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Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane
of a massive, spinning black hole, as observed by LISA
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Results are presented from high-precision computations of the orbital evolution and emitted gravitational
waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial
orbit. The focus of these computations is inspiral near the innermost stable circular orbit~isco!—more par-
ticularly, on orbits for which the angular velocityV is 0.03&V/V isco<1.0. The computations are based on the
Teuksolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order
unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation
for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to
LISA is presented: Signal to noise ratiosS/N are computed and graphed as functions of the time-evolving
gravitational-wave frequency for the lowest three harmonics of the orbital period, and for various representa-
tive values of the hole’s massM and spina and the inspiraling object’s massm, with the distance to Earth
chosen to ber o51 Gpc. TheseS/N’s show a very strong dependence on the black-hole spin, as well as onM
and m. Graphs are presented showing the range of the$M ,a,m% parameter space, for whichS/N.10 at r 0

51 Gpc during the last year of inspiral. The hole’s spina has a factor of;10 influence on the range ofM ~at
fixed m) for which S/N.10, and the presence or absence of a white-dwarf–binary background has a factor of
;3 influence. A comparison with predicted event rates shows strong promise for detecting these waves, but
not beyond about 1 Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest
lowering of LISA’s noise floor. A brief discussion is given of the prospects for extracting information from the
observed waves.

PACS number~s!: 04.30.Db, 04.80.Nn, 97.60.Lf
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I. INTRODUCTION AND SUMMARY

Earth-based gravitational-wave detectors operate in
high-frequency band,;1 –104 Hz, in which lie the waves
from black holes of masses;(2 –103)M ( . Space-based de
tectors operate in the low-frequency band,;1024–1 Hz,
populated by waves from black holes of ma
;(103–108)M ( . The high-frequency band is likely to b
opened up early in the next decade by the Laser Interf
metric Gravitational Wave Observatory–~LIGO-!VIRGO
network of Earth-based detectors@1#. The premier instru-
ment for the low-frequency band is the Laser Interferome
Space Antenna~LISA! @2#.

The European Space Agency has selected LISA as on
three ‘‘Cornerstone’’ missions in its ‘‘Horizon 20001’’ pro-
gram, NASA has appointed a mission definition team
LISA, and ESA and NASA are negotiating with each oth
about the possibility of flying LISA as a joint ESA-NASA
mission in the;2010 time frame.

One of the most interesting and promising gravitatio
wave sources for LISA is the final epoch of inspiral of
compact, stellar-mass object into a massive black hole. In
LISA frequency band, where the central hole must haveM
&108M ( , all giant stars and main-sequence stars will
tidally disrupted before the end of their inspiral, but comp
objects—white dwarfs, neutron stars, and small bla
holes—can survive intact.@Depending on the hole’s spin,
0556-2821/2000/62~12!/124021~20!/$15.00 62 1240
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massive white dwarf will be disrupted before the end of
spiral if M,Mmax;(104–105)M ( . Neutron stars and sma
black holes can never be tidally disrupted in the LISA fr
quency band.#

Sigurdsson and Rees@3# have estimated the event rate f
such compact objects to spiral into massive black ho
‘‘Assuming most spiral galaxies have a central black hole
modest mass (;106M () and a cuspy spheroid,’’ and fo
‘‘very conservative estimates of the black hole masses
central galactic densities,’’ they estimate one inspiral p
year within 1 Gpc distance of Earth. Most of the inspiralin
objects are likely to be white dwarfs or neutron stars;
inspiral rate for stellar-mass black holes@m;(6 –10)M (#
may be 10 times smaller, about 3 per year out to 3 G
according to Sigurdsson@4#. Sigurdsson notes, however, th
the evidence for a recent burst of star formation in the cen
region of our galaxy suggests that normal nucleated spi
might have such starbursts every;108 y, which would en-
hance the stellar-mass black-hole density by a factor of;10
and would lead to stellar-mass black-hole inspirals of one
year out to 1 Gpc. He notes, further, that if there was just o
50M ( black hole in the core of each galaxy now containi
a ;106M ( central black hole, the result would be seve
inspirals of such 50M ( holes per year out to a cosmologic
redshiftz51, all readily observable by LISA.

LISA’s observations of waves from such inspirals w
have major scientific payoffs@5#:
©2000 The American Physical Society21-1
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~i! Ryan @6# has shown that for circular equatorial orbit
the waves will carry, encoded in themselves, a map of
vacuum spacetime metric of the central black hole~or,
equivalently, the values of the hole’s multiple moments!, and
he has made a first, very crude, estimate of the precision
which LISA can extract that map@7#. Ryan’s estimate is
quite promising. From the extracted map, one can determ
whether the hole’s geometry is that of the Kerr metric~i.e.
‘‘test the black-hole no hair theorem’’!, and one can use suc
maps to search for other kinds of conjectured massive ce
bodies ~e.g. soliton stars@8# and naked singularities!. It
seems likely that this is true not only for circular geode
orbits, but also for generic orbits.

~ii ! The observation of many such events will provide~i!
a census of the masses and spins of the massive central h
~ii ! a census of the masses of the inspiraling objects~which
depend on and thus tell us about the initial stellar mass fu
tion and mass segregation in the central parsec of gala
nuclei!, and ~iii ! a census of event rates~which depend on
physical processes and on gravitational potentials in the
tral parsec!.

~iii ! In active galactic nuclei, the inspiral orbit may b
significantly affected by drag in an accretion disk, produc
both complications in the interpretation of the observatio
and opportunities for learning about the disks’ mass distri
tion @9#.

In planning for the LISA mission, it is important to un
derstand the details of the waves emitted by such inspir
Those details are the most important factors in the choic
the mission’s noise floor and its duration, and are likely to
the principal drivers of its data analysis requirements a
algorithms.

The foundations for computing the emitted waves
nearly all in place:

~i! If the orbit is known, then the waveforms and streng
can be computed using the Teukolsky-@10# Sasaki-
Nakamura@11# ~TSN! formalism for first-order perturbation
of Kerr black holes.

~ii ! The orbital evolution is governed by radiation reacti
~and, if there is a robust accretion disk present, by accret
disk drag@9#!. Most massive holes are in galaxies with no
mal ~non-active! nuclei, and are thought to be surrounded
tenuous disks with ‘‘advection-dominated accretion flow
~ADAF!. Narayan@12# has shown that accretion drag shou
be totally negligible in such ADAF disks, so the orbital ev
lution is very cleanly governed by radiation reaction. This
the situation that we analyze in this paper; we igno
accretion-disk drag. Those few holes that are in active ga
tic nuclei may be surrounded by ‘‘thin’’ or ‘‘slim’’ accretion
disks, for which Chakrabarti and colleagues@9# have shown
that accretion-disk drag may be significant.

~iii ! The radiation reaction’s influence on the orbit can
characterized fully by the rates of change of three ‘‘co
stants’’ of the orbital motion: the orbital energyE, axial
component of angular momentumL, and Carter constantQ
@13#. From the emitted waves~computed via the TSN for-
malism!, one can read offĖ[dE/dt and L̇, but the only
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known way to computeQ̇ is directly from the radiation re-
action force.

~iv! A formal expression for the radiation reaction forc
has been derived recently by Minoet al. @14# and by Quinn
and Wald@15#, and several researchers are now working h
to convert this into a practical computational tool for dedu
ing Q̇ @16#. This will complete the necessary set of tools f
computing all details of the emitted waves.

The emitted waves will be so complex and so rich
structure and in parameter dependence, that it will requ
extensive computations to give us the full knowledge
quired by the LISA mission. Those computations are p
ceeding in stages:

~1! Initial quick surveys, based on the Newtonian
quasi-Newtonian orbits and the quadrupole-moment appr
mation to gravitational-wave emission. Such surveys are
foundation for the event rate estimates by Sigurdsson
Rees discussed above.

~2! More detailed and accurate surveys for orbits in t
massive hole’s equatorial plane, using the TSN formalis
Such surveys do not require computingQ̇, sinceQ vanishes
for equatorial orbits. These surveys are of several types:

~a! Studies of the evolution of the orbit’s eccentricit
Such studies have been carried out by Tanaka and
workers @17,18# and Cutleret al. @19# for non-spinning
holes, and by Kennefick@20# for small eccentricities
around spinning holes. These studies, coupled with e
mates of the orbital eccentricities when the objects are
from the hole and are being frequently perturbed by n
encounters with other objects@21,3#, suggest that, despit
the circularizing effect of radiation reaction, the ecce
tricities will still typically be large,e*0.3, when the ob-
ject nears the hole’s horizon.
~b! Systematic computations of the details of the emit
waves and the orbital evolution for circular, equator
orbits. This paper presents such computations and a c
panion paper@22# extends them to thetransition regime,
near the innermost stable circular orbit~isco!, during
which the orbit makes a gradual transition from adiaba
inspiral to a plunge into the hole.
~c! Computations of the waves’ details and orbital evo
tion for elliptic, equatorial orbits. First explorations hav
been carried out by Shibata for general ellipticity@23# and
by Kennefick for small ellipticity@20# ~though in the
1970s and 1980s there were studies for equatorial or
that plunge from radial infinity into a hole or scatter off
hole @24#!.
~3! Surveys of the orbital evolution and waves for circul

orbits out of the hole’s equatorial plane. It is known th
radiation reaction drives circular orbits into circular orbit
thereby causingQ̇ to evolve in a manner that is fully deter
mined by TSN-formalism calculations ofĖ andQ̇ @25–27#.
Therefore, the tools are fully in hand for these surveys, a
Hughes@28# is in the late stages of the first one.~See Shibata
@29# for an exploration of the wave emission before anyo
knew how, correctly, to compute the orbital evolution, a
see Shibataet al. @30# for studies of orbits with very smal
inclination angles to the equatorial plane.!

~4! Surveys of orbital evolution and waves for the gener
most realistic situation: elliptic orbits outside the equator
1-2
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GRAVITATIONAL WAVES FROM A COMPACT STAR IN . . . PHYSICAL REVIEW D62 124021
plane. Such surveys must await a practical computation te
nique forQ̇.

For circular, equatorial orbits~the subject of this paper!,
there have been extensive previous calculations, begin
with the pioneering study by Detweiler@31#; for a review see
Mino et al. @18#. However, these previous calculations ha
been motivated by the needs of LIGO-VIRGO observatio
in the high-frequency band, where~i! the ratiom/M of object
mass to hole mass is not very small, so finite-mass-ratio
fects~omitted by the TSN formalism! are important, and~ii !
almost all of the observed inspiral signal comes from ra
large compared to the hole’s horizon, so post-Newton
techniques can be used. The previous calculations have
cused almost entirely on carrying the post-Newtonian ca
lations to very high order, on developing techniques for
celerating their convergence, and—via comparison with T
calculations—on evaluating their convergence@18#.

LISA’s regime and needs are quite different from this. F
LISA, most of the signals are likely to come from system
with extreme mass ratios,m/M!1, for which ~a! the TSN
formalism is highly accurate and~b! the object lingers for a
very long time in the vicinity of the hole’s horizon befor
plunging into it. This means that post-Newtonian calcu
tions are neither needed, nor appropriate.

Because of these differences between the LIGO-VIR
regime and the LISA regime, the previous TSN-based st
ies do not serve LISA’s needs. The purpose of this pape
to begin filling that gap, specifically, the following:

In this paper we introduce a new set of functionsN, T, Ė,
to characterize the orbital evolution and the emitted wav
These functions are dimensionless and of order unity,
depend on the hole’s dimensionless spin parametea
5(angular momentum)/M2 and on the orbit’s dimensionles
radius r̃ 5r /M . We give extensive tables of these function
as computed using the TSN formalism. We then use th
tables to compute the evolution of the waves’ frequency
signal strength in LISA for a number of instructive values
the parametersM5(hole mass),a5(hole spin parameter)
m5(object mass), and m5~wave harmonic
order![~wavefrequency!/~orbital frequency!. From these
computations we draw a number of conclusions of imp
tance for the LISA mission.

The paper is organized as follows. Our notation, includ
the dimensionless functionsN, T, . . . , is introduced in Sec.
II. Formulas for computing the dimensionless functions, a
formulas for the orbital evolution and the waves’ propert
are given in Sec. III. Tables of the dimensionless functio
are given and discussed in Sec. IV. Applications to LISA
presented in Sec. V. Finally, concluding remarks are give
Sec. VI.

II. NOTATION

In this paper we shall adopt the following notation
describe the compact object’s inspiral and the gravitatio
waves it emits; throughout we use geometrized units; i.e.,
set G[~Newton’s gravitation constant!51 andc[~speed of
light!51.
12402
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m: the mass of the inspiraling object.
M : the black hole’s mass.
h[m/M : the mass ratio, assumed!1.
a[S/M2: the hole’s ‘‘rotation parameter’’; hereS is the

hole’s spin angular momentum.
r : the orbit’s Boyer-Lindquist radial coordinate, define

by Ar 21a2(112M /r )5(1/2p)3~the object’s orbital cir-
cumference!.

Tilde: a tilde over a quantity means that it has been ma
dimensionless by multiplying by the appropriate power ofM
and, when the quantity is}m, multiplying by a factor 1/m.

r̃[r /M : the dimensionless radius of the orbit.
V: the object’s orbital angular velocity, as measured

ing Boyer-Lindquist coordinate timet ~defined below!, i.e.,
using clocks that are far from the hole and at rest with
spect to it.

Ṽ[MV: the dimensionless orbital angular velocit
which is related tor̃ by Ṽ51/(r̃ 3/21a); cf. Eq. ~2.16! of
Ref. @32#. WhenṼ is small ~large r̃ ), Kepler’s laws dictate
that Ṽ.(M /r )3/25(orbital velocity)3, i.e. ~orbital velocity)
.V1/3.

Subscript isco: a quantity evaluated at the object’s inne
most stable circular orbit~‘‘isco’’ !, where the inspiral ends
and the plunge begins; for example,Ṽ isco is the value ofṼ at
the isco.

t: Boyer-Lindquist coordinate time or, equivalently, tim
as measured at ‘‘radial infinity’’ or on Earth.

T: the Boyer-Lindquist timeDt until the isco is reached
i.e. the total remaining duration of the inspiral.

Norb: the number of orbits remaining until the isco
reached.

r o: the distance from the binary to Earth.
m: the order of a harmonic of the orbital frequency.
f m5(m/2p)V: the frequency of gravitational waves i

the mth harmonic.
E: the object’s total energy including rest mass, i.e.,

component2pt of its 4-momentum. Note that, because t
object is gravitationally bound to the black hole,E,m, its
gravitational binding energy ism2E.0.

Ẽ[E/m.
Ė` : the total rate of emission of energy into gravitation

waves that go to infinity.
ĖH : the total rate of emission of energy into gravitation

waves that go down the horizon.
ĖGW[Ė`1ĖH : the total rate of emission of energy int

gravitational waves that go both to infinity and down t
hole’s horizon, and also, by energy conservation, the rat
decrease of the object’s total energy; i.e.,ĖGW[dEGW/dt
52dE/dt.

Ė`m : the total rate of emission of energy into themth
harmonic of the waves that go to infinity.

ho,m[A^hm1
21hm3

2&: the rms amplitudeof the gravita-
tional waves in harmonicm emitted toward infinity, at a time
when the wave frequency isf m ; here hm1(t,n) and
hm3(t,n) are the two waveforms emitted in a directionn and
arriving at the Earth’s distancer o ; ^•••& is an average ove
1-3
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n and over a period of the waves, and the average over
automatically produces a factor 1/2 thereby makingho,m

2 be
the mean value of12 @(amplitude ofhm1)21~amplitude of
hm,3)2].

hc,m[ho,mA2 f m
2 / ḟ m: a characteristic amplitudefor the

waves in harmonicm; here and throughout this paper th
overdot denotes a time derivative. The significance ofhc,m is
discussed below.

hc,m8 [hc,mmin@1,A3(12 f m / f m, isco)#: A modified char-
acteristic amplitude, discussed below.

hn( f )[Af Sh
SA( f ): LISA’s ‘‘sky-averaged’’ rms noise in a

bandwidth equal to frequencyf. HereSh
SA( f ) is the one-sided

spectral densitySh1
( f ) for some linear polarization1, in-

verse averaged over source directions and polariza
~‘‘sky-averaged’’!, 1/Sh

SA[^1/Sh1
&.

From the general relationdEGW/dtdA5(1/16p)(ḣ1
2

1ḣ3
2 ) for the energy flux in gravitational waves in terms

the time derivatives of the two waveforms@Eq. ~10! of Ref.
@33##, we infer that the rms amplitude and the energy
harmonicm are related to each other by

ho,m5
2AĖ`m

mVr o
. ~2.1!

We shall use, as our measure of where the object is in
orbit, the dimensionless orbital angular frequencyṼ, which
is related to the gravitational-wave frequency in harmonicm

by f m5(m/2pM )Ṽ. We shall write various fully relativistic,
time-evolving quantities (ĖGW, hc,m , etc.! as the leading-
order ~‘‘Newtonian’’ ! term in an expansion inṼ1/3

.(orbital velocity), multiplied by relativistic corrections
Our notation for the relativistic corrections will be the fo
lowing:

N: the correction toV2/V̇[Ṽ2/VP , where the overdot is a
time derivative. Note thatV2/V̇5dF/dlnV is the number of
radiansdF of orbital motion required to produce~due to
radiation reaction! a fractional changedV/V in the orbital
frequency.

Norb: the correction toNorb ~the number of orbits remain
ing until the end of the inspiral!.

T: the correction toT ~the remaining time to the end of th
inspiral!.

Ė: the correction toĖGW ~the total energy loss rate!.
Ė`m : the correction toĖ`m ~the energy radiated to infinity

in harmonicm).
Ho,m : the correction toho,m ~the rms wave amplitude in

harmonicm).
Hc,m : the correction tohc,m ~the characteristic amplitud

in harmonicm).
The characteristic amplitude hc,m needs some explana

tion. As the object spirals inward in its orbit, itsmth har-
monic waves spend; f m

2 / ḟ m5dFm /(2pdlnfm) cycles in the
vicinity of frequency f m ~where Fm is the harmonic’s
phase!. Correspondingly, in a detector that observes
waves throughout the inspiral epochDt5 f m / ḟ m , the signal
12402
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is enhanced, in comparison to the detector noise, by appr
mately the square root of this quantity. The signal strengt
thus approximately the same as would be produced b

broad-band burst of amplitudehc,m[ho,mA2 f m
2 / ḟ m.

The factor of 2 inside the square root arises from a m
precise definition ofhc,m @34#: The signal to noise ratio pro
duced by the waves’mth harmonic, averaged over all pos
sible orientations of the source and the detector, is given

S S

ND
rms

5AE Fhc,m~ f m!

hn~ f m! G2

dlnf m, ~2.2!

wherehn( f m) is the detector’s rms noise at frequencyf m , in
a bandwidth equal to frequency, averaged over the s
Equation~2.2! serves as a definition ofhc,m( f ). The relation

hc,m( f m)5ho,m( f m)A2 f m
2 / ḟ m then follows from Eq.~29! of

Ref. @33# ~with the factor of 2 changed to 4 to correct a
error!, together with the definition ofho,m given above, Eqs.
~2.2! and ~2.1!, and the evaluation of Fourier transforms u
ing the stationary phase approximation.

When the inspiraling object nears the isco, the bandwi
available for building up its signal in the detector becom
less thanD f 5 f . A good measure of this reduced bandwid
is D f 52( f 2 f isco) ~with half of this band belowf and half
above!. This is less thanf for 2f isco/3, f , f isco. Correspond-
ingly, the amplitude of the built-up signal i
;hcA2( f isco2 f )/(2 f isco/3). Our modified characteristic am
plitude hc,m8 [hc,mmin@1,A3(12 f m / f m, isco)# takes this sig-
nal reduction into account.

III. FORMULAS FOR INSPIRAL AND WAVES

In this section we shall give leading-order~in Ṽ1/3) for-
mulas for the various time-evolving quantities, as functio
of the dimensionless orbital angular frequencyṼ and black-
hole spina, and thereby we shall produce exact definitions
the relativistic correction functions. To make clear the ma
nitudes of various quantities, we shall write some of o
formulas numerically in a form relevant to LISA~for which
we choose as a fiducial frequencyf 250.01 Hz and as a
fiducial source, am510M ( black hole spiraling into aM
5106M ( hole atr o51 Gpc distance from Earth!. We shall
also write our formulas in a form relevant to the LIGO
VIRGO network of high-frequency detectors~with, as our
fiducial frequency, 100 Hz, and our fiducial source, a 1M (

neutron star spiraling into a 100M ( hole at 1 Gpc distance!.
In the Newtonian limit, the orbital radius and orbital a

gular velocity are linked by the Keplerian relation

M

r
[

1

r̃
5~MV!2/3[Ṽ2/3. ~3.1!

This permits us to write the number of orbital radians sp
near orbital angular frequencyV in the following form @cf.
Eqs.~3.16! of Misner, Thorne, and Wheeler~MTW! @35#, in
which a is our orbital radiusr #:
1-4
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TABLE I. V/V isco ~orbital angular velocity in units of that at the isco! as a function ofr /r isco ~Boyer-
Lindquist radius in units of that at the isco! and of a ~black-hole angular momentum parameter!. For a
negative, the hole is counter-rotating relative to the star’s orbit; fora positive it is co-rotating. This table wa
computed from Eqs.~3.18!, ~3.21! and ~3.20!. Near the isco,V/V isco is linear inr /r isco.

r /r isco 20.99 20.9 20.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.001 0.9984 0.9984 0.9985 0.9985 0.9985 0.9986 0.9987 0.9988 0.9990 0.9
1.002 0.9969 0.9969 0.9969 0.9970 0.9971 0.9972 0.9974 0.9976 0.9981 0.9
1.005 0.9923 0.9923 0.9924 0.9925 0.9927 0.9929 0.9936 0.9940 0.9952 0.9
1.01 0.9846 0.9847 0.9848 0.9852 0.9854 0.9860 0.9872 0.9882 0.9905 0.9
1.02 0.9696 0.9697 0.97 0.9707 0.9712 0.9723 0.9747 0.9765 0.9811 0.9
1.05 0.9269 0.9271 0.9278 0.9294 0.9305 0.9330 0.9386 0.9429 0.9537 0.9
1.1 0.8624 0.8626 0.8639 0.8668 0.8686 0.8731 0.8831 0.8909 0.9105 0.9
1.2 0.7538 0.7542 0.7563 0.7607 0.7636 0.7707 0.7869 0.7995 0.8326 0.8
1.3 0.6664 0.6668 0.6693 0.6747 0.6782 0.6868 0.7066 0.7223 0.7644 0.7
1.4 0.5947 0.5951 0.5978 0.6037 0.6075 0.6170 0.6389 0.6565 0.7044 0.7
1.7 0.4419 0.4424 0.4451 0.4512 0.4552 0.4650 0.4884 0.5077 0.5625 0.5
2.0 0.3450 0.3455 0.3480 0.3536 0.3572 0.3664 0.3885 0.4069 0.4611 0.4
2.5 0.2460 0.2463 0.2484 0.2530 0.2560 0.2637 0.2823 0.2982 0.3463 0.3
3.0 0.1867 0.1870 0.1887 0.1925 0.1950 0.2013 0.2168 0.2302 0.2716 0.2
4.0 0.1210 0.1212 0.1224 0.1250 0.1268 0.1312 0.1423 0.1520 0.1827 0.2
5.0 0.08643 0.08659 0.08748 0.08944 0.09076 0.09409 0.1024 0.1097 0.1332 0.
6.0 0.06570 0.06582 0.06651 0.06804 0.06907 0.07167 0.07817 0.08391 0.1025 0.
7.0 0.05211 0.05221 0.05276 0.05399 0.05482 0.05692 0.06217 0.06682 0.08197 0
8.0 0.04264 0.04271 0.04318 0.04419 0.04488 0.04661 0.05097 0.05483 0.06745 0
9.0 0.03572 0.03579 0.03618 0.03704 0.03762 0.03908 0.04276 0.04603 0.05675 0
10.0 0.03049 0.03055 0.03088 0.03162 0.03212 0.03338 0.03654 0.03936 0.04860 0
dF 5 1 1

in

in

1 lnV dF 1 1 1

e
c-
V̇
5

dlnV
5

96 h Ṽ5/3
N

5
1.173105

~ f 2 /.01 Hz!5/3S 10M (

m D S 106M (

M D 2/3

N

5
117

~ f 2/100 Hz!5/3S 1M (

m D S 100M (

M D 2/3

N. ~3.2!

HereN is the general relativistic correction, which is unity
the ‘‘Newtonian’’ limit Ṽ!1. Similarly, the total remaining
time until the end of the inspiral@Eq. ~36.17b! of MTW# is

T5
5

256

1

h

M

Ṽ8/3
T

5
1.413106sec

~ f 2 /.01 Hz!8/3S 10M (

m D S 106M (

M D 2/3

T

5
0.141sec

~ f 2/100 Hz!8/3S 1M (

m D S 100M (

M D 2/3

T, ~3.3!

and the number of orbits remaining until the end of the
spiral is
12402
-

Norb52pElnV

isco

dlnV
dlnV5

64p h Ṽ5/3
Norb

5
1.113104

~ f 2 /.01 Hz!5/3S 10M (

m D S 106M (

M D 2/3

Norb

5
11.1

~ f 2/100 Hz!5/3S 1M (

m D S 100M (

M D 2/3

Norb. ~3.4!

By integrating Eq.~3.2! inward to the isco, one can deriv
the following expression for the general relativistic corre

tionsT for T andNorb for Norb in terms of thatN for V2/V̇:

T5
8

3
Ṽ8/3E

Ṽ

Ṽ isco NdṼ

Ṽ11/3
, ~3.5!

Norb5
5

3
Ṽ5/3E

Ṽ

Ṽ isco NdṼ

Ṽ8/3
, ~3.6!

The total energy loss rate@Eq. ~3.16! of MTW# is
1-5
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TABLE II. Ė ~the relativistic correction toĖGW52Ė, the total rate of emission of energy into gravit
tional waves going both to infinity and down the hole!, as a function of orbital radiusr /r isco and black-hole
spin parametera; cf. caption of Table I. This table is accurate to four significant digits; each entry
computed by summing over enough spheroidal harmonic orders (l ,m) to produce that accuracy.

r /r isco 20.99 20.9 20.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 1.240 1.233 1.197 1.143 1.114 1.053 0.9144 0.7895 0.4148 0.2
1.001 1.239 1.232 1.196 1.142 1.114 1.053 0.9140 0.7894 0.4154 0.2
1.002 1.238 1.231 1.196 1.141 1.113 1.052 0.9137 0.7894 0.4160 0.2
1.005 1.235 1.228 1.193 1.139 1.111 1.050 0.9126 0.7891 0.4177 0.2
1.01 1.231 1.224 1.189 1.135 1.107 1.047 0.9109 0.7887 0.4207 0.2
1.02 1.222 1.215 1.181 1.127 1.100 1.041 0.9076 0.7880 0.4263 0.2
1.05 1.198 1.192 1.159 1.108 1.081 1.025 0.8988 0.7867 0.4434 0.2
1.1 1.165 1.159 1.128 1.080 1.055 1.002 0.8876 0.7859 0.4701 0.2
1.2 1.115 1.110 1.082 1.039 1.017 0.9706 0.8726 0.7882 0.5182 0.3
1.3 1.081 1.075 1.051 1.012 0.9913 0.9493 0.8638 0.7920 0.5587 0.4
1.4 1.055 1.051 1.028 0.9919 0.9733 0.9348 0.8583 0.7960 0.5930 0.4
1.7 1.011 1.007 0.9888 0.9591 0.9435 0.9119 0.8524 0.8075 0.6665 0.5
2.0 0.9893 0.9862 0.9705 0.9448 0.9312 0.9034 0.8530 0.8171 0.7117 0.
2.5 0.9734 0.9709 0.9580 0.9363 0.9248 0.9012 0.8589 0.8302 0.7556 0.
3.0 0.9674 0.9653 0.9542 0.9352 0.9250 0.9040 0.8662 0.8415 0.7813 0.
4.0 0.9651 0.9634 0.9546 0.9391 0.9306 0.9129 0.8807 0.8597 0.8121 0.
5.0 0.9665 0.9651 0.9577 0.9448 0.9371 0.9216 0.8930 0.8742 0.8320 0.
6.0 0.9687 0.9675 0.9611 0.9490 0.9430 0.9291 0.9031 0.8858 0.8469 0.
7.0 0.9709 0.9699 0.9641 0.9533 0.9480 0.9354 0.9116 0.8955 0.8589 0.
8.0 0.9730 0.9720 0.9669 0.9588 0.9522 0.9407 0.9186 0.9036 0.8689 0.
9.0 0.9749 0.9740 0.9693 0.9607 0.9558 0.9452 0.9246 0.9105 0.8774 0.
10.0 0.9765 0.9757 0.9714 0.9616 0.9589 0.9491 0.9298 0.9164 0.8847 0.
e

e

or
a
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o
o

t

tion
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f

ĖGW52Ė5
32

5
h2Ṽ10/3Ė, ~3.7!

whereĖ is the general relativistic correction.

When the object is at large radii~small Ṽ), the power
radiated by the system’s mass multipole momentsI l ,6m is of
orderh2Ṽ212l /3, while that radiated by its current multipol
momentsSl ,6m is of orderh2Ṽ212(l 11)/3 @36#. Correspond-
ingly, the powerĖ`m radiated to infinity in harmonicm
comes almost entirely from the moments of lowest allow
ordersl, with the current moments of orderl being,a priori,
comparable to the mass moments of orderl 11.

For m51, the lowest allowed order for either mass
current is quadrupolar, since gravitational waves are alw
quadrupolar or higher. For circular orbits in the equator
plane, them561 components of the mass quadrupole m
ment vanish, so the dominant waves are current quadrup
S2,61 and mass octupolarI 3,61. All other multipolar contri-
butions to Ė`1 are smaller than these by at least (Vr )2

5Ṽ2/3. The contributions ofS2,61 to the radiated powerĖ`1
can be derived from Eqs.~4.16!, ~5.27!, ~2.18a,c!, ~2.7! and
~2.8! of Ref. @36#, and those ofI 3,61, from Eqs. ~4.16!,
~5.27!, ~2.7!, and ~2.8! of @36#. The sum of these dominan
contributions is
12402
d

ys
l
-
lar

Ė`15
5

28
h2Ṽ4E`1 , ~3.8!

where we have tacked on the general relativistic correc
factor Ė`1 to account for contributions from all the highe
order multipoles and to make the formula be valid not ju
for large orbital radiir but for all r>r isco. In Eq. ~3.8!, the
numerical factor is 5/2858/4511/1260, where the big piece
8/45 is current quadrupolar, while the tiny piece 1/1260
mass octupolar.

For harmonicm>2, the lowest allowed multipoles are o
order l 5m, and the mass momentI m,6m is nonzero so it
dominates. All other multipolar contributions toĖm are
down from these by at leastṼ2/3. An expression forĖm can
be derived from Eqs.~4.16!, ~5.27!, ~2.7!, and ~2.8! of Ref.
@36#. The result is

Ėm5
2~m11!~m12!~2m11!!m2m11

~m21!@2mm! ~2m11!!! #2

3h2Ṽ212m/3Ė`m , ~3.9!

where Ė`m is the relativistic correction and (2m11)!!
[(2m11)(2m21)(2m23)•••1. Form52, 3, and 4, this
expression reduces to
1-6
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TABLE III. Ė`1 ~the relativistic correction toĖ`1, the rate of emission of energy into harmonic
gravitational waves with frequencyf 15V/2p traveling to infinity! as a function of orbital radiusr /r isco and
black-hole spin parametera; cf. caption of Table I. This table is accurate to four significant digits; each e
was computed by summing over enough spheroidal harmonic orders 2< l< l max at fixed umu51 to produce
that accuracy.

r /r isco 20.99 20.9 20.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 3.013 2.854 2.157 1.320 1.002 0.5530 0.1669 0.06573 0.002762 1.07131024

1.001 3.010 2.851 2.156 1.319 1.001 0.5529 0.1670 0.06584 0.002783 1.09531024

1.002 3.007 2.849 2.154 1.318 1.001 0.5528 0.1671 0.06595 0.002805 1.11931024

1.005 2.998 2.840 2.148 1.316 0.9990 0.5525 0.1675 0.06628 0.002869 1.19431024

1.01 2.984 2.827 2.139 1.312 0.9964 0.5520 0.1680 0.06683 0.002979 1.32631024

1.02 2.955 2.800 2.121 1.303 0.9915 0.5510 0.1692 0.06793 0.003204 1.61931024

1.05 2.876 2.727 2.071 1.280 0.9779 0.5487 0.1729 0.07126 0.003934 2.74731024

1.1 2.760 2.619 1.999 1.248 0.9588 0.5462 0.1790 0.07688 0.005322 5.56531024

1.2 2.575 2.448 1.885 1.198 0.9305 0.5448 0.1916 0.08821 0.008679 0.00152
1.3 2.434 2.316 1.798 1.161 0.9111 0.5465 0.2040 0.09951 0.01272 0.00307
1.4 2.321 2.213 1.730 1.133 0.8973 0.5498 0.2162 0.1107 0.01733 0.00518
1.7 2.085 1.994 1.588 1.077 0.8719 0.5623 0.2506 0.1421 0.03343 0.01435
2.0 1.940 1.860 1.503 1.049 0.8631 0.5786 0.2799 0.1715 0.05138 0.02648
2.5 1.787 1.719 1.416 1.023 0.8599 0.6045 0.3237 0.2151 0.08223 0.04991
3.0 1.689 1.629 1.361 1.010 0.8621 0.6272 0.3606 0.2527 0.1122 0.07456
4.0 1.567 1.518 1.295 0.9987 0.8704 0.6638 0.4191 0.3143 0.1664 0.1222
5.0 1.493 1.450 1.255 0.9921 0.8789 0.6918 0.4638 0.3627 0.2128 0.1650
6.0 1.441 1.403 1.228 0.9923 0.8865 0.7139 0.4994 0.4020 0.2525 0.2028
7.0 1.403 1.368 1.208 0.9865 0.8930 0.7319 0.5287 0.4346 0.2869 0.2362
8.0 1.373 1.341 1.193 0.9829 0.8987 0.7469 0.5533 0.4624 0.3168 0.2657
9.0 1.349 1.319 1.180 0.9887 0.9035 0.7596 0.5743 0.4863 0.3433 0.2922
10.0 1.329 1.301 1.170 1.005 0.9078 0.7706 0.5925 0.5072 0.3669 0.3159
-
ob
li

n-

in
Ė25
32

5
h2Ṽ10/3Ė`2 ,

Ė35
243

28
h2Ṽ4Ė`3 , ~3.10!

Ė45
8192

567
h2Ṽ14/3Ė`4 .

Note that the low-Ṽ limit of Ė2 is identical to that of the
total energy lossĖGW @Eq. ~3.7!#, as it must be since them
52 harmonic dominates at low orbital velocities.

From Eqs.~3.8! and~3.9! for Ėm and the general relation
ship ~2.1! between the waves’ amplitude and energy, we
tain the following Newtonian-order expression for the amp
tude in harmonicm:

ho,15A5

7

hM

r o
ṼHo,1 , ~3.11a!

ho,m5A8~m11!~m12!~2m11!!m2m21

~m21!@2mm! ~2m11!!! #2

3
hM

r o
Ṽm/3Ho,m for m>2, ~3.11b!
12402
-
-

where the relativistic correction is related to that for the e
ergy by

Ho,m5AĖ`m. ~3.12!

For the dominant,m52, radiation Eq.~3.11b! becomes

ho,25A32

5

hM

r o
Ṽ2/3Ho,2

5
3.6310222

r o/1 Gpc S m

10M (
D S M

106M (
D 2/3S f 2

.01 HzD
2/3

Ho,2

5
3.6310223

r o/1 Gpc S m

M (
D S M

100M (
D 2/3S f 2

100 HzD
2/3

Ho,2 .

~3.13!

From Eqs.~3.11! for ho,m , the definition ofhc,m in terms of
ho,m , the relationf m5(m/2p)V, and Eq.~3.2!, we obtain
the following expression for the characteristic amplitude
harmonicm:

hc,15
5

A672p

h1/2M

r o
Ṽ1/6Hc,1 , ~3.14a!
1-7
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TABLE IV. Ė`2 ~the relativistic correction toĖ`2, the rate of emission of energy into harmonic
gravitational waves with frequencyf 252V/2p traveling to infinity! as a function of orbital radiusr /r isco and
black-hole spin parametera; cf. caption of Table I. This table is accurate to four significant digits; each e
was computed by summing over enough spheroidal harmonic orders 2< l< l max at fixed umu52 to produce
that accuracy.

r /r isco 20.99 20.9 20.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 1.029 1.020 0.9734 0.8957 0.8535 0.7653 0.5914 0.4617 0.1656 0.0
1.001 1.028 1.019 0.9730 0.8954 0.8533 0.7652 0.5915 0.4620 0.1661 0.0
1.002 1.028 1.019 0.9726 0.8950 0.8530 0.7650 0.5916 0.4624 0.1666 0.0
1.005 1.026 1.017 0.9713 0.8940 0.8522 0.7645 0.5919 0.4633 0.1681 0.0
1.01 1.024 1.015 0.9693 0.8925 0.8508 0.7638 0.5925 0.4649 0.1707 0.0
1.02 1.019 1.011 0.9654 0.8894 0.8483 0.7623 0.5937 0.4680 0.1758 0.0
1.05 1.007 0.9985 0.9548 0.8813 0.8415 0.7587 0.5974 0.4773 0.1909 0.0
1.1 0.9900 0.9818 0.9403 0.8704 0.8327 0.7545 0.6037 0.4918 0.2154 0.1
1.2 0.9648 0.9574 0.9196 0.8558 0.8214 0.7506 0.6165 0.5178 0.2618 0.1
1.3 0.9480 0.9411 0.9063 0.8474 0.8156 0.7504 0.6287 0.5402 0.3039 0.1
1.4 0.9364 0.9301 0.8977 0.8427 0.8131 0.7523 0.6400 0.5597 0.3417 0.2
1.7 0.9191 0.9138 0.8867 0.8403 0.8151 0.7635 0.6697 0.6050 0.4309 0.3
2.0 0.9138 0.9092 0.8857 0.8450 0.8227 0.7769 0.6941 0.6382 0.4930 0.4
2.5 0.9144 0.9106 0.8910 0.8566 0.8377 0.7983 0.7268 0.6791 0.5617 0.4
3.0 0.9187 0.9154 0.8984 0.8684 0.8517 0.8167 0.7525 0.7097 0.6075 0.5
4.0 0.9286 0.9260 0.9125 0.8882 0.8745 0.8453 0.7908 0.7542 0.6680 0.6
5.0 0.9372 0.9351 0.9237 0.9034 0.8914 0.8662 0.8183 0.7857 0.7085 0.6
6.0 0.9442 0.9424 0.9326 0.9142 0.9043 0.8821 0.8391 0.8095 0.7387 0.7
7.0 0.9499 0.9483 0.9396 0.9232 0.9145 0.8945 0.8554 0.8282 0.7625 0.7
8.0 0.9545 0.9531 0.9453 0.9323 0.9226 0.9044 0.8686 0.8434 0.7819 0.7
9.0 0.9584 0.9571 0.9500 0.9369 0.9293 0.9126 0.8795 0.8560 0.7981 0.7
10.0 0.9616 0.9604 0.9540 0.9400 0.9349 0.9195 0.8887 0.8666 0.8119 0.7
d
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hc,m5A5~m11!~m12!~2m11!!m2m

12p~m21!@2mm! ~2m11!!! #2

3
h1/2M

r o
Ṽ (2m25)/6Hc,m for m>2, ~3.14b!

where@using Eq.~3.12!# the relativistic correction is relate
to earlier ones by

Hc,m5ANĖ`m. ~3.15!

For m52, expression~3.14b! becomes

hc,25A 2

3p

h1/2M

r oṼ1/6
Hc,2

5
1.0310219

r o/1 Gpc S m

10M (
D 1/2S M

106M (
D 1/3S .01 Hz

f 2
D 1/6

Hc,2

5
3.2310222

r o/1 Gpc S m

M (
D 1/2S M

100M (
D 1/3S 100 Hz

f 2
D 1/6

Hc,2 .

~3.16!

All of the relativistic correction functions can be ex
pressed analytically in terms ofĖ, andĖ`m . This has almost
been done already: The correction functionsT, Ho,m and
12402
Hc,m have been expressed in terms ofĖ, Ė`m , N and Ṽ isco
by Eqs.~3.5!, ~3.12! and~3.15! respectively. All that remains
is to derive an expression forN in terms ofĖ, and an expres-
sion for Ṽ isco.

The derivations are based on the Kerr-metric relations

E52hM
122/r̃ 1a/ r̃ 3/2

A123/r̃ 12a/ r̃ 3/2
~3.17!

for the object’s total energy in terms of its dimensionle
orbital radiusr̃ @Eq. ~5.4.7b! of Ref. @37## and

r̃ 5~Ṽ212a!2/3 ~3.18!

for its orbital radius in terms of its orbital angular veloci
@Eq. ~2.16! of Ref. @32##. By differentiating these equation
with respect to time and combining with each other and w
Eqs.~3.2! and ~3.7! for V2/V̇ and ĖGW52Ė, we obtain

N5
1

Ė S 11
a

r̃ 3/2D 5/3S 12
6

r̃
1

8a

r̃ 3/2
2

3a2

r̃ 2 D
3S 12

3

r̃
1

2a

r̃ 3/2D 23/2

. ~3.19!
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TABLE V. Ė`3 ~the relativistic correction toĖ`3, the rate of emission of energy into harmonic-3 gra
tational waves with frequencyf 353V/2p traveling to infinity! as a function of orbital radiusr /r isco and
black-hole spin parametera; cf. caption of Table I. This table is accurate to four significant digits; each e
was computed by summing over enough spheroidal harmonic orders 2< l< l max at fixed umu53 to produce
that accuracy.

r /r isco 20.99 20.9 20.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 0.9753 0.9614 0.8926 0.7848 0.7309 0.6292 0.4684 0.3712 0.1573 0.0
1.001 0.9748 0.9608 0.8922 0.7845 0.7307 0.6291 0.4685 0.3714 0.1577 0.0
1.002 0.9742 0.9603 0.8917 0.7842 0.7304 0.6289 0.4685 0.3715 0.1581 0.0
1.005 0.9726 0.9587 0.8904 0.7832 0.7296 0.6285 0.4685 0.3719 0.1592 0.0
1.01 0.9699 0.9561 0.8882 0.7817 0.7284 0.6277 0.4686 0.3725 0.1610 0.0
1.02 0.9648 0.9512 0.8841 0.7787 0.7260 0.6263 0.4688 0.3739 0.1646 0.0
1.05 0.9507 0.9376 0.8729 0.7708 0.7197 0.6229 0.4699 0.3780 0.1751 0.0
1.1 0.9313 0.9189 0.8576 0.7606 0.7118 0.6191 0.4728 0.3852 0.1919 0.1
1.2 0.9033 0.8921 0.8365 0.7476 0.7026 0.6166 0.4806 0.3998 0.2223 0.1
1.3 0.8849 0.8747 0.8235 0.7411 0.6990 0.6183 0.4900 0.4141 0.2489 0.1
1.4 0.8728 0.8633 0.8157 0.7385 0.6988 0.6223 0.5000 0.4278 0.2722 0.1
1.7 0.8562 0.8483 0.8085 0.7424 0.7078 0.6402 0.5301 0.4649 0.3280 0.2
2.0 0.8534 0.8466 0.8117 0.7531 0.7221 0.6603 0.5580 0.4969 0.3701 0.3
2.5 0.8588 0.8531 0.8239 0.7737 0.7466 0.6919 0.5986 0.5417 0.4238 0.3
3.0 0.8676 0.8627 0.8373 0.7929 0.7687 0.7190 0.6324 0.5785 0.4657 0.4
4.0 0.8851 0.8811 0.8606 0.8243 0.8040 0.7616 0.6850 0.6358 0.5297 0.4
5.0 0.8993 0.8961 0.8788 0.8477 0.8301 0.7929 0.7240 0.6786 0.5780 0.5
6.0 0.9106 0.9078 0.8928 0.8658 0.8500 0.8168 0.7541 0.7119 0.6164 0.5
7.0 0.9198 0.9172 0.9039 0.8787 0.8657 0.8356 0.7780 0.7387 0.6478 0.6
8.0 0.9272 0.9249 0.9130 0.8902 0.8783 0.8508 0.7975 0.7607 0.6741 0.6
9.0 0.9334 0.9313 0.9204 0.9004 0.8887 0.8633 0.8137 0.7791 0.6965 0.6
10.0 0.9386 0.9367 0.9267 0.9087 0.8974 0.8739 0.8275 0.7948 0.7158 0.6
fo

e

ri-
Whenr̃ is regarded as the function~3.18! of Ṽ, this becomes
the desired expression forN in terms ofĖ andṼ.

The innermost stable circular orbit~isco! is at the location
r̃ isco where the object’s total energyE( r̃ ) is a minimum or,
equivalently, whereV̇ is infinite or, equivalently, whereN
vanishes; i.e.,r̃ isco is that root of the quartic equationr̃ 2

26r̃ 18ar̃1/223a250 which lies between 1~when a51)
and 6~whena50). An analytic expression forr isco has been
given by Bardeen, Press, and Teukolsky@32#:

r̃ isco531Z22sgn~a!@~32Z1!~31Z112Z2!#1/2,

Z1[11~12a2!1/3@~11a!1/31~12a!1/3#,

Z2[~3a21Z1
2!1/2. ~3.20!

The dimensionless orbital angular velocity at the iscoṼ isco is
expressed in terms of thisr̃ isco by Eq. ~3.18!:

Ṽ isco5
1

r̃ isco
3/21a

. ~3.21!

We note, in passing, approximate analytic formulas
the relativistic correctionsT andNorb to the timeT and num-
ber of remaining orbitsNorb until the end of inspiral—for the
12402
r

special case of a nonspinning black hole,a50. Inserting
expression~3.19! into Eqs.~3.5! and ~3.6!, and noting from
Table II that in each of these equationsĖ is a much more
slowly varying function of the integration variable than th
rest of the integrand, we pullĖ out of the integral~i.e., we
perform the first step of an integration by parts! and then
perform the integration analytically. The results are

T.
1

Ė
F 12

7

2
u2

147

8
u22

2205

16
u31

19845

16
u4

A123u

2
4671

8A2
u41

19845

32
u4lnS 3~11A2!2u

~11A123u!2D G ,

~3.22!

Norb.
1

Ė S 124u248u21288u3

A123u
224A3u5D ,

~3.23!

whereu5Ṽ2/351/r̃ . These formulas agree with the nume
1-9
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TABLE VI. Ė`4 ~the relativistic correction toĖ`4, the rate of emission of energy into harmonic
gravitational waves with frequencyf 454V/2p traveling to infinity! as a function of orbital radiusr /r isco and
black-hole spin parametera; cf. caption of Table I. This table is accurate to four significant digits; each e
was computed by summing over enough spheroidal harmonic orders 2< l< l max at fixed umu54 to produce
that accuracy.

r /r isco 20.99 20.9 20.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 0.9393 0.9209 0.8319 0.6981 0.6342 0.5196 0.3574 0.2720 0.1116 0.0
1.001 0.9387 0.9203 0.8314 0.6978 0.6339 0.5194 0.3574 0.2721 0.1118 0.0
1.002 0.9380 0.9197 0.8309 0.6975 0.6337 0.5193 0.3575 0.2722 0.1120 0.0
1.005 0.9361 0.9179 0.8295 0.6965 0.6329 0.5189 0.3575 0.2725 0.1127 0.0
1.01 0.9330 0.9149 0.8271 0.6949 0.6317 0.5183 0.3576 0.2730 0.1139 0.0
1.02 0.9270 0.9091 0.8225 0.6920 0.6295 0.5171 0.3578 0.2739 0.1163 0.0
1.05 0.9106 0.8935 0.8102 0.6841 0.6235 0.5143 0.3589 0.2770 0.1231 0.0
1.1 0.8881 0.8720 0.7936 0.6740 0.6162 0.5115 0.3617 0.2826 0.1342 0.0
1.2 0.8560 0.8416 0.7709 0.6618 0.6084 0.5109 0.3697 0.2947 0.1547 0.0
1.3 0.8353 0.8221 0.7573 0.6563 0.6064 0.5143 0.3793 0.3073 0.1731 0.1
1.4 0.8218 0.8097 0.7496 0.6549 0.6077 0.5199 0.3897 0.3198 0.1898 0.1
1.7 0.8035 0.7943 0.7440 0.6627 0.6212 0.5424 0.4217 0.3555 0.2325 0.1
2.0 0.8021 0.7934 0.7493 0.6774 0.6398 0.5669 0.4523 0.3880 0.2676 0.2
2.5 0.8109 0.8036 0.7664 0.7037 0.6710 0.6052 0.4977 0.4355 0.3163 0.2
3.0 0.8232 0.8169 0.7843 0.7286 0.6984 0.6383 0.5365 0.4759 0.3570 0.3
4.0 0.8466 0.8416 0.8151 0.7687 0.7432 0.6905 0.5983 0.5409 0.4233 0.3
5.0 0.8656 0.8614 0.8389 0.7987 0.7765 0.7297 0.6450 0.5910 0.4758 0.4
6.0 0.8807 0.8770 0.8574 0.8227 0.8021 0.7599 0.6818 0.6306 0.5190 0.4
7.0 0.8928 0.8895 0.8720 0.8412 0.8224 0.7838 0.7115 0.6631 0.5551 0.5
8.0 0.9026 0.8997 0.8839 0.8546 0.8388 0.8033 0.7359 0.6902 0.5859 0.5
9.0 0.9108 0.9081 0.8938 0.8673 0.8523 0.8195 0.7563 0.7130 0.6125 0.5
10.0 0.9177 0.9152 0.9020 0.8759 0.8637 0.8331 0.7737 0.7326 0.6355 0.5
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cal values ofT andNorb in Tables IX and X below to within
3% at 6.02, r̃ ,18 and to within 1% at 6< r̃ ,6.02 andr̃
.18.

IV. TABLES OF RELATIVISTIC
CORRECTION FUNCTIONS

We shall use two dimensionless parameters to mea
the distance of an orbit from the isco: the ratior /r isco

[ r̃ / r̃ isco of the orbit’s Boyer-Lindquist radial coordinater to
its value at the isco and the ratioV/V isco[Ṽ/Ṽ isco of the
orbit’s angular velocity to that at the isco. The relationsh
between these two parameters is given by Eqs.~3.18!, ~3.20!
and ~3.21!, and is tabulated in Table I.

We have integrated the Teukolsky-Sasaki-Nakam
equation for perturbations of a Kerr black hole, to obtain
functions Ė(Ṽ), and Ė`m(Ṽ) and we have then used Eq
~3.18!, ~3.19!, ~3.5! and ~3.6! to computeN, T and Norb.
These functions are listed in Tables II–X and some of
numerical methods are described in the Appendix. As a
product of these calculations, we have inferred what fract
Ė/ĖGW of the total rate of energy emission goes down
hole’s horizon; that fraction is shown in Table VII.

V. APPLICATIONS TO LISA

A. LISA noise

Tentative error budgets for LISA are spelled out in Tab
4.1 and 4.2 of the LISA Pre-Phase-A Report@38#. Various
12402
re
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researchers have computed LISA noise spectra from th
error budgets. It is conventional, for LISA, to characteri
the noise by the sensitivity to periodic sources for 1 yr in
gration time and a signal-to-noise ratio of 5, averaged o
source directions and polarizations~‘‘sky averaged’’!. We
shall denote this quantity byhSN5,1 yr

SA . It is related to the
sky-averaged spectral density introduced in the paragr
before Eq.~2.1! by hSN5,1 yr

SA 55ASh
SAD f , whereD f 51/1 yr

is the bandwidth for the one-year integration time; and c
respondingly, it is related to the sky-averaged rms noise
bandwidth equal to frequency,hn( f )5Af Sh

SA( f ) ~which we
use in this paper!, by

hn~ f !5
1

5
A f

D f
hSN5,1 yr

SA ~ f !. ~5.1!

We have deducedhn( f ) using this equation and the values
hSN5,1 yr

SA ( f ) computed by various researchers@39–41#; we
plot it as a thick solid curve in Figs. 3–7 below.

It is likely that LISA’s performance will be compromise
at f &0.003 Hz by a stochastic background due to whi
dwarf binaries. The most recent estimate of that stocha
background is by Hils and Bender@42#; it agrees satisfacto
rily with an estimate by Webbink and Han@43#. We have
used a simple piecewise straight-line fit to the logarithm
the Hils-Bender white-dwarf-background noise curv
1-10
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TABLE VII. ĖH /ĖGW ~the ratio of the energy radiated down the hole to the total energy radiated! as a function of orbital radiusr /r isco

and black-hole spin parametera; cf. caption of Table I. This table is accurate to three significant digits; each entry was comput
summing over enough spheroidal harmonic orders (l ,m) to produce that accuracy.

r /r ms 20.99 20.9 20.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 0.0129 0.0118 0.00757 0.00319 0.0016220.00222 20.0166 20.0341 20.0942 20.129
1.001 0.0129 0.0118 0.00753 0.00318 0.0016120.00222 20.0165 20.0341 20.0942 20.129
1.002 0.0128 0.0117 0.00750 0.00316 0.0016020.00222 20.0165 20.0341 20.0942 20.129
1.005 0.0127 0.0116 0.00740 0.00310 0.0015620.00224 20.0165 20.0340 20.0941 20.129
1.01 0.0124 0.0114 0.00723 0.00301 0.0014920.00225 20.0164 20.0339 20.0941 20.129
1.02 0.0120 0.0109 0.00691 0.00284 0.0013720.00228 20.0163 20.0337 20.0939 20.129
1.05 0.0107 0.00975 0.00606 0.00239 0.0010620.00233 20.0159 20.0330 20.0930 20.128
1.1 0.00898 0.00814 0.00493 0.00182 6.9231024 20.00234 20.0151 20.0316 20.0906 20.125
1.2 0.00651 0.00586 0.00339 0.00111 2.7231024 20.00219 20.0137 20.0285 20.0834 20.116
1.3 0.00489 0.00438 0.00244 7.2131024 7.0931025 20.00198 20.0122 20.0254 20.0764 20.107
1.4 0.00378 0.00336 0.00182 4.8931024 22.8031025 20.00177 20.0109 20.0227 20.0692 20.0980
1.7 0.00198 0.00174 8.8031024 1.8531024 21.0831024 20.00125 20.00781 20.0164 20.0519 20.0754
2.0 0.00118 0.00103 5.0031024 8.5231025 21.0131024 29.0331024 20.00570 20.0123 20.0396 20.0586
2.5 6.0331024 5.2231024 2.4131024 3.0731025 27.2031025 25.6031024 20.00359 20.00792 20.0264 20.0401
3.0 3.5531024 3.0531024 1.3731024 1.3731025 25.0131025 23.7131024 20.00241 20.00539 20.0186 20.0287
4.0 1.5831024 1.3531024 5.8831025 3.9431026 22.6431025 21.8931024 20.00125 20.00284 20.0103 20.0164
5.0 8.6231025 7.3431025 3.1331025 1.5331026 21.5531025 21.1031024 27.4131024 20.00169 20.00637 20.0103
6.0 5.2931025 4.5031025 1.9031025 7.1331027 29.9731026 27.0231025 24.7731024 20.00101 20.00424 20.00693
7.0 3.5231025 2.9931025 1.2531025 3.7531027 26.8231026 24.7931025 23.2731024 27.5631024 20.00297 20.00491
8.0 2.4831025 2.1031025 8.7431026 2.1631027 24.8931026 23.4331025 22.3531024 25.4631024 20.00217 20.00362
9.0 1.8231025 1.5431025 6.4031026 1.3331027 23.6531026 22.5531025 21.7631024 24.0931024 20.00164 20.00275
10.0 1.3931025 1.1731025 4.8531026 8.6331028 22.8031026 21.9631025 21.3531024 23.1531024 20.00127 20.00214

TABLE VIII. N ~the relativistic correction toV2/V̇5dF/dlnV, the number of radians of orbital inspiral per unit fractional change
orbital angular velocity!, as a function of orbital radiusr /r isco and black-hole spin parametera; cf. caption of Table I. This table is accurat

to four significant digits, and it was computed using Eq.~3.19! and Ė from Table II. Near the isco,N} r̃ 2 r̃ isco}Ṽ2Ṽ isco.

r /r isco 20.99 20.9 20.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 0.0 0.0 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.001 0.001966 0.001995 0.002150 0.002471 0.002685 0.003262 0.005188 0.007911 0.03914
1.002 0.003927 0.003984 0.004294 0.004932 0.005360 0.006510 0.01034 0.01575 0.07756 0
1.005 0.009777 0.009917 0.01068 0.01227 0.01332 0.01616 0.02560 0.03888 0.1886 0
1.01 0.01942 0.01969 0.02120 0.02432 0.02639 0.03195 0.05037 0.07612 0.3605 1
1.02 0.03831 0.03883 0.04176 0.04778 0.05177 0.06246 0.09754 0.1460 0.6605 2
1.05 0.09192 0.09314 0.09979 0.1134 0.1224 0.1462 0.2224 0.3244 1.296 4.
1.1 0.1721 0.1742 0.1857 0.2090 0.2242 0.2639 0.3865 0.5431 1.836 4.9
1.2 0.3043 0.3076 0.3251 0.3599 0.3824 0.4397 0.6066 0.8039 2.133 4.3
1.3 0.4078 0.4116 0.4321 0.4725 0.4983 0.5628 0.7424 0.9427 2.115 3.7
1.4 0.4901 0.4941 0.5160 0.5589 0.5857 0.6524 0.8315 1.022 2.026 3.2
1.7 0.6564 0.6603 0.6820 0.7239 0.7498 0.8119 0.9671 1.117 1.761 2.3
2.0 0.7537 0.7574 0.7771 0.8147 0.8378 0.8923 1.022 1.140 1.589 1.9
2.5 0.8452 0.8482 0.8644 0.8955 0.9142 0.9579 1.057 1.142 1.427 1.6
3.0 0.8949 0.8975 0.9110 0.9370 0.9526 0.9886 1.068 1.134 1.338 1.4
4.0 0.9445 0.9463 0.9564 0.9757 0.9873 1.014 1.071 1.116 1.245 1.3
5.0 0.9673 0.9688 0.9768 0.9917 1.001 1.022 1.067 1.101 1.195 1.2
6.0 0.9797 0.9809 0.9874 1.001 1.008 1.025 1.061 1.089 1.164 1.2
7.0 0.9870 0.9880 0.9936 1.005 1.011 1.025 1.056 1.080 1.143 1.1
8.0 0.9916 0.9925 0.9973 1.005 1.012 1.025 1.052 1.072 1.126 1.1
9.0 0.9947 0.9954 0.9998 1.008 1.013 1.024 1.048 1.066 1.114 1.1
10.0 0.9968 0.9975 1.001 1.011 1.013 1.023 1.045 1.061 1.104 1.1
124021-11
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TABLE IX. T ~the relativistic correction toT, the time remaining until the isco is reached! as a function of the orbital radiusr /r isco and

black-hole spin parametera; cf. caption of Table I. Near the isco,T.(8/5)Norb}( r̃ 2 r̃ isco)
2}(Ṽ2Ṽ isco)

2. We think this table is accurate to
about 1 part in 500, except atr /r isco&1.2 where the accuracy is about 1 part in 100. The table was computed from Eqs.~3.18!, ~3.19!, and

~3.5!, using a cubic interpolation toĖ(r /r isco) as given in Table II.

r /r isco 20.99 20.9 20.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.001 4.0831026 4.1331026 4.4031026 4.9331026 5.2831026 6.1631026 8.9331026 1.2631025 5.0131025 2.2231024

1.002 1.6331025 1.6531025 1.7531025 1.9731025 2.1031025 2.4631025 3.5631025 5.0231025 1.9931024 8.7531024

1.005 1.0131024 1.0231024 1.0931024 1.2231024 1.3031024 1.5231024 2.2031024 3.1031024 0.00122 0.00525
1.01 3.9731024 4.0231024 4.2831024 4.8031024 5.1331024 5.9831024 8.6231024 0.00121 0.00470 0.0196
1.02 0.00154 0.00156 0.00166 0.00186 0.00199 0.00231 0.00332 0.00464 0.0175 0.06
1.05 0.00883 0.00893 0.00949 0.0106 0.0113 0.0131 0.0186 0.0256 0.0897 0.309
1.1 0.0307 0.0311 0.0329 0.0366 0.0389 0.0448 0.0623 0.0842 0.266 0.778
1.2 0.0950 0.0960 0.101 0.112 0.118 0.134 0.181 0.237 0.642 1.53
1.3 0.169 0.171 0.180 0.196 0.207 0.233 0.306 0.390 0.947 2.00
1.4 0.243 0.245 0.257 0.279 0.293 0.327 0.420 0.524 1.17 2.26
1.7 0.432 0.435 0.452 0.484 0.503 0.550 0.674 0.802 1.49 2.45
2.0 0.568 0.571 0.589 0.624 0.645 0.696 0.823 0.949 1.56 2.33
2.5 0.712 0.715 0.732 0.766 0.786 0.834 0.950 1.06 1.52 2.04
3.0 0.796 0.799 0.815 0.846 0.864 0.907 1.01 1.10 1.45 1.81
4.0 0.886 0.888 0.901 0.925 0.940 0.974 1.05 1.11 1.34 1.53
5.0 0.929 0.931 0.941 0.961 0.973 1.00 1.06 1.11 1.27 1.39
6.0 0.953 0.954 0.963 0.980 0.990 1.01 1.06 1.10 1.22 1.31
7.0 0.967 0.968 0.976 0.990 0.999 1.02 1.06 1.09 1.19 1.26
8.0 0.976 0.978 0.984 0.997 1.00 1.02 1.06 1.09 1.17 1.22
9.0 0.983 0.984 0.990 1.00 1.01 1.02 1.05 1.08 1.15 1.19
10.0 0.987 0.988 0.993 1.00 1.01 1.02 1.05 1.07 1.14 1.17
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straight lines that join the following points in
(log10f , log10hSN5,1 yr

SA ) wheref is measured in Hz:

~24,220.518!, ~23.62,220.737!, ~22.78,221.66!,

~22.61,222.90!, ~22,223.731!. ~5.2!

This white-dwarf noise, converted to our conventions via E
~5.1!, is shown as a thick dashed curve in Figs. 3–7 belo

B. Detectable systems

Of greatest interest, for probing the spacetime geomet
of massive black holes, is the gravitational radiation emit
during the last year of inspiral of a compact object. In pla
ning the LISA mission, it is important to know the detec
ability of these final-year waves, as a function of the s
tem’s parameters: the hole’s massM and spina, the object’s
massm, and the distancer o from Earth. Previous studies o
this issue@39,38# have assumed that the massive hole is n
spinning,a50.

It is straightforward to compute the rms signal to no
ratio (S/N)rms ~averaged over detector and system orien
tions! from Eq. ~2.2!, using the noise amplitudeshn de-
scribed above and the dominantm52 characteristic ampli-
tude hc,2 of Eqs. ~3.16! and ~3.15!, with N and Ė`m taken
12402
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from Tables VIII and IV. In this calculation, the frequenc
f 25V/p ranges from its value at timeT51 y @Eq. ~3.3!
and Table IX# to its value at the isco.

In view of the complexity of the data analysis for the
waves, a signal to noise ratio of about 10 may be required
their detection, and in view of the estimated event rates~Sec.
I!, it is necessary that LISA see out to at leastr o51 Gpc.
Accordingly, we have computed the range of massesm and
M and black-hole spinsa for which (S/N)rms.10 at a dis-
tance r o51 Gpc. This range of ‘‘detectable systems’’
shown in Fig. 1 for LISA without the white-dwarf back
ground ~solid curves! and with the background~dashed
curves! @44#.

Several features of this figure deserve comment:
~i! Inspiraling white dwarfs and neutron stars (m

&1.4M () are barely detectable, with (S/N)rms510, at 1
Gpc. It would be highly desirable to reduce LISA’s desig
noise floor by a factor of 2 or 3, to give greater confidence
detection.

~ii ! For m510M ( inspiraling black holes, the detectab
systems have a wide range of central black-hole mas
104M (&M&107M ( .

~iii ! The upper limit on detectable central-hole massesM
depends strongly on the black-hole spin: form510M ( it
ranges from 23106M ( to 33107M ( without the white-
dwarf background and from 13106 to 1.53107 with the
background.~The spins shown are for no rotationa50, and
1-12
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TABLE X. Norb ~the relativistic correction toNorb, the number of orbits remaining until the isco is reached! as a function of orbital radius

r /r isco and black-hole spin parametera; cf. caption of Table I. Near the isco,T.(8/5)Norb}( r̃ 2 r̃ isco)
2}(Ṽ2Ṽ isco)

2. We think this table is
accurate to about 1 part in 500, except atr /r isco&1.2 where the accuracy is about 1 part in 100. The table was computed from Eqs.~3.18!,

~3.19!, and~3.6!, using a cubic interpolation toĖ(r /r isco) as given in Table II.

r /r isco 20.99 20.9 20.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.001 2.5531026 2.5831026 2.7531026 3.0931026 3.3031026 3.8531026 5.5831026 7.8831026 3.1331025 1.3931024

1.002 1.0231025 1.0331025 1.1031025 1.2331025 1.3231025 1.5431025 2.2331025 3.1431025 1.2531024 5.4731024

1.005 6.3131025 6.3931025 6.8131025 7.6331025 8.1631025 9.5231025 1.3831024 1.9431024 7.6231024 0.00328
1.01 2.4931024 2.5231024 2.6931024 3.0131024 3.2231024 3.7531024 5.4131024 7.6131024 0.00294 0.0123
1.02 9.7331024 9.8531024 0.00105 0.00117 0.00125 0.00146 0.00209 0.00293 0.011 0.04
1.05 0.00566 0.00572 0.00608 0.00678 0.00723 0.00837 0.0119 0.0163 0.057 0.1
1.1 0.0201 0.0204 0.0216 0.0239 0.0254 0.0293 0.0406 0.0547 0.172 0.5
1.2 0.0648 0.0655 0.069 0.0759 0.0803 0.0911 0.122 0.160 0.430 1.0
1.3 0.119 0.121 0.127 0.138 0.146 0.164 0.214 0.272 0.657 1.39
1.4 0.177 0.178 0.187 0.203 0.212 0.237 0.303 0.377 0.837 1.63
1.7 0.336 0.339 0.351 0.376 0.391 0.428 0.523 0.623 1.16 1.95
2.0 0.463 0.465 0.481 0.509 0.527 0.569 0.674 0.780 1.30 2.00
2.5 0.611 0.614 0.630 0.660 0.679 0.722 0.827 0.927 1.38 1.92
3.0 0.708 0.711 0.726 0.755 0.773 0.814 0.911 1.00 1.38 1.80
4.0 0.820 0.822 0.835 0.861 0.876 0.911 0.992 1.06 1.33 1.60
5.0 0.879 0.881 0.892 0.914 0.927 0.957 1.02 1.08 1.28 1.47
6.0 0.914 0.916 0.926 0.944 0.955 0.981 1.04 1.09 1.25 1.39
7.0 0.936 0.938 0.946 0.963 0.973 0.995 1.04 1.09 1.22 1.33
8.0 0.951 0.953 0.960 0.975 0.984 1.00 1.05 1.08 1.19 1.28
9.0 0.962 0.963 0.970 0.983 0.991 1.01 1.05 1.08 1.18 1.25
10.0 0.970 0.971 0.977 0.989 0.996 1.01 1.05 1.08 1.16 1.22
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for near the maximum rotation,a.60.998, that can be pro
duced by spinup via accretion from a disk@45#.!

~iv! The white dwarf background reduces the maximu
detectable black hole mass by about a factor of 2.5, indep
dent of the spin.

FIG. 1. The minimum massmmin that the inspiraling object mus
have in order to produce a signal to noise ratioS/N.10 in its
dominant harmonic,m52, during the last year of its inspiral. Thi
mmin is plotted as a function of the black-hole massM, for various
black-hole spin parametersa. The solid curves are for the LISA
noise spectrum; the dashed curves are for the LISA noise pl
stochastic background noise due to white-dwarf binaries@44#.
12402
n-

~v! The white dwarf background and the black hole sp
have little influence on the minimum detectable massM.
This is because, at lowM, the object travels a large radia
distance in its last year of life, so most of the signal to no

a

FIG. 2. The minimum massmmin that the inspiraling object mus
have in order to produce a signal to noise ratioS/N.10 in its
dominant harmonic,m52, during the last year of its inspiral,and
in the vicinity of the horizon,(2/3)f 2,isco, f 2, f 2,isco. This mmin is
plotted as a function of the black-hole massM, for various black-
hole spin parametersa. The solid curves are for the LISA nois
spectrum; the dashed curves are for the LISA noise plus a stoch
background noise due to white-dwarf binaries@44#.
1-13
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comes from radiir @r isco where the spin is unimportant, an
~by virtue of the smallM ) most comes from frequencies hig
enough that the white-dwarf background is negligible.

For probing the immediate vicinity of the horizon, we a
interested in waves with frequencies, say, (2/3)f 2,isco, f 2
, f 2,isco. Figure 2 shows the range of systems for whi
(S/N)rms.10 in this frequency band, at a distancer o
51 Gpc, during the last year of inspiral. Note that restri
ing attention to this near-horizon frequency range has
duced substantially the set of detectable systems: fom
510M ( , the minimum black-hole mass is increased by

FIG. 3. Gravitational waves from a 1M ( white dwarf or neutron
star spiraling into a 106M ( black hole at 1 Gpc distance from
Earth, as observed by LISA. The thick solid curve is LISA’s rm
noise levelhn( f ) averaged over the sky; the thick dashed curve
an estimate of the stochastic-background ‘‘noise’’ produced
white dwarf binaries. Each thin curve is the modified characteri
amplitudehc8( f ) for a harmonic of the waves, and is labeled ver
cally by the hole’s spin parametera and the harmonic numberm.
The three dots on each curve indicate the waves properties 1 yr~left
dot!, 1 month~center dot! and 1 day~right dot! before reaching the
isco. The dots on the dominant,m52, harmonics are labeled by th

orbital radiusr̃ 5r /M and the number ofm52 wave cycles remain-
ing until the isco. The isco radius is shown at the bottom of e
m52 curve.

FIG. 4. Gravitational waves from a 10M ( black hole spiraling
into a 106M ( black hole at 1 Gpc distance from Earth, as observ
by LISA. For notation see the caption of Fig. 3.
12402
-
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a

factor of ;20–100, depending on the spina. Nevertheless,
there is still a wide range of systems accessible for study

For distances larger thanr o;1 Gpc, cosmological ef-
fects have a significant influence on the signal@46#. At fixed
$a,M (11z),m(11z)% ~where z is the cosmological red-
shift!, the characteristic amplitude and signal to noise ra
scale}1/r oL , wherer oL is the luminosity distance to Earth
The scaling of (S/N)rms with m(11z) is not so simple, be-
cause it influences the waves’ frequency evolution in co
plicated ways that entail the relativistic correction function
For extremely rough estimates, one can use the leading-o
~in Ṽ) expression forhc,2 @Eq. ~3.16!, S/N}hc,2}m1/2/r oL#
to infer mmin(11z)}r oL

2 for the minimum detectable objec
mass at fixeda and M (11z), but for reliable results, one
must repeat the analysis~sketched above! by which we ar-
rived at Figs. 1 and 2.

C. Evolution of the waves during inspiral

To gain insight into the emitted waves and how th
evolve during the inspiral, we have constructed Figs. 3–
Each figure depicts the waves’ evolution for the value
object massm and hole massM ~in solar masses! listed in

s
y
c

h

d

FIG. 5. Gravitational waves from a 100M ( black hole spiraling
into a 106M ( black hole at 1 Gpc distance from Earth, as observ
by LISA. For notation see the caption of Fig. 3.

FIG. 6. Gravitational waves from a 10M ( black hole spiraling
into a 105M ( black hole at 1 Gpc distance from Earth, as observ
by LISA. For notation see the caption of Fig. 3.
1-14
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GRAVITATIONAL WAVES FROM A COMPACT STAR IN . . . PHYSICAL REVIEW D62 124021
bold letters in the upper right corner. The horizontal axis
the waves’ frequencyf and the vertical axis their modifie
characteristic amplitudehc8 . As the inspiral proceeds, th
waves sweep upward in frequency~left to right! along one of
the thin curves. These evolutionary curves are shown
three different values of the black-hole spin,a520.99 ~re-
trograde orbit, short-dashed curves!, a50 ~no rotation, long-
dashed curves! and a510.999 ~prograde orbit, solid
curves!. For each spin, three curves are shown correspon
to the three lowest harmonicsm51,2,3 of the orbital fre-
quency. The values ofa andm for each evolutionary curve
are listed near the vertical end point of the curve. Also sho
in each figure is the rms noise amplitudehn for LISA: a thick
solid curve in the absence of a white-dwarf-binary ba
ground and a thick dashed curve including that backgrou

The range of frequency sweep is strongly dependen
the massesm andM of object and hole. Neglecting the rela
tivistic correction factorT ~which is unimportant for this pur-
pose when the frequency sweep is substantial!, Eq. ~3.3! tells
us that f isco/ f 1 yr}(m/M )3/8(1/M )3/8, where f 1 yr is the fre-
quency 1 yr before reaching the isco. Thus, the greatest
quency sweep is for the least extreme mass ratio and
smallest hole mass,m/M510/105 ~Fig. 6! with f 2 sweeping
from ;0.006 Hz to 0.4 Hz, while the smallest sweep is f
the most extreme mass ratio and largest hole mass,m/M
510/107 ~Fig. 7!, with f 2 sweeping only from;0.0023 to
0.0027 Hz.

The height of a signal curvehc8 above the noise curvehn

is about equal to the signal to noise ratio in an appropr
bandwidthD f : D f 5 f well away from the end point of in-
spiral andD f 52( f 2 f isco) near the end point; cf. the discus
sion of the definition ofhc8 at the end of Sec. II. Near the en
point of inspiralhc8 plunges for three reasons:~i! because of
the narrowing of our chosen bandwidth,~ii ! because the rate
of frequency sweep speeds up due to flattening of the ef
tive potential for the object’s radial motion, and this pr
duces a reduction in the number of cyclesNcyc in a given
bandwidth and reduction inhc8}ANcyc, and~iii ! because, for
large a and prograde orbits, the orbit sinks deep into t
throat of the hole’s embedding diagram, from where wa
have difficulty escaping.

FIG. 7. Gravitational waves from a 10M ( black hole spiraling
into a 107M ( black hole at 1 Gpc distance from Earth, as observ
by LISA. For notation see the caption of Fig. 3.
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On each signal curve there are three solid dots. They la
( f ,hc8) for specific times during the inspiral:T51 yr before
the end point~leftmost dot!, T51 month before the end
point ~center dot!, andT51 day before the end point~right
dot!. Beside the dots for the dominant harmonic,m52, are
shown two numbers that characterize the orbit and wave
that time: the radiusr̃ 5r /M of the orbit in units of the
black-hole mass and the number of gravitational-wave cyc
in the m52 harmonic, from that time until the end point o
inspiral. At the bottom end of eachm52 curve is shown the
radius r̃ of the isco.

It is worthwhile to scrutinize the details of these figure
including the numbers beside the dots. Consider, for
ample, Fig. 4 for am510M ( object ~black hole! spiraling
into aM5106M ( hole. If the big hole is rapidly rotating and
the orbit is prograde so thata510.999, then the dominan
m52 evolutionary curve shows the object, 1 yr before
death, atr̃ 56.80 ~3.4 Schwarzschild radii!, with a signal to
noise ratio ofhc /hn;100, and with 185 000 cycles of grav
tational waves left until death. One month before death,
object is atr̃ 53.05 ~1.53 Schwarzschild radii!, with hc /hn
;50, and with 40 000 cycles left. One day before death, i
at r̃ 51.30 ~compared to 1.18 for the isco!, with hc /hn;10
and with 2320 cycles left. It is impressive how long th
object lingers in the vicinity of the horizon, and how man
wave cycles it emits.

For a nonspinning holea50, the numbers are less im
pressive but still remarkable: the last year is spent spira
from r̃ 59.46 ~4.73 Schwarzschild radii! to the isco atr̃ 56
~3 Schwarzschild radii!, during which 85 000 wave cycle
are emitted andhc /hn drops from;100 to;10 at 1 day and
then to zero.

The large number of wave cycles carry a large amoun
information about the source. We shall discuss this issu
Sec. V D below.

Figures 3–5 illustrate the influence of the mass of
inspiraling object on the signal strength. ForM fixed at
106M ( , 1 yr before merger them52 signal to noise ratios
hc /hn are ;15 for m51M ( , ;100 for m510M ( and
;500 for m5100M ( . This is a moderately faster growt
than our crude estimate}m1/2 in Sec. V B. Notice thathc /hn
drops below 10 1 month before the end point form51M (

and 1 day before the end point form510M ( .
To maximize the exploration of the horizon’s vicinity, w

want the object to spend its entire last year at radiir̃ &10. If
the object is a 10M ( hole, this is the case whenM
*106M ( ; cf. Figs. 4, 6, and 7. ForM,106M ( , such ex-
ploration is debilitated by the large frequency sweep; cf. F
6. We have previously met this issue in Sec. V B.

Figure 7 shows that the white-dwarf-binary background
a serious issue for hole massesM;107M ( , while Figs. 3–6
show that it is relatively unimportant forM&106M ( . We
have previously met this in Sec. V B.

D. Information carried by the waves

As is well known@47#, the waves’ highest accuracy infor
mation is carried by the time evolution of their phase. F

d
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LEE SAMUEL FINN AND KIP S. THORNE PHYSICAL REVIEW D62 124021
circular, equatorial orbits, where there is no orbital prec
sion, the phase evolution will be the same for all the harm
ics as for the orbit itself, and that phase evolution is emb
ied in dF/d ln V5V2/V̇. Equation~3.2! shows this quantity,
at fixed frequency, to be proportional toN/M chirp

2 , where

M chirp5m1/2M1/3 ~5.3!

is the system’s chirp mass. Since a year of observations
typically entail Ncycle;105 cycles of waves, and by th
method of matched filters one can detect a secular shif
one waveform with respect to another by a small fraction
a cycle@47#, the ‘‘raw’’ precision for measuring the evolu
tion of N/M chirp will be of order 1026.

If most of the last year is spent near the horizon, say
frequenciesf / f isco5V/V isco*0.1 ~as will usually be the
case!, then this phase evolution will depend strongly not on
on the chirp mass, but also—through the functi
N( f / f isco)—on the black-hole spin parametera.

This stronga dependence is exhibited in Fig. 8. Even f
a,0.5, where the curvesN( f / f isco) for differenta look very
close together,]N/]a;0.1, thisa dependence translates in
]Ncycles/]a;104, which is huge. Thus, it is reasonable
expect the measured phasing to determine botha andM chirp
to high precision—though a detailed parameter study
needed to be absolutely certain.

The absolute frequencies associated with the obse
phase evolution~e.g., the measured frequency at the end
inspiral! are determined by a combination ofa and the hole’s
massM. This absolute frequency scale presumably will
measured much less accurately than the phasing itself,
still, probably, accurately enough to determine the massM to
a very interesting precision. KnowingM chirp, a, andM, one
can then compute the object’s massm; and from the absolute
amplitudes of the waves one can then infer the distancer o
from the system to Earth.

Poisson@48# has estimated the accuracies with which su
phase-evolution measurements can determineM, h5m/M ,
and a. His estimates are based on an analytic model of
signal in which~translated into our notation! N is expanded

FIG. 8. N the relativistic correction todF/d ln V5V2/V̇ ~the
number of radians of orbital inspiral per unit logarithmic change
orbital or gravitational-wave frequency!, plotted againstf / f isco

5V/V isco ~the ratio of gravitational-wave frequency to the fr
quency when the isco is reached and the inspiral ends!.
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in powers ofV2V isco and only the leading order term i
kept. Poisson assumesM5106M ( , m510M ( , a;0 ~i.e.,
not close to61) and a measurement time of 1 yr. For the
parameters, our Figs. 8 and 4 suggest that, fora&0.5, Pois-
son’s expansion may be accurate to within a few 10’s
percent, but fora*0.9 it is seriously inaccurate. His est
mated measurement accuracies areDa;0.05/r, DM /M
;0.002/r, anddh/h;0.06/r, wherer is the amplitude sig-
nal to noise ratio.

Our Tables VIII and IX forN andT ~the relativistic cor-
rections to the orbital phase evolution ratedF/d ln f and the
time T to the end of inspiral! can serve as the foundation
more definitive computation of the phasing-based meas
ment accuracies.

Information is also carried by the relative amplitudes
the waves’ harmonics. Most promising, we think, are t
amplitude ratios for the first and second harmonics and
the third and second. We plot these ratios in Fig. 9, as p
metric functions of the hole’s spina and the orbital radius
r /r isco. From this plot it is evident that the instantaneo
amplitude ratios will give botha and the instantaneousr /r isco
with moderate accuracy—though only for those systems w
strong enough signals that the weakest of these harmo
m51, stands up strongly above the noise; cf. the sh
dashed curves in Figs. 3–7.

In our idealized case of circular, equatorial orbits, th
harmonic-ratio information is not independent of that fro
the orbital phasing, but it could provide a confirmation of t
phasing conclusions.

In the more realistic case of noncircular, nonequato
orbits, the waveforms will be much richer and there will b
many more parameters to solve for. Our survey of the cir
lar, equatorial case gives some rough indication of the ki
of information one can extract and by what methods.

VI. CONCLUDING REMARKS

In this paper we have tabulated the results of TSN-ba
computations of the waves emitted by an object spiral
into a spinning, massive black hole on a slowly shrinkin

f

FIG. 9. The ratioshc,1 /hc,2 and hc,3 /hc,2 as functions of the
black hole spina and the orbiting object’s radiusr /r isco.
1-16
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GRAVITATIONAL WAVES FROM A COMPACT STAR IN . . . PHYSICAL REVIEW D62 124021
circular, equatorial orbit. Our Tables II–X can serve as
foundation for future mission-definition studies for LISA—
most particularly, for studies of how changes in the miss
design may affect LISA’s ability to detect such inspir
waves, for studies of the accuracies with which LISA’s da
can extract the properties of the source, and for explorat
of possible data analysis algorithms.

Much more important, in the long run, will be the exte
sion of our analysis to nonequatorial and noncircular orb
This extension is urgent, since models of active galactic
clei predict, rather firmly, that the orbits will be nonequat
rial and quite noncircular, and since the earliest possible d
for LISA to fly is less than ten years in the future.

ACKNOWLEDGMENTS

For helpful discussions we thank Fintan Ryan and E
Poisson. For information and advice about the LISA no
curve we thank John Armstrong, Peter Bender, Curt Cut
Frank Estabrook, Robin~Tuck! Stebbins, and Massimo
Tinto, and we thank Bender and Stebbins for providing
with a table of the noise curve from Ref.@39#. For informa-
tion and advice about white-dwarf–binary background no
we thank Peter Bender, Sterl Phinney and Tuck Stebb
This paper was supported in part by NASA grants NAGW
4274, NAG5-6840 and their predecessors, and in view o
future applications to LIGO, by NSF grants PHY-980011
PHY-9996213, AST-9731698 and their predecessors.

APPENDIX: NUMERICAL METHODS

Teukolsky @10# found that the equations describing pe
turbations of the Kerr spacetime could be separated
separate radial and angular equations. For the circular, e
torial orbits studied in this paper, the challenges of solv
the perturbation equations are all associated with the num
cal solution of the radial equation. We have used Green fu
tion methods to solve the radial equation and determine
power radiated down the horizon and to infinity by a parti
in a circular equatorial orbit. The general method of solut
and formulation of the problem is well described in Re
@49#, and we refer the interested reader there for details
this appendix we describe several innovations that can
matically speed the solution of the radial equation compa
to the more conventional methods applied elsewhere.

The Teukolsky radial equation is a second order, ordin
differential equation. In the form given originally by Teuko
sky @10# the equation is stiff and the solution satisfying t
physical boundary conditions is difficult to obtain. Sasa
and Nakamura@11# found, through a local change of var
ables, a form of the radial equation which is not stiff, and
have worked with the radial equation in that form.

In the Sasaki-Nakamura formulation, the homogene
~source-free! radial equation takes the form

F d

dr*
2F~r * !

d

dr*
2U~r * !GX50. ~A1!

Here r * is the so-called tortoise coordinate, which rang
from 2` at the ~outer! horizon to` at spatial infinity.~In
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this appendix, and in this appendix only, we express all
mensioned quantities, such asr andr * , in terms of the black
hole’s massM, eschewing for convenience the superscri
tilde notation used elsewhere in this paper.! The tortoise co-
ordinate can be expressed analytically in terms of the Boy
Lindquist radial coordinater and the location of the inne
and outer horizonsr 1 and r 2:

r * 5r 1
2

r 12r 2
@r 1ln~r 2r 1!2r 2ln~r 2r 2!# ~A2a!

where

~r 2r 1!~r 2r 2!5r 222r 1a2 and ~A2b!

r 1>r 2. ~A2c!

The functionsF andU are parametrized by the angular fr
quency of the perturbationv52p f , the angular momentum
of the spacetimea, and the angular separation constantsl and
m ~with umu< l ). ~For the particular forms ofF andU see
@49#.! For circular, equatorial orbitsv is always an integer
multiple of the orbital angular frequency,v5vm[mV
52p f m.

To obtain the Green function solution to the radial equ
tion with source we need the two solutions to the homo
neous equation corresponding to the physical boundary c
ditions at infinity ~no in-coming radiation! and the horizon
~no up-going radiation!. These solutions are determined n
merically by posing the boundary conditions near infinity
the horizon and integrating the radial equation inward
outward, as appropriate. In the Sasaki-Nakamura variab
obtaining a solution to the radial equation poses no partic
challenge; correspondingly, it is conventional to use
‘‘work-horse’’ integrator ~e.g., Runge-Kutta or Bulirsch
Stoer! to solve the equation. On the other hand, the rad
equation arises from a separation of variables and is par
etrized by the separation constantsl, m andv, corresponding
to the resolved angular and temporal dependence of the
turbation. Consequently, it is necessary to solve the ra
equation separately for every important set of angular mu
poles~l,m! and frequencyv. For very relativistic orbits even
moderate accuracy in the total radiated power may req
solving the radial equation tens of thousands of times
different angular multipoles and harmonics of the orbital f
quency. Consequently, speeding the solution while pres
ing its accuracy is of fundamental importance. In the rema
der of this appendix we address several innovations we h
made in solving this equation that, depending on the det
of the orbit and the desired accuracy of the solution, c
result in a several order of magnitude reduction in the so
tion time compared to a conventional approach.

1. Boundary conditions at the horizon

As one approaches the horizon, the physical solution
the radial function, corresponding to down-going radiatio
leads to the boundary conditions used for the numerical
tegration of one of the homogeneous solutions of the Sas
Nakamura equation:
1-17
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lim
r
*

→2`

XH~r * !5e2 iv2r
* , ~A3a!

lim
r
*

→2`

dXH

dr*
~r * !52 iv2e2 iv2r

* , ~A3b!

where

v25v2
am

2r 1
~A3c!

andr 1 is the radius of the outer horizon in Boyer-Lindqui
coordinates.

As a practical matter the boundary conditions used to
termineXH are posed at some large, negative but finiter * ,
sayR2* ; i.e., ‘‘close to,’’ but not at, the horizon. Using Eqs
~A3! evaluated at finiteR2* for the boundary conditions in
troduces fractional errors of orderd5r 2r 1 into the solu-
tion. This error can be represented as an error in the am
tude of the power radiated down the horizon and
introduction of some small component of radiation up-go
from the horizon. These errors propagate to larger * where
they contribute to the out-going radiation and lead to err
in the calculated power radiated to infinity by the orbitin
particle.

The errors introduced by using Eqs.~A3! when posing
boundary conditions at finite radius can be expressed
power series ind. The coefficients of that expansion can
estimated by solving the equations several times, for dif
entR2* , and using Richardson extrapolation. To estimate
first N terms in the error expansion requiresN11 numerical
solutions of the equations, each beginning with the bound
conditions posed at a differentR2* . Controlling the error re-
quires that the radial equation be solved at least twice
often three or more times at different, largeuR2* u.

To improve the convergence rate of this error estim
and allow us to pose our boundary conditions at smalleruR2* u
we have solved the Sasaki-Nakamura equation analytic
about the point atr * 52`, finding the first corrections ind
to the boundary conditions given by Eqs.~A3!. The im-
proved boundary conditions are given by

XH~r * !5~11dA8!e2 iv2r
* , ~A4a!

dXH

dr*
~r * !5F2 iv2~11dA8!1

dd

2r 1
A8Ge2 iv2r

* ,

~A4b!

where

A85FF~1!1
d

4r 1
2 ~U2

~1!1F1
~1!1G1

~1!!G
3F d2

4r 1
2 1 i e

d

r 1
v2G21

, ~A4c!

d[r 2r 1, ~A4d!

d[r 12r 2, ~A4e!
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F~1![2 iv2

d

2r 1
, ~A4f!

U2
~1![l1

4r 2

r 1
22r 1v2S 2~21d!

d
2

2r 1

d2 v2D
2S 12

d~21d!

r 1
D4r 1

2

d2 v2
2 , ~A4g!

F ~1![2ir 1v2F~0!, ~A4h!

G1
~1![221d/2, ~A4i!

F~0![g8~r 1!/g~r 1!, ~A4j!

g~r ![(
k50

4

gkr
2k, ~A4k!

g0[l~l12!212av~av2m!212iv,
~A41!

g1[8i @3a2v2al~av2m!#, ~A4m!

g2[12@22ai~av2m!1a222a2~av2m!2#,
~A4n!

g3[24a2@211 ia~av2m!#, ~A4o!

g4[12a4, ~A4p!

l[ l ~ l 11!22amv1a2v212. ~A4q!

The numerical solution to the radial equation using the
improved boundary conditions converges upon the true s
tion more quickly than a solution using the boundary con
tions ~A3!. We are thus able to pose approximate horiz
boundary conditions at smalleruR2* u, reducing the domain
over which we must integrate the radial equation and, oft
the number of times we must integrate the equation for e
~v,l,m! in order to obtain a solution of controlled accurac

2. Boundary conditions at spatial infinity

As r * →`, the physical solution for the radial function
corresponding to no in-going radiation, leads to the bound
conditions for the numerical integration of the other critic
solution of the radial equation:

lim
r
*

→`

X`5eivr
* , ~A5!

lim
r
*

→`

dX`

dr*
5 iveivr

* . ~A6!

As with the boundary conditions at the horizon, we co
struct the solutionX` beginning with boundary condition
posed at finiteR1* , not at infinity. Using the asymptotic form
of the boundary conditions to setX and X8 at finite radius
leads to errors of fractional order 1/R1* in the solution,
which can be represented as an error in the amplitude of
out-going radiation and the introduction of some small
going radiation component. These lead, in turn, to errors
the estimated power radiated to infinity and down the ho
1-18
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zon. We can use Richardson extrapolation to estimate
reduce this error; however, as before, the radiated po
must be determined at several different largeR1* in order to
estimate and reduce the error.

To permit a more accurate estimate of the radiated po
from X andX8 evaluated at smallerR1* we have solved the
Sasaki-Nakamura equation analytically about the point
r * 5`, finding the first corrections in 1/R1* to the
asymptotic form of the radial functionX. For finite R1* we
have

X`~r * !5S 11
a1

r Deivr
* , ~A7a!

dX`

dr*
~r * !5 ivS 11

a1

r Deivr
* , ~A7b!

where

a15
g1

g0
1

i

2Fv~a214!12am1
l12

v G . ~A7c!

We use these expressions, evaluated at finite but largeR1* , to
set the boundary condition for the numerical solution of
homogeneous radial equation. We continue to use Rich
son extrapolation to control the error of the solutions; ho
ever, each step in the extrapolation has a greater effect o
error and the extrapolation can take place at smallerR1* .

3. A more suitable choice of variables

The solutionX to the Sasaki-Nakamura equations is
complex oscillatory function. Integrating the equations
rectly for X requires a spatial resolutionDr * less than the
local wavelength ofX,

Dr * &Ud ln X

dr*
U21

. ~A8!

When solving for the radial function corresponding to a hi
temporal frequencyuvu the step-size can become quite sma
with a corresponding increase in the computational time
an accurate solution.

It is advantageous in circumstances like these to refor
late the problem in action-angle variables, whose variatio
both slower and smoother than the variations inX. Writing X
as

X[exp@ iF~r * !# ~A9a!

we define the two real functionsj and f as the imaginary
and real parts ofF:
es
.
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or
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j[R~F! ~A9b!

f[F~F!. ~A9c!

With this substitution the linear Sasaki-Nakamura equat
for complexX becomes a pair of coupled non-linear equ
tions for the realj andf. The equation forj is second order
while the equation forf can be integrated immediately t
obtain a first order equation.~This is expected since the so
lution for X is determined only up to an overall phase.! Both
f and j vary slowly and smoothly compared toX. This is
particularly true as one moves toward either the horizon
spatial infinity, whereX is oscillatory inr * while j is con-
stant andf is linear. Correspondingly, the numerical sol
tion of the equations forf andj require much less resolutio
for the same numerical accuracy, dramatically speeding
integration of the radial equation.

4. Numerical solution of the equations forj and f

The local errors committed by, e.g., a fourth order Run
Kutta integration of the radial equation are proportional
Dr * @5#. Reducing the step-size and increasing the num
of integration steps will decrease the overall solution er
algebraically, i.e., as a fixed power ofDr * , while increasing
the time required for a solution. A higher order compu
tional method will increase the solution accuracy more r
idly. Exponentialconvergence of the solution withDr * can
be obtained if the equations are solved via collocat
pseudo-spectral techniques@50#. In a collocation pseudo-
spectral method the solution for the dependent variable
approximated as a sum over a suitable set of basis functi
The differential equations, evaluated on the approximate
lution at a fixed number of points, then determine the co
ficients in the expansion. For problems with smooth so
tions the solution accuracy increases exponentially with
number of terms in the approximation~and, correspondingly
with the number of evaluations of the differential equatio
which is the analog of the spatial resolution of the integ
tion!. Our final innovation is to solve the radial equatio
using pseudo-spectral techniques. We have chosen a Ch
shev expansion forj andf with Gauss-Lobatto collocation
points. Our experience is that the best performance is
tained if the integration domain@R1,R2# is divided into two
parts, at approximately the peak of the effective potentialR0:
i.e., we use two expansions forf andj, one in the domain
@R1,R0# and the other in the domain@R0,R2#. At R0 we
insist that the two solutions forf andj agree in value, and
that the solutions forj agree also in their first derivative, a
is appropriate for functions described by first order and s
ond order differential equations, respectively.
.
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