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Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane
of a massive, spinning black hole, as observed by LISA
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Results are presented from high-precision computations of the orbital evolution and emitted gravitational
waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial
orbit. The focus of these computations is inspiral near the innermost stable circulatigzbit—more par-
ticularly, on orbits for which the angular velocify is 0.03<Q/Q..<1.0. The computations are based on the
Teuksolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order
unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation
for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to
LISA is presented: Signal to noise rati®N are computed and graphed as functions of the time-evolving
gravitational-wave frequency for the lowest three harmonics of the orbital period, and for various representa-
tive values of the hole’s madd and spina and the inspiraling object's mags, with the distance to Earth
chosento be,=1 Gpc. Thes&/N's show a very strong dependence on the black-hole spin, as wellléls on
and u. Graphs are presented showing the range of{Mea,u} parameter space, for whicBN>10 atr
=1 Gpc during the last year of inspiral. The hole’s saihas a factor of- 10 influence on the range &f (at
fixed u) for which SIN>10, and the presence or absence of a white-dwarf—binary background has a factor of
~3 influence. A comparison with predicted event rates shows strong promise for detecting these waves, but
not beyond about 1 Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest
lowering of LISA’s noise floor. A brief discussion is given of the prospects for extracting information from the
observed waves.

PACS numbse(s): 04.30.Db, 04.80.Nn, 97.60.Lf

I. INTRODUCTION AND SUMMARY massive white dwarf will be disrupted before the end of in-
spiral if M<M .~ (10°=1P)M 5 . Neutron stars and small

Earth-based gravitational-wave detectors operate in thblack holes can never be tidally disrupted in the LISA fre-
high-frequency band;-1-10" Hz, in which lie the waves quency band.
from black holes of masses(2-1F)M, . Space-based de- Sigurdsson and Re¢8] have estimated the event rate for
tectors operate in the low-frequency band10 #-1 Hz, such compact objects to spiral into massive black holes.
populated by waves from black holes of mass“Assuming most spiral galaxies have a central black hole of
~(10°~10° )M, . The high-frequency band is likely to be modest mass+10°My) and a cuspy spheroid,” and for
opened up early in the next decade by the Laser Interferd-very conservative estimates of the black hole masses and
metric Gravitational Wave ObservatoryLIGO-)VIRGO  central galactic densities,” they estimate one inspiral per
network of Earth-based detectof$]. The premier instru- year within 1 Gpc distance of Earth. Most of the inspiraling
ment for the low-frequency band is the Laser Interferometepbjects are likely to be white dwarfs or neutron stars; the
Space AntennglLISA) [2]. inspiral rate for stellar-mass black holga~(6—-10M ]

The European Space Agency has selected LISA as one ofiay be 10 times smaller, about 3 per year out to 3 Gpc,
three “Cornerstone” missions in its “Horizon 2060’ pro- according to Sigurdssdr]. Sigurdsson notes, however, that
gram, NASA has appointed a mission definition team forthe evidence for a recent burst of star formation in the central
LISA, and ESA and NASA are negotiating with each otherregion of our galaxy suggests that normal nucleated spirals
about the possibility of flying LISA as a joint ESA-NASA might have such starbursts everyl®® y, which would en-
mission in the~2010 time frame. hance the stellar-mass black-hole density by a factor b0

One of the most interesting and promising gravitationaland would lead to stellar-mass black-hole inspirals of one per
wave sources for LISA is the final epoch of inspiral of ayear outto 1 Gpc. He notes, further, that if there was just one
compact, stellar-mass object into a massive black hole. In thBOM  black hole in the core of each galaxy now containing
LISA frequency band, where the central hole must hve a ~10°M, central black hole, the result would be several
<10°M, all giant stars and main-sequence stars will benspirals of such 581 holes per year out to a cosmological
tidally disrupted before the end of their inspiral, but compactredshiftz=1, all readily observable by LISA.
objects—white dwarfs, neutron stars, and small black LISA’s observations of waves from such inspirals will
holes—can survive intaciDepending on the hole’s spin, a have major scientific payoffis]:
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(i) Ryan[6] has shown that for circular equatorial orbits, known way to compute is directly from the radiation re-
the waves will carry, encoded in themselves, a map of thection force.

vacuum spacetime metric of the central black hobe,
equivalently, the values of the hole’s multiple momenésd

(iv) A formal expression for the radiation reaction force

has been derived recently by Mirmt al. [14] and by Quinn

he has made a first, very crude, estimate of the precision withnd Wald 15], and several researchers are now working hard

which LISA can extract that map7]. Ryan’s estimate is

to convert this into a practical computational tool for deduc-

quite promising. From the extracted map, one can determinég Q [16]. This will complete the necessary set of tools for

whether the hole’s geometry is that of the Kerr mefrie.
“test the black-hole no hair theoren),’and one can use such
maps to search for other kinds of conjectured massive centrdl
bodies (e.g. soliton stard8] and naked singularitigs It
seems likely that this is true not only for circular geodesic
orbits, but also for generic orbits.

(ii) The observation of many such events will provide

e

computing all details of the emitted waves.

The emitted waves will be so complex and so rich in

fructure and in parameter dependence, that it will require
xtensive computations to give us the full knowledge re-
quired by the LISA mission. Those computations are pro-
ceeding in stages:

(1) Initial quick surveys, based on the Newtonian or

quasi-Newtonian orbits and the quadrupole-moment approxi-

a census of the masses and spins of the massive central holgsation to gravitational-wave emission. Such surveys are the

(i) a census of the masses of the inspiraling objéetsich

foundation for the event rate estimates by Sigurdsson and

depend on and thus tell us about the initial stellar mass fundRees discussed above.
tion and mass segregation in the central parsec of galactic (2) More detailed and accurate surveys for orbits in the

nucle, and (iii) a census of event ratéshich depend on

massive hole’s equatorial plane, using the TSN formalism.

physical processes and on gravitational potentials in the cerBuch surveys do not require computiQg sinceQ vanishes

tral parset.

(i) In active galactic nuclei, the inspiral orbit may be
significantly affected by drag in an accretion disk, producing
both complications in the interpretation of the observations
and opportunities for learning about the disks’ mass distribu-
tion [9].

In planning for the LISA mission, it is important to un-

derstand the details of the waves emitted by such inspirals.

Those details are the most important factors in the choice of
the mission’s noise floor and its duration, and are likely to be
the principal drivers of its data analysis requirements and
algorithms.

The foundations for computing the emitted waves are
nearly all in place:

(i) If the orbit is known, then the waveforms and strengths
can be computed using the Teukolsky10] Sasaki-
Nakamurd 11] (TSN) formalism for first-order perturbations
of Kerr black holes.

(i) The orbital evolution is governed by radiation reaction
(and, if there is a robust accretion disk present, by accretion-
disk drag[9]). Most massive holes are in galaxies with nor-
mal (non-active nuclei, and are thought to be surrounded by
tenuous disks with “advection-dominated accretion flow”
(ADAF). Narayan 12] has shown that accretion drag should
be totally negligible in such ADAF disks, so the orbital evo-

for equatorial orbits. These surveys are of several types:

(a) Studies of the evolution of the orbit's eccentricity.
Such studies have been carried out by Tanaka and co-
workers[17,18 and Cutleret al. [19] for non-spinning
holes, and by Kennefick20] for small eccentricities
around spinning holes. These studies, coupled with esti-
mates of the orbital eccentricities when the objects are far
from the hole and are being frequently perturbed by near
encounters with other objeci&1,3], suggest that, despite
the circularizing effect of radiation reaction, the eccen-
tricities will still typically be large,e=0.3, when the ob-
ject nears the hole’s horizon.

(b) Systematic computations of the details of the emitted
waves and the orbital evolution for circular, equatorial
orbits. This paper presents such computations and a com-
panion papef22] extends them to th&ansition regime
near the innermost stable circular orlfisco), during
which the orbit makes a gradual transition from adiabatic
inspiral to a plunge into the hole.

(c) Computations of the waves’ details and orbital evolu-
tion for elliptic, equatorial orbits. First explorations have
been carried out by Shibata for general ellipti¢i23] and

by Kennefick for small ellipticity[20] (though in the
1970s and 1980s there were studies for equatorial orbits
that plunge from radial infinity into a hole or scatter off a
hole [24]).

(3) Surveys of the orbital evolution and waves for circular

lution is very cleanly governed by radiation reaction. This isorbits out of the hole’s equatorial plane. It is known that
the situation that we analyze in this paper; we ignoreradiation reaction drives circular orbits into circular orbits,

accretion-disk drag. Those few holes that are in active galaahereby causing) to evolve in a manner that is fully deter-
tic nuclei may be surrounded by “thin” or “slim” accretion ined by TSN-formalism calculations & andQ [25—27.

disks, for which Chakrabarti and colleagy®3$ have shown
that accretion-disk drag may be significant.

Therefore, the tools are fully in hand for these surveys, and
Hughed 28] is in the late stages of the first ori&ee Shibata

characterized fully by the rates of change of three “con-knew how, correctly, to compute the orbital evolution, and

stants” of the orbital motion: the orbital enerdy, axial
component of angular momentuly and Carter constar®
[13]. From the emitted wave&omputed via the TSN for-

see Shibatat al. [30] for studies of orbits with very small
inclination angles to the equatorial plane.

(4) Surveys of orbital evolution and waves for the generic,

malism), one can read ofE=dE/dt and L, but the only  most realistic situation: elliptic orbits outside the equatorial
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plane. Such surveys must await a practical computation tech- ,: the mass of the inspiraling object.

nique forQ. M: the black hole’s mass.

For circular, equatorial orbitéthe subject of this papgr n=u/M: the mass ratio, assumesll.
there have been extensive previous calculations, beginning a=S/M?: the hole’s “rotation parameter”; her8 is the
with the pioneering study by DetweilgB1]; for a review see hole’s spin angular momentum.
Mino et al. [18]. However, these previous calculations have : the orbit's Boyer-Lindquist radial coordinate, defined
been motivated by the needs of LIGO-VIRGO observations,, 123321+ 2M/r) = (1/27) X (the object’s orbital cir-
in the high-frequency band, whefig the ratiou/M of object cumferenci

mass to hole mass is not very small, so finite-mass-ratio ef- Tj4e: 3 tilde over a quantity means that it has been made

fects(omitted by the TSN formalisinare important, andi)  gimensionless by multiplying by the appropriate poweNbf
almost all of the observed inspiral signal comes from radiigng when the quantity is «, multiplying by a factor 14.
large compared to the hole’s horizon, so post-Newtonian -~ '

techniques can be used. The previous calculations have fo- r=r/M: the dimensionless radius of the orbit.

cused almost entirely on carrying the post-Newtonian Calcufngﬂégcgri?:]%(;tjs?rggglr d?r?gtlelatgnzlgl(?jgme?jsbrgﬁ) z:\b'lsuirsd us-
lations to very high order, on developing techniques for ac, sing clocks that are far from the hole and at rest with re-

celerating their convergence, and—via comparison with TSN .
calculations—on evaluating their convergent8]. spect to it i i ) )
LISA's regime and needs are quite different from this. For (:=M{: the dimensionless orbital angular velocity,
LISA, most of the signals are likely to come from systemswhich is related tor by Q=1/(r®?+a); cf. Eq. (2.16 of
with extreme mass ratioy/M <1, for which (a) the TSN Ref.[32]. When{} is small (largeT), Kepler's laws dictate
formalism is highly accurate an) the object lingers for a that & = (M/r)¥2= (orbital velocity)?, i.e. (orbital velocity)
very long time in the vicinity of the hole’s horizon before _ s
plunging into it. This means that post-Newtonian calcula- gy pseript iscoa quantity evaluated at the object's inner-

tions are neither needed, nor appropriate. most stable circular orbit‘isco” ), where the inspiral ends
Because of these differences between the LIGO-VIRGO ¢ ) P

regime and the LISA regime, the previous TSN-based stud@"d the plunge begins; for exampley, is the value of) at

ies do not serve LISA’s needs. The purpose of this paper ighe isco. . . . . . .
to begin filling that gap, specifically, ?her}ollowing: pap t: Boyer-Lindquist coordinate time or, equivalently, time

. . . . as measured at “radial infinity” or on Earth.
In this paper we mtrqduce anew set of functm_ﬁsT, & T: the Boyer-Lindquist timeAt until the isco is reached,
to characterize the orbital evolution and the emitted Waves; o the total remaining duration of the inspiral.
These functions are dimensionless and of order unity, and N the number of orbits remaining until the isco is
depend on the hole’s dimensionless spin parameter reac%rgd.

_ 2 ey . .
= (angular momentumM < and on the orbit’'s dimensionless r,: the distance from the binary to Earth.

radiusr =r/M. We give extensive tables of these functions, m: the order of a harmonic of the orbital frequency.

as computed using the TSN formalism. We then use those f,=(m/2m)Q: the frequency of gravitational waves in
tables to compute the evolution of the waves’ frequency anghe mth harmonic.

signal strength in LISA for a number of instructive values of  E: the object’s total energy including rest mass, i.e., the
the parameterd = (hole mass),a= (hole spin parameter), component-p, of its 4-momentum. Note that, because the
w=(object mass), and  m=(wave harmonic  gpject is gravitationally bound to the black hoe< , its

ordey=(wavefrequency(orbital frequency. From these grayitational binding energy i —E>0.
computations we draw a number of conclusions of impor- E=E/u

tance for the LISA mission. . - . o

The paper is organized as follows. Our notation, including E-=: the total rate of emission of energy into gravitational
the dimensionless function¥’, 7, ..., isintroduced in Sec. Waves that go to infinity.
Il. Formulas for computing the dimensionless functions, and Ey : the total rate of emission of energy into gravitational
formulas for the orbital evolution and the waves’ propertieswaves that go down the horizon.
are given in Sec. lll. Tables of the dimensionless functions EGWE E..+Ey: the total rate of emission of energy into
are given and discussed in Sec. IV. Applications to LISA aregravitational waves that go both to infinity and down the
presented in Sec. V. Finally, concluding remarks are given irhole’s horizon, and also, by energy conservation, the rate of

Sec. VL. decrease of the object’s total energy; iBgy=dEgy/dt
= —dE/dt.
L. NOTATION E.n: the total rate of emission of energy into theh

harmonic of the waves that go to infinity.

In this paper we shall adopt the following notation to  hy = V(hm+ 2+ himy %): therms amplitudeof the gravita-
describe the compact object’s inspiral and the gravitationalional waves in harmonim emitted toward infinity, at a time
waves it emits; throughout we use geometrized units; i.e., wa&hen the wave frequency ig,,; here h,.(t,n) and
set G=(Newton’s gravitation constant1l andc=(speed of h«(t,n) are the two waveforms emitted in a directiomnd
light)=1. arriving at the Earth’s distanag,; (- - -) is an average over

124021-3



LEE SAMUEL FINN AND KIP S. THORNE PHYSICAL REVIEW D62 124021

n and over a period of the waves, and the average over timié €énhanced, in comparison to the detector noise, by approxi-
automatically produces a factor 1/2 thereby ma"ﬁiafhz be mately the square root of this quantity. The signal strength is
the mean value of [(amplitude ofh,,.,)?+(amplitude of thus approximately the same as would be produced by a
i, )21 broad-band burst of amplitud®, ,=h m\2f2/f .

hem= ho,m‘/Zfrzn/fm: a characteristic amplitudefor the The factor of 2 inside the square root arises from a more
waves in harmonian; here and throughout this paper the precise definition oh , [34]: The signal to noise ratio pro-

overdot denotes a time derivative. The significanchgfis ~ duced by the wavesnth harmonic, averaged over all pos-
discussed below. sible orientations of the source and the detector, is given by

he m =hemmin[1,y3(1—f/fiscd ]1: A modified char-

acteristic amplitude, discussed below. S \/ he.m(fm) |2
ha(f)= VFSSA(f): LISA's “sky-averaged” rms noise in a N/ f h(fm) dinfr, 2.2
rms

bandwidth equal to frequendyHereﬁA(f) is the one-sided

spectral densitys, (f) for some I|r_1ear_ polarizationt, 'rT' ~ whereh,(f,;,) is the detector’s rms noise at frequerfgy, in
verse averaged over source directions and polarizatiog pangwidth equal to frequency, averaged over the sky.
(“sky-averaged), 1/S5°=(1/S; ). Equation(2.2) serves as a definition df, ,(f). The relation
From the general relatiordEgy/dtdA=(1/16m) ("% hg m(fm) =ho m(fm) V2f2/f, then follows from Eq(29) of
+h?2) for the energy flux in gravitational waves in terms of Ref. [33] (with the factor of 2 changed to 4 to correct an
the time derivatives of the two waveforrfiEq. (10) of Ref.  erron, together with the definition df,, , given above, Eqgs.
[33]], we infer that the rms amplitude and the energy in(2.2) and(2.1), and the evaluation of Fourier transforms us-

harmonicm are related to each other by ing the stationary phase approximation.
When the inspiraling object nears the isco, the bandwidth
21/Emm available for building up its signal in the detector becomes
hom= O (2.))  less thamAf=f. A good measure of this reduced bandwidth
[0}

is Af=2(f—fis.9 (with half of this band below and half
gbove}. This is less tham for 2f .. /3<f<fis,. Correspond-
ingly, the amplitude of the built-up signal is
~hevV2(fiseo— T)/(2fiscd3). Our modified characteristic am-
plitude hg =he mmin[1,y3(1—f /T iscd] takes this sig-

nal reduction into account.

We shall use, as our measure of where the object is in it
orbit, the dimensionless orbital angular frequetywhich
is related to the gravitational-wave frequency in harmanic
by f = (m/27M){). We shall write various fully relativistic,
time-evolving quantities EGW, hem, etc) as the leading-
order (“Newtonian”) term in an expansion inQ®
= (orbital velocity), multiplied by relativistic corrections.
Our notation for the relativistic corrections will be the fol- | this section we shall give leading-ordén Q3 for-
lowing: . mulas for the various time-evolving quantities, as functions
N the correction td)?/Q=(?/(), where the overdotis a of the dimensionless orbital angular frequer2yand black-

time derivative. Note tha2?/Q) =dd/dIn{) is the number of  hole spina, and thereby we shall produce exact definitions of
radiansd® of orbital motion required to producédue to the relativistic correction functions. To make clear the mag-
radiation reactiona fractional changel()/Q) in the orbital nitudes of various quantities, we shall write some of our

Ill. FORMULAS FOR INSPIRAL AND WAVES

frequency. formulas numerically in a form relevant to LIS&or which
Ny the correction tdN,,, (the number of orbits remain- we choose as a fiducial frequenédy=0.01 Hz and as a
ing until the end of the inspiral fiducial source, au=10M black hole spiraling into avi
T: the correction td (the remaining time to the end of the =10°M, hole atr,=1 Gpc distance from EarthwWe shall
inspiral. also write our formulas in a form relevant to the LIGO-
&: the correction tcEgyy (the total energy loss rate VIRGO network of high-frequency detectofwith, as our

fiducial frequency, 100 Hz, and our fiducial source,Md
neutron star spiraling into a 10, hole at 1 Gpc distange

In the Newtonian limit, the orbital radius and orbital an-
gular velocity are linked by the Keplerian relation

E.m: the correction td..., (the energy radiated to infinity
in harmonicm).

Ho m: the correction tdh, , (the rms wave amplitude in
harmonicm).

H¢ m: the correction td, ,, (the characteristic amplitude
in harmonicm). M

The characteristic amplitude f,, needs some explana- r
tion. As the object spirals inward in its orbit, itath har-

monic waves spene- f7/f,=d®/(2wdInf,) cycles inthe  This permits us to write the number of orbital radians spent
vicinity of frequency f,, (where ®, is the harmonic’s near orbital angular frequendy in the following form[cf.
phase. Correspondingly, in a detector that observes theegs.(3.16 of Misner, Thorne, and WheeléMTW) [35], in
waves throughout the inspiral epodti=f,/f,,, the signal which a is our orbital radiug J:

=1

=(MQ)?R=02", 3.0
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TABLE I. Q/Qs, (orbital angular velocity in units of that at the igcas a function of /r ., (Boyer-
Lindquist radius in units of that at the iscand of a (black-hole angular momentum parametdfor a
negative, the hole is counter-rotating relative to the star’s orbitafoositive it is co-rotating. This table was
computed from Eqs3.18), (3.21) and(3.20. Near the isco{)/Qisco is linear inr/rig,.

Mo —0.99 —0.9 —-0.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.001 0.9984 0.9984 0.9985 0.9985 0.9985 0.9986 0.9987 0.9988 0.9990 0.9992
1.002 0.9969 0.9969 0.9969 0.9970 0.9971 0.9972 0.9974 0.9976 0.9981 0.9983
1.005 0.9923 0.9923 0.9924 0.9925 0.9927 0.9929 0.9936 0.9940 0.9952 0.9958
1.01 09846 0.9847 0.9848 0.9852 0.9854 0.9860 0.9872 0.9882 0.9905 0.9916
1.02 0.9696 0.9697 0.97 0.9707 0.9712 0.9723 0.9747 0.9765 0.9811 0.9833
1.05 09269 0.9271 0.9278 0.9294 0.9305 0.9330 0.9386 0.9429 0.9537 0.9590
11 0.8624 0.8626 0.8639 0.8668 0.8686 0.8731 0.8831 0.8909 0.9105 0.9204
12 0.7538 0.7542 0.7563 0.7607 0.7636 0.7707 0.7869 0.7995 0.8326 0.8497
1.3 0.6664 0.6668 0.6693 0.6747 0.6782 0.6868 0.7066 0.7223 0.7644 0.7866
14 0.5947 05951 0.5978 0.6037 0.6075 0.6170 0.6389 0.6565 0.7044 0.7303
1.7 0.4419 0.4424 0.4451 0.4512 0.4552 0.4650 0.4884 0.5077 0.5625 0.5937
2.0 0.3450 0.3455 0.3480 0.3536 0.3572 0.3664 0.3885 0.4069 0.4611 0.4930
2.5 0.2460 0.2463 0.2484 0.2530 0.2560 0.2637 0.2823 0.2982 0.3463 0.3758
3.0 0.1867 0.1870 0.1887 0.1925 0.1950 0.2013 0.2168 0.2302 0.2716 0.2976
4.0 0.1210 0.1212 0.1224 0.1250 0.1268 0.1312 0.1423 0.1520 0.1827 0.2025
5.0 0.08643 0.08659 0.08748 0.08944 0.09076 0.09409 0.1024 0.1097 0.1332 0.1487
6.0 0.06570 0.06582 0.06651 0.06804 0.06907 0.07167 0.07817 0.08391 0.1025 0.1149
7.0 0.05211 0.05221 0.05276 0.05399 0.05482 0.05692 0.06217 0.06682 0.08197 0.09211
8.0 0.04264 0.04271 0.04318 0.04419 0.04488 0.04661 0.05097 0.05483 0.06745 0.07595
9.0 0.03572 0.03579 0.03618 0.03704 0.03762 0.03908 0.04276 0.04603 0.05675 0.06399
10.0 0.03049 0.03055 0.03088 0.03162 0.03212 0.03338 0.03654 0.03936 0.04860 0.05486

Q0 db 51 1 \ _1f|nnismdc1> dnge L 11
O dnQ 967 ¥ o~ | dnQ = 6an 5 g Vo
_1A7XI0 [10Mg|[10°Mg zst . 111X100 [10M|[10M 2/3/\/
- 5/3 M - 573 M orb
(f,/.01 H2 % (f,/.01 H2 s
117 1M [100M g\ 23 11.1 1Mo\ [100M )\ %
- 53 M N 32 = 53 - 2] Now. (3.4
(f,/100 H2) M (f,/100 H2 7 M

HereNis the general relativistic correction, which is unity in

the “Newtonian” limit 1<1. Similarly, the total remaining By integrating Eq(3.2) inward to the isco, one can derive

time until the end of the inspirdEq. (36.17H of MTW] is the following expression for the general relativistic correc-
tions 7 for T and Ny, for Ny, in terms of that\ for 020:

- 51 M T
2567 83 ~
70 8 1 (o MO
213 7=z Q ﬁ =2 (3.5
_ 1.41x10sec (10|v|<D 1M 3 o Que
(f,1.01 H2®3\ & M
0.141sec [1Mg)/100M\?? 5. (8. NdO
_ _ T, (33) Norb:_QSBJNQqsco e , (36)
(f,/100 H2 M M 3 GLE
and the number of orbits remaining until the end of the in-
spiral is The total energy loss raf&q. (3.16 of MTW] is
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TABLE Il. £ (the relativistic correction t&gy,=—E, the total rate of emission of energy into gravita-
tional waves going both to infinity and down the hplas a function of orbital radius/'r s, and black-hole
spin parameter; cf. caption of Table I. This table is accurate to four significant digits; each entry was
computed by summing over enough spheroidal harmonic ordigr§ o produce that accuracy.

Mo —099 —09 —05 00 0.2 0.5 0.8 0.9 0.99  0.999

1.000 1.240 1.233 1.197 1.143 1.114 1.053 0.9144 0.7895 0.4148 0.2022
1.001 1.239 1.232 1.196 1.142 1.114 1.053 0.9140 0.7894 0.4154 0.2032
1.002 1.238 1.231 1.196 1.141 1.113 1.052 0.9137 0.7894 0.4160 0.2041
1.005 1.235 1.228 1.193 1.139 1111 1.050 0.9126 0.7891 0.4177 0.2069
1.01 1.231 1.224 1.189 1.135 1.107 1.047 0.9109 0.7887 0.4207 0.2116
1.02 1.222 1.215 1.181 1.127 1.100 1.041 0.9076 0.7880 0.4263 0.2208
1.05 1.198 1.192 1.159 1.108 1.081 1.025 0.8988 0.7867 0.4434 0.2473

11 1.165 1.159 1.128 1.080 1.055 1.002 0.8876 0.7859 0.4701 0.2881
12 1.115 1.110 1.082 1.039 1.017 0.9706 0.8726 0.7882 0.5182 0.3581
1.3 1.081 1.075 1.051 1.012 0.9913 0.9493 0.8638 0.7920 0.5587 0.4160
14 1.055 1.051 1.028 0.9919 0.9733 0.9348 0.8583 0.7960 0.5930 0.4648
1.7 1.011 1.007 0.9888 0.9591 0.9435 0.9119 0.8524 0.8075 0.6665 0.5723
2.0 0.9893 0.9862 0.9705 0.9448 0.9312 0.9034 0.8530 0.8171 0.7117 0.6411
25 0.9734 0.9709 0.9580 0.9363 0.9248 0.9012 0.8589 0.8302 0.7556 0.7089
3.0 0.9674 0.9653 0.9542 0.9352 0.9250 0.9040 0.8662 0.8415 0.7813 0.7469
4.0 0.9651 0.9634 0.9546 0.9391 0.9306 0.9129 0.8807 0.8597 0.8121 0.7882
5.0 0.9665 0.9651 0.9577 0.9448 0.9371 0.9216 0.8930 0.8742 0.8320 0.8118
6.0 0.9687 0.9675 0.9611 0.9490 0.9430 0.9291 0.9031 0.8858 0.8469 0.8286
7.0 0.9709 0.9699 0.9641 0.9533 0.9480 0.9354 0.9116 0.8955 0.8589 0.8416
8.0 0.9730 0.9720 0.9669 0.9588 0.9522 0.9407 0.9186 0.9036 0.8689 0.8524
9.0 0.9749 0.9740 0.9693 0.9607 0.9558 0.9452 0.9246 0.9105 0.8774 0.8616

10.0 0.9765 0.9757 0.9714 0.9616 0.9589 0.9491 0.9298 0.9164 0.8847 0.8695

32

Eow=—E=¢ n?01%%, (3.7) Eu1=5g 77041, (3.9

where we have tacked on the general relativistic correction
where¢ is the general relativistic correction. factor £,.1 to account for contributions from all the higher-
When the object is at large radismall Q1), the power Order multipoles and to make the formula be valid not just
radiated by the system’s mass multipole momeht<™ is of for Iarge orbital rgdur but for all r=rs,. In Eq. (3.8), tr_\e
2™ 5123 . . ) . numerical factor is 5/28 8/45+ 1/1260, where the big piece
order <0} , while that radiated by its current multipole 8/45 i d | hile the ti . 1/1260 i
LM s of order n202+20+ 1I3 [36]. C g is current quadrupolar, while the tiny piece is
momentsS is of ordery [36]. Correspond-  mass octupolar.
ingly, the powerE.., radiated to infinity in harmonian For harmonicm=2, the lowest allowed multipoles are of
comes almost entirely from the moments of lowest allowedorder | =m, and the mass momemnf>=™ is nonzero so it
ordersl, with the current moments of ordebeing,a priori,  gominates. All other multipolar contributions t&,, are

comparable to the mass moments of order. down from these by at lea§t?®. An expression foE,, can

For m=1, the lowest allowed order for either mass or be derived from Eqs(4.16), (5.27), (2.7), and (2.8) of Ref
current is quadrupolar, since gravitational waves are alwayﬁ%] The result is 45419, (5.21, (.0, ' '

quadrupolar or higher. For circular orbits in the equatorial
plane, them= =1 components of the mass quadrupole mo-

ment vanish, so the dominant waves are current quadrupolar £ _2(m+1)(m+2)(2m+1)! m?m et

s?*1 and mass octupold?=1. All other multipolar contri- ™ (m=1)[2™m!(2m+ 1)1 ]2

butions toE.,; are smaller than these by at leagdr(? _ ,

=?%3 The contributions 08?>** to the radiated powe.., X P Q22 3.9

can be derived from Eq$4.16), (5.27), (2.18a,¢, (2.7) and )

(2.9 of Ref. [36], and those ofl>*1, from Egs. (4.16), where &,,, is the relativistic correction and (@+1)!!
(5.27), (2.7), and(2.8) of [36]. The sum of these dominant =(2m+1)(2m—1)(2m-3)---1. Form=2, 3, and 4, this
contributions is expression reduces to
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TABLE Ill. &, (the relativistic correction tcE..;, the rate of emission of energy into harmonic-1
gravitational waves with frequendy = /27 traveling to infinity as a function of orbital radius/r s, and
black-hole spin parameter cf. caption of Table I. This table is accurate to four significant digits; each entry
was computed by summing over enough spheroidal harmonic orders:p,,., at fixed|m|=1 to produce
that accuracy.

Mo —0.99 —-0.9 -05 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 3.013 2.854 2157 1.320 1.002 0.5530 0.1669 0.06573 0.002762 X1074
1.001 3.010 2.851 2156 1.319 1.001 0.5529 0.1670 0.06584 0.002783 Xx109%
1.002 3.007 2.849 2154 1.318 1.001 0.5528 0.1671 0.06595 0.002805 x1A1%
1.005 2.998 2.840 2.148 1.316 0.9990 0.5525 0.1675 0.06628 0.002869 x1LAY%
1.01 2.984 2827 2139 1.312 0.9964 0.5520 0.1680 0.06683 0.002979 x162%
1.02 2.955 2.800 2.121 1.303 0.9915 0.5510 0.1692 0.06793 0.003204 x1.61%
1.05 2.876 2727 2071 1.280 0.9779 0.5487 0.1729 0.07126 0.003934 x2A04Y
11 2.760 2.619 1.999 1.248 0.9588 0.5462 0.1790 0.07688 0.005322 X5.B6%
1.2 2575 2448 1885 1.198 0.9305 0.5448 0.1916 0.08821 0.008679 0.001525
1.3 2434 2316 1798 1.161 0.9111 0.5465 0.2040 0.09951 0.01272 0.003073
14 2321 2213 1.730 1.133 0.8973 0.5498 0.2162 0.1107 0.01733 0.005180
17 2.085 1994 1588 1.077 0.8719 0.5623 0.2506 0.1421 0.03343 0.01435
20 1940 1860 1.503 1.049 0.8631 0.5786 0.2799 0.1715 0.05138 0.02648
2.5 1.787 1.719 1416 1.023 0.8599 0.6045 0.3237 0.2151 0.08223 0.04991
3.0 1.689 1.629 1.361 1.010 0.8621 0.6272 0.3606 0.2527 0.1122 0.07456
4.0 1567 1518 1.295 0.9987 0.8704 0.6638 0.4191 0.3143 0.1664 0.1222
5.0 1.493 1450 1.255 0.9921 0.8789 0.6918 0.4638 0.3627 0.2128 0.1650
6.0 1.441 1403 1.228 0.9923 0.8865 0.7139 0.4994 0.4020 0.2525 0.2028
7.0 1.403 1.368 1.208 0.9865 0.8930 0.7319 0.5287 0.4346  0.2869 0.2362
8.0 1.373 1.341 1.193 0.9829 0.8987 0.7469 0.5533 0.4624 0.3168 0.2657
9.0 1.349 1.319 1.180 0.9887 0.9035 0.7596 0.5743 0.4863 0.3433 0.2922
10.0 1.329 1301 1.170 1.005 0.9078 0.7706 0.5925 0.5072 0.3669 0.3159

) 32 o 10/3: where the relativistic correction is related to that for the en-
Eo= 5 771 s, ergy by
. 243 __ . Hy 0=\ Enm- 3.1
Es= S 0%, (3.10 om=V&m (312
8192 For the dominantm=2, radiation Eq(3.11H becomes
= _ 205 14/3;
Es= 5677 w4
329M 2
~ - . ho,2: = Q 37_{0,2
Note that the low€) limit of E, is identical to that of the S TIo
total energy los€g [Eq. (3.7)], as it must be since the 3.6x10°2 o M \23  f 213
=2 harmonic dominates at Iow orbital velocities. - = rJ1 Gpc ( 10M5 )| 1PM o o1 Hz) Ho 2
From Eqs(3.8) and(3.9) for E,, and the general relation-
ship (2.1) between the waves’ amplitude and energy, we ob- 3.6X10° % u Mo\ f, |28
tain the following Newtonian-order expression for the ampli- " 14/l Gpc\ Mg/ | 100M 100 H Hoy2-
tude in harmonian:
(3.13
\ﬁ M
hoa= 7?97{0,1’ (3118 From Eqs.(3.1]) for hy,, the definition ofh. ,, in terms of

hom, the relationf,=(m/27)Q, and Eq.(3.2), we obtain

8(m+1)(m+2)(2m+ 1)! m2™-1 the follo_win.g expression for the characteristic amplitude in
ho.m= harmonicm:
‘ (m—1)[2™m! (2m+1)!1 ]?
Mmsy, t 2 (3.11b h 5 7™M, (3.143
X — or m=2, . = , .
ro o,m c,1 m ro c,1
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TABLE IV. &,, (the relativistic correction tcE..,, the rate of emission of energy into harmonic-2
gravitational waves with frequendy =20 /2 traveling to infinity as a function of orbital radius'r ., and
black-hole spin parameter cf. caption of Table I. This table is accurate to four significant digits; each entry
was computed by summing over enough spheroidal harmonic orders=p,,., at fixed|m|=2 to produce

that accuracy.

Misco —0.99 —0.9 -0.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999
1.000 1.029 1.020 0.9734 0.8957 0.8535 0.7653 0.5914 0.4617 0.1656 0.06128
1.001 1.028 1.019 0.9730 0.8954 0.8533 0.7652 0.5915 0.4620 0.1661 0.06170
1.002 1.028 1.019 0.9726 0.8950 0.8530 0.7650 0.5916 0.4624 0.1666 0.06212
1.005 1026 1.017 0.9713 0.8940 0.8522 0.7645 0.5919 0.4633 0.1681 0.06338
1.01 1.024 1.015 0.9693 0.8925 0.8508 0.7638 0.5925 0.4649 0.1707 0.0655
1.02 1.019 1.011 0.9654 0.8894 0.8483 0.7623 0.5937 0.4680 0.1758 0.06975
1.05 1.007 0.9985 0.9548 0.8813 0.8415 0.7587 0.5974 0.4773 0.1909 0.08241
11 0.9900 0.9818 0.9403 0.8704 0.8327 0.7545 0.6037 0.4918 0.2154 0.1038
12 0.9648 0.9574 0.9196 0.8558 0.8214 0.7506 0.6165 0.5178 0.2618 0.1465
13 0.9480 0.9411 0.9063 0.8474 0.8156 0.7504 0.6287 0.5402 0.3039 0.1881
14 0.9364 0.9301 0.8977 0.8427 0.8131 0.7523 0.6400 0.5597 0.3417 0.2277
17 0.9191 0.9138 0.8867 0.8403 0.8151 0.7635 0.6697 0.6050 0.4309 0.3303
2.0 0.9138 0.9092 0.8857 0.8450 0.8227 0.7769 0.6941 0.6382 0.4930 0.4077
2.5 0.9144 0.9106 0.8910 0.8566 0.8377 0.7983 0.7268 0.6791 0.5617 0.4954
3.0 0.9187 0.9154 0.8984 0.8684 0.8517 0.8167 0.7525 0.7097 0.6075 0.5524
4.0 0.9286 0.9260 0.9125 0.8882 0.8745 0.8453 0.7908 0.7542 0.6680 0.6241
5.0 0.9372 0.9351 0.9237 0.9034 0.8914 0.8662 0.8183 0.7857 0.7085 0.6699
6.0 0.9442 0.9424 0.9326 0.9142 0.9043 0.8821 0.8391 0.8095 0.7387 0.7033
7.0 0.9499 0.9483 0.9396 0.9232 0.9145 0.8945 0.8554 0.8282 0.7625 0.7295
8.0 0.9545 0.9531 0.9453 0.9323 0.9226 0.9044 0.8686 0.8434 0.7819 0.7507
9.0 0.9584 0.9571 0.9500 0.9369 0.9293 0.9126 0.8795 0.8560 0.7981 0.7685
10.0 0.9616 0.9604 0.9540 0.9400 0.9349 0.9195 0.8887 0.8666 0.8119 0.7837

- \/5(m+ 1)(Mm+2)(2m+1)!m2™
™ N 127(m—1)[2"m! (2m+1)!1 ]2

771/2M,..,
Q@m=96y - form=2, (3.14h

X
o

where[using Eq.(3.12] the relativistic correction is related
to earlier ones by

Hem= VNEopy (3.15
For m=2, expressiont3.14h becomes
2 771/2M
hc,2: \/;roﬁ—ch,z
1.0x107 % u \¥ M \¥3.01 Hz Ve
Tl Gpc(lOM@ 10PM ¢ f, ) Hez
32x10°%( w \¥ M Y3100 Hz
~ T/l Gpe |\ Mo/ | 100Mg 2 Z) °2
(3.16

All of the relativistic correction functions can be ex-

pressed analytically in terms &f and&,.,. This has almost
been done already: The correction functichsH, , and

H. m have been expressed in terms&fE...,, NV and Qg
by Egs.(3.5), (3.12 and(3.15 respectively. All that remains

is to derive an expression fo¥ in terms of€, and an expres-

sion for Q;ge0.
The derivations are based on the Kerr-metric relations

1—2f+alr3?
\V1-3Ir+2a/r3?

for the object’s total energy in terms of its dimensionless
orbital radiusr [Eq. (5.4.7b of Ref.[37]] and

— M (3.17)

?:(ﬁ—l_a)2/3

(3.18

for its orbital radius in terms of its orbital angular velocity
[Eg. (2.16 of Ref.[32]]. By differentiating these equations
with respect to time and combining with each other and with

Egs.(3.2) and(3.7) for Q% Q) andEgy= —E, we obtain

1 a 5/3
I

8a 3a2)

(3.19

124021-8
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TABLE V. &5 (the relativistic correction td.,5, the rate of emission of energy into harmonic-3 gravi-
tational waves with frequenci;=3Q/27 traveling to infinity as a function of orbital radius/r s, and
black-hole spin parameter cf. caption of Table I. This table is accurate to four significant digits; each entry
was computed by summing over enough spheroidal harmonic orders=p,,., at fixed|m|=3 to produce
that accuracy.

Misce —099 —-09 —-05 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 0.9753 0.9614 0.8926 0.7848 0.7309 0.6292 0.4684 0.3712 0.1573 0.06456
1.001 0.9748 0.9608 0.8922 0.7845 0.7307 0.6291 0.4685 0.3714 0.1577 0.06495
1.002 09742 0.9603 0.8917 0.7842 0.7304 0.6289 0.4685 0.3715 0.1581 0.06534
1.005 09726 0.9587 0.8904 0.7832 0.7296 0.6285 0.4685 0.3719 0.1592 0.06651
1.01 0.9699 0.9561 0.8882 0.7817 0.7284 0.6277 0.4686 0.3725 0.1610 0.06846
1.02 0.9648 0.9512 0.8841 0.7787 0.7260 0.6263 0.4688 0.3739 0.1646 0.07237
1.05 0.9507 0.9376 0.8729 0.7708 0.7197 0.6229 0.4699 0.3780 0.1751 0.08391
11 0.9313 0.9189 0.8576 0.7606 0.7118 0.6191 0.4728 0.3852 0.1919 0.1026
12 0.9033 0.8921 0.8365 0.7476 0.7026 0.6166 0.4806 0.3998 0.2223 0.1374
13 0.8849 0.8747 0.8235 0.7411 0.6990 0.6183 0.4900 0.4141 0.2489 0.1686
14 0.8728 0.8633 0.8157 0.7385 0.6988 0.6223 0.5000 0.4278 0.2722 0.1963
17 0.8562 0.8483 0.8085 0.7424 0.7078 0.6402 0.5301 0.4649 0.3280 0.2627
2.0 0.8534 0.8466 0.8117 0.7531 0.7221 0.6603 0.5580 0.4969 0.3701 0.3114
2.5 0.8588 0.8531 0.8239 0.7737 0.7466 0.6919 0.5986 0.5417 0.4238 0.3710
3.0 0.8676 0.8627 0.8373 0.7929 0.7687 0.7190 0.6324 0.5785 0.4657 0.4156
4.0 0.8851 0.8811 0.8606 0.8243 0.8040 0.7616 0.6850 0.6358 0.5297 0.4822
5.0 0.8993 0.8961 0.8788 0.8477 0.8301 0.7929 0.7240 0.6786 0.5780 0.5320
6.0 0.9106 0.9078 0.8928 0.8658 0.8500 0.8168 0.7541 0.7119 0.6164 0.5717
7.0 0.9198 0.9172 0.9039 0.8787 0.8657 0.8356 0.7780 0.7387 0.6478 0.6045
8.0 0.9272 0.9249 0.9130 0.8902 0.8783 0.8508 0.7975 0.7607 0.6741 0.6322
9.0 0.9334 0.9313 0.9204 0.9004 0.8887 0.8633 0.8137 0.7791 0.6965 0.6559
10.0 0.9386 0.9367 0.9267 0.9087 0.8974 0.8739 0.8275 0.7948 0.7158 0.6766

Whenr is regarded as the functidB.18 of O, this becomes Special case of a nonspinning black hotes 0. Inserting
the desired expression fdv in terms of€ and 0. expression3.19 into Egs.(3.5 and(3.6), and noting from

The innermost stable circular orlisco) is at the location ~ Table Il that in each of these.equatiqﬁsis a much more
?isco where the object’s total energ§1(7) is a minimum or, slowly varying function of thg integration variable than the
equivalently, where) is infinite or, equivalently, wherg/ rest of the mtggrand, we puﬂ_ out of _the integrali.e., we
vanishes; i.e.Fieo is that oot of the quartic equation?  Pororm the first step of an integration by parnd then

- L hich lies b q 1 hq ) perform the integration analytically. The results are
—6r+8ar~'“—3a“=0 which lies between Iwhena=1

and 6(whena=0). An analytic expression far., has been

given by Bardeen, Press, and Teukol$BZ]: 7 147 2 2205 3 19845 4

1- —u— —u?— —u®+
B 172" 8 e T e
risco:3+22_Sgr(a)[(3_zl)(3+zl+222)]1/21 T=—
& 1-3u
Z;=1+(1-ad)™(1+a)"3+(1-a)"7],
7,=(3a%+ 2212 (3.20 4671 = 19845 3(1+2)%u
! - —=u+———uln| ———————| |,
N _ _ - 82 32 (1+1-3u)?
The dimensionless orbital angular velocity at the i€5g.,is
expressed in terms of thisy, by Eq. (3.18: 322
6. - L (320 1[1-4u—48u%+288,° 5
T Fesra E T e o)
(3.23

We note, in passing, approximate analytic formulas for
the relativistic correction§ and N, to the timeT and num- 3 5
ber of remaining orbits\V,, until the end of inspiral—for the  whereu=0?%3=1/r. These formulas agree with the numeri-
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TABLE VI. &,, (the relativistic correction tcE..,, the rate of emission of energy into harmonic-4
gravitational waves with frequendy, =40 /2 traveling to infinity as a function of orbital radius'r ., and
black-hole spin parameter cf. caption of Table I. This table is accurate to four significant digits; each entry
was computed by summing over enough spheroidal harmonic orders=p,,., at fixed|m|=4 to produce
that accuracy.

Misce —099 —-09 —-05 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 0.9393 0.9209 0.8319 0.6981 0.6342 0.5196 0.3574 0.2720 0.1116 0.04673
1.001 0.9387 0.9203 0.8314 0.6978 0.6339 0.5194 0.3574 0.2721 0.1118 0.04699
1.002 0.9380 0.9197 0.8309 0.6975 0.6337 0.5193 0.3575 0.2722 0.1120 0.04726
1.005 09361 0.9179 0.8295 0.6965 0.6329 0.5189 0.3575 0.2725 0.1127 0.04807
1.01 0.9330 0.9149 0.8271 0.6949 0.6317 0.5183 0.3576 0.2730 0.1139 0.04940
1.02 0.9270 0.9091 0.8225 0.6920 0.6295 0.5171 0.3578 0.2739 0.1163 0.05207
1.05 0.9106 0.8935 0.8102 0.6841 0.6235 0.5143 0.3589 0.2770 0.1231 0.05993
11 0.8881 0.8720 0.7936 0.6740 0.6162 0.5115 0.3617 0.2826 0.1342 0.07255
12 0.8560 0.8416 0.7709 0.6618 0.6084 0.5109 0.3697 0.2947 0.1547 0.09588
13 0.8353 0.8221 0.7573 0.6563 0.6064 0.5143 0.3793 0.3073 0.1731 0.1168
14 0.8218 0.8097 0.7496 0.6549 0.6077 0.5199 0.3897 0.3198 0.1898 0.1355
17 0.8035 0.7943 0.7440 0.6627 0.6212 0.5424 0.4217 0.3555 0.2325 0.1821
2.0 0.8021 0.7934 0.7493 0.6774 0.6398 0.5669 0.4523 0.3880 0.2676 0.2190
2.5 0.8109 0.8036 0.7664 0.7037 0.6710 0.6052 0.4977 0.4355 0.3163 0.2683
3.0 0.8232 0.8169 0.7843 0.7286 0.6984 0.6383 0.5365 0.4759 0.3570 0.3086
4.0 0.8466 0.8416 0.8151 0.7687 0.7432 0.6905 0.5983 0.5409 0.4233 0.3737
5.0 0.8656 0.8614 0.8389 0.7987 0.7765 0.7297 0.6450 0.5910 0.4758 0.4257
6.0 0.8807 0.8770 0.8574 0.8227 0.8021 0.7599 0.6818 0.6306 0.5190 0.4689
7.0 0.8928 0.8895 0.8720 0.8412 0.8224 0.7838 0.7115 0.6631 0.5551 0.5055
8.0 0.9026 0.8997 0.8839 0.8546 0.8388 0.8033 0.7359 0.6902 0.5859 0.5371
9.0 0.9108 0.9081 0.8938 0.8673 0.8523 0.8195 0.7563 0.7130 0.6125 0.5647
10.0 0.9177 0.9152 0.9020 0.8759 0.8637 0.8331 0.7737 0.7326 0.6355 0.5889

cal values of7 and Ny, in Tables IX and X below to within ~ researchers have computed LISA noise spectra from those
3% at 6.02T<18 and to within 1% at &T<6.02 andr  ©rfor budgets. It is conventional, for LISA, to characterize
>18. the noise by the sensitivity to p_enodlc_ sources for 1 yr inte-
V. TABLES OF RELATIVISTIC gration time e_md a S|gnal-to-_n0|_se ratio of 5, avefaged over
CORRECTION FUNCTIONS source directions and polarizatiolfssky averaged’). We
_ ) shall denote this quantity bigys, . It is related to the
We shall use two dimensionless parameters to measukky-averaged spectral density introduced in the paragraph
thg ~dlstance of an orbit frqm th_e |scq. the rqmérisco before Eq.(2.1) by hgﬁs,lyr:5 /—WSq Af, whereAf=1/1 yr
=r/risco Of the orbit’s Boyer-Lindquist radial coordinateto s the bandwidth for the one-year integration time; and cor-
its value at the isco and the ratid/Q;..=0/ Qs Of the  respondingly, it is related to the sky-averaged rms noise in a
orbit's angular velocity to that at the isco. The relationshippandwidth equal to frequenci,(f) = ‘/f§ﬁﬁ(f) (Which we
between these two parameters is given by E848, (3.20  yge in this paper by
and(3.21), and is tabulated in Table I.
We have integrated the Teukolsky-Sasaki-Nakamura 1 f
equation for perturbations of a Kerr black hole, to obtain the h,(f)= 3 - hgﬁal ).
functions £(Q), and £.,({)) and we have then used Egs.
(3.18, (3.19, (3.5 and (3.6) to computeN, 7 and Ng,.
These functions are listed in Tables [I-X and some of oux ; ; ;
. : ) . We have deduceld,(f th t dth I f
numerical methods are described in the Appendix. As a by; sﬁ ave deducelty(f) using this equation and the values o

product of these calculations, we have inferred what fractio SN5:1Y'(f) co_mpute_d by various researchdq0-41, we
plot it as a thick solid curve in Figs. 3—7 below.

E(/) Ilzegglh(gritzh:n't?aﬂt rferl;%t?c]:neige;%vs?iﬁs':%%Igo\?lsl down the" |4 s likely that LISA’s performance will be compromised
’ ' at f=0.003 Hz by a stochastic background due to white-
dwarf binaries. The most recent estimate of that stochastic
background is by Hils and Bendpt2]; it agrees satisfacto-
A. LISA noise rily with an estimate by Webbink and Hd43]. We have
Tentative error budgets for LISA are spelled out in Tablesused a simple piecewise straight-line fit to the logarithm of
4.1 and 4.2 of the LISA Pre-Phase-A Rep[88]. Various the Hils-Bender white-dwarf-background noise curve:

(5.9

V. APPLICATIONS TO LISA

124021-10
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TABLE VILI. EH/EGW (the ratio of the energy radiated down the hole to the total energy ragiseal function of orbital radius/r ;s
and black-hole spin parameter cf. caption of Table I. This table is accurate to three significant digits; each entry was computed by
summing over enough spheroidal harmonic ordém) to produce that accuracy.

r/rns —0.99 -0.9 -05 0.0 0.2 0.5 0.8 0.9 0.99 0.999
1.000 0.0129 0.0118 0.00757  0.00319 0.00162—-0.00222 —0.0166 —0.0341 —0.0942 -0.129
1.001 0.0129 0.0118 0.00753  0.00318 0.00161-0.00222  —0.0165 —-0.0341 —0.0942 -0.129
1.002 0.0128 0.0117 0.00750  0.00316 0.00160—-0.00222  —0.0165 —0.0341 —0.0942 -0.129
1.005 0.0127 0.0116 0.00740  0.00310 0.00156—0.00224 —0.0165 —0.0340 —0.0941 -0.129
1.01 0.0124 0.0114 0.00723  0.00301 0.00149-0.00225 —0.0164 —0.0339 —0.0941 -0.129
1.02 0.0120 0.0109 0.00691  0.00284 0.00137-0.00228  —0.0163 —0.0337 —0.0939 -0.129
1.05 0.0107 0.00975  0.00606  0.00239 0.00106—0.00233  —0.0159 —0.0330 —0.0930 —0.128
1.1 0.00898  0.00814  0.00493  0.00182 &9D 4 —0.00234 —0.0151 —0.0316 —0.0906 —0.125
1.2 0.00651 0.00586  0.00339  0.00111 X104 —0.00219 —0.0137 —0.0285 —-0.0834 —0.116
1.3 0.00489  0.00438  0.00244  7:210% 7.09<10° —0.00198 —0.0122 —0.0254 —-0.0764 —0.107
1.4 0.00378 0.00336  0.00182  4:830 4 —2.80x10 ° —0.00177 —0.0109 —0.0227 —0.0692 —0.0980
1.7 0.00198 0.00174  8.8010 “ 1.85<10 % —1.08<10" % —0.00125 —0.00781 —0.0164 —0.0519 —0.0754
2.0 0.00118 0.00103  5.6010 * 8.52x10°° —1.01x10 % —9.03x10°* —0.00570  —0.0123 —0.0396 —0.0586

2.5 6.03x10°% 5.22x10™% 2.41x10° % 3.07x10°° —7.20x10"°> —5.60x10"* —0.00359 —0.00792 —0.0264 —0.0401
3.0 3.55<10 %4 3.05x10 * 1.37x10 4 1.37x10 ® —5.01x10°® —3.71x10°% —0.00241 —0.00539 —0.0186 —0.0287
4.0 15810 % 1.35x10 “ 5.88<10°° 3.94x10° 6 —2.64x10° —1.89x10 % —0.00125 —0.00284 —0.0103 —0.0164
50 8.62<107° 7.34x10°° 3.13x107° 1.53x10 % —1.55x10° %> —1.10x10 % —7.41x10"* —0.00169 —0.00637 —0.0103
6.0 5.29%10°° 450105 1.90x107° 7.13x10° 7 —9.97x10 6 —7.02x10° %> —4.77x10"* —0.00101 —0.00424 —0.00693
7.0 3.5210°° 299105 1.25x10°° 3.75x10 7 —6.82x10 6 —4.79x10 %> —3.27x10 % —7.56x10 % —0.00297 —0.00491
8.0 2.48<10°° 2.10x10°° 8.74x10°® 2.16x10 7 —4.89x10 % —3.43x10° —2.35x10 4 —5.46x10 4 —0.00217 —0.00362
9.0 1.8210°° 1.54x10 5 6.40x10°° 1.33x10 7 —3.65x10 ® —2.55x10 % —1.76x10 * —4.09x10 * —0.00164 —0.00275
10.0 1.3%10°° 1.17x10°° 4.85x10 ® 8.63x10°® —2.80x10 ® —1.96x10 ® —1.35x10 % —3.15x10 % —0.00127 —0.00214

TABLE VIIIl. N (the relativistic correction t€2%/Q =dd/dInQ, the number of radians of orbital inspiral per unit fractional change of
orbital angular velocity, as a function of orbital radius'r s, and black-hole spin parametarcf. caption of Table I. This table is accurate

to four significant digits, and it was computed using E2j19 and& from Table Il. Near the iscalVocr —T g2 0 — Qigeo-

T isco —0.99 -0.9 -0.5 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 0.0 0.0 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.001 0.001966  0.001995 0.002150 0.002471  0.002685  0.003262  0.005188 0.007911  0.03914  0.1960
1.002 0.003927 0.003984  0.004294  0.004932 0.005360 0.006510 0.01034 0.01575 0.07756  0.3844
1.005 0.009777  0.009917  0.01068 0.01227 0.01332 0.01616 0.02560 0.03888 0.1886 0.9077

1.01 0.01942 0.01969 0.02120 0.02432 0.02639 0.03195 0.05037 0.07612 0.3605 1.656
1.02 0.03831 0.03883 0.04176 0.04778 0.05177 0.06246 0.09754 0.1460 0.6605 2.785
1.05 0.09192 0.09314 0.09979 0.1134 0.1224 0.1462 0.2224 0.3244 1.296 4.447
11 0.1721 0.1742 0.1857 0.2090 0.2242 0.2639 0.3865 0.5431 1.836 4.964
12 0.3043 0.3076 0.3251 0.3599 0.3824 0.4397 0.6066 0.8039 2.133 4.385
1.3 0.4078 0.4116 0.4321 0.4725 0.4983 0.5628 0.7424 0.9427 2.115 3.725
14 0.4901 0.4941 0.5160 0.5589 0.5857 0.6524 0.8315 1.022 2.026 3.228
1.7 0.6564 0.6603 0.6820 0.7239 0.7498 0.8119 0.9671 1.117 1.761 2.373
2.0 0.7537 0.7574 0.7771 0.8147 0.8378 0.8923 1.022 1.140 1.589 1.965
2.5 0.8452 0.8482 0.8644 0.8955 0.9142 0.9579 1.057 1.142 1.427 1.637
3.0 0.8949 0.8975 0.9110 0.9370 0.9526 0.9886 1.068 1.134 1.338 1.477
4.0 0.9445 0.9463 0.9564 0.9757 0.9873 1.014 1.071 1.116 1.245 1.324
5.0 0.9673 0.9688 0.9768 0.9917 1.001 1.022 1.067 1.101 1.195 1.250
6.0 0.9797 0.9809 0.9874 1.001 1.008 1.025 1.061 1.089 1.164 1.207
7.0 0.9870 0.9880 0.9936 1.005 1.011 1.025 1.056 1.080 1.143 1177
8.0 0.9916 0.9925 0.9973 1.005 1.012 1.025 1.052 1.072 1.126 1.156
9.0 0.9947 0.9954 0.9998 1.008 1.013 1.024 1.048 1.066 1114 1.140
10.0 0.9968 0.9975 1.001 1.011 1.013 1.023 1.045 1.061 1.104 1.127
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TABLE IX. 7 (the relativistic correction td@, the time remaining until the isco is reached a function of the orbital radiugr;., and

black-hole spin parameter cf. caption of Table I. Near the isca= (8/5)Nom> (T — Tisce) 2> (Q — Q59 2. We think this table is accurate to
about 1 part in 500, except atrs..<1.2 where the accuracy is about 1 part in 100. The table was computed frorBE@s. (3.19, and

(3.5), using a cubic interpolation t6(r/r ) as given in Table II.

Mo —0.99 -0.9 -05 0.0 0.2 0.5 0.8 0.9 0.99 0.999
1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.001 4.0%10 % 4.13x10°° 4.40x10°° 4.93x10° % 5.28<10°® 6.16x10°°% 8.93x10° 6 1.26x10°° 5.01x10°° 2.22x10°*
1.002 1.6X10°° 1.65<10°° 1.75x10°° 1.97x10°° 2.10x10°° 2.46x10° 3.56x10 ° 5.02<10°° 1.99x10 * 8.75x10 *
1.005 1.0K10 % 1.02<10°% 1.09x10 4 1.22x10 % 1.30x10 % 1.52x10 %4 2.20x10 * 3.10x10 % 0.00122 0.00525
1.01 3.9K%10 % 4.02<10°% 4.28<10°% 4.80x10 * 5.13<10 % 5.98<10°4 8.62x10 * 0.00121 0.00470 0.0196

1.02 0.00154 0.00156 0.00166 0.00186 0.00199 0.00231 0.00332 0.00464 0.0175 0.0692
1.05 0.00883 0.00893 0.00949 0.0106 0.0113 0.0131 0.0186 0.0256 0.0897 0.309
1.1 0.0307 0.0311 0.0329 0.0366 0.0389 0.0448 0.0623 0.0842 0.266 0.778
1.2 0.0950 0.0960 0.101 0.112 0.118 0.134 0.181 0.237 0.642 1.53
1.3  0.169 0.171 0.180 0.196 0.207 0.233 0.306 0.390 0.947 2.00
1.4  0.243 0.245 0.257 0.279 0.293 0.327 0.420 0.524 1.17 2.26
1.7  0.432 0.435 0.452 0.484 0.503 0.550 0.674 0.802 1.49 2.45
2.0 0.568 0.571 0.589 0.624 0.645 0.696 0.823 0.949 1.56 2.33
25  0.712 0.715 0.732 0.766 0.786 0.834 0.950 1.06 1.52 2.04
3.0 0.796 0.799 0.815 0.846 0.864 0.907 1.01 1.10 1.45 1.81

40 0.886 0.888 0.901 0.925 0.940 0.974 1.05 1.11 1.34 1.53

50 0.929 0.931 0.941 0.961 0.973 1.00 1.06 1.11 1.27 1.39

6.0 0.953 0.954 0.963 0.980 0.990 1.01 1.06 1.10 1.22 1.31

7.0  0.967 0.968 0.976 0.990 0.999 1.02 1.06 1.09 1.19 1.26

8.0 0.976 0.978 0.984 0.997 1.00 1.02 1.06 1.09 1.17 1.22

9.0 0.983 0.984 0.990 1.00 1.01 1.02 1.05 1.08 1.15 1.19
10.0 0.987 0.988 0.993 1.00 1.01 1.02 1.05 1.07 1.14 1.17
straight lines that join the following points in from Tables VIII and IV. In this calculation, the frequency

f,=Q/ ranges from its value at tim&=1 y [Eq. (3.3
and Table IX to its value at the isco.
In view of the complexity of the data analysis for these

(logsof ,l0g10hSNs 1 y) Wheref is measured in Hz:

(—4,-20.518, (—3.62-20.73%, (—2.78;-21.66, waves, a signal to noise ratio of about 10 may be required for
their detection, and in view of the estimated event réfes.
(—2.61-2290, (—2,—23.73). (5.2 1), it is necessary that LISA see out to at leagt1 Gpc.

Accordingly, we have computed the range of massesnd

This white-dwarf noise, converted to our conventions via EqM and black-hole spina for which (S/N),s>10 at a dis-

(5.1), is shown as a thick dashed curve in Figs. 3—7 belowtancer,=1 Gpc. This range of “detectable systems” is
shown in Fig. 1 for LISA without the white-dwarf back-

ground (solid curve$ and with the backgrounddashed
_ _ _ ~curves [44].

Of greatest interest, for probing the spacetime geometries Several features of this figure deserve comment:
of massive black holes, is the gravitational radiation emitted (i) Inspiraling white dwarfs and neutron starsu (
during the last year of inspiral of a compact object. In plan-<1.4m ) are barely detectable, withS(N),,=10, at 1
ning the LISA mission, it is important to know the detect- Gpc. It would be highly desirable to reduce LISA’s design
ability of these final-year waves, as a function of the sysmoise floor by a factor of 2 or 3, to give greater confidence of
tem’s parameters: the hole’s madsand spina, the object’s  detection.
massu, and the distance, from Earth. Previous studies of  (ji) For x=10M, inspiraling black holes, the detectable
this issug 39,38 have assumed that the massive hole is nonsystems have a wide range of central black-hole masses:
spinning,a=0. 10'Mo=<M=<10'Mg.

Itis straightforward to compute the rms signal to noise (jii) The upper limit on detectable central-hole masdes
ratio (S/N)ms (averaged over detector and system orientagepends strongly on the black-hole spin: for=10M, it
tions from Eq. (2.2), using the noise amplitudels, de-  ranges from X10°My to 3X10'M, without the white-
scribed above and the dominamt=2 characteristic ampli-  dwarf background and from 310 to 1.5x10” with the
tude h; , of Egs.(3.16 and (3.19, with A" and &, taken  background(The spins shown are for no rotatien=0, and

B. Detectable systems
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TABLE X. N,y (the relativistic correction tdl,,,, the number of orbits remaining until the isco is reagresa function of orbital radius

r/risco @and black-hole spin parametaycf. caption of Table I. Near the isc@z= (8/5) N> (T — T iscd) 2% (1 — Qiseo) 2. We think this table is
accurate to about 1 part in 500, except &t¢.,<1.2 where the accuracy is about 1 part in 100. The table was computed frontBEd.

(3.19, and(3.6), using a cubic interpolation t&(r/r ., as given in Table II.

Mlisw —0.99 -0.9 -05 0.0 0.2 0.5 0.8 0.9 0.99 0.999

1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.001 2.55%10°°% 2.58<10°% 2.75<10°® 3.09x10°°® 3.30x10 % 3.85x10°® 558<10°® 7.88x10°° 3.13x10°° 1.39x10°*
1.002 1.0x10°% 1.03x10°° 1.10x10°° 1.23x107° 1.32x10°° 1.54x10°° 2.23x107° 3.14x10°° 1.25x10 % 5.47x10*
1.005 6.3%X10°° 6.39x10°° 6.81x10°° 7.63x107° 8.16x10 ° 9.52x10 % 1.38<10 % 1.94x10°* 7.62x10°* 0.00328
1.01 2.4%10°% 2.52x10% 2.69x10°% 3.01x10 % 3.22x10 % 3.75x10 % 5.41x10°% 7.61x10°% 0.00294 0.0123

1.02 9.7%10 % 9.85x10°* 0.00105 0.00117 0.00125 0.00146 0.00209 0.00293 0.011 0.0435
1.05 0.00566 0.00572 0.00608 0.00678 0.00723 0.00837 0.0119 0.0163 0.057 0.196
11 0.0201 0.0204 0.0216 0.0239 0.0254 0.0293 0.0406 0.0547 0.172 0.502
1.2 0.0648 0.0655 0.069 0.0759 0.0803 0.0911 0.122 0.160 0.430 1.03
13 0.119 0.121 0.127 0.138 0.146 0.164 0.214 0.272 0.657 1.39
1.4 0.177 0.178 0.187 0.203 0.212 0.237 0.303 0.377 0.837 1.63
1.7 0.336 0.339 0.351 0.376 0.391 0.428 0.523 0.623 1.16 1.95
2.0 0.463 0.465 0.481 0.509 0.527 0.569 0.674 0.780 1.30 2.00
2.5 0.611 0.614 0.630 0.660 0.679 0.722 0.827 0.927 1.38 1.92
3.0 0.708 0.711 0.726 0.755 0.773 0.814 0.911 1.00 1.38 1.80
4.0 0.820 0.822 0.835 0.861 0.876 0.911 0.992 1.06 1.33 1.60
5.0 0.879 0.881 0.892 0.914 0.927 0.957 1.02 1.08 1.28 1.47
6.0 0.914 0.916 0.926 0.944 0.955 0.981 1.04 1.09 1.25 1.39
7.0 0.936 0.938 0.946 0.963 0.973 0.995 1.04 1.09 1.22 1.33
8.0 0.951 0.953 0.960 0.975 0.984 1.00 1.05 1.08 1.19 1.28
9.0 0.962 0.963 0.970 0.983 0.991 1.01 1.05 1.08 1.18 1.25
10.0 0.970 0.971 0.977 0.989 0.996 1.01 1.05 1.08 1.16 1.22
for near the maximum rotatiom= *+0.998, that can be pro- (v) The white dwarf background and the black hole spin
duced by spinup via accretion from a digk5].) have little influence on the minimum detectable mass

(iv) The white dwarf background reduces the maximumThis is because, at lowl, the object travels a large radial
detectable black hole mass by about a factor of 2.5, indepermlistance in its last year of life, so most of the signal to noise
dent of the spin.

1000
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1000
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100

50 |
l'lmin
10t
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, ‘ , ‘ ‘ , 105 106 107 108
108 104 105 106 107 108 M

FIG. 2. The minimum masg,, that the inspiraling object must

FIG. 1. The minimum masg,, that the inspiraling object must have in order to produce a signal to noise raBitN>10 in its
have in order to produce a signal to noise rgf#iN>10 in its dominant harmonicn=2, during the last year of its inspirand
dominant harmonicm=2, during the last year of its inspiral. This in the vicinity of the horizon(2/3)f; sce<f2<f2isco- TS tmin IS
Mmin IS plotted as a function of the black-hole magsfor various  plotted as a function of the black-hole mads for various black-
black-hole spin parametes The solid curves are for the LISA hole spin parametera. The solid curves are for the LISA noise
noise spectrum; the dashed curves are for the LISA noise plus spectrum; the dashed curves are for the LISA noise plus a stochastic
stochastic background noise due to white-dwarf bingddes. background noise due to white-dwarf binarjdg].
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FIG. 5. Gravitational waves from a 18D, black hole spiraling

FIG. 3. Gravitational waves from aM white dwarf or neutron  jnto a 16M, black hole at 1 Gpc distance from Earth, as observed
star spiraling into a 1M, black hole at 1 Gpc distance from by LISA. For notation see the caption of Fig. 3.

Earth, as observed by LISA. The thick solid curve is LISA’s rms

noise levelh,(f) averaged over the sky; the thick dashed curve is . .

an estimate of the stochastic-background “noise” produced byfactor of ~20-100, depending on the spin Nevertheless,

white dwarf binaries. Each thin curve is the modified characteristidhere is still a wide range of systems accessible for study.

amplitudeh(f) for a harmonic of the waves, and is labeled verti- ~ For distances larger than,~1 Gpc, cosmological ef-

cally by the hole’s spin parametarand the harmonic numben.  fects have a significant influence on the sigi#]. At fixed

The three dots on each curve indicate the waves propertiedidfyr {a,M(1+2z),u(1+2)} (where z is the cosmological red-

dot), 1 month(center dotand 1 day(right dot before reaching the shift), the characteristic amplitude and signal to noise ratio

isco. The dots on the dominamh= 2, harmonics are labeled by the scalex1/r, , wherer, is the luminosity distance to Earth.

orbital radius =r/M and the number ah= 2 wave cycles remain- The scaling of §/N) s with ©(1+2) is not so simple, be-

ing until the isco. The isco radius is shown at the bottom of eacrcause it influences the waves’ frequency evolution in com-

m=2 curve. plicated ways that entail the relativistic correction functions.

For extremely rough estimates, one can use the leading-order

comes from radir >r s, where the spin is unimportant, and (in }) expression foh., [EQ. (3.16), S/NOChC’ZOC,LLUZ/roL]

(by virtue of the smalM) most comes from frequencies high to infer umn(1+2z)>r2, for the minimum detectable object

enough that the white-dwarf background is negligible. mass at fixeda and M (1+z), but for reliable results, one
For probing the immediate vicinity of the horizon, we are must repeat the analysisketched abovyeby which we ar-

interested in waves with frequencies, say, (243%.<f> rived at Figs. 1 and 2.

<f,isco- Figure 2 shows the range of systems for which

(S/N)ims>10 in this frequency band, at a distancg C. Evolution of the waves during inspiral

=1 Gpc, during the last year of inspiral. Note that restrict- L ) )

ing attention to this near-horizon frequency range has re- 10 9ain insight into the emitted waves and how they

duced substantially the set of detectable systems:yfor €VOIVe during the inspiral, we have constructed Figs. 3-7.

=10M o, the minimum black-hole mass is increased by aEa_Ch figure depicts the waves: evolution for th_e val_ue of

object massu and hole mas#$/ (in solar massedlisted in

0.46 L0 1mo 6 -19f o
85,000 Neye =185,000 3.05 10/10 244 227 55 10/1
19 L5%00e, ) 40,90 253,002.286,000 gi'ypp 460
223,000 158 139
34,700 44,3007 o8
10.6e o
é: _-20) "1-,810‘.‘
& 20 < ’
)
o e
o o
D .
(o] ©
-21 - -2t @
-8 Lo b, g Ps | N,
0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.005 0.01 0.05 01 05 1
f; Hz ﬁ HZ
FIG. 4. Gravitational waves from a M, black hole spiraling FIG. 6. Gravitational waves from a M), black hole spiraling
into a 1M, black hole at 1 Gpc distance from Earth, as observednto a 18M, black hole at 1 Gpc distance from Earth, as observed
by LISA. For notation see the caption of Fig. 3. by LISA. For notation see the caption of Fig. 3.
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On each signal curve there are three solid dots. They label
(f,h{) for specific times during the inspirali=1 yr before
the end point(leftmost doj, T=1 month before the end
point (center dot, andT=1 day before the end poiritight
dot). Beside the dots for the dominant harmonit=2, are
shown two numbers that characterize the orbit and waves at

that time: the radiug=r/M of the orbit in units of the
black-hole mass and the number of gravitational-wave cycles
in the m=2 harmonic, from that time until the end point of
inspiral. At the bottom end of eaah=2 curve is shown the

radiusr of the isco.
It is worthwhile to scrutinize the details of these figures,
including the numbers beside the dots. Consider, for ex-

FIG. 7. Gravitational waves from a M), black hole spiraling f”‘mple, Fig. 4 for gu=10M object(black holg spiraling

into a 10M, black hole at 1 Gpc distance from Earth, as observedNt0 aM = 10°M, hole. If the big hole is rapidly rotating and
by LISA. For notation see the caption of Fig. 3. the orbit is prograde so that=+0.999, then the dominant

m=2 evolutionary curve shows the object, 1 yr before its

bold letters in the upper right corner. The horizontal axis isdeath, atr =6.80 (3.4 Schwarzschild radii with a signal to
the waves’ frequency and the vertical axis their modified noise ratio ofh,/h,~100, and with 185 000 cycles of gravi-
characteristic amplitudé.. As the inspiral proceeds, the tational waves left until death. One month before death, the
waves sweep upward in frequen@gft to right) along one of  gpject is aff =3.05 (1.53 Schwarzschild radiiwith h/h,,

the thin curves. These evolutionary curves are shown for_5g and with 40 000 cycles left. One day before death, it is
three different values of the black-hole spay —0.99 (re- atT=1.30 (compared to 1.18 for the isgowith h/h,~ 10
trograde orbit, short-dashed curyes=0 (no rotation, long- and Wi"[h 2320 cycles Iefi. It is impressive hgw r;ong the

dashed Fcurveshanq a; +0.999 (prograk?e orbit, solidd' object lingers in the vicinity of the horizon, and how many
curves. For each spin, three curves are shown correspondi ave cycles it emits.

to the three lowest harmonice=1,2,3 of the orbital fre- For a nonspinning hola=0, the numbers are less im-
uency. The values af and m for each evolutionary curve ; . - ; "
gre Iis’?led near the vertical end point of the curve. A>I/so showrpresslve but still remarkable: the last year is spentNSplrallng

in each figure is the rms noise amplitudiefor LISA: a thick from r=9.46 (4‘.73 Schwar;schﬂd _radlto the isco ar =6

solid curve in the absence of a white-dwarf-binary back-3 Schwarzschild radij during which 85000 wave cycles

ground and a thick dashed curve including that backgrounc?'® emitted andi. /h, drops from~100 to~10 at 1 day and
The range of frequency sweep is strongly dependent of'€" O Z€ro.

the masseg andM of object and hole. Neglecting the rela- . The '?fge number of wave cycles carry a large amount qf

tivistic correction factofl (which is unimportant for this pur- information about the source. We shall discuss this issue in

; Sec. V D below.
ose when the frequency sweep is substantz. (3.3 tells . . .
Es thatfigeo/f1 roc((,qu/M)g‘/’s‘(llM)%’8 wher:)fl . ig th)e fre- Figures 3-5 illustrate the influence of the mass of the
i y ’ y

uency 1 yr before reaching the isco. Thus, the greatest fré'rjspiraling object on the signal stre_ngth. Pt fixed "?‘t
d y-y g g °M o, 1 yr before merger then=2 signal to noise ratios

guency sweep is for the least extreme mass ratio and tI-\J$

: ; : /h, are ~15 for u=1M ~100 for u=10M and
smallest hole masg/M =10/1C (Fig. 6) with f, sweeping ''c’’'n B H= Mo, M ©
from ~0.006 Hz to 0.4 Hz, while the smallest sweep is for 200 for 1=100M¢ . This is a moderately faster growth

: 12 :
the most extreme mass ratio and largest hole massl than our crude estimatex < in Sec. V B. Notice thah;/h,

—10/10 (Fig. 7, with f : v f 0.0023 t drops below 10 1 month before the end point for 1M
0.0027 I_(|Z'Ig 7). with T, sweeping only from- ° and 1 day before the end point far=10Mg .

The height of a signal curvi! above the noise curve, To maximize the exploration of the horizon’s vicinity, we
C . . . ~ ..
is about equal to the signal to noise ratio in an appropriaté/ant the object to spend its entire last year at raiil0. If
bandwidthAf: Af=f well away from the end point of in- the object is a 1Bl hole, this is the case wheMm
spiral andA f=2(f — f,¢) near the end point; cf. the discus- =10°Mo; cf. Figs. 4, 6, and 7. FOM<1C0°Mg, such ex-
sion of the definition of!, at the end of Sec. II. Near the end Ploration is debilitated by the large frequency sweep; cf. Fig.

. . , . 6. We have previously met this issue in Sec. V B.
point of inspiralh plunges for three reason@) because of . _ : .
the narrowing of our chosen bandwidtii) because the rate Figure 7 shows that the white-dwarf-binary background is

of frequency sweep speeds up due to flattening of the effecd SEMOUS ISSue for h_ole mas_963v 10'Mo , while Figs. 3-6
tive p%tential for tﬁe F?.)bject’spradial motion, and this pro- Show that.|t IS relatlvel_y unimportant favl<10°Mo . We
duces a reduction in the number of cyclg, in a given have previously met this in Sec. V B.

bandwidth and reduction ih;= Ny, and(iii) because, for
large a and prograde orbits, the orbit sinks deep into the
throat of the hole’s embedding diagram, from where waves As is well known[47], the waves’ highest accuracy infor-
have difficulty escaping. mation is carried by the time evolution of their phase. For

-8

[le]
0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01
f Hz

D. Information carried by the waves
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circular, equatorial orbits, where there is no orbital precesin powers of ) — s, and only the leading order term is

sion, the phase evolution will be the same for all the harmonkept. Poisson assuméé=10°M, u=10M, a~0 (i.e.,

ics as for the orbit itself, and that phase evolution is embodnot close to+ 1) and a measurement time of 1 yr. For these

ied indd/d In Q=0%. Equation(3.2) shows this quantity, parameters, our Figs. 8 and 4 suggest thatafsi.5, Pois-

at fixed frequency, to be proportionalMMﬁhi,p, where son’s expansion may be accurate to within a few 10’s of
percent, but fora=0.9 it is seriously inaccurate. His esti-
mated measurement accuracies a@&e~0.05p, AM/M

M hirp= "M 3 (5.3 ~0.002p, and 57/ n~0.06p, wherep is the amplitude sig-

nal to noise ratio.

is the system’s chirp mass. Since a year of observations will Our Tables VIl and IX forA”and7 (the relativistic cor-

typically entail Ngyqe~10° cycles of waves, and by the rections to the orbital phase evolution rai®/d In f and the

method of matched filters one can detect a secular shift ime T {0 the end of inspiralcan serve as the foundation a

one waveform with respect to another by a small fraction ofhore definitive computation of the phasing-based measure-

a cycle[47], the “raw” precision for measuring the evolu- Ment accuracies. , _ _
tion of AV7M gyrp Will be of order 10°8. Information is also carried by the relative amplitudes of

If most of the last year is spent near the horizon, say af€ waves’ harmonics. Most promising, we think, are the
frequenciesf/f o= Q/Qig=0.1 (as will usually be the amplitude ratios for the first and second harmonics and for

case, then this phase evolution will depend strongly not onlyth€ third and second. We plot these ratios in Fig. 9, as para-
on the chirp mass, but also—through the functionmetric functlons. of the.hcl)les spia and the orbltal radius
N(f/f,e.d—on the black-hole spin parameter r/riSCP. From this _plo_t it is evident th_at the instantaneous
This stronga dependence is exhibited in Fig. 8. Even for @MPplitude ratios will give botla and the instantaneousrisc,
a<0.5, where the curves(f/f,..) for differenta look very with moderate agcuracy—though only for those systems W|_th
close togetherdA7da~0.1, thisa dependence translates into SONg enough signals that the weakest of these harmonics,
INeyces 7a~10%, which is huge. Thus, it is reasonable to m=1, stands up strongly above the noise; cf. the short-
expect the measured phasing to determine lacind M ., dashed curves in Figs. 3—7. . . . .
to high precision—though a detailed parameter study ig In our idealized case of circular, equatorial orbits, this
needed to be absolutely certain. armonic-ratio information is not independent of that from

The absolute frequencies associated with the observetq’le o_rbital phas".‘g’ but it could provide a confirmation of the
phase evolutiorfe.g., the measured frequency at the end ofPhasing conclusions. _ .
inspiral) are determined by a combinationafnd the hole’s In the more reahstlc.case of nOUC|rcuIar, nonequqtorlal
massM. This absolute frequency scale presumably will peOrbits, the waveforms will be much richer and there will be
measured much less accurately than the phasing itself, b{fany more parameters to solve for. Our survey of the circu-
still, probably, accurately enough to determine the mdase ar, equatqnal case gives some rough indication of the kinds
a very interesting precision. Knowing o, a, andM, one of information one can extract and by what methods.
can then compute the object’s massand from the absolute
amplitudes of the waves one can then infer the distance
from the system to Earth. VI. CONCLUDING REMARKS

Poissor{48] has estimated the accuracies with which such
phase-evolution measurements can deterrMney=u/M, In this paper we have tabulated the results of TSN-based

anda. His estimates are based on an analytic model of theompytations of the waves emitted by an object spiraling
signal in which(translated into our notation\V'is expanded jnio a spinning, massive black hole on a slowly shrinking,

5

2=0.999 0.14 oo =108
4 0.12
N
3 £ 01
N -
2 < 0.08
1 0.06
=S 0.04
0 02 04 06 08 1 0.02
Hisco
FIG. 8. A the relativistic correction ta®/d In Q=0%Q) (the 61 02 03 04 05 06 07
number of radians of orbital inspiral per unit logarithmic change of hc,3/hc,2

orbital or gravitational-wave frequengyplotted againstf/fig,
=0/Qis, (the ratio of gravitational-wave frequency to the fre- FIG. 9. The ratiosh;;/h., and h 3/h;, as functions of the
quency when the isco is reached and the inspiral ends black hole spira and the orbiting object’s radiugr s¢,.
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circular, equatorial orbit. Our Tables [I-X can serve as athis appendix, and in this appendix only, we express all di-
foundation for future mission-definition studies for LISA— mensioned quantities, such@andr, , in terms of the black
most particularly, for studies of how changes in the missiorhole’s massMl, eschewing for convenience the superscript-
design may affect LISA’s ability to detect such inspiral tilde notation used elsewhere in this papdihe tortoise co-
waves, for studies of the accuracies with which LISA’s dataordinate can be expressed analytically in terms of the Boyer-
can extract the properties of the source, and for explorationksindquist radial coordinate and the location of the inner

of possible data analysis algorithms. and outer horizons, andr _:
Much more important, in the long run, will be the exten-
sion of our analysis to nonequatorial and noncircular orbits. _ 2
This extension is urgent, since models of active galactic nu- M —r+r+_r_[r+|n(r re)=r-In(r—r-)] (A29)

clei predict, rather firmly, that the orbits will be nonequato-
rial and quite noncircular, and since the earliest possible dat@here
for LISA to fly is less than ten years in the future.
(r=ry )(r—=r_)=r>-2r+a? and (A2b)
ACKNOWLEDGMENTS
ro=r_. (A20)
For helpful discussions we thank Fintan Ryan and Eric
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This paper was supported in part by NASA grants NAGW- To obtain the Green function solution to the radial equa-
4274, NAG5-6840 and their predecessors, and in view of it§ion with source we need the two solutions to the homoge-
future applications to LIGO, by NSF grants PHY-9800111,neous equation corresponding to the physical boundary con-

PHY-9996213, AST-9731698 and their predecessors. ditions at infinity (no in-coming radiationand the horizon
(no up-going radiation These solutions are determined nu-
APPENDIX: NUMERICAL METHODS merically by posing the boundary conditions near infinity or

the horizon and integrating the radial equation inward or

Teukolsky[10] found that the equations describing per- outward, as appropriate. In the Sasaki-Nakamura variables,
turbations of the Kerr spacetime could be separated int@ptaining a solution to the radial equation poses no particular
separate radial and angular equations. For the circular, equghallenge; correspondingly, it is conventional to use a
torial orbits studied in this paper, the challenges of solving«work-horse” integrator (e.g., Runge-Kutta or Bulirsch-
the perturbation equations are all associated with the numeritoe) to solve the equation. On the other hand, the radial
cal solution of the radial equation. We have used Green fUnCequation arises from a Separa’[ion of variables and is param-
tion methods to solve the radial equation and determine thgtrized by the separation constahts andw, corresponding
power radiated down the horizon and to infinity by a particletg the resolved angular and temporal dependence of the per-
in a circular equatorial orbit. The general method of solutiontyrhation. Consequently, it is necessary to solve the radial
and formulation of the prOblem is well described in Ref. equation separate|y for every important set of angu|ar multi-
[49], and we refer the interested reader there for details. Iholes(l,m) and frequency. For very relativistic orbits even
this appendix we describe several innovations that can dragnoderate accuracy in the total radiated power may require
matically speed the solution of the radial equation comparedolving the radial equation tens of thousands of times for
to the more conventional methods applied elsewhere. different angular multipoles and harmonics of the orbital fre-

The Teukolsky radial equation is a second order, ordinaryjuency. Consequently, speeding the solution while preserv-
differential equation. In the form given originally by Teukol- ing its accuracy is of fundamental importance. In the remain-
sky [10] the equation is stiff and the solution satisfying the der of this appendix we address several innovations we have
physical boundary conditions is difficult to obtain. Sasakimade in solving this equation that, depending on the details
and Nakamurd11] found, through a local change of vari- of the orbit and the desired accuracy of the solution, can
ables, a form of the radial equation which is not stiff, and weresult in a several order of magnitude reduction in the solu-
have worked with the radial equation in that form. tion time Compared to a conventional approach_

In the Sasaki-Nakamura formulation, the homogeneous

(source-frepradial equation takes the form 1. Boundary conditions at the horizon

As one approaches the horizon, the physical solution for
the radial function, corresponding to down-going radiation,
leads to the boundary conditions used for the numerical in-
Herer, is the so-called tortoise coordinate, which rangestegration of one of the homogeneous solutions of the Sasaki-
from —o at the (outen horizon toce at spatial infinity.(In Nakamura equation:

d d
E—.’F(r*)m—b{(r*) X=0. (A1)
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lim Xy(r,)=e '@« A3a) d
m Xa(rs) . F=—jw_ =—, (A4)
* 2r
dXy ot 4r 2(2+d) 2r
. “AH _ —iw_r, 1_ - +
r*ILnlwdr*(r*) lo_¢€ ! (A3b) U(2)=)\+T—2r+w, —d _dT w_
where d(2+d)\4r2
—(1—¥ > w2, (Adg)
r. d
PO, (A30) FU=2ir,w_F(0), (A4h)
andr , is the radius of the outer horizon in Boyer-Lindquist G(ll)E —-2+d/2, (A4i)
coordinates. ’ .
As a practical matter the boundary conditions used to de- FO)=v"(r)ly(ry), (A4))
termine Xy are posed at some large, negative but finite 4
* .o o ” - .
sayR~; i.e., close.tq, Eut not at, the horizon. U§!ng Egs. y(r)= E v K, (A4K)
(A3) evaluated at finitdR* for the boundary conditions in- k=0

troduces fractional errors of ordér=r —r_ into the solu-
tion. This error can be represented as an error in the ampli-
tude of the power radiated down the horizon and the
introduction of some small component of radiation up-going
from the horizon. These errors propagate to largevhere
they contribute to the out-going radiation and lead to errors

Yo=AA+2)—12aw(aw—m)—12iw,
(A41)

y1=8i[3a’w—a\(aw—m)], (Ad4m)

v,=12[ — 2ai(aw—m)+a?—2a%(aw—m)?],

in the calculated power radiated to infinity by the orbiting (Adn)
particle. o A2 AL _
The errors introduced by using Eq&3) when posing ys=24a7 —1+ia(ao—m)], (Ad0)
boundary conditions at finite radius can be expressed as a =124 Ad
o0 - : ys=12a% (Adp)
power series inS. The coefficients of that expansion can be
estimated by solving the equations several times, for differ- A=I(l+1)—2amw+a®w?+2. (Adq)

entR*, and using Richardson extrapolation. To estimate the

first N terms in the error expansion requifés- 1 numerical The numerical solution to the radial equation using these

improved boundary conditions converges upon the true solu-
o : ; tion more quickly than a solution using the boundary condi-
conditions posed at a differe®* . Controlling the error re- tions (A3). We are thus able to pose approximate horizon
quires that the radial equation be solved at least twice angoundary conditions at smalléR* |, reducing the domain
often three or more times at different, large® |. _ over which we must integrate the radial equation and, often,
To improve the convergence rate of this error estimat@he number of times we must integrate the equation for each
and allow us to pose our boundary conditions at smaR&r (w,,m) in order to obtain a solution of controlled accuracy.
we have solved the Sasaki-Nakamura equation analytically
about the point at, = — oo, finding the first corrections i@
to the boundary conditions given by Eq®3). The im-
proved boundary conditions are given by

2. Boundary conditions at spatial infinity

As r, —o, the physical solution for the radial function,
corresponding to no in-going radiation, leads to the boundary
conditions for the numerical integration of the other critical

Xu(re)=(1+0A")e ", (A43)  solution of the radial equation:
D =l iw (1t o+ 22 A eiors lim X..=e'"x, (A5)
dl’*( *)_ w*( 2r+ € ’ My —®
(Adb) dx
H “ fwr
where rJ:Tocdr* toe (A6)
d As with the boundary conditions at the horizon, we con-
r_ 1) (1) (1) (1) ’
A _[f( +4ri(U2 TR+ Gy )} struct the solutionX,, beginning with boundary conditions

posed at finiteR* , not at infinity. Using the asymptotic form

d> d o of the boundary conditions to s&t and X’ at finite radius
X|—+ie —w_| , (A4c) . . .
4re ry leads to errors of fractional order R] in the solution,
which can be represented as an error in the amplitude of the
O=r—r,, (A4d) out-going radiation and the introduction of some small in-
going radiation component. These lead, in turn, to errors in
d=r, . —r_, (Ade) the estimated power radiated to infinity and down the hori-
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zon. We can use Richardson extrapolation to estimate and E=R(D) (A9b)
reduce this error; however, as before, the radiated power
must be determined at several different laRje in order to d=F(D). (A9c)

estimate and reduce the error. _ _ o _ _ .
To permit a more accurate estimate of the radiated powefVith this substitution the linear Sasaki-Nakamura equation
from X and X' evaluated at smalleR* we have solved the for complexX becomes a pair of coupled non-linear equa-
Sasaki-Nakamura equation analytically about the point afions for the reak and ¢. The equation fog is second order
r,=c, finding the first corrections in R* to the while the equation forp can be integrated immediately to

asymptotic form of the radial functioX. For finite R} we ob_tain a firs_t order equatiorﬁThis Is expected since the so-
lution for X is determined only up to an overall phgsBoth

have ¢ and & vary slowly and smoothly compared ¥ This is
a;\ . particularly true as one moves toward either the horizon or
Xa(ly)=| 1+ e'rs, (A7a)  spatial infinity, whereX is oscillatory inr, while & is con-
stant and¢ is linear. Correspondingly, the numerical solu-
dx. a;\ . tion of the equations foy and ¢ require much less resolution
— (ry)=iw 1+—) e'“rx, (A7b)  for the same numerical accuracy, dramatically speeding the
dr, r integration of the radial equation.
where
v, i N+2 4. Numerical solution of the equations for§ and ¢
alzy—o+§ (a2+4)+2am+7 : (A70) The local errors committed by, e.g., a fourth order Runge-

Kutta integration of the radial equation are proportional to

We use these expressions, evaluated at finite but Rfggo  Ar, [5]. Reducing the step-size and increasing the number
set the boundary condition for the numerical solution of theof integration steps will decrease the overall solution error
homogeneous radial equation. We continue to use Richardigebraically, i.e., as a fixed power af ., while increasing
son extrapolation to control the error of the solutions; how-the time required for a solution. A higher order computa-
ever, each step in the extrapolation has a greater effect on tti@nal method will increase the solution accuracy more rap-
error and the extrapolation can take place at smaifer idly. Exponentialconvergence of the solution withr, can
be obtained if the equations are solved via collocation
pseudo-spectral techniqu¢S0]. In a collocation pseudo-
. ) ) ~ spectral method the solution for the dependent variable is

The solutionX to the Sasaki-Nakamura equations is agpproximated as a sum over a suitable set of basis functions.
complex oscillatory function. Integrating the equations di-The differential equations, evaluated on the approximate so-
rectly for X requires a spatial resolutioir, less than the |ytion at a fixed number of points, then determine the coef-

3. A more suitable choice of variables

local wavelength o, ficients in the expansion. For problems with smooth solu-
dinx -t tions the solution_ accuracy inqrea;es exponentially _with the

Ar, s‘ (A8) number of terms in the approximati¢and, correspondingly,
dry with the number of evaluations of the differential equation,

. . : . . which is the analog of the spatial resolution of the integra-
When solving for the radial function corresponding to a hlghtion). Our final innovation is to solve the radial equation

ﬁrtrr]]poral rf:equerr:é:iirﬁﬂ tir:]erstep—s;rz](?[hcan bricoTz qnunletifnma:l’ rusing pseudo-spectral techniques. We have chosen a Cheby-
a corresponding increase € computationa € Ohey expansion fo£¢ and ¢ with Gauss-Lobatto collocation
an accurate solution.

) S . points. Our experience is that the best performance is ob-
It is advantageous in circumstances like these to reformut-ained if the integration domajiR. ,R_] is divided into two
late the problem in action-angle variables, whose variation i?)arts at approximately the eak+c;f tﬁe effective poteial
both slower and smoother than the variationXiWriting X e v,ve us%ptwo expa)rqsionz fgrand & one in thg domain
as [R,,Rq] and the other in the domaiRy,R_]. At Ry we

X=exgid(r,)] (A9a)  Iinsist that the two solutions fog and £ agree in value, and
that the solutions fo€ agree also in their first derivative, as

we define the two real function and ¢ as the imaginary is appropriate for functions described by first order and sec-
and real parts ofb: ond order differential equations, respectively.
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