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Multicritical phenomena of Reissner-Nordstrom anti—de Sitter black holes
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We present a study of the thermodynamic critical behavior of a Reissner-Nondatitb-de SittefRNAdS)
black hole in the vicinity of certain critical points in the set of black hole parameld;€( at which the heat
capacity at constant charge of the black hole becomes divergent, a characteristic which suggests that the second
order phase transition may occur for a RNAdS black hole. Critical exponents of the relevant thermodynamical
quantites are computed. Thermal fluctuation in the canonical ensemble near criticality is calculated and anoma-
lous behavior is found for the mean square fluctuation of certain thermodynamical variables. Scaling symmetry
for the free energy near a van der Waals—like critical point is also found from which scaling laws among the
critical exponents are derived. The thermodynamic analogy of a RNAdS black hole with a van der Waals’s
liquid-gas system is then discussed and its possible relevance to our microscopic understanding of black hole
physics is speculated.

PACS numbes): 04.65:+e, 04.40.Nr, 04.62:v, 11.10.Wx

[. INTRODUCTION tively, these two systems are actually not in the same univer-
sality class in the sense that the critical exponents calculated
For a Kerr Newman black hole whose charge and angula@re not exactly the same for these two systems.
momentum are not both zero, it is known that at a certain The present work is organized as follows. Section Il is a
critical temperature the heat capacity at constant charge arffief review of the background of the problem discussed in
angular momentum of the black hole becomes divergent, 1€ present work. In Sec. Ill, we study the thermodynamic
characteristic shared by thermodynamical systems known t@ehavior of a RNAdS black hole in the vicinity of the critical
undergo a second order phase transifibh such as for ex- Points at which there is a change of thermodynamic stability
ample the 2D Ising model. However, unlike other physicalfor the black hole. Section IV is devoted to the study of the
systems which exhibit critical behavior, the heat capacity afitical behavior of a RNAdS black hole when its charge
constant charge and angular momentum of a Kerr Newmaffaches certain critical value and the black hole becomes
black hole is not of constant sign when its charge and anguhermodynamically stable. Section V is a discussion of the
lar momentum are not both zero. At the critical temperaturethermodynamic analogy between a RNAdS black hole and a
a Kerr Newman black hole changes from a thermally stabl&/an der Waals liquid gas system. The work is concluded in
thermodynamical object with positive heat capacity to a therSec. VI with some remarks and discussion.
mally unstable one with negative heat capacity or vice versa.
The .statistical _mechanics underlying this singular_therquy— Il. PHASE STRUCTURE OF A RNAdS BLACK HOLE
namical behavior of a Kerr Newman black hole still remains
to be understood. The theme of the present Sec. is to give an overview of
Motivated by the AdS/CFT duality conjecture in string the singular behavior of the heat capacity at constant charge
theory[2], there has been recent interest in investigating th@f a RNAdS black hole which forms the background of this
critical phenomena of black holes in a more general contextvork. For more details, s€@]. Throughout we shall adopt
of asymptotically anti—de Sitter black holg3]. Preliminary  Planck units in whichG=#=c=k=1 where all symbols
study in the case of Reissner-NordstroAdS (RNAdS  have their usual meanings.
black holes reveals a richer thermodynamic phase structure Consider a RNAdS black hole whose spacetime metric is
than that of its RN counterpart. In a way perhaps not entirely
expected, a RNAdS black hole displays multi-critical phe- dr?
nomena which bear certain remarkable resemblances to that ~ ds*=—V(r)dt*+ W+f2(d02+ sifod¢®)  (2.1)
of a van der Waals liquid gas system. It is the aim of the
present work to gain a better understanding of this multi-
critical behavior of a four dimensional RNAdS black hole Where
and the thermodynamic analogy between a RNAdS black
hole and a van der Waals liquid gas system. To this end, we 2M Q2% r2
shall compute the critical exponents of the relevant thermo- Vin=1-—+—5+5
dynamical quantites and then discuss the scaling symmetry r !
of the free energy as well as the thermal fluctuation near
criticality. Among the results we get, we shall see thatandA =—3/1? is the cosmological constant. For later conve-
though the critical behavior of a RNAdS black hole re- nience, further defina =3/12=—A.
sembles that of a van der Waals liquid gas system qualita- The mass of the black hole is given by
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for a non-extreme black hole. Using the thermodynamical
relationT=(dM/dS)q and the Bekenstein-Hawking formula o1 |
S=xr? | it may be deduced that
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which may be regarded as the equation of state of the black FIG. 1. The isocharge curve wit9<Q, in the (T.r.) phase

hole. ; o .
. plane. The local maxima and minima Bf and r, respectively
haDeenOte the heat capacity at constant chargecy We ., espond to critical points &, . The segment of curve between
\Y

r, andr, corresponds to an unstable phase of a RNAdS black hole
5 along whichC4<0.
2mriT

= - 2.4
Ard —r? +3Q?2 @9

Ca In the limit Q2 approaches the critical value 1A.2both
r, andr, degenerate into. given in Eq.(2.7). The two
As 27TriT>0 for a non-extreme black hole, it may be seencritical points atr; andr, coalesce into a single critical point
from Eq.(2.4) thatCq, will become singular for a certain set which is a horizontal point of inflection of the isocharge
of black hole parameters\{,Q) at which curv;)at which 12Q*=1 in the (T,r.) phase diagrantsee
Fig. 2.
(2.5 Along the critical isocharge curve&g, remains positive
and the unstable phase of a black hole disappears. \@Ren

Solving the quadratic equatiof2.5), we then find that the s greater than the critical value 1/2a RNAdS black hole
critical points are given in terms of the radius of the eventexhibits no critical behavior.

Ard —r2 +3Q2%=0.

horizon as
A a2 I1l. TRANSITION BETWEEN STABLE
r%_ % AND UNSTABLE PHASES
In this section, we shall begin our study of the critical
14+1— 122 Q2 behavior of a RNAdS black hole when 1Q?<1 and a
2_ 2 . .,
T when 1D°\<1, (2.6)  change of thermodynamic stability of the black hole takes
04
2_ 2y _ I
re X when 1D\=1. (2.7
For fixed Q so that 19?\<1, whenT is regarded as a 03
function of r, , it may further be inferred from Eq%2.3)
and(2.6) that T attains local maximum and minimum respec-
tively at the two distinct roots, andr, (see Fig. 1 Since = 02
Co<0 whenr;<r, <r, andCo>0 whenr , <r; andr
>r,, SO across the critical points a{ andr,, there is a
change of thermodynamic stability of a black hole. o1 |
In the limit A— 0, the critical point ar, corresponds to
the critical point discovered independently by Davies and
Hut [1] for a RN black hole while the critical point at, o L
0

disappears from theT(r ,) phase plane because I/Qrgorg

<0. WhenQ approaches zero, we recover from the critical f+

point atr, the the Hawking-Page critical poif#] for a
Schwarzchild AdS black hole and the critical point rat
disappears because grgor§<0.

FIG. 2. The critical isocharge curve with=Q.=1/{/12\. The
point of inflection atr. on the critical isocharge curve is a critical
point of Cq .
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place across the critical points iat andr,. To this end, we B. Calculation of critical exponents
shall first work out the critical equation of state of a RNAdS 14 ghed further light on the critical behavior of the black
black hole valid in the vicinity of the critical points af and  |5je near, andr,, we shall undertake the calculation of the
M2 critical exponents of certain thermodynamical quantites
which become singular at the critical points. With the help of
A. Critical equation of state the critical equation of state given in E.3), the calcula-
tions turn out to be quite straightforward.

Denote byT,; andT, the critical temperature at andr o
¥ 1 2 P & 2 By definition, we have

respectively given by Eg2.3). Near the critical points, let
S
aT

IP

o 7 (aQ)T 3
where|el,|A|<1. In what follows, the index always runs
from 1 to 2. Like in the critical behavior of Kerr Newman which are the analogs &, Cy and the isothermal com-
black holeg5], althoughCy, is singular atr;, with Q fixed,  pressibility respectively of a liquid-gas system. On further

T=T.(1+e) and r,=r(1+A), i=12, (3.1) CQ:T<‘9_S
T

C(I;,:T

T remains a smooth function of, atr;. calculations using Eqg2.2) and (2.3), we have from Egs.
From Egs.(2.3) and(2.6), we have (3.5 that
aT 1 Ari—r2+3Q? , Mi+ri-Q?
o =i =0 Co=2mri——— — (3.6
ralior, r Ari—r2+3Q
4 2 _A2
(92T 1 ri2_6Q2 Cq,=27ﬂ‘2 )\r++r+ Q (37)
— I T .
or 2T ¢S Ard—r2 +Q?
+ Q r=r, 1
- 1 Ari-ri+Q?
with K= — %. (3.9
F+ Arl—ri+3Q
T T _ _
— <0, |—% >0. From Egs.(3.7) and (2.6), we see thaC,, displays no sin-
o Qlr=r, o’ Qlr=r, gular behavior at the critical points locatedratandr,, to

calculate the critical exponents &g, and «; which are
The difference in the sign betweesT/dr?)q atr, andr, manifestly singular at; andr,.
arises from the fact that, as a functionrof, T atr, is a Substitute Eq(3.1) into Eq. (3.6); we have for|e[,[A|
local maximum whileT atr, is a local minimum(see Fig. 1. <1, the asymptotic behavior @q near the critical point;
In a sufficiently small neighborhood af, we may ex- IS given in terms ofA as
pandT in terms ofr , to give

c ArfHr2—Q? 1 oA .
PV | bl Q=T 2oy A OW) 39
Ti(l+e)=T;+ pey rfA“+O(A®). (3.2 '
r
Thaly Together with the critical equation of state given in E3}3),
we may infer from Eq(3.9) that near;, the critical behav-
It then follows from Eq.(3.2) that ior of Cq is described by
e=D;A?+0(A?) (3.3 A
Co~ —'1/2 at the stable phase
where €l
2 2 2 2 —A.
I’i (9 T 1 I’i _6Q AI
= = ~ at the unstable phase 3.1
D; T ( ﬁri)Q 7 P (3.4 Pz p (3.10
r=r;
) N ) where
Equation(3.3) may be regarded as the critical equation of
state for a RNAdS black hole when the event horizon radius Arér2—Q2
I 1

r . is sufficiently close ta;. As far as the critical behavior A=2m |D;|¥2 (3.1

of a RNAdS black hole is concerned, it is sufficient to con- 2ar2-1
sider the lowest order nontrivial term af in Eq. (3.3) which
dominates the thermodynamics near andD; are as that given in Eq3.4).
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Using Egs.(3.8), (3.2 and(3.3), it may also be deduced T.A
in a way similiar to the case dEq that, for|e|,|A|<1, the AS~T;CpA e~——Ae atthe stable phase
asymptotic behavior ok nearr; may be given as VIel

B| V| E|

Pz at the stable phase (3.14

KT~

according to Eq(3.10. Subject to the Boltzmann-Einstein
hypothesis that the entrofyis a measure of the number of
B internal states of a RNAdS black hole that correspond to a
at the unstable phase (3.12  particular macrostate characterized by defiliteand Q, it
follows from Eq.(3.14) thatp may be given as

| E| 1/2

TiA;
where peexp — Ae at the stable phase

Vel

=0 atthe unstable phase 3.1
2 Arif-r2+Q? p (3.1

rz2 2ari-1

|D; |2, (3.13

where the second equality follows fro@o<<0 in the un-
stable phase at which an absorption process is always fol-
lowed by a decrease in temperature of the black hole. Equa-
tion (3.15 then suggests the definition of the following order

So the critical exponents & and «t near the critical re-
parameter:

gime of bothr, andr, may be read off from Eq¢3.10 and

(3.12) respectively as- 3. T.A
As a consistency check, we see that in the limit 0, we 7; ex;{ - ;> at the stable phase
recover from Eq.(3.10 the critical exponent oCq, in the Jlel

case of RN black holes for the critical point it [5]. Fur-

ther, in the limitQ—0, the critical point at, becomes the =0 atthe unstable phase. (3.19
Hawking-Page critical point for a Schwarzchild AdS black )

hole. Equationg3.10 and (3.12) then also give the critical |t may be checked from Eq3.16 that 7;#0 in the stable
exponets 0fCq and «y for a Schwarzchild AdS black hole phase andy; vanishes in the unstable phase. Further, across

which, as far as we know, have not been given before.  the critical point ar;, 7; remains continuous. Sg; satisfies
the requirements common to the order parameters of other

physical systems which exhibit criticality.
C. Definition of the order parameter As far as the physical meaning is concernegl,is the
inverse of the statistial weight factors which determine the
‘probability of an absorption process which raises the tem-
perature of a RNAdS black hole near the critical points

In the case of a RN black hole, a change of thermody
namic stability of the black hole across the critical point
(which corresponds to the limiting casef- 0 of that atr ;
in the RNAdS contejtenables us to introduce an order pa-
rameter which measures the gradual phase change of a
RNAJS black hole across the critical poir@]. The defini- We shall now go on to compute the thermal fluctuation of
tion of the order parameter may be carried over to thehe mass and entropy near the critical points locateq ahd
RNAdS context without difficulty and described as follows. r, when a RNAdS black hole is in a canonical ensemble. It

Acrossri, Cq changes sign. So in the thermally stablewill be shown that the mean square fluctuation of the mass
phase at whiclC,>0, a quasistatic absorption of a particle and entropy of a RNAdS black hole behaves anomalously
without charge(for e.g. a Hawking particle of a neutral sca- and becomes divergent as the critical points,aandr, are
lar field backscattered by the gravitational potential near th@pproached.
event horizohwill be followed by a corresponding increase  Consider the thermal fluctuation for a RNAdS black hole
of the mass of the black hole, while in the thermally unstableémmersed in a bath of radiation in thermal equilibrium with
phase at whicl€,<0, the corresponding absorption processthe black hole such tha is kept constant. Subject to the
will lead to a suppression of the black hole temperature. appropiate asymptotic boundary conditions, the thermal

Consider a RNAdS black hole at the temperatdre equilibrium involving the black hole and the heat bath is
=T,(1+¢€) with |€|<1. Denote byp the probability that a stable[7].

RNAdS black hole will absorb quasistatically a particle of Nearr;, the black hole is at a temperatufe=T;(1+ €)
massAM without charge followed by an increase in its tem- where|e| <1 andT; is the critical temperature at. With Q
perature characterized hye. Further, assum@e is suffi-  fixed, subject to the equation of state given in E23), an
ciently small so that exchange of energy of the black hole with the heat bath leads

D. Thermodynamic critical fluctuation

124023-4
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inevitably to a deviation of the temperature of the black holelt may be inferred from Eq(3.23 that, modulo a non-zero
from that of the heat bath. Denote this deviation of temperaconstant independent af, asymptotically near the critical
ture by Ae. Suppose further that the black hole temperaturepoint atr;,

is only weakly perturbed in the sense that

1
—c<Ae<c, (3.17 <(AM)2>~E' (3.24
wherec,,c, are sufficiently small positive constants. Since Moreover from the definition Cgo=(dM/dT)
T, is the local maximum temperature near, ¢, is further =T(aS/(9'I,') it may further be deduced tr?at | <1 Q
bounded byc,<|e|. When we come to consider the critical Q ’ ’
pointr,, asT, is the local minimum near, this time,c; is AM~T;AS. (3.2

bounded by|c,|<|e|. However, these restrictions will not
affect our calculations in what follows as long ag or ¢, From Egs.(3.24 and (3.25, we see that in the limife|
remains finite and not both zero as the linait~0 is ap- 0, both((AM)2) and((AS)?) become divergent.
proached. _ - The singular behavior of the mean square fluctuation of
Denote byp the fluctuation probability of a RNAdS black mass and entropy calculated above suggests that, in a canoni-
hole immersed in a heat bath. Fef<1, pis given by[8]  ¢3| ensemble, the number of copies of black holes which
deviate from the average thermodynamic behavior becomes
pocexp< _ AF ~ex;{ _ A_F) (3.18 very large when the critical points at or r, is approached.
T(1+e€) T, This indicates a breakdown of thermodynamic description of
a RNAdS black hole near the critical points.
where AF is the change of free energy of the black hole

induced byAe. For Ae sufficient small ande| <1, IV. THERMAL PHASE TRANSITION AND CRITICAL
VALUE OF
AF=T;S[1+0O(|e|*)]A€ Q

As described in Sec. Il, when the charge of a RNAdS

~T,SAe. (3.19 black hole reaches the critical val@¥= 1/12x\, the critical
points atr; andr, studied in the preceding section degener-
As a result, we have from E¢3.18 and(3.19 that ate into a single critical point located Bf. The thermally
unstable phase of a RNAdS black hole disappears and the
pxexpSAe). (3.20  black hole becomes thermally stable along the isocharge

curve at whichQ?=1/12r\ (see Fig. 2 The theme of this
Subject to Eq(3.17), Eq. (3.20 may be further normalized section is to study the critical thermodynamic behavior of a
to be RNAJS black hole near, . To this end, we shall first review
a thermodynamic analogy between a RNAdS black hole and
S a van der Waals liquid gas system first discovere@inThe
pP= exp(S,cy) — exp— SiCy) exp(SAe). (32D analogy, though incomplete, will still serve as a very useful
guide in the study of the critical behavior of a RNAdS black

On the other hand, from E@2.2), we find, in a sufficiently ~hole in the vicinity ofr.
small neighborhood of;,

A. Thermodynamic analogy with a van der Waals liquid

TA gas system
AM=TiCoAe~ \/m Ae atthe stable phase Given the electromagnetic potential at the event horizon
®=Q/r, , the equation of stat€.3) may be rewritten as
T.A 2_p4i 02
— —— Ae atthe unstable phase T= 1 m @.1)
\/H 4 Qd
(3.22

In terms of the thermodynamical variable®,®), we have
according to Eq(3.10. From Eq.(3.22 and the normalized

fluctuation probability given in Eq3.21), the mean square Q)2 — D4+ D2+ \Q?
fluctuation ofM may be worked out to be CQZZW(—) PR a—— (4.2
®) 3p*—P2+AQ
T2A2
((AM)?) = S -~ and

~ exp(Sicy) —exp —Sicy) e

c aQ Q 3P*—Pd?+)\Q?
Xfilxz exp(Sx)dx. (3.23 (E)Tzam. 4.3

124023-5
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FIG. 3. The isotherm of a RNAdS black hole along whith
>T.. The local maxima and minima located respectivelpatand
®, are critical points ofCqy. For ® e (®,,®;), the black hole is
unstable with §Q/d®);>0.

It then follows from Eq.(4.2) that along an isothernCq
become divergent at

02 1-J1-122Q?
1 2\ ’

, 1+V1-12Q°

P5= ox when T>T,, (4.9
9 1
Pe= N at T.. (4.5

Further, it may be inferred from Ed4.3) that, like a sub-

PHYSICAL REVIEW D 62 124023

05
04
)
02

01

4

FIG. 4. The critical isotherm along which=T_. The point of
inflection located atb,; is a critical point ofCo, Co>0 along the
critical isotherm.

)
oP?

equation of state in Eq4.1)

=0

C

where the subscript denotes the corresponding quantity
evaluated at the critical point at from now on. In view of

the above similiarities, if we formally identify the variables
(Q,®) of a RNAdS black hole with {,P) of a van der
Waals liquid gas system, then we see that, at least at a quali-
tative level, the phase structure of a RNAdS black hole does
bear certain remarkable resemblences to that of a van der
Waals liquid gas system.

B. Choice of order parameter

In analogy to a van der Waals liquid gas system, an order

critical isotherm of a van der Waals liquid gas system in theyarameter in the RNAdS context which measures the phase
(P,V) phase planésee e.g[9]), an isotherm of a RNAAS ' change across the critical pointrat may also be defined in
black hole withT>T, also has a local maxima and minima terms of the Maxwell equal-area law. To do so, in t@e )

located respectively ab; and®, given in Eq.(4.4). Along
the segment of the isotherm between and®,, a RNAdS
black hole is in a thermally unstable phase withQ{o®)+
>0 (see Fig. 3

phase plane, fix a subcritical isotherm and draw a horizontal
line which interests the subcritical isotherm at poiatd,b

(see Fig. b such that the area bounded by the horizontal line
segmentd and the isotherm is equal to that bounded by the

In the limit whenT, is reached, the shape of the isothermjine segmentib and the isotherm.

undergo noticable chandgsee Fig. 4 and the critical points

As in the case of a van der Waals liquid gas system,

located aid, and®, on a subcritical isotherm coalesce into define

a single critical point located &b [given in Eq.(4.5)] at the

critical isotherm. The critical point ab. coincides with that

located atr, on the critical isocharge curve witlQ)

=1/J12\.

n=bp—P, (4.6)

as the order parameter to describe the phase change of a

Like the case of the van der Waals liquid gas system, th&NAdS black hole near. .

critical point at the critical isotherrtalong whichT=T) of

a RNAdS black hole is also a point of inflection of the criti-

cal isotherm and may be characterized by

R

c

C. Critical exponents

Near the critical point at the critical isotherm, the critical
behavior of a van der Waals liquid gas system may be de-
scribed in terms of

(1) P=Pc~(V=V)?

124023-6
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(73
29| o
05 [ ad 1.
04 | So the critical point at. is a point of inflection of the critical
isotherm. Standard Taylor expansion then gives in a suffi-
o o3l ciently small neighborhood af,
a /_\.b 3
02 | 7°Q 3 4
’ Q—Q.= 3 (P—-D) +O(((D_q)c) ).
9=/ L
C
0.1 fF
This means
0 L L | L
0 0.2 0.4 0.6 0.8 1 6=3 4.7

)
which is identical to that of a van der Waals liquid gas sys-

FIG. 5. A horizontal line is drawn which connects poiatand  tem. From Eq.4.7), it may also be inferred that along the
b of the subcritical isotherm. The area bounded by the line segmengritical isotherm,
ad and the isotherm is equal to that bounded by the line segdtent
and the isotherm.

Kr ' ~(Q=Qo)*"

Vg—V, 2. Calculation of B
(2) ——~(-ef
Ve LetA;=®,— D, andA,=d,— .. The order parameter
) defined in Eq.(4.6) may be rewritten as
(3) Cp~(—€) ¢ (T<Ty)
~e @ >
€ (T>Te) Using Eq.(4.1) again, we have
4 kr~(—e)77 (T<Ty T |,
_ b/ |
~e ¥ (T>Ty). Qle
Along the critical isotherm, we further have T 0
— =
(5) Cp~(P—Po)~* (for e=0) 9% ol
(6) ki *~(P—Py)* ¥ (for e=0) ST
— #0
1- ID3
(7) S—S.~e ¢ (for AP=0) Qle
~(P—Py¥ (for e=0). and therefore

3
With the formal correspondence®(Q)«—(V,P) as de- e= ’9_)
scribed in the preceding subsection, analogous quantities ap3 o
may also be defined for a RNAdS black hole. The concrete ¢ 4.9
values of the corresponding critical exponents in the case of
a RNAJS black hole may also be worked out as follows. Close enough to the critical point, we hawg~A,. To-
gether with Eqs(4.8) and (4.9), we then find

(A3+A3)+ higher order terms ofA;,A,.

1. Calculation of 6

Using the equation of stai@.1), we have B= % (4.10
aQ
Er) =0 3. Calculation of &, @’
.
¢ It may be deduced from Eq2.3) that
9°Q
| = 7)) =0
Tl tqle

124023-7
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L )
ares ol T
This means
T
— | | #0. 2 .16
ory. al, Y=y = 3 .
Like in the derivation of the critical equation of stat2.3) 5. Calculation of &

near the critical points at; andr, in Sec. Il A, we have, in

a sufficiently small neighborhood of., From Eq.(2.3), we get

e~AA3 (4.1 (ﬂ) _o
where
[?2
re 33T) (—?) =0
==|— ar
Te ﬁri ol Tl
7°Q
On the other hand, recall from E¢B.5 that —| | #0
ars
-
, Ari+ri-Q? ¢
Co=2mr% Nt 2 13Q7 and these imply
Near the critical point at, let #°Q 3,3 4
cr Q—Q.= ? rzA°+0O(A%). (4.17)
r,=rJ(1+A) where |A|<1. (4.12 Tile
Substitute Eq.(4.12 into Eq. (3.5 and bear in mindr§ Equations(4.13 and (4.17) together then give
=1/2\; we have CQN(Q_QC)—Z/:%
27 1 and therefore
o= 3 (4.18

Equations(4.11) and(4.13 together then imply
CQ~|€|—2/3 6. Calculation of ¢

_ ) BecauseS= 72 , in a sufficiently small neighborhood of
immediately below or abové&, and therefore re,

2 G~ 2
a=a’=§. 4.14 S—S.=2mrZA. (4.19
Equations(4.19 and (4.11) imply that, along an isocharge

4. Calculation of y, ' curve at whichAQ=0,

From Eq.(3.8), we have S-S~ € (4.20
oD 1 Mi_riJer which is consistent with Eq(4.14). From Eqgs.(4.17) and
= e (4.19, we also get
aQ): Teart-r2+3Q

S— SCN(Q_ Qc)l/3
Sufficiently close tar., using Eq.(4.12 andr2=1/2\, we
and therefore

have
P 1 1 1 (4.20)
(—) ~——— . (4.15 =3 '
Q) 6y2xn A?
For a summary of the critical exponents obtained from the
From Eqs(4.11) and(4.15, we may then infer that, neag, above calculations, see Table | in Sec. V. To conclude this
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section, we remark that the numerical values of the critical 29—1
exponents calculated above are all multiples oThere is a Y=
rational explanation for the numerical coincidence, which

may be described as follows. The critical exponents are ob-

tained by means of Taylor expanding a thermodynamical o=
quantity in terms of a variable whose choice is dictated by

the relevant critical exponent we want to calculate. It turns

out that in the Taylor expansions, both the first and second b= ﬂ
order terms vanish near the van der Waals like critical point q

r. and the lowest order non-trivial contributions come from

the cubic term in the expansions. 1-2p

D. Scaling symmetry for the free energy near criticality . .
From Egs.(4.24), it may also be seen that the critical expo-

In the case of a van der Waals liquid gas system, scalingents in the critical regime af, are not independent. They
symmetry exists for the singular part of the Gibbs free enyye related by following equatiorisee[9,11]):
ergy near the critical point located at the critical isotherm

and the critical exponents may all be expressed in terms of a+2B+y=2

the two independent homogenity degrees of the Gibbs en-

ergy[9]. In this subsection, we shall show that for a RNAdS a+B(6+1)=2

black hole similiar scaling symmetry also exists for the sin-

gular part of the free energy in the critical regime near y(6+1)=(2—a)(6—1)
from which scaling laws for the critical exponents may be

derived. However, the similiarity holds only at a qualitative y=pB(6—-1)
level as the two independent degree of homogenity for the

free energy of a RNAS black hole are different from that of (2=a)(6y—1)+1=(1-a)6

the Gibbs energy of a van der Waals liquid gas system. Scal-
ing symmetry in the black hole critical phenomena was first 1

discussed irf10] in the context of of Kerr Newman black o+2y- 5 1 (4.2
holes.

Sufficiently close tor., the free energy for a RNAdS Apart from obtaining the algebraic relations among the criti-
black hole may be written aE=F,+F. HereF, is the cal exponents, Eqg4.24) or (4.29 also enable us to give a
regular part of the free energy whose second order partigtonsistency check of the validity of the critical exponents
derivatives are well behaved at the critical pointgt and ~ obtained in Sec. IV C.

F is the part of the free energy responsible for the singular
thermodynamic behavior of a RNAdS black hole near E. Thermodynamic critical fluctuation
With the help of Egs(4.13 and (4.15 together with Eq.

As in the cases of the critical pointsatandr,, we ma
(4.11), F may further worked out to be p g 2 Y

also ask whether the thermal fluctuation of certain thermo-
Fle) dynamical variables near. will behave anomalously in a
—) I3 canonical ensemble. The arguments presented in Sec. Il D
I/ are also applicable when we come to consider the critical
. . thermal fluctuation near., with however the following mi-
=ae"“+bll (422 nor differences(i) As the temperature of the black hole is no
longer bounded above or below near the critical point, the
for some constard,b dependent on.. From Eq.(4.22, We  range of fluctuation of the temperature neamay be cho-
find sen to bgAe|<c [compared with Eq(3.17)] wherec is a
sufficiently small positive constant. This in fact makes the
F(APe, AL =AF(e,I1) (4.23 calculations simplerii) The critical equation of state neayr
given in Eq.(4.1)) is used in place of Eq4.1).
Since the calculations are similiar to that presented in Sec.
1l D, we shall only state the results of our calculations which

FS: CQ63+

with p=q=2 andA a real constant. As in the case of a van
der Waals liquid-gas systefsee e.g[9]), the critical expo-

nents derived in the previous section may be expressed 0o
terms ofp,q as
1
1 2 2y T
a=2—5 (4.29 ((AM)9)((AS5)%) |€]42
1—-q ’ 1
-1 ((Ap)T)~—0. (4.2
B D PRE
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TABLE I. Summary of the critical exponents obtained in this work.

van der Waals's system RNAJS black hole
Correspondence of RV,T) (®,Q,T)
thermodynamical variables
Main critical exponents
a 0 2/3
B 1/2 1/3
vy 1 2/3
9 3 3
Scaling symmetry For Gibbs energy For free energy
G(Al/ZE,A3/4H) F(A3/46,A3/4H)
=AG(e,IT) =AF(e,II)
Order parameter Ap=p—pg AD=D,— D,

pi, density of liquid
pg, density of gas

Phase structure

T>T, Only gas state exists Two thermally stable states
separated by an unstable
phase(see Fig. %

T<T, Possibility of the existence Only thermally stable
of both liquid and gas states phase exists
We see from Eq(4.26 that, unlike that in the case of the dF=TdS+®dQ,

critical points atr; andr,, the mean square fluctuation of the
order parameter also exhibits anomalous behavior. Further,
the rate at which/(AM)?) or ((AS)?) becomes divergent then we see that the unnatural correspondence arises because
nearr is faster than that neaw or r. we try to compare the Gibbs energy of a van der Waals
liquid gas systentpertained to a grand canonical ensemble
F. RNAdS black hole and van der Waals liquid gas system: ~ with the free energy of a RNAdS black halgertained to a

A comparsion canonical ensembleSo the physical meaning of this therm-
. . T . dynamic analogy remains very obscure at the present stage.
twélgr? er:ttrslgrmn:gggﬁgr;?: bsé';];\'/?grt'i? ;rlngi\lggrEIn;:If ht;?eFrom the numerical value of the critical exponents, it may
and a van der Waals’s liquid gas system in Table I. glsq be seen that a RNAdS black hple and a van Qer anls
From Table I, we see that, despite certain qualitative si-IIqUId gas system are actually not in the same universality

miliar features exhibited by both a RNAdS black hole and aCIaSS as far as crltlca_l beh_a_\wor 'S concemed. o
In view of these disparities, are we going to dismiss the

van der Waals liquid gas system in the corresponding phast%ermodynamic analogy between a RNAdS black hole and a

e e ke v e s o) Aoy der Wasls I as system logeher? Periops i
y quId 935 6u1d not, at least not in a hasty way. As may be seen from

system. - .. . the preceding subsection, the analogy serves as a very useful
In the first place, the temperature of the subcritical iso- '

therms of a RNAJS black hole is aboTe, while that of a guide in our study of the critical thermodynamic behavior of

van der Waals liquid gas system is below the critical tem-2 RNAdS black hole. The choice of the order parameter as

perature. Moreover, from a thermodynamic perspective thWeII as the _Qpprgpiate thermodyn.a_mic.variables to study
formal c;)rresponde'nceCIJ( Q)< (V.P) is not very natura’I %Iong the critical isotherngor the critical |socharg_e curye
because instead @b, O n’ow playé the very odd role of a are all sugges_ted by the_: analogy. In the future, if we try to

. S " . probe deeper into the microscopic structure of black holes, it
chemical potential in the analogy. If we write down the dif-

. . . . is conceivable that we may also learn something useful from
gearsenst)l/&'ls,lt;?rrlm of the Gibbs energy of a van der Waals IIqUIdthe statistical mechanics of a van der Waals liquid gas sys-

tem. At the same time, the quantitative differences spelled
dG=TdS+VdP, out in this work (for instance the critical exponents com-

puted will serve as a guide in looking for an appropiate
and the differential form of the free energy of a RNAdS statistical model which deviates from that of a van der Waals
black hole, liquid gas system.
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V. DISCUSSIONS fied by the free energy near criticality is a familiar charac-

teristic which follows from the renormalization group
In the present work, we have presented some result

which mav be reqarded as a preliminary step to aain a bett g‘malysis near the infrared fixed point. So it is a natural to ask
understan{Jin o? the muIti-cFr)iticaI heynomgna %f RNAdS%lr there is a renormalization group scheme underlying the
g P critical phenomena of black holes from which the scaling

?éﬁ:;nhgesezt dg‘;;ggémgg?/hn;rg'fﬁé Iri\(l)ilt. S';ﬁ:in%fgzﬁztr'gg?elation follows. The problem is worth looking at not only
. . o ps 1 9 BBm the viewpoint of black hole physics. Hopefully, it will
is whether it is possible to generallzg the present wqu to.th%llso contribute to our understanding of the behavior of a
Kerr Newman AdS black holes. Preliminary calculations in- ravitational field at different energy scales when general

dicate that modulo a constant dependent on charge as well &ativity is looked on as an effective field theory. This ques-

angular momentum, the numerical value of the critical ®XPO%ion is certainly more tractable in the dual CFT picture as

nents calculated for a RNAdS black hole may be carried OVelanormalization is much better understood in that context. Of

to the more general context of a Kerr Newman AdS blaCkcourse, the most challenging question will be how we may

hole. The generalization to higher dimensional AdS blac'%se the knowledge of the phase structure and possibly the

holes aIsp does'not seem fo present any serious ObStaCIES\'/an der Waals analogy to build up the statistical mechanics
More interesting problems come up when we try to un-

. . . of black holes, as discussed in the previous section. Much
Sg:ig(?do:‘ht?]griggg-g?:r}a\gsglﬁ;aF%T?Sssta?wlsg,k i??lsev'vr:):tr;]ework remains to be done to address these open questions.
trying to understand the phase transition from the dual CFT
picture[12]. Further, we may also ask whether it is possible
to exploit the AdS-CFT duality in order to gain better insight ACKNOWLEDGMENTS
into the phase structure of a RNAdS black hole. For many | am grateful to Dr. Y.K. Lau for suggusting to me the
statistical systems which undergo second order phase trangiroblem and many helpful discussions and suggestions in the
tion, notably the 2D Ising model, the scaling relation satis-course of this work.
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