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An absolute lower bound on the number of templates needed to keep the fitting factor above a prescribed
minimal valuel in correlator-bank detection ¢Newtonian gravitational wave chirps from unknown inspiral-
ing compact binary stars is derived, resorting to the theory of quasi-band-limited functionsLifi tteem. An
explicit nearly minimum redundant cardinal-interpolation formula for (feeluced, noncoherentorrelator is
introduced. Its computational burden and statistical properties are compared to those of the plain lattice of
(reduced, noncoherentorrelators, for the same. An extension to post-Newtonian models is outlined.

PACS numbgs): 04.80.Nn, 95.55.Ym, 95.75.Pq, 97.80.Af
INTRODUCTION I. BACKGROUND

In this section we resume a number of well known con-

The de_tect!on_ of graV|tat|on_aI waveGW) chlrps fror_n cepts relevant to CBS chirp detection, and introduce the no-
unknown inspiraling compact binary soura&BS) is a pri- tation.

mary goal for the early operation of broadband interferomet-
ric detectors, including TAMA3001], GEO600[2], the two
Laser Interferometric Gravitational Wav&lGOs) [3], and
VIRGO [4], in view of the sizable expected rate of obsery- Detecting GW chirps from unknown inspiraling CBS re-
able events5). quires the computation of a suitable set of noncoherent cor-
For additive Gaussian stationary noise, the correlator€lators(NCC) [16]:
bank threshold-detector is the optimal one, yielding the foup ACHT* ()
smallest false-dismissal probability, at any fixed false-alarm C[ﬂ=2“ sup A(T) T7(T) df’, (1.1)
probability and signal to noise rat{&]. f TI(f)
The issues of optimum template parametrization and
placement, and the related computational burden have be

discussed by several authdiz-13]. A lucid account of the . o . )
main relevant landmarks is given 4] resulting from the superposition of @ossibly nul) signal

Curiously, the question of a possil@#icientinterpolation S(f) a_nd a reahza_tlor‘i\l(_f) Of the antenna nmséas_sumed
among the correlators has been left yet unsofet]. Gaus_S|an and s_tatlonaryl'(f) is an element of a suitable set

In this paper we set up and test an efficient interpolate® Unit-norm chirptemplatessuch that
representation of théreduced, noncoherentorrelator for . ?(f)?*(f)
the simplest paradigm case of Newtonian chirps. The pro- ”ﬂlz‘zj sup () T7(T)
posed representatidd5] is proven to get close to thabso- f 1 (f)

lute minimumtemplate density required by a prescribed i . ,
minimal-match condition, which follows from the theory of @nd II(f) is the (one-sidedl antenna noise power spectral

quasi-band-limitedQBL) functions in theL* norm. The sta- dg_r;_?ityg(PSI_?. Tge random variables have Ricean prob-
tistical performance of the proposed representation ar@0llity densi ie<{6],

A. Noncoherent correlator. Deflection and SNR

inf

ere (i¢.fsyp is the useful antenna spectral window,
A(f)=S(f)+N(f) are the noise corruptetspectral data,

1/2
=1, (1.2

inf

shown to be essentially equivalent to those of the plain lat- 24 2
tice. w(c)=c exy{ i )Io(cd), (1.3
This paper is accordingly organized as follows. In Sec. |

we recallla number O.f relevant concepts and results. In S(':‘(\:/\'/herelo(') is the modified Bessel function of first kind and
Il we review the design of the plain template-bank for theZero order. and

simplest(Newtonian case, and discuss its statistical detec- ’

tion properties. In Sec. Il we briefly introduce QBL func- =

- - - - faup S(H)T* ()

tions and cardinal expansions, and derive the proposed ap- d=|2 = df (1.4
proximations. In Sec. IV we compare the computational f II(f)

burden and the statistical detection/estimation properties of .

the cardinal-interpolatedreduced, noncoherentorrelator is thedeflectionobtained using’. The moments of Eq1.3
lattice to those of the plain lattice. Conclusions follow undercan be written in terms of Kummer’s confluent hypergeomet-
Sec. V. ric function[17]:

inf
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n d2 as the most likely estimate of the observed sig6al
1P| —5iL=5]. (19 It is convenient to measure tlgoodness of fibetween a
given signalS(f) and the best available template in the set in
For d=5 the Ricean densitie&l.3 merge into Gaussian t€rms of the so-calleditting factor[27]:
functions, with

n
1+ =

n\ _— on/2
(c")y=2"T 5

k
FF=max ——=. 1.1
E[c]~d, vafc]~1. (1.6 « SNR (113
The deflection attains its maximum value iff the templ?iTte The set of templates should be constructed in such a way that
is matched to the signal, viz., for any admissible signal,
— S(f) FF=T, (1.12
"= a0 | |
where 1-T% gauges the fraction of potentially observable
yielding sources which could be lost as an effect of template mis-
match[28,29.
d=dpax= zfs”"s(f)s*(f) af =sNR (L8
- oTmaxt o T =SNR (1.9 D. The reduced correlator
where SNR is thentrinsic signal-to-noise ratio. b In View of Eq.(1.9), the noncoherent correlatet.1) can
e written
B. Chirp templates fsup A(f)f77/6e7j’//T(fr§)] o a4t
The stationary phase principlsee[18] for a thorough 2 fint II(f) exp(—)2m TCT)

discussion of its validity can be used to show that the c= T T
asymptotic principal parf19] of a genera[20,21], reduced {zf SuP_df}
[22] post-Newtoniar(PN) chirp can be writterj11] fing ()

fiope, T, E)=AF "Cexplj[2af T~ pet+ (.61},
Sfide.To 8 L o™ Pot Yl1L ]il 9 Equation(1.13 is formally (except for inessential factors
' the absolute value of thef(—>TcT) Fourier transform of the

whereA s a constantreal, unknowhp amplitude factorT¢is  (complex-valuell function:
the (fiducial) coalescency timg23], ¢, is the template phase
att=T,, andé represents the remaining intring@4] source A(f)?*(f;o,og)
parameterg 25]. Equation (1.9) is used to construct the K(f)= I VT fint=f<fsup,
needed chirp templates. A further suffixwill be used to
label the template parametefs;, ¢, T, and Er. All 0, T<fint, T>Tsup.

template amplitudeé; will be chosen so as to comply with
the normalization conditiofl.2), viz.,

inf

(1.13

(1.19

Maximizing the noncoherent correlat(r.13 with respect to
Te, is thus equivalent to taking the largest absolute value of

toupf 7R 712 the (f—T. ) Fourier transform of Eq(1.14). The resulting
Ar= ZJf mdf} (.10 reduced correlator30] will be denoted with a capital letter,
inf viz.,
C. Maximum likelihood criterion: Fitting factor C=supc. (1.19
Equation (1.6) implies that(under the assumption of a Ter
uniform distribution of the unknown source parametehe
largest correlator will most likely correspond to the special E. The Newtonian deflection and the match

template yielding the largest deflectipmaximum likelihood For illustrative purposes, in this paper we shall restrict to

(ML) estimation criteriori6]]. the simplest NewtoniarOP ignal dt lates. Th
Data analysis for detecting chirps reduces thus to the fol- e simplest NewtoniaiOPN) signals and templates. The

lowing. Given the(spectral noisy data, and a set datticey ~ OPN functiony(f;) in Eq. (1.9) reads
templates, suitably covering the chirp parameter space, the 3 ~5/3
corresponding(noncoherent correlators{c,|k=1,2,... N} Yr(f)=—| — M =513 -513 (1.16

are computed. The largest among these correlators is used as 128 T '

a detection statisti¢6], viz., whenever this latter exceeds a

suitable threshold, set by the prescribed false-alarm probabilvhere M+ is the template chirp-mass. It is convenient to
ity (surveillancestrategy[6]), a signal is declared to have introduce the following dimensionless variables and param-
been observef26], and the corresponding template is takeneters[31]:

C3
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FIG. 2. The functiorﬁ(A), close-up.

T= L O=fin(To—To), M= ﬂ with f,=300 Hz (I, is a constant of no concern to us here
fint T Mo and for a spectral window with
5/3
A_M*S/S_M*WS _ i 7G finfMQ fmf=40 HZ, fsup=400 Hz. (122
s T 128 cd ’

(1.17  The value® ,, of ® which maximizesxT(A,(H)) in a neigh-
borhood ofA=0 is shown in Fig. 3 as a function df.
where Mg, is the solar mass, so as to recast the deflection

(1.4) into the form: Il. THE PLAIN (NEWTONIAN ) LATTICE

d(A,0) Given a rangd M pin,Mmax] Of allowed source chirp
masses, let the set of template chirp masses be

f-53_ y4-53 5/3_ 5/3
MB= M MB= M, P+ s,

T f 713 - o

sup ; —5/3
f df —— exp[j(27OF)+ AT 53]

1 ()

=SNR — = .
ffsupdT f n=12,...N_—1, (2.2
1 I(f)
(1.18 I
0.04 |-
It is also useful to introduce the reduced deflection: i
D(A)=maxd(A,0), 1.19 [
(4)=maxd(4,0) (1.19 oos |
and the related normalizd@2] functions: @,: !
£ 002 |
E()—ﬂ 5()—& (1.20 ® i
- SNR ~ SNR’ ' I
N . . 0.01 |-
The functionD(A) is known as théNewtonian match The -
quantityI" in (1.12 is accordingly also named thminimal |
match[14]. -
The functionsd and D are displayed in Figs. 1 and 2, B e e ———— .
respectively, for the special case of a LIGO-like noise PSD, 0. 0.0005 0.001 0.0015  0.002
A
o ([ fo)? f\2 : L = .
I(f)=—1|+| +2/1+ (1.21) FIG. 3. Value of® which maximizesd(A,®) as a function of

5|\ f fo A (close-up.
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where §, is the lattice-spacing, and cal simulations aided by intuition to compute the lattice
false-alarm and false-dismissal probabilities.

[/\_/lmf’f—ﬂmgf The detection threshold is determined from the pre-
)

NL= L (2.2 scribed(tolerated false alarm probabilityr, by solving the
equation
is the total number of templates. Obviouglycan take only
the discrete values: a=prof3 k:C,>vy|SNR=0]

Ap= M- M, n=12,...N,. 2.3 =1-profV h,c,<y|SNR=0]. 2.9

The joint probability in Eq.(2.8) is difficult to compute,
A. Lattice design since thecy, arenot statistically independent in general. For
) — o o most practical purposes, a decent approximation is
Given Mg, the fitting factor of the lattice is

01— (1 — a—YI2\M
FF=maxD(A,)=D(min|A,|). (2.4 profi¥ h.cn<7|SNR=0]=(1=e"" 5%, (2.9
n n which would be appropriate if the, were a collection oM

independentRicean random variables. Numerical experi-
ments suggest an almost linear dependendd oh the total
number of NCC usefi33].

The minimal-match conditiofil.12) should be obviously en-
forced in the worst case, where

_ _ S The probability offalse dismissabf a signal withSNR
-5/3 -5/3 L .
Ms :Mq + ?1 (25) #0is
yielding B(y,SNR = prot{mka>(:k< ¥|SNR#0]
5(%) r 26 —prol{¥h,c,<|SNR#0].  (2.10

A simple (conservativg approximation of Eq.(2.10 is
Equation(2.6) uniquely determines the lattice spacidg, [12,34):
and hence via Eq2.2) also the total number of templates.
B(y,SNR~prodC_<v,C,<y|SNR#0], (2.1)

B. False alarm and false dismissal probabilities
P where C_ and C, denote the reduced correlators corre-

The statistical distribution of the lattice detection statisticsponding to the nearest-neighboring templates, with chirp

_ massesM.. such that/\_/lse[/\/l, ,M_]. Under the same
mkax Cr m:xxch @7 (reasonably large SNRassumptions leading to Eq2.11),
the involved joint probability density can be approximated
is notknown in exact form, and one should resort to numeri-by a Gaussian bivariafe35]:

p{ (C_—d_)>+(C,—d,)2—2R(C_—d_)(C,—d,)
expg —

N 2(1-R?)
w(C_,C,)~ (LR , (212

where the false dismissal probabilit§2.11) is obviously a function
of #. Within the limits of validity of Eqs(2.8) to (2.13), for
de=d[AL,OnaAL)], a fixed SNRand a prescribed:, the following qualitative
o dependence 0B on the lattice spacing, is observed. In a
R~d[ 6,0 nadA )= 0O (A )], neighborhood ofy=0.5, the false dismissal probability is
(2.13 reduced by reducing the spaciAg among the templates. On
_ _ _ the other hand, in a neighborhood @0, reducing the
and the function®p,,(-) has been defined in Sec. IF and template spacing produces an increasgofThis is due to

shown in Fig. 3. the dominant effect of the parallel increasejgfneeded to
Letting keepa unchanged.
— s — o A judicious tradeoff should be obviously sought, to
M= Mq o, nel0, (214 choose a value of, and hences, , via Eg. (2.6), which

124020-4
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minimizes, e.g., the average value gfwith respect toz, of samples outside the interval of interest. This limitation can
under the assumption of a uniform distribution of the sourcede circumvented by using generalize@tonomizegcardinal

chirp mass. expansions. These expansions have the general [#tm
ll. A NEARLY MINIMUM REDUNDANT INTERPOLATED fx)= > f(Xn)Sin{i(X_Xn) B(X—Xy),
LATTICE n=—oo S

This section contains the main new results. A shortintro- y . _x —5' 5§ =(2yB)"%, y>1 (3.7
duction to the theory of QBL functions is included to make
the paper self-contained. where 6(x) is a suitablewindowing functiorsuch that

A. QBL functions and cardinal expansions 6(0)=1, F.d0(x)]=0, V £>(x—1)B, X>(1é, g

A function f:xe[a,b]—7R is QBL in the L® norm iff '

[36] The expansior{3.7) is nothing but the standard cardinal ex-

N pansion of the functiori(x) #(u—x), whose bandwidth un-
3 y.BceR": sup [f(x)—fg(x)|=exgd —¥(B—B/)], der the assumption@.8) is B' = yB, viz.,

xe[a,b] (3 1)

” ) o
fa(x) being obtained by taking the inverse Fourier transform ~ f(X) 0(u—x)=n:2_m f(Xn) 0(u—xn)sm{§(x—xn)
of the spectrum of (x) chopped aty|=B, viz.,

1
_ y Ly s '
fB(x)zfij(W(g) -fxﬁy[f(x)]], (3.2 Xnt1~Xp=6", d'= 2B (3.9
where evaluated ati=x. The Fourier spectrum df(x) (u—x) is a
1, |x|<1 smoothed version of the plain spectrumfdk); a judicious

(3.3 choice of(x) can thus make in principle, the decay rate of
0, [x|>1. f(Xn) B(u—X,) as|u—x,|—= as fast as desirefa0].
The Knab window functio41]
2711/2
X
1_ R
(P5’) ]
172

W(x)=|

For a strictly bandlimited functiorf(x), whose spectrum

vanishes identically outside-B,B], Eq. (3.2) provides an

exact interpolating representation known as cardinal expan- sinh{ mP(1—x Y
sinf7P(1—x~ 1]

sion[37,39:
Ps
(3.10
1

o= Y (3.9 satisfies all constrainté3.8) and is essentially confindd2]
in [x|<P¢’. This allows to truncaté3.7) at |x—x,|~Pé’,
where sinck) =sin(x)/x. For a QBL function on the other so that for any giverx, only ~2P samples symmetrically
hand, one can prove that E@.4), while reproducing exactly placed arounc are essentially needed to reconstriigt).
f(x) atx=x,, ke N, satisfies Eq(3.1), i.e., that The error resulting from truncation ¢8.7) with (3.10 at
|x—x,|=Pé" has been discussed[ihl]. A simple(and con-

Ve>0, 3 B: s[up:)]|f(x)—f5(x)|<e. (3.9  servative upper bound is given by
Xe|a,

6(x)=Kp(x) =

v Xny1— Xp=0,

fox)= > f(x»sin{%(x—xn)

Equation(3.4) is an approximate sample-interpolating repre-
sentation, where the sample density* = 2B depends on the
prescribed.” approximation errok. It is important to note
that the exponential decay of the error in E§.1) implies M
that reducinge in Eq. (3.5 by orders of magnitude doemt <— , M= sup f(x). (3.11
change the order of magnitude Bf sin{ wP(1—x "] xe[a,b]

Usually one needs to compuféx) in a finite interval
[a,b] including only

KP(X_Xn)

> f(x@sinc{%(x—xn)

[x=xXp|>P&’

Usually, one enforces the condition

M
(3.6) SnHaP(1—x ] =€'<¢, (3.12

(b—a)
N:[ 5

sampleq 39]. However, using Eq(3.4) to computef(x) in  wheree is the prescribed.” error in (3.5). Equation(3.12
[a,b] requires, in principle, knowledge of an infinite number can be solved to expre$sas a function ofy,

124020-5
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FIG. 4. L™ error of cardinal expansio(3.16) versus sample
dendity 16 .

sinh Y{(M/¢€’
p_ SNt “(M/e)

3.1
7(1-x"Y 19
The total number of samples
(b—a) (b—a)
Nt= +2P=|x 5 +2P (3.19

needed to represerii(x) in [a,b] using (3.9 and (3.10,
within a prescribed-* error and under the constraitg.12,
can be accordingly minimized by letting

26 sinh Y{(M/¢e')]*?

m(b—a)

y=1+ (3.15

B. The Cardinal-interpolated Newtonian match

The matcHS(A) is a QBL function in theL” norm. This
can be seen from Fig. 4, where thgponentialdecay of the

L* error in[ 0,0 betweerE(A) and the cardinal expansion

Da(d)= 3 5<An>sinr{51(A—An>
n=—o c

Apr1—Ap=dc, (3.16

is displayed as a function ofz* on a log-Lin plot[44].
Switching back to the original variables, E®.16) reads

EB ( M; 5/3 MT—sl?,)

= z 5(/\75—5/3_/&;5/3)_Sin({g(/\_/l;SB_M;SB) ’
C

(3.17
where[45]

PHYSICAL REVIEW b2 124020
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FIG. 5. The difference;— %* as a function of — relevant to
Egs.(3.21) and(3.22.

A4—5/3_ y—5/3_
n+1_Mn - 50-

(3.18

Given M, the fitting factor obtained usingB.17) is given
by

EE= rrlax 53(./\_/1; 5/3_ M'F 5/3) — SB(A_/lg 5/3_ M; 5/3) )

My
(3.19
It is convenient to let
M= M+ noc, nel0d (3.20
M= Mg ™+ 9, 6c,  m,. €[04, (3.20
so as to rewrit€3.19 as
FF=Dg(7— 7). (322

The differencen— #n,. turns out to depend on as shown in
Fig. 5, and hence the fitting fact¢8.22 depends orny as
shown in Fig. 6. The minimal-match conditi¢h.12 should
again be enforced in the worst cései.e., as seen from Figs.
5 and 6, forp=0.5 andzn, =, yielding

-

This condition is notably independent gf and fixes the
sample spacing. .

S 5

n=—o

n+ 3T

> (3.23

1
n+§ Oc

124020-6
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FIG. 6. FF as a function ofy, relevant to Eqs(3.21) and
(3.22.

In practice, as discussed in the previous section, it is co

venient to use aeconomizecaardinal expansion, viz.,

53(/\_4§5/3— /\—4;5/3):: 2 5(/\—/15—5/3_ /\_/155’3)

n=-—o

XW (M7= M, %), (3.24

where[see Eqs(3.7) and(3.10]

—5/3_ x 4—5/3 —
M=M= 5(,::)( 15(:1

(3.25
and
2711/2
[ P(l-x Hl1-| —
D e o 20
Wn(x)=sinq —- |- 27172 :
o¢ X
1_ R
el

sinH7P(1—x Y]
(3.26
As shown in the previous section, the functi®26 is es-
sentially contained in the intervi| <P S, and hence the
infinite sum in(3.249) is essentially restricted to

M'F 5/3 M3 5/3

e

+P.

—P=n=s

(3.27

c
Capitalizing on Eq(3.11) we shall enforce the condition

1 1-T 328
sin{7P(1—y H] '

10

PHYSICAL REVIEW D 62 124020

Eq. (3.249 truncated according to E43.27) in place of Eq.
(3.17). Further, in view of Eqs(3.13 and (3.195, we shall

take
10 1/2
k1
. 26¢ sinh <_1—I‘) 529
X= Xopt= =3 - :
T A e M
and
- 10
P=p s (3.30
= Opt:: — , .
71'(]—_Xoplt
so as to minimize the total number of correlators
M5B A503
Ne=|x —————=+2P (3.3)
oc
needed to evaluate(3.24 throughout the range

n[_MminaMmax] of MT [46].

C. The Cardinal-interpolated reduced correlator

As a next step, we make thansatzthat an approximate
representation of the reducédewtonian noncoherent cor-
relator in terms of ageneralizey cardinal expansion also
holds, viz.,[47]

%)

chzn;w CoW (M7= M5B, (3.32
where
foup A TE ()
C,=ma 2f —— 1 df|, 3.3
" TC% fint TI(T) (339

and the infinite sum is truncated according(8027).

In (3.33 the templatesT,, are defined by Eqs(1.9),
(1.10, and(1.16, where the(scaled chirp masses take the
values

M B= M B+ kse, k=—P,—P+1,...Nc—1+P,

(3.39

the interpolating functiongl,(x) are given by Eq(3.26),
and the parameteré., x, and P are computed from the
prescribed minimal match as explained in Sec. Il A.

IV. PLAIN VS CARDINAL INTERPOLATED LATTICE

In this section we shall compare thé&Newtonian
cardinal-interpolatedreduced, noncoherentorrelator to the
plain-lattice of(reduced noncoherentorrelators in terms of
computational cost and statistical featufdstection and es-

to guarantee that the minimal-match condition will not betimation performance The assumed noise PSD and spectral
affected within the last significant figure &f, when using window are given by Eq91.21) and(1.22, respectively.

124020-7
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TABLE I. Plain versus cardinal interpolated lattice.

¢

o

Nc

NL

Xopt

I:)opt

0.9
0.925
0.95
0.975
0.99

0.00596
0.00447
0.00307
0.00181
0.00121

0.00427
0.00315
0.00209
0.00129
0.00078

2635
3485
5029
8441
12553

3419
4635
6985
11317
18765

1.037
1.033
1.028
1.023
1.020

48
56
70
95
124

08 |-

Lattice (cont.)
Interpolated (dash.)
r=0.9

A. Computational burden

The plain lattice template spacings and total number of 021

correlatordN,; needed to cover the range (M2,10M ) for I
some values of the minimal matdhare compared in Table 0.

| to the corresponding quantitie%. andN¢ of the cardinal 4
interpolated correlator.

It is seen that at any value of the minimal mafich the
cardinal-interpolated representation requires some 30% less
many templates than the plain lattice.

On the other hand, evaluating E(3.32 at any value
M1# M, is substantially cheaper than computing the corre-
sponding(reduced, noncoherentorrelator.

Indeed, to use E(q3.32 one really needs to evaluate the
interpolating functionst',(x) only at a finite number ofeg-
uispacedivalues of M * between the samplest; *3. The
corresponding values of the interpolating functions can be
computed once for all, and stored in a look-up table. As a
result, only ~2P floating point operations are needed to
compute(3.32 at each of the above values of; 2, with a
typical P~ 107,

6.5
(@)

175 |
Lattice (cont.)

15 F Interpolated (dash.)

PDF[Crax]

B. Statistical features 4. 6.5

The statistical properties of the cardinal-interpolated cor-
relator have been compared to those of the plain-lattice via
extensive Monte Carlo simulations. The number of different FIG. 7. (a) Cardinal interpolated NCGdashedl versus plain
realizations used to derive the statistics was0". lattice of NCCs(continuoug at I'=0.9. CDFs of detection statistic

Simulated data were sampled in time at twice the Nyquisat SNR=0. (b) Cardinal interpolated NCGdashedl versus plain
rate. To limit running times, the minimal match was set atlattice of NCCs(continuoug atI' = 0.9. PDFs of detection statistic
I'=0.9, and the chirp-mass range was chosen in such a wat SNR=0.
that the longest observable waveform spann€dighe bins.

In order to avoid circular-correlation artifacts, and to haverespectively. We shall denote the estimated mass, i.e., the
equal statistics for all reduced correlators, all templates wergalue of My which yields the maximum in Eqg4.1) or
zero-padded up to a total length of®bins. Gaussian uncor- (4.2 as Mg, and let

related noise samples were generated using a feedback-shift-

(b)

register routine from the IMSL package, featuring an ex- _;3/3: /\_/1;5/3+ Nest®,  Meste[0,1], 4.3
tremely large period[48], followed by a Box-Mlier
transformation[49]. The noise samples were added to the M§5’3= /\_4;5/3+ 78, 7e[01. (4.9

whitened data in the spectral domain.

In the following we shall denote the cardinal-interpolated\yhenever needed a suffix/superixC will be used to iden-
and plain lattice test-statistics §50] tify the plain-lattice and cardinal-interpolated cases in Egs.
(4.3) and(4.4).

Cl® =max), C W (Mr—M,) (4.1) The CDFs ofC(), (dashed linesandC{\). (full lines) in
My K the absence of signaB(NR=0) are compared in Fig.(@),
and for template spacings correspondinglte=-0.9. The corre-
sponding PDFs are displayed in FigbY. The observed dif-
clt) =maxCy, (4.2)  ference falls within the 8 uncertainty interval related to the
k finite number of realizations.
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FIG. 8. (a) Cardinal interpolated NCQdashedl versus raw lat-
tice of NCCs(continuou$ at I'=0.9, »=0.5. CDFs of detection
statistic atSNR=6,8,10. (b) Cardinal interpolated NCCdasheg
versus raw lattice of NCC&ontinuous at I'=0.9, »=0.5. PDFs
of detection statistic aBNR=6,8,10.

The CDFs ofC(S), (dashed linesand C{-),, (full lines) in
the presence of a signal wiiNR=6,8,10 are shown in Fig.
8(a), for the (worst case wherep=0.5 in (4.4). The corre-
sponding PDFs are displayed in Figh8 Again, the ob-
served differences fall within theduncertainty interval re-

lated to the finite number of realizations. Note that the

expected value always exceeds the design VBEW@NR as

might be expected as an effect of the supremum-taking op-

erations in Eqs(1.15, (4.1), and(4.2).

As 7 in Eq. (4.4) changes between 0 and 0.5, the PDFs of
c{© and CEnL;X change in turn. The limiting PDFs corre-

max

sponding ton=0 and »=0.5 are shown in Figs. 9 and 10,

for the special cas8 NR=8, for of C{) andC{}) .

It can be concluded that the detection performance of the 6. 7. 3. 9 10. 1. 12

cardinal interpolatedreduced, noncoherentorrelator is es-

sentially equivalent to that of the computationally more ex-

pensive plain lattice ofreduced, noncoherentorrelators.
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FIG. 9. Limiting PDFs ofC{®), at SNR=8.

We turn now to a comparison of the pertinegtimation
features. To this end we let

J\_/rs/s_/\_/rs/a
= ESt—5S = N Nest- (4.9
The PDFs of¢ for the cardinal-interpolated correlator at
SNR=8 andI'=0.9 are shown in Fig. 11 fop=0 and»
=0.5.

The corresponding probabilitid3(¢) for the plain lattice
of correlators are shown in Fig. 12. Note that for the plain
lattice of correlators,p.s; can take only values which are
integer multiples of5, .

Both the cardinal-interpolated correlator and the plain lat-
tice of correlators providdiasedestimates. The biag[ £]
becomes for both essentially independent of $iNRat suf-

0.6
[ ~
- ! v SNR =8

05 | n = 0.0 (cont.)
[ 1 = 0.5 (dash.)

04 |

PDF[CL),]
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| |
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FIG. 10. Limiting PDFs ofC{-) at SNR=8.
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FIG. 13. Cardinal interpolated NCC. Estimation biaSNR
FIG. 11. Cardinal interpolated NCC &t=0.9. PDFs of esti- =8).
mated¢ for =0 (dashed and »= 0.5 (continuoug, at SNR=8.
and QBL properties of théeduced correlator are preserved.
ficiently high SNR levels (SNR=8). For the cardinal- " the geometrical language 8], this is equivalent to re-
interpolated correlator the asymptotic large-SNR bias i€lUiring that the chosen parameter spacégbebally) flat and
shown in Fig. 13, which is a close kin of Fig. 5. For the plain Euclidean[51]. This is surely the case for 1PN modgist],
lattice, it is displayed in Fig. 14. The cardinal-interpolated@nd almost the case for the new-8pin 2PN coordinates
correlator is seen to exhibit a smaller bias. proposed inf52]. One should expect an even more substan-
The standard deviations of the cardinal-interpolated andi@ computational saving, in view of the higher dimension of

plain lattice estimators are nearly the same. For instance, fgh€ parameter space.
7=0.5 (worst casg at SNR=8 one haso(¢,)=1.12 and

0(éc)=0.92; atSNR=10 o(&,)=0.84 ando(&c)=0.63. V. CONCLUSIONS AND RECOMMENDATIONS
Quasi-band-limited function approximation theory can be
C. Extension to PN models used to build a(nearlyy minimum redundant cardinal-

The cardinal-interpolated approach can be extended iinterpolated representation of the noncoherent correlator for
P PP Hetecting gravitational wave chirps. An explicit expression

principle, to higher order PN models, provided the structurenas been provided and tested. for the simplest case of New-

tonian waveforms.

0.8
0.7F SNR = 8 n = 0.0 (gray )
- r = 09 = 0.5 (black
06 | n (black)
0.5 |
% o4 E
fov, 0.4 -
03 | i
02 | -02 |
0.1 | i
o i | sl
L [ N = 3
3. -2. -1. 0 1. 2. 3 . T ——————
& 0. 0.2 0.4 0.6 0.8 1.
n
FIG. 12. Plain lattice of NCCs df =0.9. Probabilities of esti-
mated¢ for =0 (gray) and »=0.5 (black at SNR=8. FIG. 14. Plain lattice of NCCs. Estimation biaSNR=8).
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The number of correlators to be computed and interpo€orrelators is preserved, and lead to an even increased com-
lated in order to maintain the match above a given minimajputational gain. Work in this direction is in progress.
valuel” has been shown to seibstantially lesshan required
by the standardlattice) approach, and the computational
gain goes up withl’. On the other hand, evaluating the
cardinal-interpolated representation at any valueMf is
substantially cheaper than computing the corresponding cor- This work has been sponsored in part by the European
relator. Community through a Senior Visiting Scientist Grant to |.M.

We suggest that cardinal-interpolated expansions could beinto at NAO - Spacetime Astronomy Division, Tokyo, Ja-
used to improve the efficiency of hierarchical searches, at afpan, in connection with the TAMA project. I.M. Pinto
hierarchical levels. wishes to thank all the TAMA staff at NAO, and in particular

Extension to PN templates should be straighforward, inProfessor Fujimoto Masa-Katsu and Professor Kawamura
principle, insofar as the structure and QBL property of theSeiji for kind hospitality and stimulating discussions.
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