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For quantum theories with a classical lindithich includes the larg8l limits of typical field theories we
derive a hierarchy of evolution equations for equal time correlators which systematically incorporate correc-
tions to the limiting classical evolution. Explicit expressions are given for next-to-leading order, and next-to-
next-to-leading order time evolution. The larbelimit of N-component vector models, and the usual semi-
classical limit of point particle quantum mechanics are used as concrete examples. Our formulation directly
exploits the appropriate group structure which underlies the construction of suitable coherent states and gen-
erates the classical phase space. We discuss the growth of truncation error with time, and argue that truncations
of the largeN evolution equations are generically expected to be useful only for times short compared to a
“decoherence” time which scales liks/2

PACS numbsdis): 11.15.Pg

[. INTRODUCTION semi-classicaldynamics which leads to a coupled hierarchy
of time-local evolution equations for equal time correlation
The time evolution of quantum systems away from equi-functions. Our approach directly exploits the appropriate
librium is of interest in many applications including, but cer- group structure underlying the construction of suitable coher-
tainly not limited to, phase transition dynamics, inflationaryent states and the existence of the classical I[#jt We
reheating, and heavy ion collisions. Lafyexpansions have specifically focus on the time evolution of initial states cho-
provided a widely used technique for studying equilibriumsen to equal one of these coherent states. We will give ex-
properties in statistical physics and field thepty-3], and it plicit next-to-leading order(NLO), and next-to-next-to-
is natural to apply a similar strategy for studying non-|eading order (NNLO), expressions for the required
equilibrium problems. The largh limit (as typically formu-  gyojution equations. Somewhat related hierarchies of evolu-
lated is actually a special type of classical linj]. Suitable  {jon equations have been discussed in several recent papers
observables behave classically and the quantum dynami€g, 15 Because of our exploitation of the underlying group
reduces to classical dynamics on an appropriate phase Spage,cyre, the formulation we derive is more efficient, in the

. Considerable w_o.rk.has been QOne examining th? dynamgense that it requires integration of fewer coupled equations
ics of far from equilibrium states in a variety of applications . .
at a given order in M.

using leading largé\ time evolution[5—-10]. A major virtue A mai " hich di but d L fully re-
of large N techniques(compared to alternative wholly un- major question which we diScuss, but do not fully re
controlled approximation schemds that one should be able solve, s .the prgpagatlon of errors '”duc?d by t_runcatmg the
to improve the approximation by systematically including €Xact(infinite) hierarchy at a given order inl/ It is known
sub-leading effects suppressed by powers df. Hor a va- tha_t theN— I_|m|t IS not uniform in time. For _example, n
riety of equilibrium problemgsuch as critical phenomepa typical _IargeN field thgorlgs the characteristic time scales for
this approach can work quite wétl1—13. scattering or thermallzgtmn are k_nown to scaldNa® some
positive powet: For a fixed time intervat, results obtained

For initial value problems, in which one would like to > : . .
by integrating evolution equations truncated at, for example,

choose a non-equilibrium initial state and then examine th : ) 2
subsequent time evolution, traditional formulations of |arge_next-to—lead|ng order, will have only orderN7 errors. For

N expansions using graphical or functional integral tech-Sufficiently large N, and fixedt, including successively
niques[3] are very awkward. A major difficulty with these higher orders in the N hierarchy .WI|| yield more accurate
approaches is that they generate integral equations which afgSults- But for fixedN and some given truncation of theNL/
non-local in time when sub-leadingNU/corrections are re- hierarchy, it should be expected that the truncation error will

tained. For practicalnumerical applications, one would 9roW With increasing time and eventually become order
vastly prefer a formulation in which locality in time is al- UNY. A key question is how this "breakdown” time scales
ways preserved. with N and the order of the truncation. One might hope that

In this paper, we describe a formulation of lartye(or a next-to-leading order approximation would be uséfat
is, have at mos©(1/N) global errorg for times of order\,
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TEmail address: yaffe@phys.washington.edu 1see, for example, the end of Sec. Il of REE6].
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while a next-to-next-to-leading order scheme would be use- We assume that the coherence gré@ipacts irreducibly
ful out to times of ordeiN?, etc But it is quite conceivable on the corresponding Hilbert spage, . In other words, no
that errors in an ordek-truncation will grow with time like  operator(except the identitycommutes with all elements of
(t*/N)* for some positiveer, which would imply that all the coherence group. This condition automatically implies
truncations break down after a time of ordét®. This be- that the set of coherent states form an over-complete basis
havior, which we consider likely, may well depend on thefor the Hilbert space/{, . It also implies that any operator
specific theory and choice of initial state. Available numeri-acting on, may be represented as a linear combination of
cal work, such a$14,15, sheds little light on this issue. We elements of the coherence group.
discuss several examples where it is possible to argue that For any operatoA acting in H,, we define itssymbol
quantum “decoherence” produces exactly this type of limita (u) as the set of coherent state expectation values,
on the range pf validity of larg@&l truncations. X(u)=<u|A|u>X, Ue G. We assume that the only operator
The paper is arranged as fOHOWS.' The.general frameyvqr hose symbol vanishes identically is the null operator. Thus,
Wh'Ch "’?"OWS us t9 trgat many thgones with a.classmall IIrT“tdistinct operators have different symbols, which means that
in a uniform fashion is outlined in Sec. Il. This material is any operator can, in principle, be completely reconstructed

largely taken from Refl4]. Section Ill describes the particu- g, o1 'trom its diagonal matrix elements in the coherent state
lar class of operators we will consider, and examines th%asis

structure of their coherent state equal time correlators. Sec- Classical observables will be associated with operators
tion IV presents the resulting time evolution equations anc{h t remain non-singular ag goes to zero, that is, whose
discusses error propagation. These general results are appliec?1 ; A ' ’

to the examples of point particle qguantum mechanics, and gonerent state matrix elen?en(su|A|u )x/{ulu’),, do not
generalN-component vector model, in Sec. V. For point par-PIoW Up asy—0 for all u,u” e G. Such operators are called
ticle quantum mechanics, we argue that the decoherence tinfssical- , _
generically scales a2, while for vector models it should WO coherent statefu) and |u’) are termed classically

scale adN'2 A brief concluding discussion follows. equivalent(we will write u~u’) if in the y—0 limit, one
can not distinguish between them using only classical opera-

tors, i.e., lim,_ oA, (u)=lim,_,A (u’) for all classical op-

eratorsA. We assume that the overlap between any two clas-
The following slightly abstract framework is applicable to sically inequivalent coherent states decreases exponentially

typical largeN limits (including O(N) or U(N) invariant  with 1/y in the y—0 limit.

vector models, matrix models, and non-Abelian gauge theo- Under these assumptions, one may show thatythe0

ries), as well as thé—0 limit of ordinary quantum mechan- limit of this theory truly is a classical limit4]. The assump-

ics [4]. tions hold forO(N) or U(N) invariant vector models, matrix
Consider a quantum theory depending on some parametetodels, and gauge theorig4]. The quantum dynamics re-

x (such ash or IN). The Hilbert spacéwhich may depend duces to classical dynamics on a phase spacgven by a

on x) will be denotedH, . The quantum dynamics is gov- coadjoint orbit of the coherence group. Formally, point§'in

erned by a Hamiltonian which we will write agi'(X)H)(' correspond to equivalence classes of coherent states,

This rescaling of the Hamiltonian will prove to be conve- ={[u]:ue G}, with [u]={u’ e G:u~u’'}. The symplectic

nient, and makes the Heisenberg equations of motion taketructure on the phase space is completely determined by the

the form Lie algebra structure of the coherence group. The classical

Hamiltonian is just they— 0 limit of the coherent state ex-

pectation of the quantum Hamiltonian,

I. COHERENCE GROUP AND COHERENT STATES

Al @

he(u) = lim A, (u). ()
x—0

The following assumptions are a set of sufficient condi-
tlorl\sslsrgﬂg”l%;rti;hzyag grr':)';'g ?cgl?ssliﬁ:all?()lherence To have sensible classical dynamics this limit must exist, i.e.,
tation on,, G,={D(u):ueG}. The states generated by nient the rescale the Hamiltonian by y.) The classical ac-
applying elements of the coherence group to s¢nmemal-  tion 1S
ized) base stat¢0), e H,,
Selu(t)]= lim f dt(u(t)]ixa—H,Ju®),. @

x—0
lu),=D,(w)|0),, ueG, 2
Both the classical Hamiltoniaf8) and the actior{4) depend
only on the equivalence class of the coherent diate? and
are called coherent states. The coherence group acts on thekas do define sensible dynamics on the classical phase
states in a natural wap, (u’)|u), =[u’u), . space.
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The preceding discussion is just a formalization of thesentation for our purposes involves subtracted expectdtions
usual picture of a classical limit. A quantum mechanical
wave packet, with a width of ordey?, behaves classically () :
. . . : L K = (O X)) (6 %) 5
in the y—0 limit, and may be associated with a point in the 12 1o ke Tk
classical phase space. The equations of motion that govefphere(- - -) denotes an expectation in some coherent state,
the classical dynamics are just coherent state expectations Qde (x} are the expectations of the rescaled generators

the original quantum evolution equations. . Subtracted and un-subtracted expectations are related by

g(2)
~ ~ I1|2
ll. COHERENT STATE EXPECTATIONS Oy Xi ) =Xy, X &, X| X,

As noted earlier, the irreducibility of the coherence group gll Iolg g(k)
implies that all operators may lformally) constructed from + LA ﬁ , (6)
the generators of the coherence group. Consequently, for (alzle) 27T ' Tk
characterizing the structure, and time evolution, of any statewhere then-tuples (4,l, ... ,|,) are ordered subsets of
one may focus attention on equal-time expectation values ofi,, ... i,}. (There is nog(l) term srnceg(l)—<xi—xi>
products of coherence group generators. =0.)

Let g denote the Lie algebra of the coherence gr@ip Alternatively, one may expand in terms of connected ex-
Let {e;} be a basis ofy. The commutator of basis elements pectations:
defines the structure constarite, ,e;]= |f i€. The genera- N =<;(_ % yeomn @
tors e; themselves are not classical operators but rather S ! W

are 1k times classical operators. For convenience,Xet The difference, illustrated graphically in Fig. 1, is that ex-
denote the rescaled generator which is a classical operatqsansions in terms of connected expectations involve products
Xi= e, . of all possible “contractions,” while the terms in the expan-

Consider the coherent state expectation value of the masOn in subtracted expectations have only one string of gen-
RS erators “contracted.” The difference between subtracted and
nomialx; x;,- - -X; . We would like to find an expansion of ,nnected expectations first arises with four generators. Ex-
this expectation value in powers gf A convenient repre- plicitly,

(XXX ) = XX XX + XX 960+ XX 0P+ xix 08E + %, 9B+ X% 9P+ X %, g P
+X; ng| +ngi(lf’l)+xkgi(ﬁ)+xlgi(j3k)+ gijkl (8a)

= XX XiX) - XiX[ SE XX S|+ XX S+ X S+ X XS+ X X8

+ X800+ x;8{ xS + x5+ P8+ 8PP+ 5P + s (8b)
|
The coherent stat_e overla(p||u’>x is the generating func—. (- .;(i;(j, LLyeonn_. ';(j;(i, . -)conn
tional for expectations of products of generators, since varia-
tions of the coherent state’ can bring down any desired =(---[X ,§<j]- .. yeonn
generator of the Lie algebra;|u’)=g;]u’). The logarithm o
of this overlap is therefore the generating functional for con- = |Xfij<' <K )M 9
nected expectations. By assumptionguln’)x is O(1/ly) as
x—0. This immediately implies that theh order connected o s ...—S(.'.().-i...=ixfimsoffl.)..

expectatiors is O(x“~*). Note also that the commutator gy considering which connected expectations contribute
of functional derivatives is the functional derivative in the

direction of the commutator,

3To simplify notation, we will omit the superscript &) when
this can cause no confusion; for example, we will wgtgfor g,(]z) ,
2For the action, this is true up to temporal boundary terms whichetc. The same remark applies to the connected expectations dis-

do not affect the dynamics. cussed below.
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(@

® ° t FIG. 1. Expansion of the ex-
— e, e, P T/_,_ +’\ / pectgtlon of a product of genera-
/' o .) ol tors in terms ofa) subtracted, and
— e /,\. o« "Se /l\. 1\' (b) connected expectations. The
shaded bubbles on the left denote
full expectations of the product of

(0) - . - - generators. Each line with a dot
— o — o on the end represents the expecta-
= t ¢t t +.+=0*+ .+ + .. tion of a single generator. Ifg),
(e dashed-line bubbles correspond to

subtracted g® expectations of
strings of generators, while itb)
e solid-line bubbles represent con-

— o
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—e
—e
— o
—
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—e
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— e
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necteds™® expectations. Ellipses
et +.. oo+ ..+ +..+ +..+ (---) denote ordered permuta-
tions of the preceding diagram.
—(—o 'ﬁ\‘ }x P g diag
Kk . . —
to g( ), one may easily séehat subtracted expectatlonzi)fall (V)=V+g,(2|) V('1'2)+9|(3|)| V('ll"'3)+g|(4|)| | V(1ldsla)
off roughly half as fast as the connected oneg’ 12 123 12734
~g#TV=0(x"). Becauseg?/g®=0(y), expansion +0O(x%) (12)
(6) is a power series iy, the parameter measuring how
close the system is to being classical. Of course, subtracted

expectations may always be rewritten in terms of connecteq|,are summation on repeated indices is implied, ahd
expectations(and vice versp Ultimately, equations for =33 ..iaa..i X ---%. is the number obtained by re-
connected expectations will be most useful. Nevertheless, <t T iy M = )
using subtracted expectations as an intermediate represenﬁ%‘:ﬁcmg each gen_erator Wby |‘t‘s coherent stgte_expe(:i?@t)lon.
tion is helpful because of the simple form of expansions in ere we have |nt.roduced ordered derivativest
terms of subtracted expectations, as shown by (Bgand = 01/ 5(x;x;- - -) defined by
Eqg. (11) below. For later use, note that

g(l.().bi,-c...—g(.'.().bjic...=ini”j1(Xm9§l.(._b20)...+g§l.(._blr%c...)- f(|):(9_f (133
(10) &X| !

Now consider an operatdf that can(at least formally

be expanded in powers of generators, and

VZEKE{il...ik}a’il..-ik;(il’ ’ ';(ik’

k
for some set of coefficienI{Sail,,,ik}. Operators of this form (fg)(r 0= fllrlgliva1, (13b)
1=0

are well behaved foy— 0, and so are good classical opera-
tors. Using Eq{(6),

When acting on a string of generators, ordered derivatives

g,(z,) produce a sum of products of expectations of the generators
<V>=E 2 @i Xipe X ) 1t -2 which remain after deleting the indicated generators, pro-
ke iyeiid (T2 X1, X1, vided these appednot necessarily contiguouglgomewhere
g g within the string in the order specified by the derivative.
n hlbls L &] (11)  For examplé, [ 8/8(xp)1x*px=2x%, and [&/8(xp) IXpX?p
(112,13 X1, X1, Xipmoo X, =x2p+ 2Xpx+ pXC=4x2p.

In the y—O0 limit, coherent state expectations of tfre-

scaled generators; turn into coordinateg; on the classical
phase space anlassical operators acting oft{, become

This can be packaged in an even more concise form,

4ns g0 =3sMIg(M). .. sM) with m;+ - --+my=k andm;>1

for al i and M=), gk=(mnEm-1) oo - A .

=O(x™™". The largest number of connected diagranezcurs If X, commute, thend&f/o(x; ---x;)=(1n!)(d"f/

when alls(™) ares(® (except for one, ik is odd, which iss(®)). dx;,---9%; ). In this case, the ordering does not matter, anchthe
50r perhaps one-particle irreducible. is needed to make up for over-counting.
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functions on phase spa((e[)=V+ O(x). For finite y, the successive terms in Ed.2) precisely characterize the corrections
to this classical limit.

IV. TIME EVOLUTION

Since operators are completely determined by their symbols, to study the time dependence of any ob&eitvisble
sufficient to take the coherent state expectation value of its Heisenberg equation of (hgtion

d . [N
Gi®) = (A, A, a9

In other words, we assume that the initial state is precisely some coherentistaad wish to determine the subsequent time
evolution. To do so, we will first find an expansion, in powersyoffor the expectation of the commutator of classical
operators.

A. Symbols of commutators

Consider classical operato’s and B wh|ch (as in Sec. Il may be written as power series in the generatéxs,

=2 .. f(i xI » B=ZpB; . ]xJ - Thelrproduct is given bAB= Zai . By, xI1 Xi xJ i Using our
previous resul(lZ) we find
() (1) (3) (I1513) 4 o(4) (I151514) 3
(AB)= AB+g J(AB)TTZ 4 giy | (AB)T1230 4+ (AB)T1239+O(x%) (153
=AB+s(?) (AB)(1'2+5(Y | (AB)(1'219+(s(3) s() +5{ 52 +5(2) s2))(AB) (1121310 + O(x®) (15b)
where now (4,l,,- - -) denote ordered subsets{of,- - -,i,j1,- - -,in}- We see from Eq(15) that, to leading order, products

of classical operators factorizeAB)=(A){B)+ O(x).
Using the expansiofl5), and the reduction formulas for operator derivatiy&8), one can evaluate the commutator. A
generic term in the result will be

gl(rl)zHlk[(AB)UlIZ'"lk)—(BA)(Illz‘"lk)]:gfll(?.|k(A(|1"'|k)§+ oo+ AlIBs 10 L AlDB 2 1) 4 AR W)
_gl(k?--l (B(Il"'lk)K-{_ oo+ Als - h) 4 B('l)A('z'"|k)+§A(|1'”|k))
:(gl(l) -\, ¥ )(A(ll)B(|2|3|4"'Ik)_B(ll)A(|2|3|4"‘lk))
2lsla 2lsls

(g|1|2|3|4 9|3|4 ) (ACDBUE 10— Bl Aals: 1)

+(g'(ll(')2'3'4‘ g IR 3)(A(|1|2|3)B(|4 T — Ul ala -1y ... (16)
The last term in the sur(il6) is either
(g(ZJ) e g(JZi)l -|2j|1~--|j)(A(|l."lj)B(ljJrl.Hle))
or
(g(2J+l])J+1 i g(JZJJrIl)IZJJrll )(A(ll INBUj+1 T2+ — U 1D AU 1 T2j+0))

depending on whethet is even or odd. Using Eq10) to reduce the differenceg{’ —g') yields the final form for the
expectation of the commutator of classical operators. The leading term is precisely the Poisson bracket on the classical phase
space, while subsequent terms involve successively higher expectgtfnBisplaying subleading’(x) and O(x?) terms

explicitly, one finds

125003-5



ANTON V. RYZHOV AND LAURENCE G. YAFFE PHYSICAL REVIEW D62 125003

1
()
=7 xm](AYVB 1) } O(x")
T 8miy T 1T 1,81,m)(AUPBUD — BUDAT)
071,810, H T 1,810, T T, 81,1,) J(AVDB U2 — BUDATRISTL)) t O(x")

L) R sl
(71,800, T 1,81, T 1180, +f7;14gl311)](A( 112 p0sla))
1D pUslsl 1) 4 Ualsl
U7 1,8 migt STy 812m14+f7;1481213m](14( DBalsle) — U AU2510))
L) p sl
U718 migt, T 11,8 1m0 81 miy T 11,8 1,0,m] (A1 pUsla)
71,8110 T T 18150405 TS 11,81,0505 T ST 18 1,141,)
ST L8 migtyis T 18 1mi 15 T 11,81 1mis T I 1.8 1151
X (A(IL)B(]2]3]4]5)—B(IL)A(]2]3]4]5))
+[x”’(f;rilsg]ﬂs’z+f;”1’4g’3’5’2+f7[1’5g’3’4’2+f7;’3g’1’4’5 +f7[2’4g’1’3’5
1081151 TS 11,8 m1 151, VT 1,811 1, T T 1,8 11,m1y 150,81, m1 1
1) pUsll 11) 4 Uslyl 2

+f7';1481113m15+f7[2158111314m](A( 1) pUslals) — pUiT2) A (Uslals)) r O(x°)
+ [xm(f;”1]2g13]4]516+f7[l]3g]2]4]5]6+f7;]4g]2]3]516 +f7;]5g]2]3]4]6 +f7[1]6g]2]3]4]5)]

X (AUDBUalslalsls) _ Bl A Ualsllsls)
07 1,8 1,051, T 11,8 10516, T 11181514061, T 10081514041
7081140516 TS 11,8 1151516 TS 151811510 T 181,151,150

X (A(1112)3(13141516) _B(11]2)A(13]4]516))
(71,8 15161,0 11,8 1110 T 10181405150 T 11,8 115061, T T 18 11411
11313) g (lals]

08114051, T I Ta1, 8110516 TS T151,81,11 1 +f7';16811121415)](14( h213)pli4lsle))

+0(x?)

(17)

B. Equations of motion

To determine the evolution to ordél x®), we need the time derivatives ®f(t), g;j(t), andg;(t). Take the commutator
of products of generators with the Hamiltonian and subtract the disconnected parts to find

d . ,
GO LTAXIHD 4 [ 1 gact TRgjalHO9

+H[Xa(Fi g+ FR0j + 95 + £ Gari+ FiGjar+ Figjkal HIKD
+ [Xa(fia}gklm+ ff‘kgj|m+ fﬁgjkm+ ff‘mgjkl)
+ £ Gakimt fikGjam* f{iGjkam™ f2 GjralHOKIM
+[Xa(f Gaamat Fijimnt fiGjkmat FinGjin + Tl Gjiam) JHOKMY
+0(x®) "

125003-6



LARGE N QUANTUM TIME EVOLUTION BEYOND.. .. PHYSICAL REVIEW D 62 125003

d (k)
dtglj [f|kga|+f gla]H

+[Xa(Figy + i 9k + £ + F119k) + FiDaji+ i Gkaj+ i Giar+ i Giial HKD
+ [ Xa(FiQimjt T Gkm T FimGiaij + FkGim + i Gikm+ FiinGit)

+ 3 Gaimi* il Gkamit FinGiaj + fkGiaim+ f Gikam® fimGikia] H™
+ [ Xa(F&Gimnj T fil Gkmnjt fimGkinj * i Okimi

+ kag||mn+ fl|g|kmn+ fjmglk|n+ fjﬂgik|m)]H(k|mn)
+0(x®) o

d
agijkz[fﬁgajﬁfﬂgiak+f§|gija]H(l)

H[Xa(FiGjkm* 5 Gikem FRiGijm + Fin Qi+ G+ Fmgiij ) JHI™
+[(GajGkmt Gai@jm) + i (Giakm+ GimBak) + F&1(GiaGjm + GimJaj)
+ (91 Gakt 9ikGaj) * Fiin(Gii Gakt G1aki) + Fkm(91i 9ja+ 9ij 9ia) JH™
+[Xa(F(ImiGnkt Iminj) + (91 9nkt 9iknj) + F1(91 Imit 9ikTm))
+15(GimGnk T GinImid) + Fiim(Gi1Gnkt GinGi) + F51 (it Omikt GimGik)
+1R(GimTjn+ GinGjm) + FRm( 911 Qjn + GinGj1) + FRn( i Ojm + Gim@j1 ) IH™Y

+0(x?). (20)
|
Recall that, through third order, there is no difference be- <\7(t)>:{V+gi,(t)v(ij)+gi,k(t)v(ijk)
tween the subtracted and connected correlators. Only the dis- ! - !
connected parts of the fourth order correlators appearing in i (VI 0t O3, (22

Egs. (18) and (19) are needed, sincgjj = 0ijdx+ Jikji

+0igjt O(x®). If equations only accurate t®(x?) are  where x;(t), gij(t) =s;j(t), and g;;(t) =s;jk(t) are to be
desired, then all terms in Eq&l8)—(20) involving third (or ~ obtained by integrating Eq918)—(20) forward in time,
highep order correlators, as well as products of second ordeusing Giji (1) =i (1) g (1) + ik (1) 91 (1) + g3 (1) g (1)

correlators, may be droppéd. +0(x?).
Given these equations of motion for the connected expec-
tations of generators, one can use EIR) to describe the C. Error accumulation

dynamics of any classical operator in terms of its symbol. If : . .
To any given order iny, we have a system of non-linear,

V=V({x}) is a(time-independentfunction of the genera- fjst.order, ordinary differential equations. Appropriate initial
tors, then its time-dependent expectation value, at next-to Conditions are imposed by specifying(t=0)= <u|x|u)

next-to-leading order, is given b
g g y and s{ | (t=0)=(u[x;- - - X |u)®°™, with |u) some chosen
coherent state. Smc&ék’(t 0) is O(x* 1), and the equa-
S tions for (d/dt)s™(t) involve only terms of ordex*~* and
. . . . . higher, we still formally haves®¥(t)=0O(x*"1) for t>0.
The resulting next-to-leading order equations are simply However, as the truncated equations of motion are integrated
d i forward in time, errors accumulate; it is important to under-
() ) IR S ) : ;
s~ (HY+ (fGact figie PO X+ fiegy + FigjoH stand the rate of growth of this truncation error.
We are dealing with a system of equations which we can

+0(x), (213 : : : .
and write asy;=F;(y) + G;(y) where{y;(t)} are the variables in
d our problem(that is, thex;'s ands(¥’s), F(y) represents the
5 05 = (FGaj+ G H® +x(Fgy + g+ Fig + Flgi) HK terms we keep, anG(y) stands for everything thrown away
by the truncation. Letyy(t) be the solution to the above
+0(x?). (21b equation withG=0, and solve perturbativelyy(t) =yq(t)
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+€(t) with e small. Linearizing abouy(t) =yq(t), we have Heisenberg group, generated {J@ﬂ}={§</h,f}/h,1/ﬁ}. The
- formal parameter that controls how close the theory is to the
e=f(De+g(b), (23 classical limit is, of coursey=7%. The rescaled generators of

where fg(t):api(yo(t))/ayj' gi(t) =Gi(yo(t)), and we the cohererlce group}i=ﬁei, include the positior& and
have dropped)(e?) terms. This linearized system of equa- momentump operators whose expectations will serve as
tions is easy to solvéat least formally. Fort>0, classical phase space coordinates. The Heisenberg group,
acting on a fixed Gaussian base state, generates conventional
_ ) ydt ! ) A s 7\ 47 coherent statefp,q)}, with wave functions giveriup to an
e(t)y=[Telo ]e(0)+f0[7eﬁ Jg(t")dt’. overall phaseby

(24)

1

Here, 7 denotes time orderingwith smaller times on the <x|p,q)=(wﬁ)1""exp{g[ipx—%(x—q)z] - (28)
right). If f(t) andg(t) are globally bounded during the time
evolution, ||f(t)||<~f, ||g(t)||<§, where ||---|| is some We have arbitrarily choseAn unit§ such that our Gaussian base
appropriate norm, then a crude estimate of the deviation oftate has equal variancexnandp. Consider a Hamiltonian
the true solution from the approximation is of the typical formH = p?+ V(x), where, for simplicity, we

~ ~ = - have set the particle mass to unity. The equations of motion

|le(t)]|<e"[|(0)||+g(e"—1)/F. (25 are, of course,

Of course fort small, errors grow linearly and]e(t)]] d. . d. A
<||€(0)|](1+Tt) +gt+ O(t?); with a truncation good to or- G X=P G P=VX. (27)

der yX att=0, both||e(0)|| andg will be O(x*1).
In a general treatment, it is hard to do better than the We are interested in the time evolutionxdtt), p(t), and
crude bound(25). In dynamical systems with only a few the connected correlatorgy,(t), Uup() =0h,(1), and

degrees of freedom, there typically are “regular” portions Ofgpp(t), all to order. From Eqs.(18) and(19) we find
phase space where perturbations grow only linearly with

time[17]. However, it is not at all clear that this is applicable x=p+O(#?), (283
to the truncated quantum dynamics represented by(Z3).

In the simple examples discussed in the following section, . 1
we will find that for times of ordery ™2 the shape of the p=—V'— 5V gt O(#?), (28b)
wave function of the evolving state becomes so distorted that
the formal hierarchy of correlatorgs®~O(x*™ 1), upon

which the truncation scheme is based, completely breaks Gxx= Gxpt Ipx+ O(?), (289
down. In terms of the underlying quantum dynamics, if one ) )
considers the projection of the initial coherent state wave  (9p)* = 0xp=0pp— V" Guxt+ O(#2), (280
packet onto the exact eigenstates of the Hamiltonian, what is _
happening for sufficiently large time is that the contributions 9pp= — V"(GxptGpx) + O(h?), (28e

of different eigenstates have decohered to such an extent that

the wave packet has spread beyond recognition. Except faubject to the initial conditiong(0)=Xq, pP(0)=pg, Oxx
special non-generic casg¢such as the harmonic oscillator, =g, =1in, gxpz—gpxz%iﬁ. Notice that to this order,
where there is no dispersipone should always expect such detg 2)=gxxgpp— Oxp9px= O(#%) is a constant of the mo-

decoherence to eventually set in. tion, and Eqs(28) are equivalent to a Gaussian variational
ansatz[18] (where one approximates the wave packet by a
V. EXAMPLES Gaussian with a time-dependent centroid and widtow-

o ) ) ever, if we went to next-to-next-to-leading order #n it
We will discuss two examples of theories to which theyoyid become clear that our setup is different. For positive
preceding general results may be applied: the usual semMjmes, higher moments will not be given by simple algebraic
classical limit of point particle quantum mechanics, and theexpressions in terms of the centroid and variance, and the

largeN limit of O(N) invariant vector models. For brevity of details of evolution will depend on the shape of the
presentation, we will display explicitly only the first correc- potential®

tions to the leading classical approximation, but we empha-
size that it is completely straightforward to include yet
higher order corrections, such as #y?) terms displayed

in Egs. (18)—(20). 8In our Gaussian initial state, all connected correlators higher than

second order vanish at time zes$~?)(0)=0. But these moments

cannot remain zero unless the potential is harmonic. For example,

using Eqg.(20) we find thatéxpx= SppxT Sxpp—V"SXXX—V'"(SXX)Z
Consider ordinary point particle quantum mechanics, in+ ©(#2), showing explicitly that any nonzerg” will drive the

one dimension for simplicity. The coherence grdaps the  skewness moments;(t) away from zero.

A. 1—0 quantum mechanics
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As a trivial warm-up, consider the harmonic oscillator of

unit mass and natural frequen€y. H=31p?+10%x% The
solutions to Eqs(28) are

X(t)=XgcosQt+ (py/Q)sint, (299
p(t)=pgcosQrt —(x2)sint, (29b
Oy t) = g[co§ Qt+ Q2 sir? Ot], (290
h
Ipx(t)=0xp(t) = E[i +(Q 1= Q)cosOt sinQt],
(299
f
gpp(t) = 5 [cos QL+ O sir? Ot]. (299

Because the potential is quadratic these are exact. Equally

PHYSICAL REVIEW D 62 125003

f

Upp() = E[cosr? Qt+Q2?sink? Qt]. (30@
In both of these examples, the time evolution of the vari-
ances are independent x§ and py. As one would expect,
they oscillate(with twice the natural frequengyn the case
of the simple harmonic oscillator, and gra@xponentially
for the inverted oscillator.

As a more complicated example, consider the problem of
small oscillations in a weakly anharmonic potential(x)
=1x2+ Bx*. The moment equation@8) become

X=—X—4Bx3— 128X 0y, + O(12), (31a

Gxx= Oxpt Gpx+ O(A?), (31b

(Up)* = Oxp=Upp— Oxx— 12BX°Tys+ O(A?), (310
Ipp= — (1+128x%) (gept+ Gp) + O(4?). (310

simple is an inverted harmonic oscillator. If one takes the

Hamiltonian to beHd = £p2—102%2, then the solution of the
moment equation&28) becomes

X(t) =XxgcoshQt+ (py/Q)sinhQt, (303
p(t)=pgcoshQrt+ (xy2)sinht, (30b
h
Oux(t) = E[cosﬁ Qt+Q ?sink? Qt],
(300
h
g’,;x(t) =0xp(t)= E[i +(Q "+ Q)coshQt sinhQt],
(300

1
X(t)= Q[ cost+ ( §Bq2) [cos 3—cost— 12t sint]+

1 2
3 Bq2> [cos & — 24 cos 3+ 23 cogt + 96t sint— 36t sin 3t

We will solve these perturbatively; the two small parameters
are8q? andB%. We will work to first order ing# [since we
have omittedO(%2) terms in the moment equatidpsand
will display explicit results through second orderg?. In
principle, one could work to any order jg? desired.

In order to keep our error estimates simple, we will treat
the time asO(1) (in units where the natural frequency is
unity). This means we need not worry about the appearance
of secular terms — terms which grow as powerg ef and
may solve Eqgs(31) strictly perturbatively in the naive fash-
ion. A straightforward calculation, with the initial conditions
X(0)=q, p(0)=0, gux= pp= %ﬁ, and Oxp= g;x: %iﬁ;
leads to the solution

1 15
— 72t cost]+ (Bh)[ — 3t sint]+(,8ﬁ)(§,8q2) [ — - (cos 3 —cost) — 18t sin 3t + 93t sint— 54t? cost

+0[(,3q2)3]+O[(Bﬁ)(ﬁq2)2]+0[(,8ﬁ)2]},

with

(32

Uxx(1)=37{1-3Bg’[1—cos 2+t sin 2]+ O[(Bg?)?]+ O(Bh)}, (33
Ipx(1)=0xp(t) = %ﬁ[ i— gﬂq2[3 sin2+2t cos 2]+ O[(Bg)*]+O(Bh) |, (34
Jpp(t) = 3A{1+3Bg°[1—cos 2+t sin 2t]+ O[(Bq?) %]+ O( Bh)}. (35)

®We choose the curvature of the potential at the minimum to equal unity, so that our chosen coherent states have the natural width for the

unperturbed potential. This ensures that the resulting dynafsimh as oscillations o§(®)) are not merely reflecting purely harmonic

oscillations.
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Examining the secular terms in Eq82) and(33), one sees that terms of ordg¥ are accompanied by at mdspowers of
t. This is a general result. It implies that our stated condition that the ting@(¢ is needlessly restrictive. For smgi)® and
Bh, the perturbative expansiori32) and (33) are actually valid in the wider domaiBq?t|<1 and|B#t|<1, provided a
factor oft is included with each factor g8q? or B# in the error estimates.

It is instructive to compare this treatment with the result of a perturbative quantum mechanical calculation. Using the
brute-force approach of first finding perturbed eigenstates and energy levels, and then evaluating the time-dependent expec-
tation valuex(t) by projecting the initial coherent state onto individual eigenstates and summing the resultant contributions, a
rather tedious calculation using both wave functions and energies corré{3pleads to

2
X(t) q(e (qzlﬁ)SIﬂ2(3ﬁﬁt/2)Co{(1+33ﬁ)t+ q |n(3/3ﬁt)}
2 2 4
— (%) SIrP(36112) q _§_q__iq_>
+(Bh)e U 3Bt2(00§{(1+3,3ﬁ)t+ sm(3,8ﬁt)}( 3572
[ q2 _ (3 q2 1 q4>
+co‘_(1+6ﬂh)t+ ﬁsm@ﬂﬁt) ST AR 4l
[ q2 2
+cos (1+9pBA)t+ an(Sﬂht)K )
|le% 35
+ CoS (1+12,Bh)t+ 2ﬁsm(?;ﬁfit §_ 172
1
+cos_(1+15ﬁﬁ)t 2ﬁ5|n(3/8ﬁt)}(3—2 )]

2

+( ﬂﬁ)e—<q2’ﬁ>5‘“2<9ﬂﬁ“2)cos{ 3(1468h) 1+ o (36)

1
S|n(9,8ﬁt)} (g #

This result hag)(B?) errors due to the neglect of secofahd highey order corrections in both the eigenstates and energy
eigenvalues.

If one restrictst to be small compared to both|Bf| and 1/89?|, then one may expand the res(86) in powers off.
Moreover, in this domain one may easily add in the leading secj1§87%)>t] terms omitted from Eq(36), which come from
including the®(8?) perturbation to energy levels while using unperturbed wave functb@se finds

X(t)=qj cost+

1 2
gﬁqz) [96t sint— 36t sin 3t— 72t2 cost ]+ (B#)[ — 3t sint]

1
gﬁqz) [cos 3—cost—12t sint]+

+(ﬁh)(%ﬁq2)[— 18t sin 3t+ 93t sint— 54t? cost]+ O[ (B> + Bh)?]+ O[ (B> + BH)%t%] ;. (37

This result is perfectly consistent with the previous moment-esting to examine expressi¢d6) whenBzt<1, making no
hierarchy result32), as it must be, except for the non-secularassumption about the size 8f°t. In this regime, the first,
O(B?) terms which are hiding in the firsP[(8g?+B#)?]  leading term of Eq(36) becomes

error term of Eq.(37). If one includes second order pertur-

bations to the eigenstates then these terms also coincide.

In the semi-classical regime, wheB < Bq?, it is inter- X(t):qe_(g/4)(5q2)(5ﬁ)t2005{( 1+38h+ §quH
2

+O(qph). (39
OThis addition isq(t sint)[ 33(8q?)2+23(Be?) (Bh) +18(B4)?]. If
one does not assume tha#t is small compared to 1, then includ-
ing the O(B2) energy shift in matrix elements of time-evolution IN other wordsx(t) shows damped harmonic behavior, with
operators unfortunately leads to an analytically intractable infinited shifted g-dependent frequency, and with an amplitude
sum forx(t). which decays significantly on the time scale
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ta~[(Ba*)(Bh)] ™2 (39 Gxx(1) = Gxx(0) + [Gp(0) + Gpx(0) Tt + G 0)t2

This implies that on this time scale, the initially well local- =3h(1+t%). (40
ized wave packet has dispersed so much that its probabilit ) 1 )
distribution is spread out over most of the classically allowed€re also, we See that fokr times of order™* the hierarchy
region!! Hence ty should be regarded as a “delocalization” ©f correlat_orss( )(_t)”O(ﬁ ) no longer holds. _
or “decoherence” time. The higher order terms in E86) We_z believe this to_ b_e a _genergl result. Whenever a semi-
all exhibit essentially the same behavior in this regime; eacl¢lassical system eXh'b'LSZ dispersion, the decoherence time is
term oscillates with dslightly different frequency and has @xpected to scale & % and truncations of the moment
an amplitude which decays on the decoherence time ggale Nierarchy equationél8)—(20) will only be accurate for times
Although it will have no bearing on our discussion, it is Small compared to the decoherence time.
interesting to note that on yet longer time scales, when
near 2r/(3Bh) or integer multiples thereof, the exponential B. Vector models

factors in Eq.(36) return to near unity, implying that the  consider anO(N) invariant theory whose fundamental
time-dependent state has “reassembled” itself into a récolgegrees of freedom forr®(N) vectors. For simplicity, we

nizable wave packet oscillating in the potentfaPresum- il assume that the degrees of freedom are all bosbhic,
ably, this is a reflection of the fact that this is an integrable

single degree of freedom system. and divided into a set of canonical CPQrdinal{éQ} and
The existence of the decoherence time s¢a® has im-  corresponding  canonical momentgpy}. Here i,]
portant consequences for the utility of any truncated moment 1, . . . N are O(N) vector indices, whilea,5=1, ... m
expansion, such as Eq&l8)—(20). If the wave packet has distinguish differenO(N) vectors. These basic operators are
spread to such an extent that it is significantly sampling all oRssumed to satisfy canonical commutation relations, normal-
its classically allowed region, while necessarily retainingized such tha(i'a,f)’ﬁ]=(i/N)5”5aB. In other words, we
structure on smaller scales, then the formal hierarchy of comhave chosen to scale both coordinates and moments\b_y 1/
nected correlatorss®)~#%*"*, will have broken down. compared to their textbook form. The small parameter con-
Higher order moments will not be small compared to lowertrolling the approach to the classical limit i&=1/N; # has
order ones. Consequently, the moment expansion presentgden set to unity. The Hamiltonian is assumed toO{&)
in the previous section can only be useful for times which ar@nvariant, and we will completely restrict attention to the
small compared to the decoherence tige O(N) invariant sector of the theory. Consequently, the rel-
The 1A% dependence of the decoherence tif88) may  evant Hilbert spacé4y is the space of alD(N) invariant
also be seen in another very simple example. Consider thetates, and all physical operators can be constructed from the
free evolution of a coherent state in the absence of any pdhasic bilinears
tential. As is well known, the width of the wave packet

. . . ~ ~ N
grows without bqurld; The Aevolutlon Aequatlens foland p AQBEZ ;(Ioz;(IB (413
are, of course, trivialp(t)=p(0), andx(t)=x(0)+ p(0)t. i=1
Hence, X*(t)=x*(0)+[x(0)p(0)+p(0)x(0)]t+p(0)*?,

s : . N
and so for our initial Gaussian coherent stamdth equal N Loni AL AT A
variance inx andp), Ba;a:;l 21XaPpT PpXat, (41b)
N
H0f course, the fact that the amplitude of oscillations in the mean CaB52 PP - (419

positionx(t) decays on the decoherence time s¢gleannot mean

that the wave packet has come to rest at the bottom of the potential . - i
while remaining a well-localized wave packet, as this would violatelt Will be convenient to regard,, andp, as the components

energy conservation. In the semi-classical regime under discussioRf M>N matrices, so that the basic bilinea¥l) may be
the position of the initial wave packet is significantly displaced assembled intenxXm matrices,

from the minimum of the potentiat>>#, implying that the total ]

energy is large compared to the zero-point energy. Therefore, a AT Aot |_A A ~nT
negligible mean position at large times necessarily indicates that the A=xx', B=xp 21' and C=pp". (42)
wave packet has spread so much that its probability density, at any

late time, is delocalized over the entire classically allowed region\/iewed as matriceSA and C are symmetric whileB is

and no longer “sloshes” back-and-forth to any significant extent. ic. The individual of B 4é
Within the classically allowed region, energy conservation impliesnon'symmemc' e individual componentsAf B, an

that the wave function must have substantial variations on scales f&"€ all Hermitian operators acting dty .
smaller than thésquare root of thevariance in position — which We will take the Hamiltonian to have the general form
will be comparable to the width of the classically allowed region.

2Whether this “reassembly” persists in the exact solution, or is
an artifact of our first order perturbative result, is not entirely clear *Extending this discussion 1d(N) invariant fermionic models is
to us. completely straightforward.
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NHy=N[3 tr(C)+V(A)]. (43)

NHN=Nf (d9)| 27(x) - 7(X) + 3V $(X) - V()

The overall factor ofN (given our scaling of coordinates and 1,20 - N o - )

momenta by 1YN) is exactly what is needed to ensure that +2u7() - GO+ Z(¢(X)'¢(X)) : (46)

the N—oo limit is a classical limit in the framework of Sec.

[I. The potential energy functioW(A) may be any chosen Returning to the general discussion, a straightforward cal-
scalar-valued function of a symmetric matéx The kinetic  culation shows that the commutators of the basic bilinears
energy takes the simple foritr C=13, ,(p!)? if all de- ~ are

grees of freedom are scaled to have unit mass. Two specific

examples in this class of models are: E[;_\ A 1= E[@ A 1=0 (473

(i) A single particle moving in a central potential in jHep el Cyel=0.

N-dimensions. This is the simplest possible example; the
theory has only a singl®©(N) coordinate vectofi.e., m N . - -
=1]. The Hamiltonian is T[As, B,sl=Au, 055+ Agydas, (47b
~ > - - = - ~ N . . R R
NHN=N[zp-p+V(X-X)]=N[zC+V(A)], (44 ~[Bap Byol =B 505 Basdyp, (479
whereV(r?) is now a function of just a one variabté. N . . . . .

(i) An O(N)-invariant ¢* field theory. The theory, de- T[A yﬁ]:Ba75B5+ BgyOast BasdpyT Bpsday,
fined on a spatial lattice, has field operatéh‘gand conjugate (47d
momentarr., wheres labels the sites of som#dimensional
lattice. The canonical commutation relatidadter scalinge E[éaﬁ,éya]:éﬁﬁaﬁ éﬁﬁéaw (479

and 7 by 1\/N) are[ ¢, 7, ]1=(i/N) 6" 5,5 , and the quan-

tum Hamiltonian is I N
In other words, the commutators Af B, andC (as well as

just A and B) close and these operators generate a

Liealgebrat® The appropriate coherence group which will

create suitabl®©(N) invariant coherent states may be taken

to be the group generated lognti-Hermitian linear combi-

n %((Aﬁs';ﬁs)z} (453 nations of the operators{Aaﬁ} and{Baﬁ} Enlarging the
coherence group by including tie,; operators among the
generators is equally acceptable, but unnecessary. The group

{ generated byA, g and{B,s} alone satisfies all the condi-

=N |1 7ot 190 Bt 1% 4

NIH

FE(-Vi+pu ) Ase1lsr—s tions for producing an over-complete set of coherent states
which behave classically &— . Including the@aﬁ opera-
A tors among the generators enlarges the coherence group, but
+ Z(Ass) } (45b) has no effect whatsoever on the resulting manifold of coher-
ent states.
Acting on an initial Gaussian base state, the coherence
[HereV is a lattice forward difference operator, dot productsgroup generates a set of coherent stdte}s}, wherez is a
denote the implicit sum ove®(N) indices, and factors of complex symmetrienX m matrix, with positive definite real
lattice spacing are suppressed for simplidifyjhe numbem

of O(N) vectors[or the dimension of the matrices, B,
and C] equals the total number of lattice sites. Ignoring the °The Lie algebra structure constants a&ﬁe" l(5 «Ovy0ps

obvious notational changes-{ ¢, p—m), this theory has 15 s st ByaByOp5t 8,58,y000), £B =8,,8,40
mpB ad va®uy?psé v ald, B,sB.s vBYad

precisely the stated form of EqglL2),(43). The lattice theory 5 5.8 £Buv = S aByOpst 8, “”5 ”L BraBusd

may, of course, be viewed as a natural discretization of the “#«“»3“7# AuiCrs Bs T CupryCad ve©By

+ 6,506,500y and fa f“ —2(5 1800y0ust 0,580,504,

+ 8,50,y 0a6T 0,50,504), plus those trivially related by antisym-
metry; all others vanish. The resulting Lie algebra of operators
{A(a,b,0)=iINZ 4(anpAsatDapBsat CapCpa)} is isomorphic

to thesp(2m) algebra represented by thendimensional matrices
YIn terms of coordinates and momenta which have not been refa(a,b C)_[ b bT]}, whereb= ||baB||l etc., anch andc are sym-

scaled byN~2 one hasNFy=3p2+NV(X¥/N). metric.

formal continuum theory where the field operatef$x) and
7 (x) depend on continuous spatial coordinates and
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part, which may be used to uniquely label an individual co-so thata=(z+2z*) ! and w=(i/2)(z—z*). Both a and w
herent state. The position space wave functions of these care real symmetric matrices, aads positive definite. Using

herent states are given by the fact thatpj|z)=iX.,z.4/z), a short exercise shows that
N N/4 the coherent state expectation values of the basic bilinears
\Ifz(x)=de{ﬂ(z+ Z*)| exp—iNtrx'zx). (48 are
A(z)=a, B(z)=aw, and C(z)=waw+ia .
It will be convenient to decompose the matzxnto its real (50)

and imaginary parts by writing ) )
The variances of these operators in the coherent $tate

z=ia l-iw, (49)  are®
|
AA 1
gaﬁ,y(szﬁ[aayaﬁa"‘aasaﬁy]a (513
BB 1 1,-1 1. 1
gaﬁ,yﬁzﬁ[aay(za +waw)ﬁ§+(§+Iwa)ﬂy(§_law)a§]! (51b)
CcC 1 1,-1 1,-1 1,-1 1,-1
ga,&y(szﬁ[(za T waw), (78 "+t wao)gst (787 T+ waw) 478 T+ waw)g,], (510
i : .
(950ap)* = Uapyo= y[Bay(3 —120) g5t ag,(3 —ia0) 4], (51d
1 . : . .
(955.0p)" =Gagyo= ~ gL(E180) 0,3 —180) g5t (3180) 53 —ia0) g, ], (518
i . _ , _
(955ap)" =ag yo= (3 —180) (10 T+ 0aw) gt (3 —180) 432+ wAw) 4, ). (51f)

Given our choice of Hamiltoniafd3), the operator equations of motion for the basic bilinears are

d. R R

aAaﬁ: Baﬁ+ BBa’ (528)
d < = A V2

aBaBZCaﬁ—ZAQYVW;, (52b)
GiCes= 28,0}~ 2V, By, (520

Here,V' is shorthand for the variation &f(A) with respect to the symmetric matri

CSV(A)
B 5A(ap)

(53

N

SV(A)  SV(A)
Aap | Ay |

and is defined so thatV(A)=tr(V' sA).1’

Applying the general resultel8) and (19) [actually, only Eq.(21) is neededito the case at hand, one finds in a straight-
forward fashion the following equations, valid to next-to-leading order i\ f6r the time evolution of the expectation values
and variances of basic bilinears:

'®For aesthetic reasons, we $gl; ;= 9a, 8, (AasBys) —(Aug)(Bys), etc.
YNote that with this definition, the matrix variatiod’ reduces to an ordinary variational derivative in the case of a single vector
(m=1).

125003-13



ANTON V. RYZHOV AND LAURENCE G. YAFFE PHYSICAL REVIEW D62 125003

d
&AQB:Baﬂ_‘_Bﬁa’ (546)
EB =C,z—2A, N ,—2g°% V' . —gih A, V" +O(N"?) (54b)
dt P~ Cap™ “RanV s Gan vV ng v uv,se NanV np,uv.ce '
_ ro_ 1 _ (~BA AB " _ (~BA AB "
acaﬁ_ ZBﬂavnﬁ ZBWBVW (gna,uv+guv,va)vn,3,uv (gnﬁ,w—'—gwﬂlﬁ)vna,uv
AA " " —
=G 2e(BraV g un et BrpVia n ) TONNT), (549
together with
d AA BA BA AB AB -2
mgaﬁ,yézgaﬁ.yﬁ_l—gﬁa,y5+gaﬁ,76+gaﬂ,67+O(N )u (55a
EBB —qCB +gBC _92g”B ' _2gBA
dtgaﬁ,yﬁ_gaﬁ,‘yﬁ gaﬂ,'yé gan,y& 7B ga,B,'yr] no
AB BA % AB BA " -2
_(gﬂvlyﬁ—'_gv&ﬂv)AaﬂVﬂB,MV_(gﬂvlaﬁ—'—gaﬁ,w)Aw 7/5,,uv+0(N ), (55b)
d
cc _ _ BC ro_ CB r_ BC ro_ CB 1 _ r~4AC CA " "
&gaﬁyvﬁ_ 297701,75\/77,8 Zgwﬁlw nd 2977&75 an 29015,775 Yn (gw,aﬁ—'—gaﬁyuv)(Bﬂﬁ VW,MV+B777 nrilw)
C C " " -
_(gﬁv,yﬁ—i_gygﬂv)(Bnﬁvan,;Lv+Br)avrlﬁ,,uy)_FO(N 2)1 (55C)
d
AB _ BB BB AC AA ' AA " -2
Gt 9.y~ Yap.yst Ipayst Yap.ye™ 29ap.yyV 756~ 29ap.uPynV ne.unt O(NT), (559
i AC _ ~BC + BC _2 AB V/ _2 AB V/ _2 AA (B VH +B " )+O(N72) (559
dtgaﬁ,vﬁ_gaﬁﬁﬁ Ypa,yo™ “9ap, 8V yn~ “Y9ap,nyV 756~ “Yap,u{PysVynuv™ ByyVys uv '
EBC_CC —2gAC 1 _2qgBB 1 _ogBB /_AC+CA)AV//
dtgaﬁyvﬁ_gaﬂyvﬁ 9an,ysV e 9ap, 75V vy 9ap,nyY s (g,uvyvﬁ 9ys.ur)RanV yp v
—(Dmast 9apun) BV 1t By Vs ) + O(NT2). (55f)

Here Hence, the coherent state expectation valudofB is di-

A—118
¥ S2V(A) rectly related to that oA™ -,

B A P | A-17 i LA
(@8) OA(y9) (Z(A7B) gl =iza0p= HZ(A D epl).  (57)

etc. Of courseg®} ,,=(9h3.,5)* and so on, since the basic

biIinearsAaﬂ, Bugs andéaﬂ are all Hermitian.
As they stand, thétruncatedd moment equation&4) and

In a similar fashion, the coherent state expectation valu@ of
may be expressed as

55) are highly redundant. This is because the operators 2 ~ n . SATy
(59 are highly. | P (21€12)=(2pp"I2) = (2l(12)* (X} (i2) 2)
A.p, B,p, andC,z are notindependent when acting on the
O(N) invariant Hilbert spacé{NI. For many purposes, it is =<z|(ﬁ§<T)(>A<§(T)*1(§<E)T)|z>
preferable to reduce the evolution equations to a smaller set oy )
i it - R I T AU BN
of |n.depe_ndent observables. To sge theAredundAancy, it is con — (2| B+ 21| A Y B+ 21)[2). (58)
venient first to note that the actions & and A on any 2 2

coherent statéz) are related,

The following discussion assumes that coherent state matrix el-

_ AT\ O0T ) Al
= = =A . 5 “
|Z> xp |Z> xx (IZ)|Z> (IZ)|Z> (56) ements ofA~! exist, which requireN>m-+1.

R
B+§1
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As noted earlier in Sec. Il, quantum operators are com- NITO A 71—
. -l ! _ IN[Q g A5l = 8,055+ 85O 63b
pletely determined by their diagonal expectation values in [Qap Arol = 0arpat Gusdpy (63D
the over-complete coherent basis. Consequently, the cohejf-the complex symmetric matriz parametrizing coherent
ent state relationg57) and (58) suffice to infer underlying  states is separated into real and imaginary parts by writing
operator identities. The left-hand side of relati@TY) is not  z=1371—jy [as in Eq.(49)], then the coherent state expec-

mamfestly s_ymmetnc undgr mterchan_ggcobnd,B . but the tations of the canonical operato@sandf) are justa and w,
right-hand side is symmetric under this interchange. Becaust%spectively

Eg. (57) holds for all coherent statg$z)}, if one defines
A o (ZIAlzy=a, (Z0|2)=w. (64)
Qop=(A"1B) p+i

m+1) .
—) (AN g, (59 . . . .
2N [The first equality was previously noted in E&Q).]

Re-expressing the quantum equations of motid2) in
terms of the independent canonically conjugate operators
gives

then Eq.(57) implies thatQ) ,5=Q 4,,, so thatQ=||Q 4| is
a symmetric matrix. Moreover, using the commutation rela
tions (47), one may verify thaf} .z is Hermitian.[Demand-

ing Hermiticity is what determines the coefficient of the sec- d. .. ..
ond term in Eq.(59).] Similarly, relation (58) implies the aA=AQ+QA, (653
operator identity
A PO Y P PO e e —h2-aviA) (65b)
C=|B+51 A" B+ 51, (60) dt eff "/

. - . - where the “effective” radial potential
showing that the operatof&, 5} are not independent ok P

andB [when acting orO(N) invariant statef Inverting the Vo A)=V(A) + 1 1 m+1 2tr A (66
definition (59) to express in terms of(}, efft == 8 N
. oA~ (mt1) L equals the original potential energy augmented by a “cen-
B=AQ-i W) 1 (61)  trifugal potential.”

One may directly evaluate the evolution equations for ex-
pectations and variances of the canonically conjugate opera-

tors A andQ, or equivalently(and rather tediousjyrewrite

the previous equation&4) and (55) in terms of A and Q.
Either way, one finds

and using this, plus the Hermiticity of}, allows one to
rewrite expressioi60) for C as

m+1\2.

A oaaa 1
— _ o -1
C—QAQ+4 1 N A (62
LN =(AQ+QA),;+g %+ +O(N7?)
Hence, within theO(N) invariant Hilbert space, instead of gt ‘8™ apt Gay,ngt Gannst O ,
working with the basic bilinearA, B, and C [totaling (673
m(2m+ 1) distinct operatofs it is sufficient to use onlyA
and Q) [totaling m(m+1) distinct operatofls These opera- Gt Qes= — (24 2V ap= Garn s (Verd) ap v, ceDnmce
tors are, in fact, canonically conjugate “coordinates” and
“momenta.” A short exercise shows that +O(N72), (67b
[Aug Aysl=[Q05,0,5]=0, (633  together with

d
AA  _ AA QA 0A AA AA AQ AQ AA
agaﬁyvﬁ_ gav,yﬁﬂ 77,3+ gnﬂyyf?Amﬁ' ganvyﬁAnﬂ"_ gnﬁyvﬁﬂan—’_ 9ap,yn Qv5+ gwﬂzﬁAwfF gaﬁ,wAﬂfﬁ_ gaﬁ,nﬁﬂw

+O(N7?), (68a
d OA * d AQ  _ JAQ O .+ Q0 A+ [9X9) A+ AQ Q. - AQ 0. — AQ )
a(gyﬁyaﬁ) _agaﬁvvﬁ_gan,yé 287 Qug,ys Pan™ Gan,ys A np ™ Inp,ys tan™ Yap ns 2yn™ Gapyn tne

_Z(ngf) 75,MV922,MV+O(N_2)! (68b)

d
agﬁéfy5= o gg/i’),rzﬁﬂw_ gggw Qy5— 2(Veyr) vﬁnggﬁﬁﬂv_ g%l,yﬁﬂav_ 92275977/3_ 2(Vgﬁ)aﬁng2§}ﬂ/5+ O(N™?).
(680
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Initial conditions corresponding to a given coherent staje(with z=3a '—iw) are given byA(0)=a and Q(0)=w,
together with the variances

0A 00 NI +O(N™?). (69

(g'g[Ai’,yé‘ ggg,yé‘) _ 1 aaﬁaﬁ)’_'— aa}’aﬁﬁ %[5a55[3'y+ 501)/5[36]
gaﬁ,yﬁ gaﬁ,yﬁ t=0 N

i 11, 1.1
—3[84605,F 84,0851 ilas585, A, 855]

The next-to-leading order evolution equatiof&) and R A i
(68) are directly applicable to any boson@(N) invariant r=A" p=AY(- N A2 (73
vector model, such as the* theory defined by Eq(45),
whose Hamiltonian has the general fo(48). The dynamics
is encoded in as efficient a form as possible; one has dynamFhese operators are canonically conjugate,
cal equations for then(m+1)/2 pairs of independent phase
space coordinate®7), and their variance&8).
In the special cas&t4) of a single vectofcorresponding i[p,r]=1N, (74)
to a point particle moving in amN-dimensional spherically
symmetric potentialone may drop all the indices and the
next-to-leading order evolution equations become and a short exercise rewriting the quantum equations of mo-
tion (65) yields

d
GiATAQ+OA+gag+gaat ONT?), (703
d. .
d atr P (753
aQ:_Qz_zvéﬁ_gQQ_gAA\/g,ﬁ_'— O(N~?), (70b
d. .
d . mp=—ueﬁ(r), (75b)
agAA:4gAAQ+2(9()A+9A&))A+O(N )s (700
where
d d
a(gQA)*:agAQZZQQQA_ZgAAVgﬁ+O(N72)y (700
d Ueff(r)EVeff(rz)_ 8N2r2
gi900= ~ 49000~ 2(doat gan) Vert O(N™?), (709 1 3 1
:V(r2)+g 1_N)(1_N)r_2’ (76)

with initial conditions given byA(0)=a, (Q(0)=w, and

(gAA gAQ) _E a’ 3
oA Y00/, a~?

andU z=dUgq/dr. This is a well-known results-wave dy-
+O(N7?). (7 namics in arN-dimensional central potential is equivalent to

one-dimensional quantum dynamics in an effective radial po-
. tential U4 containing an additional “centrifugal” potential
ll;r;g;ﬂEqsé?O) ﬁndcﬁ) one may again see that to next-to- éTI]\I—3)(N—1)/(8N2r2) which is non-vanishing in all di-

g oraer, he determinant of the variance matrix on &, o hqions other than 1 and 89,20. As seen in the commu-
left-hand side of Eq.(71) is a constant of the motion, tation relationg74), the parameter N plays the role of. so
detg®(t)=O(N"3). To this order, our method gives ex- (=), tNe pare pay _
actly same predictions as the Gaussian approximation Othat the _IargeN I'.m't IS prems_ely equwalent to the sem|cla_s-
[18]. One may, of course, systematically extend the treat—s'cal limit of ord|na(y one—dlmenS|qnaI quantum mechanics.

The next-to-leading order evolution equatidi®) for the

ment to higher order in NN simply by specializing the next- ) !
g Ply by Sp g coherent state expectation values and variances afd Q)

to-next-to-leading order results in Sec. IV. : ; :
The evolution equation$70) in this single-vector case ™M&Y easily be converted to equivalent next-to-leading order
may be cast in a more transparent form by defining radiafduations for expectations and variancespoénd r. One

Bl

L
2

position and momentum operators via inds
A=P% Q=3(pF P, 72 d
—r= -2
or equivalently gi' ~P+HONT), (779
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N will be different in more general vector-like largétheo-

p=—Uer— 39Uyt ON7?), (77D ries, such as the” field theory (45), as compared to the
single-vector model. Although we have no compelling proof
to offer, we expect that a decoherence time of ol is a

Sle

d , generic feature of vector-like large theories?°
_grr:grp+gpr+O(N7 )s (779
dt
d ._d , L, VI. CONCLUSIONS
a(gpr) :agrp:gpp_grrueﬁ—’_O(N )s (770

We have shown that a systematic hierarchy of time-local
evolution equations for a minimal set of equal-time correla-
d tion functions may be derived in any theory having a classi-
. — ” -2 77 y y y g
dtJer (9rp*Gpr) Vet ON ™). (779 cal (or largeN) limit which fits within the general frame-
work of Sec. Il. Truncating this hierarchy at the levelkdth
order momentsgi.e., retaining up tdk-point connected corr-

Through next-to-leading order, these evolutions equationglators yields results which are accurate up to ordex 1/
are identical to the evolution equatio®@8) for the usual However, it is clear that the—o and%#—0 (or N— =)
semiclassical limit® The initial variances differ, however, limits are non-uniform. At least in simple one degree of free-
due to the differing shapes of the initial wave packe§) dom (or single vector models, we have argued that integrat-
and (48). For our largeN coherent states, ing the truncated moment evolution equations forward in
time yields results which, generically, cease to be a good
approximation to the true quantum dynamics beyond a deco-
herence time which scales &5 2 (or \/N). The ordering of
connected correlators which underlies the truncation of the
(78) moment hierarchy is only valid for times small compared to
the decoherence time. Going to higher orders in the trunca-
tion scheme will not, in general, yield results which remain
[and once again degf?)(t)=O(N~3)]. The form of this vari-  valid for parametrically longer time intervals.
ance matrix(including, for example, the growth in the vari- We expect, but have not demonstrated, that tMisscal-
anceg,, with increasing) reflects the fact that the underly- ing of the decoherence time is a general feature of laige
ing O(N) invariant coherent state wave functions are notquantum dynamics. It would obviously be worthwhile to in-
constant width one-dimensional Gaussians, but rathevestigate this further, particularly in largd models with
N-dimensional Gaussians centered at the origin with variablenany vectors. In, for example, @(N) invariant lattice¢*
width. Hence, the position of the peak in the resulting radiaffield theory, it would clearly be desirable to understand the
probability distribution is positively correlated with the dependence of the decoherence time on the energy of the
width of the radial probability distribution about this peak.

For any given choice of the potential, one may integrate
the. five equationd77) fOEV;’ard m_ time and Obta”? results 2Ot js interesting to note that, in contrast to the previous discus-
which are accurate tG(N ") [for times of order unity. Fpr sion of the semiclassicél— 0 limit, examiningN-dimensional free
bgtter accuracy, ong could extend th.e treatment to 'nCIUdﬁwotion in the absence of any potential does not provide an example
hlgher' order correlations, as detailed in Sec. IV. illustrating breakdown of the moment hierarchy based@(N)

In light of the above exact correspondence between thgyariant coherent states. This is because the growth in the width of
O(N)-invariant dynamics of the single-vector modd#), a spherically-symmetric Gaussian wave packet is perfectly repre-
and ordinary one-dimensional quantum dynamics in the efsented by a single one of the variable-wi@N) invariant coher-
fective radial potentia{76) with N playing the role ofi, the  ent state$48), unlike the earlier situation with fixed-width coherent
previous discussion of stability of the truncated momentstates. Henc®(N) invariant free motion is highly non-generic. For
equations in the semiclassical limit immediately carries ovelO(N) invariant free motion(in the general case whezis an
to the largeN dynamics of the single-vector model. In par- mx m matrix andHy= 3 tr C), one may show that the exact time
ticular, this means that one should expect to see a decohesvolution maps an initial coherent stdtg) into another coherent
ence time which scales &2, beyond which truncations of state|z(t)) with z(t)"1=z;'+it1. The operator equations of mo-
the moment hierarchy are no longer useful. We have no reajon (52) may also be integrated exactly and show ti@t)
son to believe that the scaling of the decoherence time with- (o) is a constant of the motion, whig=B(0)+2€t, andA

=A(0)+ 3[B(0)+B(0)"]t+Ct2 This implies, for example, that
for large time the variancgﬁgwfvt“/N and so grows without
19This equivalence persists to all orders, of course, reflecting théound. However, the mean vaItQé) grows quadratically witkt,
exact correspondence between the operator equations of moti@nd hence the relative size of rms fluctuations remains bounded and
(27) and(75). of orderN~*2 for all times.

(grr grp> _i( r? pr+i
Upr Oppl,_o 2N\pr—i p?+r=2
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initial state and the lattice volume. If théN scaling of the ACKNOWLEDGMENTS
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