id, . Since the first term of Eq45) obviously has

this property, our task reduces to taking the distributional

limit of the delta sequencé(k,—eA_;e) in the second
term. We shall do this under the assumption thatis well
separated from the singular points kt =0 and atk,
=eA_(x,). Two pieces of notation we shall find useful are
the inverse vector potentiad(k, ),

ki=eA (X(ky)), (48
and the dimensionless ratio of to (— 2e times the electric
field:

w2

MKy k) (49)

- 2eA (X(k.))

The first step in transforming the second term of &)
is to change variables fromto z=[k,—eA_(u)]/e,

U
—jdz
[

O (X(k; — €2),K)
X

ie—i(z+i) ~
Z+| g(x(k+_ez)vx+;k+vk)

: (50)
eA” (X(k; —€z2))
where the upper and lower limits are
k k, —eA_(x
U= _+’ |= +—(+) (51)
€ €

As € approaches zero they go to positive and negative infin-

ity, respectively, fok . in the range 8k, <eA_ (x.). This
is the only case in which one gets a nonzero result.

We can absorb the Jacobian in E0) by defining a new
fundamental field

5 [ 27 @ (X(k.)K)
Oo(k+ vk)E ~ .
A(ky k) e AL (X(ky))

This brings us to the form

I

(52

PHYSICAL REVIEW D62 125005

udz ie '@ ~
Ny ———EX(k —€2),x4 ;k; ,K)

Z+i
X \27NE (k. — €z,K).

Note from Eq.(41) that the anti-commutator ¢&..(k. ,K)
with its adjoint is the same as that &f, with 2 :

(53

~ ~ 1
{E.(ks k), EL(q, )} = ﬁmzw)sa(kcqn

x 8%(k—=1). (54)

Now consider the mode function in expressi@?3):
EX(Ky —€2),X5 ;K4 ,K)

_ i~2JX+ dul
—ex Ew x(k+,ez)k+—ek(ul)+ie'
(55

For z<0 the lower limit of the integral is a little below the
singular point where the real part of the denominator van-
ishes. Forz>0 the lower limit is a little above this point.
Straddling the singular point like this leads to great sensitiv-
ity with respect taz, even as goes to zero. To isolate this
dependence we factor the mode function

EX(ky —€2),x, 5Ky IE):S(X(k+_ €z),X(ky )k, -R)

X EX(K1), X 5Ky k). (56)
The second factor is independent nfand can be pulled
outside the integral. We can also taketo zero in\(k,
—ezk) and inE..(k, — ez k).

Taking the smalle limit of the first factor requires care.
We first change variables in the exponent fram to y
=[k, —eA_(uy)]/e and then expand the Jacobian for small
€:

X(k) du,

i~
2
fx(kJr_fZ)kJr—eAL(Ul)-HG

2(,0

zdy y AZ(X(ky))
oY+i A’ (X(ky)—ey)

—in(ky ,K)

(57)

—in(k, ,~k)ln(z+i)—g)\(k+ K)+0(e).
(59)

Dropping the terms which vanish withand combining Egs.
(53), (56) and(58) gives the following result for the second
term of Eq.(45):

—0(ky)0(eA_(x,)—ky)

X E[A_TX(ky), Xy ks V2N YN E (ks k),
(59)
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where +eA_(x,). The associated mode functions begin as unity and
i) retain unit magnitude in the limit tha¢ vanishes. Foik.
(o [ dzie “in In(z+i) >0 the picture is more complicated. These modes begin as
v(N)=e ———e . (60 L . .
_2m  Z+i electron annihilation operators, also with mode functions of

o . . . unit magnitude. However, when, = X(k ) the energy each
Substituting Eq(59) into Eq.(45) results in the following  mode carries passes fromre to +% and we must regard the

for W (x. k. K): mode as creating a positron. It is not possible to follow this
5 process using Eq61) because that expression was derived
P (xy ki k) under the assumption that the mode was not arbitrarily close

~ - to singularity. But wecan use Eq.(61) a little before and a
—E[A_1(0, x4 ki, K) Eo(ky k) —0(k,)0(eA-—ky)  litle after the singularity. Before the singularity

LT - = W(x, ,k; k) consists of only the term proportional to
XE[A_T(X, X4 ks, K) V2N y(N) B (KL K). 61 o i , ) . .
[A-X + ik KIV2mA y(A) Bl ) 59 Eo(ky k), and it has unit magnitude. After singularity the

We mention again that this is only valid for modes which aremagnitude of this term has dropped éo™ &+ ¥, and the

well separated from the singular pointslat=0 andk:  term proportional t&..(k .. ,K) has appeared. Let us pause at

=eA_(x.). If one wishes to study the behavior of modes s point to evaluate the functiop()) in order to show that
which are arbitrarily near either point, there is no alternative

. AT " - the 2..(k, ,k) term acquires the missing amplitude.
té)qtazlzlg)g a new distributional limit for the delta sequence in Evaluatingy(\) is complicated by the branch cut of the

. ~ . , integrand. However, wheh= —in the integrand is mero-
Since E[A-](X(k+) x. ks k) has the same-id, e~ orphic and elementary methods giyé—in)=1/n!. By
genvalue(13) as the first mode functiortV'(x, .k, ,k) is  partial integration one can also derive the recursion relation
indeed an eigenfunction ofid, . This means that it carries (\)=(1+i\)y(A—i). These results together imply that
a definite energy: we are dealing with an inverse gamma function

— 022

V(x, kK, K).
(62

[H(X+),\I’(X+ !k+ !E)]:kJr (66)

“eA (X)) YN =Fany

Its magnitude follows from a result of LobachevskBA4]
That has implications for the fundamental operators from

which it is constructed and for the state upon which they act. 1 B e™—e ™
The latter is supposed to be “empty” at, =0. At that T(L+iMT(1—iN)  2aN (67)
instant Eq.(45) implies

_ _ As previously noted, the magnitude of the first mode func-
W0k, k)=Eo(k, k). 63 tion E(0x, ;ky k) is e"™ following the singularity. Be-

Since the potential vanishesat =0, we can see from Eq. cause the integral in the exponent of the second mode func-

(62) that the modes with, >0 carry negative energy while 10N €(X(K;), Xtk k) begins precisely at the singularity,

i il 2N
those withk, <0 carry positive energy. It follows that the the magnitude of the second mode funct|(_)raa(|s ™. Put-
state should obey ting everything together gives the following result for the

maghnitude of the various terms multiplyirs..(k, ,K):

‘ V2N

Eo(k+ ,E)|Q>=0=:g(—k+’_~k)|ﬂ> Vk+>0_ (64)
mE(X(kJr),xJr Ky ,k)H =/1-e 2™, (69

The E..(k, ,k) operatordor, equivalently, theb..(u,k) op-
eratorg are not present at, =0. However, when they do
appear — for 6<k, <eA_(x,) — it is always with positive  SinceE(k, ,k) andE..(k. ,k) are independent and canoni-
energy. It is therefore natural to regard them as creators anchlly normalized operators, this is precisely the correct factor
to define the state to be annihilated by their adjoints: for W(x, ,k. ,K) to retain unit magnitude after singularity.
=1k ~k)|Q>=0 VK, =000 (u ~k)|Q)=O VU>0 Heisenberg states cannot change but our interpretation of
TR * G (65) them can. Before the singularity(x. k. k) is propor-
tional to Zo(k,,k), which annihilates |Q). Since

What this seems to mean physically is that we allow noy (x, k, k) is an electron annihilation operator before the

particles to enter the manifold from the surfacexat=  gjngularity, this means that both electron spin states with

- . . =k, —eA_(x,) andp=k are empty. After the singular-
Now consider what happens as the system evolves in Pk ~F _ _

Under the assumption thatA (x.) is an increasing func- 1 ¥ (X+ K. k) must be a positron creation operator be-

tion of x, , modes withk, <0 begin as positron creation Cause it carries positive charge and energy¥ (k. k.. K)
operators and remain that way, although their kinetic mowere still proportional t&y(k, ,k), it would annihilate/ Q)
menta increase according to the relatign, (x,)=—k, and we should have to conclude that both positron spin states
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with p, =—k, +eA_(x.) andp=—k had been filled with . [eA (xy)

unit probability. To see what actually happens pick the pos- =exg -V Vj Ky

itron spin created by theith spinor component of 0

W(x, ,k; k) and note that any state can be written as the eAL(X(k )N & A

sum of a state containing this particle and a state which does 2 —nmmeA(X) | (74)
not contain it: 4a® A=

|Q)=\Prol{k, ,k)|Full)+ V1—Prokk, ,k)|Empty). whereV_ andV are the volumes of_ andx respectively.
(69 The rate of production per 4-volume is minus the logarithmic

~ derivative of this probability:
Now act with 2/“¥;(x, ,k. ,k) and make sequential use of P Y

its expansion in terms d€, andE .. and the fact that it fills

the one particle state with unit amplitude: _ 9IN[PyadX4)] :eA’,(x+)2 L nmmren’ (x,)
ax, N _aV 47%  i=1n? '
294 (x. K, BI0) = 2™ g ks B0 + ’ 79
(X5 ki K)| )—m( Xk KB Q)
(70) . .
- Note that we do not need to work asymptotically, like
=V1—Prol(k, ,k)|Full). (7)) Schwinger[7]; nor do we require aad hocinterpretation for

the momentum integral, like Klugeat al. [14].
Use of the anti-commutation relations to compute the norm It is significant that our result75) applies for any mono-

and comparison with E¢68) shows that the probability for - ,nically increasing functioe A_(x. ). Although the restric-

the state to contain a positron of this spin is Pkab(k)  tion to increasing functions was made only for simplicity,
=g 2k k) and would be easy enough to remove, it has succeeded in
Note that we do not see the electron of the electronconcealing the essentially nonlocal character of particle cre-
positron pair. This is because electrons and positrons amtion. The system really preserves a memory of the extent to
both created withp. ~0* on the light cone. As explained in which each mode has been filled, and this must affect the
Sec. IlI, the positrons accelerate in thez direction top_. subsequent rate of productiofin the literature this sort of
—+, and eventually move parallel to tle axis. But the effect is termed, “non-Markovian(14,21,23.) Our formula
electrons accelerate in thez direction top, =0 and there- shows no such effect for two reasons. First, particles of ini-
fore leave the manifold moving parallel to tixe axis im-  tial momentunk, are only created, on the light cone, at the
mediately after creation. Wil see their contribution to the instant whereA_(x,)=k, . Second, under the assumption
J_ current in Sec. V. thateA (x.) is an increasing function of, , creation can
The picture we have just developed of particle productionoccur at most once for any fixed spin akd. So there is
on the light cone is probably the most complete we shall evenever a previous Pauli blocking factor to overcome. Had we
have of this otherwise obscure phenomenon. To illustrate thallowedeA_(x,) to pass through the same vakie several
power it confers we shall compute the rate per unit volumdimes the probability of creation would depend upon what
of particle production. Fox, >0 all modes with &<k,  happened during previous passages.
<eA_(x,) will have passed through singularity, so the Our formula(75) for the rate of particle production is also
probability for the entire state to still be in vacuum at this deceptively simple in that it is the same as Schwinger’s with
instant is the instantaneous electric fieldA’ (x,) replacing the con-
stant electric field he used. This is a special feature of electric
- fields which are homogeneous on surfaces of constant
Pdx)= [II  J] (1—e 2™k k)2 (720  To see that it does not generalize even to electric fields
0<k;<eA_ % which are homogeneous on surfaces of constaronsider
the recent work of Dunne and HaR3]. Their formula(63)
I{ feA_(mdk+~ gives the imaginary part of the effective action, to first order
=exp V_

in the derivative expansion, for the case of an electric field

0 2m which is homogeneous on surfaces of const&ntThere is
4% B no conflict between their result and ours; they merely explore
XJ 2In(1—e~ 27 K+ Ky | (73  the dependence upon different directions in the space of
(2m)? backgrounds.

V. BACK REACTION ON THE LIGHT CONE

The + current operators are nominalii2es. ¢ . To enforce invariance under charge conjugation we take one-half of the
commutator of the two field operators. To deal with the singularity of coincident operators we shall point splitxin the
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direction. SinceA . =0, this procedure is gauge invariant. Since point splitdogsbreak Hermiticity, we shall take the real
part

lim Re{szr (X X ) e (Xo+AX4  XC X)) =T e (X4 + AXL X x)¢+(x+ X_ x)]} (76)

\/—AX+—>O

To compute the expectation value &f it is sufficient to use the simplified expansiéil) derived in the last section:

Jo (X4 X 5()=

~ (7 dky d%k nE
¢+(X++AX+ X !X)_> € KX~ X 8(0 X++AX+ 1k+ !k)‘—‘o(k+ !k) 0(k+)
0 27 (21)2
V2mh — ~
X 0(ek(x++Ax+)—k+)m¢€(X(k+),x++Ax+ K OB (ks k) (77

X & (0, x4 ke KBk, k)= 0(ky)

Pl(xy x_ x)—

X O(eA_(x:)—Ky) 2m\ 9(Xx+,k+,k):;<k+,k)} (79)

T(1-in)
We note also two important identities concerning the mode fundion

(0, x4k K)EO, x4 +Ax, Kk k)= 2mMkDICA- "k g(x  x, +Ax, ik, K) (79
=[0(—k,)+ 0k, —eA )+ 0(k,)0(eA —k, )e ?™]

X E(X4 X4 +AX, 1k, K), (80)

EF (X, x4 kK EX x4 +AX, ks K=" ™E(x, X, +AX, Ky K). (81)

Combining these relations with the conditiaigegl),(65) which define the state and the anti-commutation relatid@sand(54)
we obtain the following result for the expectation valueJof:

e{fo dky EA &[1 e~ 2m(k, ,P)]_feA‘%ezm(m 0
0 2

. 277'

(0, (x4 x_ ,x)|Q)=e I|m

X

77)2

eA_ 2

eA dk dZk - =d d%k
= —2ef 2—+ 2e‘2”"("+ Kie lim Re| f 29 5
0 ™ J (2) Ax, —0* (2m)

= dk -
—f +]5(x+,x++Ax+;k+,k), (82

X[EX, , X4 +AX,  —q+eA K) —E(Xy X4 +AX, ;q+eA_ ,E)]] . (83

The final term in Eq(83) vanishes. To see this first perform the integration dyer

d% —ie —(i/2)m?1(Ax, ,*q)
f (2m)? 5(X+,X++AX+ +q+eA k)= WW, (84
where we define
Xy +AX L du
H(Ax ,iq)zﬁw +g+eA_(x.)—eA (u)+ie’ ®9

This brings the final term in E¢83) to the form
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e w e(—ilz)mzl(Ax+,—q) e(—i/2)m2I(Ax+,+q)
a2 +'m[ Jo s S o T ] (89
AX+~>0
The functionl (Ax, ,*£q) can be expanded in powers of the splitting paramater :
Ax. a1 Ax, 1[eA Ax,] 1[eA’Ax2] 1[eA’Ax,]? oA .
( X*’_q)_iq+ie 2| =qrie| 6| =qrie| 3| Tqrie| © (A (&7)

Sincel (Ax, ,*q) goes to zero withAx, , and for largeg, we can expand the exponentials of E&f) inside theq integration.
When this is done it is easy to see that every term vanishes either in taking the imaginary part or il\takitigzero:

. e(—ilz)mzl(Ax+ —0q) e(—i/z)mzl(Ax+ +0) |' 1 i , 1
S B T e T A (T o R R v A
Ax;—0 Ax
(88)
—q+i 1 +i 1
= lim Im a 6——e g ~--—(q 6)+—eAL+
. Ax, 2 Ax, 2
AX+—>O
(89)
=0. (90)
|
J. gives the charge density on surfaces of constant 9_(QI_(x: x_ . X)|Q)
and we have seen that its expectation value is
(O34 (x5 x_ %) Q) =—9.(Q3, (x5 ,x_,x)|Q) (93
fEAdk+f d%k 2rn(ks B ziezA’ (X*)f d’k e~ 2m\(eA K (94)
=—2e e T+ 91 - 2 :
0 (277)2 ( ) T (277)

Integration from the lower limit of oue-regulated range of

eA’ (92 - gives

f F{ mm?

=—— exg — .
eA’” (u) _ 5

(Q1I- (x4 x= 2|Q)=(QP_(x, ,—e 1 )|0)

The first form (91) is actually the simplest to understand

physically. It says that the charge density accumulates each

of the two positron spin states with probabiliéy >™ as the AL(x +)f (2m)

mode with canonical momenta, andk passes through sin-

gularity. As noted before, the electron partners in the pair X @~ 2m™\(eA- k) (95)

creation event accelerate to the speed of light in the

direction and leave the manifold moving parallel to the  The final term has a simple physical interpretatidn. is a

axis. It might seem that since the manifold becomes chargecharge flux, so it must register the newly created electrons

the vector potential must depend upgn, and we have which rush off the manifold parallel to the_ axis (because

therefore not solved the problem for a sufficiently generalthey are moving in the-z direction at the speed of light

class of potentials to include the actual back reacted solutionthe rate at which this charge is created, per unit volume in

However, we shall see that the response ftbmis actually  x_ and’, is just —d.,J, . An electron created at position

infinite and infinitely fast — preciselpecausehe electrons (x. ,x_.X) must pass through all points<(,y_.x), for

have exited by reaching the speed of light. This means tha} -, , on its way off the manifold. So the net electronic
back-reaction drives the actual potential to zero |nf|n|telyﬂux through any point x_ is the integral of

fast, beforeJ, can become nonzero.

+x+

. ) ~ — 39,3, (x5 ,y_ ,X) over all pointsy_<x_ . We have cut the
Evaluating the expectation value af_ (X, ,x-.X) IS |5\er [imit off at — 1/e, so the electronic contribution to the
complicated because the result must diverge approaches ?xpectation value of _ must diverge ag goes to zero.
0

zero. To see this note that since the expectation value Although there is a good physical reason for it, the fact
J(x, ,x_,x) vanishes, current conservation and our resulkhat the expectation value df diverges like 1¢ means that
(91) for the expectation value af, (X, ,Xx_ ,X) imply we must use special care in evaluating distributional limits
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which involve e. For example, the field equations can be ¢1°_(X+ X_ %)
inverted to givey_ in terms of i, :

} _(meyE) _ ﬁf“ %ew] d%k
b (Xy,x_ k)= T Yeidi g (Xy X K). w0 27T (2m)?

(96)

_ii';\PT(XJr K K) 3 y_(m+y-K)
However, we cannot simply substitute the derivative of xe K., —eA (X,)—ie SCL
expression(61) because the distributional limit in the second
term of that formula was computed assuming thais sepa-
rated from zero an@A _(x,). Whengd, acts upon the sec-
ond # function in Eq.(61) it gives aéd function which invali-

The integrand of this expression fgr_ is just the same as

! - for ¢, multiplied by a factork(m—"y-k)y. and divided by
dates that assumption by settikg=eA_(x. ). One can tell p. +ie at the appropriate value of, . Hence the contribu-

from the ultralocality of this term dt, =eA _(x.) thatitis : . .

responsible for theyelectronic contribution E:oanuted abovello" 1 the expectation value dL Is the same as 13, but

Rather than forcing everything through from the cumber-Wlth an additional factor of

some, initial expressions we shall just compute the expecta-

tion value ofJ_ without this term and then compensate by . - . -

adding in the electron current found above. z(M=y-Kyy zy-(Mm+y-k)
Our computational shortcut amounts to making the fol- pi(X.+AX )+ie pi(xy)—ie

lowing replacements:

1w?P_

X = - —. 99
V- (e A% X0 [P, 0 FAx ) Fielipr () iel”
- 7
. %eimxf d’k
— 2 (2m)? The expectation value af_, without its electronic compo-

nent, can therefore be obtained by simply including this fac-
97) tor in our previous expressioi@3) for the expectation value
of J,:

3(M=7K) y, U(x, +Ax, Kk, k)

< glk-x i
€ ky—eA_ (X, +AX,)+ie '

(Q]I_ (x4 ,x_,x)|Q)— (electronic contribution

. d%k o dk, (eAdk, N eadk, (= dk.
=e |im f(zw)ZRe [J'w o +fo g(l—e )—fo Ze —jEA o

AX+—>0+

1. ~
szg(x+ 1X++AX+ lk+ vk)

XK, —eA (X, T Ax, ) Tielk, —eA (x,)—ie€] (100
Ez)ze—zm(h K
eadk, [ d&k 2 9 ~dg [ d%k
=—2ef —-— +e lim R f—
o 27 ) 2m)? [k, —eA (x.)]P+e o OAXs 027) (27)?
ie(~ i12)w?l (AX, ,—q) ie(~ i12)w?l (AX, ,+0)
X g+ie B g—ie ’ (109

where the functionl (Ax, ,q) is defined in Eq(85).
The first term of Eq(101) has a simple interpretation as theregulated current due to the created positrons. Each of the

two positron spin states is created with probabikty™ *+ 'TO, and each contributes a factor efep_/p, to the current
density. It is simple to perform the integration odeand to recast the remaining integration to one over
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—o2e—2mh (K, k)

s jEA—dk+f d%k 2 e fmd A 2[wm2+eA’,(u)]e*”m2’eA'—(”) 102
“Jo (22 [k—eA (xPre Batle A o TeA e P

Although the positron current can diverge likee, it must vanish ai,=0. This crucial fact distinguishes it from the
electron current:

e—'lrmz/eAL(XJr). (103)

1)1
x+ —e -

3p72
s P L

48

(21m)? €

Even though the state is initially empty, there is no way to prevent particle productian=ed because there are modes with
k., arbitrarily close to zero. The electron current comes entirely from particles which are created moving with the speed of
light at the same instant that the current is being measured, so it must be presentyeyverdaflhis means that the negative
electron current must initially dominate the positive positron current. Hence the back reaction acts in the physically sensible
direction to reduce the initial electric field. Since the initial electron current is not only negative definite but infiritgpas
to zero, the back reaction becomes infinitely strong, infinitely fast.

The final term in Eq.(102)) is the charge renormalization. One sees this because it contains the logarithmic ultraviolet
divergence and because it is proportional to the right hand side of the relevant one of Maxwell's equations for this background:

— A" (x4)=(QI_(x; ,x_,x)|Q). (104

We evaluate it by the same strategy as for the analog@rgshing contribution toJ,, . First perform the integration ovér,
then expand in powers of the functibfAx, ,*=q), expand (Ax,,*q) in powers ofAx, according to Eq(87), and finally
take the derivative, the real part and the limit inside the integration gvéhe result is

i e [
m 'm (?AX+ 0 q-

e(—i/z)mzl(Ax+ ,—0q) e(—i/Z)mzl(Ax+ ,+q)} ]

a0 @tiagl —  (a=ie)l
e i J 1 i ) 1 A N
_4_772 m oI T qtiell(Ax,,—q) 2m " g™m (AX,=q) -
! ! | (AX, ,+q)+ 10
g—ie\l(Ax,,+q) 27 8" (AXy,+Q)t- - (109
_ e i J s fwd 1 +%eAL+%eA&Ax+_[ﬁ(eN)2+%m4]Ax++ 1
_47r2AX+ITO+an+ o Y4ax; Tqtie qtie 92+ €2 O AX,
1eA. LteAAx, [H(eA )%+ im*Ax,
+ — + - + +... (106
gq—le gq—le q2+62
e " ” q
= WEA(XQJO dqqﬁJr—Ez- (107

It is interesting to contrast this ultraviolet divergence in the expectation valde wfith the finite resul{92) we found for
J, . Of course the expectation valueshmdth current operators diverge for a general background; it is just that the divergent
term happens to vanish fdr, in the restricted class of backgrounds we considered. The one loop divergence in the expectation
value ofJ#(x) must reside o, F"#(x). In the class of backgrounds we considered this happensdﬁzbe(m) forJ_. For
J, itis—d d_A_(x,)=0, which is why EQq.(92) is ultraviolet finite.
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To get the one loop correction to Maxwell’s equation
(104 we must combine the constituents of the expectation
expressiong102), (103 and (107). Since Eq.
(107 is a charge renormalization, its proper place is on the

value ofJ_:

left hand side of the equation. The result is

A’ (xy)

L

122, Y e

2
e3A (x,)

— —me/eAL(XJr)_ e X+d
—F¢€ - u
473 87Jo

5 eA’ (u)
m2+

}e— am2/eA’_(u)

[eA_(U)—eA_(x;)]?+e?
(109

PHYSICAL REVIEW B2 125005

1

3p12
eRAR (X4)

X_+—|———e
€

473

— amPlegAL(X )

—AR(X,)=

er X+ 2

&R erAR(U)
8w 0

erAL(U ,
m2+ R R( ) e—me/eRAR(u)

[erAR(U) — €RAR(X,) ]2+ €%
(112
For small e (which we must take to zero anywathe

instantaneous electron current dominates the positron current
and the equation becoméxal:

3512
eRAR (X+) o

—AR(x,)= =T e TR (113
41°€

When compared with the sorts of equations one finds for the

Now recall from standard QED that the renormalized chargeraditional problem of evolving from a surface of constaht
er and fieldAg(x.) are related to the unrenormalized ones(for example, see Sec. IIl ¢fL1]) expressior(113) is almost

by square roots of the field strengih

1
AR(X4)=—=A(Xy).

er=1Ze, N

(109

Note particularly thateA_(x,)=erAgr(X,). Multiplying
Eq. (108 by \/Z we obtain

R(X4)

2
€r [~ q
_{Z”L 127740 dagzs ez
2

3
e*A (X
X +E ( +)e—wm2/eAL(x+)
€

473

2
er [ X+

870

erAR(U
[m2+ RAK(U)

erAR(U)

w

e TmZ/egAR(U)

. 11
[erAR(U) — erAR(X4 )]+ € (110

unbelievably simple. We can simplify it further by rescaling
both the evolution variable

 [erm| X,
= (ﬁ) . (119
and the electric field,
. erAR(X+)
F(r)= - (119

The result is a first order, ordinary differential equation

d _-
—ef '=1. (116
dr
The solution is straightforward:
F(r)= (117

In(e*Fo+17)”

Since 7 approaches infinity for any fixed, positive value of

X, our solution means that the back reaction forces the elec-
tric field to zero before any fixed, positive valuexof . This

is as far as the equations can be used because they were
derived under the assumption tlegAr(X ) is an increasing
function ofx, . Note that our solution also implies the van-

If we recognize the one loop field strength renormalization a?shing of the vector potential before any fixed, positive value

2
B er [~ q
£t 127740 das e

(111

(up to finite renormalizationsthen the equation assumes its

standard form

of x, . So the expectation value df, is really zero at the
physical solution, and there is no need to consider back-
grounds which depend upoa. .

VL. INFINITE BOOST CORRESPONDENCE LIMIT

The results of the past section have a single unsatisfying
feature: the factors of &/in the expectation value aof _
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! Aj(t')=0, A t")=A(t"), (121
Y t’\ P J'oty=0, J3tH)=Jt"). (122

Transforming the vector potential covariantly gives
Ao=Y(Ap+ BAY=BYA(L'), (123
Az=y(AL+ BAL) = yA(t'). (124

;f’ 1_;\\ z The current density transforms as a contravariant vector to
give
0= y(3'C BI¥)=—RIL"), (129
SO P=y(I'EpI 0=yt (126
The light cone component9i=(A0iA3)/\/§ of the
unprimed frame vector potential are

FIG. 2. The various coordinate systems. Al (X X ):i /1+5A /1+,3X_++ [1-Bx_
L N 1-82 1+82)

mean that the back reaction on the light cone becomes infi-

nitely strong, infinitely fast. This seems to be in dramatic (127)
distinction with what happens for the traditional problem in

which the state is released on a surface of constarthere -1 [1-8 1+ B x

the induced current grows smoothly frofi=0, and it re- A (x, ,x_)= —\/ ——A| \/———=

mains finite for finitex®. The purpose of this section is to V2 V1+B 1-By2

show that our result is not distinct from the traditional one.

Rather the problem we have worked out can be viewed as the + 1 /1__'8)(_> (128
infinite boost limit of the traditional problem, in the same 1+8.\2)

way that light cone quantum field theory can always be

viewed as the infinite momentum frarfi20]. We can enforce ouA, =0 gauge condition with the tranfor-
To fix the notation let us consider two inertial frames. Themation

one in which we have been working will be denoted the

unprimed frame. The primed frame moves with spg&d . t

along the minusz axis, so the Lorentz transformation be- As(Xy X2 )=AL(Xy 1X7)_[?iJ ds'A(s"), (129

tween the two systems is 0

t' = y(t+ B2), (118 which gives
, - 1- 1+B8x
z'=y(z+ i), (119 A_(X4 ,X_)=—\/§ %A %\/—%
where y=1/\/1— 8%. Note that the time coordinate of the
primed frame has the following expression in terms of the n /1—,8x__ (130
light cone coordinates in the unprimed frame: 1+8.\2)

1+8x, 1-B8x_ The (gauge invariantelectric field is
t'=\/——=+\/——. (120
1-8\2 1+8.\2

E(xy ,X_)=—d,A_(Xsy ,X_)

The relation between the two frames is shown in Fig. 2. —
. S ; ; 1+B8x, 1-B8x_
We wish to compare evolution ix, in the unprimed =A’ —— 4+ \/———]. (13)
frame with evolution in primed frame in the limit thad 1-B\2 1+8\2
approaches one. We assume that the vector potential and the

current density of the primed frame depend only upoand  The light cone components).=(J°+J%/{2 of the

have the form unprimed frame current vector are
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1+/3 X —Bx trons slow down. Finally, we can anticipate from the form of
+ — P . . .

J (X4 ,X)= \/1+ \/ + \ / 178 ) Eq. (120 that any nontrivial time dependence in the primed
frame must give rise to infinitely rapid evolutionxn. on the
unprimed frame.

(132 Now consider the situation in the primed frame with the
1 fiTB 17 Bx 1-Bx back r(_aaction turned on. What. one sees at one loop is an
J (X4 X )= ——1 /_J NPT [Z P72 _ approximately oscillatory electric field and currgdfl]. Let
V2 V1-8 1-82 1+8.\2 us assume, for simplicity, that the behavior is exactly oscil-
latory and consistent with the Maxwell equatienA”(t")
(133 =y(t"):
The key relations are Eq$130)—(133). Let us consider E

them asB approaches 1, first under the assumption that the A(t)= —Osin(wt’), J(t")=wEgsin(wt’). (139

back reaction is turned off. In this case the electric field is @

constant, so the vector potential and the current density in th

primed frame both grow linearly it':

Erom relation(130) one sees that the vector potential oscil-
lates infinitely fast with infinitely small amplitude:

A(t)=Ept’, J(t")=Jot’. (134
~ EO X (,()XJr
From relations(130) and (131) we see that the light cone A_(Xy Xo)——V1-8 ESIH< F) (140
vector potential is also linear, and the electric field is also B

constant: The electric field oscillates with the same amplitude as in the

A (Xe X_)—— EgX,, E(X..X )—>Eo. (135 primed frame but with infinite frequency:

Relation(132) reveals a linearly growing light cone charge X
o (132 y growing ig 9 E(x, ,x_)—EqCO i (142)
ensity, J1-8
J. (X, X )_>£J0X+ (136  From relation(132 we see thafl . goes to zero:
) 2 )
just as our field theoretic computation produces for the case J.(Xy X )— £~/1—,8wEosin w_x*) . (142
of a constant electric field. The really interesting relation is 2 V1-p8

Eqg. (133 which gives aninfinite (andx_ dependentresult
forJ_: which means we do not need to consider vector potentials
that depend upor_ in addition tox, . Of course the source

1 (1+ of the infinitely rapid oscillations is th&_ current which has
J-(Xe X) == 50| 72 3X++X (139 infinite amplitude in addition to infinite frequency:
The physics of these results is quite simple. First note that —wEy [ wXx,
any ete™ pair which is created with finite speed in the J_ (X4 x_)— MS'” Nk (143
primed frame must be moving at the speed of light in the
—Z Q|rectlon after the infinite boost needeq to reach theThis all looks very much like what we found in the previous
unprimed frame. Recall that an on-shell particle has section
s_ 1 ( ;2) (138 VII. DISCUSSION
p \/E p+ 2p+ ’ .

We have constructed a complete operator solutdaih for
so p®— —o corresponds t@, =0". This is why we only free QED in the presence of an electric field that depends
see particle production on the light cone@mt=0. Since arbitrarily upon the light cone coordinate . This class of
electrons must accelerate in thez direction, they immedi- backgrounds is general enough to include the actual evolu-
ately leave the manifold, moving parallel to tlxe axis. tion of the electric field as it changes due to the back reaction
Positrons accelerate in thez direction, so they stay on the from the current of electron-positron pairs which it induces.
manifold and, at late values of, , move parallel to thex, ~ One determines the actual electric fi¢ld some order in the
axis. This is why the light cone charge density grows. loop expansionby computing the expectation value &f
The reason)_ tends to beinfinite is that both particles of (to this ordey, setting this equal to- A” (x.), and solving
each pair are created moving at the speed of light, so thethe resulting equation. We did this to one loop order in Sec.
contribute an infinitgp_ /p, . Of course they tend to cancel VI and there is no essential obstacle to including higher loop
by virtue of their opposite charges. The reashnis infi-  effects. The vertices of QED do not even depend upon the
nitely negativeis that the electrons speed up while the posi-background, nor does the photon propagator. And with
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our operator solution we have the essential elements of thappear, to the light cone observer, to be moving vath-
electron propagator. —o, This corresponds tp_.—0", which is why particles

It might be useful to recapitulate the rather subtle way theare created on the light cone only when their kinetic momen-
equations of motion can be satisfied within our class of backtum p, =k, —eA_(x.) passes through zero.
grounds. We started with the mode functions in a generic Before a particular Fourier component undergoes pair
A_(x.) gauge field. One consequence was expresn  production, the field ak, is a mode function of modulus
which states that the expectation value Jof grows with ity times the same Fourier component of the fieldat
eA_(x.). But then the Maxwell equation_d, A_=J, im-  _q " After pair production the modulus of the mode function

plies thatA_ must depend ox_, contradicting our initial — (ks K o . .
ansatz. The resolution of this apparent contradiction derivegrolos by a factor ok +. The missing amplitude Is

from Eq. (112 for the renormalized expectation value of acduired by new operators which come in from=—c.
J_. In the limit thate goes to zero the leading contribution ThiS may be one of the more interesting features of our so-

to this source is negative infinite and independentof ~ ution for light cone experts. It has long been known that
Hence so too ig, E. In other words, having a finite, positive SPeCifying the fields on a surface of constantcannot com-
electric field causes the, derivative of the electric field to Pletely determine their future evolution. This is obvious for
become infinitely negative, which of course drives the elecmassless fields in two spacetime dimensions. However, the
tric field to zero. At this point one of the assumptions of ourproblem has always been hiddenkat=0 when eitherm
formalism breaks down, but it is easy to see, on physica# 0 or D>2. It never needed to be resolved if one only
grounds, that the electric field must fall below zero and thatesired scattering amplitudes; these can be computed away
the resulting negative electric field engendersoaitiveinfi- from k. =0 and then analytically continued. In our analysis
nite J_ current. This would lift it back up through zero, the problem could not be avoided because more and more
whereupon thenot necessarily periodiccycle would start  modes are pulled through zero kinetic momentpm=k ;.
again. Since the induced currents are infinite, the response eA_(x,) as long as the electric field remains positive.
time is zero. So the picture is of an electric field undergoing What the light cone is not at all good for is studying
oscillations of finite amplitude with infinite frequency. Since plasma oscillations. In Sec. V we could follow the electric
our vector potential vanishes at =0, we can recover it field only as far as its first zero owing to our assumption that
from the electric field by integration: eA_(x,) is an increasing function. Had this assumption
been relaxed we could, in prinicple have followed many os-
X4 cillations, but they would still have come with infinite fre-
A-(Xi)=— fo dy. E(y+). (149 quency in the limit thae vanishes. We saw in Sec. VI that
this is the right result for the light cone, but it still leaves us
without quantitative control over the frequency of oscillation
in the primed frame where the electric field is homogeneous
on surfaces of constant time. Of course ga get the am-
litude of the electric field, which is unchanged by the infi-
ite boost limit, and we can count the number of oscillations.
ay L We should also be able to see dissipation by going to higher
non?gﬁo(: g}epr;?rvilr;%%ﬁe; 0; ?jtijsrcsrg![létlgcelitﬂ;)i[ E[?]i FIJigi- rder. In 3+ 1 dimensions one expects energy 'to flow out of
T } i . — he electron-positron plasma through the emission of pho-
cone. Evolution is diagonal in the Fourier basisafandk;  tons. This should begin at two loop order in the Schwinger-
however, it is the minimally coupledsinetic momentum  keldysh result for the expectation value of the current opera-
p+=k;—eA_(xy;) which determines whether a particular gy
Fourier component creates or annihilates particles at any oy original motivation for studying this problem was to
given value ofx, . Whenp.. passes from negative to posi- see what it can teach us about techniques for treating the
tive that particular Fourier component experiences pair crerelated problem of quantum gravitational back reaction on
ation with probabilitye 2™+ K where\ is given by Eq. inflation. It is worth summarizing what we have learned in
(49). We exploited this at the end of Sec. IV to give a simplethat context. First, there does not seem to be any generic
and explicit derivation of the particle production rate per unitproblem with using expectation values to study the back re-
volume, in real time and without resorting &m hocinter-  action. The results we obtained by doing this in Sec. VI have
pretations for formally meaningless expressions. a transparently correct physical interpretation. We should
Why pair creation is so simple on the light cone wascaution, however, that the current operator is a gauge invari-
explained in Sec. VI. Quantum field theory on surface ofant, unlike the metric.
constantx, can be viewed as the infinite boost limit of the ~ The second point of relevance is that the back reaction is
conventional problem formulated on surfaces of constant an infrared effect. The important physics is associated with
[20]. Pair production is not localized in time when the elec-the finite range of modes whose kinetic momentum has
tric field is homogeneous on surfaces of constanEach of  passed through zero. We saw in Sec. VI that the ultraviolet
the various momentum modes has a nonzero probability odivergent contribution to the expectation valueJof comes
appearing imnytime interval. However, when subject to an from different terms and has a different dependence upon the
infinite boost one sees that the newly created particles musields. Had we merely subtracted these terms and replaced

But this integral must vanish for an electric field undergoing
oscillations of finite amplitude with infinite frequency.
Therefore our result9l) giveszerofor the expectation value
of J, , and there is no need for the solution to depend uponﬁ
X
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the bare charge and field everywhere with the renormalizediagrams are in fact negligibly small in this background. So
ones we would have gotten the correct result. Thasl to  the way is open to making a potentially self-consistent cal-
work from the context of effective field theory, but it is com- culation.
forting to see it actually do so.

Finally, there is at least the possibility that one can follow
the system into the regime where the back reaction is a ACKNOWLEDGMENTS
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