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We study the stability properties of the standard ADM formulation of thel 3evolution equations of
general relativity through linear perturbations of flat spacetime. We focus attention on modes with zero speed
of propagation and conjecture that they are responsible for instabilities encountered in numerical evolutions of
the ADM formulation. These zero speed modes are of two kinds: pure gauge modes and constraint violating
modes. We show how the decoupling of the gauge by a conformal rescaling can eliminate the problem with the
gauge modes. The zero speed constraint violating modes can be dealt with by using the momentum constraints
to give them a finite speed of propagation. This analysis sheds some light on the question of why some recent
reformulations of the 31 evolution equations have better stability properties than the standard ADM
formulation.

PACS numbe(s): 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Lf

[. INTRODUCTION direction there have also been various attempts to improve
stability and accuracy by modifying the ADM system. To
There has been an intense effort in trying to develop nuavoid instabilities due to constraint violation, fully or par-
merical relativity for the study of astrophysical phenomenatially constrained evolutions have been tried and the addition
involving black holes and neutron stars. Most investigation®f “constraint enforcing terms” into the ADM evolution
in numerical relativity for the last 30 years have been basegduations has been proposed and attemp2t25 (cf.
on the Arnowitt-Deser-MisnefADM) [1] system of evolu- [26]). Methods to better enf_orc_e_ gauge conditions have also
tion equations and many important results have been of2€en suggestefl7]. Most significant and relevant for our

tained in spherical symmetry and axisymmetry. However, ilPf€Sent paper is an approach based on separating out the
the general three-dimensior@D) case which is needed for conformal and traceless part of the ADM system, first devel-

the simulation of realistic astrophysical systems, it has nof’ped by Shibata and Nakamuf@g]. Unfortunately, the

been possible to obtain long term stable and accurate evol&-trength of the Shibata-Nakamura approach was not widely

tions (although some good progress has been made, see, e §tppr§ci3ted, un;il Baulmgarte ar?d Shagzé]dcompared ;heh
. ’ ' 'standard ADM formulation with a modified version of the
[2-5]). One might argue that present day computational "®Shibata-Nakamura formulation on a series of test cases,

sources are still insufficient to carry out high enough resolugy, ,ying the remarkable stability properties of the conformal-

tion 3D simulations. However, the Qiﬁiculty is likely to be traceless(CT) system. This has triggered much recent re-
more fundamental than that. There is no theorem guarante@garch in the community, including what we are reporting
ing the well-posedness of the initial-boundary value probleMyere and in a companion paper. There also have been inter-
for the full ADM SyStem. In partiCUlar, one must consider the esting results Connecting the conformal approach to the hy_
possibility that free evolutions using the ADM system might perbolic approach23,30,3].
be unstable, e.g., against constraint violations in 3D. There |n this and a companion paper we compare the standard
are also well-known complications due to the gaugmordi-  ADM equations to the CT equations of Shibata-Nakamura
nate degrees of freedom in the theory. This is one of theand Baumgarte-Shapiro in different implementations. In the
major open problems in numerical relativity. companion papef32], we show empirically the strength of
Against this background of the need and failure to obtairthis system over the standard ADM equations in numerical
long term stable, accurate 3D simulations in numerical relaevolutions, at least in some of the implementations of the
tivity, in the last decade there has been a lot of effort lookingformer set of equations. We study in particular the CT for-
for alternative formulations of the<31 equations, which can mulations in numerical evolutions of strongly gravitating
be roughly separated in two directiori. In the mathemati- systems(see alsd33]) and when coupled to hydrodynamic
cal direction, several first order hyperbolic formulations haveevolution equations, extending previous studies of weak
been proposed, and conditions on the well posedness of thields[29] and of predetermined hydrodynamic sourfe4).
initial-boundary value problem have been stud[&d-23. The main conclusion is that the CT formulation is more
Unfortunately there is as yet no evidence that the hyperbolistable than the standard ADM formulation in all cases, while
re-formulations lead to significant improvements in generalt needs more resolution for a given accuracy than ADM in
3D numerical calculation&espite encouraging results in the some cases.
spherical symmetric cagél]). () In the more “empirical” In this paper, we aim at developing a mathematical under-
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standing of the stability properties of the ADM and the CT and the momentum constraints

equations. Ideally one would like to know if the different o

systems are well-posed. However, the systems of equations D;j(K"—-g"K)=0. (4)
as they stand are mixed first-second order systems and as C o
such are not hyperbolic in any immediate sense. This makes Let us now_take geodesm_sllcmgzl and_zero shifi3
a study of their well-posedness particularly difficult. Because™ 0+ @nd consider as well a linear perturbation of flat space
of this fact, we have chosen instead to study linear perturba-
tions of a flat background and do a Fourier analysis. We
believe that this analysis, though only valid in the linearyt, hij<1. The evolution equations now reduce to
regime, reveals important information about the stability

gij= &ij +hij, )

properties of the different formulations. gihij= —2K; , (6)
We study in particular two types of zero speed modes that
appear in the standard ADM formulation, the ‘“gauge K= Ri(jl)- (7)

modes” and the “constraint violating modes,” and what

they turn into in different implementations of the CT system.where the linearized Ricci tensor is given by

The main result of this paper is a conjecture that the zero ) )

speed modes are responsible for the instabilities seen in the Rij’=—U2AVihij—ail'j—aI't) ()

integration of the ADM system, and a suggestion of how i

they could be handled to obtain stable evolutions. We stres@nd where we have defined<trh;;)

the point that we do not believe that these instabilities are of

numerical origin. Instead, we believe that they correspond to T ::E Ay —1/29;h. (9

genuine solutions of the exact system of differential equa- k

tions. A related analysis to the one we present here, but alon'% i . ) i ) i

different lines, was recently carried out by Frittelli and ReulaNotice thatl'; is just the linearized version @f"T'r,,.

[31]. . In the same way, we find that the linearized approxima-
In Sec. Il, we study the linearized ADM equations. In Sec.tion to the constraints is

[Il we introduce a model problem to help us understand the

effect of the zero speed modes. In Sec. IV we discuss the 2 df =0 (Hamiltonian, (10)

gauge modes, and in Sec. V the constraint violating modes. k

In Sec. VI, numerical examples are considered. We conclude

with Sec. VII. Comments on finite difference approximations afi=0 (momentum (11)
to the linearized ADM equations can be found in the Appen-
dix. where now

A final comment about the language used to describe the
solutions to the different systems of equations. We have cho- fi=>, dchi—aih. (12
sen to refer to all solutions that satisfy the constraints as k
physicalsolutions, and those that do not asphysical Ac-

cording to this criterion we will consider pure gauge solu- The structure of the constraints is quite interesting. They

tions as physical solutions, even if they contain no reajust state that the vectdrshould be both divergenceless, and

physical information. time independent. Notice that both these conditions would be
trivially satisfied if we were to choosé=0, which some-
Il. THE LINEARIZED ADM EQUATIONS what counterintuitively amounts to three conditions instead

of four. Notice also that asking for a transversgh;,=0)

and tracelessh=0) solution means that=0, so the con-
straints are satisfied automatically. This is precisely what is
done when one chooses the standard transverse-traceless

Let us consider first the standard ADM evolution equa-
tions for the spatial metrig;; and extrinsic curvaturé;;
which in vacuum take the form

(0= Lp)Gij= —2aKj;, (1) (TT) gauge. . . . .
Having found the linearized evolution equations, we now
(39— LK = —DiDja+ a(Ry +KKj;— 2KinK™) proceed to do a Fourier analysis. Without loss of generality
1 =] 1] ij imfhj /s

) (but see Appendix we can take the plane waves to be mov-
ing in thex direction. The result for any other direction can
with £, the Lie derivative with respect to the shift vecier, be recovered by a simple tensor rotation later. We then as-
« the lapse functionD; the covariant derivative with respect sume that we have a solution of the form
to the spatial metricR;; the Ricci tensor of the 3-geometry,

andK=g'Kj; . hyj = by el (@t~ (13
Together with the evolution equations, one must also con- o
sider the Hamiltonian constraint Kij=Kjje'let=k, (14
R+K?—K;;K'=0, ©) Equation(6) implies
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R,J=—(Iw/2)ﬁ” (15)
Substituting this into Eq(7) we find
w?h=k2Mh, (16)
where we have defined the six-dimensional vector
ﬁ:=(ﬁxxrﬁyyrﬁzz’ﬁxyvﬁxzvl’:]yz): (17)
and the matrix
0O 1 1 00
0O 1 00 OO
0O 01 0 OO
M=o 000 0 0 (18
O 000 OO0
0O 000 0 1

One can also find that the constraifit) and(11) reduce
to the three(not four) conditions

hyy+h,,=0, (19
hxy,=0, (20)
h,,=0, (22)

PHYSICAL REVIEW D62 124011

with Egs. (20) and (21)], and “travel” with speed zero X
=0) represented by the vectoss andvs; one mode that
satisfies all the constraints that also has speed 2ero0(
represented by the vectoy.

The three constraint satisfying modes are clearly physical
solutions. Of these, the two transverse-traceless traveling
modes {5 andvg) correspond to the standard gravitational
waves. What is the remaining physical magg? The only
possibility is for it to be a pure gauge mode. To see that this
is indeed true all we need to check is that it corresponds to a
solution for which the 4-curvature Riemann tensor vanishes.
For this we start from the Gauss-Codazzi relations, which to
first order are

(4)Rif'][1k = (3)RiTk , (28)
(4)Ri(}k:0"kKij_0-'jKik’ (29)
DR = — K. (30)

Now, the fact that, has dependence only en(by con-
structior), and has a component corresponding onhh{q
implies that the right-hand sidé&RHS) of Eq. (29) vanishes
and hence®R}}, =0. Also, since this mode has zero speed,
it corresponds to a mode for whichK; =0 which in turn
means that¥R%,=0. Finally, it is not difficult to see that
for a solution that depends only srand for which onlyh,,
is nonzero, the 3-curvature vanishes as well, which tells us

that(4)R{}‘k=O. The 4-Riemann is then identically zero, so

where the first one of these equations results from both thgye modey, is a pure gauge mode.

Hamiltonian constraint and thecomponent of the momen-

tum constraint, and the last two result from thandz com-
ponents of the momentum constraint, respectively.
It is straightforward to calculate the eigenvaluesand
eigenvectors of the matridl. They turn out to be as follows.
N=0, with corresponding eigenvectors

v,=(1,0,0,0,0,0, (22)
v,=(0,0,0,1,0,0, (23
v3=(0,0,0,0,1,0. (29
A=1, with corresponding eigenvectors
v,4=(2,1,1,0,0,0, (25
vs=(0,1-1,0,0,0, (26)
v6=(0,0,0,0,0,1. (27)

The presence of the zero speed modes ¢, andvy) is
troublesome: They do not represent nonevolving modes as
one might think at first sight, but rather they represent modes
that annihilate the Ricci tensor. As such, they correspond to
solutions for which the extrinsic curvature remains constant
in time, and the metric functions grow linearly. With the full
nonlinear ADM equations, this linear growth is likely to lead
to an instability.

In the next section we use a simple model problem to
show how zero speed modes can indeed become unstable in
the presence of nonlinear terms.

Ill. ZERO SPEED MODES: A MODEL PROBLEM

To understand the effects of zero speed modes on stabil-
ity, we study the simple case of the one-dimensional wave
equation with a nonlinear source teifm

G p—ed2p=OF (¢, 01, 01b). (31

What sort of solutions do the different eigenvectors rep-We investigate the stability of the system for different values
resent? There are four different types of solutions: twoof e and . We will call the system unstable if the magnitude
modes that satisfy all the constraints that travel with theof ¢ grows faster than exponential in time at any fixed value
speed of light L =1) represented by the transverse-tracelesf x, and stable otherwise.

vectorsvs andvg;, one mode that violates both the Hamil-

For 6=0, bute not equal to 0, we have the usual wave

tonian and thex component of the momentum constraints equation. A Fourier decomposition of the form used in the
[compare with Eq(19)], that also travels with the speed of last section reveals two eigenmodes with propagation speeds

light (\=1) represented by the vector,; two transverse
modes that violate only the momentum constrajotsmpare

A== e. The system is stable for all values efincluding
zero, if there is no source ternd€0). With a source term,
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Evolution of ¢
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it will still be stable for nonzerce, butnot so if e becomes ~ solved exactly. One can show thzat, at given value,athe
zero. For zerce, the two propagation speeds degenerate t¢0lution blows up as-1/(t—c(x))?, wherec is a constant
zero, and the system is unstable for a general source terrfi€Pending on the initial value @b at that point. From this it
This can be shown analytically by writing E¢B1) in first IS clear thatg in fact becomes infinite after a finite time.

order form: We have studied examples with different source terms
and have seen similar behavior, namely the systems become
¢ 0 0 O ¢ T unstable where goes to zero. To relate more directly this
D 0 0 1 D 0 scalar field instability to the ADM equations, we insert vari-
A - dy = , (32)  able parameterse(s) into the linearized ADM system stud-
0 €O ™ oF ied in the previous section. We examine the case in which

the matrix M [in Eq. (18)] contains variable parameters

whereD =3, and m:=a,¢. For e not equal to 0, the char- €1+ €2, andes:
acteristic matrix(the matrix multiplying thed, term abové

has three independent eigenvectors: (1,0,0), (@)1, and e 1 1 0 0 O

(0,1~ \e). The eigenvector matrix and its inverse have 0 1.0 0 O O

bounded norms. The system is therefore strongly hyperboalic, 0010 0 0

which in turn guarantees its stabilifg5]. M = (34)
Whene=0, two of the eigenvectors become degenerated ¢ 0 0 0e O O

and the system becomes weakly hyperbf86|. For =0, 0 00 0 & O

the system is still stable, with at most linear growthfinBut

for 6 nonzero and with a general source term, the system is 0 00 0 01

unstabl€g 35,36].
As an example, we takE= ¢? in Eq. (33): For nonzero(positive €'s, the corresponding set of sec-

ond order differential equations has no zero speed modes. To
&fq&— eaf¢= S5¢°. (33 investigate its stability, it is straightforward to break this sec-

ond order system into a first order system as in the scalar

When € is nonzero, there are no zero speed modes and thfield study above. It is then easy to show that the resulting
evolution is stable. In Fig. 1 we show the evolutionéfat  first order system is strongly hyperbolic and hence stable. As
various timegfrom t=0 tot=230 in equal time interva)for  we turn thee’s to zero(recovering the ADM systejm zero
the case ot=1 ands= —0.01(the initial data is a Gaussian speed modes appear in the second order system and the cor-
wave packet This evolution is very similar to that of a responding first order system becomes only weakly hyper-
nonlinear gravitational plane wavsee[37]). bolic. This is precisely what happened in the scalar field

Next we tunee down to zero in Eq(33). The propagation example above. We hence conjecture that the existence of
speed of the eigenmodes becomes zero. The initial Gaussiaero speed modes and the related weak hyperbolicity is at
profile now does not propagate, instead it decreases in anteast one of the reasons why the ADM system becomes un-
plitude initially, becomes negative and eventually blows up.stable in numerical evolutions when nonlinear source terms
See Fig. 2 for the evolution up te=5, with the same initial cannot be neglectede., unstable when gravity and/or gauge
data as before. In fact, this system is simple enough to beffects become strong
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Evolution of ¢
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FIG. 2. Evolution of¢ described by Eq31),
with e=0 and5§=—0.01 at various time¢from
t=0 tot=30 in equal time intervajs

-0.5

As an explicit example of such a transition between lineawith h,, in the analysis of Sec. Il. Since this mode satisfies
growth and nonlinear blow up in the ADM case, we note theall the constraints, it represents a physical solution of the
well known case of focusing in geodesic slicing. It is pre-evolution equationgeven if it only corresponds to a non-
cisely the zero speed gauge mode discussed in the previoygyial evolution of the coordinate systémand hence cannot
section the one that represents the focusing of geodesic slige eliminated. The most we can hope to achieve is to de-
ing. In the full nonlinear case this focusing produces a coorgouple it from the rest of the evolution equations, so that it
dinate singularity causing a blow up in a finite time. will be immune to possible numerical errors, in particular

_ One last comment comparing different blowing up solu-ihose coming from the complicated Ricci tensor terms driv-
tions is in order. We note that the nonlinear wave equatlor?ng the evolution.

(33) described above has solutions that blow up in a finite Remarkably, such a decoupling is not difficult to achieve.

time even in the case of a nonzero wave speedeFat and : - ;
. : Following [29,28,3Q we first conformally rescale the metric
_ — —B/(t— )2 -
5=1, two such solutions aré= —6/(t—c)~ (with ¢ a spa in the following way:

tial constant and ¢= — 4/(t>—x?). However, these “blow-
ing up solutions” are fundamentally different from those in
the zero-wave-speed case we focused on above. These
“blowing up solutions™ are blowing up in a global manner,
and can come into existence in our numerical evolutions onl
if we choose boundary conditions that allow them. In nu-
merical evolutiong(at least those considered in this paper 1
we typically start the evolution at a certain initial time in a ¢=—logg. (36)
compact computational domain with a certain chosen set of 12
boundary conditions. The “blowing up solutions,” which
are blowing up in a global manner can be excluded by an
appropriate set of boundary conditions. On the other hand, i
the case whee=0 andé>0, the unstable solution involves
an arbitrary function ok. One can see that any initial data Zij
with positive ¢ will cause a local blow up, independently of
its initial profile. It cannot be excluded by choosing bound-
ary conditions. The locality of the instability is the crux of
the problem making it dangerous in numerical evolutions.
In the next sections, we focus on the zero speed modes in

gi=e *g;;, (35

ith ¢ chosen in such a way that the rescaled méjfjimas
nit determinant,

We also define the conformally rescaled, trace-free part of
e extrinsic curvaturé;; as

:e_4

s 1
Kij— §9in : (37)

The ADM equationg1) and(2) can now be rewritten as
the following system of 14 evolution equations:

the case of the Einstein equations. We show how one can (= Lp)p=— EK, (38)
deal separately with the gauge mode and the constraint vio- 6
lating modes. _ _
(9= Lp)gij= —2aAij, (39
IV. DEALING WITH THE GAUGE MODE:
DECOUPLING K (0= L)K=—D'D;a+a(R+K?), (40)
In trying to deal with the zero speed modes, we will first -
concentrate on the pure gauge mode: the mgdassociated (0~ LpAjj=e **(—DDja+aRy) ™" (41)
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+a(KA; —2A,A), (42) d¢p=—KI/6, (50)
_ ~ atﬁij == 27:\ij ) (52
subject to the extra constraings=1, trA=0.
The Hamiltonian and momentum constraints now become #K=0, (52
as ~
aA; =R = 5;RP(1-0)/3, (53
R_zij’AijJrZKz/B:O (43) with Ri(jl) the linear Ricci tensor. Notice now that to linear

orderK does not evolve at all: to linear order the evolution of
the gauge variablesp,K} is therefore completely trivial. In
particular, ifK is chosen to be zero initially, it will remain
exactly zero: no need for any exact cancellation.

Now, quite generally the Ricci tensor can be separated
nto

D;(All—2g'K/3)+6Al9,¢=0. (44)

Notice that now we have separated out the “gauge” vari-
ables{¢,K}, but we have not yet decoupled the evolution R.—R +R? (54)
equation forK from the Ricci tensor. This last step can be e
achieved by making use of the Hamiltonian constraint abovel_he first term abovel
Doing this, we can eliminate all reference to the Ricci tenso
from the evolution equation foK. One can also use the
Hamiltonian constraint to eliminate the Ricci scalar from the
evolution equation foﬁij . In fact, one can consider adding
an arbitrary multiple of the Hamiltonian constraint to this
equation. We will then consider the evolution equations

; ij is the Ricci tensor associated with
the conformal metric which to linear order is

RV=—1/2Vihi—aT—aT)), (55)

with theT; defined just as before, but now using the confor-

mal metric
o T‘i:zz &k’ﬁik—llﬁfﬁ. (56)
(5t_£ﬁ)¢:_gK, (45 K
The second term in E@54) is the part of the Ricci tensor
coming from the conformal factap which to first order is
(09— L) Qi = —2aA; (46)
P ! RYW=—2(3i9; ¢+ 8 Viah). (57)
1 Notice that one can easily prove that
0—Lg)K=—D'Dja+a Z--"A”Jr—Kz), 4 - -
(9= Lg) ' s @7 defg; =1=h=0, (58)
so we could in principle eliminate the second term in Eq.
(at_ﬁﬁ)z‘i' —e %(-D,D;a+aR;)TF (56). As we will see below, this is a bad idea, so here we will
. J J just add instead a paramet&ithat will be equal to O if we
a4 ~ % %, 2 eliminateh, and equal to 1 if we do nabut see the next
+§Ugij(R_AijAll+§K2> : I ' g..Lf W d_u X.
section, where thd"’s are promoted to independent vari-
~ ~ = ableg. We can then rewrite the first order Ricci tensor as

Ri(jl): - 1/2:Vf2|a5” + 58,&15] + Zk (?k(?(lﬁj)k
Notice thato=1 will correspond to the case when the

~R|CC| scalar is eliminated from the evolution equation for —2[3,9;¢+ 5ijvleat¢]' (59)
A .
IJAs before, we will now concentrate on the case of geode- Using this we can find the linearized version of the con-
sic slicinga=1 with zero shift3'=0, and consider a linear straints
perturbation of flat space,

> 4f;=0 (Hamiltonian, (60)

I
gij:5ij+hij' (49) _
4 fi=0 (momentum, (61

The evolution equations then become where now
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The Hamiltonian and momentum constraints now reduce

7@2 ;hij—83; . (62)  to the three equation@gain, not four
As before, having found the linearized form of the evolu- hy—8¢=0, (78)
tion equations, we will proceed to make a Fourier analysis of .
the system. We then assume that we have a solution of the h.y=0, (79
form
b= gbei(wt_kx), 63) hy,=0, (80)
L where as before, the first condition results from both the
h;;=h;;e'l@t=k9, (64)  Hamiltonian constraint and thecomponent of the momen-
tum constraints.
K=Kel(@t=kx) (65) The eigenvaluea and eigenvectors of the matriX0) are
now somewhat more complicated. Let us consider first the
A=A eil@t-k9 (66) eigenvalues on their own. They axe=0, with multiplicity
ij i .

The evolution equations fap andh;; imply

N - i
K=—6iw¢, Aij:_zwhij' (67)

Substituting this into the evolution equations férand
A;; we find
w?h=k>Mh, (68)

where nowh is a seven-dimensional vector

h:z(a’rhxx:hyy:ﬁzzvhxyaﬁxzaﬁyz)v (69
and
0 0 0 0 0 0
My My My My, 0 0 0
M3 Mg Mgz Mgy 0 0 O
M=| Mar Mgz Myz My 0 0 O . (70
0 0 0 0 0O 0 O
0 0 0 0 0O 0 O
0 0 0 0O O 0 1
with
Myy=8—16(1— 0)/3, (72)
My=(§—1)(1—(1—0)/3), (72
Myz=Myu=E—(E+1)(1—0)/3, (73
m31=m41=4—16(1—0')/3, (74)
Mgo=Myo=—(£—1)(1—0)/3, (75
Mgz=Myy=1—(£+1)(1-0)/3, (76)
Mgy=Myz=—(£{+1)(1—0)/3. (77

3, A=1, with multiplicity 2, and\=(oc—1+3¢0=* 7)/6,
with

n=[1+ (34— 42¢)+ o?(1+ 3£)2]Y2 (81)

There are a couple of things to notice from the last two
eigenvalues. First, notice that if we take=0, one of these
eigenvalues is always negative, which implies the existence
of an exponentially growing mode, i.e., we have an unstable
system of equations. So waustadd some multiple of the

Hamiltonian constraint to the evolution equation :éfj.
How much we need to add will depend on the valuetof
Moreover, with a little algebra one can also see that taking
£=0 results as well in a negative eigenvalue. This means

that if we had decided to use the constrdirt0 (£=0) in
the expression for the Ricci tensor, we would again have an
unstable system of evolution equations. A safe valueéfor
turns out to beé=1. If we choose this, the characteristic
structure of the matrix70) becomes the following.

N=0, with corresponding eigenvectors

v1=(1,8-4,-4,0,0,0, (82)
v,=(0,0,0,0,1,0,0, 83)
v3=(0,0,0,0,0,1,0, (84)
v4=(0,1,0,0,0,0,0. (85)

N=1, with eigenvectors
vs=(0,0,1-1,0,0,0, (86)
ve=(0,0,0,0,0,0,1. (87)
N=(40—1)/3, with eigenvector
v7=(0(40+2),(40-1),(40-1),0,0,0. (88)
Notice the last eigenvalud =(40—1)/3 will only be

positive foro=1/4, which tells us that we must add at least
this much of the Hamiltonian constraint to the evolution

equation for'A”. A natural choice is to taker=1. This
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corresponds to completely eliminating the Ricci scalar fromthey will never really vanish and as we have just seen they
this equation, and results in the eigenvalue reducing to thean have important consequences on the stability of our evo-
physical speed of light. lutions. Even when these modes have a real speed of propa-

The type of solutions that the different eigenvectors rep-gation (as opposed to an imaginary speed indicating an in-
resent are(1) Two physical solutions that travel with the stability on the analytic levglif that speed is larger than the
speed of light k= 1) represented by the transverse-traceles§P€ed of light they can cause numerical instabilities if one
vectorsvs and vg, (2) one mode that violates the Hamil- forgets about thelr.eX|stence and.choc_)ses a time step based
tonian constraint, the& component of the momentum con- ONly on the extension of the physical light cones.

straint, and the constraifit=0, that travels with the speed
equal to the square root of (4 1)/3, represented by the V- DEALING WITH THE CONSTRAINT VIOLATING
vectorvy, (3) two modes that violate only the momentum MODES: USING THE MOMENTUM CONSTRAINTS

constraints, and “travel” with speed zera\{0) repre- In the previous section we have seen how separating out
sented by the vectors, andvs, (4) one mode that violates the gauge variablgsp,K} provides a way to control the zero
the Hamiltonian constraint, thecomponent of the momen- speed gauge mode. This still leaves us with the zero speed
tum constraint, and the constraint=0 that has speed zero constraint violating modes to worry about. Here we will
(A=0) represented by the vectoj, and(5) one pure gauge Show how those_ modes can be dealt W!th by using the mo-
mode (satisfying all the constraintghat travels with speed Mentum constraints to modify the evolution equations of ex-
zero (\=0) represented by the vectoy. tra first _order degr_ees of freedom. _ _
The structure of these eigenvalues and eigenvectors tells The idea of using the momentum constraints to modify
us in the first place that one has to be careful in the way irf€ €volution equations is at the core of many recent hyper-
which different constraints are added to the evolution equabPolic reformulations of the Einstein equatioff0-13. In
tions. The simple statement that one is in principle free tgParticular, the use of the momentum constraints to obtain
add multiples of constraints to evolution equations is truefvolution equations for extra first order variables can be
only if one does not worry about the stability of the final traced back to the Bona-Masswrmulation[10,11. Here we
system. In this case we have seen how using blindly thdill follow for simplicity the approach of Baumgarte and
constrainth=0 to simplify one of the equations results in the Shapiro[29)] (a very similar approach has been used before

. bé( Shibata and Nakamuf&8]).
appearance of an unstable mode, and how neglecting to us . ; L
We will again concentrate on the case of geodesic slicing

the Hamiltonian constraint in another equation also gives rise —1 with zero shiftg =0, and consider a linear perturba-

to an unstable mode. A similar point has also been made i . : . .
lon of flat space. The linearized evolution equations were

38| in the context of adding multiples of the Hamiltonian . T .
E:or?straint to the standard AgDM evglution equations. given by Eqs(50~(53). The Ricci tensor that appears in the

From the characteristic structure described above, we cafvolution equation fo;; was separated as
see that we now have four zero speed modes instead of three _
(assuming we do také=1), so the situation would seem RIP=RM+RIM, (89)
worse than before. Three of these modes are constraint vio-
lating, and we will worry about them in the next section. with
What about the gauge mode? The gauge mode is of course
still there, and it still has zero speea it should, but now it ~Ri(]_l): - 1/2(Vf2|at|~“ij - ﬁifj - 3j1-i) (90)
is in a much more convenient form. From lookinguatwe
see that its evolution depends on the evolution equation foénd
¢, which we have seen is trivial in the linear and nonlinear

case, ghd the evolution of the tra(_:el~ess p_amlipf_ vv_h|ch is Riajﬁ(l): —2(d,9;¢+ 5iij2|at¢)- (91)
also trivial as long as the constraintAr=0 is satisfied see

Eq. (51]. The importe_m.t poir_1t Is the following: the fact that Now, instead of writing the quantitid$; in terms of their
this mode evolves trivially is now the consequence of thedefinition (56) as we did before, we will promote them to

simple algebraic constraint tA=0, and is independent of independent quantities, and use Esf) only to obtain their
exact cancellations iderivativesof the metric that appear in jnjtial values. We will then need an evolution equation for
the Ricci tensor. This prov~|des an easy way to control thethefi. This we can obtain trivially from Eqs56) and (51):
mode: Numerically setting & to zero after each step of the
evolution ensures that the gauge mode cannot grow. _ 5 5
A comment is in order here. It has been recognized for &tl“i=—22 AAKit d; trA. (92
some time[10,11,18 that gauge modes can propagate with k
arbitrary speeds. The analysis presented above shows that 5
constraint violating modes can do the same. Often one doesotice that we can use the fact thaf; is supposed to be
not think about these modes because they are unphysicdiaceless to eliminate the last term above. However, we still
and one can avoid exciting them with an appropriate choicelo not know if this will turn out to be a good idea or not, so
of initial data. However, from a numerical point of view, instead we again introduce a parameteand write
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~ ~ ~ M3=My=4—16(1—m)(1—0)/3, 10
o =—2> oA+ tr A, (93) s §1-mi-o) (109
‘ M=M= —(2m+£-1)(1-0)/3, (10
There is still one extra modification we want to make to o
this evolution equation: We will add to it a multiple of the Mgg=Myy=1—(£+1)(1-0)/3, (107
momentum constraint®1) to obtain Mga= M= — (£+1)(1— 0)/3. (108
~ ~ ~ 4m ~
ol'i=2(m— 1)2 NA T & tr A— ?&iK, (949 Notice that introducing th&; as independent variables by
K itself does not change our analysis basedMynwhich is

with m arbitrary. Equation(94) above is our final evolution ©Ptained by eliminating th€ . But the evolution equations
equation for thel,. Keeping thel’; as independent vari- for the I'; motivate the introduction of the parametear,

ables, we also have to remember that we have introduced ti¥0se effect we consider now. The eigenvalues of the matrix
(101 turn out to bex=0, with multiplicity 1, A=m, with

extra constraint§’;= 3,9, hiy . o - . b -
For the Fourier analysis, we again consider plane Wavegumzphcnﬁl/ 2, )‘._1’ with multiplicity 2, and A =(1/6)[b
. O . 5% (b%2—c) V2], with
moving along thex direction. From the evolution equations

for ¢ andh;; we find b=—1+0+3ér+2m(2+0), (109

R=—6iwd, Aij=—|§wﬁij, 95 c=360(—1+¢&+2m). (110

The last two eigenvalues are quite complicated, so we will
concentrate for the moment on the particular casel. In
that case the eigenvalues and eigenvectoh céduce to the
following.

A =0, with corresponding eigenvector

v,=(1,8-4,—4,0,0,0. (111

Substituting this in the evolution equations for we obtain

[ = —ik[(m—1+ &2)hyy+ é12(hy,+ ) —8M],
(96)

I'y=—ik(m—1)h,y,, (97)
N=m, with corresponding eigenvectors
Fem kM= e, 99 v2=(0,0,00,1,00, 112

And finally, substituting all these results back into the evo-

lution equations foK andA;; we find v3=(0,0,0,00,1,0. (113

N=1, with eigenvectors

w?h=k?Mh, (99
v,=1(0,2¢/(2—-2m—¢),1,1,0,0,0, (119
whereh is the same as before
A vs=(0,0,1-1,0,0,0, (115
h’:(d’-hxwhyyahzz-hxy1hx21hyz)- (100
v=(0,0,0,0,0,0,1. (116

and where the matrii is now
N=2m+¢—1, with eigenvector

0 0 0 0O 0 O
My My My My O 0 O v,=(0,1,0,0,0,0,0. (117
Mgy Mg, Mgz Mg O O O And the type of solutions represented étgtwo physical
solutions that travel with the speed of light€1) repre-
M=| Ma My My Mg 0 0 0], (10D  genteq by the transverse-traceless veatgranduvg, (2) one
0 0 0 0O m O O mode that violates the Hamiltonian constraint, #fheompo-
0 0 0 0 OmaoO nent of the momentum constraints, and the constfain®
0 0 0 0 0 o that also travels with the speed of light€1) represented
by the vectorv,, (3) two modes that violate only the mo-
with mentum constraints, and travel with speed? represented
by the vectorsv, andvg, (4) one mode that violates the
Mo;=8(1—2m)—16(1—m)(1— o)/3, (102 Hamiltonian constraint, th& component of the momentum
constraints and the constraiht=0 that has speed (@+ ¢
My,=(2m+&é—1)(1—(1—0)/3), (103 —1)2 represented by the vector, and(5) one pure gauge
mode (satisfying all the constraintshat travels with speed
Myz=Myu=¢—(é+1)(1—-0)/3, (104 zero (\=0) represented by the vectoy.
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Notice first that all constraint violating modes have now We see now that depending on how large a multiple of the
acquired a nonzero speed. If we want to have all eigenvalugdamiltonian constraint we add to the evolution equation of

non-negativeland hence all speeds rgalve must have A;;, we can change the speed of propagation of the mode

m=0, (118 that represents the trachtqf (_and hence .the trace Efij). If
we do not use the Hamiltonian constraint at aH=0), we
and will again have a zero speed unphysical mode. However, this
is not as bad as it might seem because in practice this mode
1-¢ is very easy to control since it will vanish if one imposes the

2m+£—-1=0=>m= ——. 119 ~
¢ 2 (119 algebraic constraint &=0.

In particular, if we take¢=0 (that is if we use the fact that VI. NUMERICAL EXAMPLES: STABILITY

trA=0 in the evolution equation fdr;) then we must have OF MINKOWSKI SPACETIME
m>1/2. So in order to have a stable system westadd a - ) )
finite multiple of the momentum constraints to the evolution TO compare the stability properties of the different sys-

equation forl; . If we fail to use the momentum constraints, tems in a_simple situation we wil c_on'_sider_the evolut_ion of

the system will have an exponentially growing mode. This isVINkowski spacetime, with a flat initial slice, but with a

consistent with the results of the last section, where we didontrivial spatial coordinate system. Since the extrinsic cur-

not have thel’; (which in some sense is equivalent to not vature is zero, the spacetime should then remain static. Nu-
1

using the momentum constraijtaind we found that taking merically, of course, tt;e Ricci ‘e't"$°_r IWI” ?‘?{t bebe>t(a_1]§:'ilr3]/
£=0 resulted in an unstable system. zero, SO we can expect some nontrivial evolution, but if the

Notice also that if we take system is stable we will only have spurious.numerical noise
that should propagate away. If the system is unstable, how-
m=1, ¢&¢=0, (120 ever, we can expect that the numerical noise will slowly
grow in amplitude. We will be evolving the full nonlinear
then we have one zero speed mode and six modes that travegjuations, so the initially slow growth of the numerical noise
with the speed of light. This is precisely the choice made bycan be expected to trigger nonlinear growth at late times.
Baumgarte and Shapiro [29], so the result above explains  In order to obtain our initial metric, we start from the flat
why it was necessary in their case to add a multiple of thespace metric in spherical coordinates
momentum constraints, and also why one should expect to ) s oo
have only the speed of light as a characteristic speed in their dI*=dro+r<dQs, (128
system. In the casmm=1, ¢=0, the eigenvectoo, might . .
a)pl)pear at first sight to be singular, but?‘rom the férm 'that theWlth do? Fhe solid angle elgmfent. Wehen make tneioliows
matrix M takes in this particular case it is not difficult to ing coordinate transformation:
show that in factw, is replaced by (0,0,1,1,0,0,0) with all
other eigenvectors remaining unchanged. The only zero
speed mode |eft is the pure gauge medebut as we have with 0<a<1 andf(r) a smooth monotonously decreasing

seen before, its evolution does not rely any more on exact . . = ~ i
cancellations in the Ricci tensor. function that is 1 for smalt and O for large . The particular

Finally, let us consider again the case whew 1, but form of the functionf that we will use here is a Gaussian

r=r(1—-af(r)), (129

now keepingm=1 and£=0. In this case the eigenvalues
and eigenvectors become the following.
A=0, with corresponding eigenvector

f(f)y=e 17", (130

In terms of the new radial coordinate the metric becomes

v1=(18-4,-4000. (23 dI2= gy, dF 247 2g,,d02, (13
A=1, with corresponding eigenvectors with
v,=(0,0,0,0,1,0,0, (122 gu=[1-a(f 4TI, (132
v3=(0,0,0,0,0,1,0, (123 Up=(1—af)2. (133
v4=(0,-2,1,1,0,0,0, (124 Finally, for our 3D evolutions we transform this metric to
vs=(0,01~1,0,0,0, (125 Cartesian coordinates in the standard way,
5e=(0,0,0,0,0,0.1 126 X=T sin 6 cosg, (134
\ = o, with eigenvector y=Tsinésing, (139
v7=(0,1,1,1,0,0,0. (127 Z=T cosé. (136
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olong X
n of Ixx

Evomtio

So our initial metric is
o= [XGa1+ (Y2 +2) G20l 2,
9yy=Ly’gu+ (x*+2%)g2l/r %,
9,,=[ 22911+ (X*+y?)gpl/T 2,
Oxy=XY(911— 922)/? 2,
U= X211~ U2 /T 2,

9y,=YZ(g11— 9 /T 2.

(137)

(138

(139

(140

(141

(142
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FIG. 3. Surface plot 0§, along thex axis as
a function of time for the simulation using the
standard ADM formulation.

perturbations will cause focusingve are evolving the full
nonlinear Einstein equationdt is better to use a slicing that
can react to the evolution and can propagate away spurious
numerical waves. Harmonic slicing is ideal for our purposes.
It is defined via the following evolution equation for the
lapse:

da=—a’K. (143

SinceK is initially set to 0, the lapse should remain 1 if the
evolution is exact.

Finally, a comment about boundary conditions. We have
used a very simple “zero order extrapolation” boundary
condition, that is, we update the boundary by just copying
the value of a given field from its value one grid point in
(along the normal direction to the boundaryhis condition
is not very physical, nor does it allow waves to leave the
computational grid cleanly enough, but it is very robust, and

We must also say something about the gauge conditionsan be used with all the different formulations studied here
used. For simplicity, we will use a zero shift vector. For thein a stable way(at least for the time scales under study
lapse we could try geodesic slicing, but even small numericaSince our emphasis is on the stability of the interior evolu-

5.0x1 0_4 T T T T T T T T

40x1074

30x1074

rms

2.0x10™%

1.0x107%

FIG. 4. Root mean square of the Hamiltonian
constraint as a function of time for the simulation
using the standard ADM formulation.

0 20 40
time

60

o]
o
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4

1.0 T T T T 3.0x107
o=0 *
08 b
5 oxio—4 FIG. 5. Root mean square of

L 0-6F 1 . the Hamiltonian constraint as a
IE IE function of time for the simulation

0.41 T oxio4 ] using the standard CT formulation

with £=0 and two different val-
02 ues ofo.
C.0 L L L L o] L L
0 1 2 3 4 5 0 10 20 30
time time

tion, we are content with having a stable boundary condition=0 (no use of the Hamiltonian constrair@ndo=1 (use of
We have used more sophisticated boundary conditions ithe Hamiltonian constraint to completely eliminate the Ricci
various cases, but it is difficult to find one that will remain gc51ar from the evolution equation faﬁj)- From our analy-
stable for all the evolution systems considered. , sis we expect the system with=0 to have an exponentially

We now present results of simulations performed with the rowing mode and thus to be very unstable. Tae 1
different systems. The numencgl methOd used n all thes hould only have the zero speed modes and should be much
simulations was the so-called “iterative Crank-Nicholson” more stablebut still not completely stabje Figure 5 shows
(ICN) scheme with three iterations. We have found that thre P y 9

iterations are enough to obtain a stable, second order accti*® "> of the Ha”?'“.o hian constraint for these two runs. We
rate numerical schem@2] see that our predictions are indeed correct, dhe0 run

First we show the results of a simulation using the stanP&comes rapidly unstable and crashes=a¢, while the s

dard ADM formulation for the case whem=0.1 andg=2. =1 IS far more stable and only crashes &33.
For this simulation we used a grid with $4oints and a We now show the results of the choiee=0, m=1, ¢
resolution onAx=0.2. Figure 3 shows a surface plotgf, =0 in Sec. V, as used by Baumgarte-Shap8]. We have

along thex axis as a function of time. We see tligt, keeps  set trﬂij to zero at each step as discussed above. Figure 6
its initial shape for some time, but at late times it starts to fallshows again a surface plot gf, along thex axis as a func-
apart near the center. The simulation finally crashes$ at tion of time (but notice the change of scalé’he evolution
=79. Figure 4 shows the root mean squamms) of the now goes past=500 with no trace of an instability. Figure
Hamiltonian constraint over the numerical grid as a function7 shows the rms of the Hamiltonian constraint for this run.
of time. We see that for a long time there is an essentiallyrhe Hamiltonian constraint rapidly becomes much larger
linear growth of the rms of the Hamiltonian constraint super-than in the ADM case at early timéby almost a factor of
imposed with small oscillations, just what we expect from10). However, it then stops growing and simply oscillates
the linear analysis of the previous sections. At late timesaround a constant value, showing again no sign of the linear
however, the nonlinear effects take over and we have a catgrowth or the blowup that we saw for ADM.
strophic blowup, as we argued above. Finally, we show results of a series of simulations done
Next, we show results of the conformally rescaled systenby keepingoc=0 andé=0, but changing the value of (the
of Sec. IV, usingé=1, and two different values of: o  amount of momentum constraint added to the evolution

is
jong * !
a

f Gxx
Jolution &1

E

FIG. 6. Surface plot 0§, along thex axis as
a function of time for the simulation using the
Baumgarte-Shapiro formulation.
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rms
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FIG. 7. Root mean square of the Hamiltonian
+ 1 constraint as a function of time for the simulation
r . using the Baumgarte-Shapiro formulation.

0.0005 — —

000000 v v v v v vy | I SR | I R | I R [ S R R

equation of thd's). Figure 8 shows the rms of the Hamil- the differential equations.
tonian constraint for runs witm={0,0.25,0.5,0.75 (com- We show that the zero speed modes come in two forms: a
pare with them=1 case shown aboyeAs expected from pure gauge mode that satisfies all the constraints, and is
our analysis, we see that the cases witk 1/2 rapidly be- therefore a legitimate physical solution, and a series of non-
come unstable. The simulation with=0 crashes at=4 physical constraint violating modes. We investigate the
while the one withm=0.25 crashes at=12. On the other change in behavior of these modes going from the standard
hand, the cases witim=0.5 remain stable past 400. ADM formulation to the conformal-traceled€T) systems
of Shibata and Nakamui@8] and Baumgarte and Shapiro
[29], and their derivatives. Two features we believe respon-
sible for the better stability property of the conformal sys-
We have studied the stability properties of the standardems are identified(1) The zero speed gauge mode is gov-
ADM formulation of general relativity based on a linear per- €rned by an equation that is free from the complication of the
turbation analysis. We focus attention on the zero speeficci tensor, thus decoupling it from the rest of the system.
modes. We conjecture that the zero speed modes can cauge® The constraint violating zero speed modes, on the other
instabilities in evolutions of the ADM system in its standard hand, acquire a finite speed of propagation due to the intro-
form. These instabilities do not have a numerical origin, butduction of extra first order degrees of freedom, and the use of
rather they correspond to genuine blowing-up solutions othe momentum constraints to modify the evolution equations

VIl. CONCLUSIONS

10[ . . . . 10[ . .
m=0 1 [ m=0.25
081 g oal
06 ] 0.6
(2] F 4 w b
€ €
IL r | IL r
0.4 N 7 0.4 N
oak ] ool FIG. 8. Root mean square of
[ 1 [ the Hamiltonian constraint as a
0.0l . . ] 0.0l function of time for the simulation
0 ! il 3 * 0 using the Baumgarte-Shapiro for-
mulation with different multiples
0.0040F ; ; ' ] 0.0040f ' ' ' ] of the momentum constraint
i m=0.5 ] i m=0.75 ] added to the evolution equation
0.0030% El ] 3 for theI's (different values of the
o EI : E parameteim).
£0.0020 Y Eo.0020F E
I E -y L E
0.0010F 3 o.ooioff et st "
0.0000E . L L 0.0000k . L . ]
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time time
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for these degrees of freedom. We present numerical ex 2°[ "~~~ "7 T T T T T
amples to support our analysis.

We consider the study presented in this paper as a firs
step towards the understanding of the stability issue in the 15
numerical evolution of the Einstein equations.
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APPENDIX A: FINITE DIFFERENCE APPROXIMATION 0.0
TO THE LINEARIZED ADM EQUATIONS

We will consider a simple finite difference approximation  FIG- 9. Eigenvalues of the characteristic matkk The solid
to the linearized ADM evolution equations written in S(_:‘Condllnes indicate the four distinct eigenvalues, while the dashed line
order form. For this we start from Eq¢6) and (7), and indicates the eigenvalue one would obtain for the finite difference

substitute one into the other to find approximation to the simple 3D wave equation.
) ) andM is the matrix
[?t hij_vflathij:(?i[?jh_ZE [?(I(?mhj)m (Al)
" ui+uz uf uZ  2s, 2s, O
We now construct a simple second order finite difference us uZ+u2 u§ 2s,, 0 2s,
approximation to this equation using standard centered dif- ) 5 > 5
ferences, B u; u; uctuy 0 2s,, 25,
) 1 0 0 Sy U s, s |
_ n
<7tf—(m)2 St (A2) 0 -5, 0 Sy, U sy
-sy, 0 0 Sxz Sy UR
2¢ 1 52 n
Iff= 50 fms (A3) (A9)
(4%) where we have defined
H n _ — —
with f,=f(t=nAt,x;=m;Ax) and ui2 =2[1—cogkAX)], (A10)
n n+1 n n-1
= - +
Sifm=tm =2+, (Ad) Sjj = —sin(kjAx)sin(k;Ax).
All
AR =10 20 +10 . (A5) (A1)
) ) Let us now define
Let us now consider a plane wave solution of the form
. 2
(hij)p=hjje!Meatrmax), (A6) Ni=—[1-cogwAt)]. (A12)
p

But notice now that we allow the waves to move along any

direction. This is because even if different directions areEquation(A7) now becomes

equivalent from the analytic point of view, they are not o

equivalent numerically because the numerical grid intro- Mh=N\h, (AL13)
duces preferred directions. o _ _

If we substitute this into the finite difference approxima- Which is just an eigenvalue equation. Here we face one prob-
tion to Eq.(7) we find the following equation: lem: the characteristic polynomial is of 6th order, and is
difficult to solve exactly in the general case. We will then
consider a couple of particular cases.

First, assume that the wave moves only onxluérection,
sok,=k,=0. In this case everything simplifies considerably,

where p:=At/Ax is the Courant parametel, is defined as and we find that the eigenvalues bf are just\=0, with

before, multiplicity 3 and\ =uZ, with multiplicity 3.
o This has precisely the same structure we found before for
h:=(hyx,hyy,h,,. 0y s, 0y ), (A8)  the exact system of differential equations. The only differ-

32[1—cos(wm)]ﬁ=” h, (A7)
p
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ence being that the wave speed is now not quite 1. The wave
speed in fact depends on the wave numkgr and can be

obtained from the dispersion relation

2
—[1-cogwAt)]=u;. (A14)
p

Notice that for smalk,Ax (large wavelengths compared

to the grid spacingthis relation reduces to

w?=k2, (A15)

PHYSICAL REVIEW D62 124011

u?=2[1-cogkAx)], s?=sirP(kAx). (A16)

The values of the different roots are shown in Fig. 9. The
solid lines indicate the four distinct eigenvalues, while the
dashed line indicates the eigenvalue one would oh@isp
along the diagonal linefor the finite difference approxima-
tion to the simple 3D wave equation=3u?. The plot is
only in the regionkAxe[0,7] since larger wave numbers
can not be represented on the numerical gkieF {r/Ax is
the so-called “Nyquist” frequency of our grjd

There are several things to notice from this result. First,

which is what one expects. For smaller wavelengths we obwe now have four distinct eigenvalues instead of two: the
tain wave speeds that are smaller than 1, showing the dispemumerical grid has broken the degeneracy of the exact prob-

sive nature of the finite difference approximation.

lem. Second, the three eigenvalues that where zero in the

The results above are not particularly surprising. One obexact case are now only zero for=0, and are clearly non-
tains essentially the same thing for the simple wave equatiorzero for any finitek. This shows that the zero speed modes
The interesting case is when we consider waves moving in have picked up a nonzero speed in the numerical approxima-
direction different from the coordinate lines. We will then tion. This artificial speed is very small for large wavelengths
consider the particular case of waves moving in the diagonalsmall k), but becomes considerable for smaller wave-
direction, for whichk,=k,=k,=k. The characteristic poly- lengths. Finally, we see that for small valueskafie recover
nomial now does not simplify nearly as much, but one carthe exact result: one eigenvalue vanishek42, two as

still find the eigenvalues analytically. They ake=u?—s?,
with multiplicity 2; A =u?+ 2s?, with multiplicity 2, and
=1[5u?—25?* (9u*—12s*+ 12u%s?) 2], where

k%4, and the other three go to zero ak’3which is the
correct result for waves traveling with a speed of 1 along the
diagonal.
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