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Post-Newtonian gravitational radiation and equations of motion via direct integration
of the relaxed Einstein equations: Foundations
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We present a self-contained framework called direct integration of the relaxed Einstein equations for cal-
culating equations of motion and gravitational radiation emission for isolated gravitating systems based on the
post-Newtonian approximation. We cast the Einstein equations into their ‘‘relaxed’’ form of a flat-spacetime
wave equation together with a harmonic gauge condition, and solve the equations formally as a retarded
integral over the past null cone of the field point~chosen to be within the near zone when calculating equations
of motion and in the far zone when calculating gravitational radiation!. The ‘‘inner’’ part of this integral
~within a sphere of radiusR; one gravitational wavelength! is approximated in a slow-motion expansion
using standard techniques; the ‘‘outer’’ part, extending over the radiation zone, is evaluated using a null
integration variable. We show generally and explicitly that all contributions to the inner integrals that depend
on R cancel corresponding terms from the outer integrals, and that the outer integrals converge at infinity,
subject only to reasonable assumptions about the past behavior of the source. The method cures defects that
plagued previous ‘‘brute-force’’ slow-motion approaches to motion and gravitational radiation for isolated
systems. We detail the procedure for iterating the solutions in a weak-field, slow-motion approximation, and
derive expressions for the near-zone field through 3.5 post-Newtonian order in terms of Poisson-like potentials.

PACS number~s!: 04.30.2w, 04.25.Nx
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I. INTRODUCTION

The motion of multiple, isolated bodies under their m
tual gravitational attraction and the resulting emission
gravitational radiation is a long-standing problem that da
back to the first years following the publication of gene
relativity ~GR!. It has at times been controversial~for a thor-
ough review see@1#!. In 1916–1918 Einstein calculated th
gravitational radiation emitted by a laboratory-scale obj
using the linearized version of GR@2#. Some of his assump
tions were questionable and his answer for the energy
was off by a factor of 2~an error pointed out by Eddingto
@3#!. In 1916, de Sitter@4# derivedN-body equations of mo-
tion in what later would be termed the post-Newtonian~PN!
approximation. However, his equations contained an e
that was discovered in the course of a disputed claim
Levi-Cività @5# that the center of mass of a binary star syst
would suffer a ‘‘self-acceleration.’’ Eddington and Clark@6#
corrected the error, and found no self-acceleration. Einst
Infeld and Hoffman~EIH! @7# attempted to demonstrate e
plicitly that the Einstein equations alone imply equations
motion, by matching solutions of the vacuum equations,
panded in a weak-field, slow motion approximation, to fie
representing the near-zone fields of ‘‘point’’ masses, wo
ing to first PN order. The result was the well-known EI
N-body equations of motion. Other highlights in this ea
history of the problem of motion include the development
the post-Newtonian approximation for fluid sytems by Fo
@8# and Chandrasekhar@9#, its extension by Chandrasekh
and later workers to 2.5PN order@10,11#, and the develop-
ment of equations of motion for spinning bodies by Papa
trou @12#.

Gravitational theory presents one problem essenti
identical to that of electromagnetic theory: how to mesh
0556-2821/2000/62~12!/124015~28!/$15.00 62 1240
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natural solution of the field equations in the near zone wh
the bodies reside, which involves slow-motion expansio
and instantaneous fields, with the solution in the far zo
which involves retarded fields. Such a meshing is neede
one is to calculate the effects of the gravitational radiat
reaction that results from the emission of energy and ang
momentum to infinity. One approach to resolving this pro
lem was that of matched asymptotic expansions. Althou
well rooted in applied mathematics, it was first expounded
1971 as a powerful technique for electromagnetic and gr
tational problems by Burke@13#. Another, related approac
is the ‘‘post-Minkowskian’’ framework, elaborated and d
veloped most fully by Blanchet and Damour and their c
laborators@14–19#.

A second important problem of gravitation, which disti
guishes it from electromagnetism, is the non-linearity of E
stein’s equations. Gravitation itself acts as a source of gr
tation. Consequently this source extends over all spa
resulting in the possibility of divergent or ill-defined inte
grals. In many ways, this has been the most serious diffic
to overcome. Techniques for resolving it have ranged fr
sweeping the difficulties under the rug, to the sophistica
analytic regularization methods of the post-Minkowski
program. A central thrust of this paper is to present
straightforward method for resolving this difficulty.

A third ‘‘problem,’’ which is less a problem for gravita
tion than it is for electromagnetism, is that of ‘‘point’
sources. In electromagnetic theory, where there is a be
that fundamental charges like the electron are pointlike,
singular nature of the fields at the source has led to probl
of mass regularization, especially in deriving equations
electromagnetic radiation reaction; it also raises issues of
boundary between classical and quantum electrodynamic
©2000 The American Physical Society15-1
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gravitation theory, this is less of an issue of principle, b
cause the primary interest is in the motion of and radiat
by astrophysical systems, whose members are clearly
point masses. Instead, the use of ‘‘point,’’ i.e., del
function, sources is meant as an efficient means of appr
mating the mass distribution of bodies that are nearly sph
cal and that are small compared to the typical separa
between them, so that tidal effects, which depend on
finite size of the bodies, can be ignored. Here the issu
how to make use of a point mass approximation~which sim-
plifies many calculations! in a way that captures all the phys
ics without introducing spurious effects.

A fourth problem is of a technical nature: in electroma
netic theory, radiation damping in the equations of mot
occurs at order (v/c)3 beyond the simple Coulomb force
between charges, and is relatively easy to compute in a
tematic approximation method, modulo the other proble
listed above. By contrast, gravitational radiation damping
curs at order (v/c)5 beyond Newtonian gravity, and require
a higher order of approximation that captures all relev
contributions. Over the years, numerous inequivalent res
have been quoted for the leading gravitational radiation
action effects. One finds published papers in which the co
ficient in the relevant formula has ranged from221/16 to the
correct coefficient of unity; a study by Walker and Will@20#
showed that the divergent results were all the simple con
quence of missing one or more terms that contribute to
final answer.

These four ‘‘problems’’ were the origin of the so-calle
‘‘quadrupole controversy,’’ which arose from a critique b
Ehlers and colleagues@21# of the foundations of the quadru
pole formula for the leading-order gravitational radiation e
ergy flux and orbital damping. This critique had the bene
cial effect of spurring new research on those foundatio
including a study of the systematic structure of the appro
mation sequence of Einstein’s equations in a slow-moti
weak-field approach; analysis of energy balance as an a
ment for connecting the far-zone energy flux to the near-z
damping forces and elaboration of the post-Minkowskian
proach, among others~see@1# for a review!. The work in-
spired by the critique of Ehlerset al. served to confirm the
quadrupole formula and to strengthen its foundations. T
ultimate test, of course, came in 1979 with the announcem
of the measurement of orbital damping of the binary pul
PSR 1913116 in agreement with the quadrupole formu
@22#; current results agree to better than 0.5%@23#.

The problem of motion and radiation has received
newed interest since 1990, with the proposal for the La
Interferometric Gravitational Wave Observatory~LIGO! in
the U.S.~and similar observatories abroad!, and the realiza-
tion that a leading candidate source of detectable wa
would be the radiation-reaction driven inspiral of a bina
system of compact objects~neutron stars or black holes!
@24#. Furthermore, it was noted@25# that the leading method
for data analysis of signals from such systems, optim
matched filtering, would require theoretical template wa
forms that are accurate~primarily in the evolution of the
orbital frequency or phase! well beyond the leading-orde
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prediction of the quadrupole formula, possibly as high
corrections of order (v/c)6.

This presented a major theoretical challenge: to calcu
the motion and radiation to very high PN order, a formidab
algebraic task, while addressing each of the problems lis
above sufficiently well to ensure that the results were phy
cally meaningful. This challenge was taken up by thr
groups of workers.

One group, headed by Blanchet, Damour and Iyer@14–
19#, used the post-Minkowskian~PM! approach to derive the
gravitational waveform, equations of motion and energy fl
explicitly to 2PN order@O(v/c)4# and beyond. The idea is to
solve the vacuum Einstein equations in the radiation zon
an expansion in powers of Newton’s constantG and to ex-
press the asymptotic solutions in terms of a set of form
time-dependent, symmetric and trace-free~STF! multipole
moments@26#. Then, in a near zone within one characteris
wavelength of the radiation, the equations including the m
terial source are solved in a slow-motion approximation~ex-
pansion in powers of 1/c) that yields both equations of mo
tion for the source bodies, as well as a set of STF sou
multipole moments expressed as integrals over the ‘‘eff
tive’’ source, including both matter and gravitational fie
contributions. The solutions involving the two sets of m
ments are then matched in an intermediate overlap zone
sulting in a connection between the formal radiative m
ments and the source moments. The matching also prov
a natural way, using analytic continuation, to regularize
tegrals involving the non-compact contributions of gravi
tional stress-energy, which might otherwise be divergent

The second group of Will, Wiseman and Pati use the
proach described in the present paper, direct integration
the relaxed Einstein equations~DIRE!, which builds upon
earlier work by Epstein, Wagoner, Will and Wiseman@27–
32#. Like the PM approach, it involves rewriting the Einste
equations in their ‘‘relaxed’’ form, namely as an inhomog
neous, flat-spacetime wave equation for a fieldhab, whose
source consists of both the material stress-energy an
‘‘gravitational stress-energy’’ made up of all the terms no
linear in hab. The wave equation is accompanied by a h
monic or deDonder gauge condition onhab, which serves to
specify a coordinate system and also imposes equation
motion on the sources. Unlike the post-Minkowskian a
proach, asingleformal solution is written down, valid every
where in spacetime. This formal solution, based on the fl
spacetime retarded Green function, is a retarded inte
equation forhab, which is then iterated in a slow-motio
(v/c,1), weak-field (uuhabuu,1) approximation that is
very similar to the corresponding procedure in electrom
netism. However, because the integrand of this retarded
tegral is not compact by virtue of the non-linear field cont
butions, one quickly runs up against integrals that are
well defined or, worse, are divergent. Although at the low
quadrupole and first PN order various arguments were gi
to justify sweeping such problems under the rug@27,28#,
they were not very rigorous, and provided no guarantee
the divergences would not become insurmountable at hig
PN orders. Indeed it is straightforward to demonstrate tha
second post-Newtonian~2PN! order, the rug is indeed pulled
out from under such arguments.
5-2
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DIRE resolves these problems. The solution of the
laxed Einstein equation is a retarded integral over the p
null cone of the field point. The part of the integral th
extends over the intersection between the past null cone
the material source and the near zone is approximated
slow-motion expansion involving spatial integrals of m
ments of the source, including the non-compact gravitatio
contributions, just as in the post-Minkowskian and Epste
Wagoner frameworks. But instead of extending the spa
integrals to infinity as was implicit in earlier procedures, w
terminate the integrals at the boundary of the near zone,
sen to be at a radiusR given roughly by one wavelength o
the gravitational radiation. For the integral over the rest
the past null cone exterior to the near zone~‘‘radiation
zone’’!, we use a change of integration variables to conv
the integral into a convenient, easy-to-calculate form tha
manifestly convergent, subject only to reasonable assu
tions about the past behavior of the source, which fully
counts for the retardation of the fields comprising the sou
stress-energy and which does not involve an explicit slo
motion expansion. This transformation was suggested by
earlier work on a non-linear gravitational-wave phenomen
called the Christodoulou memory@30# ~it is also implicit in
Appendix D of @14#!. Not only are all integrations now ex
plicitly finite and convergent, we can show explicitly that a
contributions from the near-zone spatial integrals that dep
upon the radiusR are actuallycanceledby corresponding
terms from the radiation-zone integrals, for all powers ofR
~including lnR) and for any order in the PN expansion. Th
the procedure, as expected, has no dependence on the
trarily chosen boundary radiusR of the near zone, and pro
vides a simple practical method for regularizing integr
over non-compact sources.

The ultimate products of this work will consist of equ
tions of motion, gravitational waveforms, and energy fl
expressions, in reasonably ready-to-use forms. The equa
of motion for a binary system will have the schematic for

d2x/dt252~Gmx/r 3!@11O~e!1O~e2!

1O~e5/2!1O~e3!1O~e7/2!1•••#, ~1.1!

wherem is the total mass of the binary system,x5x12x2 is
the separation vector andr 5uxu. The expansion parametere
is related to the orbital variables bye;Gm/rc2;(v/c)2,
wherev is the relative velocity. The leading term is Newto
ian gravity. The next termO(e) is the first post-Newtonian
correction, which gives rise to such effects as the advanc
the periastron. The terms ofO(e2) and O(e3) are non-
dissipative 2PN and 3PN corrections. TheO(e5/2) and
O(e7/2) terms are the leading 2.5PN and post-Newton
corrected 3.5PN gravitational radiation-reaction terms.~We
do not include in this discussion contributions from sp
whose ordering in the PN hierarchy for compact bodies
lows a special convention.! Explicit formulas for terms
through various orders have been calculated by various
thors: non-radiative terms through 2PN order@1,33–36#, ra-
12401
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diation reaction terms at 2.5PN and 3.5PN order@37–39#,
and non-radiatve 3PN terms@40–43#.

In order to derive equations of motion to the 3.5PN ord
shown, one must derive the near-zone metricgab as a func-
tion of spacetime and a functional of the source variables
3.5PN order, which implies the following specific PN orde
g00 throughO(e9/2), g0i throughO(e4), gi j throughO(e7/2).
In this paper we provide the required expressions in the fo
of ~a! Poisson-like integrals of source densitie
*Mf (t,x8)ux2x8upd3x8, wheref (t,x8) could be proportional
to source stress-energy densities, and thus have compac
port, or could be a function of other potentials, and th
extend over the entire near-zone region of integrationM,
and ~b! expressions involving time derivatives of sour
multipole momentsMi jk . . . contracted with spatial vector
xixjxk . . . . These expressions can be simplified, iterat
and evaluated more explicitly, depending on the applicat
envisioned~‘‘point’’ mass binary system, spinning masse
perfect fluid distributions, etc.!.

The second product will be expressions for the grav
tional waveform, given schematically by

hi j 5
Gm

Rc4
$v2@11O~e1/2!1O~e!1O~e3/2!

1O~e2!1O~e5/2!1O~e3! . . . #%TT , ~1.2!

wherem is the reduced mass, and the subscriptTT denotes
the ‘‘transverse-traceless’’ part. The leading contributi
Gmv2/Rc4;GÏi j /Rc4 is the standard quadrupole formul
Explicit formulas for all terms through 2.5PN order hav
been derived by various authors@28,29,32,44–48#.

From the waveform, one can also derive expressions
fluxes of energy, angular momentum and linear momentu
the energy flux can be written in the schematic form

dE/dt5~dE/dt!Q@11O~e!1O~e3/2!1O~e2!1O~e5/2!

1O~e3!1•••#, ~1.3!

where (dE/dt)Q denotes the lowest-order quadrupole con
bution.

A third approach focuses on the limit in which one bo
is much less massive than the other, and employs black-
perturbation theory to derive the gravitational waveform a
energy flux, for particles orbiting both rotating and no
rotating holes. This method yields both numerically accur
results as well as analytic PN expansions up to orders as
as (v/c)11 @44,49–53#. Work is currently in progress to ex
tend these methods beyond the test-mass approximatio
an effort to compute corrections to first order inm/M , the
ratio of the mass of the particle to that of the black ho
@54–56#.

This is the first in a series of papers that will treat t
problem of motion and gravitational radiation systematica
using the DIRE approach. This paper lays out the foun
tions of the method and derives formal solutions to the ne
5-3
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zone fields through 3.5PN order@order (v/c)7 beyond New-
tonian gravity# in a form useful for future applications
Subsequent papers in the series will derive the explicit eq
tions of motion and near-zone gravitational fields for bina
systems of compact objects through 2PN order, and d
with radiation reaction at 2.5PN and 3.5PN order.

Our conventions and notation generally follow those
@57,26#. Henceforth we use units in whichG5c51. Greek
indices run over four spacetime values 0, 1, 2, 3, while La
indices run over three spatial values 1, 2, 3; commas de
partial derivatives with respect to a chosen coordinate s
tem, while semicolons denote covariant derivatives; repea
indices are summed over;hmn5hmn5diag(21,1,1,1); g
[det(gmn); a( i j )[(ai j 1aji )/2; a[ i j ][(ai j 2aji )/2; e i jk is
the totally antisymmetric Levi-Civita symbol (e123511).
We use a multi-index notation for products of vector co
ponents and partial derivatives, and for multiple spatial in
ces:xi j . . . k[xixj . . . xk, ] i j . . . k[] i] j . . . ]k , with a capital
letter superscript denoting an abstract product of that dim
sionality: xQ[xi 1xi 2 . . . xi q and]Q[] i 1

] i 2
. . . ] i q

. Also, for

a tensor of rankQ, f Q[ f i 1i 2 . . . i q. Angular brackets around
indices denote STF combinations~see Appendix A for defi-
nitions!. Spatial indices are freely raised and lowered w
d i j andd i j .

II. FOUNDATIONS OF DIRE

A. Relaxed Einstein equations

We begin by reviewing the method for recasting the E
stein equations

Rab2
1

2
gabR58pTab ~2.1!

into their ‘‘relaxed’’ form. HereRab and R are the Ricci
tensor and scalar, respectively,gab is the spacetime metric
andTab is the stress-energy tensor of the matter. We de
the potential

hab[hab2~2g!1/2gab ~2.2!

~see e.g.@26#! and choose a particular coordinate system
fined by the deDonder or harmonic gauge condition

hab,b50. ~2.3!

With these definitions the Einstein equations~2.1! take the
form

hhab5216ptab, ~2.4!

whereh[2]2/]t21¹2 is the flat-spacetime wave operato
The source on the right-hand side is given by the ‘‘effectiv
stress-energy pseudotensor
12401
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tab5~2g!Tab1~16p!21Lab, ~2.5!

whereLab is the non-linear ‘‘field’’ contribution given by

Lab516p~2g!tLL
ab1~ham,nhbn,m2hab,mnhmn!,

~2.6!

and tLL
ab is the ‘‘Landau-Lifshitz’’ pseudotensor given by

16p~2g!tLL
ab[glmgnrhal

,nhbm
,r

1
1

2
glmgabhln

,rh
rm

,n22gmng
l(ahb)n

,rh
rm

,l

1
1

8
~2galgbm2gabglm!~2gnrgst

2grsgnt!h
nt

,lhrs
,m . ~2.7!

By virtue of the gauge condition~2.3!, this source term sat
isfies the conservation law

tab
,b50, ~2.8!

which is equivalent to the equation of motion of the matt

Tab
;b50. ~2.9!

Equation~2.4! is exact, and relies only on the assumpti
that spacetime can be covered by harmonic coordinates.
called ‘‘relaxed’’ because it can be solved formally as
functional of source variables without specifying the moti
of the source. Then, the harmonic gauge condition, Eq.~2.3!,
or the equations of motion, are imposed to determine
metric as a function of spacetime.

Notice that the ‘‘source’’ in Eq.~2.4! contains a gravita-
tional part that depends explicitly onhab, the very quantity
for which we are trying to solve. Also, we can expecttab,
which depends on the fieldshab, to have infinite spatial ex-
tent. Indeed the very outgoing radiation that we hope to c
culate will, at some level of approximation, serve as a c
tribution to the source, thus generating an additio
component of the radiation.

Another complication in Eq.~2.4! is that the second de
rivative termhab,mnhmn in the source really ‘‘belongs’’ on
the left-hand side with the other second derivative terms
the wave operator. This term modifies the propagation ch
acteristics of the field from the flat-spacetime characteris
represented by the d’Alembertian operator to those of
true null cones of the curved spacetime around the sou
which deviate from the flat null cones of the harmonic co
dinates. Nevertheless, the DIRE technique automatically
covers the leading manifestations of this effect, commo
known as ‘‘tails.’’

The material will be modeled as perfect fluid, havin
stress-energy tensor

Tab[~r1p!uaub1pgab, ~2.10!
5-4
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wherer andp are the locally measured energy density a
pressure, respectively, andua is the four-velocity of an ele-
ment of fluid. Until we begin to apply our results to speci
physical situations, such as compact binary stars, we
have no need to specializeTab further.

B. Near zone and radiation zone

We consider the material source to consist of a bou
system of characteristic sizeS, with a suitably defined cente
of mass chosen to be at the origin of coordinates,X50. The
source zonethen consists of the world tubeT5$xaur ,S,
2`,t,`%. OutsideT, Tab50.

The fluid is assumed to move with characteristic veloc
v!1. The characteristic reduced wavelength of gravitatio
radiation,|5l/2p;S/v[R serves to define the bounda
of the near zone, defined to be the world tubeD5$xaur
,R,2`,t,`%. Within the near zone, the gravitation
fields can be treated as almost instantaneous functions o
source variables; i.e., retardation can be ignored or treate
a small perturbation of instantaneous solutions. For phys
situations of interest, up to the point where the po
Newtonian approximation breaks down,R@S. The region
exterior to the near zone is theradiation zone, r .R.

The formal ‘‘solution’’ to Eq. ~2.4! with an outgoing
wave boundary condition can be written down in terms
the retarded, flat-space Green function

hab~ t,x!54E tab~ t8,x8!d~ t82t1ux2x8u!

ux2x8u
d4x8,

~2.11!

but is really just a conversion of the differential equati
~2.4! to an integral equation. It represents an integration
tab/ux2x8u over the past harmonic null coneC emanating
from the field point (t,x) ~see Fig. 1!. This past null cone
intersects the world tubeD enclosing the near zone at th
three-dimensional hypersurfaceN. Thus the integral of Eq
~2.11! consists of two pieces, an integration over the hyp
surfaceN and an integration over the rest of the past n
coneC2N. Each of these integrations will be treated diffe
ently. We will also treat differently the two cases in whic

FIG. 1. Past harmonic null coneC of the field point intersects
the near zoneD in the hypersurfaceN. Left: field point in the far
zone. Right: field point in the near zone. Inner integrals are over
hypersurfaceN, and outer integrals are over the remainderC2N of
the null cone.
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~a! the field point is outside the near zone and~b! the field
point is within the near zone~Fig. 1!. The former case will
be relevant for calculating the gravitational-wave sign
while the latter will be important for calculating field contr
butions totab that must be integrated over the near zone,
well as for calculating fields that enter the equations of m
tion for the source.

C. Radiation-zone field point, inner integration

For a field point in the radiation zone and integration ov
the near zone~inner integral!, we first carry out thet8 inte-
gration in Eq.~2.11!, to obtain

hN
ab~ t,x!54E

N

tab~ t2ux2x8u,x8!

ux2x8u
d3x8. ~2.12!

Within the near zone, the spatial integration variablex8 sat-
isfies ux8u<R,r , where the distance to the field pointr
5uxu. Expanding thex8 dependence in both occurrences
ux2x8u in the integrand in powers ofux8u/r , it is straightfor-
ward to show that

hN
ab~ t,x!54(

q50

`
~21!q

q!
]QS 1

r
MabQ~u! D , ~2.13!

where

MabQ~u![E
M

tab~u,x8!x8Qd3x8. ~2.14!

In Eqs.~2.13! and~2.14!, the indexQ is a multi-index, such
that ]Q[] i 1

] i 2
. . . ] i q

, and the superscriptQ in MabQ de-

notesi 1i 2 . . . i q , with summation over repeated indices a
sumed. The integrations in Eq.~2.14! are now over the hy-
persurfaceM, which is the intersection of the near-zon
world tube with the constant-time hypersurfacetM5u5t
2r . Roughly speaking, each term in the Taylor series
smaller than its predecessor by a factor of orderv!1, pro-
vided we restrict our attention to slow-motion sources.

Note that the field and source variables appearing in
integrandtab are evaluated at the single retarded timeu;
however, because the field contributions totab fall off as
some power ofr, one can expect to encounter integrals th
depend on positive powers of the radiusR of the boundary
of integration, especially in some of the higher-order m
ments. If this boundary were to be formally taken to` ~as
has been the conventional approach in the past!, these inte-
grals would diverge. Instead we shall demonstrate~Sec. II I
and Appendix B! that suchR-dependent effects areprecisely
canceled by contributions from the ‘‘outer’’ integral.

For the gravitational-wave signal, we need only to foc
on the spatial components ofhab and on the leading compo
nent in 1/R, whereR is the distance to the detector. Using th
fact thatu,i52N̂i , whereN̂[x/R denotes the observatio
direction, we obtain

e

5-5



m

n

v

f

om
om
ll

ld

q.

ear
ll
d
ded,

fol-
t

in
ide

-
ion,

ace
be
se
u-

ica

n
o

le
e
n
re

MICHAEL E. PATI AND CLIFFORD M. WILL PHYSICAL REVIEW D 62 124015
hN
i j ~ t,x!5

4

R (
m50

`
1

m!

]m

]tmEM
t i j ~u,x8!~N̂•x8!md3x8

1O~R22!. ~2.15!

D. Radiation-zone field point, outer integration

By making a change of integration variable fro
(r 8,u8,f8) to (u8,u8,f8), where

t2u85r 81ux2x8u, ~2.16!

we can write the integral over the rest of the past null co
C2N in the form

hC2N
ab ~ t,x!54E

2`

u

du8 R
C2N

tab~u81r 8,x8!

t2u82n̂8•x

3@r 8~u8,V8!#2d2V8, ~2.17!

where, from Eq.~2.16!,

r 8~u8,V8!5@~ t2u8!22r 2#/@2~ t2u82n̂8•x!#.
~2.18!

This change of variables represents an integration first o
the two-dimensional intersection of the past null coneC with
the future null conet85u81r 8 emanating from the center o
mass of the system attc.m.5u8 ~Fig. 2!, followed by theu8
integration over all such future-directed cones, starting fr
the infinite past and terminating in the cone emanating fr
the center of mass at timeu, which is tangent to the past nu
cone of the observation point.

For explicit calculations, it is useful to choose the fie
point x to be in thez direction, so thatn̂8•x5r cosu8, and to
write the outer integral in the form

FIG. 2. Change of variables for the outer integrals. The vert
line represents the material source world line. The variableu8 is
constant on the two-dimensional intersection between the past
cone of the field point and a future null cone from the center
mass of the system. Left:u8,u22R, the two cones intersect fully
outside the near zone, so the angular integrations are comp
Middle: u22R,u8,u, angular integration terminates where th
intersection between the two cones meets the boundary of the
zone. Right:u85u, the upper limit of integration; the two cones a
tangent to one another.
12401
e

er

hC2N
ab ~ t,x!54E

u22R

u

du8E
0

2p

df8E
12a

1 tab~u81r 8,x8!

t2u82n̂8•x

3@r 8~u8,V8!#2d cosu8

14E
2`

u22R
du8 R tab~u81r 8,x8!

t2u82n̂8•x

3@r 8~u8,V8!#2d2V8, ~2.19!

where

a~u8!5~u2u8!~2r 22R1u2u8!/2rR. ~2.20!

The incomplete angular integration in the first integral of E
~2.19! reflects the fact that foru>u8>u22R, the two-
dimensional intersections meet the boundary of the n
zone. Foru8,u22R, the angular integration covers the fu
4p. Note thattab contains only field contributions evaluate
in the radiation zone; because they are themselves retar
the ‘‘time dependence’’u81r 85t2ux2x8u is approxi-
mately constant over each angular integration, since it
lows the hypersurfacet2uxu5u5const, and the dominan
contribution to the fields comes fromux8u,R. This allows a
kind of slow-motion, multipole expansion to be exploited
evaluating these integrals, despite their range well outs
the near zone.

E. Near-zone field point, inner integration

In this case, in Eq.~2.11!, both x and x8 are within the
near zone, and henceux2x8u<2R. Consequently, the varia
tion in retarded time can be treated as a small perturbat
sincetab varies on a time scale;R. We therefore expand
the retardation in powers ofux2x8u, to obtain

hN
ab~ t,x!54 (

m50

`
~21!m

m!

]m

]tmEM
tab~ t,x8!ux2x8um21d3x8,

~2.21!

whereM here denotes the intersection of the hypersurf
t5const with the near-zone world tube. This version will
used for explicit calculations of the near-zone metric for u
in the equations of motion. However, an alternative form
lation will be useful for studying theR dependence of the
inner integrals; substituting the general Taylor expansionux
2x8um215Sq50

` (21)q(q!) 21x,
Q].Q(r .

m21), where ,(.)
denotes the lesser~greater! of uxu and ux8u, we obtain

hN
ab~ t,x!54 (

m50

`
~21!m

m!

]m

]tm (
q50

`
~21!q

q!

3E
M

tab~ t,x8!x,
Q].Q~r .

m21!d3x8.

~2.22!
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F. Near-zone field point, outer integration

The formulas from Sec. II D, such as Eqs.~2.18! and
~2.20!, carry over to this case with the result

hC2N
ab ~ t,x!54E

u22R

u22R12r

du8E
0

2p

df8E
12a

1 tab~u81r 8,x8!

t2u82n̂8•x

3@r 8~u8,V8!#2d cosu8

14E
2`

u22R
du8 R tab~u81r 8,x8!

t2u82n̂8•x

3@r 8~u8,V8!#2d2V8. ~2.23!

Notice that theu8 integration ends atu22R12r rather than
u because that corresponds to the last future null cone
intersects points in the far zone.

G. Iteration of the relaxed Einstein equations

Because the fieldhab appears in the source of the fie
equation, the usual method of solution is to iterate: substi
hab50 on the right-hand side of Eq.~2.11! and solve for the
first-iterated 1hab; substitute that into Eq.~2.11! and solve
for the second-iterated2hab, and so on@imposing the gauge
condition Eq.~2.3! consistently at each order#. The general
sequence of iterations is shown shematically in Fig. 3. T
matter variablesmA and the (N21)-iterated field N21hab

are used to determineN21Tab and N21Lab. Equation~2.11!

FIG. 3. Structure of iteration procedure.
12401
at

te

e

then yieldsNhab as a function of spacetime and a function
of the matter variables. Then, if one wishes to determine
motion of the source, one substitutesNhab into the matter
stress-energy tensor and obtains the equations of mo
from N¹b(NTab)50 where N¹b denotes the covariant de
rivative using theNth iterated field. If one wishes to dete
mine the Nth iterated gravitational field as a function o
spacetime~i.e. with the matter variables determined as fun
tions of spacetime to a consistent order!, then one only needs
to solve the equations of motionN21¹b(N21Tab)50, which
are equivalent to theNth iterated gauge conditionNhab

,b
50.

H. General structure of the outer integrals

At the first iteration, the solution is simply linearized ge
eral relativity. With 0hab50 substituted into the right-han
side of Eq.~2.11!, the outer integrals vanish, and the inn
integrals over the special relativisticTab have compact sup
port. There is noR dependence in the integrals, trivially. Fo
field points outside the source (uxu.ux8u), within both the
near and far zones, the first-iterated1hab takes the form of
Eq. ~2.13!. SinceMabQ is a function only ofu5t2r , the
spatial gradients]Q produce only unit radial vectorsn̂i , pow-
ers of r and retarded time derivatives ofMabQ. Products of
n̂i can be grouped into STF productsn̂^L&, which are analo-
gous toYLM ~see Appendix A for useful formulas related
STF products!. Thus, outside the source,1hab can be written
as a sequence of terms of the form

1hab
B,L~ t,x!5 f B,L~u!n̂^L&r 2B. ~2.24!

At the second iteration, in the far zone,Tab50, and
1Lab(u81r 8,x8) consists of products of spatial and temp
ral derivatives of1hab(u81r 8,x8). It therefore can also be
expressed as a sequence of terms of the form

Lab~u81r 8,x8!; f B,L~u8!n̂8^L&r 82B. ~2.25!

Whenever the source at a given (N21) iteration takes this
form, it is straightforward to evaluate the general form of t
outer integrals for theNth iterate. Defining the new variable
z[(t2u8)/r 511(u2u8)/r , y5n̂•n̂85cosu, we find,
from Eq. ~2.18!,

r 85r ~z221!/2~z2y!. ~2.26!

Substituting Eqs.~2.25! and ~2.26! into Eq. ~2.19!, and
changing to integration variablesz, y andf, we obtain

NhC2N
ab

B,L5
1

2 S 2

r D B22

n̂^L&E
21

1

PL~y!dy

3E
z(y)

` ~z2y!B23

~z221!B22 f B,L@u2r ~z21!#dz,

~2.27!

where z(y)5z1Az222zy11, z5R/r , and PL(y) is the
Legendre polynomial.
5-7
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For far-zone field points,z,1; Taylor expandingf B,L@u
2r (z21)# aboutu, we obtain, forB.2,

NhC2N
ab

B,L5S 2

r D B22

n̂^L& (
q50

`

D B,L
q ~z!r q

dqf B,L~u!

duq ,

~2.28!

where the coefficientsD B,L
q (z) are given by

D B,L
q ~z!5

~2 !q

q! E
1

112z ~z21!q

~z221!B22AB,L~z,a!dz

2 (
p50

q

kB,L
(q2p11)~112z!

~22z!p

p!
, ~2.29!

where

AB,L~z,a![
1

2E12a

1

PL~y!~z2y!B23dy, ~2.30a!

a[~z21!~z1122z!/2z, ~2.30b!

dkB,L
(m)~z!/dz[kB,L

(m21)~z!, m>1, ~2.30c!

kB,L
(0) ~z![AB,L~z,2!/~z221!B22. ~2.30d!

The caseB52 is special, and leads to the result

NhC2N
ab

2,L5
n̂^L&

r E
0

`

f 2,L~u2s!QLS 11
s

r Dds

1n̂^L& (
q50

`

D 2,L
q ~z!r q

dqf 2,L~u!

duq , ~2.31!

where

D 2,L
q ~z!5

~2 !q11

2q! E
1

112z

~z21!qdzE
21

12a PL~y!

~z2y!
dy,

~2.32!

whereQL(y) is the Legendre function.
Notice that, forBÞ2, the outer integral returns a result

the same generic form as the input function. The caseB
52 returns terms with a logarithmic dependence onr ~via
the QL’s!; terms of this form are called ‘‘tails.’’

Similarly, for field points in the near zone,z.1, we Tay-
lor expandf B,L@u2r (z21)# aboutu1r 5t, and obtain, for
B.2,

NhC2N
ab

B,L5S 2

r D B22

n̂^L& (
q50

`

E B,L
q ~z!r q

dqf B,L~ t !

dtq
,

~2.33!
12401
where the coefficientsE B,L
q (z) are given by

E B,L
q ~z!5

~2 !q

q! E
2z21

2z11 zq

~z221!B22 AB,L~z,a!dz

2 (
p50

q

kB,L
(q2p11)~112z!

~2122z!p

p!
~2.34!

and, forB52,

NhC2N
ab

2,L5
n̂^L&

r E
0

`

f 2,L~u2s!QLS 11
s

r Dds

1n̂^L& (
q50

`

E 2,L
q ~z!r q

dqf 2,L~ t !

dtq
, ~2.35!

where

E 2,L
q ~z!5

~2 !q11

q! H E
1

2z21

zqQL~z!dz

1
1

2E2z21

2z11

zqdzE
21

12a PL~y!

~z2y!
dyJ . ~2.36!

Notice that, for near-zone field points, the functionsf B,L are
evaluated at the local timet, not retarded timeu.

I. Cancellation of R dependence

It is evident that the inner integrals and outer integrals
the fieldhab will separately depend upon the radiusR of the
boundary between the near zone and the far zone. But s
each integral was simply a rewriting of a piece of the origin
integral, Eq. ~2.11!, which had noR dependence, it is
equally evident that the separateR dependences must canc
between the inner and outer integrals. In@32#, referred to
hereafter as Will and Wiseman~WW!, we demonstrated suc
a cancellation explicitly for contributions to the gravitation
waveform at 2PN order that depended on positive power
R. Here we demonstrate the cancellation generally, for b
near-zone and far-zone field points, for arbitrary powers
R ~including lnR) and to an order of iteration sufficient fo
our purposes.

The proof proceeds by induction. First, as we pointed
above, the first-iterated field1hab is trivially independent of
R.

Second, we assume that the (N21)-iterated field does no
depend onR, i.e. that allR dependence cancels at this ord
of iteration. We wish to demonstrate that this implies canc
lation of theR dependence in theN-iterated field. The proof
consists of considering the limiting behavior of the inner a
outer integrals forNhab in the vicinity of ux8u→R. HereTab

vanishes, and we only need to considerN21Lab, which is a
functional of N21hab. We have already seen that, in the f
5-8
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zone, N21Lab can be decomposed into terms of the fo
f B,L(u)n̂^L&r 2B. ~We consider tail contributions with lnr de-
pendence separately.! Since the (N21)-iterated field does
not depend onR by assumption, continuity of the field
means thatN21Lab will have this same form just inside th
near zone. Thus we will calculate the limiting behavior of t
inner integral of a term of this form as the integration va
ily
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12401
abler 8→R from below, and compare itsR dependence with
that of the outer integral of the same term.

For far-zone field points, we must calculate theR depen-
dence of the momentsMabQ, and substitute into Eq.~2.13!;
after considerable algebra~see Appendix B!, we obtain, for
the limiting behavior ofNhN

ab as the integration variable ap
proachesR from inside,
NhN
ab

B,L→S 2

r D B22

n̂^L& (
q50

`

D B,L
in,q~z!r q

dqf B,L~u!

duq , ~2.37!

where

D B,L
in,q~z!5 (

m50

q

(
j 50

j max ~2 !m221 j 2B

m! ~q2m2 j 12L11!!

F1

2
~q2m2 j 12L !G !
F1

2
~q2m2 j !G !

~2L2 j !!

j ! ~L2 j !!

3H z31L2B1q2 j /~31L2B1q2 j !, 31L2B1q2 j Þ0,

ln R, 31L2B1q2 j 50,
~2.38!
er-

em

ve-
on

m
ach

the

s

where j max5 lesser of $q2m,L%, and q2m2 j
5even integer>0. Equation~2.37! is of the same form as
the outer integral for far-zone field points, Eq.~2.28!. The
coefficientsD B,L

q (z) from the outer integrals are most eas
evaluated using computer algebra methods~we calculated
the coefficients using independentMAPLE andMATHEMATICA

programs!; the result is, for eachB, L andq,

D B,L
in,q~z!1$z-dependent part ofD B,L

q ~z!%50. ~2.39!

Thus theR dependence cancels term by term. A simi
cancellation occurs for near-zone field points, as well as
the case where the integrand hasr 2Bln r dependence. Detail
are given in Appendix B.

This cancellation, while inevitable, has practical con
quences, in the following sense. In calculating the inner c
tributions to the fields, we must integrate over a finite hyp
surface, M, sources that extend throughoutM.
Consequently, any such integral will have terms that are
dependent ofR, as well as terms that depend onR q or lnR.
Because we know that all terms of the latter form cancel w
contributions from the outer integrals in the final express
for the field, we can drop them in any individual result. Sim
larly, we can drop allR-dependent terms that arise in an
individual outer integral. This provides a kind of regulariz
tion of integrals, which cures the problem of divergent in
grals that haunted earlier slow-motion methods. In fact,
can show that there is a close connection between
method of regularization and the method of analytic conti
ation used by Blanchet@59#.
r
r

-
-
-

-

h
n

-
e
is
-

Thus, our procedure for determining the field is to det
mine separatelyhN

ab andhC2N
ab to a given PN order, keeping

only R-independent terms in each expression, then sum th
to obtain

hab5hN
ab1hC2N

ab . ~2.40!

III. WEAK FIELD, SLOW-MOTION APPROXIMATION

We now turn to a discussion of the numberN of iterations
needed to derive equations of motion or gravitational wa
forms of a desired accuracy, in a weak-field, slow-moti
approximation.

We assume that, for the fluid source,

v2;m/S;p/r;e!1, ~3.1!

wheree will be used as an expansion parameter. But fro
the nature of the iteration procedure, it is evident that e
iteration of the field introduces corrections of orderm/S. In
terms of e, m and S the equations of motion~1.1! can be
rewritten schematically as

dv/dt;~m/S 2!@11O~e!1O~e2!1O~e5/2!1O~e3!

1O~e7/2!1•••#, ~3.2!

where the terms inside the square brackets represent
Newtonian, post-Newtonian, 2PN, 2.5PN~radiation-
reaction!, 3PN, and 3.5PN~radiation-reaction! terms respec-
tively. For a term of ordereN, the largest number of power
of m/S that can appear in it~including one power from the
5-9
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m/S 2 prefactor! is N11. The radiation reaction terms o
order eN11/2 must contain an odd number of velocities~in
order to be odd under time reversal!; thus the maximum
number of powers ofm/S for them is alsoN11. Since one
iteration gives the Newtonian potential, which yields t
Newtonian equations of motion (N51), then, to obtain the
1PN terms (N52), one must have the second iterated fie
and to obtain the 2PN and 2.5PN terms (N53), one must
have the third iterated field, while to obtain the 3PN a
3.5PN terms (N54), one must have the fourth iterated fiel

Similarly, to obtain a result for the waveform accurate
the order of the quadrupole formula,h;Ïi j /R;(m/R)(v2

1m/S);e2 (N52), the second-iterated field is neede
Note that the termm/S in Ïi j arises through the use of th
Newtonian equation of motion. Then, to obtain the 1P
2PN and 3PN corrections to the quadrupole approximat
the third-, fourth-, and fifth-iterated fields are needed, resp
tively. This would be an impossible task if it were not for th
judicious use of the conservation law, Eq.~2.8!. Consider for
example, the sourceN21t i j of theNth iterated gravitational-
wave field NhN

i j , Eq. ~2.15!, specifically the leading,m50
term. The conservation law, Eq.~2.8!, convertsN21t i j into
two time derivatives of N21t00xixj ~modulo total diver-
gences!. Because of the slow-motion approximation, tw
time derivatives increase the order bye, and thus, to suffi-
cient accuracy, onlyN22t00 is needed in practice. An impor
tant caveat to this is that the surface terms that arise from
total divergences and the outer integrals must formally
evaluated using theN21 expressions. However, in practic
these terms contribute at sufficiently high order that they
be treated without resort to explicitN21 expressions. Effec
tively, the burden of accuracy has been shifted from theNth
iteration of the field, to theN21-iterated equations of mo
tion, which enter via the two time derivatives and which a
needed anyway to evaluate the field as a function of sp
time. Thus, forN52, the leading quadrupole approximatio
only 0t005r is needed, together with the Newtonian equ
tions of motion. This circumstance is responsible for t
prevalent, but erroneous view that linearized gravity~one
iteration! suffices to derive the quadrupole formula. The fo
mula so derived turns out to be ‘‘correct,’’ but its foundatio
is not ~see@58# for discussion!.

Thus, in WW, to evaluate the 2PN waveforms~fourth
iteration!, only second-iterated fields were needed in
source terms. For 3PN waveforms, only third-iterated fie
will be needed.

IV. FORMAL STRUCTURE OF NEAR-ZONE FIELDS

A. Metric and stress-energy pseudotensor in terms of the fields

We begin by defining a simplified notation for the fie
hab:

N[h00;O~e!,

Ki[h0i;O~e3/2!,

Bi j [hi j ;O~e2!,
12401
,

.

,
n,
c-

he
e

n
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-
e

-

e
s

B[hii [(
i

hii ;O~e2!, ~4.1!

where we show the leading order dependence one in the
near zone. To obtain the equations of motion to 3.5PN ord
we need to determine the components of the physical me
to the following orders:g00 to O(e9/2), g0i to O(e4), andgi j
to O(e7/2). From the definition~2.2!, one can invert to find
gab in terms of hab. Expanding to the required order, w
find

g0052S 12
1

2
N1

3

8
N22

5

16
N31

35

128
N4D

1
1

2
BS 12

1

2
N1

3

8
N2D1

1

4 S Bi j Bi j 2
1

2
B2D

1
1

2
K jK j2

3

4
NKjK j1O~e5!, ~4.2a!

g0i52Ki S 12
1

2
N2

1

2
B1

3

8
N2D2K jBi j 1O~e9/2!,

~4.2b!

gi j 5d i j S 11
1

2
N2

1

8
N21

1

16
N32

1

4
NB1

1

2
KkKkD

1Bi j 2
1

2
Bd i j 2KiK j1

1

2
NBi j 1O~e4!, ~4.2c!

~2g!511N2B2NB1KiKi1O~e4!. ~4.2d!

Notice that, in order to find the metricgab to the desired
order, we must obtainN to O(e9/2), Ki to O(e4), Bi j to
O(e7/2) andB to O(e9/2). In fact, becauseB contributes lin-
early tog00, we will treatB differently from Bi j .

Using Eq.~4.2!, we can express the matter stress-ene
tensor Tab, Eq. ~2.10!, as a PN expansion. However, th
details of such an expansion will depend on the basic v
ables used to characterize the matter. For example, to dis
the structure of a star in a PN expansion, it is convenien
use the mass-energy densityr and pressurep, together with
an equation of state. However, to discuss the motion of co
pact bodies in an effective ‘‘point-mass’’ limit, it is mor
convenient to ignore the pressure totally and to use the
called ‘‘conserved,’’ or baryon density,r* [rA2gu0. For
now, we follow the convention of Blanchet and Damo
@16#, and define the quantities

s[T001Tii ,

s i[T0i ,

s i j [Ti j . ~4.3!
5-10
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We will express various potentials formally in terms of these densities, and later make a PN expansion of them in term
densities most appropriate to the application.

Substituting the formulas forhab andgab into Eqs.~2.6! and ~2.7! for Lab, we obtain, to the required order,

L0052
7

8
~¹N!21H 5

8
Ṅ22N̈N22Ṅ,kKk1

1

2
Ki , j~3K j ,i1Ki , j !1K̇ jN, j2Bi j N,i j 1

1

4
¹N•¹B1

7

8
N~¹N!2J

1H Kk, j Ḃ jk1
1

4
Bjk,l~Bjk,l22Bkl, j !1

1

4
ṄḂ2

1

8
~¹B!21

1

4
ṄN, jK j

1
7

8
N, jN,kBjk2

1

2
K jN,k~3K j ,k14Kk, j !2

7

8
N2~¹N!2J 1O~re4!, ~4.4a!

L0i5H N,k~Kk,i2Ki ,k!1
3

4
ṄN,i J 1H ṄK̇ i2NK̈i22KkK̇i ,k2BlmKi ,lm1Kk,l~Bil ,k1Bik,l2Bkl,i !1N,kḂik2

1

4
ṄB,i

2
1

4
N,i Ḃ2NN,k~Kk,i2Ki ,k!2

3

4
NṄN,i1

1

8
Ki~¹N!22

1

4
KkN,kN,i J 1O~re7/2!, ~4.4b!

L i j 5
1

4 H N,iN, j2
1

2
d i j ~¹N!2J 1H 2Kk,(iK j ),k2Kk,iKk, j2Ki ,kK j ,k12N,(i K̇ j )1

1

2
N,(iB, j )

2
1

2
NS N,iN, j2

1

2
d i j ~¹N!2D2d i j S Kl ,kK [k,l ]1N,kK̇k1

3

8
Ṅ21

1

4
¹N•¹BD J

1H 2K̇ i K̇ j1Ḃk( i~K j ),k2Kk, j )!22Ḃi j ,kKk2NB̈i j 2Bi j ,lmBlm1Bik,l~Bjl ,k1Bjk,l !22Bkl,(iBj )k,l1
1

2
Bkl,iBkl, j

2
1

4
B,iB, j2N~2Kk,(iK j ),k2Kk,iKk, j2Ki ,kK j ,k!1KkKk,(iN, j )22NN,(i K̇ j )2

1

2
ṄN,(iK j )2

1

2
N,kN,(iBj )k

2
1

2
NN,(iB, j )1

1

8
~¹N!2Bi j 1

3

4
N2S N,iN, j2

1

2
d i j ~¹N!2D1

1

8
d i j @~¹B!212ṄḂ18Kk,l Ḃkl14Bkl,mBkm,l

22Bkl,mBkl,m13NṄ218NN,kK̇k18NKl ,kK [k,l ]24KkN,lKk,l12ṄKkN,k1N,kN,lBkl12N¹N•¹B#J
1O~re4!, ~4.4c!

L i i 52
1

8
~¹N!21H Kl ,kK [k,l ]2N,kK̇k2

1

4
¹N•¹B2

9

8
Ṅ21

1

4
N~¹N!2J

1H 2K̇kK̇k22Ḃ,kKk13ḂklKk,l2NB̈1
3

4
ṄḂ1

1

8
~¹B!22B,lmBlm1

3

4
Bkl,mBkl,m1

1

2
Bkl,mBkm,l2NKl ,kK [k,l ]

2
1

2
N,lKkKk,l1NN,kK̇k1

1

4
ṄN,kKk2

1

8
N,kN,lBkl1

1

4
N¹N•¹B1

1

8
~¹N!2B1

9

8
NṄ22

3

8
N2~¹N!2J

1O~re4!, ~4.4d!
124015-11



,
o

th
n

A

-

uc

u
r

m
-o
m
b

su

o

-

re

ne
al,
In-
h

MICHAEL E. PATI AND CLIFFORD M. WILL PHYSICAL REVIEW D 62 124015
where an overdot denotes]/]t. In the above expressions
terms grouped within braces make leading contributions
the same order. For example, inL00, the three groupings
correspond toO(re), O(re2), andO(re3), respectively.

B. Source moments and other integral quantities

Throughout our calculations, a number of integrals of
source stress-energy pseudotensor occur, for example, i
multipole expansions of Eq.~2.14!. It is useful to define and
collect these quantities and to discuss their properties.
integrals are carried out over a constant time~or constant
retarded time! hypersurfaceM, within the near-zone. In gen
eral, these integrals will haveR dependence, but, in line with
the foregoing discussion, we shall consistently drop s
terms. The relevant integrals are

Pm[Mm05E
M

tm0d3x, ~4.5a!

I Q[M00Q5E
M

t00xQd3x, ~4.5b!

J iQ[e iabM0baQ5e iabE
M

t0bxaQd3x, ~4.5c!

P i jabQ[E
M

x[at i ][ j xb]Qd3x. ~4.5d!

By making use of the equations of motiontab
,b50, we can

transform some of these integrals into other forms, mod
surface integrals at the boundary]M of the near zone. Fo
example,

Ṗm52 R
]M

tm jd2Sj ,

J̇i52e iab R
]M

t jbxad2Sj ,

İi5Pi2 R
]M

t0 j xid2Sj . ~4.6!

These identities express the conservation of total energy,
mentum and angular momentum, and uniform center
mass motion, modulo a flux of gravitational radiation fro
the system. In calculations, the surface terms must
checked carefully to see if they makeR-independent contri-
butions to the order considered. For the most part, such
face terms turn out to make no contribution.

Henceforth, we shall setI i5İi50, which amounts to
attaching the origin of coordinates to the center of mass
the system.

Other useful identities include
12401
f

e
the

ll

h

lo

o-
f-

e

r-

f

Mi j 5
1

2
Ïi j 1

1

2 R
]M

@t lm~xi j ! ,l1 ṫm0xi j #d2Sm , ~4.7a!

Mi jk5
1

6
Ïi jk1

2

3
e lk( iJ̇l u j )1

1

6 R
]M

@t lm~xi jk ! ,l

1 ṫm0xi jk #d2Sm2
2

3 R
]M

@t l [kxi ] j

1t l [kxj ] i #d2Sl , ~4.7b!

Mi jQ5
1

~q11!~q12!
Ïi jQ

1
2

~q12!
emk1( iJ̇mu j )k2 . . . kq~symk:Q!

1
8~q21!

~q11!
P i j (k1k2 . . . kq)

1
1

~q11!~q12!
R

]M
@t lm~xi jQ ! ,l

1 ṫm0xi jQ #d2Sm2
2

~q12!
R

]M
@t l [k1xi ] jk2 . . . kq

1t l [k1xj ] ik2 . . . kq#d2Sl~symk:Q!, ~4.7c!

M0 jQ5
1

q11
İjQ2

q

q11
em j(k1J muk2 . . . kq)

1
1

q11 R
]M

t0mxjQd2Sm , ~4.7d!

where the notation~sym k:Q) means symmetrize on the in
dices k1 through kq , and the superscript notationmuk . . . )

means that only the indices following the vertical line a
involved in symmetrization.

C. Near-zone field expanded to 3.5 PN order

We now carry out the explicit expansion of the near-zo
field through 3.5PN order, beginning with the inner integr
Eq. ~2.21!, applying the above identities where possible.
serting powers ofe to indicate the leading order of eac
term, we obtain the result
5-12
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NN54eE
M

t00~ t,x8!

ux2x8u
d3x812e2] t

2E
M

t00~ t,x8!ux2x8ud3x82
2

3
e5/2I k

~3!
k~ t !1

1

6
e3] t

4E
M

t00~ t,x8!ux2x8u3d3x8

2
1

30
e7/2H ~4xkl12r 2dkl!I k

~5!
l~ t !24xkI kll

~5!

~ t !1I kkll
~5!

~ t !J 1
1

180
e4] t

6E
M

t00~ t,x8!ux2x8u5d3x82
1

1260
e9/2H3r 4I kk

~7!

~ t !

112r 2xi j I i j
~7!

~ t !212r 2xiI ikk
~7!

~ t !28xi jkI i jk
~7!

~ t !13r 2I i ikk
~7!

~ t !112xi j I i jkk
~7!

~ t !26xiI ikkll
~7!

~ t !1I i ikkll
~7!

~ t !J 1N]M1O~e5!,

~4.8a!

KN
i 54e3/2E

M

t0i~ t,x8!

ux2x8u
d3x812e5/2] t

2E
M

t0i~ t,x8!ux2x8ud3x81
2

9
e3H3xkI ik

~4!

~ t !2I ikk
~4!

~ t !12emikJ mk
~3!

~ t !J

1
1

6
e7/2] t

4E
M

t0i~ t,x8!ux2x8u3d3x81
1

450
e4H30r 2xkI ik

~6!

~ t !210r 2I ikk
~6!

~ t !220xklI ikl
~6!

~ t !115xkI ikl l
~6!

~ t !23I ikkll
~6!

~ t !

1emilF20r 2J ml
~5!

~ t !140xklJ mk
~5!

~ t !215xlJ mkk
~5!

~ t !230xkJ mkl
~5!

~ t !112J mlkk
~5!

~ t !G J 1K]M
i 1O~e9/2!, ~4.8b!

BN
i j 54e2E

M

t i j ~ t,x8!

ux2x8u
d3x822e5/2I i j

~3!

~ t !12e3] t
2E

M
t i j ~ t,x8!ux2x8ud3x82

1

9
e7/2H3r 2I i j

~5!

~ t !22xkI i jk
~5!

~ t !28xkemk( iJ mu j )
~4!

~ t !

16Mi jkk
~3!

~ t !J 1
1

6
e4] t

4E
M

t i j ~ t,x8!ux2x8u3d3x82
1

180
e9/2H3r 4I i j

~7!

~ t !24r 2xkI i jk
~7!

~ t !216r 2xkemk( iJ mu j )
~6!

~ t !

112r 2Mi jkk
~5!

~ t !124xklM i jkl
~5!

~ t !224xkMi jkll
~5!

~ t !16Mi jkkll
~5!

~ t !J 1B]M
i j 1O~e5!. ~4.8c!
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Explicit formulas for the boundary termsN]M , K]M
i and

B]M
i j are given in Appendix C. Through 3.5PN order, t

terms in Eq.~4.8! divide naturally into two types:eventerms,
i.e. terms of integer powers ine in N and Bi j and odd-half
integer powers inKi , and odd terms, of odd-half integer
powers inN and Bi j and integer powers inKi . The even
terms produce the leading Newtonian, PN, 2PN and 3
contributions to the equations of motion, while the odd ter
produce the gravitational radiation reaction forces.~Note that
the even terms have odd contributions embedded wi
them, via contributions of the metric itself totab.) Through
3.5PN order, there is a clean division between even and
terms, in the sense that even terms produce non-dissip
contributions to the equations of motion, while odd term
produce radiation reaction effects. At 4PN order this sepa
tion fails, because of the presence of tails—these areO(e3/2)
modifications of the leading 2.5PN radiation-reaction term
which result in disspative effects at 4PN order. We derive
leading contributions of these 4PN tail terms in Sec. VI C

The outer integrals for near-zone field points turn out
contribute only beginning at 3PN order~and, as we will see
do not contribute observable effects until 4PN order!. This
can be seen schematically as follows: for a source term of
form f B,L(u)n̂^L&r 2B, the outer integral has the form
12401
N
s

in

dd
ive
s
a-

,
e

e

E f ~ t2r 8!~ n̂8!^L&~r 8!2B
d3x8

ux2x8u

;E
R

`dqf ~ t !

dtq
r 8q112Bdr8;

dqf ~ t !

dtq
R q122B, ~4.9!

where we have used the fact thatuxu!ux8u. The only possible
R-independent terms come from the caseq5B22. Thus the
outer integral gives a schematic contributionhC2N

ab

; f (B22)(t) where the superscript (B22) denotesB22 time
derivatives. From Eq.~4.4a!, the leading contribution to the
source comes from (¹N)2, where, from Eq.~2.13!, N has the

far-zone form N'4I/r 12(3n̂^kl&I kl/r 313n̂^kl&İkl/r 2

1n̂klÏkl/r )1••• . Taking the gradient of this expressio
and squaring, we get, schematically, (¹N)2;I 2/r 4

1I(I kl/r 61İkl/r 51Ïkl/r 41•••). The first term (B54)
gives no contribution, sinceI is constant to the order con
sidered (I varies only via gravitational radiation energ
loss!. The second, third and fourth terms (B56,5,4) together
give h;II kk(4)(t). SinceI kk;mr2, we find h;(m/r )2v4

;O(e4), which is a 3PN contribution. Thus, for near zon
field points, the outer integrals can be ignored until 3P
5-13
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order. A similar argument for far-zone field points revea
that outer integrals begin to contribute only at 2PN order
was found by WW@32#.

D. Compendium of useful post-Newtonian near-zone potentials

The even terms in Eq.~4.8! have the form of ordinary
Poisson-like potentials and their generalizations, someti
called superpotentials. For a sourcef, we define the Poisson
potential, superpotential, and superduperpotential to be

P~ f ![
1

4pEM

f ~ t,x8!

ux2x8u
d3x8, ¹2P~ f !52 f , ~4.10a!

S~ f ![
1

4pEM
f ~ t,x8!ux2x8ud3x8, ¹2S~ f !52P~ f !,

~4.10b!

SD~ f ![
1

4pEM
f ~ t,x8!ux2x8u3d3x8,

¹2SD~ f !512S~ f !. ~4.10c!

We also define potentials based on the ‘‘densities’’s, s i and
s i j constructed fromTab,

S~ f ![E
M

s~ t,x8! f ~ t,x8!

ux2x8u
d3x85P~4ps f !, ~4.11a!

S i~ f ![E
M

s i~ t,x8! f ~ t,x8!

ux2x8u
d3x85P~4ps i f !, ~4.11b!

S i j ~ f ![E
M

s i j ~ t,x8! f ~ t,x8!

ux2x8u
d3x85P~4ps i j f !,

~4.11c!

along with the superpotentials

X~ f ![E
M

s~ t,x8! f ~ t,x8!ux2x8ud3x85S~4ps f !,

~4.12a!

Y~ f ![E
M

s~ t,x8! f ~ t,x8!ux2x8u3d3x85SD~4ps f !,

~4.12b!

Z~ f ![E
M

s~ t,x8! f ~ t,x8!ux2x8u5d3x8,

~4.12c!

and their obvious counterpartsXi , Xi j , Yi , Yi j , and so on. A
number of potentials occur sufficiently frequently in the P
expansion that is it useful to define them specifically. F
and foremost is the ‘‘Newtonian’’ potential

U[E
M

s~ t,x8!

ux2x8u
d3x85P~4ps!5S~1!. ~4.13!
12401
s

es

t

The potentials needed for the post-Newtonian limit are

Vi[S i~1!, F1
i j [S i j ~1!, F1[S i i ~1!,

F2[S~U !, X[X~1!. ~4.14!

Useful 2PN potentials include

V2
i [S i~U !, F2

i [S~Vi !,

Xi[Xi~1!, Xi j [Xi j ~1!,

X1[Xii , X2[X~U !,

P2
i j [P~U ,iU , j !, P2[P2

i i 5F22
1

2
U2,

G1[P~U̇2!, G2[P~UÜ !,

G3[2P~U̇ ,kVk!, G4[P~Vi , jVj ,i !,

G5[2P~V̇kU ,k!, G6[P~U ,i j F1
i j !,

G7
i [P~U ,kVk,i !1

3

4
P~U ,i U̇ !, H[P~U ,i j P2

i j !. ~4.15!

At 3PN order, the following potentials are useful:

Y1[Yii , Y2[Y~U !, Z[Z~1!. ~4.16!

A variety of properties of these and general Poisson
tentials are described in Appendix D. Note that, in evaluat
Poisson potentials and superpotentials of sources that do
have compact support, our rule is to evaluate them on
finite, constant time hypersurfaceM, and to discard all
terms that depend onR.

V. EXPANSION OF NEAR-ZONE FIELDS
TO 2.5PN ORDER

We now turn to explicit evaluation of the near-zone fiel
and the metric to higher PN order, in terms of Poisson
tentials and multipole moments. In addition to evaluating
inner integrals shown above, we must evaluate the outer
tegrals consistently at each PN order, to check whether
finite, R-independent contributions result.

In evaluating the contributions at each order, we shall
the following notation:

N5e~N01eN11e3/2N1.51e2N21e5/2N2.5

1e3N31e7/2N3.5!1O~e5!, ~5.1a!

Ki5e3/2~K1
i 1eK2

i 1e3/2K2.5
i 1e2K3

i

1e5/2K3.5
i !1O~e9/2!, ~5.1b!

B5e2~B11e1/2B1.51eB21e3/2B2.5

1e2B31e5/2B3.5!1O~e5!, ~5.1c!
5-14
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Bi j 5e2~B2
i j 1e1/2B2.5

i j 1eB3
i j 1e3/2B3.5

i j !1O~e4!, ~5.1d!

where the subscript on each term indicates the level~1PN,
2PN, 2.5PN, etc.! of its leading contribution to the equation
of motion. Notice that our separate treatment ofB and Bi j

leads to the slightly awkward notational circumstance th
for example,B2

i i 5B1.

A. Newtonian and 1.5PN solution

At lowest order in the PN expansion, we only need
evaluatet005(2g)T001O(re)5s1O(re) ~recall thats i i

;es). Since this has compact support, the outer integ
vanish, and we find

N054U. ~5.2!

To this order, (2g)5114U1O(e2).
To the next PN order, we obtain, from Eqs.~2.5!, ~4.4!

and ~5.2!,

t005s2s i i 14sU2
7

8p
¹U21O~re2!,

t0i5s i1O~re3/2!,

t i i 5s i i 2
1

8p
¹U21O~re2!,

t i j 5O~re!. ~5.3!

Substituting into Eqs.~4.8!, and calculating terms throug
1.5PN order@e.g.O(e5/2) in N], we obtain

N157U224F112F212Ẍ, ~5.4a!

K1
i 54Vi , ~5.4b!

B15U214F122F2 , ~5.4c!

N1.552
2

3
I kk
~3!

~ t !, ~5.4d!

B1.5522I kk
~3!

~ t !. ~5.4e!

It is straightforward in this case to show that the outer in
grals and surface terms give noR-independent terms. It is
useful to illustrate the cancellation of anR-dependent term
in this simple case. In the far zone to Newtonian order,
field, from Eq.~2.13!, is given byN'4I/r , where we focus
on the monopole contribution. This contributes toL00 in the
far zone a term of the formL005214I 2/r 4. To evaluate the
near-zone contribution of the outer integral of this term,
12401
t,

ls

-

e

e

must evaluate the coefficientE B,L
q in Eq. ~2.33! with q50

~no time derivative, sinceI is constant, to lowest order!, B
54, L50. From Eqs.~2.30! and~2.34!, this yields a contri-
bution toN given byNC2N527I 2/R 2. However, in evalu-
ating NN , we encounter the Poisson potential214P(¹U2)
5214P2 @see Eq.~4.15!#. Upon integrating by parts and
keeping the surface term atR @see Eq.~D3a!#, this gives a
contribution 7U2214F217I 2/R 2, whose R-dependent
term cancels that from the outer integral.

The physical metric to 1.5PN order is then

g0052112U22U21Ẍ2
4

3
I kk
~3!

~ t !1O~e3!, ~5.5a!

g0i524Vi1O~e5/2!, ~5.5b!

gi j 5d i j ~112U !1O~e2!. ~5.5c!

Notice that, in our formulation, the potentialU is not a
retarded potential; the retardation is expressed by the
potentialẌ and the 1.5PN term2 4

3 I kk(3)(t). This contrasts
with the PM approach, where retarded, rather than Pois
potentials are used, and the retardation is expanded
much later in the computation. The apparently 1.5PN ter

2 4
3 I kk(3)(t) in g00 actually does not contribute to the equ

tions of motion at this order because it is purely a function
time, and the leading contribution is through a spatial gra
ent. As a consequence, the lowest-order observable cont
tion to radiation reaction is at 2.5PN order.~An alternative
way to treat this 1.5PN term would be to absorb it in
redefinition of the time coordinate.!

We note here the useful identity, which follows from Eq
~5.3!, s5t001t i i 2(1/2p)¹2(U2)1O(re2), whose conse-
quence is

E
M

s~ t,x!d3x5I1
1

2
Ïi i 1O~Ie2!, ~5.6!

where surface terms make noR-independent contribution.

B. 2.5PN solution

At 2PN and 2.5PN order, we obtain, from Eqs.~2.5!,
~4.4b!, ~4.4c!, ~5.2!, and~5.4!,

t i j 5s i j 1
1

4p S U ,iU , j2
1

2
d i j ¹U2D1O~re2!, ~5.7a!

t0i5s i14s iU1
2

p
U , jV[ j ,i ]1

3

4p
U̇U ,i1O~re5/2!. ~5.7b!

Including outer integrals and boundary terms~which contrib-
ute nothing!, we obtain, from Eq.~4.8c!,
5-15
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B2
i j 54F1

i j 14P2
i j 2d i j ~2F22U2!, ~5.8a!

K2
i 58V2

i 28F2
i 18UVi116G7

i 12Ẍi ,
~5.8b!

B2.5
i j 522I i j

~3!

~ t !, ~5.8c!
u-
in

fo
u

d
e
ha

12401
K2.5
i 5

2

3
xkI ik

~4!

~ t !2
2

9
I ikk
~4!

~ t !1
4

9
emikJ mk

~3!

~ t !. ~5.8d!

The solutions forB2
i j andB2.5

i j , along with the earlier 1.5PN
solutions, must now be substituted into (2g)Tab and Eqs.
~4.4a! ~4.4d!, with the result
ce
t005s2s i i 14sU2
7

8p
¹U2

1s~7U228F112F212Ẍ!24s i i U

1
1

4p H 5

2
U̇224UÜ28U̇ ,kVk12Vi , j~3Vj ,i1Vi , j !14V̇jU , j24U ,i j F1

i j

18¹U•¹F124¹U•¹F22
7

2
¹U•¹Ẍ210U¹U224U ,i j P2

i j J
1

4

3
sI kk

~3!

~ t !1
1

2p
U ,i j I i j

~3!

~ t !, ~5.9a!

t i i 5s i i 2
1

8p
¹U214s i i U2

1

4p H 9

2
U̇214Vi , jV[ i , j ]14V̇jU , j1

1

2
¹U•¹ẌJ . ~5.9b!

Substituting into Eqs.~4.8a! and~4.8c! and evaluating terms throughO(e7/2), and verifying that the outer integrals and surfa
terms make noR-independent contributions, we obtain

N25216UF118UF217UẌ1
20

3
U324ViVi216S~F1!1S~Ẍ!18S i~Vi !

22Ẍ11Ẍ21
1

6
Y
~4!

24G1216G2132G3124G4216G5216G6216H, ~5.10a!

B25UẌ14ViVi2S~Ẍ!28S i~Vi !116S i i ~U !12Ẍ12Ẍ2220G118G4116G5 , ~5.10b!

N2.552
1

15
~2xkl1r 2dkl!I kl

~5!

~ t !1
2

15
xkI kll

~5!

~ t !2
1

30
I kkll

~5!

~ t !1
16

3
UI kk

~3!

~ t !24X,klI kl
~3!

~ t !,

~5.10c!

B2.552
1

3
r 2I i i

~5!

~ t !1
2

9
xkI i ik

~5!

~ t !1
8

9
xkemkiJ mi

~4!

~ t !2
2

3
Miikk

~3!

~ t !. ~5.10d!
In
C. Far-zone field to 1.5PN order

In anticipation of finding non-zero outer-integral contrib
tions to the near-zone field at 3PN order, we must determ
the far-zone field to an order needed for the sourceLab. Our
foregoing discussion indicates that counting PN orders
outer integrals is different than the standard method, beca
the inverse radial variabler 21,R 21;v/S; in other words,
when considering contributions to the outer integrals, ad
tional powers ofr in a term in the far-zone field can b
regarded as increasing the effective order of that term by
e

r
se

i-

lf

a power ine. For example, expandinghN
005NN in the far-

zone, Eq.~2.13!, we obtain

NN54H I
r

1

e

1

2
]klS I kl~u!

r
D

e2

2
1

6
]klmS I klm~u!

r
D

e5/2

1•••,

~5.11!

where the effective PN order of each term is indicated.
ordinary applications, the second potential in Eq.~5.11!
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would contribute a term of ordere of the form n̂^kl&I kl/r 3,
which is simply the Newtonian quadrupole potential. But
the outer integral, this term contributes anR-independent
term only through several time derivatives, and thus its
fective contribution is higher order, in fact of the same ord
as that of the termn̂klÏkl/r , which also comes from the sec
ond potential.

At this order, we must also be careful to include any ou
integral and boundary contributions to the far-zone fie
From the lowest-order far-zone field, we find, to the ord
needed, thatL005214(I/r 2)2, L i j 54(I/r 2)2(n̂^ i j &2d i j /6).
Evaluating the coefficientsD 4,2

0 and D 4,0
0 , Eq. ~2.29!, we

obtain, in the far zone,NC2N57(I/r )2 and BC2N
i j

5(I/r )2n̂i j . Combining the multipole expansions of E
~2.13! with the outer integral contributions, we obtain in th
far-zone, to the order needed,

N54
I
r

12]klS I kl~u!

r D2
2

3
]klmS I klm~u!

r D17
I 2

r 2 1O~e3!,

~5.12a!
12401
f-
r

r
.
r

Ki522]kS İik~u!

r
D 12eaib

n̂aJ b

r 2
1

2

3
]klS İikl~u!

r
D

1
4

3
eaib]akS J bk~u!

r D1O~e3!, ~5.12b!

Bi j 52
Ïi j ~u!

r
1

2

3
]kS Ïi jk~u!

r
D 1

8

3
eak( i]kS J̇au j )~u!

r
D

1
I 2

r 2 n̂i j 1O~e3!. ~5.12c!

It will turn out, however, that, despite the formal possibili
of 3PN contributions from the outer integrals, theactualcon-
tributions will not begin until 4PN order~see Sec. VI C!.
.
on to
VI. EXPANSION OF NEAR-ZONE FIELDS TO 3.5PN ORDER

A. Bij and Kj to 3PN and 3.5PN order

At 3PN and 3.5PN order, we obtain, from Eqs.~2.5!, ~4.4b!, ~4.4c!, ~5.2! and ~5.4!,

t i j 5s i j 1
1

4p S U ,iU , j2
1

2
d i j ¹U2D14s i j U

1
1

4p H U ,(i Ẍ, j )216V[ i ,k]V[ j ,k]18U ,(i V̇ j )2d i j S 1

2
¹U•¹Ẍ24V[ l ,k]V[ l ,k]14U ,(kV̇k)1

3

2
U̇2D J 1O~re3!, ~6.1a!

t0i5s i14s iU1
2

p
U , jV[ j ,i ]1

3

4p
U̇U ,i1s i~7U228F112F212Ẍ!1

1

16p
$64U ,k~V2

[k,i ]2F2
[k,i ] !132UU ,kVk,i

216UU ,kVi ,k116U ,iU ,kVk224Vi~¹U !2116U ,kẌ[k,i ]1128U ,kG7
[k,i ]232F1

,kV[k,i ]216F2
,kVi ,k216Ẍ,kV[k,i ]216U̇F1

,i

148UU̇U ,i16U̇Ẍ,i16U ,i X
~3!

216U ,iḞ1116U̇V̇i216UV̈i232VkV̇i ,k216Vi ,kl~F1
kl1P2

kl!116U ,k~Ḟ1
ik1 Ṗ2

ik!

116Vk,l~F1
i l ,k1F1

ik,l2F1
kl,i !116Vk,l~P2

i l ,k1P2
ik,l2P2

kl,i !%1
4

3
s iI kk

~3!

~ t !1
1

2p
~Vi ,klI kl

~3!

~ t !2U ,kI ik
~4!

~ t !!, ~6.1b!

where the first line in each expression is the contribution through 2PN order obtained earlier. Substituting into Eqs~4.8b!,
~4.8c!, and keeping contributions throughO(e7/2), and checking that surface terms and outer integrals make no contributi
this order, we obtain

B3
i j 516S i j ~U !14P~U ,(i Ẍ, j )!264P~V[ i ,k]V[ j ,k] !132P~U ,(i V̇ j )!12Ẍi j 12S̈~U ,iU , j !

1d i j ~UẌ24VkVk2S~Ẍ!18Sk~Vk!2Ẍ228G128G4116G5!, ~6.2a!

K3
i 512U2Vi116UV2

i 216UF2
i 14UẌi132UG7

i 14ViẌ28F1Vi18F2Vi28VkF1
ik28VkP2

ik216S~V2
i !116S~F2

i !

216S~UVi !24S~Ẍi !232S~G7
i !224S i~F1!14S i~Ẍ!18Skk~Vi !18Sk~F1

ik!18Sk~P2
ik!18S ik~Vk!

124P~UU̇U ,i !124P~U ,kU ,iVk!132P~U ,kV2
k,i !232P~U ,kF2

k,i !164P~U ,kG7
k,i !18P~U ,kẌk,i !116P~U ,kḞ1

ik!

116P~U ,kṖ2
ik!216P~U ,iḞ1!16P~U ,i X

~3!

!216P~U̇F1
,i !16P~U̇Ẍ,i !132P~UU ,kVi ,k!216P~UV̈i !
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116P~Vk,lF1
i l ,k!216P~Vk,lF1

kl,i !116P~Vk,l P2
i l ,k!232P~VkV̇i ,k!216P~Vk,iF1

,k!18P~Vk,i Ẍ,k!216P~Vk,l P2
kl,i !

216P~Vi ,lmF1
lm!216P~Vi ,lmP2

lm!14Ẍi~U !24Ẍ~Vi !18S̈~U ,kVk,i !16S̈~U ,i U̇ !1
1

6
Yi
~3!

, ~6.2b!

B3.5
i j 52

1

3
r 2I i j

~5!

~ t !1
2

9
xkI i jk

~5!

~ t !1
8

9
xkemk( iJ mu j )

~4!

~ t !2
2

3
Mi jkk

~3!

~ t !, ~6.2c!

K3.5
i 5

1

15
r 2xkI ik

~6!

~ t !2
1

45
r 2I ikk

~6!

~ t !2
2

45
xklI ikl

~6!

~ t !1
1

30
xkI ikl l

~6!

~ t !2
1

150
I ikkll

~6!

~ t !

1emilF 2

45
r 2J ml

~5!

~ t !1
4

45
xklJ mk

~5!

~ t !2
1

30
xlJ mkk

~5!

~ t !2
1

15
xkJ mkl

~5!

~ t !1
2

75
J mlkk

~5!

~ t !G
1

16

3
ViI kk

~3!

~ t !24Xi ,klI kl
~3!

~ t !14X,kI ik
~4!

~ t !. ~6.2d!

B. N and B to 3PN and 3.5PN order

The expressions fort00 andt i i to 3PN and 3.‘5PN order are too lengthy to be reproduced explicitly. Instead, by substi
the expansions~5.1! into Eqs. ~2.5!, ~4.4b! and ~4.4c!, and keeping terms ofO(re3) and O(re3.5), we obtain the formal
contributions

t3
005s~N22B22N0B11K1

i K1
i !2s i i ~N12B1!

1
1

16p H 2
7

8
@2¹N0•¹N21~¹N1!2#1

5

4
Ṅ0Ṅ12N̈0N12N0N̈1

22Ṅ0
,iK2

i 22Ṅ1
,iK1

i 1K1
i , j~3K2

j ,i1K2
i , j !1N0

,i K̇2
i 1N1

,i K̇1
i 2N0

,i j B3
i j

2N1
,i j B2

i j 1
1

4
~¹N0•¹B21¹N1•¹B1!1

7

8
N1~¹N0!2

1
7

4
N0~¹N0•¹N1!1K1

i , j Ḃ2
i j 1

1

4
B2

i j ,k~B2
i j ,k22B2

jk,i !1
1

4
Ṅ0Ḃ12

1

8
~¹B1!2

1
1

4
Ṅ0N0

,iK1
i 1

7

8
N0

,iN0
, jB2

i j 2
1

2
N0

,iK1
j ~4K1

i , j13K1
j ,i !2

7

8
N0

2~¹N0!2J , ~6.3a!

t3.5
005s~N2.52B2.52N0B1.5!2s i i ~N1.52B1.5!

1
1

16p H 2
7

4
¹N0•¹N2.51

5

4
Ṅ0Ṅ1.52N̈0N1.52N0N̈1.522Ṅ0

,iK2.5
i 1N0

,i K̇2.5
i

1K1
i , j~3K2.5

j ,i 1K2.5
i , j !2N0

,i j B3.5
i j 2N1

,i j B2.5
i j 1

1

4
¹N0•¹B2.51

7

8
N1.5~¹N0!21K1

i , j Ḃ2.5
i j

1
1

4
Ṅ0Ḃ1.51

7

8
N0

,iN0
, jB2.5

i j J , ~6.3b!

t3
i i 5s i i ~N12B1!

1
1

16p H 2
1

8
@2¹N0•¹N21~¹N1!2#12K1

i , jK2
[ j ,i ]2N0

,i K̇2
i 2N1

,i K̇1
i 2

1

4
~¹N0•¹B21¹N1•¹B1!

2
9

4
Ṅ0Ṅ11

1

4
N1~¹N0!21

1

2
N0~¹N0•¹N1!12K̇1

i K̇1
i 22Ḃ1

,iK1
i 13Ḃ2

i j K1
i , j2N0B̈1
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1
3

4
Ṅ0Ḃ11

1

8
~¹B1!22B1

,i j B2
i j 1

3

4
B2

i j ,kB2
i j ,k1

1

2
B2

i j ,kB2
ik, j2N0K1

i , jK1
[ j ,i ]2

1

2
N0

,iK1
j K1

j ,i1N0N0
,i K̇1

i

1
1

4
Ṅ0N0

,iK1
i 2

1

8
N0

,iN0
, jB2

i j 1
1

4
N0¹N0•¹B11

1

8
~¹N0!2B11

9

8
N0Ṅ0

22
3

8
N0

2~¹N0!2J , ~6.3c!

t3.5
i i 5s i i ~N1.52B1.5!1

1

16p H 2
1

4
¹N0•¹N2.512K1

i , jK2.5
[ j ,i ]2N0

,i K̇2.5
i 2

1

4
¹N0•¹B2.52

9

4
Ṅ0Ṅ1.5

1
1

4
N1.5~¹N0!213Ḃ2.5

i j K1
i , j2N0B̈1.51

3

4
Ṅ0Ḃ1.52B1

,i j B2.5
i j 2

1

8
N0

,iN0
, jB2.5

i j 1
1

8
~¹N0!2B1.5J . ~6.3d!

We have simplified the expressions slightly by taking into account the fact thatN1.5, B1.5 andB2.5
i j are purely functions of time,

so that spatial gradients of them vanish. To obtain the full expressions, one substitutes forN0 , N1 , B1 , K1
i , etc., from Eqs.

~5.2!, ~5.4!, ~5.8!, ~5.10!, and ~6.2!. Substituting this into Eqs.~4.8a! and ~4.8c! ~the latter contracted on indicesi j ), and
including surface terms and outer integrals, we obtain the final 3PN and 3.5PN results forN andB:

N35
19

6
U4228U2F1114U2F2110U2Ẍ28UẌ114UẌ214US~Ẍ!24UG1256UG21112UG3180UG4264UG5

256UG6256UH1
7

12
U Y

~4!

132US i~Vi !256US~F1!28US i i ~U !110F1
228F1F212F2

228F1Ẍ14F2Ẍ216ViV2
i

116ViF2
i 232ViG7

i 24ViẌi1
7

4
Ẍ222F1

i j F1
i j 24F1

i j P2
i j 22P2

i j P2
i j 28S~UF1!136S~G1!28S~G2!116S~G3!

248S~G4!28S~G6!28S~H !28S~Ẍ1!1
1

12
S~ Y

~4!

!116S i~V2
i !216S i~F2

i !216S i~UVi !132S i~G7
i !14S i~Ẍi !

18S i i ~U2!112S i i ~F1!14S i j ~F1
i j !14S i j ~P2

i j !28S~S~F1!!164S~S i~Vi !!256S~S i i ~U !!232P~U2Ü !

228P~UU̇2!116P~ÜF1!116P~U̇Ḟ1!116P~UF̈1!28P~UF̈2!28P~U X
~4!

!24P~U̇ X
~3!

!28P~ÜẌ!132P~UU ,i V̇i !

264P~UU̇ ,iVi !240P~U̇U ,iVi !132P~UVi , jVi , j !116P~UVi , jVj ,i !132P~U ,i V̇2
i !232P~U ,iḞ2

i !164P~U ,i Ġ7
i !

18P~U ,iXi
~3!

!164P~U̇ ,iF2
i !264P~U̇ ,iV2

i !2128P~U̇ ,iG7
i !216P~U̇ ,i Ẍi !14P~U ,iU , jF1

i j !14P~U ,iU , j P2
i j !

264P~U ,i j S i j ~U !!28P~U ,i j S̈~U ,iU , j !!2128P~U ,i j P~U ,(i V̇ j )!!216P~U ,i j P~U ,(i Ẍ, j )!!1256P~U ,i j P~V[k,i ]V[k, j ] !!

28P~U ,i j Ẍi j !132P~ViḞ1
,i !216P~ViḞ2

,i !216P~ViX,i
~3!

!116P~Vi , jḞ1
i j !116P~Vi , j Ṗ2

i j !196P~Vi , jV2
j ,i !296P~Vi , jF2

j ,i !

1192P~Vi , jG7
j ,i !124P~Vi , j Ẍ j ,i !18P~V̇i V̇i !216P~V̇iF1

,i !18P~V̇i Ẍ,i !28P~F1
i j ,kF1

jk,i !216P~F1
i j ,kP2

jk,i !

28P~P2
i j ,kP2

jk,i !116P~F1
,i j F1

i j !116P~F1
,i j P2

i j !28P~F1
i j Ẍ,i j !28P~F2

,i j F1
i j !28P~F2

,i j P2
i j !28P~P2

i j Ẍ,i j !

2
1

6
Y1

~4!

1
1

12
Y2

~4!

1
1

180
Z
~6!

28Ẍ~F1!1
1

2
Ẍ~Ẍ!14Ẍi~Vi !22S̈~U̇2!28S̈~UÜ !28S̈~U ,i j F1

i j !

28S̈~U ,i j P2
i j !112S̈~Vi , jVj ,i !18S̈~U ,i V̇i !216S̈~ViU̇ ,i !, ~6.4a!

B35
1

2
U424U2F122U2F2116UViVi212UG128UG2116UG3116UG428UG628UH1

1

12
U Y

~4!

28US~F1!

18US i i ~U !22F1
218F1F212F2

2116ViV2
i 216ViF2

i 132ViG7
i 14ViẌi1

1

4
Ẍ226F1

i j F1
i j 212F1

i j P2
i j 26P2

i j P2
i j

18S~UF1!112S~G1!18S~G2!216S~G3!216S~G4!18S~G6!18S~H !2
1

12
S~ Y

~4!

!216S i~V2
i !116S i~F2

i !
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248S i~UVi !232S i~G7
i !24S i~Ẍi !124S i i ~U2!228S i i ~F1!18S i i ~Ẍ!112S i j ~F1

i j !112S i j ~P2
i j !18S~S~F1!!

28S~S i i ~U !!268P~UU̇2!216P~UF̈1!18P~UF̈2!148P~U̇Ḟ1!220P~U̇ X
~3!

!256P~U̇U ,iVi !232P~UU ,i V̇i !

132P~UVi , jVi , j !216P~UVi , jVj ,i !232P~U ,i V̇2
i !132P~U ,iḞ2

i !264P~U ,i Ġ7
i !28P~U ,iXi

~3!

!24P~U ,iU , jF1
i j !

24P~U ,iU , j P2
i j !232P~ViḞ1

,i !116P~ViḞ2
,i !148P~Vi , jḞ1

i j !148P~Vi , j Ṗ2
i j !132P~Vi , jV2

j ,i !232P~Vi , jF2
j ,i !

164P~Vi , jG7
j ,i !18P~Vi , j Ẍ j ,i !124P~V̇i V̇i !116P~V̇iF1

,i !28P~V̇i Ẍ,i !18P~F1
i j ,kF1

jk,i !116P~F1
i j ,kP2

jk,i !

18P~P2
i j ,kP2

jk,i !216P~F1
,i j F1

i j !216P~F1
,i j P2

i j !18P~F2
,i j F1

i j !18P~F2
,i j P2

i j !1
1

6
Y1

~4!

2
1

12
Y2

~4!

2
1

2
Ẍ~Ẍ!24Ẍi~Vi !

18Ẍii ~U !210S̈~U̇2!14S̈~Vi , jVj ,i !28S̈~U ,i V̇i !1
4

3
II j j

~4!

~ t !, ~6.4b!

N3.552
1

420
r 4I j j

~7!

~ t !2
1

105
r 2xi j I i j

~7!

~ t !1
1

105
r 2xiI i j j

~7!

~ t !1
2

315
xi jkI i jk

~7!

~ t !2
1

420
r 2I i i j j

~7!

~ t !2
1

105
xi j I i jkk

~7!

~ t !1
1

210
xiI i j jkk

~7!

~ t !

2
1

1260
I i i j jkk

~7!

~ t !2S 8

15
xi j U1

6

5
xiX, j1

2

3
r 2X,i j 2

2

9
xkY,i jk1

11

45
Y,i j DI i j

~5!

~ t !1S 16

15
r 2U2

34

15
xiX,i1

16

5
XDI j j

~5!

~ t !

2
1

45
~16xiU252X,i !I i j j

~5!

~ t !1S 4

9
xkX,i j 2

2

27
Y,i jk DI i jk

~5!

~ t !2
2

15
UI i i j j

~5!

~ t !2S 4

3
Xi , j2

8

3
xiẊ, j1

10

9
Ẏ,i j DI i j

~4!

~ t !18ẊI j j
~4!

~ t !

2
8

9
Ẋ,iI i j j

~4!

~ t !2S 14UX,i j 12S~X,i j !24X1
,i j 12X2

,i j 1
2

3
Ÿ,i j DI i j

~3!

~ t !1
1

3
~70U2216F1120F214Ẍ!I j j

~3!

~ t !

1
8

3
UM j jkk

~3!

~ t !2
4

3
X,i j M i jkk

~3!

~ t !1
16

9
xkX,i j emk( iJ mu j )

~4!

~ t !2
4

9
~8xkU25X,k!emk jJ m j

~4!

~ t !1
16

9
Ẋ,kemk jJ m j

~3!

~ t !, ~6.4c!

B3.552
1

60
r 4I j j

~7!

~ t !1
1

45
r 2xiI i j j

~7!

~ t !2
1

5
~Y,i j 26xiX, j !I i j

~5!

~ t !2
1

5
~16X12xiX,i !I j j

~5!

~ t !2
4

15
X,iI i j j

~5!

~ t !112Xi , jI i j
~4!

~ t !

1S 6U21
16

3
F1212F2DI j j

~3!

~ t !2~2UX,i j 22S~X,i j !14X1
,i j 22X2

,i j 28P2
i j !I i j

~3!

~ t !

1
4

45
r 2xkemk jJ m j

~6!

~ t !1
4

3
X,kemk jJ m j

~4!

~ t !2
1

15
r 2M j jkk

~5!

~ t !2
2

15
xjkM ii jk

~5!

~ t !1
2

15
xjM ii jkk

~5!

~ t !2
1

30
Mii j jkk

~5!

~ t !. ~6.4d!
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y
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The final term in the expression forB3 is purely a func-
tion of time, and as such does not affect the equations
motion through 3.5PN order. It comes in part from the s
face terms Eqs.~C1! and in part from various integrations b
parts of Poisson potentials to achieve the expressions sh
In N3, all such terms cancel. Similarly, purely time
dependent terms which appear inN3.5 and B3.5 do not con-
tribute to the equations of motion.

As expected, the outer integrals make their first form
contribution to the field at 3PN order; however, theobserv-
able contribution vanishes to this order, so we have n
shown any such contributions explicitly in Eqs.~6.4!. In the
next subsection, we study the contributions of the outer
12401
of
-

n.

l

t

-

tegrals in more detail, and show that through 3.5PN order
contributions from the outer integrals are pure gauge ter

C. Outer integrals and the contributions of ‘‘tails’’

Our earlier qualitative discussion suggested that terms
volving products of the monopole momentI and the quad-
rupole momentI i j of the far-zone fields would contribut
via the outer integrals at 3PN order. Because higher mu
pole moments involve higher powers of 1/r or higher time
derivatives, they would be expected to contribute at ev
higher PN order. Thus working through 3.5PN order, w
might expect at most that products ofI with quadrupoleI i j ,
octupoleI i jk or current quadrupoleJ i j moments would con-
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tribute. Other terms, such as products ofI with higher-order moments or products of higher-order moments, such as t
quadratic inI i j , will be 4PN order or higher. In studying the contribution of the outer integrals to the fields at 3.5PN
therefore, it suffices to employ the far-zone field given in Eq.~5.12!. However, to illustrate the first non-trivial ‘‘tail’’
contribution, we will evaluate certain pieces of the outer integrals through 4PN order.

We substitute Eqs.~5.12! into Eqs.~4.4! using the ‘‘quick and dirty’’ rule expressed by Eq.~4.9! to determine which terms
to keep, and obtain, in the far zone:

L00514Ir 22n̂i] i jk~I jk/r !28Ir 21] i j ~ Ïi j /r !18Ir 22n̂i] j~ Ïi j /r !224Ir 24n̂^ i j &Ïi j

22Ir 22n̂i] i~ Ïj j /r !2
14

3
Ir 22n̂i] i jkl ~I jkl /r !1

8

3
Ir 21] i jk~ Ïi jk /r !2

8

3
Ir 22n̂i] jk~ Ïi jk /r !28Ir 23n̂^ i j &]k~ Ïi jk /r !

2
2

3
Ir 22n̂i] i j ~ Ïjkk/r !1

16

3
Ir 22n̂ieaib]ak~J̇bk/r !232Ir 23n̂^ i j &eaki]k~J̇a j/r !

2
8

3
Ir 22n̂ieak j] ik~J̇a j/r !1O~re4!, ~6.5a!

L0i58Ir 22n̂ j] ik~ İjk/r !28Ir 22n̂ j] jk~ İik/r !26Ir 22n̂i] jk~ İjk/r !18Ir 21] j~I i j
~3!

/r !

2
8

3
Ir 21] jk~I i jk

~3!

/r !1
16

3
Ir 21e iab]ak~J̈bk/r !28Ir 22n̂ j~I i j

~3!

/r !12Ir 22n̂i~I j j
~3!

/r !1O~re7/2!, ~6.5b!

L i i 52Ir 22n̂i] i jk~I jk/r !28Ir 22n̂i] j~ Ïi j /r !12Ir 22n̂i] i~ Ïj j /r !28Ir 22I i i
~4!

2
2

3
Ir 22n̂i] i jkl ~I jkl /r !

1
8

3
Ir 22n̂i] jk~ Ïi jk /r !1

2

3
Ir 22n̂i] i j ~ Ïjkk/r !2

8

3
Ir 21] i~I i j j

~4!

/r !2
16

3
Ir 22n̂ieaib]ak~J̇bk/r !

1
8

3
Ir 22n̂ieak j] ik~J̇a j/r !2

32

3
Ir 21eaki]k~J ai

~3!

/r !1O~re4!, ~6.5c!

L i j 528Ir 22I i j
~4!

1O~re3!. ~6.5d!

All momentsI i j , I i jk , andJ i j in these expression are functions of retarded timet2r . Notice that the term kept inL i j is
actually ofO(re3) ~4PN order! according to our scheme; however, because it has 1/r 2 dependence, it will yield a 4PN tai
contribution of a form which we wish to keep.

We expand the derivatives and evaluate the coefficientsEB,L
q andE2,L

q @Eqs.~2.34! and~2.36!# for each term, throwing away
all R-dependent terms. Terms with 1/r 2 falloff yield integrals over Legendre functionsQL , as in Eq.~2.35!. The result,
through 3.5PN order~and keeping all formally 4PN terms involving integrals overQL), is

~N3!C2N5IH 28n̂^ i j &E
1

`

I i j
~4!

~ t2r z!Q2~z!dz2
8

3E1

`

I j j
~4!

~ t2r z!Q0~z!dz1
4

3
~ n̂^ i j &22d i j 22d i j ln r !I i j

~4!

~ t !J , ~6.6a!

~N3.5!C2N5IH 2
8

3
n̂^ i jk &E

1

`

I i jk
~5!

(t2r z)Q3(z)dz2
8

5
n̂iE

1

`

I i j j
(5)

(t2r z)Q1(z)dz2
2

3
r (3n̂^ i j &22d i j )I i j

(5)

(t)

1
2

45
(5n̂^ i jk &118n̂id jk)I i jk

~5!

~ t !J , ~6.6b!

~K3.5!C2N
i 5IH 28n̂ jE

1

`

I i j
~4!

~ t2r z!Q1~z!dz14n̂ jI i j
~4!

~ t !J , ~6.6c!
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~K4!C2N
i 5IH 2

8

3
n̂^ jk&E

1

`

I i jk
~5!

~ t2r z!Q2~z!dz2
8

9E1

`

I i j j
~5!

~ t2r z!Q0~z!dz

1
16

3
n̂^ak&e ia jE

1

`

J jk
~4!

~ t2r z!Q2~z!dz1
16

9
e ik jE

1

`

J jk
~4!

~ t2r z!Q0~z!dzJ , ~6.6d!

~B3!C2N5IH 28E
1

`

I i i
~4!

~ t2r z!Q0~z!dz18~12 ln r !I i i
~4!

~ t !J , ~6.6e!

~B3.5!C2N5IH 1
8

3
n̂iE

1

`

I i j j
~5!

~ t2r z!Q1~z!dz1
32

3
eai j n̂iE

1

`

J a j
~4!

~ t2r z!Q1~z!dz14rI i i
~5!

~ t !

2
4

3
n̂iI i j j

~5!

~ t !2
16

3
eai j n̂iJ a j

~4!

~ t !J , ~6.6f!

~B4!C2N
i j 528IE

1

`

I i j
~4!

~ t2r z!Q0~z!dz. ~6.6g!

Using the recursion relations satisfied by Legendre functions, we can establish the general formulas

E
1

`

X~ t2r z!QL~z!dz5
1

L~L11!
X~ t2r !2

1

2L11E1

`

X8~ t2r z!@QL11~z!2QL21~z!#dz,

E
1

`

X~ t2r z!Q0~z!dz5X~ t2r !2E
1

`

X8~ t2r z!@Q1~z!1Q0~z!#dz1E
0

`

Ẋ~ t2r 2s!ln~s/2r !ds, ~6.7!
s

ti-
-

e
de
n-

ns
ha

,

N

ute
a-

ak-

r

where a prime denotes]/]z, s5r (z21), X represents one
of the multipole moments of the system (I i j and higher!, and
we assume that, in the distant past, the system becomes
ficiently ‘‘stationary’’ that as s→`, X(t2r 2s)ln s→0.
Since for a binary system that becomes unbound (r→v0s) in
the infinite past ~because of gravitational-radiation an
damping, looking backwards!, X in the worst case is propor
tional to (d/dt)4I i j ;mv4/r 2→mv0

2/s2; then this boundary
condition is satisfied~see@60# for a detailed discussion of th
past behavior of binary systems whose evolution inclu
gravitational radiation reaction!. Repeated use of these ide
tities allows us to convert many of the integrals in Eqs.~6.6!
into integrals of higher time derivatives of the expressio
which are thus of higher PN order, plus residual terms t
cancel many of the non-integral terms in Eqs.~6.6!. It is also
useful to expand the retarded timet2r 2s aboutt2s, and to
separate the lnr terms from the ln(s/2) terms in the integrals
leaving only terms proportional toX(n)(t) and *0

`X(n)(t
2s)ln(s/2)ds. In the end, the only terms that remain at 3P
and 3.5PN order are

NC2N5IH 2
16

3
I i i
~4!

~ t !2
8

3E0

`

I i i
~5!

~ t2s!ln~s/2!dsJ 1O~e5!,

~6.8a!

KC2N
i 5O~e9/2!, ~6.8b!
12401
uf-

s

,
t

BC2N
i j 5O~e4!, ~6.8c!

BC2N528IE
0

`

I i i
~5!

~ t2s!ln~s/2!ds1O~e5!. ~6.8d!

As these are purely functions of time, they do not contrib
to the equations of motion through 3.5PN order. Altern
tively, one can show that the terms in Eqs.~6.6! turn out to
be purely gauge terms through 3.5PN order. In fact, by m
ing the gauge transformationhmn→hmn2jm,n2jn,m

1hmnj ,a
a ~the linear transformation suffices to this orde!,

with

j05IH 4

3
I i i
~3!

~ t !1
8

3E0

`

I i i
~4!

~ t2s!ln~s/2!ds

2
2

3
xi j E

0

`

I i j
~6!

~ t2s!ln~s/2!ds

1
2

3
r 2E

0

`

I i i
~6!

~ t2s!ln~s/2!ds

1
4

45
xiE

0

`

I i j j
~6!

~ t2s!ln~s/2!ds

1
8

9
xie ik jE

0

`

J jk
~5!

~ t2s!ln~s/2!dsJ , ~6.9!
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j i5IH 24xjE
0

`

I i j
~5!

~ t2s!ln~s/2!ds

1
4

3
xiE

0

`

I j j
~5!

~ t2s!ln~s/2!ds

1
44

45E0

`

I i j j
~5!

~ t2s!ln~s/2!ds

2
8

9
e ik jE

0

`

J jk
~4!

~ t2s!ln~s/2!dsJ , ~6.10!

we can convert the outer integral contributions tohab in Eq.
~6.6! to a form consisting of nothing but a 4PN tail term:

~N1B!C2N52
16

5
Ixi j E

0

`

I ^ i j &
~7!

~ t2s!ln~s/2!ds1O~e5!,

~Ki !C2N5O~e9/2!,

~Bi j !C2N5O~e4!. ~6.11!

Note that, to this order,N1B52g00, and only the gradien
of the term in Eq.~6.11! contributes to the acceleration
hence this term can be thought of as a 4PN tail modifica
of the Newtonian gravitational potential or as a 1.5PN mo
fication due to tails of the 2.5PN radiation-reaction pote
tials. This result is in complete agreement with the near-z
tail contribution derived by Blanchet and Damour@15# using
matched asymptotic expansions within the po
Minkowskian formalism.

VII. DISCUSSION

We have presented a method for direct integration of
relaxed Einstein equations in a post-Newtonian expans
applicable to equations of motion and gravitational radiat
from isolated gravitating systems. As a foundation for futu
work, we presented a solution for the near-zone gravitatio
field through 3.5 post-Newtonian order in terms of Poiss
potentials, together with a prescription for ensuring that
divergent or undefined integrals occur. In subsequent w
we will apply the near-zone results to the derivation of eq
tions of motion for binary systems of compact objec
through 2.5 PN order and including 3.5 PN radiation react
terms. Work on the 3PN contributions to the equations
motion is in progress.

The results presented here can also be applied to
gravitational radiation waveform and energy flux from b
nary systems to as high as 3PN order beyond the quadru
approximation. It can also be used to discuss equation
motion and radiation damping of systems containing sp
ning bodies, as well as the structure and evolution of fl
bodies. These will be the subject of future work.
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APPENDIX A: STF TENSORS AND THEIR PROPERTIES

Throughout this series of papers, we shall make frequ
use of the properties of symmetric, trace-free~STF! products
of unit vectors. The general formula for such STF product

n̂^L&[ (
p50

[ l /2]

~21!p
~2l 2 l 22p!!!

~2l 21!!!
@ n̂L22PdP1sym~q!#,

~A1!

where@ l /2# denotes the integer just less than or equal tol /2,
the capitalized superscripts denote the dimensiona
l 22p or p, of products of n̂i or d i j respectively, and
‘‘sym(q)’’ denotes all distinct terms arising from permuta
tions of indices, whereq5 l !/ @(2pp!( l 22p)! # is the total
number of such terms~see@14,26# for compendia of formu-
las!. For convenience, we display the first several examp
explicitly:

n̂^ i j &5n̂i j 2
1

3
d i j , ~A2a!

n̂^ i jk &5n̂i jk2
1

5
~ n̂id jk1n̂ jd ik1n̂kd i j !, ~A2b!

n̂^ i jkl &5n̂i jkl 2
1

7
@ n̂i j dkl1sym~6!#

1
1

35
~d i j dkl1d ikd j l 1d i l d jk!, ~A2c!

n̂^ i jklm.5n̂i jklm2
1

9
@ n̂i jkdkl1sym~10!#

1
1

63
@ n̂id jkd lm1sym~15!#, ~A2d!

n̂^ i jklmn&5n̂i jklmn2
1

11
@ n̂i jkl dmn1sym~15!#

1
1

99
@ n̂i j dkldmn1sym~45!#

2
1

693
@d i j dkldmn1sym~15!#. ~A2e!
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There is a close connection between these STF tensors
spherical harmonics. For example, it is straightforward
show that, for any unit vectorN̂, the contraction ofN̂L with
n̂^L& is given by

N̂Ln̂^L&5
l !

~2l 21!!!
Pl~N̂•n̂!, ~A3!

wherePl is a Legendre polynomial.

APPENDIX B: CANCELLATION OF THE R
DEPENDENCE BETWEEN INNER AND OUTER

INTEGRALS

Here we demonstrate explicitly the cancellation
R-dependent terms between the inner and outer integ
We assume that, at each iteration step, from just inside
boundary of the near zone out into the far zone, the sou
stress-energy tensorN21Lab can be decomposed into term
of the form f B,L(u)n̂^L&r 2B, whereu5t2r is retarded time,
andn̂^L& is a STF product of unit radial vectors. We calcula
the behavior of the inner integral of such a term as the in
gration variable approachesR from below with the result
obtained from the outer integral of the same term. We c
sider far-zone and near-zone field points separately.

1. Far-zone field points

The inner integral is given by Eq.~2.13!, with the multi-
pole moment given by Eq.~2.14!. We want to examine the
behavior of the moment, asux8u→R, that is

MabQ̄~u!→ 1

16pE
R

f B,L~u2r 8!
n̂8^L&

r 8B x8Q̄r 82dr8dV8

5
1

4 (
m50

`
~21!m

m!
f B,L

(m)~u!GB,L,Q̄
m

~R!DL,Q̄, ~B1!
12401
nd
o

f
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e
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where the superscript~m! denotesm retarded time deriva-
tives, and where

DL,Q̄5
1

4p R n̂^L&n̂Q̄dV, ~B2a!

GB,L,Q̄
m

~R!

5ER
r 821q̄2B1mdr8

5H R 31q̄2B1m/~31q̄2B1m!, 31q̄2B1mÞ0,

ln R, 31q̄2B1m50.

~B2b!

Then, from insideR,

hN
ab

B,L→ (
q̄50

`
~21! q̄

q̄!
(

m50

`
~21!m

m!
]Q̄

3S 1

r
f B,L

(m)~u! DGB,L,Q̄
m

~R!DL,Q̄. ~B3!

It is straightforward to show that the contraction of]Q̄ with

DL,Q̄ is given by
DL,Q̄]Q̄55
0 q̄,L,

0 L1q̄5odd,

2Lq̄!(( q̄1L)/2)!

~ q̄1L11)!((q̄2L)/2)!
u¹2u(q̄2L)/2]^L& q̄>L.

~B4!
site
Using the fact that

¹2S f ~u!

r D5
f̈

r
, ~B5a!

]^L&S f ~u!

r D5~21!Ln̂^L&(
k50

L
~L1k!!

2kk! ~L2k!!

f (L2k)~u!

r k11

~B5b!
~see e.g.@14#! and redefining summation variables,q5m

1q̄2k, j 5L2k, we obtain Eqs.~2.37! and~2.38!. Evaluat-
ing the outer integral for the same term yieldsz-dependent or
ln R-dependent terms that are precisely equal and oppo
those of Eq.~2.38!.

2. Near-zone field point

In the near zone, forux8u.uxu, Eq. ~2.22! together with
the specific decomposition ofLab gives
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NhN
ab

B,L→
1

4p (
q̄50

`
~21! q̄

q̄!
(

m50

`
~21!m

m!
xQ̄] t

n

3ER
f B,L~ t2r 8!

n̂8^L&

r 8B ]Q̄
8 ~r 8m21!r 82dr8dV8.

~B6!

We use the fact that@14#

]Q̄
8 r 8m215 (

k50

km ~2q̄24k11!!!

~2q̄22k11!!!

m!

~m22k!!

3F ~m22k21!!!

~m22q̄12k21!!!
G q̄!

2kk! ~ q̄22k!!

3dKn̂8^Q̄22K&r 8m2q̄21, ~B7!
fo

ur
rm
-

er

12401
wherekm5 lesser of$@ q̄/2#,@m/2#%, dK denotes a product o
K Kronecker deltas, the quantity in square brackets can
evaluated for negative or positive values of the argume
and the expressiondKn̂8^Q̄22K& is to be symmetrized on al
indices~since the expression ultimately is to be contracted
xQ̄ no explicit symmetrization is needed!. It can then be
shown that

n̂Q̄
1

4p R dKn̂8^Q̄22K&n̂8^L&dV85
L!

~2L11!!!
dL,q̄22kn̂

^L&.

~B8!

We then expandf (t2r 8)5Sn50
` (21)nf (n)(t)r 8n/n!, inte-

grate overr 8 towardR, rearrange the summations, and d
fine r 5(q̄2L)/2, andq5m1n, and obtain

NhN
ab

B,L→S 2

r D B22

n̂^L& (
q50

`

E B,L
in,q~z!r q

dqf B,L~ t !

dtq
, ~B9!

with
E B,L
in,q~z!5 (

r 50

[q/2]

(
m52r

q
~21!L1q~2!21L2B~L1r !!

~q2m!! ~2L12r 11!! ~m22r !! r !

3F ~m2122r !!!

~m2122r 22L !!! G H zq2L22r 2B12/~q2L22r 2B12!, q2L22r 2B12Þ0,

ln R, q2L22r 2B1250.
~B10!
h-

fi-

so
Here, too, evaluating the outer integral for the same term,
eachB, L andq yields z-dependent or lnR-dependent terms
that are precisely equal and opposite those of Eq.~B10!.

3. Source terms with lnr dependence

Until now we have assumed that the stress-energy so
Lab can be decomposed into terms of the fo
f B,L(u)n̂^L&r 2B. At sufficiently high PN order, tail contribu
tions to the fields will arise, leading to the possibility of lnr
dependence inLab. To illustrate that cancellation ofR de-
pendence occurs in this event also, we consider source t
of the form f B,L(u8)n̂8^L&r 82Bln r8. Noting that, from Eq.
~2.26!, ln r852ln@2(z2y)/r(z221)#, and incorporating this
logarithmic term into the outer integral, Eq.~2.27!, we obtain

NhC2N
ab(ln)

B,L52
1

2
n̂^L&E

21

1

PL~y!dyE
z(y)

` S 2~z2y!

r ~z221! D
B22

3 lnS 2~z2y!

r ~z221! D f B,L@u2r ~z21!#
dz

z2y

52
]

]BNhC2N
ab

B,L . ~B11!
r

ce

ms

For the inner integral, the only difference which the logarit
mic term makes is in the radial integral, now given by

GB,L,Q̄
m

~R!(ln)5ER
r 821q̄2B1mln r 8dr852

]

]B
GB,L,Q̄

m
~R!.

~B12!

Thus, if the original coefficients cancel for allB ~and if we
can treatB formally as a continuous parameter!, then the
coefficients generated by lnr terms cancel.

An alternative method is to show directly from the de
nitions @e.g. Eqs.~B11! and ~B12!# that, for both the inner
and outer integrals and forz,1 andz.1,

NhB,L
ab(ln)5 ln RNhB,L

ab 2E
1

z

NhB,L
ab dz̄/ z̄, ~B13!

moduloz- or R-independent terms. Then, if thez-dependent
parts of NhB,L

ab cancel between outer and inner integrals,
too do thez-dependent parts ofNhB,L

ab(ln) .
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APPENDIX C: BOUNDARY TERMS

The boundary terms inhN
ab that arise from integrating by parts various integrals overM are given by

N]M54 R
]M

t0 j~ t,x8!d2Sj81
2

3
r 2] t

2 R
]M

t0 j~ t,x8!d2Sj82
4

3
xi] t R

]M
t i j ~ t,x8!d2Sj82

4

3
xi] t

2 R
]M

t0 j~ t,x8!x8 id2Sj8

1
1

30
r 4] t

4 R
]M

t0 j~ t,x8!d2Sj82
2

15
r 2xi] t

4 R
]M

t0 j~ t,x8!x8 id2Sj82
2

15
r 2xi] t

3 R
]M

t i j ~ t,x8!d2Sj8 , ~C1a!

K]M
i 54 R

]M
t i j ~ t,x8!d2Sj81

2

3
r 2] t

2 R
]M

t i j ~ t,x8!d2Sj81
2

3
xk] t

3 R
]M

t0 j~ t,x8!x8 ikd2Sj8

2
4

3
xk] t

2 R
]M

t j [ i~ t,x8!x8k]d2Sj82
2

9
] t

3 R
]M

t0 j~ t,x8!r 82x8 i d2Sj8 , ~C1b!

B]M
i j 524] t R

]M
tk( i~ t,x8!x8 j )d2Sk822] t

2 R
]M

t0k~ t,x8!x8 i j d2Sk82
2

3
r 2] t

3 R
]M

tk( i~ t,x8!x8 j )d2Sk8

2
1

3
r 2] t

4 R
]M

t0k~ t,x8!x8 i j d2Sk81
2

3
xl] t

3 R
]M

tk( i~ t,x8!x8 j l )d2Sk81
2

9
xl] t

4 R
]M

t0k~ t,x8!x8 i j l d2Sk8

1
8

9
xl] t

3 R
]M

~tk[ i~ t,x8!x8 l ] j1tk[ j~ t,x8!x8 l ] i!d2Sk82
1

18
] t

3 R
]M

@t lk~ t,x8!~r 82x8 i j ! ,l1 ṫ0k~ t,x8!r 82x8 i j #d2Sk8

1
1

3
] t

3 R
]M

~tk[ l~ t,x8!x8 i ] j l1tk[ l~ t,x8!x8 j ] i l !d2Sk82
1

30
r 4] t

5 R
]M

tk( i~ t,x8!x8 j )d2Sk8

2
1

60
r 4] t

6 R
]M

t0k~ t,x8!x8 i j d2Sk81
1

15
r 2xl] t

5 R
]M

tk( i~ t,x8!x8 j l )d2Sk81
1

45
r 2xl] t

6 R
]M

t0k~ t,x8!x8 i j l d2Sk8

1
4

45
r 2xl] t

5 R
]M

~tk[ i~ t,x8!x8 l ] j1tk[ j~ t,x8!x8 l ] i!d2Sk8 . ~C1c!
ia

b

ca
ll
la

ped:
APPENDIX D: PROPERTIES OF POISSON POTENTIALS

Here we list some useful properties of Poisson potent
and superpotentials, given by Eqs.~4.10!. These rely upon
the general result, which can be obtained by integration
parts,

P~¹2g!52g1BP~g!, ~D1!

whereBP(g) denotes the boundary term, given by

BP~g![
1

4p

3 R
]M

Fg~ t,x8!

ux2x8u
] r8ln@g~ t,x8!ux2x8u#G

r 85R
R 2dV8.

~D2!

The boundary terms must be carefully evaluated case by
to determine if any R-independent terms survive. A
R-dependentterms can be discarded. Some useful formu
that result from this include
12401
ls

y

se

s

P~ u¹gu2!52
1

2
$g212P~g¹2g!2BP~g2!%, ~D3a!

P~¹g•¹ f !52
1

2
$ f g1P~ f ¹2g!1P~g¹2f !

2BP~ f g!%, ~D3b!

P~ f u¹Uu2!52
1

2
$ f U21P~U2¹2f !22S~ f U !

14P~U¹U•¹ f !2BP~ f U2!%. ~D3c!

In many specific cases, the boundary terms can be drop

P~U !52
1

2
X, ~D4a!

P~X!52
1

12
Y, ~D4b!
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P~ u¹Uu2!52
1

2
U21F2 , ~D4c!

P~xiU , jk . . . !52
1

2
xiX, jk . . . 1

1

12
Y,i jk . . . , ~D4d!

P~r 2U ,i j !52
1

2
r 2X,i j 2

1

12
Y,i j 1

1

6
xkY,i jk , ~D4e!

while, in others, there are contributions from the bound
terms. For example, in the 2PN potentialP(¹U•¹Ẍ), the
boundary term yields the term
1
2 *Ms(t,x)d3x] t

2*Ms(t,y)d3y. Using Eq.~5.6!, we obtain,
to the necessary order,

P~¹U•¹Ẍ!52
1

2
H UẌ2S~Ẍ!12G22

1

2
II i i

~4!

~ t !J
1O~e5!. ~D5!

Similarly, we find for the 3PN potential,

P~¹U•¹ Y
~4!

!52
1

2
$U Y

~4!

2S~ Y
~4!

!112P~U X
~4!

!

22II i i
~4!

~ t !%1O~e5!. ~D6!
,

4

on

12401
y

For the Poisson superpotentialS( f ), we have

S~¹2g!52P~g!1BS~g!, ~D7!

where

BS~g![
1

4p R
]M

Fg~ t,x8!ux2x8u] r8

3 lnS g~ t,x8!

ux2x8u D G
r 85R

R 2dV8. ~D8!

Thus, for example, in the superpotential (]/]t)2*Mt00ux
2x8ud3x8, we find the term

S̈~¹2U2!52P̈~U2!23~d/dt!2S EM
sd3xD 2

1O~e5!

54G114G223II i i
~4!

~ t !1O~e5!. ~D9!

Other useful identities include

S~xi !5xiU2X,i , ~D10a!

S~xi j !5
1

3
Y,i j 2d i j X1xi j U22x( iX, j ). ~D10b!
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