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Towards an understanding of the stability properties of the 3¿1 evolution equations
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We study the stability properties of the standard ADM formulation of the 311 evolution equations of
general relativity through linear perturbations of flat spacetime. We focus attention on modes with zero speed
of propagation and conjecture that they are responsible for instabilities encountered in numerical evolutions of
the ADM formulation. These zero speed modes are of two kinds: pure gauge modes and constraint violating
modes. We show how the decoupling of the gauge by a conformal rescaling can eliminate the problem with the
gauge modes. The zero speed constraint violating modes can be dealt with by using the momentum constraints
to give them a finite speed of propagation. This analysis sheds some light on the question of why some recent
reformulations of the 311 evolution equations have better stability properties than the standard ADM
formulation.

PACS number~s!: 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Lf
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I. INTRODUCTION

There has been an intense effort in trying to develop
merical relativity for the study of astrophysical phenome
involving black holes and neutron stars. Most investigatio
in numerical relativity for the last 30 years have been ba
on the Arnowitt-Deser-Misner~ADM ! @1# system of evolu-
tion equations and many important results have been
tained in spherical symmetry and axisymmetry. However
the general three-dimensional~3D! case which is needed fo
the simulation of realistic astrophysical systems, it has
been possible to obtain long term stable and accurate ev
tions ~although some good progress has been made, see,
@2–5#!. One might argue that present day computational
sources are still insufficient to carry out high enough reso
tion 3D simulations. However, the difficulty is likely to b
more fundamental than that. There is no theorem guaran
ing the well-posedness of the initial-boundary value probl
for the full ADM system. In particular, one must consider t
possibility that free evolutions using the ADM system mig
be unstable, e.g., against constraint violations in 3D. Th
are also well-known complications due to the gauge~coordi-
nate! degrees of freedom in the theory. This is one of t
major open problems in numerical relativity.

Against this background of the need and failure to obt
long term stable, accurate 3D simulations in numerical re
tivity, in the last decade there has been a lot of effort look
for alternative formulations of the 311 equations, which can
be roughly separated in two directions.~I! In the mathemati-
cal direction, several first order hyperbolic formulations ha
been proposed, and conditions on the well posedness o
initial-boundary value problem have been studied@6–23#.
Unfortunately there is as yet no evidence that the hyperb
re-formulations lead to significant improvements in gene
3D numerical calculations~despite encouraging results in th
spherical symmetric case@11#!. ~II ! In the more ‘‘empirical’’
0556-2821/2000/62~12!/124011~15!/$15.00 62 1240
-
a
s
d

b-
n

t
lu-
.g.,
-
-

e-

t
re

e

n
-

g

e
he

ic
l

direction there have also been various attempts to impr
stability and accuracy by modifying the ADM system. T
avoid instabilities due to constraint violation, fully or pa
tially constrained evolutions have been tried and the addi
of ‘‘constraint enforcing terms’’ into the ADM evolution
equations has been proposed and attempted@24,25# ~cf.
@26#!. Methods to better enforce gauge conditions have a
been suggested@27#. Most significant and relevant for ou
present paper is an approach based on separating ou
conformal and traceless part of the ADM system, first dev
oped by Shibata and Nakamura@28#. Unfortunately, the
strength of the Shibata-Nakamura approach was not wid
appreciated, until Baumgarte and Shapiro@29# compared the
standard ADM formulation with a modified version of th
Shibata-Nakamura formulation on a series of test ca
showing the remarkable stability properties of the conform
traceless~CT! system. This has triggered much recent
search in the community, including what we are reporti
here and in a companion paper. There also have been i
esting results connecting the conformal approach to the
perbolic approach@23,30,31#.

In this and a companion paper we compare the stand
ADM equations to the CT equations of Shibata-Nakam
and Baumgarte-Shapiro in different implementations. In
companion paper@32#, we show empirically the strength o
this system over the standard ADM equations in numer
evolutions, at least in some of the implementations of
former set of equations. We study in particular the CT fo
mulations in numerical evolutions of strongly gravitatin
systems~see also@33#! and when coupled to hydrodynam
evolution equations, extending previous studies of we
fields @29# and of predetermined hydrodynamic sources@34#.
The main conclusion is that the CT formulation is mo
stable than the standard ADM formulation in all cases, wh
it needs more resolution for a given accuracy than ADM
some cases.

In this paper, we aim at developing a mathematical und
©2000 The American Physical Society11-1
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standing of the stability properties of the ADM and the C
equations. Ideally one would like to know if the differe
systems are well-posed. However, the systems of equa
as they stand are mixed first-second order systems an
such are not hyperbolic in any immediate sense. This ma
a study of their well-posedness particularly difficult. Becau
of this fact, we have chosen instead to study linear pertu
tions of a flat background and do a Fourier analysis.
believe that this analysis, though only valid in the line
regime, reveals important information about the stabi
properties of the different formulations.

We study in particular two types of zero speed modes
appear in the standard ADM formulation, the ‘‘gaug
modes’’ and the ‘‘constraint violating modes,’’ and wh
they turn into in different implementations of the CT syste
The main result of this paper is a conjecture that the z
speed modes are responsible for the instabilities seen in
integration of the ADM system, and a suggestion of h
they could be handled to obtain stable evolutions. We st
the point that we do not believe that these instabilities are
numerical origin. Instead, we believe that they correspon
genuine solutions of the exact system of differential eq
tions. A related analysis to the one we present here, but a
different lines, was recently carried out by Frittelli and Reu
@31#.

In Sec. II, we study the linearized ADM equations. In Se
III we introduce a model problem to help us understand
effect of the zero speed modes. In Sec. IV we discuss
gauge modes, and in Sec. V the constraint violating mod
In Sec. VI, numerical examples are considered. We concl
with Sec. VII. Comments on finite difference approximatio
to the linearized ADM equations can be found in the Appe
dix.

A final comment about the language used to describe
solutions to the different systems of equations. We have c
sen to refer to all solutions that satisfy the constraints
physicalsolutions, and those that do not asunphysical. Ac-
cording to this criterion we will consider pure gauge so
tions as physical solutions, even if they contain no r
physical information.

II. THE LINEARIZED ADM EQUATIONS

Let us consider first the standard ADM evolution equ
tions for the spatial metricgi j and extrinsic curvatureKi j
which in vacuum take the form

~] t2Lb!gi j 522aKi j , ~1!

~] t2Lb!Ki j 52DiD ja1a~Ri j 1KKi j 22KimK j
m!,

~2!

with Lb the Lie derivative with respect to the shift vectorb i ,
a the lapse function,Di the covariant derivative with respec
to the spatial metric,Ri j the Ricci tensor of the 3-geometry
andK5gi j Ki j .

Together with the evolution equations, one must also c
sider the Hamiltonian constraint

R1K22Ki j K
i j 50, ~3!
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and the momentum constraints

D j~Ki j 2gi j K !50. ~4!

Let us now take geodesic slicinga51 and zero shiftb i

50, and consider as well a linear perturbation of flat spa

gi j 5d i j 1hi j , ~5!

with hi j !1. The evolution equations now reduce to

] thi j 522Ki j , ~6!

] tKi j 5Ri j
(1) , ~7!

where the linearized Ricci tensor is given by

Ri j
(1)521/2~¹flat

2 hi j 2] iG j2] jG i ! ~8!

and where we have defined (h[tr hi j )

G iª(
k

]khik21/2] ih. ~9!

Notice thatG i is just the linearized version ofgmnGmn
i .

In the same way, we find that the linearized approxim
tion to the constraints is

(
k

]kf k50 ~Hamiltonian!, ~10!

] t f i50 ~momentum! ~11!

where now

f iª(
k

]khik2] ih. ~12!

The structure of the constraints is quite interesting. Th
just state that the vectorfW should be both divergenceless, an
time independent. Notice that both these conditions would
trivially satisfied if we were to choosefW50, which some-
what counterintuitively amounts to three conditions inste
of four. Notice also that asking for a transverse (]khik50)
and traceless (h50) solution means thatfW50, so the con-
straints are satisfied automatically. This is precisely wha
done when one chooses the standard transverse-trac
~TT! gauge.

Having found the linearized evolution equations, we no
proceed to do a Fourier analysis. Without loss of genera
~but see Appendix!, we can take the plane waves to be mo
ing in thex direction. The result for any other direction ca
be recovered by a simple tensor rotation later. We then
sume that we have a solution of the form

hi j 5ĥi j e
i (vt2kx), ~13!

Ki j 5K̂ i j e
i (vt2kx). ~14!

Equation~6! implies
1-2
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K̂ i j 52~ iv/2!ĥi j . ~15!

Substituting this into Eq.~7! we find

v2ĥ5k2M ĥ, ~16!

where we have defined the six-dimensional vector

ĥª~ ĥxx ,ĥyy ,ĥzz,ĥxy ,ĥxz ,ĥyz!, ~17!

and the matrix

M5S 0 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

D . ~18!

One can also find that the constraints~10! and~11! reduce
to the three~not four! conditions

ĥyy1ĥzz50, ~19!

ĥxy50, ~20!

ĥxz50, ~21!

where the first one of these equations results from both
Hamiltonian constraint and thex component of the momen
tum constraint, and the last two result from they andz com-
ponents of the momentum constraint, respectively.

It is straightforward to calculate the eigenvaluesl and
eigenvectors of the matrixM. They turn out to be as follows

l50, with corresponding eigenvectors

v15~1,0,0,0,0,0!, ~22!

v25~0,0,0,1,0,0!, ~23!

v35~0,0,0,0,1,0!. ~24!

l51, with corresponding eigenvectors

v45~2,1,1,0,0,0!, ~25!

v55~0,1,21,0,0,0!, ~26!

v65~0,0,0,0,0,1!. ~27!

What sort of solutions do the different eigenvectors re
resent? There are four different types of solutions: t
modes that satisfy all the constraints that travel with
speed of light (l51) represented by the transverse-tracel
vectorsv5 and v6; one mode that violates both the Ham
tonian and thex component of the momentum constrain
@compare with Eq.~19!#, that also travels with the speed o
light (l51) represented by the vectorv4; two transverse
modes that violate only the momentum constraints@compare
12401
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with Eqs. ~20! and ~21!#, and ‘‘travel’’ with speed zero (l
50) represented by the vectorsv2 and v3; one mode that
satisfies all the constraints that also has speed zero (l50)
represented by the vectorv1.

The three constraint satisfying modes are clearly phys
solutions. Of these, the two transverse-traceless trave
modes (v5 andv6) correspond to the standard gravitation
waves. What is the remaining physical modev1? The only
possibility is for it to be a pure gauge mode. To see that t
is indeed true all we need to check is that it corresponds
solution for which the 4-curvature Riemann tensor vanish
For this we start from the Gauss-Codazzi relations, which
first order are

(4)Ri jk
m 5 (3)Ri jk

m , ~28!

(4)Ri jk
0 5]kKi j 2] jKik , ~29!

(4)Ri0k
0 52] tKik . ~30!

Now, the fact thatv1 has dependence only onx ~by con-
struction!, and has a component corresponding only tohxx
implies that the right-hand side~RHS! of Eq. ~29! vanishes
and hence(4)Ri jk

0 50. Also, since this mode has zero spee
it corresponds to a mode for which] tKik50 which in turn
means that(4)Ri0k

0 50. Finally, it is not difficult to see that
for a solution that depends only onx and for which onlyhxx
is nonzero, the 3-curvature vanishes as well, which tells
that (4)Ri jk

m 50. The 4-Riemann is then identically zero, s
the modev1 is a pure gauge mode.

The presence of the zero speed modes (v1 , v2 andv3) is
troublesome: They do not represent nonevolving modes
one might think at first sight, but rather they represent mo
that annihilate the Ricci tensor. As such, they correspond
solutions for which the extrinsic curvature remains const
in time, and the metric functions grow linearly. With the fu
nonlinear ADM equations, this linear growth is likely to lea
to an instability.

In the next section we use a simple model problem
show how zero speed modes can indeed become unstab
the presence of nonlinear terms.

III. ZERO SPEED MODES: A MODEL PROBLEM

To understand the effects of zero speed modes on st
ity, we study the simple case of the one-dimensional wa
equation with a nonlinear source termF:

] t
2f2e]x

2f5dF~f,] tf,] tf!. ~31!

We investigate the stability of the system for different valu
of e andd. We will call the system unstable if the magnitud
of f grows faster than exponential in time at any fixed va
of x, and stable otherwise.

For d50, but e not equal to 0, we have the usual wav
equation. A Fourier decomposition of the form used in t
last section reveals two eigenmodes with propagation spe
l56Ae. The system is stable for all values ofe including
zero, if there is no source term (d50). With a source term,
1-3
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FIG. 1. Evolution off described by Eq.~33!,
with e51 andd520.01 at various times~from
t50 to t530 in equal time intervals!.
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it will still be stable for nonzeroe, but not so if e becomes
zero. For zeroe, the two propagation speeds degenerate
zero, and the system is unstable for a general source t
This can be shown analytically by writing Eq.~31! in first
order form:

] tS f

D

p
D 2S 0 0 0

0 0 1

0 e 0
D ]xS f

D

p
D 5S p

0

dF
D , ~32!

whereDª]xf andpª] tf. For e not equal to 0, the char
acteristic matrix~the matrix multiplying the]x term above!
has three independent eigenvectors: (1,0,0), (0,1,Ae), and
(0,1,2Ae). The eigenvector matrix and its inverse ha
bounded norms. The system is therefore strongly hyperb
which in turn guarantees its stability@35#.

Whene50, two of the eigenvectors become degenera
and the system becomes weakly hyperbolic@35#. For d50,
the system is still stable, with at most linear growth inf. But
for d nonzero and with a general source term, the system
unstable@35,36#.

As an example, we takeF5f2 in Eq. ~33!:

] t
2f2e]x

2f5df2. ~33!

When e is nonzero, there are no zero speed modes and
evolution is stable. In Fig. 1 we show the evolution off at
various times~from t50 to t530 in equal time intervals! for
the case ofe51 andd520.01~the initial data is a Gaussia
wave packet!. This evolution is very similar to that of a
nonlinear gravitational plane wave~see@37#!.

Next we tunee down to zero in Eq.~33!. The propagation
speed of the eigenmodes becomes zero. The initial Gaus
profile now does not propagate, instead it decreases in
plitude initially, becomes negative and eventually blows
See Fig. 2 for the evolution up tot55, with the same initial
data as before. In fact, this system is simple enough to
12401
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solved exactly. One can show that, at given value ofx, the
solution blows up as21/„t2c(x)…2, wherec is a constant
depending on the initial value off at that point. From this it
is clear thatf in fact becomes infinite after a finite time.

We have studied examples with different source ter
and have seen similar behavior, namely the systems bec
unstable whene goes to zero. To relate more directly th
scalar field instability to the ADM equations, we insert va
able parameters (e ’s! into the linearized ADM system stud
ied in the previous section. We examine the case in wh
the matrix M @in Eq. ~18!# contains variable parameter
e1 , e2, ande3:

M e5S e1 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 e2 0 0

0 0 0 0 e3 0

0 0 0 0 0 1

D . ~34!

For nonzero~positive! e ’s, the corresponding set of sec
ond order differential equations has no zero speed modes
investigate its stability, it is straightforward to break this se
ond order system into a first order system as in the sc
field study above. It is then easy to show that the result
first order system is strongly hyperbolic and hence stable.
we turn thee ’s to zero~recovering the ADM system!, zero
speed modes appear in the second order system and the
responding first order system becomes only weakly hyp
bolic. This is precisely what happened in the scalar fi
example above. We hence conjecture that the existenc
zero speed modes and the related weak hyperbolicity i
least one of the reasons why the ADM system becomes
stable in numerical evolutions when nonlinear source te
cannot be neglected~i.e., unstable when gravity and/or gaug
effects become strong!.
1-4
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FIG. 2. Evolution off described by Eq.~31!,
with e50 andd520.01 at various times~from
t50 to t530 in equal time intervals!.
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As an explicit example of such a transition between lin
growth and nonlinear blow up in the ADM case, we note t
well known case of focusing in geodesic slicing. It is pr
cisely the zero speed gauge mode discussed in the prev
section the one that represents the focusing of geodesic
ing. In the full nonlinear case this focusing produces a co
dinate singularity causing a blow up in a finite time.

One last comment comparing different blowing up so
tions is in order. We note that the nonlinear wave equat
~33! described above has solutions that blow up in a fin
time even in the case of a nonzero wave speed. Fore51 and
d51, two such solutions aref526/(t2c)2 ~with c a spa-
tial constant! and f524/(t22x2). However, these ‘‘blow-
ing up solutions’’ are fundamentally different from those
the zero-wave-speed case we focused on above. T
‘‘blowing up solutions’’ are blowing up in a global manne
and can come into existence in our numerical evolutions o
if we choose boundary conditions that allow them. In n
merical evolutions~at least those considered in this pap!
we typically start the evolution at a certain initial time in
compact computational domain with a certain chosen se
boundary conditions. The ‘‘blowing up solutions,’’ whic
are blowing up in a global manner can be excluded by
appropriate set of boundary conditions. On the other hand
the case whene50 andd.0, the unstable solution involve
an arbitrary function ofx. One can see that any initial da
with positivef will cause a local blow up, independently o
its initial profile. It cannot be excluded by choosing boun
ary conditions. The locality of the instability is the crux o
the problem making it dangerous in numerical evolutions

In the next sections, we focus on the zero speed mode
the case of the Einstein equations. We show how one
deal separately with the gauge mode and the constraint
lating modes.

IV. DEALING WITH THE GAUGE MODE:
DECOUPLING K

In trying to deal with the zero speed modes, we will fir
concentrate on the pure gauge mode: the modev1, associated
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with hxx in the analysis of Sec. II. Since this mode satisfi
all the constraints, it represents a physical solution of
evolution equations~even if it only corresponds to a non
trivial evolution of the coordinate system!, and hence canno
be eliminated. The most we can hope to achieve is to
couple it from the rest of the evolution equations, so tha
will be immune to possible numerical errors, in particul
those coming from the complicated Ricci tensor terms dr
ing the evolution.

Remarkably, such a decoupling is not difficult to achiev
Following @29,28,30# we first conformally rescale the metri
in the following way:

g̃i j 5e24fgi j , ~35!

with f chosen in such a way that the rescaled metricg̃i j has
unit determinant,

f5
1

12
logg. ~36!

We also define the conformally rescaled, trace-free par
the extrinsic curvatureKi j as

Ãi j 5e24fS Ki j 2
1

3
gi j K D . ~37!

The ADM equations~1! and ~2! can now be rewritten as
the following system of 14 evolution equations:

~] t2Lb!f52
a

6
K, ~38!

~] t2Lb!g̃i j 522aÃi j , ~39!

~] t2Lb!K52DiDia1a~R1K2!, ~40!

~] t2Lb!Ãi j 5e24f~2DiD ja1aRi j !
TF ~41!
1-5
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1a~KÃi j 22Ãil Ã j
l !, ~42!

subject to the extra constraintsg̃51, trÃ50.
The Hamiltonian and momentum constraints now beco

as

R2Ãi j Ã
i j 12K2/350, ~43!

D̃ j~Ãi j 22g̃i j K/3!16Ãi j ] jf50. ~44!

Notice that now we have separated out the ‘‘gauge’’ va
ables$f,K%, but we have not yet decoupled the evoluti
equation forK from the Ricci tensor. This last step can b
achieved by making use of the Hamiltonian constraint abo
Doing this, we can eliminate all reference to the Ricci ten
from the evolution equation forK. One can also use th
Hamiltonian constraint to eliminate the Ricci scalar from t
evolution equation forÃi j . In fact, one can consider addin
an arbitrary multiple of the Hamiltonian constraint to th
equation. We will then consider the evolution equations

~] t2Lb!f52
a

6
K, ~45!

~] t2Lb!g̃i j 522aÃi j , ~46!

~] t2Lb!K52DiDia1aS Ãi j Ã
i j 1

1

3
K2D , ~47!

~] t2Lb!Ãi j 5e24f~2DiD ja1aRi j !
TF

1
a

3
sg̃i j S R2Ãi j Ã

i j 1
2

3
K2D

1a~KÃi j 22Ãil Ã j
l !. ~48!

Notice thats51 will correspond to the case when th
Ricci scalar is eliminated from the evolution equation f
Ãi j .

As before, we will now concentrate on the case of geo
sic slicinga51 with zero shiftb i50, and consider a linea
perturbation of flat space,

g̃i j 5d i j 1h̃i j . ~49!

The evolution equations then become
12401
e
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] tf52K/6, ~50!

] th̃i j 522Ãi j , ~51!

] tK50, ~52!

] tÃi j 5Ri j
(1)2d i j R

(1)~12s!/3, ~53!

with Ri j
(1) the linear Ricci tensor. Notice now that to linea

orderK does not evolve at all: to linear order the evolution
the gauge variables$f,K% is therefore completely trivial. In
particular, if K is chosen to be zero initially, it will remain
exactly zero: no need for any exact cancellation.

Now, quite generally the Ricci tensor can be separa
into

Ri j 5R̃i j 1Ri j
f . ~54!

The first term aboveR̃i j is the Ricci tensor associated wit
the conformal metric which to linear order is

R̃i j
(1)521/2~¹flat

2 h̃i j 2] i G̃ j2] j G̃ i !, ~55!

with the G̃ i defined just as before, but now using the confo
mal metric

G̃ iª(
k

]kh̃ik21/2] i h̃. ~56!

The second term in Eq.~54! is the part of the Ricci tenso
coming from the conformal factorf which to first order is

Ri j
f (1)522~] i] jf1d i j ¹flat

2 f!. ~57!

Notice that one can easily prove that

detg̃i j 51⇒h̃50, ~58!

so we could in principle eliminate the second term in E
~56!. As we will see below, this is a bad idea, so here we w
just add instead a parameterj that will be equal to 0 if we
eliminate h̃, and equal to 1 if we do not~but see the next
section, where theG̃ ’s are promoted to independent var
ables!. We can then rewrite the first order Ricci tensor as

Ri j
(1)521/2@¹flat

2 h̃i j 1j] i] j h̃#1(
k

]k] ( i h̃ j )k

22@] i] jf1d i j ¹flat
2 f#. ~59!

Using this we can find the linearized version of the co
straints

(
i

] i f̃ i50 ~Hamiltonian!, ~60!

] t f̃ i50 ~momentum!, ~61!

where now
1-6
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f̃ iª(
j

] j h̃i j 28] if. ~62!

As before, having found the linearized form of the evo
tion equations, we will proceed to make a Fourier analysis
the system. We then assume that we have a solution o
form

f5f̂ei (vt2kx), ~63!

h̃i j 5ĥi j e
i (vt2kx), ~64!

K5K̂ei (vt2kx), ~65!

Ãi j 5Âi j e
i (vt2kx). ~66!

The evolution equations forf and h̃i j imply

K̂526ivf̂, Âi j 52
i

2
vĥi j . ~67!

Substituting this into the evolution equations forK and
Ãi j we find

v2ĥ5k2M ĥ, ~68!

where nowh is a seven-dimensional vector

ĥª~f̂,ĥxx ,ĥyy ,ĥzz,ĥxy ,ĥxz ,ĥyz!, ~69!

and

M5S 0 0 0 0 0 0 0

m21 m22 m23 m24 0 0 0

m31 m32 m33 m34 0 0 0

m41 m42 m43 m44 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

D , ~70!

with

m2158216~12s!/3, ~71!

m225~j21!„12~12s!/3…, ~72!

m235m245j2~j11!~12s!/3, ~73!

m315m4154216~12s!/3, ~74!

m325m4252~j21!~12s!/3, ~75!

m335m44512~j11!~12s!/3, ~76!

m345m4352~j11!~12s!/3. ~77!
12401
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The Hamiltonian and momentum constraints now redu
to the three equations~again, not four!

ĥxx28f̂50, ~78!

ĥxy50, ~79!

ĥxz50, ~80!

where as before, the first condition results from both
Hamiltonian constraint and thex component of the momen
tum constraints.

The eigenvaluesl and eigenvectors of the matrix~70! are
now somewhat more complicated. Let us consider first
eigenvalues on their own. They arel50, with multiplicity
3, l51, with multiplicity 2, and l5(s2113js6h)/6,
with

h5@11s~34242j!1s2~113j!2#1/2. ~81!

There are a couple of things to notice from the last t
eigenvalues. First, notice that if we takes50, one of these
eigenvalues is always negative, which implies the existe
of an exponentially growing mode, i.e., we have an unsta
system of equations. So wemustadd some multiple of the
Hamiltonian constraint to the evolution equation ofÃi j .
How much we need to add will depend on the value ofj.
Moreover, with a little algebra one can also see that tak
j50 results as well in a negative eigenvalue. This me
that if we had decided to use the constrainth̃50 (j50) in
the expression for the Ricci tensor, we would again have
unstable system of evolution equations. A safe value foj
turns out to bej51. If we choose this, the characterist
structure of the matrix~70! becomes the following.

l50, with corresponding eigenvectors

v15~1,8,24,24,0,0,0!, ~82!

v25~0,0,0,0,1,0,0!, ~83!

v35~0,0,0,0,0,1,0!, ~84!

v45~0,1,0,0,0,0,0!. ~85!

l51, with eigenvectors

v55~0,0,1,21,0,0,0!, ~86!

v65~0,0,0,0,0,0,1!. ~87!

l5(4s21)/3, with eigenvector

v75„0,~4s12!,~4s21!,~4s21!,0,0,0…. ~88!

Notice the last eigenvaluel5(4s21)/3 will only be
positive fors>1/4, which tells us that we must add at lea
this much of the Hamiltonian constraint to the evolutio
equation forÃi j . A natural choice is to takes51. This
1-7
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corresponds to completely eliminating the Ricci scalar fr
this equation, and results in the eigenvalue reducing to
physical speed of light.

The type of solutions that the different eigenvectors r
resent are~1! Two physical solutions that travel with th
speed of light (l51) represented by the transverse-tracel
vectorsv5 and v6, ~2! one mode that violates the Hami
tonian constraint, thex component of the momentum con

straint, and the constrainth̃50, that travels with the spee
equal to the square root of (4s21)/3, represented by th
vector v7, ~3! two modes that violate only the momentu
constraints, and ‘‘travel’’ with speed zero (l50) repre-
sented by the vectorsv2 andv3, ~4! one mode that violates
the Hamiltonian constraint, thex component of the momen

tum constraint, and the constrainth̃50 that has speed zer
(l50) represented by the vectorv4, and~5! one pure gauge
mode ~satisfying all the constraints! that travels with speed
zero (l50) represented by the vectorv1.

The structure of these eigenvalues and eigenvectors
us in the first place that one has to be careful in the way
which different constraints are added to the evolution eq
tions. The simple statement that one is in principle free
add multiples of constraints to evolution equations is t
only if one does not worry about the stability of the fin
system. In this case we have seen how using blindly
constrainth̃50 to simplify one of the equations results in th
appearance of an unstable mode, and how neglecting to
the Hamiltonian constraint in another equation also gives
to an unstable mode. A similar point has also been mad
@38# in the context of adding multiples of the Hamiltonia
constraint to the standard ADM evolution equations.

From the characteristic structure described above, we
see that we now have four zero speed modes instead of
~assuming we do takej51), so the situation would seem
worse than before. Three of these modes are constraint
lating, and we will worry about them in the next sectio
What about the gauge mode? The gauge mode is of co
still there, and it still has zero speed~as it should!, but now it
is in a much more convenient form. From looking atv1 we
see that its evolution depends on the evolution equation
f, which we have seen is trivial in the linear and nonline
case, and the evolution of the traceless part ofh̃i j , which is
also trivial as long as the constraint trÃ50 is satisfied@see
Eq. ~51!#. The important point is the following: the fact tha
this mode evolves trivially is now the consequence of
simple algebraic constraint trÃ50, and is independent o
exact cancellations inderivativesof the metric that appear in
the Ricci tensor. This provides an easy way to control
mode: Numerically setting trÃ to zero after each step of th
evolution ensures that the gauge mode cannot grow.

A comment is in order here. It has been recognized
some time@10,11,18# that gauge modes can propagate w
arbitrary speeds. The analysis presented above shows
constraint violating modes can do the same. Often one d
not think about these modes because they are unphys
and one can avoid exciting them with an appropriate cho
of initial data. However, from a numerical point of view
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they will never really vanish and as we have just seen t
can have important consequences on the stability of our e
lutions. Even when these modes have a real speed of pr
gation ~as opposed to an imaginary speed indicating an
stability on the analytic level!, if that speed is larger than th
speed of light they can cause numerical instabilities if o
forgets about their existence and chooses a time step b
only on the extension of the physical light cones.

V. DEALING WITH THE CONSTRAINT VIOLATING
MODES: USING THE MOMENTUM CONSTRAINTS

In the previous section we have seen how separating
the gauge variables$f,K% provides a way to control the zer
speed gauge mode. This still leaves us with the zero sp
constraint violating modes to worry about. Here we w
show how those modes can be dealt with by using the m
mentum constraints to modify the evolution equations of
tra first order degrees of freedom.

The idea of using the momentum constraints to mod
the evolution equations is at the core of many recent hyp
bolic reformulations of the Einstein equations@10–13#. In
particular, the use of the momentum constraints to obt
evolution equations for extra first order variables can
traced back to the Bona-Masso´ formulation@10,11#. Here we
will follow for simplicity the approach of Baumgarte an
Shapiro@29# ~a very similar approach has been used bef
by Shibata and Nakamura@28#!.

We will again concentrate on the case of geodesic slic
a51 with zero shiftb i50, and consider a linear perturba
tion of flat space. The linearized evolution equations w
given by Eqs.~50!–~53!. The Ricci tensor that appears in th
evolution equation forÃi j was separated as

Ri j
(1)5R̃i j

(1)1Ri j
f(1) , ~89!

with

R̃i j
(1)521/2~¹flat

2 h̃i j 2] i G̃ j2] j G̃ i ! ~90!

and

Ri j
f(1)522~] i] jf1d i j ¹flat

2 f!. ~91!

Now, instead of writing the quantitiesG̃ i in terms of their
definition ~56! as we did before, we will promote them t
independent quantities, and use Eq.~56! only to obtain their
initial values. We will then need an evolution equation f
the G̃ i . This we can obtain trivially from Eqs.~56! and~51!:

] tG̃ i522(
k

]kÃki1] i tr Ã. ~92!

Notice that we can use the fact thatÃi j is supposed to be
traceless to eliminate the last term above. However, we
do not know if this will turn out to be a good idea or not, s
instead we again introduce a parameterj and write
1-8
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] tG̃ i522(
k

]kÃki1j] i tr Ã. ~93!

There is still one extra modification we want to make
this evolution equation: We will add to it a multiple of th
momentum constraints~61! to obtain

] tG̃ i52~m21!(
k

]kÃki1j] i tr Ã2
4m

3
] iK, ~94!

with m arbitrary. Equation~94! above is our final evolution
equation for theG̃ i . Keeping theG̃ i as independent vari
ables, we also have to remember that we have introduced
extra constraintsG̃ i5(k]kh̃ik .

For the Fourier analysis, we again consider plane wa
moving along thex direction. From the evolution equation
for f and h̃i j we find

K̂526ivf̂, Âi j 52
i

2
vĥi j , ~95!

Substituting this in the evolution equations forG̃ i we obtain

Ĝx52 ik@~m211j/2!ĥxx1j/2~ ĥyy1ĥzz!28mf̂#,
~96!

Ĝy52 ik~m21!ĥxy , ~97!

Ĝz52 ik~m21!ĥxz . ~98!

And finally, substituting all these results back into the ev
lution equations forK and Ãi j we find

v2ĥ5k2M ĥ, ~99!

whereh is the same as before

ĥª~f̂,ĥxx ,ĥyy ,ĥzz,ĥxy ,ĥxz ,ĥyz!, ~100!

and where the matrixM is now

M5S 0 0 0 0 0 0 0

m21 m22 m23 m24 0 0 0

m31 m32 m33 m34 0 0 0

m41 m42 m43 m44 0 0 0

0 0 0 0 m 0 0

0 0 0 0 0 m 0

0 0 0 0 0 0 1

D , ~101!

with

m2158~122m!216~12m!~12s!/3, ~102!

m225~2m1j21!„12~12s!/3…, ~103!

m235m245j2~j11!~12s!/3, ~104!
12401
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m315m4154216~12m!~12s!/3, ~105!

m325m4252~2m1j21!~12s!/3, ~106!

m335m44512~j11!~12s!/3, ~107!

m345m4352~j11!~12s!/3. ~108!

Notice that introducing theG̃ i as independent variables b
itself does not change our analysis based onM, which is
obtained by eliminating theĜ i . But the evolution equations
for the G̃ i motivate the introduction of the parameterm,
whose effect we consider now. The eigenvalues of the ma
~101! turn out to bel50, with multiplicity 1, l5m, with
multiplicity 2, l51, with multiplicity 2, and l5(1/6)@b
6(b22c)1/2#, with

b5211s13js12m~21s!, ~109!

c536s~211j12m!. ~110!

The last two eigenvalues are quite complicated, so we
concentrate for the moment on the particular cases51. In
that case the eigenvalues and eigenvectors ofM reduce to the
following.

l50, with corresponding eigenvector

v15~1,8,24,24,0,0,0!. ~111!

l5m, with corresponding eigenvectors

v25~0,0,0,0,1,0,0!, ~112!

v35~0,0,0,0,0,1,0!. ~113!

l51, with eigenvectors

v45„0,2j/~222m2j!,1,1,0,0,0…, ~114!

v55~0,0,1,21,0,0,0!, ~115!

v65~0,0,0,0,0,0,1!. ~116!

l52m1j21, with eigenvector

v75~0,1,0,0,0,0,0!. ~117!

And the type of solutions represented are~1! two physical
solutions that travel with the speed of light (l51) repre-
sented by the transverse-traceless vectorsv5 andv6, ~2! one
mode that violates the Hamiltonian constraint, thex compo-
nent of the momentum constraints, and the constrainth̃50
that also travels with the speed of light (l51) represented
by the vectorv4, ~3! two modes that violate only the mo
mentum constraints, and travel with speedm1/2 represented
by the vectorsv2 and v3, ~4! one mode that violates th
Hamiltonian constraint, thex component of the momentum
constraints and the constrainth̃50 that has speed (2m1j
21)1/2 represented by the vectorv7, and~5! one pure gauge
mode ~satisfying all the constraints! that travels with speed
zero (l50) represented by the vectorv1.
1-9
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Notice first that all constraint violating modes have no
acquired a nonzero speed. If we want to have all eigenva
non-negative~and hence all speeds real!, we must have

m>0, ~118!

and

2m1j21>0⇒m>
12j

2
. ~119!

In particular, if we takej50 ~that is if we use the fact tha
tr Ã50 in the evolution equation forG̃ i) then we must have
m.1/2. So in order to have a stable system wemustadd a
finite multiple of the momentum constraints to the evoluti
equation forG̃ i . If we fail to use the momentum constraint
the system will have an exponentially growing mode. This
consistent with the results of the last section, where we
not have theG i ~which in some sense is equivalent to n
using the momentum constraints!, and we found that taking
j50 resulted in an unstable system.

Notice also that if we take

m51, j50, ~120!

then we have one zero speed mode and six modes that t
with the speed of light. This is precisely the choice made
Baumgarte and Shapiro in@29#, so the result above explain
why it was necessary in their case to add a multiple of
momentum constraints, and also why one should expec
have only the speed of light as a characteristic speed in t
system. In the casem51, j50, the eigenvectorv4 might
appear at first sight to be singular, but from the form that
matrix M takes in this particular case it is not difficult t
show that in factv4 is replaced by (0,0,1,1,0,0,0) with a
other eigenvectors remaining unchanged. The only z
speed mode left is the pure gauge modev1, but as we have
seen before, its evolution does not rely any more on ex
cancellations in the Ricci tensor.

Finally, let us consider again the case whensÞ1, but
now keepingm51 and j50. In this case the eigenvalue
and eigenvectors become the following.

l50, with corresponding eigenvector

v15~1,8,24,24,0,0,0!. ~121!

l51, with corresponding eigenvectors

v25~0,0,0,0,1,0,0!, ~122!

v35~0,0,0,0,0,1,0!, ~123!

v45~0,22,1,1,0,0,0!, ~124!

v55~0,0,1,21,0,0,0!, ~125!

v65~0,0,0,0,0,0,1!. ~126!

l5s, with eigenvector

v75~0,1,1,1,0,0,0!. ~127!
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We see now that depending on how large a multiple of
Hamiltonian constraint we add to the evolution equation
Ãi j , we can change the speed of propagation of the m
that represents the trace ofh̃i j ~and hence the trace ofÃi j ). If
we do not use the Hamiltonian constraint at all (s50), we
will again have a zero speed unphysical mode. However,
is not as bad as it might seem because in practice this m
is very easy to control since it will vanish if one imposes t
algebraic constraint trÃ50.

VI. NUMERICAL EXAMPLES: STABILITY
OF MINKOWSKI SPACETIME

To compare the stability properties of the different sy
tems in a simple situation we will consider the evolution
Minkowski spacetime, with a flat initial slice, but with
nontrivial spatial coordinate system. Since the extrinsic c
vature is zero, the spacetime should then remain static.
merically, of course, the Ricci tensor will not be exact
zero, so we can expect some nontrivial evolution, but if
system is stable we will only have spurious numerical no
that should propagate away. If the system is unstable, h
ever, we can expect that the numerical noise will slow
grow in amplitude. We will be evolving the full nonlinea
equations, so the initially slow growth of the numerical noi
can be expected to trigger nonlinear growth at late times

In order to obtain our initial metric, we start from the fla
space metric in spherical coordinates

dl25dr21r 2 dV2, ~128!

with dV2 the solid angle element. We then make the follo
ing coordinate transformation:

r 5 r̃ „12a f~ r̃ !…, ~129!

with 0<a,1 and f ( r̃ ) a smooth monotonously decreasin
function that is 1 for smallr̃ and 0 for larger̃ . The particular
form of the functionf that we will use here is a Gaussian

f ~ r̃ !5e2 r̃ 2/s2
. ~130!

In terms of the new radial coordinate the metric becom

dl25g11dr̃ 21 r̃ 2g22dV2, ~131!

with

g115@12a~ f 1 r̃ f 8!#2, ~132!

g225~12a f !2. ~133!

Finally, for our 3D evolutions we transform this metric t
Cartesian coordinates in the standard way,

x5 r̃ sinu cosf, ~134!

y5 r̃ sinu sinf, ~135!

z5 r̃ cosu. ~136!
1-10



e

TOWARDS AN UNDERSTANDING OF THE STABILITY . . . PHYSICAL REVIEW D62 124011
FIG. 3. Surface plot ofgxx along thex axis as
a function of time for the simulation using th
standard ADM formulation.
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So our initial metric is

gxx5@x2g111~y21z2!g22#/ r̃
2, ~137!

gyy5@y2g111~x21z2!g22#/ r̃
2, ~138!

gzz5@z2g111~x21y2!g22#/ r̃
2, ~139!

gxy5xy~g112g22!/ r̃
2, ~140!

gxz5xz~g112g22!/ r̃
2, ~141!

gyz5yz~g112g22!/ r̃
2. ~142!

We must also say something about the gauge condit
used. For simplicity, we will use a zero shift vector. For t
lapse we could try geodesic slicing, but even small numer
12401
ns

al

perturbations will cause focusing~we are evolving the full
nonlinear Einstein equations!. It is better to use a slicing tha
can react to the evolution and can propagate away spur
numerical waves. Harmonic slicing is ideal for our purpos
It is defined via the following evolution equation for th
lapse:

] ta52a2K. ~143!

SinceK is initially set to 0, the lapse should remain 1 if th
evolution is exact.

Finally, a comment about boundary conditions. We ha
used a very simple ‘‘zero order extrapolation’’ bounda
condition, that is, we update the boundary by just copy
the value of a given field from its value one grid point
~along the normal direction to the boundary!. This condition
is not very physical, nor does it allow waves to leave t
computational grid cleanly enough, but it is very robust, a
can be used with all the different formulations studied h
in a stable way~at least for the time scales under study!.
Since our emphasis is on the stability of the interior evo
n
n

FIG. 4. Root mean square of the Hamiltonia
constraint as a function of time for the simulatio
using the standard ADM formulation.
1-11



f
a

n
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FIG. 5. Root mean square o
the Hamiltonian constraint as
function of time for the simulation
using the standard CT formulatio
with j50 and two different val-
ues ofs.
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tion, we are content with having a stable boundary conditi
We have used more sophisticated boundary condition
various cases, but it is difficult to find one that will rema
stable for all the evolution systems considered.

We now present results of simulations performed with
different systems. The numerical method used in all th
simulations was the so-called ‘‘iterative Crank-Nicholson
~ICN! scheme with three iterations. We have found that th
iterations are enough to obtain a stable, second order a
rate numerical scheme@32#.

First we show the results of a simulation using the st
dard ADM formulation for the case whena50.1 ands52.
For this simulation we used a grid with 643 points and a
resolution onDx50.2. Figure 3 shows a surface plot ofgxx
along thex axis as a function of time. We see thatgxx keeps
its initial shape for some time, but at late times it starts to
apart near the center. The simulation finally crashest
579. Figure 4 shows the root mean square~rms! of the
Hamiltonian constraint over the numerical grid as a funct
of time. We see that for a long time there is an essenti
linear growth of the rms of the Hamiltonian constraint sup
imposed with small oscillations, just what we expect fro
the linear analysis of the previous sections. At late tim
however, the nonlinear effects take over and we have a c
strophic blowup, as we argued above.

Next, we show results of the conformally rescaled syst
of Sec. IV, usingj51, and two different values ofs: s
12401
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50 ~no use of the Hamiltonian constraint! ands51 ~use of
the Hamiltonian constraint to completely eliminate the Ric

scalar from the evolution equation forÃi j ). From our analy-
sis we expect the system withs50 to have an exponentially
growing mode and thus to be very unstable. Thes51
should only have the zero speed modes and should be m
more stable~but still not completely stable!. Figure 5 shows
the rms of the Hamiltonian constraint for these two runs. W
see that our predictions are indeed correct, thes50 run
becomes rapidly unstable and crashes att54, while thes
51 is far more stable and only crashes att533.

We now show the results of the choices50, m51, j
50 in Sec. V, as used by Baumgarte-Shapiro@29#. We have

set trÃi j to zero at each step as discussed above. Figu
shows again a surface plot ofgxx along thex axis as a func-
tion of time ~but notice the change of scale!. The evolution
now goes pastt5500 with no trace of an instability. Figure
7 shows the rms of the Hamiltonian constraint for this ru
The Hamiltonian constraint rapidly becomes much larg
than in the ADM case at early times~by almost a factor of
10!. However, it then stops growing and simply oscillat
around a constant value, showing again no sign of the lin
growth or the blowup that we saw for ADM.

Finally, we show results of a series of simulations do
by keepings50 andj50, but changing the value ofm ~the
amount of momentum constraint added to the evolut
e

FIG. 6. Surface plot ofgxx along thex axis as

a function of time for the simulation using th
Baumgarte-Shapiro formulation.
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FIG. 7. Root mean square of the Hamiltonia
constraint as a function of time for the simulatio
using the Baumgarte-Shapiro formulation.
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equation of theG̃ ’s!. Figure 8 shows the rms of the Hami
tonian constraint for runs withm5$0,0.25,0.5,0.75% ~com-
pare with them51 case shown above!. As expected from
our analysis, we see that the cases withm,1/2 rapidly be-
come unstable. The simulation withm50 crashes att54
while the one withm50.25 crashes att512. On the other
hand, the cases withm>0.5 remain stable pastt5400.

VII. CONCLUSIONS

We have studied the stability properties of the stand
ADM formulation of general relativity based on a linear pe
turbation analysis. We focus attention on the zero sp
modes. We conjecture that the zero speed modes can c
instabilities in evolutions of the ADM system in its standa
form. These instabilities do not have a numerical origin,
rather they correspond to genuine blowing-up solutions
12401
d

d
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t
f

the differential equations.
We show that the zero speed modes come in two form

pure gauge mode that satisfies all the constraints, an
therefore a legitimate physical solution, and a series of n
physical constraint violating modes. We investigate t
change in behavior of these modes going from the stand
ADM formulation to the conformal-traceless~CT! systems
of Shibata and Nakamura@28# and Baumgarte and Shapir
@29#, and their derivatives. Two features we believe resp
sible for the better stability property of the conformal sy
tems are identified.~1! The zero speed gauge mode is go
erned by an equation that is free from the complication of
Ricci tensor, thus decoupling it from the rest of the syste
~2! The constraint violating zero speed modes, on the ot
hand, acquire a finite speed of propagation due to the in
duction of extra first order degrees of freedom, and the us
the momentum constraints to modify the evolution equatio
f
a

-

t
n

FIG. 8. Root mean square o
the Hamiltonian constraint as
function of time for the simulation
using the Baumgarte-Shapiro for
mulation with different multiples
of the momentum constrain
added to the evolution equatio

for the G̃ ’s ~different values of the
parameterm).
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for these degrees of freedom. We present numerical
amples to support our analysis.

We consider the study presented in this paper as a
step towards the understanding of the stability issue in
numerical evolution of the Einstein equations.
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APPENDIX A: FINITE DIFFERENCE APPROXIMATION
TO THE LINEARIZED ADM EQUATIONS

We will consider a simple finite difference approximatio
to the linearized ADM evolution equations written in seco
order form. For this we start from Eqs.~6! and ~7!, and
substitute one into the other to find

] t
2hi j 2¹flat

2 hi j 5] i] jh22(
m

] ( i]mhj )m . ~A1!

We now construct a simple second order finite differen
approximation to this equation using standard centered
ferences,

] t
2f .

1

~Dt !2
d t

2f m
n , ~A2!

] i
2f .

1

~Dx!2
d i

2f m
n , ~A3!

with f m
n 5 f (t5nDt,xi5miDx) and

d t
2f m

n 5 f m
n1122 f m

n 1 f m
n21 , ~A4!

d i
2f m

n 5 f mi11
n 22 f mi

n 1 f mi21
n . ~A5!

Let us now consider a plane wave solution of the form

~hi j !m
n 5ĥi j e

i (nvDt1m•kDx). ~A6!

But notice now that we allow the waves to move along a
direction. This is because even if different directions a
equivalent from the analytic point of view, they are n
equivalent numerically because the numerical grid int
duces preferred directions.

If we substitute this into the finite difference approxim
tion to Eq.~7! we find the following equation:

2

r2
@12cos~vDt !#ĥ5M̃ ĥ, ~A7!

whererªDt/Dx is the Courant parameter,ĥ is defined as
before,

ĥª~ ĥxx ,ĥyy ,ĥzz,ĥxy ,ĥxz ,ĥyz!, ~A8!
12401
x-

st
e

.

p-

e
if-

y
e

-

andM̃ is the matrix

M̃5S uy
21uz

2 ux
2 ux

2 2sxy 2sxz 0

uy
2 ux

21uz
2 uy

2 2sxy 0 2syz

uz
2 uz

2 ux
21uy

2 0 2sxz 2syz

0 0 2sxy uz
2 syz sxz

0 2sxz 0 syz uy
2 sxy

2syz 0 0 sxz sxy ux
2

D ,

~A9!

where we have defined

ui
2
ª2@12cos~kiDx!#, ~A10!

si j ª2sin~kiDx!sin~kjDx!.
~A11!

Let us now define

lª
2

r2
@12cos~vDt !#. ~A12!

Equation~A7! now becomes

M̃ ĥ5lĥ, ~A13!

which is just an eigenvalue equation. Here we face one pr
lem: the characteristic polynomial is of 6th order, and
difficult to solve exactly in the general case. We will the
consider a couple of particular cases.

First, assume that the wave moves only on thex direction,
soky5kz50. In this case everything simplifies considerab
and we find that the eigenvalues ofM̃ are justl50, with
multiplicity 3 andl5ux

2 , with multiplicity 3.
This has precisely the same structure we found before

the exact system of differential equations. The only diffe

FIG. 9. Eigenvalues of the characteristic matrixM̃ . The solid
lines indicate the four distinct eigenvalues, while the dashed
indicates the eigenvalue one would obtain for the finite differen
approximation to the simple 3D wave equation.
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ence being that the wave speed is now not quite 1. The w
speed in fact depends on the wave numberkx , and can be
obtained from the dispersion relation

2

r2
@12cos~vDt !#5ux

2 . ~A14!

Notice that for smallkxDx ~large wavelengths compare
to the grid spacing! this relation reduces to

v25kx
2 , ~A15!

which is what one expects. For smaller wavelengths we
tain wave speeds that are smaller than 1, showing the dis
sive nature of the finite difference approximation.

The results above are not particularly surprising. One
tains essentially the same thing for the simple wave equat
The interesting case is when we consider waves moving
direction different from the coordinate lines. We will the
consider the particular case of waves moving in the diago
direction, for whichkx5ky5kz[k. The characteristic poly-
nomial now does not simplify nearly as much, but one c
still find the eigenvalues analytically. They arel5u22s2,
with multiplicity 2; l5u212s2, with multiplicity 2, andl
5 1

2 @5u222s26(9u4212s4112u2s2)1/2#, where
ld

rk

rk

12401
ve

b-
er-

-
n.
a

al

n

u252@12cos~kDx!#, s25sin2~kDx!. ~A16!

The values of the different roots are shown in Fig. 9. T
solid lines indicate the four distinct eigenvalues, while t
dashed line indicates the eigenvalue one would obtain~also
along the diagonal line! for the finite difference approxima
tion to the simple 3D wave equationl53u2. The plot is
only in the regionkDxP@0,p# since larger wave number
can not be represented on the numerical grid (k5p/Dx is
the so-called ‘‘Nyquist’’ frequency of our grid!.

There are several things to notice from this result. Fi
we now have four distinct eigenvalues instead of two:
numerical grid has broken the degeneracy of the exact p
lem. Second, the three eigenvalues that where zero in
exact case are now only zero fork50, and are clearly non-
zero for any finitek. This shows that the zero speed mod
have picked up a nonzero speed in the numerical approxi
tion. This artificial speed is very small for large wavelengt
~small k), but becomes considerable for smaller wav
lengths. Finally, we see that for small values ofk we recover
the exact result: one eigenvalue vanishes ask6/12, two as
k4/4, and the other three go to zero as 3k2, which is the
correct result for waves traveling with a speed of 1 along
diagonal.
ds

2

r-

.

ev.
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