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Nearly minimum redundant correlator interpolation formula
for gravitational wave chirp detection
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An absolute lower bound on the number of templates needed to keep the fitting factor above a prescribed
minimal valueG in correlator-bank detection of~Newtonian! gravitational wave chirps from unknown inspiral-
ing compact binary stars is derived, resorting to the theory of quasi-band-limited functions in theL` norm. An
explicit nearly minimum redundant cardinal-interpolation formula for the~reduced, noncoherent! correlator is
introduced. Its computational burden and statistical properties are compared to those of the plain lattice of
~reduced, noncoherent! correlators, for the sameG. An extension to post-Newtonian models is outlined.

PACS number~s!: 04.80.Nn, 95.55.Ym, 95.75.Pq, 97.80.Af
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INTRODUCTION

The detection of gravitational wave~GW! chirps from
unknown inspiraling compact binary sources~CBS! is a pri-
mary goal for the early operation of broadband interferom
ric detectors, including TAMA300@1#, GEO600@2#, the two
Laser Interferometric Gravitational Wave~LIGOs! @3#, and
VIRGO @4#, in view of the sizable expected rate of obser
able events@5#.

For additive Gaussian stationary noise, the correla
bank threshold-detector is the optimal one, yielding
smallest false-dismissal probability, at any fixed false-ala
probability and signal to noise ratio@6#.

The issues of optimum template parametrization a
placement, and the related computational burden have b
discussed by several authors@7–13#. A lucid account of the
main relevant landmarks is given in@14#.

Curiously, the question of a possibleefficientinterpolation
among the correlators has been left yet unsolved@14#.

In this paper we set up and test an efficient interpola
representation of the~reduced, noncoherent! correlator for
the simplest paradigm case of Newtonian chirps. The p
posed representation@15# is proven to get close to theabso-
lute minimum template density required by a prescrib
minimal-match condition, which follows from the theory o
quasi-band-limited~QBL! functions in theL` norm. The sta-
tistical performance of the proposed representation
shown to be essentially equivalent to those of the plain
tice.

This paper is accordingly organized as follows. In Sec
we recall a number of relevant concepts and results. In S
II we review the design of the plain template-bank for t
simplest~Newtonian! case, and discuss its statistical dete
tion properties. In Sec. III we briefly introduce QBL func
tions and cardinal expansions, and derive the proposed
proximations. In Sec. IV we compare the computatio
burden and the statistical detection/estimation propertie
the cardinal-interpolated~reduced, noncoherent! correlator
lattice to those of the plain lattice. Conclusions follow und
Sec. V.
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I. BACKGROUND

In this section we resume a number of well known co
cepts relevant to CBS chirp detection, and introduce the
tation.

A. Noncoherent correlator. Deflection and SNR

Detecting GW chirps from unknown inspiraling CBS r
quires the computation of a suitable set of noncoherent
relators~NCC! @16#:

c@ T̄#52U E
f in f

f sup A~ f !T̄* ~ f !

P~ f !
d fU, ~1.1!

where (f in f , f sup) is the useful antenna spectral window
A( f )5S( f )1N( f ) are the noise corrupted~spectral! data,
resulting from the superposition of a~possibly null! signal
S( f ) and a realizationN( f ) of the antenna noise~assumed
Gaussian and stationary!, T̄( f ) is an element of a suitable se
of unit-norm chirp-templatessuch that

uuT̄uu5U2E
f in f

f sup T̄~ f !T̄* ~ f !

P~ f !
d fU1/2

51, ~1.2!

and P( f ) is the ~one-sided! antenna noise power spectr
density ~PSD!. The random variablesc have Ricean prob-
ability densities@6#,

w~c!5c expS 2
c21d2

2 D I 0~cd!, ~1.3!

whereI 0(•) is the modified Bessel function of first kind an
zero order, and

d5U2E
f in f

f sup S~ f !T̄* ~ f !

P~ f !
d fU ~1.4!

is thedeflectionobtained usingT̄. The moments of Eq.~1.3!
can be written in terms of Kummer’s confluent hypergeom
ric function @17#:
©2000 The American Physical Society20-1
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^cn&52n/2 GS 11
n

2D 1F1S 2
n

2
;1;2

d2

2 D . ~1.5!

For d*5 the Ricean densities~1.3! merge into Gaussian
functions, with

E@c#'d, var@c#'1. ~1.6!

The deflection attains its maximum value iff the templateT̄
is matched to the signal, viz.,

T̄~ f !5
S~ f !

uuS~ f !uu
, ~1.7!

yielding

d5dmax5U2E
f in f

f sup S~ f !S* ~ f !

P~ f !
d fU1/2

5..SNR, ~1.8!

where SNR is theintrinsic signal-to-noise ratio.

B. Chirp templates

The stationary phase principle~see @18# for a thorough
discussion of its validity! can be used to show that th
asymptotic principal part@19# of a general@20,21#, reduced
@22# post-Newtonian~PN! chirp can be written@11#

S~ f ;fc ,Tc ,jW !5A f27/6 exp$ j @2p f Tc2fc1c~ f ,jW !#%,

~1.9!

whereA is a constant~real, unknown! amplitude factor,Tc is
the ~fiducial! coalescency time@23#, fc is the template phas
at t5Tc , andjW represents the remaining intrinsic@24# source
parameters@25#. Equation ~1.9! is used to construct the
needed chirp templates. A further suffixT will be used to
label the template parametersAT , fcT

, TcT
, and jWT . All

template amplitudesAT will be chosen so as to comply wit
the normalization condition~1.2!, viz.,

AT5F2E
f in f

f sup f 27/3

P~ f !
d fG21/2

. ~1.10!

C. Maximum likelihood criterion: Fitting factor

Equation ~1.6! implies that ~under the assumption of
uniform distribution of the unknown source parameters! the
largest correlator will most likely correspond to the spec
template yielding the largest deflection@maximum likelihood
~ML ! estimation criterion@6##.

Data analysis for detecting chirps reduces thus to the
lowing. Given the~spectral! noisy data, and a set of~lattice!
templates, suitably covering the chirp parameter space,
corresponding~noncoherent! correlators$ckuk51,2, . . . ,N%
are computed. The largest among these correlators is us
a detection statistic@6#, viz., whenever this latter exceeds
suitable threshold, set by the prescribed false-alarm proba
ity ~surveillancestrategy@6#!, a signal is declared to hav
been observed@26#, and the corresponding template is tak
12402
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as the most likely estimate of the observed signal@6#.
It is convenient to measure thegoodness of fitbetween a

given signalS( f ) and the best available template in the set
terms of the so-calledfitting factor @27#:

FF5max
k

dk

SNR
. ~1.11!

The set of templates should be constructed in such a way
for any admissible signal,

FF>G, ~1.12!

where 12G3 gauges the fraction of potentially observab
sources which could be lost as an effect of template m
match@28,29#.

D. The reduced correlator

In view of Eq. ~1.9!, the noncoherent correlator~1.1! can
be written

c5

U2E
f in f

f sup A~ f ! f 27/6e2 j cT( f ,jW )]

P~ f !
exp~2 j 2p f TcT

!d fU
F2E

f in f

f sup f 27/3

P~ f !
d fG1/2 .

~1.13!

Equation ~1.13! is formally ~except for inessential factors!
the absolute value of the (f→TcT

) Fourier transform of the
~complex-valued! function:

K~ f !5H A~ f !T̄* ~ f ;0,0,jW !

P~ f !
, f in f< f < f sup,

0, f , f in f , f . f sup.

~1.14!

Maximizing the noncoherent correlator~1.13! with respect to
TcT

is thus equivalent to taking the largest absolute value

the (f→TcT
) Fourier transform of Eq.~1.14!. The resulting

reduced correlator@30# will be denoted with a capital letter
viz.,

C5sup
TcT

c. ~1.15!

E. The Newtonian deflection and the match

For illustrative purposes, in this paper we shall restrict
the simplest Newtonian~0PN! signals and templates. Th
0PN functioncT( f ;jW ) in Eq. ~1.9! reads

cT~ f !5
3

128S pG

c3 D 25/3

M T
25/3f 25/3, ~1.16!

where MT is the template chirp-mass. It is convenient
introduce the following dimensionless variables and para
eters@31#:
0-2
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f̄ 5
f

f in f
, Q5 f in f~Tc2TcT

!, M̄5
M
M (

,

D5M̄s
25/32M̄T

25/3, L5
3

128S pG fin fM (

c3 D 25/3

,

~1.17!

where M ( is the solar mass, so as to recast the deflec
~1.4! into the form:

d~D,Q!

5SNR•

U E
1

f̄ sup
d f̄

f̄ 27/3

P~ f̄ !
exp[j (2pQ f̄ )1L f̄ 25/3D]U

E
1

f̄ sup
d f̄

f̄ 27/3

P~ f̄ !

.

~1.18!

It is also useful to introduce the reduced deflection:

D~D!5max
Q

d~D,Q!, ~1.19!

and the related normalized@32# functions:

d̄~• !5
d~• !

SNR
, D̄~• !5

D~• !

SNR
. ~1.20!

The functionD̄(D) is known as the~Newtonian! match. The
quantityG in ~1.12! is accordingly also named theminimal
match@14#.

The functionsd̄ and D̄ are displayed in Figs. 1 and 2
respectively, for the special case of a LIGO-like noise PS

P~ f !5
P0

5 H S f 0

f D 4

12F11S f

f 0
D 2G J , ~1.21!

FIG. 1. The functiond̄(D,Q).
12402
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,

with f 05300 Hz (P0 is a constant of no concern to us here!,
and for a spectral window with

f in f540 Hz, f sup5400 Hz. ~1.22!

The valueQmax of Q which maximizesd̄(D,Q) in a neigh-
borhood ofD50 is shown in Fig. 3 as a function ofD.

II. THE PLAIN „NEWTONIAN … LATTICE

Given a range@Mmin ,Mmax# of allowed source chirp
masses, let the set of template chirp masses be

M̄1
25/35M̄max

25/3, M̄n11
25/35M̄n

25/31dL ,

n51,2, . . . ,NL21, ~2.1!

FIG. 2. The functionD̄(D), close-up.

FIG. 3. Value ofQ which maximizesd̄(D,Q) as a function of
D ~close-up!.
0-3
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wheredL is the lattice-spacing, and

NL5 d M̄min
25/32M̄max

25/3

dL
e ~2.2!

is the total number of templates. ObviouslyD can take only
the discrete values:

Dn5M̄s
25/32M̄n

25/3, n51,2, . . . ,NL . ~2.3!

A. Lattice design

Given M̄s , the fitting factor of the lattice is

FF5max
n

D̄~Dn!5D̄~min
n

uDnu!. ~2.4!

The minimal-match condition~1.12! should be obviously en
forced in the worst case, where

M̄s
25/35M̄q

25/31
dL

2
, ~2.5!

yielding

D̄S dL

2 D5G. ~2.6!

Equation~2.6! uniquely determines the lattice spacingdL ,
and hence via Eq.~2.2! also the total number of templates

B. False alarm and false dismissal probabilities

The statistical distribution of the lattice detection statis

max
k

Ck5max
h

ch ~2.7!

is not known in exact form, and one should resort to nume
d

12402
-

cal simulations aided by intuition to compute the latti
false-alarm and false-dismissal probabilities.

The detection thresholdg is determined from the pre
scribed~tolerated! false alarm probabilitya, by solving the
equation

a5prob@' k:Ck.guSNR50#

512prob@; h,ch,guSNR50#. ~2.8!

The joint probability in Eq.~2.8! is difficult to compute,
since thech arenot statistically independent in general. Fo
most practical purposes, a decent approximation is

prob@; h,ch,guSNR50#5~12e2g2/2!M, ~2.9!

which would be appropriate if thech were a collection ofM
independentRicean random variables. Numerical expe
ments suggest an almost linear dependence ofM on the total
number of NCC used@33#.

The probability offalse dismissalof a signal withSNR
Þ0 is

b~g,SNR!5prob@max
k

Ck,guSNRÞ0#

5prob@;h,ch,guSNRÞ0#. ~2.10!

A simple ~conservative! approximation of Eq.~2.10! is
@12,34#:

b~g,SNR!'prob@C2,g,C1,guSNRÞ0#, ~2.11!

where C2 and C1 denote the reduced correlators corr
sponding to the nearest-neighboring templates, with ch
massesM̄6 such thatM̄sP@M̄2 ,M̄1#. Under the same
~reasonably large SNR! assumptions leading to Eq.~2.11!,
the involved joint probability density can be approximat
by a Gaussian bivariate@35#:
w~C2 ,C1!'

expF2
~C22d2!21~C12d1!222R~C22d2!~C12d1!

2~12R2!
G

2p~12R2!1/2
, ~2.12!
s
n

to
where

d65d@D6 ,Qmax~D6!#,

R'd̄@dL ,Qmax~D1!2Qmax~D2!#,
~2.13!

and the functionQmax(•) has been defined in Sec. I F an
shown in Fig. 3.

Letting

M̄s
25/35M̄q

25/31hdL , hP@0,1@ , ~2.14!
the false dismissal probability~2.11! is obviously a function
of h. Within the limits of validity of Eqs.~2.8! to ~2.13!, for
a fixed SNR and a prescribeda, the following qualitative
dependence ofb on the lattice spacingdL is observed. In a
neighborhood ofh50.5, the false dismissal probability i
reduced by reducing the spacingdL among the templates. O
the other hand, in a neighborhood ofh50, reducing the
template spacing produces an increase ofb. This is due to
the dominant effect of the parallel increase ofg, needed to
keepa unchanged.

A judicious tradeoff should be obviously sought,
choose a value ofG, and hencedL , via Eq. ~2.6!, which
0-4
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minimizes, e.g., the average value ofb with respect toh,
under the assumption of a uniform distribution of the sou
chirp mass.

III. A NEARLY MINIMUM REDUNDANT INTERPOLATED
LATTICE

This section contains the main new results. A short int
duction to the theory of QBL functions is included to ma
the paper self-contained.

A. QBL functions and cardinal expansions

A function f :xP@a,b#→R is QBL in the L` norm iff
@36#

' g,BcPR 1: sup
xP@a,b#

u f ~x!2 f B~x!u5exp@2g~B2Bc!#,

~3.1!

f B(x) being obtained by taking the inverse Fourier transfo
of the spectrum off (x) chopped atuyu>B, viz.,

f B~x!5F y→x
21 H WS y

BD •Fx→y@ f ~x!#J , ~3.2!

where

W~x!5H 1, uxu<1,

0, uxu.1.
~3.3!

For a strictly bandlimited functionf (x), whose spectrum
vanishes identically outside@2B,B#, Eq. ~3.2! provides an
exact interpolating representation known as cardinal exp
sion @37,38#:

f B~x!5 (
n52`

`

f ~xn!sincFpd ~x2xn!G , xn112xn5d,

d5
1

2B
, ~3.4!

where sinc(x)5sin(x)/x. For a QBL function on the othe
hand, one can prove that Eq.~3.4!, while reproducing exactly
f (x) at x5xk , kPN, satisfies Eq.~3.1!, i.e., that

;e.0, ' B: sup
xP@a,b#

u f ~x!2 f B~x!u,e. ~3.5!

Equation~3.4! is an approximate sample-interpolating rep
sentation, where the sample densityd2152B depends on the
prescribedL` approximation errore. It is important to note
that the exponential decay of the error in Eq.~3.1! implies
that reducinge in Eq. ~3.5! by orders of magnitude doesnot
change the order of magnitude ofB.

Usually one needs to computef (x) in a finite interval
@a,b# including only

N5 d ~b2a!

d e ~3.6!

samples@39#. However, using Eq.~3.4! to computef (x) in
@a,b# requires, in principle, knowledge of an infinite numb
12402
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of samples outside the interval of interest. This limitation c
be circumvented by using generalized~economized! cardinal
expansions. These expansions have the general form@41#

f ~x!5 (
n52`

`

f ~xn!sincF p

d8
~x2xn!Gu~x2xn!,

xn112xn5d8, d85~2xB!21, x.1 ~3.7!

whereu(x) is a suitablewindowing functionsuch that

u~0!51, Fx→j@u~x!#50, ; j.~x21!B, x.1.
~3.8!

The expansion~3.7! is nothing but the standard cardinal e
pansion of the functionf (x)u(u2x), whose bandwidth un-
der the assumptions~3.8! is B85xB, viz.,

f ~x!u~u2x!5 (
n52`

`

f ~xn!u~u2xn!sincF p

d8
~x2xn!G ,

xn112xn5d8, d85
1

2xB
, ~3.9!

evaluated atu5x. The Fourier spectrum off (x)u(u2x) is a
smoothed version of the plain spectrum off (x); a judicious
choice ofu(x) can thus make in principle, the decay rate
f (xn)u(u2xn) as uu2xnu→` as fast as desired@40#.

The Knab window function@41#

u~x!5KP~x!ª

sinhH pP~12x21!F12S x

Pd8
D 2G 1/2J

F12S x

Pd8
D 2G 1/2

sinh@pP~12x21!#

~3.10!

satisfies all constraints~3.8! and is essentially confined@42#
in uxu<Pd8. This allows to truncate~3.7! at ux2xnu'Pd8,
so that for any givenx, only '2P samples symmetrically
placed aroundx are essentially needed to reconstructf (x).

The error resulting from truncation of~3.7! with ~3.10! at
ux2xnu5Pd8 has been discussed in@41#. A simple~and con-
servative! upper bound is given by

U (
ux2xnu.Pd8

f ~xn!sincF p

d8
~x2xn!GKP~x2xn!U

,
M

sinh@pP~12x21!#
, M5 sup

xP@a,b#

f ~x!. ~3.11!

Usually, one enforces the condition

M

sinh@pP~12x21!#
5e8!e, ~3.12!

wheree is the prescribedL` error in ~3.5!. Equation~3.12!
can be solved to expressP as a function ofx,
0-5
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P5
sinh21~M /e8!

p~12x21!
. ~3.13!

The total number of samples

NT5 d ~b2a!

d8
e12P5 dx ~b2a!

d
12Pe ~3.14!

needed to representf (x) in @a,b# using ~3.9! and ~3.10!,
within a prescribedL` error and under the constraint~3.12!,
can be accordingly minimized by letting

x511F2d sinh21~M /e8!

p~b2a! G1/2

. ~3.15!

B. The Cardinal-interpolated Newtonian match

The matchD̄(D) is a QBL function in theL` norm. This
can be seen from Fig. 4, where theexponentialdecay of the
L` error in @0,̀ @ betweenD̄(D) and the cardinal expansio

D̄B~D!5 (
n52`

`

D̄~Dn!sincF p

dC
~D2Dn!G ,

Dn112Dn5dC , ~3.16!

is displayed as a function ofdC
21 on a log-Lin plot @44#.

Switching back to the original variables, Eq.~3.16! reads

D̄B~M̄s
25/32M̄T

25/3!

ª (
n52`

`

D̄~M̄s
25/32M̄n

25/3!•sincF p

dC
~M̄T

25/32M̄n
25/3!G ,
~3.17!

where@45#

FIG. 4. L` error of cardinal expansion(3.16) versus sample
dendity 1/dC .
12402
M̄n11
25/32M̄n

25/35dC . ~3.18!

Given M̄s , the fitting factor obtained using~3.17! is given
by

FF5max
M̄T

D̄B~M̄s
25/32M̄T

25/3!5..D̄B~M̄s
25/32M̄

*
25/3!.

~3.19!

It is convenient to let

M̄s
25/35M̄q

25/31hdC , hP@0,1@ , ~3.20!

M̄
*
25/35M̄q

25/31h* dC , h* P@0,1@ , ~3.21!

so as to rewrite~3.19! as

FF5D̄B~h2h* !. ~3.22!

The differenceh2h* turns out to depend onh as shown in
Fig. 5, and hence the fitting factor~3.22! depends onh as
shown in Fig. 6. The minimal-match condition~1.12! should
again be enforced in the worst case~s!, i.e., as seen from Figs
5 and 6, forh50.5 andh* 5h, yielding

(
n52`

`

D̄F S n1
1

2D dCG•sincF S n1
1

2DpG5G. ~3.23!

This condition is notably independent ofq, and fixes the
sample spacingdC .

FIG. 5. The differenceh2h* as a function ofh — relevant to
Eqs.~3.21! and ~3.22!.
0-6
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In practice, as discussed in the previous section, it is c
venient to use aneconomizedcardinal expansion, viz.,

D̄B~M̄s
25/32M̄T

25/3!ª (
n52`

`

D̄~M̄s
25/32M̄n

25/3!

3Cn~M̄T
25/32M̄n

25/3!, ~3.24!

where@see Eqs.~3.7! and ~3.10!#

M̄n11
25/32M̄n

25/35dC8 5x21dC , ~3.25!

and

Cn~x!5sincS px

dC8
D •sinhH pP~12x21!F12S x

PdC8
D 2G 1/2J

F12S x

PdC8
D 2G 1/2

sinh@pP~12x21!#

.

~3.26!

As shown in the previous section, the function~3.26! is es-
sentially contained in the intervaluxu,PdC8 , and hence the
infinite sum in~3.24! is essentially restricted to

d M̄T
25/3

dC8
e2P<n< b M̄T

25/3

dC8
c1P. ~3.27!

Capitalizing on Eq.~3.11! we shall enforce the condition

1

sinh@pP~12x21!#
5

12G

10
~3.28!

to guarantee that the minimal-match condition will not
affected within the last significant figure ofG, when using

FIG. 6. FF as a function ofh, relevant to Eqs.~3.21! and
~3.22!.
12402
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Eq. ~3.24! truncated according to Eq.~3.27! in place of Eq.
~3.17!. Further, in view of Eqs.~3.13! and ~3.15!, we shall
take

x5xopt5
..11F 2dC sinh21S 10

12G D
p~M̄min

25/32M̄max
25/3!

G 1/2

~3.29!

and

P5Popt5
..
sinh21S 10

12G D
p~12xopt

21!
, ~3.30!

so as to minimize the total number of correlators

NC5 dx M̄min
25/32M̄max

25/3

dC
12Pe ~3.31!

needed to evaluate ~3.24! throughout the range
@Mmin ,Mmax# of MT @46#.

C. The Cardinal-interpolated reduced correlator

As a next step, we make theansatzthat an approximate
representation of the reduced~Newtonian! noncoherent cor-
relator in terms of a~generalized! cardinal expansion also
holds, viz.,@47#

CBª (
n52`

`

CnCn~M̄T
25/32M̄n

25/3!, ~3.32!

where

Cn5max
TcT

U2E
f in f

f sup A~ f !T̄n* ~ f !

P~ f !
d fU , ~3.33!

and the infinite sum is truncated according to~3.27!.
In ~3.33! the templatesT̄n are defined by Eqs.~1.9!,

~1.10!, and ~1.16!, where the~scaled! chirp masses take th
values

M̄k
25/35M̄max

25/31kdC8 , k52P,2P11, . . . ,NC211P,

~3.34!

the interpolating functionsCn(x) are given by Eq.~3.26!,
and the parametersdC , x, and P are computed from the
prescribed minimal matchG as explained in Sec. III A.

IV. PLAIN VS CARDINAL INTERPOLATED LATTICE

In this section we shall compare the~Newtonian!
cardinal-interpolated~reduced, noncoherent! correlator to the
plain-lattice of~reduced noncoherent! correlators in terms of
computational cost and statistical features~detection and es-
timation performance!. The assumed noise PSD and spect
window are given by Eqs.~1.21! and ~1.22!, respectively.
0-7



le

re

e

b
s
to

or
v
n

is
a
w

ve
e
-
sh
x

he

ed

the

qs.

e

8
6
0
5
4

c

CROCE, DEMMA, PIERRO, PINTO, AND POSTIGLIONE PHYSICAL REVIEW D62 124020
A. Computational burden

The plain lattice template spacingsdL and total number of
correlatorsNL needed to cover the range (0.2M (,10M () for
some values of the minimal matchG are compared in Table
I to the corresponding quantitiesdC andNC of the cardinal
interpolated correlator.

It is seen that at any value of the minimal matchG, the
cardinal-interpolated representation requires some 30%
many templates than the plain lattice.

On the other hand, evaluating Eq.~3.32! at any value
MTÞMk is substantially cheaper than computing the cor
sponding~reduced, noncoherent! correlator.

Indeed, to use Eq.~3.32! one really needs to evaluate th
interpolating functionsCn(x) only at a finite number of~eq-
uispaced! values ofM̄T

25/3 between the samplesM̄q
25/3. The

corresponding values of the interpolating functions can
computed once for all, and stored in a look-up table. A
result, only ;2P floating point operations are needed
compute~3.32! at each of the above values ofM̄T

25/3, with a
typical P;102.

B. Statistical features

The statistical properties of the cardinal-interpolated c
relator have been compared to those of the plain-lattice
extensive Monte Carlo simulations. The number of differe
realizations used to derive the statistics was;104.

Simulated data were sampled in time at twice the Nyqu
rate. To limit running times, the minimal match was set
G50.9, and the chirp-mass range was chosen in such a
that the longest observable waveform spanned 215 time bins.
In order to avoid circular-correlation artifacts, and to ha
equal statistics for all reduced correlators, all templates w
zero-padded up to a total length of 216 bins. Gaussian uncor
related noise samples were generated using a feedback-
register routine from the IMSL package, featuring an e
tremely large period@48#, followed by a Box-Müller
transformation@49#. The noise samples were added to t
whitened data in the spectral domain.

In the following we shall denote the cardinal-interpolat
and plain lattice test-statistics as@50#

Cmax
(C) 5max

MT

(
k

CkCk~M̄T2M̄k! ~4.1!

and

Cmax
(L) 5max

k
Ck , ~4.2!

TABLE I. Plain versus cardinal interpolated lattice.

G dC dL NC NL xopt Popt

0.9 0.00596 0.00427 2635 3419 1.037 4
0.925 0.00447 0.00315 3485 4635 1.033 5
0.95 0.00307 0.00209 5029 6985 1.028 7
0.975 0.00181 0.00129 8441 11317 1.023 9
0.99 0.00121 0.00078 12553 18765 1.020 12
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respectively. We shall denote the estimated mass, i.e.,
value of M̄T which yields the maximum in Eqs.~4.1! or
~4.2! asMest, and let

M̄est
25/35M̄q

25/31hestd, hestP@0,1@ , ~4.3!

M̄s
25/35M̄q

25/31hd, hP@0,1@ . ~4.4!

Whenever needed a suffix/superfixL,C will be used to iden-
tify the plain-lattice and cardinal-interpolated cases in E
~4.3! and ~4.4!.

The CDFs ofCmax
(C) ~dashed lines! andCmax

(L) ~full lines! in
the absence of signal (SNR50) are compared in Fig. 7~a!,
for template spacings corresponding toG50.9. The corre-
sponding PDFs are displayed in Fig. 7~b!. The observed dif-
ference falls within the 3s uncertainty interval related to th
finite number of realizations.

FIG. 7. ~a! Cardinal interpolated NCC~dashed! versus plain
lattice of NCCs~continuous! at G50.9. CDFs of detection statistic
at SNR50. ~b! Cardinal interpolated NCC~dashed! versus plain
lattice of NCCs~continuous! at G50.9. PDFs of detection statisti
at SNR50.
0-8
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The CDFs ofCmax
(C) ~dashed lines! andCmax

(L) ~full lines! in
the presence of a signal withSNR56,8,10 are shown in Fig
8~a!, for the ~worst! case whereh50.5 in ~4.4!. The corre-
sponding PDFs are displayed in Fig. 8~b!. Again, the ob-
served differences fall within the 3s uncertainty interval re-
lated to the finite number of realizations. Note that t
expected value always exceeds the design valueG•SNR, as
might be expected as an effect of the supremum-taking
erations in Eqs.~1.15!, ~4.1!, and~4.2!.

As h in Eq. ~4.4! changes between 0 and 0.5, the PDFs
Cmax

(C) and Cmax
(L) change in turn. The limiting PDFs corre

sponding toh50 andh50.5 are shown in Figs. 9 and 10
for the special caseSNR58, for of Cmax

(C) andCmax
(L) .

It can be concluded that the detection performance of
cardinal interpolated~reduced, noncoherent! correlator is es-
sentially equivalent to that of the computationally more e
pensive plain lattice of~reduced, noncoherent! correlators.

FIG. 8. ~a! Cardinal interpolated NCC~dashed! versus raw lat-
tice of NCCs~continuous! at G50.9, h50.5. CDFs of detection
statistic atSNR56,8,10. ~b! Cardinal interpolated NCC~dashed!
versus raw lattice of NCCs~continuous! at G50.9, h50.5. PDFs
of detection statistic atSNR56,8,10.
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We turn now to a comparison of the pertinentestimation
features. To this end we let

j5
M̄est

25/32M̄s
25/3

d
5h2hest. ~4.5!

The PDFs ofj for the cardinal-interpolated correlator a
SNR58 andG50.9 are shown in Fig. 11 forh50 andh
50.5.

The corresponding probabilitiesP(j) for the plain lattice
of correlators are shown in Fig. 12. Note that for the pla
lattice of correlators,hest can take only values which ar
integer multiples ofdL .

Both the cardinal-interpolated correlator and the plain l
tice of correlators providebiasedestimates. The biasE@j#
becomes for both essentially independent of theSNRat suf-

FIG. 9. Limiting PDFs ofCmax
(C) at SNR58.

FIG. 10. Limiting PDFs ofCmax
(L) at SNR58.
0-9
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ficiently high SNR levels (SNR*8). For the cardinal-
interpolated correlator the asymptotic large-SNR bias
shown in Fig. 13, which is a close kin of Fig. 5. For the pla
lattice, it is displayed in Fig. 14. The cardinal-interpolat
correlator is seen to exhibit a smaller bias.

The standard deviations of the cardinal-interpolated
plain lattice estimators are nearly the same. For instance
h50.5 ~worst case!, at SNR58 one hass(jL)51.12 and
s(jC)50.92; atSNR510 s(jL)50.84 ands(jC)50.63.

C. Extension to PN models

The cardinal-interpolated approach can be extended
principle, to higher order PN models, provided the struct

FIG. 11. Cardinal interpolated NCC atG50.9. PDFs of esti-
matedj for h50 ~dashed! andh50.5 ~continuous!, at SNR58.

FIG. 12. Plain lattice of NCCs atG50.9. Probabilities of esti-
matedj for h50 ~gray! andh50.5 ~black! at SNR58.
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and QBL properties of the~reduced! correlator are preserved
In the geometrical language of@9#, this is equivalent to re-
quiring that the chosen parameter space be~globally! flat and
Euclidean@51#. This is surely the case for 1PN models@14#,
and almost the case for the new 02spin 2PN coordinates
proposed in@52#. One should expect an even more subst
tial computational saving, in view of the higher dimension
the parameter space.

V. CONCLUSIONS AND RECOMMENDATIONS

Quasi-band-limited function approximation theory can
used to build a ~nearly! minimum redundant cardinal
interpolated representation of the noncoherent correlator
detecting gravitational wave chirps. An explicit expressi
has been provided and tested, for the simplest case of N
tonian waveforms.

FIG. 13. Cardinal interpolated NCC. Estimation bias (SNR
>8).

FIG. 14. Plain lattice of NCCs. Estimation bias (SNR>8).
0-10
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The number of correlators to be computed and inter
lated in order to maintain the match above a given minim
valueG has been shown to besubstantially lessthan required
by the standard~lattice! approach, and the computation
gain goes up withG. On the other hand, evaluating th
cardinal-interpolated representation at any value ofMT is
substantially cheaper than computing the corresponding
relator.

We suggest that cardinal-interpolated expansions coul
used to improve the efficiency of hierarchical searches, a
hierarchical levels.

Extension to PN templates should be straighforward
principle, insofar as the structure and QBL property of t
n.

li
o,

a
es

hy

re
d
r
on
n

he
e

ed

12402
-
l

r-

be
ll

n
e

correlators is preserved, and lead to an even increased c
putational gain. Work in this direction is in progress.
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@20# We shall ignore amplitude/phase modulation terms aris
from precessingorbits, as discussed, e.g., in@10#.

@21# We shall also ignore the effect of a nonzero residual orb
eccentricity, as discussed, e.g., in A. Kro´lak, K.D. Kokkotas,
and G. Scha¨fer, Phys. Rev. D52, 2089~1995!; V. Pierro and
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tational Wave Data Analysis, edited by M. Davier and P. Hello
~Editions Frontieres, Gif-Sur-Yvette, 1998!#.

@23# Tc is the time where the model’s instantaneous orbital per
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well before.

@24# The coalescency phase bears no physical information, and
coalescency time is just a bona-fide parameter. The so

physics is thus entirely contained injW .
@25# To 2PN order, these include the chirp massMT , the reduced

massmT ~appearing at order 1PN and above!, the spin-orbit
coupling parameterbT ~appearing at order 1.5PN and above!,
the spin-spin coupling parametersT ~appearing at order 2PN
and above! @11#.

@26# The simultaneous observation of several chirps is ruled ou
extremely unlikely.

@27# The fitting factor concept was perhaps first applied to G
detection by Dewey~D. Dewey, Ph.D. thesis, MIT, 1986!, and
extensively exploited by Apostolatos@11#.

@28# Let the observable sources be those for whichd5FF•SNR
5FF•(K/R).d0, whereR is the source distance, andK de-
pends on the source and antenna features. For a fixedK, d
.d0⇔R,Rmax(FF)5K•FF/d0. The total number of poten-
tially observable sources by a set of identical antennas co
ing the whole celestial sphere is thus under the assumption
a uniform source densityrS ,

Ntot~FF!5
4p

3
rSRmax

3 ~FF!5
4p

3
rSSK

d0
D3

FF3.

Letting Ntot(FF)5(12z)Ntot(1), wherez is the fraction of
potentially observable sourceslost as a consequence of mis
match, one accordingly obtains 12z5Ntot(FF)/Ntot(1)
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5FF3, a result independent ofK and hence valid for all
sources and antenna types.

@29# As a possible refinement, one could assign different value
G to different subsets of the parameter space, on the basis,
of the corresponding estimated source/event abunda
occurrence.

@30# The probability density of the reduced correlators is obviou
no longer Ricean. In view of the positive-definiteness of t
c’s, it might be expected to be described by a Fisher-Tip
distribution @J. Galambos,The Asymptotic Theory of Extrem
Order Statistics~Wiley, New York, 1978!#, whose parameters
will be related to

max
TcT

d

as well as to the size of the FFT used to compute the Fou
transform.

@31# Our parametrization of the templates in terms ofM̄25/3 is
related to the usual one in terms of the chirp-timet0 @14# by

t05
5

256M(
25/3~pf0!

28/3M̄25/3.

@32# The functionsd and D attain their maximum value iff the
template is perfectly matched to the signal, viz.,D5Q50,

yielding d5D5SNRand d̄5D̄51.
@33# B.S. Dhurandhar and B.F. Schutz, Phys. Rev. D50, 2390

~1994!.
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Þ0#'1 in Eq. ~2.10! for almost allh, with the exception of a
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'Tc .

@35# The joint probability density on the right-hand side of E
~2.11! could be computed exactly@B. Levine, Fondements
Theoriques de la Radiotechnique Statistique~MIR, Moscow,
1976!#. However, at SNR values such thatb!1,

C65max
Q

c~D6 ,Q!'c@D6 ,Qmax~D6!#

whereQmax(D6) is the nonrandomvalue of Q which maxi-
mizes d(D6 ,Q) defined in Sec. I E, and theC6 will be
Gaussian distributed, with correlation coefficient given a
proximately by Eq.~2.13!.

@36# A similar definition applies in theL2 norm. Indeed, the theory
of QBL functions was first introduced inL2 @D. Slepian, Proc.
IEEE 61, 292~1976!#, and later reformulated inL` @A. Pinkus,
N-Widths in Approximation Theory~Springer, Berlin, 1985!#.

@37# Cardinal expansions were introduced and investigated in E
Whittaker, Proc. R. Soc. Edinburgh35, 181~1915!; J.M. Whit-
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617 ~1928!#, Kotel’nikov @V.A. Kotel’nikov, Izd. Rev. Upr.
Svyazi RKKA, Moscow ~1933!# and Shannon @C.E.
Shannon, Proc. IRE37, 10 ~1949!#. See J.R. Higgins,The
Sampling Theory in Fourier and Signal Analysis~Oxford,
Clarendon, 1996! for a readable introduction to the subject.

@38# The cardinal expansion~3.4! is most simply obtained by re
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garding the inverse Fourier transform representation:

f~x!5E
2B

B

dyF~y!exp~ j2pxy!

as aL [ 2B,B]
2 scalar product, and using Parseval identity, viz

^f,g&5(
n

^f,un&^g,un&*

where f (y)5F(y), g(y)5exp(2j2pxy), and un(y)
5(2B)21/2 exp(jnpy/B) is the Euler-Fourier basis on
@2B,B#.
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@41# Obviously, smoothing should not affect the spectrum of

within its significant bandwidth. This implies a slightly large
bandwidth,x.1, and hence some degree of oversampling

@42# More specifically, itsL` ~andL2) norm in uxu.Qd8 vanishes
exponentially in (Q2P). Knab’s window~3.10! is a slightly
suboptimal choice foru(x) under the constraints~3.8!. It pro-
vides possibly the best available tradeoff between the com
ing requirements of minimal oversampling and minimal co
putational burden@41#. Alternative choices are discussed
@43#.

@43# M. Pawlak and U. Stadtmu¨ller, IEEE Trans. Inf. Theory42,
1425 ~1996!.

@44# It can be shown thatD̄(D) is a QBL function in theL2 norm
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@45# One should not be worried by the formal inclusion of negat

values of the~scaled! template chirp massM̄n
25/3 in Eq. ~3.17!.

Changing the sign ofM̄n
25/3 merely producestime-reversed

chirps.
@46# Note that in general the needed negative and positive a

ments ofD̄(•) in Eq. ~3.24! do not differ by a mere change o

sign. Accordingly, the even parity ofD̄(•) does not help to
reduce the number of correlators.

@47# The extension of~generalized! cardinal expansions to stocha
tic processes is due to Kotel’nikov, and is discussed, e.g.
@43#. Note in this connection that the additive noise affecti
the data does not depend onM.
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@52# T. Tanaka and H. Tagoshi, Phys. Rev. D62, 082001~2000!.
0-12


