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We present a self-contained framework called direct integration of the relaxed Einstein equations for cal-
culating equations of motion and gravitational radiation emission for isolated gravitating systems based on the
post-Newtonian approximation. We cast the Einstein equations into their “relaxed” form of a flat-spacetime
wave equation together with a harmonic gauge condition, and solve the equations formally as a retarded
integral over the past null cone of the field pofohosen to be within the near zone when calculating equations
of motion and in the far zone when calculating gravitational radiatidine “inner” part of this integral
(within a sphere of radiuR~ one gravitational wavelengthis approximated in a slow-motion expansion
using standard techniques; the “outer” part, extending over the radiation zone, is evaluated using a null
integration variable. We show generally and explicitly that all contributions to the inner integrals that depend
on R cancel corresponding terms from the outer integrals, and that the outer integrals converge at infinity,
subject only to reasonable assumptions about the past behavior of the source. The method cures defects that
plagued previous “brute-force” slow-motion approaches to motion and gravitational radiation for isolated
systems. We detail the procedure for iterating the solutions in a weak-field, slow-motion approximation, and
derive expressions for the near-zone field through 3.5 post-Newtonian order in terms of Poisson-like potentials.

PACS numbs(s): 04.30—w, 04.25.Nx

I. INTRODUCTION natural solution of the field equations in the near zone where

The motion of multiple, isolated bodies under their mu-the bodies reside, which involves slow-motion expansions
tual gravitational attraction and the resulting emission ofand instantaneous fields, with the solution in the far zone,
gravitational radiation is a long-standing problem that datesvhich involves retarded fields. Such a meshing is needed if
back to the first years following the publication of generalone is to calculate the effects of the gravitational radiation
relativity (GR). It has at times been controversi{fr a thor-  reaction that results from the emission of energy and angular
ough review se¢l]). In 1916—1918 Einstein calculated the momentum to infinity. One approach to resolving this prob-
gravitational radiation emitted by a laboratory-scale objeciem was that of matched asymptotic expansions. Although
using the linearized version of GR]. Some of his assump- well rooted in applied mathematics, it was first expounded in
tions were questionable and his answer for the energy fluf971 as a powerful technique for electromagnetic and gravi-
was off by a factor of Zan error pointed out by Eddington tational problems by Burkgl3]. Another, related approach
[3]). In 1916, de Sittef4] derivedN-body equations of mo- is the “post-Minkowskian” framework, elaborated and de-
tion in what later would be termed the post-Newton{®MN)  veloped most fully by Blanchet and Damour and their col-
approximation. However, his equations contained an errolaboratorq 14—19.
that was discovered in the course of a disputed claim by A second important problem of gravitation, which distin-
Levi-Civita [5] that the center of mass of a binary star systemguishes it from electromagnetism, is the non-linearity of Ein-
would suffer a “self-acceleration.” Eddington and Cldk]  stein’s equations. Gravitation itself acts as a source of gravi-
corrected the error, and found no self-acceleration. Einsteirtation. Consequently this source extends over all space,
Infeld and Hoffman(EIH) [7] attempted to demonstrate ex- resulting in the possibility of divergent or ill-defined inte-
plicitly that the Einstein equations alone imply equations ofgrals. In many ways, this has been the most serious difficulty
motion, by matching solutions of the vacuum equations, exto overcome. Techniques for resolving it have ranged from
panded in a weak-field, slow motion approximation, to fieldssweeping the difficulties under the rug, to the sophisticated
representing the near-zone fields of “point” masses, work-analytic regularization methods of the post-Minkowskian
ing to first PN order. The result was the well-known EIH program. A central thrust of this paper is to present a
N-body equations of motion. Other highlights in this early straightforward method for resolving this difficulty.
history of the problem of motion include the development of A third “problem,” which is less a problem for gravita-
the post-Newtonian approximation for fluid sytems by Focktion than it is for electromagnetism, is that of “point”
[8] and Chandrasekhd®], its extension by Chandrasekhar sources. In electromagnetic theory, where there is a belief
and later workers to 2.5PN ordgt0,11], and the develop- that fundamental charges like the electron are pointlike, the
ment of equations of motion for spinning bodies by Papapesingular nature of the fields at the source has led to problems
trou [12]. of mass regularization, especially in deriving equations of

Gravitational theory presents one problem essentiallyelectromagnetic radiation reaction; it also raises issues of the
identical to that of electromagnetic theory: how to mesh théboundary between classical and quantum electrodynamics. In
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gravitation theory, this is less of an issue of principle, be-prediction of the quadrupole formula, possibly as high as
cause the primary interest is in the motion of and radiatiorcorre(_:tions of orderL(/c)_G. _

by astrophysical systems, whose members are clearly not This presented a major theoretical challenge: to calculate
point masses. Instead, the use of “point,” i.e., delta-the motion and radiation to very high PN order, a formidable

function, sources is meant as an efficient means of approx,’;_\Igebraic task, while addressing each of the problems listed

mating the mass distribution of bodies that are nearly spher@bove sufficiently well to ensure that the results were physi-

cal and that are small compared to the typical separatiocaIIy meaningful. This challenge was taken up by three

: . f kers.
between them, so that tidal effects, which depend on th roourp:(se (g):]rc\),\(J%r ﬁresaded by Blanchet, Damour and [ief—

finite size of the bodles,_ can be |gnoreq. Here _the ISsue i39] used the post-Minkowskia®M) approach to derive the
how to make use of a point mass approximatiahich sim-  gravitational waveform, equations of motion and energy flux
plifies many calculationsn a way that captures all the phys- explicitly to 2PN ordef O(v/c)*] and beyond. The idea is to
ics without introducing spurious effects. solve the vacuum Einstein equations in the radiation zone in
A fourth problem is of a technical nature: in electromag-an expansion in powers of Newton’s constéhend to ex-
netic theory, radiation damping in the equations of motionpress the asymptotic solutions in terms of a set of formal,

occurs at order (/c)® beyond the simple Coulomb forces time-dependent, symmetric and trace-fi€@TF) multipole

between charges, and is relatively easy to compute in a S’ygjoments[ZG]. Then, in a near zone within one characteristic

tematic approximation method, modulo the other problemé’vavele”gth of the radiation, the equations including the ma-

listed above. By contrast, gravitational radiation damping oc:[erlal source are solved in a slow-motion approximatiest

5 . : = __pansion in powers of &) that yields both equations of mo-
curs at order ¢/c)” beyond Newtonian gravity, and requires ion for the source bodies, as well as a set of STF source

i L i
a th_rt;e;_ ordegof at;;]proxmatlon that captures_ aIII rf{elevarl]E*nultipole moments expressed as integrals over the “effec-
contributions. Dver the years, numerous inequivalent resulty, o gqyrce, including both matter and gravitational field

have been quoted for the leading gravitational radiation reqqnihytions. The solutions involving the two sets of mo-
action effects. One finds published papers in which the coefments are then matched in an intermediate overlap zone, re-
ficient in the relevant formula has ranged fren21/16 to the sulting in a connection between the formal radiative mo-
correct coefficient of unity; a study by Walker and Wil0] ~ ments and the source moments. The matching also provides
showed that the divergent results were all the simple consey natural way, using analytic continuation, to regularize in-
quence of missing one or more terms that contribute to théegrals involving the non-compact contributions of gravita-
final answer. tional stress-energy, which might otherwise be divergent.
These four “problems” were the origin of the so-called  The second group of Will, Wiseman and Pati use the ap-
“quadrupole controversy,” which arose from a critique by proach described in the present paper, direct integration of
Ehlers and colleagud&1] of the foundations of the quadru- the relaxed Einstein equatior{®IRE), which builds upon
pole formula for the leading-order gravitational radiation en-earlier work by Epstein, Wagoner, Will and Wisem&7y—
ergy flux and orbital damping. This critique had the benefi-32]. Like the PM approach, it involves rewriting the Einstein
cial effect of spurring new research on those foundationsgquations in their “relaxed” form, namely as an inhomoge-
including a study of the systematic structure of the approxineous, flat-spacetime wave equation for a fietd, whose
mation sequence of Einstein’s equations in a slow-motionsource consists of both the material stress-energy and a
weak-field approach; analysis of energy balance as an argtgravitational stress-energy” made up of all the terms non-
ment for connecting the far-zone energy flux to the near-zonénear in h®#. The wave equation is accompanied by a har-
damping forces and elaboration of the post-Minkowskian apmonic or deDonder gauge condition bf?, which serves to
proach, among othersee[1] for a review. The work in-  specify a coordinate system and also imposes equations of
spired by the critique of Ehlerst al. served to confirm the motion on the sources. Unlike the post-Minkowskian ap-
quadrupole formula and to strengthen its foundations. Th@roach, ssingleformal solution is written down, valid every-
ultimate test, of course, came in 1979 with the announcementhere in spacetime. This formal solution, based on the flat-
of the measurement of orbital damping of the binary pulsaspacetime retarded Green function, is a retarded integral
PSR 191316 in agreement with the quadrupole formula equation forh®?, which is then iterated in a slow-motion
[22]; current results agree to better than 0.528]. (v/c<1), weak-field {|h*P||<1) approximation that is
The problem of motion and radiation has received re-very similar to the corresponding procedure in electromag-
newed interest since 1990, with the proposal for the Lasenetism. However, because the integrand of this retarded in-
Interferometric Gravitational Wave ObservataiydGO) in  tegral is not compact by virtue of the non-linear field contri-
the U.S.(and similar observatories abroadnd the realiza- butions, one quickly runs up against integrals that are not
tion that a leading candidate source of detectable wavewell defined or, worse, are divergent. Although at the lowest
would be the radiation-reaction driven inspiral of a binaryquadrupole and first PN order various arguments were given
system of compact objecteutron stars or black holes to justify sweeping such problems under the f&y,2§,
[24]. Furthermore, it was notd@5] that the leading method they were not very rigorous, and provided no guarantee that
for data analysis of signals from such systems, optimathe divergences would not become insurmountable at higher
matched filtering, would require theoretical template wave-PN orders. Indeed it is straightforward to demonstrate that at
forms that are accurat@rimarily in the evolution of the second post-Newtoniai2PN) order, the rug is indeed pulled
orbital frequency or phagewell beyond the leading-order out from under such arguments.
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DIRE resolves these problems. The solution of the rediation reaction terms at 2.5PN and 3.5PN orfigr—39,
laxed Einstein equation is a retarded integral over the pastnd non-radiatve 3PN termid0—43.
null cone of the field point. The part of the integral that In order to derive equations of motion to the 3.5PN order
extends over the intersection between the past null cone arghown, one must derive the near-zone megrjg as a func-
the material source and the near zone is approximated by téoon of spacetime and a functional of the source variables to
slow-motion expansion involving spatial integrals of mo- 3.5PN order, which implies the following specific PN orders:
ments of the source, including the non-compact gravitationad)o, throughO(€%?), go; throughO(e*), g;; throughO(€™?).
contributions, just as in the post-Minkowskian and Epsteindn this paper we provide the required expressions in the form
Wagoner frameworks. But instead of extending the spatiabf (a) Poisson-like integrals of source densities,
integrals to infinity as was implicit in earlier procedures, we [ ,,f(t,x")|x—x'|Pd3x’, wheref(t,x’) could be proportional
terminate the integrals at the boundary of the near zone, chae source stress-energy densities, and thus have compact sup-
sen to be at a radiuR given roughly by one wavelength of port, or could be a function of other potentials, and thus
the gravitational radiation. For the integral over the rest ofextend over the entire near-zone region of integratief)
the past null cone exterior to the near zotieadiation and (b) expressions involving time derivatives of source
zone”), we use a change of integration variables to convertultipole momentsvi'* -+ contracted with spatial vectors
the integral into a convenient, easy-to-calculate form that i‘x/x... . These expressions can be simplified, iterated,
manifestly convergent, subject only to reasonable assumgnd evaluated more explicitly, depending on the application
tions about the past behavior of the source, which fully acenvisioned(“point” mass binary system, spinning masses,
counts for the retardation of the fields comprising the sourcerfect fluid distributions, etg.
stress-energy and which does not involve an explicit slow- The second product will be expressions for the gravita-
motion expansion. This transformation was suggested by oufonal waveform, given schematically by
earlier work on a non-linear gravitational-wave phenomenon
called the Christodoulou memofg0] (it is also implicit in G
Appendix D of[14]). Not only are all integrations now ex- T ) 1 3/
plicitly finite and convergent, we can show explicitly that all h" —R—C4{v [1+0(£")+0(e) +O(™)
contributions from the near-zone spatial integrals that depend
upon the radiusk are actuallycanceledby corresponding +0(?)+0()+0(€%) ... T}t (1.2
terms from the radiation-zone integrals, for all powersRof

(including InR) and for any order in the PN expansion. Thus here u is the reduced mass, and the subscTiptdenotes
the procedure, as expected, has no dependence on the amja «transverse-traceless” part. The leading contribution
trarily chosen boundary radiu® of the near zone, and pro- Guv2RE~Gill/R is the standard quadrupole formula
vides a simple practical method for regularizing Inte(‘:]r"’usExplicit formulas for all terms through 2.5PN order have

over non-compact sources. ) :
. : . ; been derived by various authdi23,29,32,44-4
The ultimate products of this work will consist of equa- From the wa{/eform one cgn also derive ipressions for

tions of motion, gravitational waveforms, and energy flux luxes of enerav. anaular momentum and linear momentum:
expressions, in reasonably ready-to-use forms. The equatior[\agl 9y, ang . . . '
the energy flux can be written in the schematic form

of motion for a binary system will have the schematic form

dE/dt=(dE/dt)g[ 1+ O(e€) + O(e¥) +O(€?)+O(?)

d?x/dt?=— (Gmx/r3)[1+ O(e)+ O(€?) +O(3)+---], 1.3

+0(?)+0(e3)+0(e?+---1, (1.0

where @E/dt)q denotes the lowest-order quadrupole contri-

bution.
wherem s the total mass of the binary systers x; — X, is A third approach focuses on the limit in which one body
the separation vector and=|x|. The expansion parameter is much less massive than the other, and employs black-hole
is related to the orbital variables by~Gm/rc?~(v/c)?, perturbation theory to derive the gravitational waveform and
wherev is the relative velocity. The leading term is Newton- energy flux, for particles orbiting both rotating and non-
ian gravity. The next tern®(e) is the first post-Newtonian rotating holes. This method yields both numerically accurate
correction, which gives rise to such effects as the advance otsults as well as analytic PN expansions up to orders as high
the periastron. The terms dD(e?) and O(€®) are non- as (p/c)'? [44,49-53. Work is currently in progress to ex-
dissipative 2PN and 3PN corrections. Ti@(e®?) and tend these methods beyond the test-mass approximation, in
O(e” terms are the leading 2.5PN and post-Newtoniaran effort to compute corrections to first order M, the
corrected 3.5PN gravitational radiation-reaction ter(Wge  ratio of the mass of the particle to that of the black hole
do not include in this discussion contributions from spin,[54—56.
whose ordering in the PN hierarchy for compact bodies fol- This is the first in a series of papers that will treat the
lows a special convention.Explicit formulas for terms problem of motion and gravitational radiation systematically
through various orders have been calculated by various awsing the DIRE approach. This paper lays out the founda-
thors: non-radiative terms through 2PN ordl&/33—-34, ra-  tions of the method and derives formal solutions to the near-
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zone fields through 3.5PN ordgsrder @/c)’ beyond New- TP=(—g)T*A+ (167) A5, (2.5
tonian gravity in a form useful for future applications.
S_ubsequent_ papers in the series W".I de_:rive the EXp"Cit.equav'vhereA"‘B is the non-linear “field” contribution given by
tions of motion and near-zone gravitational fields for binary
systems of compact objects through 2PN order, and deal
with radiation reaction at 2.5PN and 3.5PN order. A*B=16m(—g)tif+(h*#, hP¥, —heE  he),

Our conventions and notation generally follow those of (2.6
[57,26. Henceforth we use units in whicdB=c=1. Greek
indices run over four spacetime values 0, 1, 2, 3, while Latir‘andtff is the “Landau-Lifshitz” pseudotensor given by
indices run over three spatial values 1, 2, 3; commas denote
partial derivatives with respect to a chosen coordinate sys-
tem, while semicolons denote covariant derivatives; repeated
indices are summed over*’=7y,,=diag(—1,1,1,1); g 1
=det(g,,); all=(a+al")/2; alll=(a-al")/2; ¥ is +Egwg“ﬁh*”,,Jh””',,—ZgWg*(“hﬁ)”]ph’”{A
the totally antisymmetric Levi-Civita symbolet®=+1).

167(—9)tif=g,,9"*h** ,hPr

We use a multi-index notation for products of vector com- 1

ponents and partial derivatives, and for multiple spatial indi- + §(29'”95“—Q“BQ)‘“)(ZQV,)QUT
cesix! -k=xIxl XK gy =9, ..., with a capital

letter superscript denoting an abstract product of that dimen- — 0,09, \hP7 . (2.7

sionality: x?=x'1x'2 . . .x'a and do=4; 4, . - .9, Also, for

a tensor of rankQ, f°=f'1'2---la. Angular brackets around By virtue of the gauge conditiof2.3), this source term sat-

indices denote STF combinatiofsee Appendix A for defi- isfies the conservation law

nitions). Spatial indices are freely raised and lowered with

ij .

o' andg;; . T“B,B=O, 2.9
which is equivalent to the equation of motion of the matter

IIl. FOUNDATIONS OF DIRE

o . T*P.5=0. (2.9

A. Relaxed Einstein equations '

We begin by reviewing the method for recasting the Ein- Equation(2.4) is exact, and relies only on the assumption
stein equations that spacetime can be covered by harmonic coordinates. It is

called “relaxed” because it can be solved formally as a
1 functional of source variables without specifying the motion
RA— ZgePR=87 TP (2.2 of the source. Then, the harmonic gauge condition,(E®),
2 or the equations of motion, are imposed to determine the
metric as a function of spacetime.
into their “relaxed” form. HereR*# and R are the Ricci Notice that the “source” in Eq(2.4) contains a gravita-
tensor and scalar, respectively*? is the spacetime metric tional part that depends explicitly dif”, the very quantity

and T*A is the stress-energy tensor of the matter. We defindor which we are trying to solve. Also, we can expe€?,
the potential which depends on the fields*”, to have infinite spatial ex-

tent. Indeed the very outgoing radiation that we hope to cal-
culate will, at some level of approximation, serve as a con-
tribution to the source, thus generating an additional
component of the radiation.
(see e.g[26]) and choose a particular coordinate system de- Another complication in Eq(2.4) is that the second de-
fined by the deDonder or harmonic gauge condition rivative term h“B,th‘” in the source really “belongs” on
the left-hand side with the other second derivative terms in
the wave operator. This term modifies the propagation char-
acteristics of the field from the flat-spacetime characteristics
represented by the d’Alembertian operator to those of the
With these definitions the Einstein equatiof?sl) take the true null cones of the curved spacetime around the source,
form which deviate from the flat null cones of the harmonic coor-
dinates. Nevertheless, the DIRE technique automatically re-
h*B= — 16778, (2.4) covers the Ie_ading manifestations of this effect, commonly
known as “tails.”
The material will be modeled as perfect fluid, having
whereO= — g%/ 3t?+ V2 is the flat-spacetime wave operator. stress-energy tensor
The source on the right-hand side is given by the “effective”
stress-energy pseudotensor T=(p+p)u*uP+pg*?, (2.10

hef= 8- (~g) Vg 22

hef, ;=0. (2.3
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Field point Field point (a) the field point is outside the near zone ail the field

(e /(”eafz""e) point is within the near zonéFig. 1). The former case will
be relevant for calculating the gravitational-wave signal,
i ¢ while the latter will be important for calculating field contri-
, butions tor*# that must be integrated over the near zone, as
well as for calculating fields that enter the equations of mo-
N tion for the source.
C-X
‘ e

C. Radiation-zone field point, inner integration

For a field point in the radiation zone and integration over
the near zonéinner integral, we first carry out the’ inte-

FIG. 1. Past harmonic null con@ of the field point intersects gration in Eq.(2.11), to obtain

the near zoné in the hypersurfaceV. Left: field point in the far
zone. Right: field point in the near zone. Inner integrals are over the

hypersurfaceV, and outer integrals are over the remainder\ of hj{f(t,x) = 4f
the null cone.

P(t—|x—x'|,x")

d3x’.  (2.12
[x=x']

wherep andp are the IOC&”Y measured energy density andyjihin the near zone, the spatial integration variablesat-
pressure, respectively, andt is the four-velocity of an ele- siag Ix'|<R<r, where the distance to the field point

ment of fluid. Until we begin to apply our results to specific —|x|. Expanding thex’ dependence in both occurrences of

Ehysmal snugUons, S".'CPZ_;% ]f:on;]pact binary stars, we wil x—x'| in the integrand in powers ¢k’|/r, it is straightfor-
ave no need to speciali urther. ward to show that

B. Near zone and radiation zone (—1)d

We consider the material source to consist of a bound hiftx)=42 — 0Q(FM“BQ(U)), (2.13
system of characteristic siZg with a suitably defined center a0 &
of mass chosen to be at the origin of coordina¥s,0. The
source zonethen consists of the world tub@&={x?r<sS,  Where
— o <t<oe}, Outside7, T*#=0.

The fluid is assumed to move with characteristic velocity «BOY s o OB
v<1. The characteristic reduced wavelength of gravitational M (U)=JMT (u,x’)x <d™". (214
radiation, X=\/27~Slv="TR serves to define the boundary
of the near zone defined to be the world tub®={x“|r ) ) o
<R,—o<t<w}. Within the near zone, the gravitational In Egs.(2.13 and(2.14), the indexQ is a_mul_'u—mdex, such
fields can be treated as almost instantaneous functions of t{Bat dg=4i,di, . . ., and the superscrip® in M de-
source variables; i.e., retardation can be ignored or treated &otesiii, .. .iq, with summation over repeated indices as-
a small perturbation of instantaneous solutions. For physicsgumed. The integrations in E2.14) are now over the hy-
situations of interest, up to the point where the post-persurfaceM, which is the intersection of the near-zone
Newtonian approximation breaks dowR>S. The region world tube with the constant-time hypersurfacg=u=t
exterior to the near zone is tmadiation zoner>7R. —r. Roughly speaking, each term in the Taylor series is

The formal ‘“solution” to Eg. (2.4 with an outgoing smaller than its predecessor by a factor of ordet1, pro-
wave boundary condition can be written down in terms ofvided we restrict our attention to slow-motion sources.

the retarded, flat-space Green function Note that the field and source variables appearing in the
integrand r*# are evaluated at the single retarded time
op B Bt x") S(t" —t+|x—x']) . however, because the field contributions#¢ fall off as

h (t,x)—4f x—x'| X some power of, one can expect to encounter integrals that

(2.11) depend on positive powers of the radi@sof the boundary

of integration, especially in some of the higher-order mo-
but is really just a conversion of the differential equationments. If this boundary were to be formally taken=to(as
(2.4) to an integral equation. It represents an integration ofias been the conventional approach in the)p#isése inte-
*P/|x—x’| over the past harmonic null cor@emanating grals would diverge. Instead we shall demonst(&ec. I |
from the field point {,x) (see Fig. L This past null cone and Appendix B that suchiR-dependent effects apecisely
intersects the world tub® enclosing the near zone at the canceled by contributions from the “outer” integral.
three-dimensional hypersurfagé. Thus the integral of Eq. For the gravitational-wave signal, we need only to focus
(2.11) consists of two pieces, an integration over the hyperon the spatial components bf# and on the leading compo-
surface\” and an integration over the rest of the past nulinentin 1R, whereR s the distance to the detector. Using the
coneC—N. Each of these integrations will be treated differ- fact thatu ;= —N', whereN=x/R denotes the observation
ently. We will also treat differently the two cases in which direction, we obtain
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u 2w 1 7%’ +r' ,x")
hng(t,x)=4f du’f de’ _—

u-2R 0 1-a t—u'—n’-x
X[r'(u’,Q")]%d cose’

u-2R Pu’ +r',x")
o[y T
t—u’'—n’-x

—o0

\\»' | X[r’(u’,Q')]deQ’, (219)
where
u < u-2%R u-2R<w<u u=u
FIG. 2. Change of variables for the outer integrals. The vertical a(u)=U-u")(2r=2R+u-u")/ZrrR. (2.20

line represents the material source world line. The variabblés

constant on the two-dimensional intersection between the past nuﬁlhe incomplete angular integration in the first integral of Eq.
cone of the field point and a future null cone from the center of(2 19 reflects the fact that fou=u’=u—2R, the two-

4 —_ i . . . .
mass of the system. Leftr’ <u—2R, the two cones Intersect fully dimensional intersections meet the boundary of the near
outside the near zone, so the angular integrations are complete

) , N . .
Middle: u—2R<u’<u, angular integration terminates where the Zone. Fou’ <u—2R, the angular integration covers the full

ap ; ; gt
intersection between the two cones meets the boundary of the neéle‘hNOtedthatT Con'fal;ns only f'ild Contrll?]utlonsl evaluateg d
zone. Rightu’ =u, the upper limit of integration; the two cones are In the radiation zone; because they are themselves retarded,

tangent to one another. the “time dependence”u’+r’'=t—|x—x'| is approxi-
mately constant over each angular integration, since it fol-
45 1 gm lows the hypersurfacé—|x|=u=const, and the dominant
hitx)== > — —=| #(ux)(N-x")"d3x’ contribution to the fields comes frofr’|<R. This allows a
R m=o m! dt™J rq kind of slow-motion, multipole expansion to be exploited in

evaluating these integrals, despite their range well outside

-2
+O(R™9). (219 ihe near zone.

D. Radiation-zone field point, outer integration ] o ) ]
) . . . E. Near-zone field point, inner integration
By making a change of integration variable from

(r',6',¢") to (u',8',$'), where In this case, in Eq(2.11), bothx andx’ are within the
near zone, and hen¢r—x’|<2R. Consequently, the varia-
t—u'=r'+|x—x'[, (2.1  tion in retarded time can be treated as a small perturbation,

since r*# varies on a time scale-R. We therefore expand
we can write the integral over the rest of the past null conehe retardation in powers ¢k—x’|, to obtain

C—Nin the form

u P(u’+r',x") heA(t x)=4§: cr s Bt x")|x—x"|™ 1d3x’
hgf,\At,x)=4f du’ fﬁ S N A mo ml at™) ’ :
—o c-N t—u'—n’-x (2.21
X[r'(u",Q")]%d?Q’, (2.17

where M here denotes the intersection of the hypersurface
where, from Eq(2.16), t=const with the near-zone world tube. This version will be
o o o LA, used for explicit calculations of the near-zone metric for use
r'u’, Q) =[t=u")*=rJ/[2(t—u"—n"-x)]. in the equations of motion. However, an alternative formu-

(218 lation will be useful for studying thé&k dependence of the

This change of variables represents an integration first ovéEn?rm'[]}e_g;%!S; SEt:JLstqltutllngltthagenenEalllTaylﬁr exzan>$1on
the two-dimensional intersection of the past null céngith x| =2q=o(—1)%(a) ""x= >Q(r>, ), W ere (=)
the future null coné’ =u’ +r’ emanating from the center of denotes the lességreatey of x| and|x'|, we obtain

mass of the system &f,,=u’ (Fig. 2), followed by theu’

integration over all such future-directed cones, starting from (=M g™ Z o (—1)d
the infinite past and terminating in the cone emanating from hﬁ,ﬁ(t,x):4 2 7 E q—'
m=0 . gq=0 :

the center of mass at time which is tangent to the past null
cone of the observation point.

For explicit calculations, it is useful to choose the field xj TPt X )Xx2a=o(rD Hdx .
pointx to be in thez direction, so thah’ - x=r cos#’, and to M
write the outer integral in the form (2.22
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v
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NVB T oaffy =9 waveform far from
sources

Equation of motion
of sources

FIG. 3. Structure of iteration procedure.

F. Near-zone field point, outer integration

The formulas from Sec. II D, such as Eq2.18 and
(2.20), carry over to this case with the result

u—2R+2r 2 1 T“B(u’+r’,x’)
du’f do' | ———~
—2R

hgmt,x)=4f

0 1-a t—u’'—n'-x
X[r'(u’,Q")]%d cose’
u-2R Pu’ +r',x")
+4 du ¢ ——
t—u'—n’-x

X[r'(u’,Q")]%d%Q". (2.23

— oo

Notice that theu’ integration ends at— 2R+ 2r rather than
u because that corresponds to the last future null cone that

intersects points in the far zone.

G. Iteration of the relaxed Einstein equations

Because the fielth” appears in the source of the field
equation, the usual method of solution is to iterate: substitute
h®#=0 on the right-hand side of E¢R.11) and solve for the
first-iterated ;h*#; substitute that into E¢(2.11) and solve
for the second-iterategh®?, and so orfimposing the gauge
condition Eq.(2.3) consistently at each orderThe general

PHYSICAL REVIEW D 62 124015

then yieldsyh®? as a function of spacetime and a functional
of the matter variables. Then, if one wishes to determine the
motion of the source, one substitutgh®? into the matter
stress-energy tensor and obtains the equations of motion
from NVﬁ(NT“'B)=0 where \V 5 denotes the covariant de-
rivative using theNth iterated field. If one wishes to deter-
mine the Nth iterated gravitational field as a function of
spacetimdi.e. with the matter variables determined as func-
tions of spacetime to a consistent ongéinen one only needs

to solve the equations of motimlvﬁ(N,lT“B) =0, which

are equivalent to théth iterated gauge conditior,qh“ﬁyﬁ

=0.

H. General structure of the outer integrals

At the first iteration, the solution is simply linearized gen-
eral relativity. With ;h*#=0 substituted into the right-hand
side of Eq.(2.11), the outer integrals vanish, and the inner
integrals over the special relativisfic*’ have compact sup-
port. There is ndR dependence in the integrals, trivially. For
field points outside the sourcéx(>|x'|), within both the
near and far zones, the first-iteratgh®? takes the form of
Eq. (2.13. SinceM*#? is a function only ofu=t—r, the
spatial gradientg, produce only unit radial vectors, pow-
ers ofr and retarded time derivatives & “#°. Products of
n' can be grouped into STF produgts, which are analo-
gous toY |, (see Appendix A for useful formulas related to
STF products Thus, outside the sourcgh®? can be written
as a sequence of terms of the form

1haﬂByL(t,X)=fB'L(U)ﬁ“‘)I’_B. (224)

At the second iteration, in the far zon&*¥=0, and
JAYP(U" +r',x") consists of products of spatial and tempo-
ral derivatives of,h®2(u’ +r’,x’). It therefore can also be
expressed as a sequence of terms of the form

AP+ X" )~fg (u)n" B, (2.25

Whenever the source at a giveN{ 1) iteration takes this
form, it is straightforward to evaluate the general form of the
outer integrals for thé&lth iterate. Defining the new variables

(=(t—u")/r=1+(u—u’)/r, y=n-n"=cosh, we find,
from Eq.(2.18),
r'=r(2-1)12(¢—y). (2.26

Substituting Egs.(2.25 and (2.2 into Eq. (2.19, and
changing to integration variablés y and ¢, we obtain

B-2

1(2 . 1
”thNB~L:§(‘ n<L>LPL<y>dy
> ({-y)°
L(y)(f—was,du—r(s“—l)]dz,
(2.27)

sequence of iterations is shown shematically in Fig. 3. The

matter variablesn, and the N—1)-iterated field_,h%?
are used to determing_, T*? and \_; A *A. Equation(2.11)

where {(y)=z+Z?—2zy+1, z=R/r, and P_(y) is the
Legendre polynomial.
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For far-zone field pointsz<1; Taylor expandingg [u

—r(Z—1)] aboutu, we obtain, forB>2, where the coefficientgg’L(z) are given by

2\872, & d% g (u) £l (z)=(_)quz+1 ¢ Ag L({,a)dl
NthNB,L:<F) n<L>EO ’Dg’L(Z)rqd—qu, B,L q| 2271({2_1)872 B,L\6:
&
(2.28 —-1-22)°
S . -2 kg‘?:p“)<1+2z>¥ (2.34
where the coefficient® g | (z) are given by p=0 p
(—)9 (1+2z ({—1)9 and, forB=2,
D%,L(Z)Zq—!Jl WZAB,L(gva)dg
27)P hg#? nt K (u-s)Q 1+ 2)d
- Pl =—— u-s —|ds
2 P (14 22) p!Z) . (229 A o
i d9f, (t
where +nB > gg,L(z)rqﬁ(), (2.39
q=0
11
AB,L(gaa)E§f17 PL(Y)(Z—y)®~3dy, (2.309  where
a (—)9( 221
a=({~1)({+1-22)/2z, (2.30h £aD=—4 Ul {Qu(Odg
dk§(O/dg=kEL P(¢), m=1, (2.300 1 fzm ] Jl—amy) o). 238
22-1 -1 ({=y)
KEL(D=Ag L(,D/(£°~1)P2, (2.30d

Notice that, for near-zone field points, the functidpg are

The caseB=2 is special, and leads to the result evaluated at the local time not retarded time.

AL e

af S
th—/\/z,L:T . fo(u—s)Qp

14—
-

ds I. Cancellation of R dependence

It is evident that the inner integrals and outer integrals for
= d%,, (u) the fieldh®? will separately depend upon the radi@sof the _
+n<L>z DgL(Z)rq—'q, (2.31) boundary between the near zone and the far zone. But since
q=0 du each integral was simply a rewriting of a piece of the original
integral, Eq.(2.11), which had noR dependence, it is
where equally evident that the separ&fedependences must cancel
between the inner and outer integrals.[B2], referred to
i B hereafter as Will and WisemddVW), we demonstrated such
(—)d 1+2z 1-aP(y) ; e LT e
DY, (2)= f (Z— 1)qd§f dy, a cancellation explicitly for contributions to the gravitational
2q! -1 (£=y) waveform at 2PN order that depended on positive powers of
(232  R. Here we demonstrate the cancellation generally, for both
near-zone and far-zone field points, for arbitrary powers of
whereQ, (y) is the Legendre function. R (including InR) and to an order of iteration sufficient for
Notice that, forB+# 2, the outer integral returns a result of Our purposes.
the same generic form as the input function. The cBse  The proof proceeds by induction. First, as we pointed out
=2 returns terms with a logarithmic dependenceraofvia ~ above, the first-iterated fielgh*? is trivially independent of
the Q. ’s); terms of this form are called “tails.” R

Similarly, for field points in the near zone;>1, we Tay- Second, we assume that theé 1)-iterated field does not
lor expandfg  [u—r({—1)] aboutu+r=t, and obtain, for depend orRR, i.e. that allR dependence cancels at this order
B>2, ' of iteration. We wish to demonstrate that this implies cancel-

lation of theR dependence in thi-iterated field. The proof
5\ B2 o 49 consists of considering the limiting behavior of the inner and
haB :(_> ADS g4 (z)ra B.L(t) outer integrals foryh®? in the vicinity of |x’| —R. HereT*#
NTCTABLT o 7B e vanishes, and we only need to consiger; A“#, which is a
(2.33  functional of y_,h*?. We have already seen that, in the far
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zone, y_1A*# can be decomposed into terms of the formapler’—7R from below, and compare i® dependence with
fg, (u)n‘-r ~B. (We consider tail contributions with Inde-  that of the outer integral of the same term.

pendence separatelySince the N—1)-iterated field does For far-zone field points, we must calculate tRedepen-
not depend onR by assumption, continuity of the fields dence of the momentsl “#?, and substitute into Eq2.13);
means that,_ ;A “? will have this same form just inside the after considerable algebfaee Appendix B we obtain, for
near zone. Thus we will calculate the limiting behavior of thethe limiting behavior ofyh$# as the integration variable ap-
inner integral of a term of this form as the integration vari- proachesk from inside,

2572 o dg, (u)
NhNﬁB,L—’<?) n<L>qu D'Q,’E(Z)rqw, (2.37
where
' ! j+2L) !
B,L(z)—mzoj:o m!(g—m—j+2L+1)! E( N jt(L—j)!
> Dy
Z3*LBraT/(3+L-B+qg—j), 3+L-B+q-j#0,
X . (2.38
InR, 3+L-B+q—j=0,
|
where  jna=lesserof {g—m,L}, and g-—-m—j Thus, our procedure for determining the field is to deter-

=even integex 0. Equation(2.37) is of the same form as mine separateljnj\'/ﬁ and thN to a given PN order, keeping
the outer integral for far-zone field points, E@.28. The  only R-independent terms in each expression, then sum them
coeﬁicientng'L(z) from the outer integrals are most easily to obtain

evaluated using computer algebra meth¢de calculated

the coefficients using independemsPLE andMATHEMATICA h*®=hf+hg? . (2.40
programs; the result is, for eacB, L andq,

IIl. WEAK FIELD, SLOW-MOTION APPROXIMATION

in,q ~ q — . . . .
DB:L(Z)J’{Z dependent part oD BYL(Z)} 0. (2.39 We now turn to a discussion of the numiépf iterations

needed to derive equations of motion or gravitational wave-
Thus theR dependence cancels term by term. A similarforms of a desired accuracy, in a weak-field, slow-motion
cancellation occurs for near-zone field points, as well as foppproximation.
the case where the integrand haginr dependence. Details ~ We assume that, for the fluid source,
are given in Appendix B. )

This cancellation, while inevitable, has practical conse- vi~m/S~plp~e<l, 3.1
guences, in the following sense. In calculating the inner con- h il b d . ter. But f
tributions to the fields, we must integrate over a finite hyper-W eree will be USed as an expansion parameter. but from
surface, M, sources that extend throughoutM. the nature of the iteration procedure, it is evident that each

Consequently, any such integral will have terms that are initeration of the field introduces corrections of oraefS. In

dependent o, as well as terms that depend &* or In k. term_s ofe, m and.S the equations of motiol.1) can be
Because we know that all terms of the latter form cancel with €V 1t€N schematically as
contributions from the outer integrals in the final expression
for the field, we can drop them in any individual result. Simi-
larly, we can drop allR-dependent terms that arise in any +0(e™+---], (3.2
individual outer integral. This provides a kind of regulariza-

tion of integrals, which cures the problem of divergent inte-where the terms inside the square brackets represent the
grals that haunted earlier slow-motion methods. In fact, ondlewtonian, post-Newtonian, 2PN, 2.5PNradiation-

can show that there is a close connection between thigaction, 3PN, and 3.5PNradiation-reactionterms respec-
method of regularization and the method of analytic continutively. For a term of ordee, the largest number of powers
ation used by Blanch¢69]. of m/S that can appear in itincluding one power from the

dvidt~(m/S2)[1+0(e)+O(€?)+O(e52) + O(€)
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m/S? prefactoy is N+ 1. The radiation reaction terms of
order N2 must contain an odd number of velocitiés
order to be odd under time revergathus the maximum
number of powers ofm/S for them is alsoN+ 1. Since one
iteration gives the Newtonian potential, which yields thewhere we show the leading order dependenceean the
Newtonian equations of motioN(= 1), then, to obtain the near zone. To obtain the equations of motion to 3.5PN order,
1PN terms N=2), one must have the second iterated field,we need to determine the components of the physical metric
and to obtain the 2PN and 2.5PN termé=3), one must to the following ordersgoo to O(€*?), go; to O(e*), andgj;
have the third iterated field, while to obtain the 3PN andto O(e™?). From the definition(2.2), one can invert to find
3.5PN terms l{=4), one must have the fourth iterated field. 9ap in terms of h*¢. Expanding to the required order, we
Similarly, to obtain a result for the waveform accurate tofind

the order of the quadrupole formula~Z'/R~(m/R)(v?
+m/S)~e? (N=2), the second-iterated field is needed.

Note that the termm/S in 7'} arises through the use of the
Newtonian equation of motion. Then, to obtain the 1PN,
2PN and 3PN corrections to the quadrupole approximation, 1
the third-, fourth-, and fifth-iterated fields are needed, respec- + EB(
tively. This would be an impossible task if it were not for the
judicious use of the conservation law, Eg.8). Consider for
example, the sourcg_; 7" of the Nth iterated gravitational- E ki § ki 5
S 1 + KK NKIK!+0(e>), (4.29

wave field yhl;, Eq. (2.15, specifically the leadingm=0 2 4
term. The conservation law, E(.8), convertsy_; 7 into
two time derivatives ofy_;7°%'x) (modulo total diver- 1 1 3
gences Because of the slow-motion approximation, two g, = _Ki( 1- -N-— =B+ _N2) —KIB +0(€%?),
time derivatives increase the order byand thus, to suffi- 2 2 8
cient accuracy, only,_,7°is needed in practice. An impor-
tant caveat to this is that the surface terms that arise from the
total divergences and the outer integrals must formally be -
evaluated using th8l— 1 expressions. However, in practice,  Jij= 9"
these terms contribute at sufficiently high order that they can
be treated without resort to explidit—1 expressions. Effec- 1 1
tively, the burden of accuracy has been shifted fromNlie +Bi— =B —K'Ki+ =NB+0(€%), (4.20
iteration of the field, to thé\ — 1-iterated equations of mo- 2 2
tion, which enter via the two time derivatives and which are o
needed anyway to evaluate the field as a function of space- (—9)=1+N-B-NB+K'K'+0(e*). (4.2
time. Thus, folN= 2, the leading quadrupole approximation,
only (7%= p is needed, together with the Newtonian equa-Notice that, in order to find the metrig,; to the desired
tions of motion. This circumstance is responsible for theorder, we must obtaiiN to O(e%?), K' to O(e*), B to
prevalent, but erroneous view that linearized gravitye O(e”?) andB to O(€”?). In fact, becaus® contributes lin-
iteration suffices to derive the quadrupole formula. The for-early togq, we will treatB differently from BY.
mula so derived turns out to be “correct,” but its foundation  Using Eq.(4.2), we can express the matter stress-energy
is not (see[58] for discussion tensor T*#, Eq. (2.10, as a PN expansion. However, the

Thus, in WW, to evaluate the 2PN waveforrffeurth  details of such an expansion will depend on the basic vari-
iteration, only second-iterated fields were needed in theables used to characterize the matter. For example, to discuss
source terms. For 3PN waveforms, only third-iterated fieldghe structure of a star in a PN expansion, it is convenient to

B=h'=Y, hil~0(e?), (4.2)

=—|1 1N 3N2 5N3 35N4
9oo™ NN TN T 128

1 1N+3N2
2 '8

+ 1 BB - 182)
4 2

(4.2b

1 1N 1N2 1N3 1NB 1KkKk
FoNTgN g T gNBr 3

will be needed. use the mass-energy densijtyand pressur@, together with
an equation of state. However, to discuss the motion of com-
IV. FORMAL STRUCTURE OF NEAR-ZONE EIELDS pact bodies in an effective “point-mass” limit, it is more

convenient to ignore the pressure totally and to use the so-
A. Metric and stress-energy pseudotensor in terms of the fields g]led “conserved,” or baryon density* Ep\/__guo_ For
We begin by defining a simplified notation for the field how, we follow the convention of Blanchet and Damour

has: [16], and define the quantities
N=h%~0(e), o=TO04+Til_
KiEhOiNO(ESIZ), O'iETOi
Bi=h~0(€?, ol=T1. 4.3
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We will express various potentials formally in terms of these densities, and later make a PN expansion of them in terms of the
densities most appropriate to the application.

Substituting the formulas fdn“? and J4p iNto Eqgs.(2.6) and (2.7) for A®P we obtain, to the required order,

00_ _ LNy 2 | 22— RIN — 2K S K 3K I 4 K 4 KNG — BN 4 SO N, ’ 2
A g (VN2 ENZ = RIN = 2R K+ S KM(BKI -+ KH) + KINT = BIN + ZVN-VB+ 2 N(TN)

+

o1 . . 1.. 1 1. .
Kipik L Zpiklpikl_oRklj NR— = 20 TNINHKI
K*'B +4B (B 2B )+4NB 8(VB) +4NN K

7 1 . 7
+gN"N'kBJk—EKJN"‘(BKJ'k+4K"'J)—§N2(VN)2 +0(pe?), (4.43

. N
A°'={N'k(Kk"—K"k)+ZNN*' +

NKI -N KI _ ZKkKi,k_ BImKi’|m+ Kk,l(Bil .k+ Bik,l _ Bkl,i) + N'kBik_ ENB,i
4

1 .. .3 1 1 A
—ZN"B—NN"‘(KK"—K"")—ZNNN"+§K'(VN)2—ZK"N"‘N" +0(pe™), (4.4b

Aii:1 N"N'j—lﬁ”(VN)z +
4 2

2Kk'(in)’k—Kk'iKk'j—K""Kj'k+2N'(‘Kj)+%N’“B'j)
1 1 A o 3o 1
-3N N"N'J—Eé”(VN) — 8| KMk IR 4 NPk +gN +7VN-VB

+

2KIK I+ BKI (KD k— K ki)y — 2BiikKk— NBiT — BilImgImy gikil(gil.k 4 gikily — pgkl.(gidkl 4 %Bkl,inl,j
1. . . R R -
—ZB"B*J—N(2Kk'('KJ)vk—Kk"Kk'J—K'*kK"k)+KkKk*('N'”—ZNN'('KJ)—ENN'('KJ)—EN"‘N'('BJ)"
11 .3 T 1 . .

— 5 NNUBD+ 2(YN)?BY + 2N N'NY— 5 8(VN)? |+ 2 6I[(VB)?+ 2NB+ 8K !B + 4BK MBX™

—2BKMBKI M 3NN?+ BNN KKK+ 8N KKK — 4KKNTK ! 4 2NKEN*+ NN BK 4 2NV N - VB]

+0(pe?), (4.49

o1 o1 9. 1
A"=—§(VN)2+ K'*kK[k*']—N'kKk—ZVN-VB——N2+ZN(VN)2

8

+

2K KK~ 2B*K + 3BMKK! —NB+ ZNBJF %(VB)Z— B'™B'™+ gsk'vak"er %Bk"mBkm" —NKKIK

1 1. 1 1 1 9 .. 3
Tl kekl Kiek o TRinGKie kT nGkng pkl o © ) - 2 TNR2Z_ 22 2
5 NP+ NNFRE+ ZRNFRE = SNANBE 2 NVN- VB 5 (VN)B+ g NNP— S N*(VN)

+0(pe*), (4.40
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where an overdot denotegdt. In the above expressions, 1.1 - . -

terms grouped within braces make leading contributions of MU=sT0+ 5 jg [7M(xT),+ 7% ]d?S,,, (4.79
the same order. For example, i, the three groupings M

correspond td(pe), O(pe?), andO(ped), respectively.

. i k— k €K | k
B. Source moments and other integral quantities MY TJ (70 + = fﬁ [Tm(X” )

Throughout our calculations, a number of integrals of the
source stress-energy pseudotensor occur, for example, in the 2
multipole expansions of Eq2.14). It is useful to define and + 70K d2S, — = § [ 7kl
collect these quantities and to discuss their properties. All 3 Jom
integrals are carried out over a constant tifee constant
retarded timghypersurfaceM, within the near-zone. In gen- + Al d2s, (4.79
eral, these integrals will have dependence, but, in line with
the foregoing discussion, we shall consistently drop such
terms. The relevant integrals are

. 1
MiIR=_—_—__7iiQ
+1)(g+2
PMEMMO:I 7.,uod3X, (4.53 (q )(q )
M
n eI emkali ke - kq( symk: Q)
IQEMOOQ:f 7°%Qd3x, (4.5b
M
LAY ik kg
(q+1)
inEGiabM ObaQ_ eiabJ TObXanSX, (4.5Q
M
Im/,ijQ
<q+1>(q+2> §,, 1700,
P”abQEJ x[a7 1 xb1Qg3y (4.50
M
+ :rmOXijQ]dZSm_ § [T leI]jkz
By making use of the equations of motiafi® =0, we can (q+ 2)
transform some of these integrals into other forms, modulo
surface integrals at the boundaity1 of the near zone. For + Alkaxilikz - kq1d25 (symk: Q), (4.70

example,

pr=— % ™d2%s;
M !

) 1 .. )
0jQ_ _— 7iQ_ mj(ky 7mlky ... Kg)
M=l e I
J=—€° jg r1Pxad2s | 1 _
S Farz @79
IM

T=pi— fﬁ Ixd%s; . (4.6)

M where the notatiorisym k: Q) means symmetrize on the in-
glces ky throughk,, and the superscript notatiofi’* -
means that only the indices following the vertical I|ne are
involved in symmetrization.

These identities express the conservation of total energy, m
mentum and angular momentum, and uniform center-of-
mass motion, modulo a flux of gravitational radiation from
the system. In calculations, the surface terms must be
checked carefully to see if they mak&independent contri-
butions to the order considered. For the most part, such sur-
face terms turn out to make no contribution. We now carry out the explicit expansion of the near-zone
Henceforth, we shall seI'=7'=0, which amounts to field through 3.5PN order, beginning with the inner integral,
attaching the origin of coordinates to the center of mass oFq. (2.21), applying the above identities where possible. In-
the system. serting powers ofe to indicate the leading order of each
Other useful identities include term, we obtain the result

C. Near-zone field expanded to 3.5 PN order
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709(t,x")

) 2 (3 1
N= 4eJ —,d3X,+262(9'(2f 790t x")[x—x"|d3x’ — 5 21K (1) + —e%’ff 799t,x")|x—x'|3d3x’
M [x=x'| M 3 6 M

1 7/2{ kl 2 ki (Sl)d k(i)ll (Ellll ] 1 4 6 00, 543 1 9/2[ 4(7k)k
~ 3¢ (4xM+2r28 TR (1) — Ax* X (1) + ZT7%(1) +ﬁ)e Ay fMT (t,x")|x—x"|>d>x ~ 1260 3rézRN)

) (D) () %) ) e (7)
+12r 2071 (1) — 12r 27 RK(t) — 8K TR (1) + 3r2Z kK () + 12xT 71K (1) — 6xI 7KK (£) + 21Kk (1) [ + N, + O(€9),

(4.89

_ 2 (t,x) _ 2 (4) (4) - ®

K'N=463’2f o d3x’+265’2&t2f (X)) X=X A3 + 5 €3 BXKTX(t) = TK(t) + 2™ T™Nt)
M [x=x'] M 9
1 : 1 (6) (6) (6) (6) (6)
+ 667/2§ffMTOI(t,X’)|X—X'|3d3X' + 255¢ |30 X T(1) = 10r27 (1) — 2097 (1) + 152" (1) - 3T (1)
, (5) (5) (5) (5) (5) )
+ e 20r27™(t) + 40k 7™ (1) — 15 TR 1) — 3oxK 7™ KI(t) + 127 ™KKt || + KL+ O(€%9), (4.80)

. (LX) @ . 1 ®) ®) L@
Blj{/:4fzf d3x'—265’21'1(t)+2e3a§f 7 (X)) [x=X' [’ — 5 €| 3r2T1 (1) — 2% T (1) — Bxem T (1)
M

M [x=x'|

&) 1 . 1 @ @™ . (©
+6MIK(1) +664&?f 7 (8% X=X [P’ — 7252 7Y (1) — 4r X T (1) — 16r 2K T 1)
M

(5) 5) (5) (5) .
+22r2MIRK () + 24xKIMTTKT () — 24xKMTKIT (1) 4 g M KK (t)] +BY+0(€). (4.80

Explicit formulas for the boundary termd,,,, KLM and P (LB 3/
B!, are given in Appendix C. Through 3.5PN order, thef fE=r)(n")™(r") Ix—x']
terms in Eq(4.8) divide naturally into two typeseventerms,

i.e. terms of integer powers iain N andB" and odd-half <df(t) B daf(t)
X A i ) — _r/q+1 Bdr/N_
integer powers inK', and odd terms, of odd-half integer r dtd dtd
powers inN and B" and integer powers ik'. The even

terms produce the leading Newtonian, PN, 2PN and 3PN

contributions to the equations of motion, while the odd term%here we have used the fact thalt<|x'|. The only possible
produce the gravitational radiation reaction forqdote that R-independent terms come from the caseB— 2. Thus the
the even terms have odd contributions embedded withi uter integral gives a schematic contrib.utioh‘“ﬁ
them, via contributions of the metric itself t.) Through —£(B-2)(t) where the superscripB2) denotes — 2 t(irinj\é
3.5PN order, there is a clean division between even and Odgerivatives. From Eq(4.43, the leading contribution to the

terms, in the sense that even terms produce non-dissipative 2
contributions to the equations of motion, while odd terms> 1 Co COMES fromWN)*, where, from Eq(2.13, N has the

- ~(KIN 7Kl 3 2o (KI)kl 2
produce radiation reaction effects. At 4PN order this separd@/-zone  form N~4Z/r +2(3n*)74/r3+3nM02/r

tion fails, because of the presence of tails—these(e’?) ~ +n“'Z¥/r)+... . Taking the gradient of this expression
modifications of the leading 2.5PN radiation-reaction termsand squaring, we get, schematically,VN)*~Z?/r*
which result in disspative effects at 4PN order. We derive thet Z(ZX/r6+Z¥/r5+7/r*+...). The first term B=4)
leading contributions of these 4PN tail terms in Sec. VI C. gives no contribution, sinc& is constant to the order con-
The outer integrals for near-zone field points turn out tosidered { varies only via gravitational radiation energy
contribute only beginning at 3PN ord@nd, as we will see, |oss. The second, third and fourth termB 6,5,4) together
do not contribute observable effects until 4PN ojd@his  give h~7Z7<*)(t). SinceZ**~mr?, we find h~(m/r)%*
can be seen schematically as follows: for a source term of the O(¢*), which is a 3PN contribution. Thus, for near zone
form fB',_(u)ﬁ<'->r‘B, the outer integral has the form field points, the outer integrals can be ignored until 3PN

RAT2-B, (4.9
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order. A similar argument for far-zone field points revealsThe potentials needed for the post-Newtonian limit are

that outer integrals begin to contribute only at 2PN order, as S S )
Vi=3i(1), @f=39(1), &,=3"(1),

was found by WW32].

D. Compendium of useful post-Newtonian near-zone potentials

P,=3(U), X=X(1). (4.14

The even terms in Eq4.8) have the form of ordinary uUseful 2PN potentials include
Poisson-like potentials and their generalizations, sometimes

called superpotentials. For a sourf¢ceve define the Poisson

potential, superpotential, and superduperpotential to be

f !
P(f) 1f X)) o,

- - 2 -
4w ) pm|x—X| VeR() f,

(4.103

S(f)EiJ' f(t,x)|x—x'|d3x’, V2S(f)=2P(f)
47T L ’ 1
M

(4.10b

SD(f)Ei f(t,x")|x—x"|3d3x’
477' M ! !

V2SD(f)=125(f). (4.100

We also define potentials based on the “densities’s' and
o'l constructed fronT*#,

[ ot x)HE(tx) -
2(f)=fMWd3x =P(47of), (4.11a
o[ o) i
3 (f)=wad3X =P(4ma'f), (4.11b
) e, x) (X! )
E'J(f)EfMG(TXX_—)X,(r’X)dSX’zP(47-ra”f),
(4.110

along with the superpotentials

X(f)= fMo(t,x’)f(t,x’)|x—x’|d3 '=S(4maf),
(4.123

Y(f)= fMo-(t,x’)f(t,x’)|x—x’|3d3 '=SD(47of),
(4.12h

Z<f>EfMa(t,x'N(t,x')lx—x'|5d3x',
(4.129

and their obvious counterpan®, X", Y', Y/ and so on. A
number of potentials occur sufficiently frequently in the PN
expansion that is it useful to define them specifically. First

and foremost is the “Newtonian” potential

uEf U(t—’x)d3x'=P(4m)=2(1). (4.13

MIx=x'|

VL=3i(U), ®L=3(V),
X'=X(1), Xi=xi(1),
X =XT 0 X,=X(U),

, o . 1
PI=P(U'UY), P,=P;=®,— EUZ,

G;=P(U?), G,=P(UU),
Gz=—P(U*VK), G,=P(V'VI),
Gs=—P(VKUK), Gg=PUDY),

Gh=P(UHVKI)+ ZP(U"U). H=P(U"P}). (415

At 3PN order, the following potentials are useful:

Y=Y Y,=Y(U), Z=Z(1). (4.1

A variety of properties of these and general Poisson po-
tentials are described in Appendix D. Note that, in evaluating
Poisson potentials and superpotentials of sources that do not
have compact support, our rule is to evaluate them on the
finite, constant time hypersurfacé1, and to discard all

terms that depend oR.

V. EXPANSION OF NEAR-ZONE FIELDS
TO 2.5PN ORDER

We now turn to explicit evaluation of the near-zone fields
and the metric to higher PN order, in terms of Poisson po-
tentials and multipole moments. In addition to evaluating the
inner integrals shown above, we must evaluate the outer in-
tegrals consistently at each PN order, to check whether any
finite, R-independent contributions result.

In evaluating the contributions at each order, we shall use
the following notation:

N=e(Ng+ eNy+ e¥N; s+ €?Ny+ €N, 5

+ €¥Ng+ N3 o)+ O(€), (5.13
K'= 3K} + eKh+ ¥} 5+ 2K}y
+ €K )+ 0(e%?), (5.1b
B: 62(Bl+ 61/281_5+ EBQ"F 63/282.5
+ €?Bs+ €”?B3 o)+ O( €, (5.19
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B =€X(B) +e?BJs+eBi+€e¥BY)+0(e*), (51d  must evaluate the coefficiedty, in Eq. (2.33 with g=0

(no time derivative, sinc€ is constant, to lowest orderB

where the subscript on each term indicates the I€VEN, =4,L=0. From Egs(2.30 and(2.34), this yields a contri-

2PN, 2.5PN, etg.of its leading contribution to the equations ption toN given byN._ y=—7Z% R 2. However, in evalu-

of motion. Notice that our separate treatmentBofind B" atingN,;, we encounter the Poisson potentiall 4P(VU?2)

leads to the slightly awkward notational circumstance that,:_14p2 [see Eq.(4.15]. Upon integrating by parts and

for example,B; =B;. keeping the surface term @& [see Eq.[D3a)], this gives a
contribution U2—14®,+77%/R? whose R-dependent
term cancels that from the outer integral.

A. Newtonian and 1.5PN solution The physical metric to 1.5PN order is then

At lowest order in the PN expansion, we only need to
evaluater®=(—g) T+ O(pe)= o+ O(pe) (recall thato"
~e€0). Since this has compact support, the outer integrals
vanish, and we find

.40
gOO=—1+2U—2U2+X—§Ikk(t)+0(e3), (5.5a

i=—4V'+0(e>?), 5.5b
No=4U. (5.2) 9o S (650

=5 2
To this order, € g)=1+4U+O(€?). 9ij = 9ij(1+2U) +O(). (559

To the next PN order, we obtain, from Eq&.5), (4.4 _ _ ) o
and(5.2), Notice that, in our formulation, the potentibl is not a

retarded potential; the retardation is expressed by the PN

oo : 7, ) potential X and the 1.5PN term- 27%®)(t). This contrasts

T =0—0l+40U— o VUTHO(pe), with the PM approach, where retarded, rather than Poisson
potentials are used, and the retardation is expanded only

=g +0(pe¥?), much later in the computation. The apparently 1.5PN term

— 27%C)(1) in goo actually does not contribute to the equa-

1 tions of motion at this order because it is purely a function of
m'=0"— QVUZJF O(pe?), time, and the leading contribution is through a spatial gradi-
ent. As a consequence, the lowest-order observable contribu-
tion to radiation reaction is at 2.5PN ord€An alternative
way to treat this 1.5PN term would be to absorb it in a
redefinition of the time coordinabe.
Substituting into Egs(4.8), and calculating terms through  We note here the useful identity, which follows from Egs.

=0(pe). (5.3

1.5PN ordeife.g.O(€>?) in N], we obtain (5.9, o=7%+ 71— (1/2)V?(U?)+ O(pe?), whose conse-
quence is
N;=7U%— 4D +2P,+2X, (5.49
1.
_ , f a(t,x)d3x =T+ =7+ O(Z€?), (5.6)
Ki=4V, (5.40) M 2
B,=U2+4d,— 20, (5.40 where surface terms make fo-independent contribution.
2 <3k)k B. 2.5PN solution
Nys=— §I (v, (5.49
At 2PN and 2.5PN order, we obtain, from E(&.5),
(3) (4.4b), (4.4@, (5.2), and(5.4),
Bys=—2Z"K(t). (5.49
. . 1 A
ij — j _ A — Z Sl 2 2
It is straightforward in this case to show that the outer inte- 7~ ¢ 4|9 U" 759 VU7 +0(pe), (5.79

grals and surface terms give fid-independent terms. It is

useful to illustrate the cancellation of &-dependent term 2 3

in this simple case. In the far zone to Newtonian order, the ;9 = i + 457U+ — UVl 4+ ——JU+0(pe?). (5.7h
field, from Eq.(2.13, is given byN~47/r, where we focus ™ 4m

on the monopole contribution. This contributesA®’ in the

far zone a term of the form °°= — 147%/r%. To evaluate the Including outer integrals and boundary ter(agich contrib-
near-zone contribution of the outer integral of this term, weute nothing, we obtain, from Eq(4.80,
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ij— ij ij_ i —y? (4) (4) (3)
B2 =401 +4P2 = 720~ U5, (582 K 5= gku”‘(t)— gzikk(t)+ gemikjmk(t). (5.80
K,=8V,—8d},+8UV' + 116G+ 2X/,
(5.8b N N
The solutions foBY andBY ¢, along with the earlier 1.5PN
B 3) solutions, must now be substituted inte §) T*# and Egs.
BY=—27"(1), (5.80  (4.43 (4.40), with the result

) 7
P=g—o''+40U— —VU?
8
+0(7TU?=8D+2d,+2X)— 40U

+a- §U2—4UU—8U'ka+2V"J(3V"'+V"')+4VJU"—4U"'(I)'11

7 . .
+8VU.Vd,—4VU.-Vb,— EVU-VX—10UVU2—4U’”P§]

4 <3k>k N )]
— - .1 1)
+ 30T + 5 Uz, (5.9a
1 ) 1 (9. R | .
fi=¢l— ——VU?2+4¢"U— —{ U2+ 4Viivihil+avigi+ ZVU. VX }. (5.9b
87 47 |2 2

Substituting into Eqs(4.88 and(4.8¢ and evaluating terms througb(e’’?), and verifying that the outer integrals and surface
terms make ndR-independent contributions, we obtain

. 20 - . o
Ny=—16Ud; +8Ud,+ 7UX+ = U3—4VIVi— 165 (d,) + 3 (X) + 83 (V')

3
I A
B,=UX+4V'VI—3(X)—83/(V)+ 165" (U)+2X; — X,—20G; + 8G,+ 16Gs, (5.10H

1 (5) 2 (5 1 (5 16 ® 3
Nps= = Tg(2x 1+ 128 TH (1) + 2x T(1) - 557(0) + 5- UZH(1) - aXHTH(v),

(5.100
1.5 2 8 (4 (3)
Bas= — 372" (D) + gX T (1) + g X €™M (t) = ZM (). (5.100
|
C. Far-zone field to 1.5PN order a power ine. For example, expanding®’=N, in the far-
In anticipation of finding non-zero outer-integral contribu- zone, Eq.(2.13, we obtain
tions to the near-zone field at 3PN order, we must determine T 1 M)\ 1 ZXm(y)
the far-zone field to an order needed for the sour&&. Our Ny=41 —+ —dy — — Om ) +en
foregoing discussion indicates that counting PN orders for r 2 r 6 r
outer integrals is different than the standard method, because e &2 512
the inverse radial variable '<R ~1~v/S; in other words, (5.11

when considering contributions to the outer integrals, addi-
tional powers ofr in a term in the far-zone field can be where the effective PN order of each term is indicated. In
regarded as increasing the effective order of that term by halbrdinary applications, the second potential in E§.11)
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would contribute a term of order of the formn‘zK/r3, i

which is simply the Newtonian quadrupole potential. But in K'=—20
the outer integral, this term contributes @&yindependent

term only through several time derivatives, and thus its ef- bk
fective contribution is higher order, in fact of the same order n feaib& («7 (u)
as that of the terrm'Z¥//r, which also comes from the sec- 3 ok

ond potential.

At this order, we must also be careful to include any outer
integral and boundary contributions to the far-zone field.
From the lowest-order far-zone field, we find, to the order,;; _
needed, thah = —14(7/r?)?, Al =4(7/r?)?(n'1) - §i/6).
Evaluating the coefficient®, and D3,, Eqg. (2.29, we
obtain, Ai'rl1 the far zone,No_\=7(Z/r)?> and B{_ . Z_ZA” O 5 12
=(Z/r)?n'l. Combining the multipole expansions of Eq. 2n (€9). (5.129
(2.13 with the outer integral contributions, we obtain in the
far-zone, to the order needed,

7 ¥w)| 2 ZKIm(y)

iz 3

mgh 2 (f"'(u))

)+0(e3), (5.12b

7] Fijk 7li)
27”1—r(u)+§ak<z1 (u)>+§eé‘k<‘ﬁk(—3a (u))

3

+7Z—2+O( 3) It will turn out, however, that, despite the formal possibility
re € of 3PN contributions from the outer integrals, tetual con-
(5.129 tributions will not begin until 4PN ordefsee Sec. VI ¢

VI. EXPANSION OF NEAR-ZONE FIELDS TO 3.5PN ORDER

A. B and KI to 3PN and 3.5PN order
At 3PN and 3.5PN order, we obtain, from Eq2.5), (4.4b), (4.409, (5.2 and(5.4),

A=gl+ —|Uiul-Z6vu?|+40U

™

U0 — 16V KK 1 gy () — & (%VU VX = 4VIKVIKL L 4 (/0 4 guz

L +0(pe), (6.13

o 2B . 1 Okl k] o
T':a'+4o'u+;u’lv[l"]ﬁtﬂuu"jta'(?u —8(I>1+2<1>2+2X)+E{64U' (Vi —@lely + 3oy y ke

—16UU KV K+ 16U TUkVK—24VI(VU)2+ 16U KXk T+ 1280 KGLT — 300 vkl — 160 Vi k— 16X kVIkT — 16U B

+48UUU" +6UX"' +6U" X — 16U 'd; + 160 V' — 16UV — 32vkVI K~ 16V KX+ P) + 16U (D + PL)
. ' . . . . 4 B 1 B (4)
+16VE (@7 K+ @1 = D) + 16V (P K+ PR = P} 4+ S o TRt + o— (VIRTM() — UKD (), (6.1

where the first line in each expression is the contribution through 2PN order obtained earlier. Substituting irto8Bqgs.

(4.80, and keeping contributions through(e”’?), and checking that surface terms and outer integrals make no contribution to
this order, we obtain

BY=1631(U)+4P(U (X)) —6aP(VIKVUK) 4 32p(U (VD) +2X1T 4+ 25(U U )

+ 8T (UX—4VKV =3 (X) + 83KV —X,—8G,;—8G,+ 16Gs), (6.2a

Kh=12U2V'+ 16UV, — 16U ®,+4UX + 32U G+ 4VIX — 8D VI + 8D,V — 8VKD I — 8VKPX — 163, (V) + 163 (D)
—163(UV) —43(X)—325(G}) — 245 (P 1) + 43 (X) + 83KV + 83 () + 83 K(PX) + 831K (VK)

+24P(UUU") +24P(U U VX + 32P (U VE') — 32P (U *dK') + 64P(UGE') + 8P (U KXK1) + 16P(U D)

N ., ® o _
+16P(U*PY)—16P(Ud,)+6P(U X ) —16P(Ud;)+6P(UX") +32P(UU KV k) —16P(UV')
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+16P(VRI D] %) — 16P(VF! D) + 16P (VH!PL ) — 32P(VEVIK) — 16P(VFId ) + 8P(VRIX<) — 16P (VR PEM)

_ . . . . . 13)
—16P(V'*'m<I>'lm)—16P(V"'mP'2m)+4X'(U)—4X(V')+8$(U'kvk")+68(U"U)+EY', (6.2b
N 1.6 2 8 2 (3)
Bis=—3riZ(n+ xkz”k(t>+ Xkemk('Jm'”(t) M), (6.29
i 1 k(GL 1 2 (Gkk 2 kI kI 1 k (Gk)ll (ﬁ;dl
_ i i | i i
12,0 4 1 1 (5)
mil 2 ml kI mk _ mk _ k mkI mikk,
+e T+ T ) AU 757 (1)
(3) (4)
VIZRK(t) — 4X" k'Ik'(t)+4XkI'k(t) (6.20)

3

B. N and B to 3PN and 3.5PN order

The expressions for® and 7' to 3PN and 3.'5PN order are too lengthy to be reproduced explicitly. Instead, by substituting
the expansiong5.1) into Egs.(2.5), (4.4b and (4.49, and keeping terms aD(pe®) and O(pe>d), we obtain the formal
contributions

78°= o(N,— B, — NoBy + K3Kj) — o (N1~ By)
1( 7 - T .
+ T6-1 ~ gl2VNor N+ (VN1 + 2NNy = NgN; = NoR
—2NgKL— 2Ny K + K (3K L + K51 + NG KL+ Ny K — Ny BY

1 !

—Ny'BJ+ 7(VNo: VB2 + VN, - VBy)+ gN1(VNo)

7 LB+ T B R(BIK 2B 1+ NGB, 2
+ 7 No(VNo- VNy) +K7'Bz + 1Bz (B2 "~ 2B37) + 7NoB1— 5 (VBy)

1 7 il 1 ,i j ij ji 7 2 2
+ 7NoNo K1+8N 'NJBY 3= 5 NoKA(4Ky! +3KY") = e NG(VNo) |, (6.39

73%= 0 (N5~ B35~ NoBys) — o' (Ny 5~ By )

“NoN7 5= NoNg 5= NoN; 5= 2NgK5 5+ NgK5 5

1 (7
Ta-| ~ 7 VNo VN st 2

J’_
167

- S| 7
+ Ky (3Kbis+ Kb —Ng'Bls— Ni'BJ s+ 7 VNo: VB, 5+ £ N1 o VNo) >+ KBl 5

;
NiNZBY 5] , (6.3b

+1NB + =
1.5 8

73=0" (N~ By)
1)1 2 KD KL - NI
+ T6m —§[2VN0-VN2+(VN1) 1+ 2K7°K3 _NoKz_NlKl_Z(VNO'VBZ+VN1'V81)

9. . 1 1 o
— 2NoN1+ 7'N1(VNg)*+ 5 No(VNo- VNy) + 2K 3K} — 2B{K} +3BY K~ NoBs
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3. 1 T S NI A S
+7NoB1+ 5 (VB1)?~ BB + 7 B *BJ "+ 5B “BE — NoKy /K = SNgKIKY' +NoNp K}

1 i 1 il 1 9 N2 3 2 2
+ 7NoNgK} — 2N INdBY + = 7NoVNo- VBl+8(VN 0)2 B+ gNoNg— gN§(VNo)? (6.30
i i - i,j [j i] i 1 9. -
735=0 (N15=Byg)+ 72— 167 VNo VN2 5+ 2K K5 5 = NoK3 5~ ZVNO'VBz.s_ aNoN1s
1 ) il i .. 3. . i i 1 . imi] 1 )
+ZN15(VNO) +3825Ki _N0815+ ZNOBIS_ Bi 825_§N6N6825+ g(VNo) Bl.5 . (63@

We have simplified the expressions slightly by taking into account the facthatB, s andB3 5 are purely functions of time,
so that spatial gradients of them vanish. To obtain the full expressions, one substititgs fér, B, K, etc., from Egs.
(5.2, (5.4), (5.8), (5.10, and (6.2). Substituting this into Eqs(4.89 and (4.80 (the latter contracted on indiceg), and

including surface terms and outer integrals, we obtain the final 3PN and 3.5PN resiNtsifiolB:

N3

19 . . . .
€U4—28u2q>1+ 14U2®,+ 10U%2X—8U X, +4UX,+4US(X)—4UG; —56UG,+ 112U G, + 80UG,— 64UGsg

(4)

—56UGg— 56UH+1—2u\(+32u2'(v')—56u2(<1>1)—8UE“(U)+1o<1>§—8<1>1c1>2+2<I>§—8c1>1x+4<1>2x—16v'v'2

160}~ 32V/GL— 4VIX + X220 @ — 40Y P~ 2PY P~ 83 (U 1) + 36X (G1) ~8X(G,) + 163(Gg)
.1 @ o - - o

483 (Gy) ~8X(Gg) ~ 83 (H) —8X (Xy) + 53 (Y) + 165! (Vy) ~ 163 () ~ 163 (UV) +325/(G)) + 43/ (X)

+831(U?)+ 1257 (@) + 431 (D) +43T(PY) -85 (3 (1)) +642(2(V') - 565 (37 (U)) - 32P(U0)

(4) (3)
—28P(UU2)+16P(Ud,)+16P(Ud, )+ 16P(Ud,) —8P(Ud,)—8P(U X )—4P(U X ) —8P(UX)+32P(UU V)

—64P(UU 'V —40P(UU 'V +32P(UVH V) + 16P(UVHIVIT) + 32P(U1V)) — 32P(U ') + 64P (U1 Gl)

@) S . .
+8P(U'X')+64P(U' D)) —64P(UV) — 128P(U-'Gh) — 16P(U- X)) +4P(U U 1 dl) + 4P(U- U PY)

—64P(U I3 (U))—8P(UISUUT)) —128P(UTP(U-(VD)) —16P(U T P(U- (X)) +256P (U T P(VIKiIVIKD))

—8P(UiXil) +32P(Vidi) — 16P(Vidy) — 16P (VX)) + 16P (VD)) + 16P(VI P) + 96P (VI VT) — 96P (Vi DT

+192P(VHIGH) + 24P (VIIXI1) + 8P(VIV) — 16P (VD) + 8P(V'X') — 8P(D ] *d ") — 16P (D] *Pi')
—8P(PY*PY") + 16P (D11 DY)+ 16P(d{! PY) —8P(DIX 1) —8P(dy! dY)—8P(Dy PY)—8P(PYX 1)

149 1@ 1 1.
— g1t Yot 1552 ~ 8X(P,)+ X(X)+4X(V) 25(U?)—85(UU)— 85U 1Y)

—88(UTPY)+125(VIiviT) + 85U V) — 165(VIU'Y), (6.4a

(4)

1 o 1
§u4—4u2c1>1—2u2c1>2+ 16UV'V'—12UG;—8UG,+ 16UG3+16UG,—8UGg—8UH + YUY —8U3(D,)

+8U2”(U)—2q>§+8c1>1q>2+2<1>§+16\/'v'2—16v'c1>'2+32v'<3'7+4v'x'+sz—sqa'llq)y—lzq)ypg—spgpg

1 @ o o
+83(Udy) +125(Gy) + 83 (Gp) — 163 (Gg) — 163(Gy) +83(Gg) + 83 (H) — 153 (V) ~ 165'(Vy) + 163/(d))
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— 4851 (UV) — 3% 1(Gh) — 43 (X) +24311(U?) — 28311 () + 831 (X) + 1251 (D) + 1251 (PY) + 83 (3 (d,))

(3) ..
—83(31(U))—68P(UU?)—16P(Ud,)+8P(Ud,)+48P(Ud,)—20P(U X )—56P(UU'V)—32P(UU"'V)

+32P(UVHVH) — 16P(UVHVI) —32P(U V) + 32P(U idh) — 64P(U'GL) — 8P(U ' X') —4P(U- U 1))

—4P(U'UIPY)—32P(VIdDy) + 16P(Vidy) + 48P (VDY) + 48P (VI PY) + 32P(VIIVL) — 32P (VI D))
+64P(VIGLH) +8P(VIIXI) + 24P (VIVI) + 16P(VIdy ) — 8P(VIX') + 8P( DY Ky + 16P (D! FPYT)

I . - . 1@ 1<4) 1.
+8P(Pg'kP12k")—16P(<I>{’CD2)—16P(<D'1”PB)+8P(CD§'<I>'1J)+8P(CD'2”P2)+EYl 2 X(X) AXI(Vh
. o . 4
+8X”(U)—1OS(U2)+4S(V'*JVJ*')—88(U*'V')+§II“(t), (6.4b

W) 1 ) 1 ) 2 ) 1 O 1 @ 1 @

1
— — — pATii ()= ———2\iiTi — ijj —dikgijk gy — 2700 4y — —_ xdigijkk ijikk ¢
N3 s 420r TH(t) 5r 2T (t)+ l:_)r 2T (1) + 5x (1) 0r 7" (t) 5x () + OxI (t)

(5)

““k"(t) XU+ 8 i+ i~ 2k My T(t)+
1260Z 45

5 3 9 15 15

16 34 16 (5)
—r2U— —x' X'+ — = X |2 (1)

(5)

1
~ 25(16¢U=52X) T (1) +

4,02 @ 2 & (4 g 10 @ @
XX = oyl 7 (0= 7T (1) = | 3 XM= X+ Y | T (t) + 8X T (1)

8. ¥ 2. \® 1 . 3
— XTI ()~ (14ux”+22(x'1) axil+ 2%+ 21 ”)I”( )+ 5 (7007160, +200,+4X) 70 (1)

8 ©® 4 . ® 6, .4 4 G 16. (3
kk i ijkk kye,ij _mk(i ~mlj) k ky ~mkj 7mj k _mkj 7mj
+ UMIKK() = 23T MIKK() 4 XX T e M) — 5 (8XKU = 5X4) eMIg™(t) + X Ke ™ Tm(t), (6.40
1 1 @ 1 (5) 1 (5) 4 (5 (4)
Bas= — a)r“zll(t) 45r2x'I'“( - (Y W exi X H)Tl(t)— £ (16X+ 2xX DT (t)— X (1) + 12X T (1)
16 (3 N . N N L
[ BUZ+ S 01— 120, | T (1) — (UXT =23 (X ) +4X{! - 2X5' —8P) T (1)
4 4 1 2 2 1 ®
+I5r Xk mkjjm](t)+ Xk mkjjmj(t) ZM“kk(t) XjkMII]k(t) 15XjMII]kk(t)_%Mlljjkk(t). (6-4@

The final term in the expression f@&; is purely a func-  tegrals in more detail, and show that through 3.5PN order, all
tion of time, and as such does not affect the equations ofontributions from the outer integrals are pure gauge terms.
motion through 3.5PN order. It comes in part from the sur-
face terms Eq9C1) and in part from various integrations by C. Outer integrals and the contributions of “tails”

parts of Poisson potentials to achieve the expressions shown. oyr earlier qualitative discussion suggested that terms in-
In N, all such terms cancel. Similarly, purely time- yolving products of the monopole momehtand the quad-
dependent terms which appearNiy s and Bz 5 do not con-  rupole momentZ'l of the far-zone fields would contribute
tribute to the equations of motion. via the outer integrals at 3PN order. Because higher multi-
As expected, the outer integrals make their first formalpole moments involve higher powers ofr 1dr higher time
contribution to the field at 3PN order; however, thieserv-  derivatives, they would be expected to contribute at even
able contribution vanishes to this order, so we have nothigher PN order. Thus working through 3.5PN order, we
shown any such contributions explicitly in E¢$.4). In the  might expect at most that products Bivith quadrupoleZ”,
next subsection, we study the contributions of the outer inoctupoleZ* or current quadrupolg’! moments would con-
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tribute. Other terms, such as productsZoWwith higher-order moments or products of higher-order moments, such as terms
quadratic inZ", will be 4PN order or higher. In studying the contribution of the outer integrals to the fields at 3.5PN order,
therefore, it suffices to employ the far-zone field given in E§12. However, to illustrate the first non-trivial “tail”
contribution, we will evaluate certain pieces of the outer integrals through 4PN order.

We substitute Eqg5.12) into Eqgs.(4.4) using the “quick and dirty” rule expressed by E@.9) to determine which terms
to keep, and obtain, in the far zone:

A=147r 20! i3, (T3 ) = 8Zr ~2a; (2 /1) +8Zr ~2nia;(Z/r)— 24z ~4n‘D7
— 24 j 14 i jkl 8 -1 ijk 8 —2 i ijk =34(ij) jk
—2TIr a(ﬂ/r)——Zr nﬁijk|(I /r)+§Ir Fjk(T' /r)—§Ir ak(z' Ir)—8Zr 3niD g (Z'1k/r)
2 kk 16 2 i a|b k (ij) aki 7aj
-3 20l g (T ) + i A TPMIT)— 3271~ €9, ()
8 2 akj j 4
= gZr ' e (V) +O0(pet), (6.53
(3)

A%=8Tr 20l g, (T*/r) — 8Zr 201 a; (/1) — 6Zr ~2n! gy (T*/r) +8Zr ~1a,(Z'/r)

(3)

8 16
-3 1a,k(z'1k/r)+ —TIr ey, (PHr)—8Zr 2n (I'J/r)+21r’2 n'(Zi/r)+0(pe™), (6.5b

' . . o C @ 2 . .
A" =22 20!y (27%Ir) = 8Zr ' (ZV/r) + 21~ *n' g (20 r) —8Ir 2T — ZIr ' gy (Z74/r)

8 —20i j—ijk/ 2 72" I]kk/ 8 -1 (llll)J/ 16 —24i _aib L7bk/
+§Ir ' ( r)+§Ir a;( r)— 3 (M Ir)— 3I n'e€*® 3, (JIT)

8 .. . . 32 B

+ 32" ~2ni e@Kig,, () — I 13K (T3r)+O(pet), (6.50
) 4
Al=—8Tr 271+ 0(ped). (6.50

All momentsZ', 7% and 7' in these expression are functions of retarded time. Notice that the term kept il is
actually of O(pe®) (4PN ordef according to our scheme; however, because it helsdépendence, it will yield a 4PN tail
contribution of a form which we wish to keep.

We expand the derivatives and evaluate the coeffici€htsand&]| [Eqgs.(2.34) and(2.36)] for each term, throwing away
all R-dependent terms. Terms withr #/falloff yield integrals over Legendre functior®, , as in Eq.(2.35. The result,
through 3.5PN ordefand keeping all formally 4PN terms involving integrals o), is

[ 8 (=4 . . , 4
(N3)e-p=1} —8n'l) f T(t—r{)Qu({)dl— 5 f I(t—r{)Qo()di+ 5 <<">—26"—26"|nr>1”<t) , (6.6a
1
8. (=0 8., [(®
(N3ge-r=17) — 30 fl T (t=r)Qa(Q)d— gn f I'H(t—rz)Ql(odg——r(3n<”> za'l)z'l(t)
2 . SR )
+4—5(5n<”k>+18n'5“‘)1”k(t) , (6.6b
) o (4)
Kage_ =2 8n'f 'J(t—r{)Ql(g)d§+4nlI”(t) (6.60
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« (5)

- S [T 8z
(Kok-a=T) = 379 [ “Tie-roQuoai— g [ Tht-roQuoaz

1

16. ) 16 . (=4
+ e [y par+ g @9 [ Tka-roQu |, (6.60
1 1
o (4) 4
(Ba)e-a=Z) =8| Z"(t=r{)Qo({)d{+8(1—-Inr)Z"(t) ¢, (6.68
1
8. (=) 32 . (=) (5
(Bage-w=T + 30 f IV (t=rHQu(dg+ 5 €N f Tt=1)Qu(§dL+4rT" (1)
1 1
4, ) 6 .. &
—=n'ZW(t)— = ''n' T73(1) [, (6.61)
3 3
N o (4)
(Baly=—87 [ Tht-ro)Qu( 010z (6.69
Using the recursion relations satisfied by Legendre functions, we can establish the general formulas
© 1 1 ©
L X(t=r{)QL({d¢= mx(t—r)— mfl X' (t=r)[QL+1({)—Qr-1()]d¢,
L X(t=r{)Qo(HdI=X(t—r)— L X' (t=r{)[Q1({)+Qo(£)]d+ fo X(t=r—s)In(s/2r)ds, 6.7
|
where a prime denote® ¢/, s=r({—1), X represents one Bng: O(€e%), (6.80
of the multipole moments of the system'{ and highey, and
we assume that, in the distant past, the system becomes suf- oc(5i>i 5
ficiently “stationary” that as s—o, X(t—r—s)lns—0. BC—N:_SIJO 7" (t—s)In(s/2)ds+ O(e”). (6.80

Since for a binary system that becomes unbounrég,s) in
the infinite past(because of gravitational-radiation anti- As these are purely functions of time, they do not contribute
damping, looking backwardisX in the worst case is propor- to the equations of motion through 3.5PN order. Alterna-
tional to (d/dt)*Z" ~mo*/r2—moj/s? then this boundary tively, one can show that the terms in E¢8.6) turn out to
condition is satisfiedsee[60] for a detailed discussion of the be purely gauge terms through 3.5PN order. In fact, by mak-
past behavior of binary systems whose evolution includesng the gauge transformationh#?—h#?— grv— gvir
gravitational radiation reaCtionRepeatEd use of these iden- + nﬂ”gaa (the linear transformation suffices to this Or)jer
tities allows us to convert many of the integrals in E@6)  with
into integrals of higher time derivatives of the expressions,
which are thus of higher PN order, plus residual terms that
cancel many of the non-integral terms in EGS6). It is also

useful to expand the retarded timer — s aboutt—s, and to
separate the Interms from the Ing/2) terms in the integrals, B E ij j“’(zei)j t—s)n(s/2)d
leaving only terms proportional tX(™M(t) and [gX™(t X (t=s)in(s/2)ds
—s9)In(s/2)ds. In the end, the only terms that remain at 3PN

2 < (6)
and 3.5PN order are + _r2f Z"(t—s)In(s/2)ds
0

403 < (4)
—I”(t)+—f Z"(t—s)In(s/2)ds
3 3o

£=1

0

(4) (5) 4 % (6)
NC,NZZ _gz-”(t)_gj’o Z“(t_s)ln(S/Z)dS +O(€5), +4_5Xif ZIJJ(t_S)In(S/Z)dS
0
(6.89
8 ikj [ (sj)k
Kic—/v: 0(€%?), (6.8b) + gXe fo J™(t—s)In(s/2)ds;, (6.9
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gl

=T

(=5
—4x1f ZY(t—s)In(s/2)ds
0

4 (=0
+§x'f 7 (t—s)In(s/2)ds
0

44 (= (5)
— Wt —
+45fOI (t—s)In(s/2)ds

—§e'k1f ij(t—s)In(s/Z)ds}, (6.10
0
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APPENDIX A: STF TENSORS AND THEIR PROPERTIES

Throughout this series of papers, we shall make frequent

use of the properties of symmetric, trace-ft€8'F products

we can convert the outer integral contributionit# in Eq.  of unit vectors. The general formula for such STF products is

(6.6) to a form consisting of nothing but a 4PN tail term:
[1/2]

SRS (_1)p(2|—|—2p)!!
p=0

FIEE [t~ 2PsP+sym(q)],

(A1)

16 . (= ()
(N+B)C,N:—€Ix”f Z4(t—s)In(s/2)ds+O(€>),
0

(K- n=0(e"?),
(B)e_ = O(®). 6.10 where[1/2] denotes the integer just less than or equdl2o

the capitalized superscripts denote the dimensionality,

Note that, to this ordef\+B=2g,,, and only the gradient |—2p or p, of products ofn' or &' respectively, and

of the term in Eq.(6.11) contributes to the acceleration; “Sym(q)” denotes all distinct terms arising from permuta-
hence this term can be thought of as a 4PN tail modificatiofions of indices, where=11/[(2Pp!(I—2p)!] is the total

of the Newtonian gravitational potential or as a 1.5PN modi-number of such terméee[14,26 for compendia of formu-
fication due to tails of the 2.5PN radiation-reaction poten-as). For convenience, we display the first several examples
tials. This result is in complete agreement with the near-zonéXxplicitly:

tail contribution derived by Blanchet and Damqga6] using
matched asymptotic expansions within the post-
Minkowskian formalism.

A
n{i=nil — 39, (A2a)

VII. DISCUSSION
We have presented a method for direct integration of the — nik)=pik— E(ﬁ‘&”%ﬁj %+ nks'h,
relaxed Einstein equations in a post-Newtonian expansion, °
applicable to equations of motion and gravitational radiation
from isolated gravitating systems. As a foundation for future
work, we presented a solution for the near-zone gravitational
field through 3.5 post-Newtonian order in terms of Poisson
potentials, together with a prescription for ensuring that no
divergent or undefined integrals occur. In subsequent work,
we will apply the near-zone results to the derivation of equa-
tions of motion for binary systems of compact objects
through 2.5 PN order and including 3.5 PN radiation reaction ... o 1.
termsg.] Work on the 3PN contribgtions to the equations of n{kim=—pikim — 5[”|Jk5kl+sy”(10)]
motion is in progress.

The results presented here can also be applied to the
gravitational radiation waveform and energy flux from bi-
nary systems to as high as 3PN order beyond the quadrupole
approximation. It can also be used to discuss equations of 1
motion and radiation damping of systems containing spin- ~(jkimny _ fijkimn_ _— ~ijkl smn
ning bodies, as well as the structure and evolution of fluid n : 11[n oTHsym(19)]
bodies. These will be the subject of future work.

(A2b)

Aliikl) — Riikl _ ;[ﬁij S+ sym6)]

1 o
+3g(81 8+ 8o+ 81 61), (A20)

1 .
+ 6—3[n'51k5'm+ sym15)], (A2d)

1 .
+ —[n'l '™+ sym(45)]
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1
~ 693
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ij okl emn
Blanchet. This research was supported in part by the Na- L6707 07 sym(15)].
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There is a close connection between these STF tensors amdhere the superscrigim) denotesm retarded time deriva-
spherical harmonics. For example, it is straightforward totives, and where

show that, for any unit vectdX, the contraction oN" with
n‘Y is given by

_ 1 _
. ! A ALQ= § nLA%da (B23)
L= ° . ’
N-n BEa P/(N-n), (A3) Aqr
whereP, is a Legendre polynomial.
m
APPENDIX B: CANCELLATION OF THE R GB,Lﬁ(R)
DEPENDENCE BETWEEN INNER AND OUTER
INTEGRALS
R —
Here we demonstrate explicitly the cancellation of =f r/2+ra-Brmgps

R-dependent terms between the inner and outer integrals.

We assume that, at each iteration step, from just inside the (R3+qB+m/(3+E_B+m)’ 3+E—B+m¢0,
boundary of the near zone out into the far zone, the source = _
stress-energy tensqr_;A*# can be decomposed into terms InR, 3+q—B+m=0.

of the formfg, (u)n-)r ~B, whereu=t—r is retarded time, (B2h)
andn{“ is a STF product of unit radial vectors. We calculate

the behavior of the inner integral of such a term as the inte-

gration variable approache® from below with the result Then, from insideR,

obtained from the outer integral of the same term. We con-

sider far-zone and near-zone field points separately.

1. Far-zone field points (— 1)q

The inner integral is given by E¢2.13, with the multi- hife,—
pole moment given by Eq2.14). We want to examine the

behavior of the moment, 3g’'| —R, that is 1 5
3%’| 0 X ngmﬂ(u))G;L'Q%R)AL Q (B3)
“BQ(U)—>—J fo.L(u=—r") X Q12 4 Q)
1o )m - It is straightforward to show that the contractiondgf with
- L.Q —
2 Z‘ U)G LQRIATE, (BD  Jiojg given by
0 g<L,
= 0 L+qg=odd,
N q (B4)
I | _
(g+L+1)!((g—L)/2)!
|
Using the fact that (sga e.g[14]) and redefining summation variableg=m
+g—k, j=L—k, we obtain Eqs(2.37 and(2.38. Evaluat-
fuy) f ing the outer integral for the same term yielddependent or
(—) =-, (B5a) In R-dependent terms that are precisely equal and opposite
r r those of Eq.(2.38.
Lo(L+k)! fR) 2. Near-zone field point

9 (f(u))_( 1)tn E
L 0 2%KkI(L—Kk)! K+l In the near zone, fofx’|>|x|, Eq. (2.22 together with

(B5b)  the specific decomposition gf*# gives
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-m

> X9

m=0

(-1)%
hefg | — — 2
NYIA B, L 47Tq A q'

R n (L
xf fB,L(t—r’)rTBaé(r’mfl)r’zdr’dQ’.

(B6)

We use the fact thdtl4]

v o(2q—-4k+1)1t ml
k=0 (2g—2k+1)11 (M=2K)!

y (m—2k—1)!! q!
(m—2q+2k—1)!1 | 2%! (q—2k)!

,1=

! .rm
9t

> §Kﬁ’(672K)rrmfafl, (B7)
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wherek,,,=lesser of[ q/2],[m/2]}, & denotes a product of
K Kronecker deltas, the quantity in square brackets can be
evaluated for negative or positive values of the arguments,

and the expressioan’ (?~2Xis to be symmetrized on all
indices(since the expression ultimately is to be contracted on

xQ no explicit symmetrization is neededt can then be
shown that
!

1 -
Q_— KA (Q—2K)R (L) r__
n 4wff€5 : n Q= S

S g2t

(B8)
We then expand (t—r')=37_q(—1)"fM(t)r'"/n!, inte-
grate overr’ toward R, rearrange the summations, and de-
finer=(g—L)/2, andg=m+n, and obtain

difg (1)
dt?

]

2\872_ )
Nhf\[/BB,L‘)(F) n<L>q§o Eel(2) (B9)

with

(=D 922 - B(L+r)!

0 M=% (gq—m)!(2L+2r+1)!(m—2r)!r!

(m—1-2r)!
(m—1-2r—-2L)!

InR,

[quer*Z/(q—L—Zr—B+2),

g—L—-2r—-B+2+#0,

g—L—2r—-B+2=0. (10

Here, too, evaluating the outer integral for the same term, foFor the inner integral, the only difference which the logarith-
eachB, L andq yields z-dependent or Ifk-dependent terms mic term makes is in the radial integral, now given by

that are precisely equal and opposite those of (B40).

3. Source terms with Inr dependence

Until now we have assumed that the stress-energy source
into terms of the form

fg. (u)n‘-r ~B. At sufficiently high PN order, tail contribu-

A*® can be decomposed

tions to the fields will arise, leading to the possibility ofrln
dependence i\ *A. To illustrate that cancellation dR de-

R _
BLa(R)(ln) f r/2+qu+m|nrrdrr:_

(9 m
“5%sLa(R).
(B12)

Thus, if the original coefficients cancel for @l (and if we

pendence occurs in this event also, we consider source terr@n treatB formally as a continuous parametethen the

of the form fg (u’)n"“r’' “BInr’. Noting that, from Eq.

(2.26, Inr'=—In[2(;—y)/r(?—1)], and incorporating this
logarithmic term into the outer integral, E@.27), we obtain
SN = [2(5-y)\P?
ap(in) - _ TA(L) > 77
nheZv s L 2” f_lpL(y)dyL(y)(r(Zz—l))
({—y)
| et 1

- ﬁNhngB,L. (B11)

coefficients generated by tnterms cancel.

An alternative method is to show directly from the defi-
nitions [e.g. Eqgs.(B11) and (B12)] that, for both the inner
and outer integrals and fa<<1 andz>1,

z R
nhgAM =In Ryhgh — f vt dz/z, (B13)
1

moduloz- or R-independent terms. Then, if tzedependent
parts of yhgl cancel between outer and inner integrals, so
too do thez-dependent parts afhg(".
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APPENDIX C: BOUNDARY TERMS

The boundary terms ih$? that arise from integrating by parts various integrals aWrare given by

) 2 ) 4 . . 4 . : .
N, =4 fﬁ (t,x")d?S + =122 é I(t,x")d?S! — =x'g, 35 7I(t,x)d?S — Zx 92 § I(t,x")x %S/
oM 3 oM 3 oM 3 oM ’

1 2 2 y
+ 4o é It x)d?*S — =X} 35 I (t,x)x %S — =X} é 71(t,x")d?*S] , (Cla
30 M 15 oM 15 oM
. ; 2 y 2 _ .
Ky =4 § 7 (tx)d*S] + 3% jg 7 (t,x)d?S] + 2 XG % I(t,x")x 'S
IM IM IM
o , 2
— =xkg? 35 Al(t,x")x Md?s — 27 ﬁg P(t,x)r'3x1d?s] (C1b
oM 9 oM
BL}M:—4at3§ Tkﬁ(t,x')x’ﬂd?s;—zafff; 2Kt x)x d?s,— = Zat 3§ A(t,x")x Dd?s,
IM IM
1 244 Ok "2’ 2 I 13 k(i "iNH2a’ 2 | 14 0k ijl 42!
— =12y OK(t,x")x 1d2S+ = x'o; A (t,x")x Nd2s,+ —x'a; OK(t,x")x a2,
3 oM 3 IM 9 IM
8I3 K[i "11j K[j "N 42! 1 3 Ik 2,ij . 0k 21142’
+ —x'5; (AUt x)x W+ AUt x")x 1d?s, — — 4 [7R(t,x ) (r 2 Ty + 7% (t,x ) r'2x 1]d2s,
9 IM 18 IM '
13 K[l "i1jl K[1 "il42e! 1 4 95 k(i "NA2e’
+=4; (AUt x)x W AU x)x T d2s) — —r 49, 0(t,x")x Dd?s;
3 oM 30 oM
1 4 16 Ok "ij42a! 1 2yl 25 k(i "iNH2e! 1 2yl 16 Ok ijl 42!
— — 14§ %(t,x")x 1d2S,+ —r2x'g; 0(t,x")x Nd2s, + —r2x! 4§ K(t,x")x 1'd?s,
60 IM 15 IM 45 M

4 A "1i H "171i
+ X % (Ut x)x W+ At x")x 1hd?s; . (Clo
oM

APPENDIX D: PROPERTIES OF POISSON POTENTIALS

1
P(IVg|?)=—5{g?+2P(gV?g)—Bp(g?)}, (D3
Here we list some useful properties of Poisson potentials (Iv9 2{g (9V79)~Be(g7)}, (D33

and superpotentials, given by Edd4.10. These rely upon
the general result, which can be obtained by integration by 1
parts, P(Vg'Vf)Z—§{f9+P(fV29)+P(gV2f)

P(V?g)=—g+Bp(9), (D1) —Bo(fg)}, (D3b)

whereBp(g) denotes the boundary term, given by 1
P(flVU|?)=— E{fU2+ P(U?V?f)—23(fU)

Bp(9)= A )
+4P(UVU-Vf)—Bp(fU)}. (D30
g(t,x")
X 3g Tx=x %" arIn[g(t,x")[x=x"|] R2dQ’.  In many specific cases, the boundary terms can be dropped:
r'=R
(D2) 1

P(U)z—EX, (D4a)
The boundary terms must be carefully evaluated case by case
to determine if anyR-independent terms survive. All .
R-dependenterms can be discarded. Some useful formulas _ =
that result from this include P(X)= 12Y’ (D4b)
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1 For the Poisson superpotenti&(f), we have
P(IVU[?) == 5U%+d,, (D40)
S(V?g)=2P(g)+Bs(9), (D7)
o 1. 1
iKY Tk Toijk where
P(x'U )=—5XX +35Y , (D4d)
1
} 1, 1 1. Bs(9)=7— f}g [g(t,X’)IX—X’Iﬁr’
20 iy — — 2yl i o —ykijk Aqr M
P(reu)=—groXt= 5y i+ exitr s, (D4e) 2
. . . . g(tlx,) 2 ’
while, in others, there are contributions from the boundary XIn W R°dQ’. (D8)
r'=R

terms. For example, in the 2PN potentR{VU - VX), the
kljoundary - term . yields the M Thys, for example, in the superpotentiad/dt)2f ,,7*x
3 [ o (t,X)d%xd; [ o (t,y)d®y. Using Eq.(5.6), we obtain, —x'|d3’, we find the term

to the necessary order,

2
. 1{ . 5 1 @ S(V2U2)=2|5(U2)—3(d/dt)2(f od®x| +0(€°)
P(VU-VX)=— 5| UX=X(X)+2G,~ 571"(1) M
)
+0(€%). (D5) =4G;+4G,— 377" (t)+ O(e°). (D9)
Similarly, we find for the 3PN potential, Other useful identities include
(4) 1 @ (4) (4) Y i)y

P(VU-VY)=—2{UY=3(Y)+12P(UX) () =xU=X, (D103

@ 3 (xi)= i Z X xi1U — 2x0%0D) (D10b)

— 277" (1)} + O(€°). (D6) 3 :
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