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Transition from inspiral to plunge for a compact body in a circular equatorial orbit
around a massive, spinning black hole
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There are three regimes of gravitational-radiation-reaction-induced inspiral for a compact body with massm,
in a circular, equatorial orbit around a Kerr black hole with massM@m: ~i! the adiabatic inspiral regime, in
which the body gradually descends through a sequence of circular, geodesic orbits;~ii ! a transition regime,
near the innermost stable circular orbit~isco!; ~iii ! theplunge regime, in which the body travels on a geodesic
from slightly below the isco into the hole’s horizon. This paper gives an analytic treatment of the transition
regime and shows that, with some luck, gravitational waves from the transition might be measurable by the
space-based LISA mission.

PACS number~s!: 04.30.Db, 04.80.Nn, 97.60.Lf
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I. INTRODUCTION AND SUMMARY

The space-based Laser Interferometer Space Ante
~LISA! @1#, if it flies, is likely to detect and study the grav
tational waves from white dwarfs, neutron stars and sm
black holes with massesm*1M ( , spiraling into massive
(M;105– 108M (@m) black holes in the nuclei of distan
galaxies@2–4#. In preparation for these studies, it is nece
sary to understand, theoretically, the radiation-reacti
induced evolution of the inspiral orbits, and the gravitation
wave forms that they emit.

Regardless of an orbit’s shape and orientation, whenm
!M the orbital evolution can be divided into three regime
~i! theadiabatic inspiral regime, in which the body gradually
descends through a sequence of geodesic orbits with gr
ally changing ‘‘constants’’ of the motionE5 ~energy!, L5
~polar component of angular momentum!, and Q5 ~Carter
constant!; ~ii ! a transition regime, in which the character o
the orbit gradually changes from inspiral to plunge.~iii ! a
plunge regime, in which the body plunges into the horizo
along a geodesic with~nearly! unchangingE, L andQ.

The plunge regime, being~essentially! ordinary geodesic
motion, is well understood; and the adiabatic inspiral regi
is the focus of extensive current research~see, e.g.,@4–6#!.
By contrast, so far as we are aware, there have been
publications dealing with the transition regime.

We begin, in Sec. II, by summarizing some key, we
known details of the inspiral and plunge regimes. Then
Sec. III A we present a qualitative picture of the transiti
from inspiral to plunge, based on the motion of a particle
a slowly changing effective potential~Fig. 1!. With the aid of
this qualitative picture, in Sec. III B we derive a no
geodesic equation of motion for the transition regime, and
Sec. III C we construct the solution to that equation of m
tion ~Figs. 2 and 3!. Then in Sec. IV, with the aid of ou
solution, we estimate the gravitational-wave signal stren
from the transition regime and the signal-to-noise ratio tha
would produce in LISA. We conclude that, with some luc
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LISA may be able to detect and study the transition wav
In Sec. V we make concluding remarks about the need
further research.

II. ADIABATIC INSPIRAL AND PLUNGE

Throughout this paper we use Boyer-Lindquist coor
nates (t,r ,u,f) @7# for the massive hole’s Kerr metric, an
we use geometrized units, withG5c51. The hole’s mass is
M and the inspiraling body’s mass ism[hM . We useM and
m to construct dimensionless versions~denoted by tildes! of
many dimensionfull quantities; for example,r̃ 5r /M , and t̃
5t/M . The hole’s dimensionless spin parameter isa[ ~spin
angular momentum!/M2 ~with 21,a,11). The body
moves around its circular, equatorial orbit in the1f direc-
tion, soa.0 corresponds to an orbit that is prograde relat
to the hole’s spin, anda,0 to a retrograde orbit.

When the inspiraling body is not too close to the inne
most stable circular orbit~isco!, it moves on a circular geo
desic orbit with dimensionless angular velocity@8#

Ṽ[MV5
df

d t̃
5

1

r̃ 3/21a
~2.1!

~wheref is angle around the orbit! and with orbital energy
@8#

E52hM
122/r̃ 1a/ r̃ 3/2

A123/r̃ 12a/ r̃ 3/2
. ~2.2!

As it moves, the body radiates energy into gravitation
waves at a rate given by@4#
©2000 The American Physical Society22-1
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TABLE I. Dimensionless parameters characterizing the isco and the transition regime of inspira

values ofĖ are from numerical solutions of the Teukolsky equation by L. S. Finn~first line of Table II of Ref.
@4#!.

a r̃ isco Ṽ isco Ė a b k Ro to

-0.99 8.972 0.03863 1.240 0.0001543 0.006626 0.005013 3.129 45.
-0.9 8.717 0.04026 1.233 0.0001732 0.007070 0.005527 3.117 43.
-0.5 7.555 0.04935 1.197 0.0003070 0.009730 0.008966 3.048 32.
0 6.000 0.06804 1.143 0.0007716 0.01604 0.01955 2.925 21.0
0.2 5.329 0.07998 1.114 0.001240 0.02057 0.02914 2.852 16.8
0.5 4.233 0.1086 1.053 0.003115 0.03270 0.06291 2.687 10.9
0.8 2.907 0.1737 0.9144 0.01401 0.06446 0.2123 2.326 5.5
0.9 2.321 0.2254 0.7895 0.03447 0.09039 0.4214 2.041 3.7
0.99 1.454 0.3644 0.4148 0.2234 0.1289 1.531 1.284 1.8
0.999 1.182 0.4379 0.2022 0.5127 0.09568 2.594 0.8551 1.5
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ĖGW52Ė5
32

5
h2Ṽ10/3Ė, ~2.3!

whereĖ is a general relativistic correction to the Newtonia
quadrupole-moment formula~Table II of Ref.@4#!. This en-
ergy loss causes the orbit to shrink adiabatically at a
given by

dr

dt
5

2ĖGW

dE/dr
. ~2.4!

The inspiral continues adiabatically until the body ne
the isco, which is at the dimensionless radiusr̃ isco5r isco/M
given by @8#

r̃ isco531Z22sgn~a!@~32Z1!~31Z112Z2!#1/2,

Z1[11~12a2!1/3@~11a!1/31~12a!1/3#,

Z2[~3a21Z1
2!1/2; ~2.5!

cf. Table I. The circular geodesic orbit at the isco has dim
sionless angular velocity~Table I!, energy, and angular mo
mentum given by@8,7#

Ṽ isco[MV5
1

r̃ isco
3/21a

, ~2.6!

Ẽisco[
Eisco

m
5

Eisco

hM
5

122/r̃ isco1a/ r̃ isco
3/2

A123/r̃ isco12a/ r̃ isco
3/2

,

~2.7!
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L̃ isco[
L isco

mM
5

L isco

hM2
5

2

A3r̃ isco

~3Ar̃ isco22a!. ~2.8!

As the body nears the isco, its inspiral gradually cease
be adiabatic and it enters the transition regime~Sec. III!.
Radiation reaction~as controlled byĖGW) continues to drive
the orbital evolution throughout the transition regime, b
gradually becomes unimportant as the transition ends
pure plunge takes over.

The plunge is described to high accuracy by reaction-f
geodesic motion; Eqs.~33.32! of Ref. @7#. Up to fractional
corrections of orderh4/5, the orbital energy and angular mo
mentum of the plunging body are equal toEisco and L isco
throughout the plunge@cf. Eq. ~3.26! below#.

III. THE TRANSITION FROM ADIABATIC INSPIRAL
TO PLUNGE

A. Qualitative explanation of transition

As the body nears its innermost stable circular orbitr
5r isco, the adiabatic approximation begins to break dow
This breakdown can be understood in terms of the effec
potential, which governsgeodesicradial motion via the
equation

S dr̃

dt̃
D 2

5S dr

dt D 2

5Ẽ22V~ r̃ ,Ẽ,L̃ !, ~3.1!

where Ẽ[E/m5E/(hM ), L̃[L/(mM )5L/(hM2), and t̃
[t/M are the body’s dimensionless energy, angular m
mentum, and proper time. The explicit form of the effecti
potential can be inferred from Eqs.~33.32! and ~33.33! of
Misner, Thorne and Wheeler~MTW! @7#:

V~ r̃ ,Ẽ,L̃ !5Ẽ22
1

r̃ 4
„@Ẽ~ r̃ 21a2!2L̃a#2

2~ r̃ 222r̃ 1a2!@ r̃ 21~ L̃2Ẽa!2#…. ~3.2!
2-2
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For a Schwarzschild black hole, this reduces to

V~ r̃ ,Ẽ,L̃ !5S 12
2

r̃
D S 11

L̃2

r̃ 2 D for a50 ~3.3!

@cf. Eq. ~25.16! of MTW @7##.
Throughout the inspiral and transition regimes, the bo

moves along a nearly circular orbit; its change of radius d
ing each circuit around the hole isDr !r . ~Only after the
body is well into its final plunge toward the hole doesDr
become comparable tor.! This near-circular motion guaran
tees that the ratio of the energy radiated to angular mom
tum radiated is equal to the body’s orbital angular veloc
@9#:

dẼ

dt̃
5Ṽ

dL̃

dt̃
. ~3.4!

Correspondingly, in and near the transition regime, wh
occupies a narrow range of radii aroundr̃ isco, the body’s
energy and angular momentum are related by1

Ẽ5Ẽisco1Ṽ iscoj, L̃5L̃ isco1j. ~3.5!

By combining Eqs.~3.5! and~3.2!, we can regard the body’
effective potential as a function ofr̃ and the differencej
[L̃2L̃ isco of its orbital angular momentum from that of th
isco.

Figure 1 showsV( r̃ ,j) for a sequence of angular mo
mentaj1 , . . . ,j5 aroundj50. As j decreases toj50, the
minimum of the potential flattens out and disappears;
just when it is disappearing, the minimum’s radiusr min is
moving inward at an infinite rate:drmin /dj→` asj→0.

In the adiabatic regime of largej, the body sits always a
the minimum of the effective potential. Its orbit is a slow
shrinking circle, guided inward by the motion of the min
mum. As j nears zero and the minimum’s inward spe
grows large, the body’s inertia prevents it from continuing
follow the minimum. The body begins to lag behind, as d
picted atj5j2 in Fig. 1. This lag invalidates the adiabat
inspiral analysis of Sec. II and initiates the transition regim

1In reality, finite-mass-ratio effects, including those discussed
the paragraph preceding Eq.~3.11! below, will alter these energy
angular-momentum relations by amounts that scale as the first
higher powers ofh. For example, in going from Eq.~3.4! to ~3.5!,

there can be an integration constantdẼ ~which scales ash or some

higher power! so Ẽ5Ẽisco1dẼ1Ṽ iscoj. In the presence of such

effects, weredefine r˜ isco, Ẽisco, and L̃ isco to be the values of thes

parameters at which theh-correctedV( r̃ ,Ẽ,L̃) has a flat inflection

point, as in Fig. 1, andṼ isco to be the orbital angular velocity at thi

r̃ isco. Then Eqs.~3.5! remain valid even for finite mass ratioh.
12402
y
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As j continues to decrease, there comes a point~nearj5
in Fig. 1! at which the effective potential has become
steep that its inward force on the body dominates stron
over radiation reaction. There the transition regime ends,
the body begins to plunge inward rapidly on a nearly geo
sic orbit with nearly constantẼ andL̃. The objectives of the
following subsections are to derive a set of equations
scribing the transition regime~Sec. III B!, and show how the
transition matches smoothly onto the adiabatic regime
large positivej and to the plunge regime at large negativej
~Sec. III C!.

B. Equation of motion for transition regime

Throughout the transition regime, because the bo
moves on a nearly circular orbit with radius close tor isco,
and because the body’s small massm[hM!M keeps its
radiation reaction weak, its angular velocity remains ve
close toV isco,

df

d t̃
[Ṽ.Ṽ isco, ~3.6!

and its proper time ticks at very nearly the standard isco

dt̃

d t̃
.S dt̃

d t̃
D

isco

5
A123/r̃ isco12a/ r̃ isco

3/2

11a/ r̃ isco
3/2

; ~3.7!

cf. Eq. ~5.4.5a! of @10#.
This nearly circular motion atr̃ . r̃ isco produces gravita-

tional waves which carry off angular momentum and ene
at very nearly the same rate as they would for circular g
desic motion atr̃ isco. This means thatẼ and L̃ evolve in
accord with Eqs.~3.5!, where

n

nd

FIG. 1. The gradually changing effective potentialV( r̃ ,j) for
radial geodesic motion. Each curve is for a particular value oj

[L̃2L̃ isco. As j decreases due to radiation reaction, the bo
depicted by the large dot, at first remains at the minimum of
effective potential (j1; ‘‘adiabatic regime’’!. However, asj nears
zero ~at j.j2), the body cannot keep up with the rapid inwa
motion of the minimum; it lags behind in a manner described by
transition-regime analysis of Sec. III. Atj.j5 the effective poten-
tial has become so steep that radiation reaction is no longer im
tant, the transition regime ends, and the body plunges toward
black hole with nearly constant energy and angular momentum
2-3
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dj

dt̃
52kh, ~3.8!

and

k5
32

5
Ṽ isco

7/3
11a/ r̃ isco

3/2

A123/r̃ isco12a/ r̃ isco
3/2

Ėisco; ~3.9!

cf. Eqs.~2.3!, ~3.5!, ~3.7!, and Table I. It is the smallness o
h[m/M ~e.g., h51025 for the realistic case of a 10M (

black hole spiraling into the 106M ( black hole! that makes
the angular momentumj evolve very slowly and keeps th
body in a nearly circular orbit throughout the transition r
gime @cf. the factors ofh that appear in Eqs.~3.8! and
~3.20!—which with Eqs. ~3.11! and ~3.22! imply dr̃/dt̃
}h3/5#.

In the transition regime, the body’s radial motion is d
scribed by the geodesic equation of motion with a radial s
force per unit mass2 hF̃self inserted on the right-hand side:

d2r̃

dt̃2
52

1

2

]V~ r̃ ,j!

] r̃
1hF̃self. ~3.10!

~We write it ashF̃self because its magnitude is proportion
to h5m/M .!

The radial self-forcehF̃self is nondissipative~since it has
hardly any radial velocity with which to couple!. This con-
trasts with thef-directed radiation-reaction force, whic
couples to the orbital angular velocity to produce a shrink
of the body’s angular momentum@Eq. ~3.8!# and a corre-
sponding decrease of its energy,dẼ/dt̃5Ṽdj/dt̃. Because
the radial force is nondissipative, it is of little importance.
can be absorbed into the nondissipative effective poten
term 2 1

2 ]V/] r̃ in the equation of motion. Doing so will no
change the general character of the effective potential
depicted in Fig. 1; it will merely change, by fraction
amounts proportional toh, the various parameters that cha
acterize the effective potential: the locationr̃ isco of the inner-
most stable circular orbit~at which thej50 effective poten-
tial curve has its inflection point!, the values at the isco of th
orbital energy and angular momentumẼisco and L̃ isco, and
the constanta defined below. There will be other O(h)
changes inr̃ isco, Ẽisco, L̃ isco anda caused by the body’s own
perturbation of the hole’s spacetime geometry@11–13#. In

2This radial self-force, like the radiation reaction force that driv
the inspiral, is produced by interaction of the body with its ow
gravitational field—that field having been influenced by the bla
hole’s spacetime geometry; see, e.g., Ref.@6#. The contravariant
radial component of the self-force, with dimensionality restor

using r 5Mr̃ and t5M t̃, is (dpr /dt)self5(md2r /dt2)self

5(m/M )(d2r̃ /dt̃2)self5h2F̃self .
12402
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this paper, we shall ignore all such changes, and corresp
ingly we shall neglect the radial self-forcehF̃self.

We shall describe the body’s location in the transiti
regime by

R[ r̃ 2 r̃ isco. ~3.11!

Throughout the transition regime bothR andj are small, and
correspondingly the effective potential can be expanded
powers ofR andj. Up through cubic terms inR and linear
terms inj ~the order needed for our analysis!, the effective
potential takes the form

V~R,j!5
2a

3
R322bRj1const , ~3.12!

wherea andb are positive constants that we shall evalua
below. Note that forj50, this is a simple cubic potentia
with inflection point atR50, i.e., atr̃ 5 r̃ isco; and note that
for j.0, it acquires a maximum and a minimum, while f
j,0 it is monotonic; cf. Fig. 1. By inserting Eq.~3.12! into
Eq. ~3.10!, settingr̃ 5 r̃ isco1R, and neglecting the radial self
force or absorbing it intor̃ isco, a andb as described above
we obtain the following radial equation of motion:

d2R

dt̃2
52aR21bj. ~3.13!

By then settingt̃[0 at the moment whenj50 and using
Eq. ~3.8! for the rate of change ofj, so

j52hkt̃, ~3.14!

we bring our equation of motion into the form

d2R

dt̃2
52aR22hbkt̃. ~3.15!

We shall explore the consequences of this equation of
tion in the next subsection, but first we shall deduce
values ofa andb.

The constantsa andb can be evaluated from the follow
ing relations, which follow directly from Eqs.~3.12!, ~3.11!
and ~3.5!:

a5
1

4S ]3V~ r̃ ,Ẽ,L̃ !

] r̃ 3 D
isco

, ~3.16!

b52
1

2S ]2V~ r̃ ,Ẽ,L̃ !

]L̃] r̃
1Ṽ

]2V~ r̃ ,Ẽ,L̃ !

]Ẽ] r̃
D

isco

. ~3.17!

By inserting expression~3.2! into these relations, we obtai
a andb in the limit h[m/M→0:

k

2-4
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a5
3

r̃ isco
6

„r̃ 212@a2~Ẽ221!2L̃2# r̃ 110~ L̃2aẼ!2
…isco

5
1

1296
for a50, ~3.18!

b5
2

r̃ isco
4

„~ L̃2a2ẼṼ! r̃ 23~ L̃2aẼ!~12aṼ!…isco

5
1

36A3
for a50. ~3.19!

Here r̃ isco and Ṽ isco are given by Eqs.~2.5! and ~2.6!; and
L̃ isco and Ẽisco are expressed in terms ofr̃ isco by Eqs.~2.7!
and ~2.8!. Numerical values ofa and b, computed from
these equations, are tabulated in Table I.

C. Solution for motion in the transition regime

The equation of motion in the transition regime, E
~3.15!, can be converted into dimensionless form by setti

R5h2/5RoX, t̃5h21/5toT, ~3.20!

where

Ro5~bk!2/5a23/5, to5~abk!21/5; ~3.21!

cf. Table I. The resulting dimensionless equation of mot
is

d2X

dT2 52X22T. ~3.22!

We seek the unique solution of this differential equati
which, at early timesT!21, joins smoothly onto the adia
batic inspiral solution of Sec. II. In that adiabatic inspiral, t
orbit is the circle at the minimum of the effective potential

FIG. 2. Dimensionless orbital radiusX as a function of dimen-
sionless proper timeT for an orbit near the isco.Adiabatic Inspiral:
The analytic solution~3.23! for adiabatic inspiral outside the isco
Transition:The numerical solution to the dimensionless equation
motion ~3.22! for the transition regime in the vicinity of the isco
Plunge: The analytic solution~3.25! for the orbital plunge inside
the isco.
12402
.

n

Fig. 1 and Eq. ~3.12!, i.e., the circle at R5Abj/a
5A2bkht/a, which translates into

X5A2T for adiabatic inspiral near the isco.~3.23!

We have not been able to find an analytic formula for t
solution to the equation of motion~3.22! that joins smoothly
onto this adiabatic solution, but it is easy to construct
unique solution numerically. It is plotted in Figs. 2 and
along with the adiabatic inspiral solution~3.23! and the
plunge solution@Eq. ~3.25! below#.

The transition solution is well approximated by adiaba
inspiral at timesT,21, but atT.21 it deviates from adia-
batic inspiral and evolves smoothly into a plunge. The so
tion diverges (X→2`) at a finite timeT5Tplunge.3.412.3

In the plunge regime, radiation reaction is unimporta
i.e., the orbit evolves inward with~very nearly! constant or-
bital angular momentumL̃.L̃final and energy Ẽ.Ẽfinal
~which we evaluate below!; i.e., the orbit is well approxi-
mated by geodesic free fall. In the dimensionless equatio
motion ~3.22!, the free-fall approximation translates into n
glecting the last term,T, so d2X/dT252X2, which has the
analytic first integral

dX/dT52Aconst2
2

3
X3. ~3.24!

For largeuXu, the constant can be neglected and we obt
the analytic solution

3The divergence ofX at T5Tplungedoes not imply a divergence o
r or any other physical quantity. Rather, it marks the breakdown
the transition approximation at very large values ofuXu, uXu
*Xbreak;h22/5; @cf. Eq. ~3.20!#. More specifically, when2X
*Xbreak, higher-order terms in the Taylor expansion~3.12! become
important and stop the divergence. Well before this~in fact,
throughout the range 1!2X!Xbreak! both the transition approxi-

mation and the free-fall approximation (Ẽ5Ẽfinal5constant, L̃

5L̃final5const ) are valid, so these two approximations can
matched in this regime to obtain a solution valid all the way do
to the horizon. The same type of breakdown also occurs at the o
asymptotic limit 1X*Xbreak: The transition regime’s adiabatic
inspiral equation~3.23! breaks down and must be replaced, v
matching at 1!X!Xbreak, by the exact Kerr metric’s adiabatic in
spiral formulas@4#.

f

FIG. 3. Same as Fig. 2, but drawn on a different scale.
2-5
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X5
26

~Tplunge2T!2
for plunge near the isco,~3.25!

which is plotted in Figs. 2 and 3.
Combining Eqs.~3.5!, ~3.14!, and ~3.20!, one finds that

throughout the transition regime, the energy and angu
momentum deficits~i.e., the deviations ofẼ andL̃ from their
isco values! scale ash4/5. In particular, the final deficits in
the plunge stage are given by

L̃final2L̃ isco52~kt0Tplunge!h
4/5,

Ẽfinal2Ẽisco52Ṽ isco~kt0Tplunge!h
4/5, ~3.26!

where, as was noted above,

Tplunge53.412. ~3.27!

IV. GRAVITATIONAL WAVES FROM TRANSITION
REGIME, AND THEIR OBSERVABILITY

The gravitational waves emitted in the transition regim
are all near the orbital frequency 2pV isco and its harmonics.
The strongest waves are at the second harmonic~twice the
orbital frequency!:

f .2
V isco

2p
5

Ṽ isco

pM
. ~4.1!

We shall compute their properties.
The transition waves last for a proper timeDt5MDt̃

5Mh21/5t̃oDT, during which the body spirals inwar
through a radial distanceDr 5MDR5Mh2/5RoDX, where
DT covers the rangeT.21 to .2.3 andDX covers the
rangeX.1 to X.25 ~Fig. 3!; i.e.,

DT53.3, DX56. ~4.2!

Correspondingly, neglecting any cosmological redshift,
duration of the transition waves as seen at Earth is

Dt5
M

~dt̃/d t̃ ! isco

h21/5t̃oDT, ~4.3!

and their frequency band isD f 5(1/pM )(dṼ/dr̃) iscoD r̃ ,
which, using the above expression forDr and Eq.~2.1! for
Ṽ( r̃ ), gives

D f 5
3

2pM
Ṽ isco

2 Ar̃ iscoh
2/5RoDX. ~4.4!

The total number of cycles of these transition waves is

Ncyc5 f Dt5
Ṽ iscot̃o

p~dt̃/d t̃ ! isco

h21/5DT. ~4.5!

These second-harmonic waves arriving at Earth have
form h15h1ampcos(2p*fdt1w1), h35h3ampcos(2p*fdt
12402
r-

e

e

1w3), wherew1 and w3 are constant phases. The amp
tudesh1amp and h3amp depend on the source’s orientatio
When one squares and adds these amplitudes and then
ages over the sky~‘‘ ^ . . . & ’’ !, one obtains an rms amplitude

hamp
rms5^h1amp

2 1h3amp
2 &1/2, ~4.6!

which is related to the power being radiated into the sec
harmonic by Ė254pD2(hamp

rms)2(2p f )2/(32p); cf. Eq.
~35.27! of MTW @7#. HereD is the distance to the source
Equating this to the radiated powerĖ25(32/5)h2Ṽ isco

10/3Ė`,2

@4#, whereĖ`,2 is a relativistic correction factor listed on th
first line of Table IV of@4#, we obtain the following expres
sion for the waves’ rms amplitude

hamp
rms5

8

A5

Mh

D
Ṽ isco

2/3AĖ`,2. ~4.7!

The signal to noise ratioS/N that these waves produce i
LISA depends on the orientations of LISA and the sou
relative to the line of sight between them. When one squa
S/N and averages over both orientations, then takes
square root, one obtains@14#

S S

N
D

rms

5
hamp

rms

A5Sh~ f !/Dt
. ~4.8!

Here 5Sh( f ) is the spectral density of LISA’s strain nois
inverse-averaged over the sky4 and 1/Dt is the band width
associated with the waves’ durationDt.

The noise spectral densitySh( f ) for the current straw-man
design of LISA has been computed by the LISA Missi
Definition Team@15#. An analytic fit to thisSh( f ), after av-
eraging over some small-amplitude oscillations that occu
f .0.01 Hz, is the following:

Sh~ f !5F ~4.6310221!21~3.5310226!2S 1 Hz

f D 4

1~3.5310219!2S f

1 HzD
2GHz21. ~4.9!

The rate for m;10M ( black holes to spiral intoM
;106M ( black holes in galactic nuclei has been estima

4That is, 1/(5Sh)[ average over the sky of 1/~spectral density!.
The factor 5 in this definition is to produce accord with the conve
tional notation for ground-based interferometers, whereSh( f ) de-
notes the spectral density for waves with optimal direction and
larization. In the case of LISA, at frequencies above about 0.01
the beam pattern shows sharp frequency-dependent variations
direction due to the fact that the interferometer arms are acting
one-pass delay lines rather than optical cavities, and this produc
more complicated dependence of sensitivity on angle than
ground-based interferometers. As a result,Sh ~as we have defined
it! is the spectral density for optimal direction and polarization o
below about 0.01 Hz, not above.
2-6
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TABLE II. Properties of the second-harmonic, transition-regime gravitational waves from am510M (

black hole spiraling into aM5106M ( black hole~soh5m/M51025) at r 51 Gpc distance. The values o

Ė`,2 are from numerical solutions of the Teukolsky equation by Finn~first line of Table IV of Ref.@4#!.

a f, Hz

Df

f Dt, sec Ncyc Ė`,2 hamp
rms

SS

ND
rms

, 10222

20.99 0.002496 0.033 9300 23 1.029 2.0 1.2
20.9 0.002601 0.033 8800 23 1.020 2.0 1.2
20.5 0.003188 0.037 7000 22 0.9734 2.3 1.4

0. 0.004396 0.044 4800 21 0.8957 2.7 1.6
0.2 0.005167 0.047 4100 21 0.8535 2.9 1.6
0.5 0.007016 0.054 2900 21 0.7653 3.4 1.6
0.8 0.01123 0.062 1900 22 0.5914 4.1 1.3
0.9 0.01457 0.063 1700 24 0.4617 4.3 1.1
0.99 0.02354 0.051 1800 43 0.1656 3.6 0.72
0.999 0.02829 0.037 3400 96 0.06128 2.4 0.58
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by Sigurdsson and Rees@2#; their ‘‘very conservative’’ result
is ; one event per year out to 1 Gpc. The inspiraling ho
are likely to be in rather eccentric, nonequatorial orbits@16#,
for which our analysis needs to be generalized. If, howev
the orbit is circular and equatorial and the holes are at 1 G
distance, then the above formulas give the numbers show
Table II.

As shown in the table, the signal to noise for this sourc
of order unity. With some luck in the orientation of LISA
the orientation of the source, the distance to the sou
and/or the holes’ masses, aS/N of a few might occur. Since
the signal would already have been detected from the m
stronger adiabatic inspiral waves, this signal strength co
be enough to begin to explore the details of the transit
from inspiral to plunge.

V. CONCLUSIONS

Our analysis of the transition regime has been confine
circular, equatorial orbits. This is a serious constraint, si
there is strong reason to expect that most inspiraling bo
will be in orbits that are strongly noncircular and nonequ
torial @16#. Our estimated signal-to-noise ratio,S/N;1, for
LISA’s observations of the transition regime from a circula
equatorial orbit at the plausible distance;1 Gpc suggests
that for more realistic orbits the transition regimemight be
observable. This prospect makes it important to genera
our analysis to more realistic orbits.

Full analyses for equatorial, noncircular orbits and
12402
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nonequatorial, circular orbits can be carried out using te
niques now in hand: the Teukolsky formalism, and comp
tations of the orbital evolution based on the energy and
gular momentum radiated down the hole and off to infin
~see, e.g., Ref.@5# and references therein!. For nonequatorial,
noncircular orbits, the analysis should also be possible w
existing techniques — up to an unknown radiation-reacti
induced rate of evolution of the Carter constant. That u
known quantity could be left as a parameter in the analy
to be determined when current research on gravitational
diation reaction@17,18,6# has reached fruition.

When this paper was in near final form, we became aw
of a similar analysis, by Buonanno and Damour@19#, of the
transition from inspiral to plunge. Whereas we treat the c
of infinitesimal mass ratioh!1 and finite black-hole spin
21,a,11, Buananno and Damour treat finiteh (0,h
<1/4) and vanishing spinsa50. Both analyses give the
same dimensionless equation of motion~3.22! for the transi-
tion regime.
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