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Large N quantum time evolution beyond leading order
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For quantum theories with a classical limit~which includes the largeN limits of typical field theories!, we
derive a hierarchy of evolution equations for equal time correlators which systematically incorporate correc-
tions to the limiting classical evolution. Explicit expressions are given for next-to-leading order, and next-to-
next-to-leading order time evolution. The largeN limit of N-component vector models, and the usual semi-
classical limit of point particle quantum mechanics are used as concrete examples. Our formulation directly
exploits the appropriate group structure which underlies the construction of suitable coherent states and gen-
erates the classical phase space. We discuss the growth of truncation error with time, and argue that truncations
of the large-N evolution equations are generically expected to be useful only for times short compared to a
‘‘decoherence’’ time which scales likeN1/2.

PACS number~s!: 11.15.Pg
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I. INTRODUCTION

The time evolution of quantum systems away from eq
librium is of interest in many applications including, but ce
tainly not limited to, phase transition dynamics, inflationa
reheating, and heavy ion collisions. LargeN expansions have
provided a widely used technique for studying equilibriu
properties in statistical physics and field theory@1–3#, and it
is natural to apply a similar strategy for studying no
equilibrium problems. The largeN limit ~as typically formu-
lated! is actually a special type of classical limit@4#. Suitable
observables behave classically and the quantum dyna
reduces to classical dynamics on an appropriate phase s

Considerable work has been done examining the dyn
ics of far from equilibrium states in a variety of applicatio
using leading large-N time evolution@5–10#. A major virtue
of large N techniques~compared to alternative wholly un
controlled approximation schemes! is that one should be abl
to improve the approximation by systematically includi
sub-leading effects suppressed by powers of 1/N. For a va-
riety of equilibrium problems~such as critical phenomena!,
this approach can work quite well@11–13#.

For initial value problems, in which one would like t
choose a non-equilibrium initial state and then examine
subsequent time evolution, traditional formulations of larg
N expansions using graphical or functional integral te
niques@3# are very awkward. A major difficulty with thes
approaches is that they generate integral equations which
non-local in time when sub-leading 1/N corrections are re-
tained. For practical~numerical! applications, one would
vastly prefer a formulation in which locality in time is a
ways preserved.

In this paper, we describe a formulation of largeN ~or
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semi-classical! dynamics which leads to a coupled hierarc
of time-local evolution equations for equal time correlati
functions. Our approach directly exploits the appropria
group structure underlying the construction of suitable coh
ent states and the existence of the classical limit@4#. We
specifically focus on the time evolution of initial states ch
sen to equal one of these coherent states. We will give
plicit next-to-leading order~NLO!, and next-to-next-to-
leading order ~NNLO!, expressions for the require
evolution equations. Somewhat related hierarchies of ev
tion equations have been discussed in several recent pa
@14,15#. Because of our exploitation of the underlying grou
structure, the formulation we derive is more efficient, in t
sense that it requires integration of fewer coupled equati
at a given order in 1/N.

A major question which we discuss, but do not fully r
solve, is the propagation of errors induced by truncating
exact~infinite! hierarchy at a given order in 1/N. It is known
that theN→` limit is not uniform in time. For example, in
typical largeN field theories the characteristic time scales
scattering or thermalization are known to scale asN to some
positive power.1 For a fixed time intervalt, results obtained
by integrating evolution equations truncated at, for examp
next-to-leading order, will have only order 1/N2 errors. For
sufficiently large N, and fixed t, including successively
higher orders in the 1/N hierarchy will yield more accurate
results. But for fixedN and some given truncation of the 1/N
hierarchy, it should be expected that the truncation error w
grow with increasing time and eventually become ord
unity. A key question is how this ‘‘breakdown’’ time scale
with N and the order of the truncation. One might hope th
a next-to-leading order approximation would be useful@that
is, have at mostO(1/N) global errors# for times of orderN,

1See, for example, the end of Sec. III of Ref.@16#.
©2000 The American Physical Society03-1
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while a next-to-next-to-leading order scheme would be u
ful out to times of orderN2, etc. But it is quite conceivable
that errors in an order-k truncation will grow with time like
(ta/N)k for some positivea, which would imply that all
truncations break down after a time of orderN1/a. This be-
havior, which we consider likely, may well depend on t
specific theory and choice of initial state. Available nume
cal work, such as@14,15#, sheds little light on this issue. W
discuss several examples where it is possible to argue
quantum ‘‘decoherence’’ produces exactly this type of lim
on the range of validity of largeN truncations.

The paper is arranged as follows. The general framew
which allows us to treat many theories with a classical lim
in a uniform fashion is outlined in Sec. II. This material
largely taken from Ref.@4#. Section III describes the particu
lar class of operators we will consider, and examines
structure of their coherent state equal time correlators. S
tion IV presents the resulting time evolution equations a
discusses error propagation. These general results are ap
to the examples of point particle quantum mechanics, an
generalN-component vector model, in Sec. V. For point pa
ticle quantum mechanics, we argue that the decoherence
generically scales as\21/2, while for vector models it should
scale asN1/2. A brief concluding discussion follows.

II. COHERENCE GROUP AND COHERENT STATES

The following slightly abstract framework is applicable
typical largeN limits ~including O(N) or U(N) invariant
vector models, matrix models, and non-Abelian gauge th
ries!, as well as the\→0 limit of ordinary quantum mechan
ics @4#.

Consider a quantum theory depending on some param
x ~such as\ or 1/N). The Hilbert space~which may depend
on x) will be denotedHx . The quantum dynamics is gov
erned by a Hamiltonian which we will write as (\/x)Ĥx .
This rescaling of the Hamiltonian will prove to be conv
nient, and makes the Heisenberg equations of motion
the form

d

dt
Â5

i

x
@Ĥx ,Â#. ~1!

The following assumptions are a set of sufficient con
tions implying that thex→0 limit is a classical limit.

Assume there is a Lie groupG ~called the coherence
group! which, for every value ofx, has a unitary represen
tation onHx , Gx5$Dx(u):uPG%. The states generated b
applying elements of the coherence group to some~normal-
ized! base stateu0&xPHx ,

uu&x[Dx~u!u0&x , uPG, ~2!

are called coherent states. The coherence group acts on
states in a natural way,Dx(u8)uu&x5uu8u&x .
12500
-

-

at
t

rk
t

e
c-
d
lied
a

-
me

o-

ter

ke

-

ese

We assume that the coherence groupGx acts irreducibly
on the corresponding Hilbert spaceHx . In other words, no
operator~except the identity! commutes with all elements o
the coherence group. This condition automatically impl
that the set of coherent states form an over-complete b
for the Hilbert spaceHx . It also implies that any operato
acting onHx may be represented as a linear combination
elements of the coherence group.

For any operatorÂ acting in Hx , we define itssymbol
Ax(u) as the set of coherent state expectation valu
Ax(u)5^uuÂuu&x , uPG. We assume that the only operat
whose symbol vanishes identically is the null operator. Th
distinct operators have different symbols, which means t
any operator can, in principle, be completely reconstruc
solely from its diagonal matrix elements in the coherent st
basis.

Classical observables will be associated with opera
that remain non-singular asx goes to zero, that is, whos
coherent state matrix elements,^uuÂuu8&x /^uuu8&x , do not
blow up asx→0 for all u,u8PG. Such operators are calle
classical.

Two coherent statesuu& and uu8& are termed classically
equivalent~we will write u;u8) if in the x→0 limit, one
can not distinguish between them using only classical op
tors, i.e., limx→0Ax(u)5 limx→0Ax(u8) for all classical op-
eratorsÂ. We assume that the overlap between any two c
sically inequivalent coherent states decreases exponen
with 1/x in the x→0 limit.

Under these assumptions, one may show that thex→0
limit of this theory truly is a classical limit@4#. The assump-
tions hold forO(N) or U(N) invariant vector models, matrix
models, and gauge theories@4#. The quantum dynamics re
duces to classical dynamics on a phase spaceG given by a
coadjoint orbit of the coherence group. Formally, points inG
correspond to equivalence classes of coherent stateG
5$@u#:uPG%, with @u#5$u8PG:u;u8%. The symplectic
structure on the phase space is completely determined by
Lie algebra structure of the coherence group. The class
Hamiltonian is just thex→0 limit of the coherent state ex
pectation of the quantum Hamiltonian,

hcl~u!5 lim
x→0

Ĥx~u!. ~3!

To have sensible classical dynamics this limit must exist, i
Ĥx must be a classical operator.~This is why it was conve-
nient the rescale the Hamiltonian by\/x.) The classical ac-
tion is

Scl@u~ t !#5 lim
x→0

E dt^u~ t !u ix] t2Ĥxuu~ t !&x . ~4!

Both the classical Hamiltonian~3! and the action~4! depend
only on the equivalence class of the coherent stateuu&,2 and
thus do define sensible dynamics on the classical ph
space.
3-2
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The preceding discussion is just a formalization of t
usual picture of a classical limit. A quantum mechanic
wave packet, with a width of orderx1/2, behaves classically
in thex→0 limit, and may be associated with a point in th
classical phase space. The equations of motion that go
the classical dynamics are just coherent state expectatio
the original quantum evolution equations.

III. COHERENT STATE EXPECTATIONS

As noted earlier, the irreducibility of the coherence gro
implies that all operators may be~formally! constructed from
the generators of the coherence group. Consequently
characterizing the structure, and time evolution, of any st
one may focus attention on equal-time expectation value
products of coherence group generators.

Let g denote the Lie algebra of the coherence groupG.
Let $ei% be a basis ofg. The commutator of basis elemen
defines the structure constants,@ei ,ej #5 i f i j

k ek . The genera-
tors ei themselves are not classical operators, but ra

are 1/x times classical operators. For convenience, letx̂i

denote the rescaled generator which is a classical oper

x̂i[xei .
Consider the coherent state expectation value of the

nomial x̂i 1
x̂i 2

••• x̂i k
. We would like to find an expansion o

this expectation value in powers ofx. A convenient repre-
-
ri
d

n

r
e
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sentation for our purposes involves subtracted expectatio3

gi 1i 2••• i k
(k) [^~ x̂i 1

2xi 1
!•••~ x̂i k

2xi k
!&, ~5!

where^•••& denotes an expectation in some coherent st
and xi[^x̂i& are the expectations of the rescaled genera
x̂i . Subtracted and un-subtracted expectations are relate

^x̂i 1
••• x̂i k

&5xi 1
•••xi k

3H 11 (
( l 1 ,l 2)

gl 1l 2
(2)

xl 1
xl 2

1 (
( l 1 ,l 2 ,l 3)

gl 1l 2l 3
(3)

xl 1
xl 2

xl 3

1•••1
gi 1••• i k

(k)

xi 1
•••xi k

J , ~6!

where then-tuples (l 1 ,l 2 , . . . ,l n) are ordered subsets o
$ i 1 , . . . ,i k%. ~There is nog(1) term sincegi

(1)[^x̂i2xi&
50.)

Alternatively, one may expand in terms of connected e
pectations:

si 1••• i k
(k) [^x̂i 1

••• x̂i k
&conn. ~7!

The difference, illustrated graphically in Fig. 1, is that e
pansions in terms of connected expectations involve prod
of all possible ‘‘contractions,’’ while the terms in the expa
sion in subtracted expectations have only one string of g
erators ‘‘contracted.’’ The difference between subtracted a
connected expectations first arises with four generators.
plicitly,
^x̂i x̂ j x̂kx̂l&5xixjxkxl1xixjgkl
(2)1xixkgjl

(2)1xixlgjk
(2)1xkxlgi j

(2)1xjxlgik
(2)1xjxkgil

(2)

1xigjkl
(3)1xjgikl

(3)1xkgi j l
(3)1xlgi jk

(3)1gi jkl
(4) ~8a!

5xixjxkxl1xixjskl
(2)1xixksjl

(2)1xixlsjk
(2)1xkxlsi j

(2)1xjxlsik
(2)1xjxksil

(2)

1xisjkl
(3)1xjsikl

(3)1xksi j l
(3)1xlsi jk

(3)1si j
(2)skl

(2)1sik
(2)sjl

(2)1sil
(2)sjk

(2)1si jkl
(4) . ~8b!
ute

dis-
The coherent state overlap̂uuu8&x is the generating func
tional for expectations of products of generators, since va
tions of the coherent stateu8 can bring down any desire
generator of the Lie algebra,d i uu8&5ei uu8&. The logarithm
of this overlap is therefore the generating functional for co
nected expectations. By assumption, ln^uuu8&x is O(1/x) as
x→0. This immediately implies that thekth order connected
expectations(k) is O(xk21). Note also that the commutato
of functional derivatives is the functional derivative in th
direction of the commutator,

2For the action, this is true up to temporal boundary terms wh
do not affect the dynamics.
a-

-

^••• x̂i x̂ j•••&conn2^••• x̂ j x̂i•••&conn

5^•••@ x̂i ,x̂ j #•••&conn

5 ix f i j
m^••• x̂m•••&conn, ~9!

or s
••• i j •••
(k) 2s

••• j i •••
(k) 5 ix f i j

ms
•••m•••

(k21) .
By considering which connected expectations contrib

h

3To simplify notation, we will omit the superscript ‘‘(k)’’ when
this can cause no confusion; for example, we will writegi j for gi j

(2) ,
etc. The same remark applies to the connected expectations
cussed below.
3-3
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FIG. 1. Expansion of the ex-
pectation of a product of genera
tors in terms of~a! subtracted, and
~b! connected expectations. Th
shaded bubbles on the left deno
full expectations of the product o
generators. Each line with a do
on the end represents the expec
tion of a single generator. In~a!,
dashed-line bubbles correspond
subtracted g(k) expectations of
strings of generators, while in~b!
solid-line bubbles represent con
necteds(k) expectations. Ellipses
(•••) denote ordered permuta
tions of the preceding diagram.
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to g(k), one may easily see4 that subtracted expectations fa
off roughly half as fast as the connected ones,g(2k)

;g(2k21)5O(xk). Becauseg(k12)/g(k)5O(x), expansion
~6! is a power series inx, the parameter measuring ho
close the system is to being classical. Of course, subtra
expectations may always be rewritten in terms of connec
expectations~and vice versa!. Ultimately, equations for
connected5 expectations will be most useful. Neverthele
using subtracted expectations as an intermediate repres
tion is helpful because of the simple form of expansions
terms of subtracted expectations, as shown by Eq.~6! and
Eq. ~11! below. For later use, note that

g
•••bi jc•••
(k) 2g

•••b jic•••
(k) 5 ix f i j

m~xmg
•••bc•••
(k22) 1g

•••bmc•••
(k21) !.

~10!

Now consider an operatorV that can~at least formally!
be expanded in powers of generators,

V5(k($ i 1••• i k%a i 1••• i k
x̂i 1

••• x̂i k
,

for some set of coefficients$a i 1••• i k
%. Operators of this form

are well behaved forx→0, and so are good classical oper
tors. Using Eq.~6!,

^V&5(
k

(
$ i 1••• i k%

a i 1••• i k
xi 1

•••xi kH 11 (
( l 1 ,l 2)

gl 1l 2
(2)

xl 1
xl 2

1 (
( l 1 ,l 2 ,l 3)

gl 1l 2l 3
(3)

xl 1
xl 2

xl 3

1•••1
gi 1••• i k

(k)

xl 1
•••xl k

J . ~11!

This can be packaged in an even more concise form,

4As g(k)5(s(m1)s(m2)
•••s(mn) with m11•••1mn5k and mi.1

for all i, and s(mi )5O(xmi21), g(k)5O(xmin$((mi21)%)
5O(xmin$k2n%). The largest number of connected diagramsn occurs
when alls(mi ) ares(2) ~except for one, ifk is odd, which iss(3)).

5Or perhaps one-particle irreducible.
12500
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^V&5V̄1gl 1l 2
(2) V( l 1l 2)1gl 1l 2l 3

(3) V( l 1l kl 3)1gl 1l 2l 3l 4
(4) V( l 1l kl 3l 4)

1O~x3! ~12!

where summation on repeated indices is implied, andV̄
[(k($ i 1••• i k%a i 1••• i k

xi 1
•••xi k

is the number obtained by re
placing each generator inV by its coherent state expectatio
Here we have introduced ‘‘ordered derivatives’’f ( i j •••)

[d f /d(xixj•••) defined by

f ( l )5
] f̄

]xl
, ~13a!

and

~ f g!( l 1••• l k)5(
i 50

k

f ( l 1••• l i )g( l i 11••• l k). ~13b!

When acting on a string of generators, ordered derivati
produce a sum of products of expectations of the genera
which remain after deleting the indicated generators, p
vided these appear~not necessarily contiguously! somewhere
within the string in the order specified by the derivativ
For example,6 @d/d(xp)# x̂2p̂x̂52x2, and @d/d(xp)# x̂p̂x̂2p̂
5x2p12xpx1px254x2p.

In the x→0 limit, coherent state expectations of the~re-
scaled! generatorsx̂i turn into coordinatesxi on the classical
phase space and~classical! operators acting onHx become

6If x̂i 1
,•••,x̂i n

commute, then d f /d(xi 1
•••xi n

)5(1/n!)( ]nf̄ /
]xi 1

•••]xi n
). In this case, the ordering does not matter, and then!

is needed to make up for over-counting.
3-4
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functions on phase space,^V&5V̄1O(x). For finitex, the successive terms in Eq.~12! precisely characterize the correction
to this classical limit.

IV. TIME EVOLUTION

Since operators are completely determined by their symbols, to study the time dependence of any observablÂ it is
sufficient to take the coherent state expectation value of its Heisenberg equation of motion~1!,

d

dt
^Â&5

i

x
^@Ĥx ,Â#&. ~14!

In other words, we assume that the initial state is precisely some coherent stateuu&, and wish to determine the subsequent tim
evolution. To do so, we will first find an expansion, in powers ofx, for the expectation of the commutator of classic
operators.

A. Symbols of commutators

Consider classical operatorsA and B which ~as in Sec. III! may be written as power series in the generatorsA

5(a i 1••• i m
x̂i 1

••• x̂i m
, B5(b j 1••• j n

x̂ j 1
••• x̂ j n

. Their product is given byAB5(a i 1••• i m
b j 1••• j n

x̂i 1
••• x̂i m

x̂j 1
••• x̂ j n

. Using our
previous result~12!, we find

^AB&5ĀB̄1gl 1l 2
(2) ~AB!( l 1l 2)1gl 1l 2l 3

(3) ~AB!( l 1l 2l 3)1gl 1l 2l 3l 4
(4) ~AB!( l 1l 2l 3l 4)1O~x3! ~15a!

5ĀB̄1sl 1l 2
(2) ~AB!( l 1l 2)1sl 1l 2l 3

(3) ~AB!( l 1l 2l 3)1~sl 1l 2
(2) sl 3l 4

(2) 1sl 1l 3
(2) sl 2l 4

(2) 1sl 1l 4
(2) sl 2l 3

(2) !~AB!( l 1l 2l 3l 4)1O~x3! ~15b!

where now (l 1 ,l 2 ,•••) denote ordered subsets of$ i 1 ,•••,i m , j 1 ,•••,i n%. We see from Eq.~15! that, to leading order, product
of classical operators factorize,^AB&5^A&^B&1O(x).

Using the expansion~15!, and the reduction formulas for operator derivatives~13!, one can evaluate the commutator.
generic term in the result will be

gl 1l 2••• l k
(k) @~AB!( l 1l 2••• l k)2~BA!( l 1l 2••• l k)#5gl 1••• l k

(k) ~A( l 1••• l k)B̄1•••1A( l 1l 2)B( l 3••• l k)1A( l 1)B( l 2••• l k)1ĀB( l 1••• l k)!

2gl 1••• l k
(k) ~B( l 1••• l k)Ā1•••1B( l 1l 2)A( l 3••• l k)1B( l 1)A( l 2••• l k)1B̄A( l 1••• l k)!

5~gl 1l 2l 3l 4••• l k
(k) 2gl 2l 3l 4••• l kl 1

(k) !~A( l 1)B( l 2l 3l 4••• l k)2B( l 1)A( l 2l 3l 4••• l k)!

1~gl 1l 2l 3l 4••• l k
(k) 2gl 3l 4••• l kl 1l 2

(k) !~A( l 1l 2)B( l 3l 4••• l k)2B( l 1l 2)A( l 3l 4••• l k)!

1~gl 1l 2l 3l 4••• l k
(k) 2gl 4••• l kl 1l 2l 3

(k) !~A( l 1l 2l 3)B( l 4••• l k)2B( l 1l 2l 3)A( l 4••• l k)!1•••. ~16!

The last term in the sum~16! is either

~gl 1••• l j l j 11••• l 2 j

(2 j ) 2gl j 11••• l 2 j l 1••• l j

(2 j ) !~A( l 1••• l j )B( l j 11••• l 2 j )!

or

~gl 1••• l j l j 11••• l 2 j 11

(2 j 11) 2gl j 11••• l 2 j 11l 1••• l j

(2 j 11) !~A( l 1••• l j )B( l j 11••• l 2 j 11)2B( l 1••• l j )A( l j 11••• l 2 j 11)!,

depending on whetherk is even or odd. Using Eq.~10! to reduce the differences (g
•••

(k) 2g
•••

(k) ) yields the final form for the
expectation of the commutator of classical operators. The leading term is precisely the Poisson bracket on the class
space, while subsequent terms involve successively higher expectationsg(k). Displaying subleadingO(x) andO(x2) terms
explicitly, one finds
125003-5
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~17!

B. Equations of motion

To determine the evolution to orderO(x3), we need the time derivatives ofxi(t), gi j (t), andgi jk(t). Take the commutator
of products of generators with the Hamiltonian and subtract the disconnected parts to find

d

dt
xi5@ f i j

a xa#H ( j )1@ f i j
a gak1 f ik

a gja#H ( jk)

1@xa~ f i j
a gkl1 f ik

a gjl 1 f i l
agjk!1 f i j

a gakl1 f ik
a gjal1 f i l

agjka#H ( jkl )

1@xa~ f i j
a gklm1 f ik

a gjlm1 f i l
agjkm1 f im

a gjkl !

1 f i j
a gaklm1 f ik

a gjalm1 f i l
agjkam1 f im

a gjkla#H ( jklm)

1@xa~ f i j
a gklmn1 f ik

a gjlmn1 f i l
agjkmn1 f im

a gjkln1 f in
a gjklm!#H ( jklmn)

1O~x3! ~18!
125003-6



LARGE N QUANTUM TIME EVOLUTION BEYOND . . . PHYSICAL REVIEW D 62 125003
d

dt
gi j 5@ f ik

a ga j1 f jk
a gia#H (k)

1@xa~ f ik
a gjl 1 f i l

agk j1 f jk
a gil 1 f j l

a gki!1 f ik
a ga jl1 f i l

agka j1 f jk
a gial1 f j l

a gkia#H (kl)

1@xa~ f ik
a glm j1 f i l

agkm j1 f im
a gkl j1 f jk

a gilm1 f j l
a gikm1 f jm

a gikl !

1 f ik
a galm j1 f i l

agkam j1 f im
a gkla j1 f jk

a gialm1 f j l
a gikam1 f jm

a gikla#H (klm)

1@xa~ f ik
a glmn j1 f i l

agkmn j1 f im
a gkln j1 f in

a gklm j

1 f jk
a gilmn1 f j l

a gikmn1 f jm
a gikln1 f jn

a giklm!#H (klmn)

1O~x3! ~19!

d

dt
gi jk5@ f i l

aga jk1 f j l
a giak1 f kl

a gi ja #H ( l )

1@xa~ f i l
agjkm1 f j l

a gikm1 f kl
a gi jm1 f im

a gl jk1 f jm
a glik1 f km

a gli j !#H
( lm)

1@ f i l
a ~ga jgkm1gakgjm!1 f j l

a ~giagkm1gimgak!1 f kl
a ~giagjm1gimga j!

1 f im
a ~gl j gak1glkga j!1 f jm

a ~gli gak1glagki!1 f km
a ~gli gja1gl j gia!#H ( lm)

1@xa„f i l
a ~gm jgnk1gmkgn j!1 f im

a ~gl j gnk1glkgn j!1 f in
a ~gl j gmk1glkgm j!

1 f j l
a ~gimgnk1gingmk!1 f jm

a ~gil gnk1ginglk!1 f jn
a ~gil gmk1gimglk!

1 f kl
a ~gimgjn1gingjm!1 f km

a ~gil gjn1gingjl !1 f kn
a ~gil gjm1gimgjl !…#H

( lmn)

1O~x3!. ~20!
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Recall that, through third order, there is no difference
tween the subtracted and connected correlators. Only the
connected parts of the fourth order correlators appearin
Eqs. ~18! and ~19! are needed, sincegi jkl 5gi j gkl1gikgjl

1gil gjk1O(x3). If equations only accurate toO(x2) are
desired, then all terms in Eqs.~18!–~20! involving third ~or
higher! order correlators, as well as products of second or
correlators, may be dropped.7

Given these equations of motion for the connected exp
tations of generators, one can use Eq.~12! to describe the
dynamics of any classical operator in terms of its symbol

V̂5V̂($xi%) is a ~time-independent! function of the genera-
tors, then its time-dependent expectation value, at nex
next-to-leading order, is given by

7The resulting next-to-leading order equations are simply

d

dt
xi5~fij

axa!H
(j)1~fij

agak1fik
agja!H(jk)1xa~fij

agkl1fik
agjl1fil

agjk!H
(jkl)

1O~x2!, ~21a!
and

d

dt
gij5~fik

agaj1f jk
a gia!H(k)1xa~fik

agjl1fil
agkj1f jk

a gil1f jl
agki!H

(kl)

1O~x2!. ~21b!
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^V̂~ t !&5$V̄1gi j ~ t !V( i j )1gi jk~ t !V( i jk )

1gi jkl ~ t !V( i jkl )%uxm5xm(t)1O~x3!, ~22!

where xi(t), gi j (t)5si j (t), and gi jk(t)5si jk(t) are to be
obtained by integrating Eqs.~18!–~20! forward in time,
using gi jkl (t)5gi j (t)gkl(t)1gik(t)gjl (t)1gil (t)gjk(t)
1O(x3).

C. Error accumulation

To any given order inx, we have a system of non-linea
first-order, ordinary differential equations. Appropriate initi
conditions are imposed by specifyingxi(t50)5^uux̂i uu&
and sj ••• l

(k) (t50)5^uux̂ j••• x̂l uu&conn, with uu& some chosen
coherent state. Sinces(k)(t50) is O(xk21), and the equa-
tions for (d/dt)s(k)(t) involve only terms of orderxk21 and
higher, we still formally haves(k)(t)5O(xk21) for t.0.
However, as the truncated equations of motion are integra
forward in time, errors accumulate; it is important to unde
stand the rate of growth of this truncation error.

We are dealing with a system of equations which we c
write asẏi5Fi(y)1Gi(y) where$yi(t)% are the variables in
our problem~that is, thexi ’s ands

•••

(k) ’s!, F(y) represents the
terms we keep, andG(y) stands for everything thrown awa
by the truncation. Lety0(t) be the solution to the abov
equation withG[0, and solve perturbatively,y(t)5y0(t)
3-7
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1e(t) with e small. Linearizing abouty(t)5y0(t), we have

ė5 f ~ t !e1g~ t !, ~23!

where f i
j (t)5]Fi„y0(t)…/]yj , gi(t)5Gi„y0(t)…, and we

have droppedO(e2) terms. This linearized system of equ
tions is easy to solve~at least formally!. For t.0,

e~ t !5@T e*0
t f (t8)dt8#e~0!1E

0

t

@T e*
t8
t

f (t9)dt9#g~ t8!dt8.

~24!

Here, T denotes time ordering~with smaller times on the
right!. If f (t) andg(t) are globally bounded during the tim
evolution, uu f (t)uu< f̃ , uug(t)uu<g̃, where uu•••uu is some
appropriate norm, then a crude estimate of the deviation
the true solution from the approximation is

uue~ t !uu<e f̃ tuue~0!uu1g̃~e f̃ t21!/ f̃ . ~25!

Of course for t small, errors grow linearly anduue(t)uu
<uue(0)uu(11 f̃ t)1g̃t1O(t2); with a truncation good to or-
der xk at t50, bothuue(0)uu and g̃ will be O(xk11).

In a general treatment, it is hard to do better than
crude bound~25!. In dynamical systems with only a few
degrees of freedom, there typically are ‘‘regular’’ portions
phase space where perturbations grow only linearly w
time @17#. However, it is not at all clear that this is applicab
to the truncated quantum dynamics represented by Eq.~23!.

In the simple examples discussed in the following secti
we will find that for times of orderx21/2, the shape of the
wave function of the evolving state becomes so distorted
the formal hierarchy of correlators,s(k);O(xk21), upon
which the truncation scheme is based, completely bre
down. In terms of the underlying quantum dynamics, if o
considers the projection of the initial coherent state wa
packet onto the exact eigenstates of the Hamiltonian, wh
happening for sufficiently large time is that the contributio
of different eigenstates have decohered to such an exten
the wave packet has spread beyond recognition. Excep
special non-generic cases~such as the harmonic oscillato
where there is no dispersion! one should always expect suc
decoherence to eventually set in.

V. EXAMPLES

We will discuss two examples of theories to which t
preceding general results may be applied: the usual s
classical limit of point particle quantum mechanics, and
largeN limit of O(N) invariant vector models. For brevity o
presentation, we will display explicitly only the first corre
tions to the leading classical approximation, but we emp
size that it is completely straightforward to include y
higher order corrections, such as theO(x2) terms displayed
in Eqs.~18!–~20!.

A. \\0 quantum mechanics

Consider ordinary point particle quantum mechanics,
one dimension for simplicity. The coherence groupG is the
12500
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Heisenberg group, generated by$ei%5$x̂/\,p̂/\,1/\%. The
formal parameter that controls how close the theory is to
classical limit is, of course,x5\. The rescaled generators o
the coherence group,x̂i5\ei , include the positionx̂ and
momentum p̂ operators whose expectations will serve
classical phase space coordinates. The Heisenberg g
acting on a fixed Gaussian base state, generates conven
coherent states$up,q&%, with wave functions given~up to an
overall phase! by

^xup,q&5~p\!21/4expH 1

\
@ ipx2 1

2 ~x2q!2#J . ~26!

We have arbitrarily chosen units such that our Gaussian b
state has equal variance inx̂ and p̂. Consider a Hamiltonian
of the typical formĤ5 1

2 p̂21V( x̂), where, for simplicity, we
have set the particle mass to unity. The equations of mo
are, of course,

d

dt
x̂5 p̂,

d

dt
p̂52V8~ x̂!. ~27!

We are interested in the time evolution ofx(t), p(t), and
the connected correlatorsgxx(t), gxp(t)5gpx* (t), and
gpp(t), all to order\. From Eqs.~18! and ~19! we find

ẋ5p1O~\2!, ~28a!

ṗ52V82
1

2
V-gxx1O~\2!, ~28b!

ġxx5gxp1gpx1O~\2!, ~28c!

~ ġpx!* 5ġxp5gpp2V9gxx1O~\2!, ~28d!

ġpp52V9~gxp1gpx!1O~\2!, ~28e!

subject to the initial conditionsx(0)5x0 , p(0)5p0 , gxx
5gpp5 1

2 \, gxp52gpx5
1
2 i\. Notice that to this order,

detg(2)5gxxgpp2gxpgpx5O(\3) is a constant of the mo
tion, and Eqs.~28! are equivalent to a Gaussian variation
ansatz@18# ~where one approximates the wave packet b
Gaussian with a time-dependent centroid and width!. How-
ever, if we went to next-to-next-to-leading order in\ it
would become clear that our setup is different. For posit
times, higher moments will not be given by simple algebr
expressions in terms of the centroid and variance, and
details of evolution will depend on the shape of t
potential.8

8In our Gaussian initial state, all connected correlators higher t
second order vanish at time zero,s(k.2)(0)[0. But these moments
cannot remain zero unless the potential is harmonic. For exam

using Eq. ~20! we find that ṡxpx5sppx1sxpp2V9sxxx2V-(sxx)
2

1O(\3), showing explicitly that any nonzeroV- will drive the
skewness momentssi jk(t) away from zero.
3-8
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As a trivial warm-up, consider the harmonic oscillator
unit mass and natural frequencyV: Ĥ5 1

2 p̂21 1
2 V2x̂2. The

solutions to Eqs.~28! are

x~ t !5x0 cosVt1~p0 /V!sinVt, ~29a!

p~ t !5p0 cosVt2~x0V!sinVt, ~29b!

gxx~ t !5
\

2
@cos2 Vt1V22 sin2 Vt#, ~29c!

gpx* ~ t !5gxp~ t !5
\

2
@ i 1~V212V!cosVt sinVt#,

~29d!

gpp~ t !5
\

2
@cos2 Vt1V2 sin2 Vt#. ~29e!

Because the potential is quadratic these are exact. Equ
simple is an inverted harmonic oscillator. If one takes
Hamiltonian to beĤ5 1

2 p̂22 1
2 V2x̂2, then the solution of the

moment equations~28! becomes

x~ t !5x0 coshVt1~p0 /V!sinhVt, ~30a!

p~ t !5p0 coshVt1~x0V!sinhVt, ~30b!

gxx~ t !5
\

2
@cosh2 Vt1V22 sinh2 Vt#,

~30c!

gpx* ~ t !5gxp~ t !5
\

2
@ i 1~V211V!coshVt sinhVt#,

~30d!
12500
lly
e

gpp~ t !5
\

2
@cosh2 Vt1V2 sinh2 Vt#. ~30e!

In both of these examples, the time evolution of the va
ances are independent ofx0 and p0. As one would expect,
they oscillate~with twice the natural frequency! in the case
of the simple harmonic oscillator, and grow~exponentially!
for the inverted oscillator.

As a more complicated example, consider the problem
small oscillations in a weakly anharmonic potential,9 V(x)
5 1

2 x21bx4. The moment equations~28! become

ẍ52x24bx3212bxgxx1O~\2!, ~31a!

ġxx5gxp1gpx1O~\2!, ~31b!

~ ġpx!* 5ġxp5gpp2gxx212bx2gxx1O~\2!, ~31c!

ġpp52~1112bx2!~gxp1gpx!1O~\2!. ~31d!

We will solve these perturbatively; the two small paramet
arebq2 andb\. We will work to first order inb\ @since we
have omittedO(\2) terms in the moment equations#, and
will display explicit results through second order inbq2. In
principle, one could work to any order inbq2 desired.

In order to keep our error estimates simple, we will tre
the time asO(1) ~in units where the natural frequency
unity!. This means we need not worry about the appeara
of secular terms — terms which grow as powers oft — and
may solve Eqs.~31! strictly perturbatively in the naive fash
ion. A straightforward calculation, with the initial condition
x(0)5q, p(0)50, gxx5gpp5 1

2 \, and gxp5gpx* 5 1
2 i\,

leads to the solution
dth for the
ic
x~ t !5qH cost1S 1

8
bq2D @cos 3t2cost212t sint#1S 1

8
bq2D 2

@cos 5t224 cos 3t123 cost196t sint236t sin 3t

272t2 cost#1~b\!@23t sint#1~b\!S 1

8
bq2D F2

15

4
~cos 3t2cost !218t sin 3t193t sint254t2 cost G

1O@~bq2!3#1O@~b\!~bq2!2#1O@~b\!2#J , ~32!

with

gxx~ t !5 1
2 \$123bq2@12cos 2t1t sin 2t#1O@~bq2!2#1O~b\!%, ~33!

gpx* ~ t !5gxp~ t !5 1
2 \H i 2

3

2
bq2@3 sin 2t12t cos 2t#1O@~bq2!2#1O~b\!J , ~34!

gpp~ t !5 1
2 \$113bq2@12cos 2t1t sin 2t#1O@~bq2!2#1O~b\!%. ~35!

9We choose the curvature of the potential at the minimum to equal unity, so that our chosen coherent states have the natural wi
unperturbed potential. This ensures that the resulting dynamics~such as oscillations ofg(2)) are not merely reflecting purely harmon
oscillations.
3-9
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Examining the secular terms in Eqs.~32! and ~33!, one sees that terms of orderbk are accompanied by at mostk powers of
t. This is a general result. It implies that our stated condition that the time beO(1) is needlessly restrictive. For smallbq2 and
b\, the perturbative expansions~32! and ~33! are actually valid in the wider domainubq2tu!1 and ub\tu!1, provided a
factor of t is included with each factor ofbq2 or b\ in the error estimates.

It is instructive to compare this treatment with the result of a perturbative quantum mechanical calculation. Us
brute-force approach of first finding perturbed eigenstates and energy levels, and then evaluating the time-depende
tation valuex(t) by projecting the initial coherent state onto individual eigenstates and summing the resultant contribu
rather tedious calculation using both wave functions and energies correct toO(b) leads to

x~ t !5qXe2(q2/\)sin2(3b\t/2)cosF ~113b\!t1
q2

2\
sin~3b\t !G

1~b\!e2(q2/\)sin2(3b\t/2)H cosF ~113b\!t1
q2

2\
sin~3b\t !G S 2

3

2
2

q2

\
2

1

32

q4

\2D
1cosF ~116b\!t1

q2

2\
sin~3b\t !G S 3

2
2

3

4

q2

\
2

1

4

q4

\2D
1cosF ~119b\!t1

q2

2\
sin~3b\t !G S 3

2

q2

\ D
1cosF ~1112b\!t1

q2

2\
sin~3b\t !G S 1

8

q2

\
1

1

4

q4

\2D
1cosF ~1115b\!t1

q2

2\
sin~3b\t !G S 1

32

q4

\2D J
1~b\!e2(q2/\)sin2(9b\t/2)cosF3~116b\!t1

q2

2\
sin~9b\t !G S 1

8

q2

\ D C. ~36!

This result hasO(b2) errors due to the neglect of second~and higher! order corrections in both the eigenstates and ene
eigenvalues.

If one restrictst to be small compared to both 1/ub\u and 1/ubq2u, then one may expand the result~36! in powers ofb.
Moreover, in this domain one may easily add in the leading secularO@(b\)2t# terms omitted from Eq.~36!, which come from
including theO(b2) perturbation to energy levels while using unperturbed wave functions.10 One finds

x~ t !5qH cost1S 1

8
bq2D @cos 3t2cost212t sint#1S 1

8
bq2D 2

@96t sint236t sin 3t272t2 cost#1~b\!@23t sint#

1~b\!S 1

8
bq2D @218t sin 3t193t sint254t2 cost#1O@~bq21b\!2#1O@~bq21b\!3t3#J . ~37!
n
la

r-
.

th
de

-
n
it
This result is perfectly consistent with the previous mome
hierarchy result~32!, as it must be, except for the non-secu
O(b2) terms which are hiding in the firstO@(bq21b\)2#
error term of Eq.~37!. If one includes second order pertu
bations to the eigenstates then these terms also coincide

In the semi-classical regime, whereb\!bq2, it is inter-

10This addition isq(t sin t)@ 51
16(bq2)21

153
8 (bq2)(b\)118(b\)2#. If

one does not assume thatb\t is small compared to 1, then includ
ing the O(b2) energy shift in matrix elements of time-evolutio
operators unfortunately leads to an analytically intractable infin
sum forx(t).
12500
t-
r
esting to examine expression~36! whenb\t!1, making no
assumption about the size ofbq2t. In this regime, the first,
leading term of Eq.~36! becomes

x~ t !5qe2(9/4)(bq2)(b\)t2cosF S 113b\1
3

2
bq2D t G

1O~qb\!. ~38!

In other words,x(t) shows damped harmonic behavior, wi
a shifted q-dependent frequency, and with an amplitu
which decays significantly on the time scale

e

3-10
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td;@~bq2!~b\!#21/2. ~39!

This implies that on this time scale, the initially well loca
ized wave packet has dispersed so much that its probab
distribution is spread out over most of the classically allow
region.11 Hence,td should be regarded as a ‘‘delocalization
or ‘‘decoherence’’ time. The higher order terms in Eq.~36!
all exhibit essentially the same behavior in this regime; e
term oscillates with a~slightly different! frequency and has
an amplitude which decays on the decoherence time scaltd .

Although it will have no bearing on our discussion, it
interesting to note that on yet longer time scales, whent is
near 2p/(3b\) or integer multiples thereof, the exponenti
factors in Eq.~36! return to near unity, implying that the
time-dependent state has ‘‘reassembled’’ itself into a rec
nizable wave packet oscillating in the potential.12 Presum-
ably, this is a reflection of the fact that this is an integra
single degree of freedom system.

The existence of the decoherence time scale~39! has im-
portant consequences for the utility of any truncated mom
expansion, such as Eqs.~18!–~20!. If the wave packet has
spread to such an extent that it is significantly sampling al
its classically allowed region, while necessarily retaini
structure on smaller scales, then the formal hierarchy of c
nected correlators,s(k);\k21, will have broken down.
Higher order moments will not be small compared to low
order ones. Consequently, the moment expansion prese
in the previous section can only be useful for times which
small compared to the decoherence timetd .

The 1/A\ dependence of the decoherence time~39! may
also be seen in another very simple example. Consider
free evolution of a coherent state in the absence of any
tential. As is well known, the width of the wave pack
grows without bound. The evolution equations forx̂ and p̂

are, of course, trivial,p̂(t)5 p̂(0), andx̂(t)5 x̂(0)1 p̂(0)t.
Hence, x̂2(t)5 x̂2(0)1@ x̂(0)p̂(0)1 p̂(0)x̂(0)#t1 p̂(0)2t2,
and so for our initial Gaussian coherent state~with equal
variance inx andp),

11Of course, the fact that the amplitude of oscillations in the me
positionx(t) decays on the decoherence time scaletd cannot mean
that the wave packet has come to rest at the bottom of the pote
while remaining a well-localized wave packet, as this would viol
energy conservation. In the semi-classical regime under discus
the position of the initial wave packet is significantly displac
from the minimum of the potential,q2@\, implying that the total
energy is large compared to the zero-point energy. Therefor
negligible mean position at large times necessarily indicates tha
wave packet has spread so much that its probability density, at
late time, is delocalized over the entire classically allowed reg
and no longer ‘‘sloshes’’ back-and-forth to any significant exte
Within the classically allowed region, energy conservation impl
that the wave function must have substantial variations on scale
smaller than the~square root of the! variance in position — which
will be comparable to the width of the classically allowed regio

12Whether this ‘‘reassembly’’ persists in the exact solution, or
an artifact of our first order perturbative result, is not entirely cle
to us.
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gxx~ t !5gxx~0!1@gxp~0!1gpx~0!#t1gpp~0!t2

5 1
2 \~11t2!. ~40!

Here also, we see that for times of order\21/2 the hierarchy
of correlatorss(k)(t);O(\k) no longer holds.

We believe this to be a general result. Whenever a se
classical system exhibits dispersion, the decoherence tim
expected to scale as\21/2, and truncations of the momen
hierarchy equations~18!–~20! will only be accurate for times
small compared to the decoherence time.

B. Vector models

Consider anO(N) invariant theory whose fundamenta
degrees of freedom formO(N) vectors. For simplicity, we
will assume that the degrees of freedom are all bosoni13

and divided into a set of canonical coordinates$x̂a
i % and

corresponding canonical momenta$ p̂b
j %. Here i , j

51, . . . ,N are O(N) vector indices, whilea,b51, . . . ,m
distinguish differentO(N) vectors. These basic operators a
assumed to satisfy canonical commutation relations, norm
ized such that@ x̂a

i ,p̂b
j #5( i /N)d i j dab . In other words, we

have chosen to scale both coordinates and moments by 1AN
compared to their textbook form. The small parameter c
trolling the approach to the classical limit isx[1/N; \ has
been set to unity. The Hamiltonian is assumed to beO(N)
invariant, and we will completely restrict attention to th
O(N) invariant sector of the theory. Consequently, the r
evant Hilbert spaceHN is the space of allO(N) invariant
states, and all physical operators can be constructed from
basic bilinears

Âab[(
i 51

N

x̂a
i x̂b

i , ~41a!

B̂ab[(
i 51

N
1
2 $x̂a

i p̂b
i 1 p̂b

i x̂a
i %, ~41b!

Ĉab[(
i 51

N

p̂a
i p̂b

i . ~41c!

It will be convenient to regardx̂a
i and p̂a

i as the components
of m3N matrices, so that the basic bilinears~41! may be
assembled intom3m matrices,

Â5 x̂x̂T, B̂5 x̂p̂T2
i

2
1̂, and Ĉ5 p̂p̂T. ~42!

Viewed as matrices,Â and Ĉ are symmetric, whileB̂ is
non-symmetric. The individual components ofÂ, B̂, andĈ
are all Hermitian operators acting onHN .

We will take the Hamiltonian to have the general form

n

ial

n,

a
he
ny
,
.
s
far

r 13Extending this discussion toU(N) invariant fermionic models is
completely straightforward.
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NĤN5N@ 1
2 tr~Ĉ!1V~Â!#. ~43!

The overall factor ofN ~given our scaling of coordinates an
momenta by 1/AN) is exactly what is needed to ensure th
the N→` limit is a classical limit in the framework of Sec
II. The potential energy functionV(A) may be any chosen
scalar-valued function of a symmetric matrixA. The kinetic
energy takes the simple form12 tr Ĉ5 1

2 ( i ,a( p̂a
i )2 if all de-

grees of freedom are scaled to have unit mass. Two spe
examples in this class of models are:

~i! A single particle moving in a central potential i
N-dimensions. This is the simplest possible example;
theory has only a singleO(N) coordinate vector@i.e., m
51#. The Hamiltonian is

NĤN5N@ 1
2 pW •pW 1V~xW•xW !#5N@ 1

2 Ĉ1V~Â!#, ~44!

whereV(r 2) is now a function of just a one variable.14

~ii ! An O(N)-invariant f4 field theory. The theory, de
fined on a spatial lattice, has field operatorsf̂s

i and conjugate

momentap̂s
i , wheres labels the sites of somed-dimensional

lattice. The canonical commutation relations~after scalingf̂
andp̂ by 1/AN) are@f̂s

i ,p̂ s8
j

#5( i /N)d i j dss8 , and the quan-
tum Hamiltonian is

NĤN5N(
s

F 1
2 p̂s•p̂s1

1
2 ¹W f̂s•¹W f̂s1

1
2 m2f̂s•f̂s

1
l

4
~f̂s•f̂s!

2G ~45a!

5N(
s

H 1
2 Ĉss1

1
2 @~2¹s

21m2!Âss8#us85s

1
l

4
~Âss!

2J . ~45b!

@Here¹ is a lattice forward difference operator, dot produc
denote the implicit sum overO(N) indices, and factors o
lattice spacing are suppressed for simplicity.# The numberm
of O(N) vectors@or the dimension of the matricesÂ, B̂,
and Ĉ# equals the total number of lattice sites. Ignoring t
obvious notational changes (x→f, p→p), this theory has
precisely the stated form of Eqs.~42!,~43!. The lattice theory
may, of course, be viewed as a natural discretization of
formal continuum theory where the field operatorsf̂ i(x) and
p̂ i(x) depend on continuous spatial coordinates and

14In terms of coordinates and momenta which have not been

scaled byN21/2, one hasNĤN5
1
2 pW 21NV(xW2/N).
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NĤN5NE ~ddx!F 1
2 p̂~x!•p̂~x!1 1

2 ¹W f̂~x!•¹W f̂~x!

1 1
2 m2f̂~x!•f̂~x!1

l

4
„f̂~x!•f̂~x!…2G . ~46!

Returning to the general discussion, a straightforward c
culation shows that the commutators of the basic biline
are

N

i
@Âab ,Âgd#5

N

i
@Ĉab ,Ĉgd#50, ~47a!

N

i
@Âab ,B̂gd#5Âagdbd1Âbgdad , ~47b!

N

i
@B̂ab ,B̂gd#5B̂gbdad2B̂addgb , ~47c!

N

i
@Âab ,Ĉgd#5B̂agdbd1B̂bgdad1B̂addbg1B̂bddag ,

~47d!

N

i
@B̂ab ,Ĉgd#5Ĉbgdad1Ĉbddag . ~47e!

In other words, the commutators ofÂ, B̂, andĈ ~as well as
just Â and B̂) close and these operators generate
Liealgebra.15 The appropriate coherence group which w
create suitableO(N) invariant coherent states may be tak
to be the group generated by~anti-Hermitian linear combi-
nations of! the operators$Âab% and $B̂ab%. Enlarging the
coherence group by including theĈab operators among the
generators is equally acceptable, but unnecessary. The g
generated by$Âab% and $B̂ab% alone satisfies all the condi
tions for producing an over-complete set of coherent sta
which behave classically asN→`. Including theĈab opera-
tors among the generators enlarges the coherence group
has no effect whatsoever on the resulting manifold of coh
ent states.

Acting on an initial Gaussian base state, the cohere
group generates a set of coherent states$uz&%, wherez is a
complex symmetricm3m matrix, with positive definite real

e-

15The Lie algebra structure constants aref AabBgd

Amn 5
1
2 (dmadngdbd

1dmbdngdad1dnadmgdbd1dnbdmgdad), f BabBgd

Bmn 5dmgdnbdad

2dmadnddgb , f AabCgd

Bmn 5dmadngdbd1dmbdngdad1dmadnddbg

1dmbdnddag , and f BabCgd

Cmn 5
1
2 (dmbdngdad1dmbdnddag

1dnbdmgdad1dnbdmddag), plus those trivially related by antisym
metry; all others vanish. The resulting Lie algebra of operat

$L̂(a,b,c)[ iN(ab(aabÂba1babB̂ba1cabĈba)% is isomorphic
to thesp(2m) algebra represented by the 2m-dimensional matrices
$l(a,b,c)[[ a

2b
bT
c ] %, whereb5uubabuu, etc., anda andc are sym-

metric.
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part, which may be used to uniquely label an individual c
herent state. The position space wave functions of these
herent states are given by

Cz~x!5detF N

2p
~z1z* !GN/4

exp~2 1
2 N tr xTzx!. ~48!

It will be convenient to decompose the matrixz into its real
and imaginary parts by writing

z5 1
2 a212 iv, ~49!
12500
-
o-
so thata5(z1z* )21 and v5( i /2)(z2z* ). Both a and v
are real symmetric matrices, anda is positive definite. Using
the fact thatp̂b

i uz&5 i x̂a
i zabuz&, a short exercise shows tha

the coherent state expectation values of the basic bilin
are

A~z!5a, B~z!5av, and C~z!5vav1 1
4 a21.

~50!

The variances of these operators in the coherent stateuz&
are16
ht-
s

ctor
gab,gd
AA 5

1

N
@aagabd1aadabg#, ~51a!

gab,gd
BB 5

1

N
@aag~ 1

4 a211vav!bd1~ 1
2 1 iva!bg~ 1

2 2 iav!ad#, ~51b!

gab,gd
CC 5

1

N
@~ 1

4 a211vav!ag~ 1
4 a211vav!bd1~ 1

4 a211vav!ad~ 1
4 a211vav!bg#, ~51c!

~ggd,ab
BA !* 5gab,gd

AB 5
i

N
@aag~ 1

2 2 iav!bd1abg~ 1
2 2 iav!ad#, ~51d!

~ggd,ab
CA !* 5gab,gd

AC 52
1

N
@~ 1

2 2 iav!ag~ 1
2 2 iav!bd1~ 1

2 2 iav!ad~ 1
2 2 iav!bg#, ~51e!

~ggd,ab
CB !* 5gab,gd

BC 5
i

N
@~ 1

2 2 iav!ag~ 1
4 a211vav!bd1~ 1

2 2 iav!ad~ 1
4 a211vav!bg#. ~51f!

Given our choice of Hamiltonian~43!, the operator equations of motion for the basic bilinears are

d

dt
Âab5B̂ab1B̂ba , ~52a!

d

dt
B̂ab5Ĉab22ÂagV̂gb8 , ~52b!

d

dt
Ĉab522B̂gaV̂gb8 22V̂ag8 B̂gb . ~52c!

Here,V8 is shorthand for the variation ofV(A) with respect to the symmetric matrixA,

Vab8 [
dV~A!

dA(ab)
[ 1

2 FdV~A!

dAab
1

dV~A!

dAba
G , ~53!

and is defined so thatdV(A)5tr(V8dA).17

Applying the general results~18! and ~19! @actually, only Eq.~21! is needed# to the case at hand, one finds in a straig
forward fashion the following equations, valid to next-to-leading order in 1/N, for the time evolution of the expectation value
and variances of basic bilinears:

16For aesthetic reasons, we setgab,gd
AB [gAabBgd

5^AabBgd&2^Aab&^Bgd&, etc.
17Note that with this definition, the matrix variationV8 reduces to an ordinary variational derivative in the case of a single ve

(m51).
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d

dt
Aab5Bab1Bba , ~54a!

d

dt
Bab5Cab22AahVhb8 22gah,mn

AA Vhb,mn9 2gmn,zj
AA AahVhb,mn,zj- 1O~N22!, ~54b!

d

dt
Cab522BhaVhb8 22BhbVha8 2~gha,mn

BA 1gmn,ha
AB !Vhb,mn9 2~ghb,mn

BA 1gmn,hb
AB !Vha,mn9

2gmn,zj
AA ~BhaVhb,mn,zj- 1BhbVha,mn,zj- !1O~N22!, ~54c!

together with

d

dt
gab,gd

AA 5gab,gd
BA 1gba,gd

BA 1gab,gd
AB 1gab,dg

AB 1O~N22!, ~55a!

d

dt
gab,gd

BB 5gab,gd
CB 1gab,gd

BC 22gah,gd
AB Vhb8 22gab,gh

BA Vhd8

2~gmn,gd
AB 1ggd,mn

BA !AahVhb,mn9 2~gmn,ab
AB 1gab,mn

BA !AghVhd,mn9 1O~N22!, ~55b!

d

dt
gab,gd

CC 522gha,gd
BC Vhb8 22gab,hg

CB Vhd8 22ghb,gd
BC Vah8 22gab,hd

CB Vgh8 2~gmn,ab
AC 1gab,mn

CA !~BhdVgh,mn9 1BhgVhd,mn9 !

2~gmn,gd
AC 1ggd,mn

CA !~BhbVah,mn9 1BhaVhb,mn9 !1O~N22!, ~55c!

d

dt
gab,gd

AB 5gab,gd
BB 1gba,gd

BB 1gab,gd
AC 22gab,gh

AA Vhd8 22gab,mn
AA AghVhd,mn9 1O~N22!, ~55d!

d

dt
gab,gd

AC 5gab,gd
BC 1gba,gd

BC 22gab,hd
AB Vgh8 22gab,hg

AB Vhd8 22gab,mn
AA ~BhdVgh,mn9 1BhgVhd,mn9 !1O~N22!, ~55e!

d

dt
gab,gd

BC 5gab,gd
CC 22gah,gd

AC Vhb8 22gab,hd
BB Vgh8 22gab,hg

BB Vhd8 2~gmn,gd
AC 1ggd,mn

CA !AahVhb,mn9

2~gmn,ab
AB 1gab,mn

BA !~BhdVgh,mn9 1BhgVhd,mn9 !1O~N22!. ~55f!
ic

to
he

s
co

f

el-
Here

Vab,gd9 [
d2V~A!

dA(ab)dA(gd)
,

etc. Of course,ggd,ab
BA 5(gab,gd

AB )* and so on, since the bas

bilinearsÂab , B̂ab , andĈab are all Hermitian.
As they stand, the~truncated! moment equations~54! and

~55! are highly redundant. This is because the opera
Âab , B̂ab , andĈab are not independent when acting on t
O(N) invariant Hilbert spaceHN . For many purposes, it is
preferable to reduce the evolution equations to a smaller
of independent observables. To see the redundancy, it is
venient first to note that the actions ofB̂ and Â on any
coherent stateuz& are related,

S B̂1
i

2
1̂D uz&5 x̂p̂Tuz&5 x̂x̂T~ iz!uz&5Â~ iz!uz&. ~56!
12500
rs
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n-

Hence, the coherent state expectation value ofÂ21B̂ is di-
rectly related to that ofÂ21,18

^zu~Â21B̂!abuz&5 izab2
i

2
^zu~Â21!abuz&. ~57!

In a similar fashion, the coherent state expectation value oĈ
may be expressed as

^zuĈuz&5^zu p̂p̂Tuz&5^zu~ iz!* ~ x̂x̂T!~ iz!uz&

5^zu~ p̂x̂T!~ x̂x̂T!21~ x̂p̂T!uz&

5^zuS B̂1
i

2
1̂D †

Â21S B̂1
i

2
1̂D uz&. ~58!

18The following discussion assumes that coherent state matrix

ements ofÂ21 exist, which requiresN.m11.
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As noted earlier in Sec. II, quantum operators are co
pletely determined by their diagonal expectation values
the over-complete coherent basis. Consequently, the co
ent state relations~57! and ~58! suffice to infer underlying
operator identities. The left-hand side of relation~57! is not
manifestly symmetric under interchange ofa andb, but the
right-hand side is symmetric under this interchange. Beca
Eq. ~57! holds for all coherent states$uz&%, if one defines

V̂ab[~Â21B̂!ab1 i S m11

2N D ~Â21!ab , ~59!

then Eq.~57! implies thatVab5Vba , so thatV5uuVabuu is
a symmetric matrix. Moreover, using the commutation re
tions ~47!, one may verify thatVab is Hermitian.@Demand-
ing Hermiticity is what determines the coefficient of the se
ond term in Eq.~59!.# Similarly, relation ~58! implies the
operator identity

Ĉ5S B̂1
i

2
1̂D †

Â21S B̂1
i

2
1̂D , ~60!

showing that the operators$Ĉab% are not independent ofÂ
andB̂ @when acting onO(N) invariant states#. Inverting the

definition ~59! to expressB̂ in terms ofV̂,

B̂5ÂV̂2 i S m11

2N D 1̂, ~61!

and using this, plus the Hermiticity ofV̂, allows one to
rewrite expression~60! for Ĉ as

Ĉ5V̂ÂV̂1
1

4 S 12
m11

N D 2

Â21. ~62!

Hence, within theO(N) invariant Hilbert space, instead o
working with the basic bilinearsÂ, B̂, and Ĉ @totaling
m(2m11) distinct operators#, it is sufficient to use onlyÂ

and V̂ @totaling m(m11) distinct operators#. These opera-
tors are, in fact, canonically conjugate ‘‘coordinates’’ a
‘‘momenta.’’ A short exercise shows that

@Âab ,Âgd#5@V̂ab ,V̂gd#50, ~63a!
12500
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iN@V̂ab ,Âgd#5dagdbd1daddbg . ~63b!

If the complex symmetric matrixz parametrizing coheren
states is separated into real and imaginary parts by wri
z5 1

2 a212 iv @as in Eq.~49!#, then the coherent state expe

tations of the canonical operatorsÂ andV̂ are justa andv,
respectively,

^zuÂuz&5a, ^zuV̂uz&5v. ~64!

@The first equality was previously noted in Eq.~50!.#
Re-expressing the quantum equations of motion~52! in

terms of the independent canonically conjugate opera
gives

d

dt
Â5ÂV̂1V̂Â, ~65a!

d

dt
V̂52V̂222Veff8 ~Â!, ~65b!

where the ‘‘effective’’ radial potential

Veff~A![V~A!1
1

8 S 12
m11

N D 2

tr A21 ~66!

equals the original potential energy augmented by a ‘‘c
trifugal potential.’’

One may directly evaluate the evolution equations for
pectations and variances of the canonically conjugate op

tors Â andV̂, or equivalently~and rather tediously! rewrite

the previous equations~54! and ~55! in terms ofÂ and V̂.
Either way, one finds

d

dt
Aab5~AV1VA!ab1gah,hb

AV 1gah,hb
VA 1O~N22!,

~67a!

d

dt
Vab52~V212Veff8 !ab2gah,hb

VV 2~Veff- !ab,mn,zjgmn,zj
AA

1O~N22!, ~67b!

together with
d

dt
gab,gd

AA 5gah,gd
AA Vhb1ghb,gd

VA Aah1gah,gd
VA Ahb1ghb,gd

AA Vah1gab,gh
AA Vhd1gab,hd

AV Agh1gab,gh
AV Ahd1gab,hd

AA Vgh

1O~N22!, ~68a!

d

dt
~ggd,ab

VA !* 5
d

dt
gab,gd

AV 5gah,gd
AV Vhb1ghb,gd

VV Aah1gah,gd
VV Ahb1ghb,gd

AV Vah2gab,hd
AV Vgh2gab,gh

AV Vhd

22~Veff9 !gd,mngab,mn
AA 1O~N22!, ~68b!

d

dt
gab,gd

VV 52gab,hd
VV Vgh2gab,gh

VV Vhd22~Veff9 !gd,mngab,mn
VA 2ghb,gd

VV Vah2gah,gd
VV Vhb22~Veff9 !ab,mngmn,gd

AV 1O~N22!.

~68c!
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Initial conditions corresponding to a given coherent stateuz& ~with z5 1
2 a212 iv) are given byA(0)5a andV(0)5v,

together with the variances

S gab,gd
AA gab,gd

AV

gab,gd
VA gab,gd

VV D
t50

5
1

NS aad abg1aagabd
i
2 @daddbg1dagdbd#

2 i
2 @daddbg1dagdbd# 1

4 @aad
21abg

211aag
21abd

21#
D 1O~N22!. ~69!
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The next-to-leading order evolution equations~67! and
~68! are directly applicable to any bosonicO(N) invariant
vector model, such as thef4 theory defined by Eq.~45!,
whose Hamiltonian has the general form~43!. The dynamics
is encoded in as efficient a form as possible; one has dyn
cal equations for them(m11)/2 pairs of independent phas
space coordinates~67!, and their variances~68!.

In the special case~44! of a single vector~corresponding
to a point particle moving in anN-dimensional spherically
symmetric potential! one may drop all the indices and th
next-to-leading order evolution equations become

d

dt
A5AV1VA1gAV1gVA1O~N22!, ~70a!

d

dt
V52V222Veff8 2gVV2gAAVeff- 1O~N22!, ~70b!

d

dt
gAA54gAAV12~gVA1gAV!A1O~N22!, ~70c!

d

dt
~gVA!* 5

d

dt
gAV52gVVA22gAAVeff9 1O~N22!, ~70d!

d

dt
gVV524gVVV22~gVA1gAV!Veff9 1O~N22!, ~70e!

with initial conditions given byA(0)5a, V(0)5v, and

S gAA gAV

gVA gVV
D

t50

5
2

NS a2 i
2

2 i
2

1
4 a22D 1O~N22!. ~71!

From Eqs.~70! and ~71! one may again see that to next-t
leading order, the determinant of the variance matrix on
left-hand side of Eq.~71! is a constant of the motion
detg(2)(t)5O(N23). To this order, our method gives ex
actly same predictions as the Gaussian approximation
@18#. One may, of course, systematically extend the tre
ment to higher order in 1/N simply by specializing the next
to-next-to-leading order results in Sec. IV.

The evolution equations~70! in this single-vector case
may be cast in a more transparent form by defining ra
position and momentum operators via

Â5 r̂ 2, V̂5 1
2 ~ p̂r̂ 211 r̂ 21p̂!, ~72!

or equivalently
12500
i-

e

of
t-

l

r̂ 5Â1/2, p̂5Â1/2V̂2
i

2N
Â21/2. ~73!

These operators are canonically conjugate,

i @ p̂, r̂ #51/N, ~74!

and a short exercise rewriting the quantum equations of
tion ~65! yields

d

dt
r̂ 5 p̂, ~75a!

d

dt
p̂52Ueff8 ~ r̂ !, ~75b!

where

Ueff~r ![Veff~r 2!2
1

8N2r 2

5V~r 2!1
1

8
S 12

3

N
D S 12

1

N
D r 22, ~76!

andUeff8 5dUeff /dr. This is a well-known result:s-wave dy-
namics in anN-dimensional central potential is equivalent
one-dimensional quantum dynamics in an effective radial
tential Ueff containing an additional ‘‘centrifugal’’ potentia
(N23)(N21)/(8N2r 2) which is non-vanishing in all di-
mensions other than 1 and 3@19,20#. As seen in the commu
tation relations~74!, the parameter 1/N plays the role of\ so
that the largeN limit is precisely equivalent to the semiclas
sical limit of ordinary one-dimensional quantum mechani

The next-to-leading order evolution equations~70! for the
coherent state expectation values and variances ofA andV
may easily be converted to equivalent next-to-leading or
equations for expectations and variances ofp and r. One
finds

d

dt
r 5p1O~N22!, ~77a!
3-16
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d

dt
p52Ueff8 2 1

2 grr Ueff- 1O~N22!, ~77b!

d

dt
grr 5grp1gpr1O~N22!, ~77c!

d

dt
~gpr!* 5

d

dt
grp5gpp2grr Ueff9 1O~N22!, ~77d!

d

dt
gpp52~grp1gpr!Ueff9 1O~N22!. ~77e!

Through next-to-leading order, these evolutions equati
are identical to the evolution equations~28! for the usual
semiclassical limit.19 The initial variances differ, however
due to the differing shapes of the initial wave packets~26!
and ~48!. For our largeN coherent states,

S grr grp

gpr gpp
D

t50

5
1

2NS r 2 pr1 i

pr2 i p21r 22D 1O~N22!,

~78!

@and once again detg(2)(t)5O(N23)#. The form of this vari-
ance matrix~including, for example, the growth in the var
ancegrr with increasingr ) reflects the fact that the underly
ing O(N) invariant coherent state wave functions are n
constant width one-dimensional Gaussians, but ra
N-dimensional Gaussians centered at the origin with varia
width. Hence, the position of the peak in the resulting rad
probability distribution is positively correlated with th
width of the radial probability distribution about this peak

For any given choice of the potential, one may integr
the five equations~77! forward in time and obtain result
which are accurate toO(N22) @for times of order unity#. For
better accuracy, one could extend the treatment to incl
higher order correlations, as detailed in Sec. IV.

In light of the above exact correspondence between
O(N)-invariant dynamics of the single-vector model~44!,
and ordinary one-dimensional quantum dynamics in the
fective radial potential~76! with N playing the role of\, the
previous discussion of stability of the truncated mom
equations in the semiclassical limit immediately carries o
to the largeN dynamics of the single-vector model. In pa
ticular, this means that one should expect to see a deco
ence time which scales asN1/2, beyond which truncations o
the moment hierarchy are no longer useful. We have no
son to believe that the scaling of the decoherence time w

19This equivalence persists to all orders, of course, reflecting
exact correspondence between the operator equations of m
~27! and ~75!.
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N will be different in more general vector-like largeN theo-
ries, such as thef4 field theory ~45!, as compared to the
single-vector model. Although we have no compelling pro
to offer, we expect that a decoherence time of orderN1/2 is a
generic feature of vector-like largeN theories.20

VI. CONCLUSIONS

We have shown that a systematic hierarchy of time-lo
evolution equations for a minimal set of equal-time corre
tion functions may be derived in any theory having a clas
cal ~or large-N) limit which fits within the general frame-
work of Sec. II. Truncating this hierarchy at the level ofk8th
order moments~i.e., retaining up tok-point connected corr-
elators! yields results which are accurate up to order 1/Nk.

However, it is clear that thet→` and\→0 ~or N→`)
limits are non-uniform. At least in simple one degree of fre
dom ~or single vector! models, we have argued that integra
ing the truncated moment evolution equations forward
time yields results which, generically, cease to be a go
approximation to the true quantum dynamics beyond a de
herence time which scales as\21/2 ~or AN). The ordering of
connected correlators which underlies the truncation of
moment hierarchy is only valid for times small compared
the decoherence time. Going to higher orders in the trun
tion scheme will not, in general, yield results which rema
valid for parametrically longer time intervals.

We expect, but have not demonstrated, that thisAN scal-
ing of the decoherence time is a general feature of largN
quantum dynamics. It would obviously be worthwhile to i
vestigate this further, particularly in largeN models with
many vectors. In, for example, anO(N) invariant latticef4

field theory, it would clearly be desirable to understand
dependence of the decoherence time on the energy of

e
ion

20It is interesting to note that, in contrast to the previous disc
sion of the semiclassical\→0 limit, examiningN-dimensional free
motion in the absence of any potential does not provide an exam
illustrating breakdown of the moment hierarchy based onO(N)
invariant coherent states. This is because the growth in the widt
a spherically-symmetric Gaussian wave packet is perfectly re
sented by a single one of the variable-widthO(N) invariant coher-
ent states~48!, unlike the earlier situation with fixed-width coheren
states. HenceO(N) invariant free motion is highly non-generic. Fo
O(N) invariant free motion~in the general case wherez is an

m3m matrix andĤN5
1
2 tr Ĉ), one may show that the exact tim

evolution maps an initial coherent stateuz0& into another coheren
stateuz(t)& with z(t)215z0

211 i t1. The operator equations of mo

tion ~52! may also be integrated exactly and show thatĈ(t)

5Ĉ(0) is a constant of the motion, whileB̂5B̂(0)12Ĉt, and Â

5Â(0)1 1
2 @B̂(0)1B̂(0)T#t1Ĉt2. This implies, for example, tha

for large time the variancegab,mn
AA ;t4/N and so grows without

bound. However, the mean value^Â& grows quadratically witht,
and hence the relative size of rms fluctuations remains bounded
of orderN21/2 for all times.
3-17
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initial state and the lattice volume. If theAN scaling of the
decoherence time is generically true this would, for exam
imply that one cannot use truncated hierarchies of largN
evolution equations~at least of the form considered here! to
study the non-equilibrium dynamics of thermalization or h
drodynamic transport, as the relevant time scales for th
processes scale likeN in the largeN limit @16#. We hope that
future work will shed light on these issues.
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