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Multicritical phenomena of Reissner-Nordström anti–de Sitter black holes
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and Department of Physics, Beijing Normal University, Beijing, China 100875
~Received 1 February 2000; published 29 November 2000!

We present a study of the thermodynamic critical behavior of a Reissner-Nordstro¨m anti–de Sitter~RNAdS!
black hole in the vicinity of certain critical points in the set of black hole parameters (M ,Q) at which the heat
capacity at constant charge of the black hole becomes divergent, a characteristic which suggests that the second
order phase transition may occur for a RNAdS black hole. Critical exponents of the relevant thermodynamical
quantites are computed. Thermal fluctuation in the canonical ensemble near criticality is calculated and anoma-
lous behavior is found for the mean square fluctuation of certain thermodynamical variables. Scaling symmetry
for the free energy near a van der Waals–like critical point is also found from which scaling laws among the
critical exponents are derived. The thermodynamic analogy of a RNAdS black hole with a van der Waals’s
liquid-gas system is then discussed and its possible relevance to our microscopic understanding of black hole
physics is speculated.

PACS number~s!: 04.65.1e, 04.40.Nr, 04.62.1v, 11.10.Wx
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I. INTRODUCTION

For a Kerr Newman black hole whose charge and ang
momentum are not both zero, it is known that at a cert
critical temperature the heat capacity at constant charge
angular momentum of the black hole becomes divergen
characteristic shared by thermodynamical systems know
undergo a second order phase transition@1#, such as for ex-
ample the 2D Ising model. However, unlike other physi
systems which exhibit critical behavior, the heat capacity
constant charge and angular momentum of a Kerr Newm
black hole is not of constant sign when its charge and an
lar momentum are not both zero. At the critical temperatu
a Kerr Newman black hole changes from a thermally sta
thermodynamical object with positive heat capacity to a th
mally unstable one with negative heat capacity or vice ve
The statistical mechanics underlying this singular thermo
namical behavior of a Kerr Newman black hole still rema
to be understood.

Motivated by the AdS/CFT duality conjecture in strin
theory@2#, there has been recent interest in investigating
critical phenomena of black holes in a more general con
of asymptotically anti–de Sitter black holes@3#. Preliminary
study in the case of Reissner-Nordstro¨m AdS ~RNAdS!
black holes reveals a richer thermodynamic phase struc
than that of its RN counterpart. In a way perhaps not entir
expected, a RNAdS black hole displays multi-critical ph
nomena which bear certain remarkable resemblances to
of a van der Waals liquid gas system. It is the aim of t
present work to gain a better understanding of this mu
critical behavior of a four dimensional RNAdS black ho
and the thermodynamic analogy between a RNAdS bl
hole and a van der Waals liquid gas system. To this end,
shall compute the critical exponents of the relevant therm
dynamical quantites and then discuss the scaling symm
of the free energy as well as the thermal fluctuation n
criticality. Among the results we get, we shall see th
though the critical behavior of a RNAdS black hole r
sembles that of a van der Waals liquid gas system qua
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tively, these two systems are actually not in the same univ
sality class in the sense that the critical exponents calcul
are not exactly the same for these two systems.

The present work is organized as follows. Section II is
brief review of the background of the problem discussed
the present work. In Sec. III, we study the thermodynam
behavior of a RNAdS black hole in the vicinity of the critica
points at which there is a change of thermodynamic stab
for the black hole. Section IV is devoted to the study of t
critical behavior of a RNAdS black hole when its char
reaches certain critical value and the black hole becom
thermodynamically stable. Section V is a discussion of
thermodynamic analogy between a RNAdS black hole an
van der Waals liquid gas system. The work is concluded
Sec. VI with some remarks and discussion.

II. PHASE STRUCTURE OF A RNAdS BLACK HOLE

The theme of the present Sec. is to give an overview
the singular behavior of the heat capacity at constant cha
of a RNAdS black hole which forms the background of th
work. For more details, see@3#. Throughout we shall adop
Planck units in whichG5\5c5k51 where all symbols
have their usual meanings.

Consider a RNAdS black hole whose spacetime metri

ds252V~r !dt21
dr2

V~r !
1r 2~du21sin2udf2! ~2.1!

where

V~r !512
2M

r
1

Q2

r 2
1

r 2

l 2

andL523/l 2 is the cosmological constant. For later conv
nience, further definel53/l 252L.

The mass of the black hole is given by
©2000 The American Physical Society23-1
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M5
1

2 S r 11
Q2

r 1
1

r 1
3

l 2 D ~2.2!

wherer 1 is the radius of the spherical event horizon and

r 1.S 211A114lQ2

2l D 1/2

for a non-extreme black hole. Using the thermodynami
relationT5(]M /]S)Q and the Bekenstein-Hawking formul
S5pr 1

2 , it may be deduced that

T5
1

4p

lr 1
4 1r 1

2 2Q2

r 1
3

~2.3!

which may be regarded as the equation of state of the b
hole.

Denote the heat capacity at constant charge byCQ . We
have

CQ5
2pr 1

5 T

lr 1
4 2r 1

2 13Q2
. ~2.4!

As 2pr 1
5 T.0 for a non-extreme black hole, it may be se

from Eq.~2.4! thatCQ will become singular for a certain se
of black hole parameters (M ,Q) at which

lr 1
4 2r 1

2 13Q250. ~2.5!

Solving the quadratic equation~2.5!, we then find that the
critical points are given in terms of the radius of the eve
horizon as

r 1
25

12A1212lQ2

2l
,

r 2
25

11A1212lQ2

2l
when 12Q2l,1, ~2.6!

r c
25

1

2l
when 12Q2l51. ~2.7!

For fixed Q so that 12Q2l,1, when T is regarded as a
function of r 1 , it may further be inferred from Eqs.~2.3!
and~2.6! thatT attains local maximum and minimum respe
tively at the two distinct rootsr 1 and r 2 ~see Fig. 1!. Since
CQ,0 when r 1,r 1,r 2 and CQ.0 when r 1,r 1 and r 1

.r 2, so across the critical points atr 1 and r 2, there is a
change of thermodynamic stability of a black hole.

In the limit L→0, the critical point atr 1 corresponds to
the critical point discovered independently by Davies a
Hut @1# for a RN black hole while the critical point atr 2

disappears from the (T,r 1) phase plane because lim
L→0

r 2
2

,0. WhenQ approaches zero, we recover from the critic
point at r 2 the the Hawking-Page critical point@4# for a
Schwarzchild AdS black hole and the critical point atr 1

disappears because lim
Q→0

r 1
2,0.
12402
l
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In the limit Q2 approaches the critical value 1/12l, both
r 1 and r 2 degenerate intor c given in Eq. ~2.7!. The two
critical points atr 1 andr 2 coalesce into a single critical poin
which is a horizontal point of inflection of the isocharg
curve at which 12lQ251 in the (T,r 1) phase diagram~see
Fig. 2!.

Along the critical isocharge curve,CQ remains positive
and the unstable phase of a black hole disappears. WheQ2

is greater than the critical value 1/12l, a RNAdS black hole
exhibits no critical behavior.

III. TRANSITION BETWEEN STABLE
AND UNSTABLE PHASES

In this section, we shall begin our study of the critic
behavior of a RNAdS black hole when 12lQ2,1 and a
change of thermodynamic stability of the black hole tak

FIG. 1. The isocharge curve withQ,Qc in the (T,r 1) phase
plane. The local maxima and minima atr 1 and r 2 respectively
correspond to critical points ofCQ . The segment of curve betwee
r 1 andr 2 corresponds to an unstable phase of a RNAdS black h
along whichCQ,0.

FIG. 2. The critical isocharge curve withQ5Qc51/A12l. The
point of inflection atr c on the critical isocharge curve is a critica
point of CQ .
3-2
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place across the critical points atr 1 and r 2. To this end, we
shall first work out the critical equation of state of a RNAd
black hole valid in the vicinity of the critical points atr 1 and
r 2.

A. Critical equation of state

Denote byT1 andT2 the critical temperature atr 1 andr 2
respectively given by Eq.~2.3!. Near the critical points, let

T5Ti~11e! and r 15r i~11D!, i 51,2, ~3.1!

where ueu,uDu!1. In what follows, the indexi always runs
from 1 to 2. Like in the critical behavior of Kerr Newma
black holes@5#, althoughCQ is singular atr i , with Q fixed,
T remains a smooth function ofr 1 at r i .

From Eqs.~2.3! and ~2.6!, we have

S ]T

]r 1
D

Q
U

r 5r i

5
1

4p

lr i
42r i

213Q2

r i
4

50

S ]2T

]r 1
2 D

Q

U
r 5r i

5
1

2p

r i
226Q2

r i
5

with

S ]2T

]r 1
2 D

Q

U
r 5r 1

,0, S ]2T

]r 1
2 D

Q

U
r 5r 2

.0.

The difference in the sign between (]2T/]r 1
2 )Q at r 1 andr 2

arises from the fact that, as a function ofr 1 , T at r 1 is a
local maximum whileT at r 2 is a local minimum~see Fig. 1!.

In a sufficiently small neighborhood ofr i , we may ex-
pandT in terms ofr 1 to give

Ti~11e!5Ti1S ]2T

]r 1
2 D

Q

U
r i

r i
2D21O~D3!. ~3.2!

It then follows from Eq.~3.2! that

e5DiD
21O~D3! ~3.3!

where

Di5
r i

2

Ti
S ]2T

]r 1
2 D

Q

U
r 5r i

5
1

2pTi

r i
226Q2

r i
3

. ~3.4!

Equation~3.3! may be regarded as the critical equation
state for a RNAdS black hole when the event horizon rad
r 1 is sufficiently close tor i . As far as the critical behavio
of a RNAdS black hole is concerned, it is sufficient to co
sider the lowest order nontrivial term ofD in Eq. ~3.3! which
dominates the thermodynamics nearr i .
12402
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B. Calculation of critical exponents

To shed further light on the critical behavior of the bla
hole nearr 1 andr 2, we shall undertake the calculation of th
critical exponents of certain thermodynamical quanti
which become singular at the critical points. With the help
the critical equation of state given in Eq.~3.3!, the calcula-
tions turn out to be quite straightforward.

By definition, we have

CQ5TS ]S

]TD
Q

, CF5TS ]S

]TD
F

, kT5S ]F

]QD
T

~3.5!

which are the analogs ofCP , CV and the isothermal com
pressibility respectively of a liquid-gas system. On furth
calculations using Eqs.~2.2! and ~2.3!, we have from Eqs.
~3.5! that

CQ52pr 1
2

lr 1
4 1r 1

2 2Q2

lr 1
4 2r 1

2 13Q2
~3.6!

CF52pr 1
2

lr 1
4 1r 1

2 2Q2

lr 1
4 2r 1

2 1Q2
~3.7!

kT5
1

r 1

lr 1
4 2r 1

2 1Q2

lr 1
4 2r 1

2 13Q2
. ~3.8!

From Eqs.~3.7! and ~2.6!, we see thatCF displays no sin-
gular behavior at the critical points located atr 1 and r 2, to
calculate the critical exponents ofCQ and kT which are
manifestly singular atr 1 and r 2.

Substitute Eq.~3.1! into Eq. ~3.6!; we have forueu,uDu
!1, the asymptotic behavior ofCQ near the critical pointr i
is given in terms ofD as

CQ5p
lr i

41r i
22Q2

2lr i
221

1

D
1O~D!. ~3.9!

Together with the critical equation of state given in Eq.~3.3!,
we may infer from Eq.~3.9! that nearr i , the critical behav-
ior of CQ is described by

CQ'
Ai

ueu1/2
at the stable phase

'
2Ai

ueu1/2
at the unstable phase ~3.10!

where

Ai52pUlr i
41r i

22Q2

2lr i
221

UuDi u1/2 ~3.11!

andDi are as that given in Eq.~3.4!.
3-3
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Using Eqs.~3.8!, ~3.2! and ~3.3!, it may also be deduced
in a way similiar to the case ofCQ that, for ueu,uDu!1, the
asymptotic behavior ofkT nearr i may be given as

kT'
2Bi

ueu1/2
at the stable phase

'
Bi

ueu1/2
at the unstable phase ~3.12!

where

Bi5U 2

r i
2

lr i
42r i

21Q2

2lr i
221

UuDi u1/2. ~3.13!

So the critical exponents ofCQ andkT near the critical re-
gime of bothr 1 andr 2 may be read off from Eqs.~3.10! and
~3.12! respectively as2 1

2 .
As a consistency check, we see that in the limitl→0, we

recover from Eq.~3.10! the critical exponent ofCQ in the
case of RN black holes for the critical point atr 1 @5#. Fur-
ther, in the limitQ→0, the critical point atr 2 becomes the
Hawking-Page critical point for a Schwarzchild AdS bla
hole. Equations~3.10! and ~3.12! then also give the critica
exponets ofCQ and kT for a Schwarzchild AdS black hole
which, as far as we know, have not been given before.

C. Definition of the order parameter

In the case of a RN black hole, a change of thermo
namic stability of the black hole across the critical po
~which corresponds to the limiting case ofl→0 of that atr 1
in the RNAdS context! enables us to introduce an order p
rameter which measures the gradual phase change
RNAdS black hole across the critical point@6#. The defini-
tion of the order parameter may be carried over to
RNAdS context without difficulty and described as follow

Across r i , CQ changes sign. So in the thermally stab
phase at whichCQ.0, a quasistatic absorption of a partic
without charge~for e.g. a Hawking particle of a neutral sc
lar field backscattered by the gravitational potential near
event horizon! will be followed by a corresponding increas
of the mass of the black hole, while in the thermally unsta
phase at whichCQ,0, the corresponding absorption proce
will lead to a suppression of the black hole temperature.

Consider a RNAdS black hole at the temperatureT
5Ti(11e) with ueu!1. Denote byp the probability that a
RNAdS black hole will absorb quasistatically a particle
massDM without charge followed by an increase in its tem
perature characterized byDe. Further, assumeDe is suffi-
ciently small so that
12402
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DS'TiCQDe'
TiAi

Aueu
De at the stable phase

2
TiAi

Aueu
De at the unstable phase

~3.14!

according to Eq.~3.10!. Subject to the Boltzmann-Einstei
hypothesis that the entropyS is a measure of the number o
internal states of a RNAdS black hole that correspond t
particular macrostate characterized by definiteM and Q, it
follows from Eq.~3.14! that p may be given as

p}expS TiAi

Aueu
De D at the stable phase

50 at the unstable phase ~3.15!

where the second equality follows fromCQ,0 in the un-
stable phase at which an absorption process is always
lowed by a decrease in temperature of the black hole. Eq
tion ~3.15! then suggests the definition of the following ord
parameter:

h i5expS 2
TiAi

Aueu
D at the stable phase

50 at the unstable phase. ~3.16!

It may be checked from Eq.~3.16! that h iÞ0 in the stable
phase andh i vanishes in the unstable phase. Further, acr
the critical point atr i , h i remains continuous. Soh i satisfies
the requirements common to the order parameters of o
physical systems which exhibit criticality.

As far as the physical meaning is concerned,h i is the
inverse of the statistial weight factors which determine
probability of an absorption process which raises the te
perature of a RNAdS black hole near the critical pointsr i .

D. Thermodynamic critical fluctuation

We shall now go on to compute the thermal fluctuation
the mass and entropy near the critical points located atr 1 and
r 2 when a RNAdS black hole is in a canonical ensemble
will be shown that the mean square fluctuation of the m
and entropy of a RNAdS black hole behaves anomalou
and becomes divergent as the critical points atr 1 andr 2 are
approached.

Consider the thermal fluctuation for a RNAdS black ho
immersed in a bath of radiation in thermal equilibrium wi
the black hole such thatQ is kept constant. Subject to th
appropiate asymptotic boundary conditions, the therm
equilibrium involving the black hole and the heat bath
stable@7#.

Near r i , the black hole is at a temperatureT5Ti(11e)
whereueu!1 andTi is the critical temperature atr i . With Q
fixed, subject to the equation of state given in Eq.~2.3!, an
exchange of energy of the black hole with the heat bath le
3-4
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inevitably to a deviation of the temperature of the black h
from that of the heat bath. Denote this deviation of tempe
ture byDe. Suppose further that the black hole temperat
is only weakly perturbed in the sense that

2c1,De,c2 ~3.17!

wherec1 ,c2 are sufficiently small positive constants. Sin
T1 is the local maximum temperature nearr 1 , c2 is further
bounded byc2,ueu. When we come to consider the critic
point r 2, asT2 is the local minimum nearr 2 this time,c1 is
bounded byuc1u,ueu. However, these restrictions will no
affect our calculations in what follows as long asc1 or c2
remains finite and not both zero as the limite→0 is ap-
proached.

Denote byp the fluctuation probability of a RNAdS blac
hole immersed in a heat bath. Forueu!1, p is given by@8#

p}expS 2
DF

Ti~11e! D'expS 2
DF

Ti
D ~3.18!

where DF is the change of free energy of the black ho
induced byDe. For De sufficient small andueu!1,

DF5TiSi@11O~ ueu1/2!#De

'TiSiDe. ~3.19!

As a result, we have from Eq.~3.18! and ~3.19! that

p}exp~SiDe!. ~3.20!

Subject to Eq.~3.17!, Eq. ~3.20! may be further normalized
to be

p5
Si

exp~Sic1!2exp~2Sic2!
exp~SiDe!. ~3.21!

On the other hand, from Eq.~2.2!, we find, in a sufficiently
small neighborhood ofr i ,

DM5TiCQDe'
TiAi

Aueu
De at the stable phase

2
TiAi

Aueu
De at the unstable phase

~3.22!

according to Eq.~3.10!. From Eq.~3.22! and the normalized
fluctuation probability given in Eq.~3.21!, the mean square
fluctuation ofM may be worked out to be

^~DM !2&5
Si

exp~Sic1!2exp~2Sic2!

Ti
2Ai

2

ueu

3E
2c1

c2
x2 exp~Six!dx. ~3.23!
12402
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It may be inferred from Eq.~3.23! that, modulo a non-zero
constant independent ofe, asymptotically near the critica
point at r i ,

^~DM !2&;
1

ueu
. ~3.24!

Moreover, from the definition CQ5(]M /]T)Q
5T(]S/]T)Q , it may further be deduced that, forueu!1,

DM'TiDS. ~3.25!

From Eqs.~3.24! and ~3.25!, we see that in the limitueu
→0, both^(DM )2& and ^(DS)2& become divergent.

The singular behavior of the mean square fluctuation
mass and entropy calculated above suggests that, in a ca
cal ensemble, the number of copies of black holes wh
deviate from the average thermodynamic behavior beco
very large when the critical points atr 1 or r 2 is approached.
This indicates a breakdown of thermodynamic description
a RNAdS black hole near the critical points.

IV. THERMAL PHASE TRANSITION AND CRITICAL
VALUE OF Q

As described in Sec. II, when the charge of a RNA
black hole reaches the critical valueQ251/12pl, the critical
points atr 1 andr 2 studied in the preceding section degen
ate into a single critical point located atr c . The thermally
unstable phase of a RNAdS black hole disappears and
black hole becomes thermally stable along the isocha
curve at whichQ251/12pl ~see Fig. 2!. The theme of this
section is to study the critical thermodynamic behavior o
RNAdS black hole nearr c . To this end, we shall first review
a thermodynamic analogy between a RNAdS black hole
a van der Waals liquid gas system first discovered in@3#. The
analogy, though incomplete, will still serve as a very use
guide in the study of the critical behavior of a RNAdS bla
hole in the vicinity ofr c .

A. Thermodynamic analogy with a van der Waals liquid
gas system

Given the electromagnetic potential at the event horiz
F5Q/r 1 , the equation of state~2.3! may be rewritten as

T5
1

4p

F22F41Q2

QF
. ~4.1!

In terms of the thermodynamical variables (Q,F), we have

CQ52pS Q

F D 2 2F41F21lQ2

3F42F21lQ2
~4.2!

and

S ]Q

]F D
T

5
Q

F

3F42F21lQ2

F42F21lQ2
. ~4.3!
3-5
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It then follows from Eq.~4.2! that along an isotherm,CQ
become divergent at

F1
25

12A1212lQ2

2l
,

F2
25

11A1212lQ2

2l
when T.Tc , ~4.4!

Fc
25

1

2l
at Tc . ~4.5!

Further, it may be inferred from Eq.~4.3! that, like a sub-
critical isotherm of a van der Waals liquid gas system in
(P,V) phase plane~see e.g.@9#!, an isotherm of a RNAdS
black hole withT.Tc also has a local maxima and minim
located respectively atF1 andF2 given in Eq.~4.4!. Along
the segment of the isotherm betweenF1 andF2, a RNAdS
black hole is in a thermally unstable phase with (]Q/]F)T
.0 ~see Fig. 3!.

In the limit whenTc is reached, the shape of the isothe
undergo noticable change~see Fig. 4! and the critical points
located atF1 andF2 on a subcritical isotherm coalesce in
a single critical point located atFc @given in Eq.~4.5!# at the
critical isotherm. The critical point atFc coincides with that
located at r c on the critical isocharge curve withQ
51/A12l.

Like the case of the van der Waals liquid gas system,
critical point at the critical isotherm~along whichT5Tc) of
a RNAdS black hole is also a point of inflection of the cri
cal isotherm and may be characterized by

S ]Q

]F D U
c

50

FIG. 3. The isotherm of a RNAdS black hole along whichT
.Tc . The local maxima and minima located respectively atF1 and
F2 are critical points ofCQ . For FP(F1 ,F2), the black hole is
unstable with (]Q/]F)T.0.
12402
e

e

S ]2Q

]F2D U
c

50

equation of state in Eq.~4.1!

where the subscriptc denotes the corresponding quanti
evaluated at the critical point atr c from now on. In view of
the above similiarities, if we formally identify the variable
(Q,F) of a RNAdS black hole with (V,P) of a van der
Waals liquid gas system, then we see that, at least at a q
tative level, the phase structure of a RNAdS black hole d
bear certain remarkable resemblences to that of a van
Waals liquid gas system.

B. Choice of order parameter

In analogy to a van der Waals liquid gas system, an or
parameter in the RNAdS context which measures the ph
change across the critical point atr c may also be defined in
terms of the Maxwell equal-area law. To do so, in the (Q,F)
phase plane, fix a subcritical isotherm and draw a horizo
line which interests the subcritical isotherm at pointsa,d,b
~see Fig. 5! such that the area bounded by the horizontal l
segmentad and the isotherm is equal to that bounded by
line segmentdb and the isotherm.

As in the case of a van der Waals liquid gas syste
define

h5Fb2Fa ~4.6!

as the order parameter to describe the phase change
RNAdS black hole nearr c .

C. Critical exponents

Near the critical point at the critical isotherm, the critic
behavior of a van der Waals liquid gas system may be
scribed in terms of

~1! P2Pc;~V2Vc!
d

FIG. 4. The critical isotherm along whichT5Tc . The point of
inflection located atFc is a critical point ofCQ , CQ.0 along the
critical isotherm.
3-6
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~2!
Vg2Vl

Vc
;~2e!b

~3! CP;~2e!2a8 ~T,Tc!

;e2a ~T.Tc!

~4! kT;~2e!2g8 ~T,Tc!

;e2g ~T.Tc!.

Along the critical isotherm, we further have

~5! CP;~P2Pc!
2f ~ for e50!

~6! kT
21;~P2Pc!

121/d ~ for e50!

~7! S2Sc;e12a ~ for DP50!

;~P2Pc!
c ~ for e50!.

With the formal correspondence (F,Q)↔(V,P) as de-
scribed in the preceding subsection, analogous quant
may also be defined for a RNAdS black hole. The concr
values of the corresponding critical exponents in the cas
a RNAdS black hole may also be worked out as follows.

1. Calculation of d

Using the equation of state~4.1!, we have

S ]Q

]F D
T
U

c

50

S ]2Q

]F2D
T

U
c

50

FIG. 5. A horizontal line is drawn which connects pointsa and
b of the subcritical isotherm. The area bounded by the line segm
ad and the isotherm is equal to that bounded by the line segmendb
and the isotherm.
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of

S ]3Q

]F3D
T

U
c

Þ0.

So the critical point atr c is a point of inflection of the critical
isotherm. Standard Taylor expansion then gives in a su
ciently small neighborhood ofr c ,

Q2Qc5S ]3Q

]F3D
T

U
c

~F2Fc!
31O„~F2Fc!

4
….

This means

d53 ~4.7!

which is identical to that of a van der Waals liquid gas sy
tem. From Eq.~4.7!, it may also be inferred that along th
critical isotherm,

kT
21;~Q2Qc!

2/3.

2. Calculation of b

Let D15Fa2Fc andD25Fb2Fc . The order paramete
defined in Eq.~4.6! may be rewritten as

h5D11D2 . ~4.8!

Using Eq.~4.1! again, we have

S ]T

]F D
Q
U

c

50

S ]2T

]F2D
Q

U
c

50

S ]3T

]F3D
Q

U
c

Þ0

and therefore

e5S ]3T

]F3D
Q

U
c

~D1
31D2

3!1higher order terms ofD1 ,D2 .

~4.9!

Close enough to the critical point, we haveD1;D2. To-
gether with Eqs.~4.8! and ~4.9!, we then find

b5
1

3
. ~4.10!

3. Calculation of a,a8

It may be deduced from Eq.~2.3! that

S ]T

]r 1
D

Q
U

c

50

nt
3-7
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S ]2T

]r 1
2 D

Q

U
c

50

S ]3T

]r 1
3 D

Q

U
c

Þ0.

Like in the derivation of the critical equation of state~2.3!
near the critical points atr 1 andr 2 in Sec. III A, we have, in
a sufficiently small neighborhood ofr c ,

e'AcD
3 ~4.11!

where

Ac5
r c

3

Tc
S ]3T

]r 1
3 D

Q

U
c

.

On the other hand, recall from Eq.~3.5! that

CQ52pr 1
2

lr 1
4 1r 1

2 2Q2

lr 1
4 2r 1

2 13Q2
.

Near the critical point atr c , let

r 15r c~11D! where uDu!1. ~4.12!

Substitute Eq.~4.12! into Eq. ~3.5! and bear in mindr c
2

51/2l; we have

CQ'
2p

3l

1

D2
. ~4.13!

Equations~4.11! and ~4.13! together then imply

CQ;ueu22/3

immediately below or aboveTc and therefore

a5a85
2

3
. ~4.14!

4. Calculation of g,g8

From Eq.~3.8!, we have

S ]F

]QD
T

5
1

r 1

lr 1
4 2r 1

2 1Q2

lr 1
4 2r 1

2 13Q2
.

Sufficiently close tor c , using Eq.~4.12! and r c
251/2l, we

have

S ]F

]QD
T

'2
1

6A2l

1

D2
. ~4.15!

From Eqs.~4.11! and~4.15!, we may then infer that, nearr c ,
12402
S ]F

]QD
T

;e22/3.

This means

g5g85
2

3
. ~4.16!

5. Calculation of f

From Eq.~2.3!, we get

S ]Q

]r 1
D

T
U

c

50

S ]2Q

]r 1
2 D

T

U
c

50

S ]3Q

]r 1
3 D

T

U
c

Þ0

and these imply

Q2Qc5S ]3Q

]r 1
3 D

T

U
c

r c
3D31O~D4!. ~4.17!

Equations~4.13! and ~4.17! together then give

CQ;~Q2Qc!
22/3

and therefore

f5
2

3
. ~4.18!

6. Calculation of c

BecauseS5pr 1
2 , in a sufficiently small neighborhood o

r c ,

S2Sc'2pr c
2D. ~4.19!

Equations~4.19! and ~4.11! imply that, along an isocharge
curve at whichDQ50,

S2Sc;e1/3 ~4.20!

which is consistent with Eq.~4.14!. From Eqs.~4.17! and
~4.19!, we also get

S2Sc;~Q2Qc!
1/3

and therefore

c5
1

3
. ~4.21!

For a summary of the critical exponents obtained from
above calculations, see Table I in Sec. V. To conclude
3-8
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section, we remark that the numerical values of the criti
exponents calculated above are all multiples of1

3 . There is a
rational explanation for the numerical coincidence, wh
may be described as follows. The critical exponents are
tained by means of Taylor expanding a thermodynam
quantity in terms of a variable whose choice is dictated
the relevant critical exponent we want to calculate. It tu
out that in the Taylor expansions, both the first and sec
order terms vanish near the van der Waals like critical po
r c and the lowest order non-trivial contributions come fro
the cubic term in the expansions.

D. Scaling symmetry for the free energy near criticality

In the case of a van der Waals liquid gas system, sca
symmetry exists for the singular part of the Gibbs free
ergy near the critical point located at the critical isothe
and the critical exponents may all be expressed in term
the two independent homogenity degrees of the Gibbs
ergy @9#. In this subsection, we shall show that for a RNAd
black hole similiar scaling symmetry also exists for the s
gular part of the free energy in the critical regime nearr c
from which scaling laws for the critical exponents may
derived. However, the similiarity holds only at a qualitati
level as the two independent degree of homogenity for
free energy of a RNAdS black hole are different from that
the Gibbs energy of a van der Waals liquid gas system. S
ing symmetry in the black hole critical phenomena was fi
discussed in@10# in the context of of Kerr Newman blac
holes.

Sufficiently close tor c , the free energy for a RNAdS
black hole may be written asF5Fr1Fs . Here Fr is the
regular part of the free energy whose second order pa
derivatives are well behaved at the critical point atr c , and
Fs is the part of the free energy responsible for the singu
thermodynamic behavior of a RNAdS black hole nearr c .
With the help of Eqs.~4.13! and ~4.15! together with Eq.
~4.11!, Fs may further worked out to be

Fs5CQe31S ]Q

]F D
T

P3

5ae4/31bP4/3 ~4.22!

for some constanta,b dependent onl. From Eq.~4.22!, we
find

F~Lpe,LqP!5LF~e,P! ~4.23!

with p5q5 3
4 andL a real constant. As in the case of a v

der Waals liquid-gas system~see e.g.@9#!, the critical expo-
nents derived in the previous section may be expresse
terms ofp,q as

a522
1

p
~4.24!

b5
12q

p

12402
l
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g5
2q21

p

d5
q

12q

c5
12p

q

f5
122p

q
.

From Eqs.~4.24!, it may also be seen that the critical exp
nents in the critical regime ofr c are not independent. The
are related by following equations~see@9,11#!:

a12b1g52

a1b~d11!52

g~d11!5~22a!~d21!

g5b~d21!

~22a!~dc21!115~12a!d

f12c2
1

d
51. ~4.25!

Apart from obtaining the algebraic relations among the cr
cal exponents, Eqs.~4.24! or ~4.25! also enable us to give a
consistency check of the validity of the critical exponen
obtained in Sec. IV C.

E. Thermodynamic critical fluctuation

As in the cases of the critical points atr 1 andr 2, we may
also ask whether the thermal fluctuation of certain therm
dynamical variables nearr c will behave anomalously in a
canonical ensemble. The arguments presented in Sec.
are also applicable when we come to consider the crit
thermal fluctuation nearr c , with however the following mi-
nor differences.~i! As the temperature of the black hole is n
longer bounded above or below near the critical point,
range of fluctuation of the temperature nearr c may be cho-
sen to beuDeu,c @compared with Eq.~3.17!# wherec is a
sufficiently small positive constant. This in fact makes t
calculations simpler.~ii ! The critical equation of state nearr c
given in Eq.~4.11! is used in place of Eq.~4.1!.

Since the calculations are similiar to that presented in S
III D, we shall only state the results of our calculations whi
are

^~DM !2&,^~DS!2&;
1

ueu4/3

^~Dh!2&;
1

ueu4/3
. ~4.26!
3-9
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TABLE I. Summary of the critical exponents obtained in this work.

van der Waals’s system RNAdS black hole

Correspondence of (P,V,T) (F,Q,T)
thermodynamical variables

Main critical exponents
a 0 2/3
b 1/2 1/3
g 1 2/3
d 3 3

Scaling symmetry For Gibbs energy For free energy
G(L1/2e,L3/4P) F(L3/4e,L3/4P)
5LG(e,P) 5LF(e,P)

Order parameter Dr5r l2rg DF5Fa2Fb

r l , density of liquid
rg , density of gas

Phase structure

T.Tc Only gas state exists Two thermally stable sta
separated by an unstable
phase~see Fig. 5!

T,Tc Possibility of the existence Only thermally stable
of both liquid and gas states phase exists
e
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We see from Eq.~4.26! that, unlike that in the case of th
critical points atr 1 andr 2, the mean square fluctuation of th
order parameter also exhibits anomalous behavior. Furt
the rate at whicĥ (DM )2& or ^(DS)2& becomes divergen
nearr c is faster than that nearr 1 or r 2.

F. RNAdS black hole and van der Waals liquid gas system:
A comparsion

We first summarize the similiarities and differences b
tween the thermodynamic behavior of a RNAdS black h
and a van der Waals’s liquid gas system in Table I.

From Table I, we see that, despite certain qualitative
miliar features exhibited by both a RNAdS black hole and
van der Waals liquid gas system in the corresponding ph
diagrams, the critical behavior of a RNAdS black hole
essentially different from that of a van der Waals liquid g
system.

In the first place, the temperature of the subcritical is
therms of a RNAdS black hole is aboveTc , while that of a
van der Waals liquid gas system is below the critical te
perature. Moreover, from a thermodynamic perspective,
formal correspondence (F,Q)↔(V,P) is not very natural
because instead ofF, Q now plays the very odd role of a
chemical potential in the analogy. If we write down the d
ferential form of the Gibbs energy of a van der Waals liqu
gas system,

dG5TdS1VdP,

and the differential form of the free energy of a RNAd
black hole,
12402
r,

-
e

i-
a
se

s

-

-
e

dF5TdS1FdQ,

then we see that the unnatural correspondence arises be
we try to compare the Gibbs energy of a van der Wa
liquid gas system~pertained to a grand canonical ensemb!
with the free energy of a RNAdS black hole~pertained to a
canonical ensemble!. So the physical meaning of this therm
dynamic analogy remains very obscure at the present st
From the numerical value of the critical exponents, it m
also be seen that a RNAdS black hole and a van der W
liquid gas system are actually not in the same universa
class as far as critical behavior is concerned.

In view of these disparities, are we going to dismiss t
thermodynamic analogy between a RNAdS black hole an
van der Waals liquid gas system altogether? Perhaps
should not, at least not in a hasty way. As may be seen f
the preceding subsection, the analogy serves as a very u
guide in our study of the critical thermodynamic behavior
a RNAdS black hole. The choice of the order parameter
well as the appropiate thermodynamic variables to stu
along the critical isotherm~or the critical isocharge curve!
are all suggested by the analogy. In the future, if we try
probe deeper into the microscopic structure of black hole
is conceivable that we may also learn something useful fr
the statistical mechanics of a van der Waals liquid gas s
tem. At the same time, the quantitative differences spe
out in this work ~for instance the critical exponents com
puted! will serve as a guide in looking for an appropia
statistical model which deviates from that of a van der Wa
liquid gas system.
3-10
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V. DISCUSSIONS

In the present work, we have presented some res
which may be regarded as a preliminary step to gain a be
understanding of the multi-critical phenomena of RNA
black holes at the thermodynamical level. Many questio
remain to be addressed. Perhaps the most straighforward
is whether it is possible to generalize the present work to
Kerr Newman AdS black holes. Preliminary calculations
dicate that modulo a constant dependent on charge as we
angular momentum, the numerical value of the critical ex
nents calculated for a RNAdS black hole may be carried o
to the more general context of a Kerr Newman AdS bla
hole. The generalization to higher dimensional AdS bla
holes also does not seem to present any serious obstac

More interesting problems come up when we try to u
derstand the critical behavior of a RNAdS black hole in t
context of the AdS-CFT duality. For instance, it is wor
trying to understand the phase transition from the dual C
picture@12#. Further, we may also ask whether it is possib
to exploit the AdS-CFT duality in order to gain better insig
into the phase structure of a RNAdS black hole. For ma
statistical systems which undergo second order phase tr
tion, notably the 2D Ising model, the scaling relation sa
O

rs
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fied by the free energy near criticality is a familiar chara
teristic which follows from the renormalization grou
analysis near the infrared fixed point. So it is a natural to
if there is a renormalization group scheme underlying
critical phenomena of black holes from which the scali
relation follows. The problem is worth looking at not on
from the viewpoint of black hole physics. Hopefully, it wi
also contribute to our understanding of the behavior o
gravitational field at different energy scales when gene
relativity is looked on as an effective field theory. This que
tion is certainly more tractable in the dual CFT picture
renormalization is much better understood in that context.
course, the most challenging question will be how we m
use the knowledge of the phase structure and possibly
van der Waals analogy to build up the statistical mechan
of black holes, as discussed in the previous section. M
work remains to be done to address these open question
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