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Transition from inspiral to plunge for a compact body in a circular equatorial orbit
around a massive, spinning black hole
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There are three regimes of gravitational-radiation-reaction-induced inspiral for a compact body wifta,mass
in a circular, equatorial orbit around a Kerr black hole with mislss w«: (i) the adiabatic inspiral regimein
which the body gradually descends through a sequence of circular, geodesic (@ybégransition regime
near the innermost stable circular orbgco); (iii) the plunge regimein which the body travels on a geodesic
from slightly below the isco into the hole’s horizon. This paper gives an analytic treatment of the transition
regime and shows that, with some luck, gravitational waves from the transition might be measurable by the
space-based LISA mission.

PACS numbse(s): 04.30.Db, 04.80.Nn, 97.60.Lf

I. INTRODUCTION AND SUMMARY LISA may be able to detect and study the transition waves.
In Sec. V we make concluding remarks about the need for
The space-based Laser Interferometer Space Antenrderther research.
(LISA) [1], if it flies, is likely to detect and study the gravi-
tational waves from white dwarfs, neutron stars and small
black holes with massea=1Mg, spiraling into massive
(M~10P-1M > 1) black holes in the nuclei of distant ~ Throughout this paper we use Boyer-Lindquist coordi-
galaxies[2—4]. In preparation for these studies, it is neces-nates (,r, 8, ) [7] for the massive hole’s Kerr metric, and
sary to understand, theoretically, the radiation-reactionwe use geometrized units, wiB=c=1. The hole’s mass is
induced evolution of the inspiral orbits, and the gravitationalM and the inspiraling body’s mass is= M. We useM and
wave forms that they emit. w to construct dimensionless versiofenoted by tildesof
Regardless of an orbit's shape and orientation, wpen many dimensionfull quantities; for example=r/M, andt
<M the orbital evolution can be divided into three regimes:=t/M. The hole’s dimensionless spin parametea#s (spin
(i) theadiabatic inspiral regimein which the body gradually angular momentuv? (with —1<a<+1). The body
descends through a sequence of geodesic orbits with gradmoves around its circular, equatorial orbit in thep direc-
ally changing “constants” of the motiok= (energy, L= tion, soa>0 corresponds to an orbit that is prograde relative
(polar component of angular momentyrand Q= (Carter  to the hole’s spin, and<0 to a retrograde orbit.
constany, (ii) a transition regime in which the character of When the inspiraling body is not too close to the inner-
the orbit gradually changes from inspiral to plungiéi) a  most stable circular orbitisco), it moves on a circular geo-
plunge regimein which the body plunges into the horizon desic orbit with dimensionless angular velodig}
along a geodesic witknearly unchangingg, L andQ.
The plunge regime, bein@ssentially ordinary geodesic

II. ADIABATIC INSPIRAL AND PLUNGE

motion, is well understood; and the adiabatic inspiral regime do 1
is the focus of extensive current reseatske, e.g.[4—6]). O=MQ=—"S=—— (2.2
By contrast, so far as we are aware, there have been no dt T1%+a

publications dealing with the transition regime.
We begin, in Sec. Il, by summarizing some key, well-

known details of the inspiral and plunge regimes. Then irt(where¢ is angle around the orpiand with orbital energy

Sec. Il A we present a qualitative picture of the transition 8]

from inspiral to plunge, based on the motion of a particle in

a slowly changing effective potentiéfig. 1). With the aid of

this qualitative picture, in Sec. IllB we derive a non- 1—2fF +a/T3?

geodesic equation of motion for the transition regime, and in E=—yM ] (2.2
Sec. Il C we construct the solution to that equation of mo- V1-=13fF +2a/732

tion (Figs. 2 and B Then in Sec. IV, with the aid of our

solution, we estimate the gravitational-wave signal strength

from the transition regime and the signal-to-noise ratio that it As it moves, the body radiates energy into gravitational
would produce in LISA. We conclude that, with some luck, waves at a rate given by]
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TABLE I. Dimensionless parameters characterizing the isco and the transition regime of inspiral. The
values of¢ are from numerical solutions of the Teukolsky equation by L. S. Finst line of Table Il of Ref.

[4]).

a ?isco f‘Zisco S a B Kk Ro To
-0.99 8.972 0.03863 1.240 0.0001543 0.006626 0.005013 3.129 45.50
-0.9 8.717 0.04026 1.233 0.0001732 0.007070 0.005527 3.117 43.04
-0.5 7.555 0.04935 1.197 0.0003070 0.009730 0.008966 3.048 32.69
0 6.000 0.06804 1.143 0.0007716 0.01604 0.01955 2.925 21.05
0.2 5.329 0.07998 1.114 0.001240 0.02057 0.02914 2.852 16.82
0.5 4.233 0.1086 1.053 0.003115 0.03270 0.06291 2.687 10.93
0.8 2.907 0.1737 0.9144 0.01401 0.06446 0.2123 2.326 5.539
0.9 2.321 0.2254 0.7895 0.03447 0.09039 0.4214 2.041 3.770
0.99 1.454 0.3644 0.4148 0.2234 0.1289 1.531 1.284 1.867
0.999 1.182 0.4379 0.2022 0.5127 0.09568 2.594 0.8551 1.510
. .32 : )
EGW:—EZEﬂZQlO/gg, (2.3 T ﬁj: L'SCOZ ;(3\@)_ 2a). (2.8

isco— —
- M Y M ? 3r isco

where¢ is a general relativistic correction to the Newtonian,  ag the body nears the isco, its inspiral gradually ceases to
quadrupole-moment formuldable II of Ref.[4]). This en-  pg agiabatic and it enters the transition regitSec. I).
ergy loss causes the orbit to shrink adiabatically at a rat?%adiation reactioras controlled byEy,) continues to drive
given by . . GW. - .

the orbital evolution throughout the transition regime, but
gradually becomes unimportant as the transition ends and
pure plunge takes over.

The plunge is described to high accuracy by reaction-free
geodesic motion; Eq¥33.32 of Ref. [7]. Up to fractional
corrections of ordes;*>, the orbital energy and angular mo-
The inspiral continues adiabatically until the body nearsmentum of the plunging body are equal B, and L,

the isco, which is at the dimensionless radius,=ris,/M  throughout the plunggcf. Eq. (3.26 below.

dr  —Ecw

dt - dE/dr 24

given by|[8]
IIl. THE TRANSITION FROM ADIABATIC INSPIRAL
TO PLUNGE
Tisco=3+2Zy—sgna)[(3—Z1)(3+2Z,+22,)1"2, A. Qualitative explanation of transition
As the body nears its innermost stable circular orbit,
. s y =Trisco. the adiabatic approximation begins to break down.
Z,=1+(1-a)"(1+a)**+(1-a)'7], This breakdown can be understood in terms of the effective
potential, which governggeodesicradial motion via the
equation
Z,=(3a%+2)*? (2.5
~\ 2
cf. Table I. The circular geodesic orbit at the isco has dimen- ﬂ _ ﬂ 2—~E2—V(T ED) 3.2)
sionless angular velocit§Table |), energy, and angular mo- dr)  \dr) i :

mentum given by 8,7]
where E=E/u=E/(»M), L=L/(uM)=L/(7M?), and 7
=7/M are the body's dimensionless energy, angular mo-

- 1 mentum, and proper time. The explicit form of the effective
Qisce=MOQ = o——7—, (2.6 potential can be inferred from Eq&33.32 and (33.33 of
Fisco "+ Misner, Thorne and WheeléMTW) [7]:
_oF =32 ~—~ o~ 1 ~
~ Eisco  Eisco 1 2/risco'}"a/risco V(r’E,L):E2—~—([E(r2+a2)—|_a]2
Eisco= = = ) r4

M 1= 3 ot 2807 o 2 S
(2.7 —(r’=2r+a?[r’+(L-Ea)?]). (3.2

124022-2
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For a Schwarzschild black hole, this reduces to

T2

1 L
+ ==
r2

e 2
V(r,E,L)z(l—:
r

for a=0 (3.3

[cf. Eqg.(25.16 of MTW [7]].
Throughout the inspiral and transition regimes, the body

moves along a nearly circular orbit; its change of radius dur- Fisco 7
ing each circuit around the hole isr<r. (Only after the B
body is well into its final plunge toward the hole doas FIG. 1. The gradually changing effective potenti4r,¢) for

become comparable t0) This near-circular motion guaran- radial geodesic motion. Each curve is for a particular valug of

tees that the ratio of the energy radiated to angular momen=L—T,. As ¢ decreases due to radiation reaction, the body,

tum radiated is equal to the body’s orbital angular velocitydepicted by the large dot, at first remains at the minimum of the

[9]: effective potential £;; “adiabatic regime’). However, ast nears
zero (at £é=¢,), the body cannot keep up with the rapid inward
motion of the minimum; it lags behind in a manner described by the
transition-regime analysis of Sec. Ill. At= ¢ the effective poten-

. (3.9 tial has become so steep that radiation reaction is no longer impor-
tant, the transition regime ends, and the body plunges toward the
black hole with nearly constant energy and angular momentum.

Correspondingly, in and near the transition regime, which

occupies a narrow range of radii aroung.,, the body’s As ¢ continues to decrease, there comes a piaarés

energy and angular momentum are related by in Fig. 1) at which the effective potential has become so
steep that its inward force on the body dominates strongly

over radiation reaction. There the transition regime ends, and
E=Bot Qs L=Liwté&. (3.5 the body begins to plunge inward rapidly on a nearly geode-
sic orbit with nearly constar andL. The objectives of the
By combining Egs(3.5) and(3.2), we can regard the body’s following subsections are to derive a set of equations de-

effective potential as a function af and the differencez  SCribing the transition regimeSec. 111 B), and show how the
transition matches smoothly onto the adiabatic regime at

large positive¢ and to the plunge regime at large negative
(Sec. 11 O.

=

|

o
m
o|a
~11| [t

d

<

=1 — L5 Of its orbital angular momentum from that of the
isco.

Figure 1 showsV(r,£) for a sequence of angular mo-
mentaé,, ..., aroundé=0. As ¢ decreases t§=0, the
minimum of the potential flattens out and disappears; and
just when it is disappearing, the minimum’s radiys;, is Throughout the transition regime, because the body
moving inward at an infinite ratedr,;,/dé— as&—0. moves on a nearly circular orbit with radius closertg,,

In the adiabatic regime of largg the body sits always at and because the body’s small mgss 7yM <M keeps its
the minimum of the effective potential. Its orbit is a slowly radiation reaction weak, its angular velocity remains very
shrinking circle, guided inward by the motion of the mini- close toQ s,
mum. As ¢ nears zero and the minimum’s inward speed
grows large, the body’s inertia prevents it from continuing to d¢ -
follow the minimum. The body begins to lag behind, as de- EZQ:QBCO' (3.6
picted até=¢&, in Fig. 1. This lag invalidates the adiabatic
inspiral analysis of Sec. Il and initiates the transition regime.

and its proper time ticks at very nearly the standard isco rate

B. Equation of motion for transition regime

; (3.7

the paragraph preceding E@®.11) below, will alter these energy- di
angular-momentum relations by amounts that scale as the first and

higher powers ofy. For example, in going from Ed3.4) to (3.5),

there can be an integration constait (which scales ag or some  cf. Eg. (5.4.5a of [10].

higher powef s0 E=Ejscqt OE + Qiscef. In the presence of such  This nearly circular motion at=T ., produces gravita-
effects, weredefine 1o, Eisco, @ndLis, t0 be the values of these tional waves which carry off angular momentum and energy
parameters at which the-correctedV(r,E,L) has a flat inflection  at very nearly the same rate as they would for circular geo-
point, as in Fig. 1, an;s, to be the orbital angular velocity at this desic motion afris.,. This means thaE and L evolve in
Tisco- Then Egs(3.5) remain valid even for finite mass ratip. accord with Egs(3.5), where

!n reality, finite-mass-ratio effects, including those discussed in d7'~ d_T _ \/1_3/risco+ Za/risc03/2
dt/ ., 1+alTt g ?
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d¢ this paper, we shall ignore all such changes, and correspond-
o (3.8 ingly we shall neglect the radial self—for.oE:S.e”. N
We shall describe the body’s location in the transition
d regime by
an
32 1+ aff g2 RE e G
= —Q 713 isco F . (3 9) - .
g lsco Isco: : Throughout the transition regime bd&and¢ are small, and

v v 3/2
\/1—3/risco+ 2alTiseo correspondingly the effective potential can be expanded in

powers ofR and ¢. Up through cubic terms iR and linear
cf. Egs.(2.9), (3.5), (3.7), and Table I. It is the smallness of terms .ing (the order needed for our analysithe effective
n=uIM (e.g., =105 for the realistic case of a M,  Potential takes the form
black hole spiraling into the M black holg that makes 5
the angular momenturé evolve very slowly and keeps the _f%3
body ir? a nearly circulgr orbit throﬁghoutythe transi?ion re- V(R.§)= 5-R*~2pR¢+const, .12
gime [cf. the factors of# that appear in Eqs(3.8) and
(3.20—which with Egs. (3.11) and (3.22 imply dr/dr  wherea and B are positive constants that we shall evaluate
o« %3], below. Note that for§=0, this is a simple cubic potential
In the transition regime, the body’s radial motion is de-with inflection point atR=0, i.e., aff =T;,; and note that
scribed by the geodesic equation of motion with a radial selfor £>0, it acquires a maximum and a minimum, while for
force per unit magsyF . inserted on the right-hand side:  £<<0 it is monotonic; cf. Fig. 1. By inserting E¢3.12 into
Eq. (3.10, settingr =T .o+ R, and neglecting the radial self-

dr  1oVv(r,&) - force or absorbing it intd .., @ and B as described above,
ﬁ: ) —a? + 7F gert- (3.10  we obtain the following radial equation of motion:
L ~ . : . . d’R
(We write it asyF ¢ because its magnitude is proportional — =—aR?+ B¢, (3.13
to n=u/M.) d

The radial self-forcepF s is nondissipativésince it has _
hardly any radial velocity with which to coupleThis con- By then settingr=0 at the moment wheg=0 and using
trasts with the ¢-directed radiation-reaction force, which Eq. (3.8) for the rate of change of, so
couples to the orbital angular velocity to produce a shrinkage
of the body’s angular momentuiiig. (3.8] and a corre- &= —pKr, (3.14
sponding decrease of its energig/d7=(Qdé/dr. Because

the radial force is nondissipative, it is of little importance. It we bring our equation of motion into the form
can be absorbed into the nondissipative effective potential

term — £9V/ar in the equation of motion. Doing so will not d2R 5
change the general character of the effective potential, as TZZ_CYRZ_ nBKT. (3.15
depicted in Fig. 1; it will merely change, by fractional dr

amounts proportional te, the various parameters that char- _ _
acterize the effective potential: the locatigg,, of the inner- W€ shall explore the consequences of this equation of mo-
most stable circular orbiat which theé=0 effective poten- tion in the next subsection, but first we shall deduce the

tial curve has its inflection pointthe values at the isco of the Val_llfﬁz 22?15?22@ and 3 can be evaluated from the follo
orbital energy and angular momentuy, and Lisco, and B vau W

the constantx defined below. There will be other @ 9 relations, which follow directly from Eq¢3.12), (3.11)

e ~ - and(3.5):
changes it is¢o, Eiscor Lisco@nNda caused by the body’s own
perturbation of the hole’s spacetime geomdtiyt—13. In 1 a3V(T,~EI)) 516
a=—~| —————~ .
4 ~3
an isco
2This radial self-force, like the radiation reaction force that drives
the inspiral, is produced by interaction of the body with its own 1/ *V(r,E,L) ~a*V(r,EL)
gravitational field—that field having been influenced by the black8= — > —+ — 3.19
hole’s spacetime geometry; see, e.g., H6l. The contravariant dLar dEor isco

radial component of the self-force, with dimensionality restored
using r=MT and 7=M7, is (dp'/dn)e=(ud?/dr?)e; By inserting expressiofB.2) into these relations, we obtain
= (/M) (0% /d7) se= 7°F serr- a and g in the limit »=u/M—0:

124022-4
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0.5

X 0

FIG. 2. Dimensionless orbital radidéas a function of dimen-
sionless proper tim& for an orbit near the iscd\diabatic Inspiral:

The analytic solutior(3.23 for adiabatic inspiral outside the isco.

PHYSICAL REVIEW [B2 124022

T

FIG. 3. Same as Fig. 2, but drawn on a different scale.

Fig. 1 and Eq.(3.12, i.e., the circle atR=\B¢ a

Transition: The numerical solution to the dimensionless equation of= \— B« 7/ a, which translates into

motion (3.22 for the transition regime in the vicinity of the isco.
Plunge: The analytic solution(3.25 for the orbital plunge inside
the isco.

3 . - o e
a=z—(r*+2[a*(E?~ 1)~ L*Jr + 10(L — aE)?)jsco

lsco
:FQG for a=0, (3.18)
2 e o -
B==—(L=a’EQ)r-3(L-aE)(1-a))isco
isco
1 for a=o0 (319
= or a=0. )
36y3

Here' .o and Q.o are given by Eqgs(2.5 and (2.6); and
Liseo and Ejs, are expressed in terms of.., by Egs.(2.7)

and (2.8). Numerical values ofe and B8, computed from
these equations, are tabulated in Table I.

C. Solution for motion in the transition regime

X=+—T for adiabatic inspiral near the isc@3.23

We have not been able to find an analytic formula for the
solution to the equation of motiof8.22 that joins smoothly
onto this adiabatic solution, but it is easy to construct the
unique solution numerically. It is plotted in Figs. 2 and 3,
along with the adiabatic inspiral solutio(8.23 and the
plunge solutiof Eq. (3.25 below].

The transition solution is well approximated by adiabatic
inspiral at timesr<—1, but atT> —1 it deviates from adia-
batic inspiral and evolves smoothly into a plunge. The solu-
tion diverges X— —) at a finite timeTszmgezSAlZ?

In the plunge regime, radiation reaction is unimportant;
i.e., the orbit evolves inward witfvery nearly constant or-

bital angular momentumL=L;,,, and energy E=Ejn
(which we evaluate below i.e., the orbit is well approxi-
mated by geodesic free fall. In the dimensionless equation of
motion (3.22), the free-fall approximation translates into ne-
glecting the last termT, sod?X/dT2= —X?, which has the
analytic first integral

2
dX/dT= -/ const— §X3.

(3.29

The equation of motion in the transition regime, Eq.For large|X|, the constant can be neglected and we obtain
(3.19, can be converted into dimensionless form by settingthe analytic solution

(3.20

R=7""R.X, 1=n""57,T,

where
ROZ(BK)2/5a_3/51 TOZ(QBK)_1/5;

(3.21

cf. Table I. The resulting dimensionless equation of motion

IS

d?X
=-X*-T.

a2 (3.22

3The divergence oK atT=Tyungedoes not imply a divergence of
r or any other physical quantity. Rather, it marks the breakdown of
the transition approximation at very large values |of, |X|
=Xprear~ 7~ 2% [cf. Eq. (3.20]. More specifically, when—X
= Xpreak: Nigher-order terms in the Taylor expansi@12 become
important and stop the divergence. Well before tkiis fact,
throughout the range ¢ — X<X,ead both the transition approxi-
mation and the free-fall approximatiorE & Ej,y=constant, L
=Lsna=const) are valid, so these two approximations can be
matched in this regime to obtain a solution valid all the way down
to the horizon. The same type of breakdown also occurs at the other

We seek the unique solution of this differential equationasymptotic limit +X=Xa: The transition regime’s adiabatic-

which, at early timeg'<—1, joins smoothly onto the adia-

inspiral equation(3.23 breaks down and must be replaced, via

batic inspiral solution of Sec. II. In that adiabatic inspiral, the matching at & X<X,ea by the exact Kerr metric’s adiabatic in-
orbit is the circle at the minimum of the effective potential of spiral formulag4].

124022-5
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X=——— for plunge near the isco,(3.25
(Tplunge_T)2

which is plotted in Figs. 2 and 3.
Combining Egs.(3.5), (3.14), and (3.20, one finds that

throughout the transition regime, the energy and angular-

momentum deficitéi.e., the deviations oE andL from their

PHYSICAL REVIEW D62 124022

+¢y), Where ¢, and ¢, are constant phases. The ampli-
tudesh 4mp and hy 4, depend on the source’s orientation.
When one squares and adds these amplitudes and then aver-
ages over the skif* (...)" ), one obtains an rms amplitude:

hzrinrllspz <hiamp+ h§<amp>l/21 (4.6)

which is related to the power being radiated into the second

isco valuey scale asp*®. In particular, the final deficits in  harmonic by E2=47TD2(h;Tns,)2(27rf)2/(3277); cf. Eq.

the plunge stage are given by

Linal— Lisco= = ( KTOTpIunge) 774/51

Efinal_ Eisco: - ﬁisco( KTOTpIunge) 774/5, (3.29
where, as was noted above,
Tplunge= 3-412. (3.2

IV. GRAVITATIONAL WAVES FROM TRANSITION
REGIME, AND THEIR OBSERVABILITY

The gravitational waves emitted in the transition regime

are all near the orbital frequencyn®);s., and its harmonics.
The strongest waves are at the second harm@mwiice the
orbital frequency.

Qiscoz Qisco

f=2 2 oM’

4.1

We shall compute their properties.
The transition waves last for a proper tinder=MA7

=M#5 Y57, AT, during which the body spirals inward

through a radial distancAr=MAR=M 7?°R,AX, where
AT covers the rangd=—1 to =2.3 andAX covers the
rangeX=1 to X=-5 (Fig. 3); i.e.,

AT=3.3, AX=6. (4.2

Correspondingly, neglecting any cosmological redshift, the

duration of the transition waves as seen at Earth is

M

At= ———— 7 1 AT,
(A0 o

4.3

and their frequency band idf=(1/7M)(dQ/dr)i AT,
which, using the above expression for and Eq.(2.1) for

Q(r), gives

3 o
Af= Qizsco r isco772/5RoA X.

S (4.9

The total number of cycles of these transition waves is

QiscoTo

— e 71/5AT
m(d7/d1)isco

(4.9

Noyo= fAL

(35.27 of MTW [7]. HereD is the distance to the source.
Equating this to the radiated powgs=(32/5)72010%¢,, ,
[4], where'&x,,z is a relativistic correction factor listed on the

first line of Table IV of[4], we obtain the following expres-
sion for the waves’ rms amplitude

8 M 77@2/3

isco

Eun.

hrms_

™5 D

The signal to noise rati&/N that these waves produce in
LISA depends on the orientations of LISA and the source
relative to the line of sight between them. When one squares
S/N and averages over both orientations, then takes the
square root, one obtairfg4]

(4.7)

rms
hamp

s
(ﬁ> e \BS(F)/AL

Here 55,(f) is the spectral density of LISA’s strain noise
inverse-averaged over the ékgnd 1At is the band width
associated with the waves’ duratidri.

The noise spectral densi§;(f) for the current straw-man
design of LISA has been computed by the LISA Mission
Definition Team[15]. An analytic fit to thisS,(f), after av-
eraging over some small-amplitude oscillations that occur at
f>0.01 Hz, is the following:

4.9

Sn(f)=

1 Hz\*
(4.6x10 ?12+(3.5x 1026)2( )

+(3.5x 10192 Hz L.

4.9

2
1 Hz)

The rate for u~10Mg black holes to spiral intoM
~10°M, black holes in galactic nuclei has been estimated

“That is, 1/(55,)= average over the sky of (kpectral density
The factor 5 in this definition is to produce accord with the conven-
tional notation for ground-based interferometers, whgygf) de-
notes the spectral density for waves with optimal direction and po-
larization. In the case of LISA, at frequencies above about 0.01 Hz,
the beam pattern shows sharp frequency-dependent variations with
direction due to the fact that the interferometer arms are acting as
one-pass delay lines rather than optical cavities, and this produces a
more complicated dependence of sensitivity on angle than for
ground-based interferometers. As a res8jt,(as we have defined

These second-harmonic waves arriving at Earth have thig) is the spectral density for optimal direction and polarization only

form h,=h, mpcos(2rffdt+e,), hy=h,mpcos(2r/fdt

below about 0.01 Hz, not above.

124022-6
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TABLE Il. Properties of the second-harmonic, transition-regime gravitational waves from 20M ¢
black hole spiraling into = 10°M, black hole(so »=u/M=10"°) atr=1 Gpc distance. The values of

&,2 are from numerical solutions of the Teukolsky equation by Fiinst line of Table IV of Ref.[4]).

af . (§) L1077
a f, Hz f At, sec Neye Ex 2 hamp N/ s
—0.99 0.002496 0.033 9300 23 1.029 2.0 1.2
-0.9 0.002601 0.033 8800 23 1.020 2.0 1.2
—-0.5 0.003188 0.037 7000 22 0.9734 2.3 1.4
0. 0.004396 0.044 4800 21 0.8957 2.7 1.6
0.2 0.005167 0.047 4100 21 0.8535 2.9 1.6
0.5 0.007016 0.054 2900 21 0.7653 34 1.6
0.8 0.01123 0.062 1900 22 0.5914 4.1 1.3
0.9 0.01457 0.063 1700 24 0.4617 4.3 1.1
0.99 0.02354 0.051 1800 43 0.1656 3.6 0.72
0.999 0.02829 0.037 3400 96 0.06128 2.4 0.58

by Sigurdsson and Reg2]; their “very conservative” result nonequatorial, circular orbits can be carried out using tech-
is ~ one event per year out to 1 Gpc. The inspiraling holesniques now in hand: the Teukolsky formalism, and compu-
are likely to be in rather eccentric, nonequatorial orpl§|,  tations of the orbital evolution based on the energy and an-
for which our analysis needs to be generalized. If, howevergular momentum radiated down the hole and off to infinity
the orbit is circular and equatorial and the holes are at 1 Gptsee, e.g., Ref5] and references thergirFor nonequatorial,
distance, then the above formulas give the numbers shown imoncircular orbits, the analysis should also be possible with
Table II. existing techniqgues — up to an unknown radiation-reaction-
As shown in the table, the signal to noise for this source isnduced rate of evolution of the Carter constant. That un-
of order unity. With some luck in the orientation of LISA, known quantity could be left as a parameter in the analysis,
the orientation of the source, the distance to the sourcdp be determined when current research on gravitational ra-
and/or the holes’ massesSéN of a few might occur. Since diation reactior{17,18,6 has reached fruition.
the signal would already have been detected from the much When this paper was in near final form, we became aware
stronger adiabatic inspiral waves, this signal strength coul@f a similar analysis, by Buonanno and Damgi®], of the
be enough to begin to explore the details of the transitioriransition from inspiral to plunge. Whereas we treat the case

from inspiral to plunge. of infinitesimal mass ratioy<<1 and finite black-hole spin
—1<a<+1, Buananno and Damour treat finite (0<%
V. CONCLUSIONS <1/4) and vanishing spina=0. Both analyses give the

same dimensionless equation of moti@?22 for the transi-
Our analysis of the transition regime has been confined tgon regime.
circular, equatorial orbits. This is a serious constraint, since
there is strong reason to expect that most inspiraling bodies ACKNOWLEDGMENTS
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